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Over the past decade, billions of dollars from public and private funding institutions have 

been invested in the fields of neuroimaging and human genetics. Recently, researchers have 

realized that quantitative measures from imaging methods are a useful substrate for testing how 

genes influence brain structure, behavior, and susceptibility to disease. However, properly 

merging the two well-developed fields requires complex new methods and statistical models. 

Many studies in imaging genetics are simplistic in that they generally focus on individual 

association tests of a small set of genetic variants (usually single nucleotide polymorphisms, 

SNPs) on a single summary measure of the brain. These studies are great at bridging the gap 

between the two fields, but they often fail to utilize advanced methods from either field. For 

example, in genetics we know that our genes interact with each other in complex pathways, only 
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in very rare circumstances is a single mutation or variant responsible for observable differences 

in phenotype. Modeling genetic associations using simple linear regression to test the effect of a 

single SNP at a time on an imaging phenotype is a good first step, but methods that more 

accurately represent the underlying biology will test the joint effect of multiple genetic variants 

simultaneously. The flipside of this is a similar problem, our brains are under strong genetic 

control, but our differences are extremely complex; using quantitative summary measures from 

imaging data will miss fine-grained differences between subjects. 

 

 

  

Derrek Hibar
iii



!

The dissertation of Derrek Paul Hibar is approved. 

 

Arthur W. Toga 

Eleazar Eskin 

Daniel B. Ennis 

Paul M. Thompson, Committee Chair 

 

 

University of California, Los Angeles 

2013 

  

Derrek Hibar
iv



!

TABLE OF CONTENTS 
 

1. Introduction 

1.1. Merging quantitative human genetics with neuroimaging genetics (pg. 2) 

1.2. Surface-based morphometry as an endophenotype (pg. 3) 

1.2.1. Reducing multiple comparisons correction to boost statistical power (pg. 4) 

1.3. Genetic models that more accurately reflect the underlying biology (pg. 5) 

1.4. Going meta, the future of imaging genetics research? (pg. 5) 

1.5. Organization of the dissertation (pg. 7) 

2. Expanding genome-wide search to full brain endophenotypes 

2.1. Multilocus genetic analysis of brain images (pg. 9) 

2.2. Principal components regression: multivariate, gene-based test (pg. 21) 

2.3. Voxelwise gene-wide association study (vGeneWAS) (pg. 28) 

2.4. Alzheimer’s disease risk gene in young healthy twins (pg. 46) 

3. Radial distances as a surface-based endophenotype for genetic association 

3.1. Genetic clustering for increased power in genetic studies (pg. 58) 

4. Examining the effects of epistatic interactions in full-brain phenotypes 

4.1. GPU-accelerated interaction testing in the full SNP-SNP interactome (pg. 68) 

5. Analyzing genetic determinants of endophenotypes using meta-analysis 

5.1. Genetic analysis of lentiform nucleus volume (pg. 78) 

5.2. Genetic analysis of hippocampal volume in 21,151 subjects (pg. 93) 

6. Future works 

6.1. GWAS meta-analysis of subcortical brain volumes, ENIGMA2 (pg. 107) 

Derrek Hibar

Derrek Hibar
v



!

6.2. Meta-analysis of structural brain differences in bipolar disorder: the ENIGMA-Bipolar 

project (pg. 109) 

6.3. A prospective meta-analysis of subcortical brain volumes in schizophrenia: the 

ENIGMA-Schizophrenia project (pg. 112) 

  

Derrek Hibar

Derrek Hibar
vi



!

LIST OF FIGURES 

 

Figure 1. A single SNP association test (pg. 2) 

  

Derrek Hibar

Derrek Hibar
vii



!

LIST OF TABLES 

 

Table 6.1. Demographic breakdown of the number of patients diagnosed with bipolar disorder 

and healthy controls contributed by each site. (pg. 111) 

 

Table 6.2. Demographic breakdown for the number of patients diagnosed with schizophrenia 

and healthy controls contributed by each site. In addition, mean age and gender for each group is 

given. For some groups duration of illness (DOI) was also available. (pg. 113) 

 

  

Derrek Hibar
viii



!

ACKNOWLEDGEMENTS 

 

To all of my family, friends, colleagues, and mentors thank you for your support and 

understanding throughout my graduate career; I could not have done this without you. 

 

Funding Agency Acknowledgements 

The Australian twins study was supported by the National Institute of Child Health and Hu-man 

Development (R01 HD050735), and the National Health and Medical Research Council 

(NHMRC 486682), Australia. Genotyping was supported by NHMRC (389875). Projects were 

also funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (NIH Grant U01 

AG024904). ADNI is funded by the NIA, NIBIB, and through generous contributions from the 

following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai 

Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, 

Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., 

Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-

profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with 

participation from the U.S. FDA. Private sector contributions to ADNI are facilitated by the 

Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the 

Northern California Institute for Research and Education, and the study is coordinated by the 

Alzheimer's Disease Cooperative Study at UCSD. ADNI data are disseminated by LONI. This 

research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana 

Foundation. Algorithm development and data collection were also funded by the NIH - NIA, 

NIBIB, NICHD, NLM, NCRR AG040060, MH097268, MH089722, EB01651, LM05639, 

Derrek Hibar
ix



!

RR019771, EB008432, EB008281, and EB007813, to Paul Thompson. Derrek Paul Hibar was 

partially supported by NSF grant DGE-0707424. 

 

Co-author Acknowledgements 

Chapters 2 through 5 are based on the following articles, I would like to thank all of the co-

authors for their contributions: 

• Derrek P. Hibar*, Omid Kohannim*, Jason L. Stein, Ming-Chang Chiang, Paul M. 

Thompson. Multilocus genetic analysis of brain images. Frontiers in Statistical Genetics. 

2011. 2:73. *Denotes equal contribution. 

• Derrek P. Hibar, Jason L. Stein, Omis Kohannim, Neda Jahanshad, Clifford R. Jack, Jr., 

Michael W. Weiner, Arthur W. Toga, Paul M. Thompson, and the Alzheimer’s Disease 

Neuroimaging Initiative. Principal components regression: multivariate, gene-based tests 

in imaging genomics, ISBI, 2011. 

• Derrek P. Hibar, Jason L. Stein, Omid Kohannim, Neda Jahanshad, Andrew J. Saykin, 

Li Shen, Sungeun Kim, Nathan Pankratz, Tatiana Foroud, Matthew J. Huentelman, 

Steven G. Potkin, Clifford R. Jack, Jr., Michael W. Weiner, Arthur W. Toga, Paul M. 

Thompson, and the Alzheimer's Disease Neuroimaging Initiative. Voxelwise gene-wide 

association study (vGeneWAS): multivariate gene-based association testing in 731 

elderly subjects. Neuroimage. 2011. 56(4):1875-1891. 

• Derrek P. Hibar, Neda Jahanshad, Jason L. Stein, Omid Kohannim, Arthur W. Toga, 

Sarah E. Medland, Narelle K. Hansell, Katie L. McMahon, Greig I. de Zubicaray, Grant 

W. Montgomery, Nicholas G. Martin, Margaret J. Wright, Paul M. Thompson. 

Alzheimer’s Disease Risk Gene, GAB2, is Associated with Regional Brain Volume 

Derrek Hibar

Derrek Hibar
x



!

Differences in 755 Young Healthy Twins. Twin Research and Human Genetics. 2012. 

15(3):286-295. 

• Derrek P. Hibar, Sarah E. Medland, Jason L. Stein, Sungeun Kim, Li Shen, Andrew J. 

Saykin, Greig I. de Zubicaray, Katie L. McMahon, Grant W. Montgomery, Nicholas G. 

Martin, Margaret J. Wright, Srdjan Djurovic, Ingrid Agartz, Ole A. Andreassen, Paul M. 

Thompson (2013). Genetic clustering on the hippocampal surface for genome-wide 

association studies, MICCAI 2013, Nagoya, Japan, Sept. 22-26 2013 [8-page paper; peer-

reviewed]. 

• Derrek P. Hibar, Jason L. Stein, Neda Jahanshad, Arthur W. Toga, Katie L. McMahon, 

Greig I. de Zubicaray, Grant W. Montgomery, Nicholas G. Martin, Margaret J. Wright, 

Michael W. Weiner, Paul M. Thompson (2013). Exhaustive search of the SNP-SNP 

interactome identifies replicated epistatic effects on brain volume, MICCAI 2013, 

Nagoya, Japan, Sept. 22-26 2013 [8-page paper; peer-reviewed]. 

• Derrek P. Hibar, Jason L. Stein, April B. Ryles, Omid Kohannim, Neda Jahanshad, 

Sarah E. Medland, Narelle K. Hansell, Katie L. McMahon, Greig I. de Zubicaray, Grant 

W. Montgomery, Nicholas G. Martin, Margaret J. Wright, Clifford R. Jack, Jr., Michael 

W. Weiner, Arthur W. Toga, Paul M. Thompson, and the Alzheimer’s Disease 

Neuroimaging Initiative* (2012). Genome-wide association identifies genetic variants 

associated with lentiform nucleus volume in N=1345 young and elderly subjects. Brain 

Imaging and Behavior, accepted June 2012. [Epub Ahead of Print]. 

• Jason L. Stein, Medland, S.E., Vasquez, A.A., Derrek P. Hibar, Senstad, R.E., Winkler, 

A.M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., Bernard, M., Brown, A.A., 

Cannon, D.M., Chakravarty, M.M., Christoforou, A., Domin, M., Grimm, O., 

Derrek Hibar
xi



!

Hollinshead, M., Holmes, A.J., Homuth, G., Hottenga, J.-J., Langan, C., Lopez, L.M., 

Hansell, N.K., Hwang, K.S., Kim, S., Laje, G., Lee, P.H., Liu, X., Loth, E., Lourdusamy, 

A., Mattingsdal, M., Mohnke, S., Maniega, S.M., Nho, K., Nugent, A.C., O'Brien, C., 

Papmeyer, M., Pütz, B., Ramasamy, A., Rasmussen, J., Rijpkema, M., Risacher, S.L., 

Roddey, J.C., Rose, E.J., Ryten, M., Shen, L., Sprooten, E., Strengman, E., Teumer, A., 

Trabzuni, D., Turner, J., van Eijk, K., van Erp, T.G.M., van Tol, M.-J., Wittfeld, K., 

Wolf, C., Woudstra, S., Aleman, A., Alhusaini, S., Almasy, L., Binder, E.B., Brohawn, 

D.G., Cantor, R.M., Carless, M.A., Corvin, A., Czisch, M., Curran, J.E., Davies, G., de 

Almeida, M.A.A., Delanty, N., Depondt, C., Duggirala, R., Dyer, T.D., Erk, S., 

Fagerness, J., Fox, P.T., Freimer, N.B., Gill, M., Göring, H.H.H., Hagler, D.J., Hoehn, 

D., Holsboer, F., Hoogman, M., Hosten, N., Jahanshad, N., Johnson, M.P., 

Kasperaviciute, D., Kent, J.W., Kochunov, P., Lancaster, J.L., Lawrie, S.M., Liewald, 

D.C., Mandl, R., Matarin, M., Mattheisen, M., Meisenzahl, E., Melle, I., Moses, E.K., 

Mühleisen, T.W., Nauck, M., Nöthen, M.M., Olvera, R.L., Pandolfo, M., Pike, G.B., 

Puls, R., Reinvang, I., Rentería, M.E., Rietschel, M., Roffman, J.L., Royle, N.A., 

Rujescu, D., Savitz, J., Schnack, H.G., Schnell, K., Seiferth, N., Smith, C., Steen, V.M., 

Valdés Hernández, M.C., Van den Heuvel, M., van der Wee, N.J., Van Haren, N.E.M., 

Veltman, J.A., Völzke, H., Walker, R., Westlye, L.T., Whelan, C.D., Agartz, I., 

Boomsma, D.I., Cavalleri, G.L., Dale, A.M., Djurovic, S., Drevets, W.C., Hagoort, P., 

Hall, J., Heinz, A., Jack, C.R., Foroud, T.M., Le Hellard, S., Macciardi, F., Montgomery, 

G.W., Poline, J.B., Porteous, D.J., Sisodiya, S.M., Starr, J.M., Sussmann, J., Toga, A.W., 

Veltman, D.J., Walter, H., Weiner, M.W., Bis, J.C., Ikram, M.A., Smith, A.V., 

Gudnason, V., Tzourio, C., Vernooij, M.W., Launer, L.J., DeCarli, C., Seshadri, S., 

Derrek Hibar
xii

Derrek Hibar



!

Andreassen, O.A., Apostolova, L.G., Bastin, M.E., Blangero, J., Brunner, H.G., Buckner, 

R.L., Cichon, S., Coppola, G., de Zubicaray, G.I., Deary, I.J., Donohoe, G., de Geus, 

E.J.C., Espeseth, T., Fernández, G., Glahn, D.C., Grabe, H.J., Hardy, J., Hulshoff Pol, 

H.E., Jenkinson, M., Kahn, R.S., McDonald, C., McIntosh, A.M., McMahon, F.J., 

McMahon, K.L., Meyer-Lindenberg, A., Morris, D.W., Müller-Myhsok, B., Nichols, 

T.E., Ophoff, R.A., Paus, T., Pausova, Z., Penninx, B.W., Potkin, S.G., Sämann, P.G., 

Saykin, A.J., Schumann, G., Smoller, J.W., Wardlaw, J.M., Weale, M.E., Martin, N.G., 

Franke, B., Wright, M.J., Thompson, P.M. Identification of common variants associated 

with human hippocampal and intracranial volumes. Nature Genetics. 2012. 44(5):552-

61. 

 

  

Derrek Hibar
xiii



!

VITA 

2008-2009 Undergraduate researcher volunteering in the Laboratory of Neuro Imaging with 

Dr. Arthur Toga, University of California, Los Angeles 

2009 BS in Biology at the University of California, Los Angeles 

2009-2010 Staff research assistant in the Laboratory of Neuro Imaging with Dr. Paul M. 

Thompson, University of California, Los Angeles 

2010-2013 Grantee of the National Science Foundation Graduate Research Fellowship 

2012-2013 Grantee of the Nordic Research Opportunity from the Research Council of 

Norway 

2009-present Co-author on 36 peer-review publication, 1 book chapter, 8 peer-reviewed 

conference papers, and 34 conference abstracts. 

2009-present Invited speaker for the Organization of Human Brain Mapping Education Course 

on Imaging Genetics (Beijing June 2011; Seattle June 2013) and the Nansen 

Neuroscience Network speaking about ENIGMA (May 2011) 

2009-present Invited peer-reviewer for Biological Psychiatry, NeuroImage, Human Brain 

Mapping, American Journal of Medical Genetics Part B: Neuropsychiatric 

Genetics, Neuropsychopharmacology, Translational Psychiatry, Reinvention 

Journal, Neuroscience Letters 

 

SELECT PUBLICATIONS 

 
1.  April J. Ho*, Jason L. Stein*, et al. Commonly carried allele within FTO, an obesity-

associated gene, relates to accelerated brain degeneration in the elderly.  Proceedings of 
the National Academy of Sciences. 2010. 107:8404-8409. 

 
2.  Jason L. Stein, et al. Discovery and replication of dopamine-related gene effects on 

Derrek Hibar

Derrek Hibar

Derrek Hibar
xiv



!

caudate volume in young and elderly populations (N=1198) using genome-wide search. 
Molecular Psychiatry. 2011 Sep;16(9):927-37 

 
3.  Derrek P. Hibar, et al. Voxelwise gene-wide association study (vGeneWAS): 

multivariate gene-based association testing in 731 elderly subjects. Neuroimage. 2011. 
56(4):1875-1891. 

 
4.    Neda Jahanshad, et al. Brain structure in healthy adults is related to serum transferrin 

and the H63D polymorphism in the HFE gene. Proc Natl Acad Sci. 2012 Apr 3; 
109(14):E851-9. 

 
5.    Jason L. Stein, et al. Identification of common variants associated with human 

hippocampal and intracranial volumes. Nature Genetics. 2012. 44(5):552-61. 
 

6.    Joshua C. Bis, et al. Common variants at 12q14 and 12q24 are associated with 
hippocampal volume. Nature Genetics. 2012. 44(5):545-51. 

 
7.    Derrek P. Hibar, et al. Genome-wide association identifies genetic variants associated 

with lentiform nucleus volume in N=1345 young and elderly subjects. Brain Imaging and 
Behavior, accepted June 2012. [Epub Ahead of Print]. 

 
8.    Derrek P. Hibar, et al. Alzheimer’s Disease Risk Gene, GAB2, is Associated with 

Regional Brain Volume Differences in 755 Young Healthy Twins. Twin Research and 
Human Genetics. 2012. 15(3):286-295. 

 
9.    Xue Hua, et al. Unbiased Tensor-Based Morphometry: Improved Robustness and Sample 

Size Estimates for Alzheimer’s Disease Clinical Trials. NeuroImage, 2012 Nov 12; 
66C:648-661 

 
10. Neda Jahanshad, et al. Genome-wide scan of healthy human connectome discovers 

SPON1 gene variant influencing dementia severity. Proceedings of the National 
Academy of Sciences [EPUB] 

 
11. Ming Li, et al. Allelic differences between Europeans and Chinese for CREB1 SNPs and 

their implications in gene expression regulation, hippocampal structure and function and 
bipolar disorder susceptibility. Molecular Psychiatry, in press, Accepted March 6, 2013. 

 
12.  Priya Rajagopalan, et al. TREM2 Alzheimer's Risk Gene Carriers Lose Brain Tissue 

Faster. New England Journal of Medicine [Accepted May 2013].  
!

 

  

Derrek Hibar
xv

Derrek Hibar



CHAPTER 1 

 

Introduction 

One of the mainstays of quantitative human genetics is the genome-wide association study, 

which looks at single base pair changes (single nucleotide polymorphisms or SNPs) across the 

genome and how they relate to changes in some trait (called the phenotype). The basics of a 

genome-wide association study (or GWAS) are illustrated in Figure 1. The advantage of 

searching the entire genome is that you are not relying on prior hypotheses about which SNPs are 

causal; you are performing an unbiased search. Forming a prior hypothesis for a SNP or gene 

based on function can often lead to false positives and poor replication rates. This is especially 

true when looking for genetic associations with new or previously untested phenotypes. Similar 

to genome-wide studies, neuroimaging is a data rich field. 3D scans of the brain contain millions 

of data points each containing localized and unique information about a specific location in the 

brain. In the same way that it is difficult to prioritize SNPs and genes for analysis, it is difficult 

and sometimes biased to select a subset of regions in the brain for analysis. With this in mind, 

combining the two fields of quantitative genetics and neuroimaging becomes a problem of huge 

dimensions. Properly analyzing and understanding the complex interactions of our DNA and 

how changes in our DNA related to the differences in our brain requires complex new statistical 

models and experience with handling high dimensional data. In this dissertation, we examine just 

a few small parts of a rapidly evolving field, propose new innovated methods, expand our 

knowledge of the problems, and raise new questions.  

�



 

Figure 1. Panel A – a single SNP association test. Collect data on a population of subjects (say 

brain volume in this example). Next you collect data about the genetic make-up of each subject’s 

DNA. Scan each subject’s DNA for locations where some of the subjects are different (single 

nucleotide polymorphisms or SNPs). Group the subjects by letter pairs at that SNP and fit a 

regression line. Panel B – there are millions of SNPs at locations across our DNA so we need to 

repeat the process in Panel A millions of times (once for each SNP) looking for significant 

relationships between SNPs and our trait. This is a genome-wide association study (or GWAS). 

 

1.1 Merging quantitative human genetics with neuroimaging genetics 
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Until recently, imaging genetics projects have mainly focused on a specific region of interest for 

conducting GWA studies. The field has begun to focus on full-brain imaging measures like 

voxelwise measures of localized volume change [Stein et al., 2010] and fractional anisotrophy 

[Hibar et al., 2010]. However, both of these studies used traditional multiple linear regression for 

association testing. No study, to the best of our knowledge, has used multivariate statistical 

modeling on full-brain, fine-grained imaging phenotypes. Most of these studies could benefit 

from the rich set of statistical tools developed in the field of quantitative genetics. Specifically, a 

number of multivariate models like ridge [Hoerl 1962], lasso [Tibshirani 1996], elastic net [Zou 

and Hastie 2005], partial-least squares [Wold 1984], and principal components regression [Wang 

and Abbott 2008] have been shown to provide improved power over traditional univariate 

methods to detect variants associated with phenotypes. In addition, gene-based tests - models 

that assess the cumulative evidence of association with a phenotype across loci located within a 

gene transcript - have been shown to increase power over traditional GWA methods [Liu et al., 

2010]. To build on this we proposed an imaging genetics study that leverages the complexity of 

the genome using multivariate gene-based tests with principal components regression (PCReg) to 

examine the influence of genetic variants on 3-Dimensional maps of regional volume 

morphometry in the brain. More specifically, we examined whether or not gene-based tests with 

PCReg will have improved power to detect genetic associations over multiple linear regression. 

The details of our analyses are discussed in Chapter 2. 

 

1.2 Surface-based morphometry as an endophenotype 

 

�



One of the most important endeavors in imaging genetics is to identify endophenotypes for 

genetic analysis. Endophenotypes are quantifiable biological traits that can be reliably and 

accurately measured and that index the progression or severity of a disease more successfully the 

standard clinical scores. Many of the imaging traits that we use to study disease are also good 

examples of endophenotypes for use in genetic analyses of disease. Surface-based morphometric 

measures have proven to be very powerful for quantifying individual brain differences and 

indexing disease progression [Gutman et al., 2013]. More specifically, surface-based analyses of 

subcortical structures like the lateral ventricles, putamen, and hippocampus have been used to 

detect group differences in Alzheimer’s disease [Gutman et al., 2013] and schizophrenia [Styner 

et al., 2004]. However, no study has looked at the specific genetic variants related to 

morphometric differences along the surface of subcortical brain structures.  

 

1.2.1 Reducing multiple comparisons correction to boost statistical power 

 

A specific concern with neuroimaging phenotypes including surface-based maps is striking the 

appropriate balance for finding effects in the whole search space, but also minimizing the 

correction for multiple comparisons that can reduce power. One way to reduce multiple 

comparisons is to perform clustering along the image so that analyses can be performed only on 

a subset (or a local average) of points in the search space. This is possible because many 

neuroimaging measures contain highly correlated points that are not completely independent. 

However, the best methods for performing clustering in an imaging measure in order to boost 

power for genome-wide association studies is not exactly clear. We proposed a study looking at 

two different types of clustering methods: one based on the Pearson’s correlation coefficient and 

�



the other based on the cross-twin cross-trait bivariate genetic correlation coefficient to determine 

which method is the best for clustering traits to uses as endophenotypes for genetic analysis. The 

details of our analysis are discussed in Chapter 3. 

 

1.3 Genetic models that more accurately reflect the underlying biology 

 

Continuing with the theme of using more complex statistical models for imaging genetics 

analysis, we know that traditional univariate methods for testing the association of common 

genetic variants with complex quantitative traits only consider the marginal effect of a single 

locus and potentially miss variance explained by synergistic effects of multiple SNPs [Marchinni 

et al., 2005]. For many complex traits comparisons across families show changes in phenotypic 

variation exceeding what would be expected as relatedness decreases [Wray et al., 2010]. This 

implies that there are non-additive (epistatic) interactions involved in the etiology. Previously, 

there have been a few studies to look at the two-way interactive effects of SNPs on brain 

structure [Pezawas et al., 2008; Wang et al., 2009; Tan et al., 2007]. However, none of these 

studies have considered genome-wide genotyping data, instead testing interactive effects on 

popular candidate genes. This approach potentially misses important interactive effects in 

regions of the genome where the relevance of the loci in a given SNP pair is not immediately 

evident. We speculated that genome-wide, SNP-SNP interactions with temporal lobe volumes in 

the ADNI cohort using the GPU-accelerated regression software would identify novel genetic 

variants related to brain volume change. We discuss the details of our analysis in Chapter 4. 

 

1.4 Going meta, the future of imaging genetics research? 
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Imaging genetics projects rely upon the idea that neuroimaging phenotypes are more closely 

related to disease etiology with a less complex underlying genetic structure than categorical 

clinical diagnoses. This is the idea of the endophenotype or intermediate phenotype proposed by 

Gottesman and Gould [2003]. However, a major drawback of measures generated from brain 

images is that MRI scanning is expensive. Many sites around the world are examining the 

genetic effects of neuroimaging endophenotypes, however, the cost associated with collecting 

neuroimaging data means that most sites around the world have sample sizes containing less than 

1000 subjects. In the past, many of the imaging genetic studies have found highly significant 

results in sample sizes of less than 1000, but almost none of the effects found have replicated. 

The key then to finding new, useful, and exciting genetic variants conferring risk to disease is to 

boost power by increasing the total number of subjects in your analysis and putting a heavy 

emphasis on replication and strict significance criteria. However, building a large sample size at 

a single site, one large enough for believable GWAS analysis, is very difficult. The field of 

imaging genetics will benefit from joining forces in an international collaborative effort to find 

genetic variants related to changes in brain structure. There are several limitations to working 

together, but the benefits far outweigh the negatives. For example, working together allows for 

the collaborative work to find and replicate believable genetic findings that could not be found 

alone. However, not every site is willing (or able) to part with their data and send it to a 

centralized processing pipeline. To avoid this, many sites could keep their data locally, avoiding 

data sharing issues with an IRB and still contribute to the analysis but just running things locally 

and contributing test statistics to be used in a meta-analysis framework. This form of 

collaboration was much more permissive and peeked the interest of many groups around the 
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world. And thus the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) 

Consortium was formed. The details of the pilot project for ENIGMA are discussed in Chapter 5. 

 

1.5 Organization of the dissertation 

 

Each of the studies described in this dissertation are unified by the theme of pushing the field of 

neuroimaging genetics in new directions. In Chapter 2 we discuss the advantages to multivariate 

statistics for gene-based tests of association compared to the traditional multiple linear 

regression. We then apply the analysis in an unbiased search of both the image and gene-wide 

search space. In Chapter 3 we examine surface-based morphometric values that previously have 

not been used as endophenotypes for genetic analysis. We also introduce the possibility of using 

genetic clustering instead of traditional clustering with Pearson’s r to prioritize and cluster 

genetically related regions for genetic analysis. In Chapter 4 we build a statistical model of 

interacting SNPs in the genome reflects the complicated interactions between single base pair 

changes in the genome. We test for all possible pairwise interactions between SNPs in the SNP-

SNP interactome using GPU-accelerated regression software and replicate our findings in an 

independent dataset. In Chapter 5 we formed an international consortium to facilitate the meta-

analysis of GWA studies of neuroimaging phenotypes to improve the power to detect significant 

variants and increase replication rates compared to individual studies. More specifically, we 

looked at hippocampal volume, intracranial volume, and total brain volume as endophenotypes 

in a genetic analysis with 21,151 subjects. Finally, in Chapter 6 we detail our future, planned, 

and ongoing studies. 
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CHAPTER 2 

 

 

Expanding genome-wide search to full brain endophenotypes 
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2.1 Multilocus genetic analysis of brain images 

 

This section is adapted from: 

 

Derrek P. Hibar*, Omid Kohannim*, Jason L. Stein, Ming-Chang Chiang, Paul M. 

Thompson. Multilocus genetic analysis of brain images. Frontiers in Statistical Genetics. 

2011. 2:73. *Denotes equal contribution. 
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The quest to identify genes that influence disease is now being extended to find genes
that affect biological markers of disease, or endophenotypes. Brain images, in particular,
provide exquisitely detailed measures of anatomy, function, and connectivity in the living
brain, and have identified characteristic features for many neurological and psychiatric dis-
orders. The emerging field of imaging genomics is discovering important genetic variants
associated with brain structure and function, which in turn influence disease risk and fun-
damental cognitive processes. Statistical approaches for testing genetic associations are
not straightforward to apply to brain images because the data in brain images is spatially
complex and generally high dimensional. Neuroimaging phenotypes typically include 3D
maps across many points in the brain, fiber tracts, shape-based analyses, and connectivity
matrices, or networks.These complex data types require new methods for data reduction
and joint consideration of the image and the genome. Image-wide, genome-wide searches
are now feasible, but they can be greatly empowered by sparse regression or hierarchical
clustering methods that isolate promising features, boosting statistical power. Here we
review the evolution of statistical approaches to assess genetic influences on the brain.
We outline the current state of multivariate statistics in imaging genomics, and future direc-
tions, including meta-analysis. We emphasize the power of novel multivariate approaches
to discover reliable genetic influences with small effect sizes.

Keywords: GWAS, MRI, brain, penalized regression, sparse regression

INTRODUCTION
Over the past decade, public and private funding institutions have
invested billions of dollars in the fields of human neuroimaging
and genetics (Akil et al., 2010). Recently, researchers have sought
to use quantitative measures from brain images to test how genetic
variation influences the brain. Imaging measures are thought to
have a simpler genetic architecture than diagnostic measures based
on cognitive or clinical assessments (Gottesman and Gould, 2003).
In other words, the penetrance of an individual genetic polymor-
phism is expected to be higher at the imaging level than at the
diagnostic level. As such, imaging-derived traits may offer more
power to detect how specific genes contribute to brain disease.
Genetic analysis of images has been used to discover how suscep-
tibility genes affect brain integrity (Braskie et al., 2011b). Recent
studies have revealed gene effects operating within an entire pop-
ulation, in the form of a 3D brain map (Thompson et al., 2001;
Stein et al., 2010a; Hibar et al., 2011).

Optimally merging these two well-developed fields requires
innovative mathematics and computational methods, guided by
genomics and neuroscience. Imaging genetics is still a nascent
field, and many studies are relatively simplistic – they generally
test how a single genetic variant, or a small set of such variants
(usually single nucleotide polymorphisms, or SNPs) are associ-
ated with a single summary measure of the brain. These studies
begin to bridge the gap between the two fields, but do not take full
advantage of advanced methods from either field, which can sur-
vey the entire genome or allow an image-wide search. By contrast,

multivariate statistical methods such as machine learning and
sparse regression can handle high dimensional datasets. Many of
these are being adapted to analyze a range of brain processes and
biological markers of disease.

In this review, we summarize the recent evolution of imaging
genetics, from candidate gene studies to multilocus methods and
genome-wide searches to genome-wide, image-wide searches. We
explain how images are used in different ways, ranging from sin-
gle region-of-interest (ROI) methods – that assess the volume or
shape of a specific brain region, such as the hippocampus – to
voxelwise approaches that survey the whole brain at once in 3D.
In these efforts, multivariate, “multilocus” techniques can model
how several genetic variants affect the brain at once. Specialized
approaches – such as sparse coding methods – can simultaneously
handle the high dimensionality and high degree of correlation
observed across the genome and in image-derived maps.

CANDIDATE GENE STUDIES
In studies that scan a large number of patients or controls, candi-
date gene studies have often been used to assess genetic effects
on the brain. This approach is appealing as one can test bio-
logically plausible hypotheses and determine how specific, well-
studied genetic variations affect brain structure and function.
Early studies, for instance, explored how genes related to serotonin
transport affected measures extracted from single-photon emis-
sion computed tomography (SPECT) and functional magnetic
resonance imaging (fMRI; Heinz et al., 2000; Hariri et al., 2002).
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Serotonin’s role in neurotransmission and neuromodulation – and
the well-known anatomy of the monoamine systems – made it
possible to frame and confirm testable hypotheses for pertinent
regions such as the raphe nuclei and amygdala (Munafo et al.,
2008).

Candidate gene studies, such as those above, may assess a single
measure derived from a specific ROI in the image. This may be the
whole brain, or a subregion such as the gray matter, or the volume
or mean activation of a subcortical region. More recently, voxel-
by-voxel searches have been conducted to assess candidate gene
effects throughout the whole brain in 3D. This unbiased search
across the brain makes no prior assumptions on which regions
may be affected. Statistical maps are also widely used in neu-
roimaging. Spatial statistics, such as principal components analysis
(PCA) or ICA, may also be performed for dimension reduction,
and multiple comparisons corrections, such as the false discov-
ery rate (FDR) method, can help to decide if a pattern of gene
effects is significant across the voxels searched. For example, Ho
et al. (2010) investigated the effects of a proxy SNP in the fat
mass and obesity-associated (FTO) gene reliably associated with
increased risk for obesity (rs3751812; Frayling et al., 2007) on
brain structure. They used MRI along with tensor-based mor-
phometry (TBM), to evaluate 206 healthy elderly subjects. FTO
risk allele carriers had lower frontal and occipital lobe volumes
(Figure 1). In such studies, maps of statistical associations are
created by performing separate association tests at each imag-
ing voxel in the brain. As the number of statistical tests is very
large, a standard correction for multiple comparisons can be used,
such as the FDR method (Benjamini and Hochberg, 1995) or its
more advanced variants such as topological FDR (Chumbley et al.,
2010), which consider the geometry of the effects. These correc-
tions assess how likely it is that the overall pattern of associations
could be observed by chance. Voxel-based analyses may also be
informed by prior hypotheses: ROI may be defined as search
regions, such as the temporal lobes, to include prior informa-
tion on the expected location or patterns of effects (Stein et al.,
2010a).

Brain imaging measures used in genetic studies should ide-
ally be highly heritable and be genetically related to a biological
process affected by genetic variation, such as a disease process
(Gottesman and Gould, 2003; Glahn et al., 2007; Winkler et al.,
2010). Some argue that the use of imaging endophenotypes should
boost power to detect genetic variants that have reliable but
small effects on disease status (Meyer-Lindenberg and Weinberger,
2006). One neuroimaging modality that shows great promise in
candidate gene studies is diffusion tensor imaging (DTI), which
assesses the fiber integrity of the brain’s white matter. DTI is
based on the observation that myelination restricts water diffu-
sion, and disease processes typically increase water diffusion across
cell membranes (Beaulieu, 2002). Some DTI-derived measures,
such as the fractional anisotropy (FA) of diffusion, are widely
accepted as measuring brain integrity. FA is highly heritable (Chi-
ang et al., 2009; Kochunov et al., 2010) and is consistently altered
in a range of developmental and psychiatric disorders (Thomason
and Thompson, 2011). Candidate polymorphisms already associ-
ated with brain disorders may be surveyed to discover associations
with maps of DTI parameters such as FA. One recent DTI study

of young healthy adults (Braskie et al., 2011a), studied the vox-
elwise effects of the rs11136000 SNP in the recently discovered
Alzheimer’s disease (AD) risk gene, CLU. Significant associations
were detected in several anatomical regions that undergo atro-
phy in AD (Figure 2). In similar candidate gene studies using
DTI, other genes such as BDNF (Chiang et al., 2011a) and COMT
(Thomason et al., 2010) have been found to influence white matter
structure, with carriers of one variant showing consistently higher
or lower FA.

GENOME-WIDE ASSOCIATIONS WITH SINGLE IMAGING
MEASURES
Candidate gene studies have successfully discovered patterns of
brain differences associated with genetic variants whose function
is relatively well-known (such as ApoE, for example – a risk gene
for late-onset AD; Shaw et al., 2007). The choice of a candidate
gene, however, requires a strong prior hypothesis, and most of
the genetic determinants of the highly heritable imaging measures

FIGURE 1 | p-values (corrected using the false discovery rate method;
left panel) and corresponding regression coefficients (right) show the
statistical associations between a candidate single nucleotide
polymorphism in the FTO gene (which is associated with higher risk of
obesity) and tensor-based morphometry maps derived from
anatomical MRI scans of the brain. Significant associations with regional
brain volumes are detected in the occipital and frontal lobes. Clearly, if
other regions had been specified in advance as the target of study,
association effects may have been missed. Adapted from Ho et al. (2010).

FIGURE 2 | Corrected p-values (A) and regression coefficients (B) are
shown for the voxelwise effects of a candidate polymorphism in the
CLU gene – a highly prevalent Alzheimer’s susceptibility gene – on
fractional anisotropy maps derived from DTI scans of 398 young
adults. The axial slice shows the extensive influence of the genetic variant
on white matter structure. Adapted from Braskie et al. (2011a).
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(connectivity or cortical thickness, for example) are unknown.
In most candidate gene studies in imaging, there is a correction
for multiple comparisons to control the rate of false discoveries
across the image, but this does not take into account the genetic
variant tested, or the fact that it could have been selected from a
wide list of possibly associated genes. In genetics, and by exten-
sion imaging genetics, there is a high risk of false-positive findings
unless appropriate corrections are made. Moving beyond candi-
date gene studies to an unbiased search of the whole genome clearly
requires an appropriate genome-wide significance criterion. Oth-
erwise,many false-positive associations will be reported that would
not be replicated in the future (Ioannidis, 2005).

Genome-wide association (GWA) studies typically assess asso-
ciations between hundreds of thousands of SNPs and a phenotype
of interest (such as a disease, or a specific image-derived mea-
sure). GWA studies have discovered hundreds of common risk
loci for diseases and traits in recent years (Hindorff et al., 2009).
GWA studies are frequently conducted for discrete, case–control
phenotypes, such as the diagnosis of a specific disease (such as
AD or schizophrenia vs. healthy control). These studies, however,
are limited as participants do not always fall clearly into unique
diagnostic categories, and may vary in dimensions not relevant
to disease (Pearson and Manolio, 2008). For neuropsychiatric dis-
orders in particular, symptoms expressed by members of specific
diagnostic groups may be highly heterogeneous – and there may
also be substantial co-morbidity and overlap in symptom profiles
across disorders (Psychiatric GWAS Consortium Coordinating
Committee et al., 2009; Hall and Smoller, 2010).

Measures derived from brain images in principle are closer
to the underlying biology of gene action, offering an alternative
target for genome-wide searches, by serving as intermediate phe-
notypes or endophenotypes for GWA studies (Gottesman and
Gould, 2003; Hall and Smoller, 2010). Several imaging GWA scans
have been published: Potkin et al. (2009b) identified SNPs in two
genes (RSRC1 and ARHGAP18) that showed associations with a
blood-oxygen-level dependent (BOLD) contrast measure from a
brain region implicated in schizophrenia. Similarly, Stein et al.
(2010a) discovered a SNP in the GRIN2B gene (rs10845840) and
an intergenic SNP (rs2456930) associated with an MRI-derived
TBM) measure of temporal lobe volume in 740 elderly subjects
from the AD Neuroimaging Initiative. In these and other stud-
ies, linear regressions are used to assess the additive or dominant
allelic effect of each SNP, after adjusting for covariates such as
age and sex, and the confounding effects of population stratifica-
tion (e.g., Potkin et al., 2009a). This yields p-values assessing the
evidence for the association of each SNP with the imaging sum-
mary chosen. The overall significance of any one SNP effect is then
assessed through a form of genome-wide correction for multiple
comparisons. Commonly, a nominal p-value less than 5 × 10−8 is
used.

The GWA study design has been extended to analyze whole
images, but one of the shortcomings of all GWAS studies is their
limited power (or alternatively, the large sample sizes needed) to
detect relevant gene variants. Most SNPs affecting the brain have
modest effect sizes (often explaining <1% of the variance in a
quantitative phenotype). Meta-analysis can provide added statis-
tical power to discover variants with small effects. Replication, and

meta-analysis in particular, have been widely embraced as a way to
aggregate evidence from multiple genetic studies, including stud-
ies of disease risk, and normally varying traits such as height (de
Bakker et al., 2008; McCarthy et al., 2008; Zeggini and Ioannidis,
2009; Yang et al., 2010).

Even so, most imaging GWA studies consider under a
thousand subjects, so are limited in detection power. This
led many researchers in the field to band together to search
for relevant genetic associations with imaging traits meta-
analytically, in many large samples. One promising initiative is
called Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) and is currently accepting research groups who want
to become involved in meta-analytic imaging genomics projects
(http://enigma.loni.ucla.edu/). The ENIGMA pilot project is a
large meta-analysis to discover genes associated with hippocampal
volume on brain MRI in over 9,000 subjects scanned by 21 research
centers (The ENIGMA Consortium, 2011). Future imaging genet-
ics studies may rely on large meta-analyses and international
collaborations to overcome the low power and relatively small
effect sizes. However, some genetic associations can be found and
replicated without vast meta-analytic approaches like ENIGMA.
For example, Stein et al. (2011) discovered and replicated an asso-
ciation between caudate volume and the SNP rs163030 located
in and around two genes, WDR41 and PDE8B. These genes are
involved in dopamine signaling and development; a Mendelian
mutation in one leads to severe caudate atrophy. Similarly, Joyner
et al. (2009) replicated an association with cortical surface area in a
common variant (rs2239464) of the MECP2 gene, which is linked
to microencephaly and other morphological brain disorders.

GENETIC ANALYSIS OF MASS UNIVARIATE IMAGING
PHENOTYPES
Studying a single imaging measure with a genome-wide search is as
limited as picking a single candidate gene from the entire genome –
it may not fully reflect how a given genetic variant influences the
brain, or it may miss an important effect by being too restrictive.
Important links may be overlooked if a gene variant influences a
brain feature present but not measured in the images. To broaden
the range of measures surveyed in each image, Shen et al. (2010)
studied patients with AD and mild cognitive impairment (MCI)
using whole-brain voxel-based morphometry (VBM; Good et al.,
2001) and split the brain into 142 cortical and subcortical ROIs
using the segmentation software package FreeSurfer (Fischl et al.,
2002). The VBM measure within each ROI was averaged for each
subject and those values were used as traits for GWA scans. One
SNP, rs6463843, from the NXPH1 gene, was significantly associ-
ated with gray matter density in the hippocampus, and had broad
morphometric effects in a post hoc exploratory analysis. While this
study found plausible results, the computation of summaries from
ROI may miss patterns of effects that lie only partially within the
chosen ROI. As such, a combination of map-based and ROI-based
methods seems ideal.

Some researchers have combined unbiased tests of associa-
tion across the genome with unbiased searches of the entire
brain, instead of relying on summary measures derived from
ROI. Combining GWA scans with an image-wide search is com-
putationally intensive, requiring new methods to handle the
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high dimensionality and multiple statistical comparisons. Three
dimensional brain images may contain over 100,000 voxels, and a
completely unbiased search may test up to one million SNPs for
association at each voxel. This is extremely computationally inten-
sive, but can be completed in a feasible time frame if the process
is parallelized. Stein et al. (2010b) performed a full GWA scan at
each voxel in maps of regional brain volume calculated by TBM
(Leow et al., 2005). Sixteen billion tests of association were con-
ducted – in a so-called “voxelwise genome-wide association study”
(vGWAS). To accommodate the huge number of statistical tests
performed, only the most highly associated SNP at each voxel was
stored. The p-value distribution for the top SNP was modeled as
a beta distribution, Beta(1, n), where n is an estimate of the effec-
tive number of independent tests performed (Ewens and Grant,
2001). The resulting distribution of minimum p-values across the
genome, assembled from voxels across the image, was transformed
into a uniform distribution in the null case for multiple compar-
isons correction across the image. FDR was used to correct for
multiple comparisons across the image,and to assess whether cred-
ible effects had been detected (Benjamini and Hochberg, 1995).
Several top SNPs were associated with moderate regional brain
volume differences; many were in genes that are expressed in the
brain (Figure 3). However, no SNPs passed the strict correction for
multiple comparisons. The Stein et al. study was a proof of concept,
showing that a completely unbiased search of the genome is fea-
sible with imaging phenotypes. However, the huge correction for
multiple comparisons across the image and genome are practically
insurmountable unless the effect size or cohort size is very large. In
addition, the vGWA study required 27 h when spread across 500
CPUs; this is more computational power than most researchers
typically have access to. Clearly, an optimal balance must be made
between pure discovery methods,unconstrained by prior hypothe-
ses, and those that invoke prior biological information to boost
power and reduce the multiple comparisons correction.

FIGURE 3 |The five most highly associated SNPs identified by vGWAS
are shown on slices of an averaged brain MRI template, indicating
regions where these SNPs were the most highly associated out of all
SNPs (in purple). Coordinates refer to the ICBM standard space, and the
cohort is the ADNI sample. Adapted from Stein et al. (2010a).

MULTIVARIATE IMAGING GENETICS METHODS
Multivariate methods can be used to assess the joint effect of
multiple genetic variants simultaneously, and are widely used in
genetics (Phillips and Belknap, 2002; Gianola et al., 2003; Can-
tor et al., 2010). For example, set-based permutation methods use
gene annotation information and linkage disequilibrium values to
group univariate p-values from traditional GWA studies into gene-
based test statistics (Hoh et al., 2001; Purcell et al., 2007). Set-based
approaches use prior information on gene structure to incorpo-
rate all genotyped SNPs in a given gene into a single test statistic.
This can offer, in some cases, greater power than univariate statis-
tical tests to detect SNP effects. Combining univariate p-values
into a single gene-based test also reduces the total number of
tests performed, alleviating the multiple comparisons correction.
It can also aggregate the cumulative evidence of association across
a gene block to account for allelic heterogeneity (Hoh et al., 2001).
Individual SNP p-values may not achieve the genome-wide signifi-
cance level for a traditional GWA study (nominally p < 5 × 10−8),
but if several SNPs in the same LD block show moderate asso-
ciation, the combined evidence for association may be enough
to beat a gene-wide significance level (nominally p < 5 × 10−6).
For example, one study examined SNPs from the SORL1 gene for
association with hippocampal volume in healthy elderly controls
(Bralten et al., 2011). While they did not find evidence for asso-
ciation of individual SNPs in a discovery and replication dataset,
a gene-based test found evidence of association in both datasets.
Some set-based statistics may be derived from the separate p-values
from the individual univariate tests, enabling post hoc analysis of
published studies. A major issue in applying set-based statistics
in imaging genetics is that the permutation procedure applied
across SNP groupings would be very computationally intensive.
Set-based methods are currently not feasible to apply at >100,000
voxels, as a single gene test takes around 5 min (or 22.8 years to test
a single gene at every voxel of the full brain on one CPU). In addi-
tion, combining SNPs by p-value may miss an important effect
where a set of SNPs from the same gene have moderate covari-
ance, but explain different portions of variance in the phenotype.
In other words, if they were considered together in the same model,
the overall variance explained may be greater than its univariate
significance level would imply.

An alternative to set-based methods is to group SNPs into a
single statistical model and then test that model for overall asso-
ciation. One classical example of this strategy is multiple linear
regression (MLR). However, a problem with applying MLR to
genetic data is that SNPs tend to be highly correlated, as they
co-segregate in haplotype blocks (Frazer et al., 2007). The MLR
is highly sensitive to collinearity among predictors; the inversion
step in calculating regression coefficients involves a matrix that is
not full rank as the variables are collinear. This leads to wildly inac-
curate Beta value estimates and SE (Kleinbaum, 2007). To avoid
collinearity in multivariate analysis of genetic data, dimensionality
is often reduced using sparse regression methods, such as penalized
or principal components regression (PCReg).

Some data reduction methods compute a new set of statisti-
cally orthogonal variables, for inclusion in a classical MLR model.
A data reduction method such as PCA transforms a matrix of
SNP predictors into a new orthogonal set of predictors, ranked in
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descending order based on the amount of the variance in the data
that each component explains (Jolliffe, 2002). The output of PCA
is typically a matrix that explains the same amount of the overall
variance as the original predictors, but without the collinearity.
As the individual components are sorted by amount of variance
they explain, the resulting statistical models can strike an efficient
balance between the total variance explained (the number of com-
ponents to include) and the number of degrees of freedom used
(model complexity increases as more variance components are
included).

One method, known as PCReg first performs PCA on a set
of predictors. It then builds a multiple partial-F regression model
where the number of components included is based on the desired
proportion of variance to be explained (Massy, 1965). Wang and
Abbott (2008) used PCReg to group SNPs into a single multivari-
ate test statistic. Hibar et al. (2011) extended this method to be
applicable to images, conducting gene-based tests at each voxel
with PCReg. They used an automated method (Altshuler et al.,
2005; Hemminger et al., 2006; Hinrichs et al., 2006) to group
SNPs based on gene membership, resulting in 18,044 unique genes.
Using the set of SNPs in each individual gene as predictors, Hibar
et al. used PCReg to assess the degree of association for every gene
at every voxel in the full brain. The resulting method was termed a
voxelwise“gene-wide”association study vGeneWAS. By compress-
ing the SNPs into gene-based tests, the total number of tests was
reduced to around 500 million tests from the 16 billion tests in
vGWAS. However, even with this much smaller number of tests,
no genes identified passed correction for multiple comparisons.
The most highly associated gene, GAB2, showed strong credibility
as it is consistently associated with neurodegenerative disorders
such as AD (Reiman et al., 2007). In addition, Hibar et al. (2011)
simulated full brain parametric maps using statistical priors based
on their observed data to show that observed clusters of associ-
ated genes were larger than would be expected by chance. This
provides evidence that vGeneWAS is a valid and powerful multi-
variate method to detect gene effects in full brain neuroimaging
data. A head-to-head comparison of vGWAS and vGeneWAS was
also performed on the same datasets. The cumulative distribution
function (CDF) plots of p-values for each study show that the FDR
in the multivariate vGeneWAS was controlled at a lower rate than
in the mass univariate vGWAS method (Figure 4).

An extension of PCReg and other data reduction techniques
is to perform data reduction on both the genome and the 3D
brain imaging traits. One approach that appears to be promis-
ing is parallel independent components analysis (Parallel ICA or
PICA; Liu et al., 2009). Parallel ICA works by first performing
PCA on a set of SNPs and also a different PCA on a voxelwise
imaging measure. Next, a modified version of ICA is applied to
both modalities and independent factors from each modality are
chosen simultaneously by a correlation measure (hence “parallel”
ICA). Selecting imaging features and SNPs together can be more
powerful than mass univariate tests of voxelwise imaging traits as
the total number of tests is greatly reduced. For example, Liu et al.
(2009) used pre-processed fMRI maps from 43 healthy controls
and 20 schizophrenia patients and a pre-selected set of 384 SNPs
chosen for their potential associations with schizophrenia. Via a
t -test, Liu et al. (2009) demonstrated that genetic components

FIGURE 4 | Cumulative distribution function (CDF) plot of corrected
p-values from vGeneWAS (Hibar et al., 2011) and vGWAS (Stein et al.,
2010b) analyses. vGWAS could only be controlled for false-positives at
q = 0.50 threshold, while vGeneWAS could be controlled for false-positives
at q = 0.30. The difference in q-value thresholds for the CDF of the p-values
obtained from both studies on the same dataset suggests that the
gene-based analysis is more powerful, though neither study controlled the
false-positive rate at the nominal q = 0.05 threshold.

(p = 0.001) and fMRI BOLD (p = 0.0006) response loadings from
parallel ICA were able to distinguish healthy subjects from patients
with schizophrenia, with reasonable accuracy. Similar approaches
have been applied to structural MRI (Jagannathan et al., 2010). The
PICA method is quite promising, but several challenges remain.
As Parallel ICA requires an initial round of PCA, it is difficult to
recover which SNP sets are contributing to a given component
and similarly it is difficult to localize the 3D spatial effect con-
tributing to each component from the image. This may make it
difficult to interpret and replicate specific findings. In addition, it
is not clear how data reduction methods will perform with whole
genome and full brain data. Liu et al. (2009) and Jagannathan
et al. (2010) both performed considerable downsampling of the
images, reducing the total number of voxels included in the Par-
allel ICA model. In addition, both studies tested only small sets
of pre-selected SNPs instead of data from the full genome, or a
standard 500,000 SNP genome-wide scan. The power of Parallel
ICA to find common components may be greatly reduced if there
is additional noise from genome-wide data. Liu et al. (2009) found
that as the amount of random noise increased, so did the num-
ber of independent components. As the number of independent
components increases, the power to detect associations decreases.
Also querying full brain phenotypes for effects of genetic vari-
ants, another recently proposed multivariate method by Chiang
et al. (2011b), identified patterns of voxels in a DTI image with
a common genetic determination, and aggregated them to boost
power in GWA (Figure 5). Approximately 5,000 brain regions were
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FIGURE 5 | Clustering regions of a brain image that have
common genetic determination. In a DTI study of twins, the
known kinship structure made it possible to estimate the genetic
correlation matrix and a “topological overlap (TO)” index matrix.
This was used to gage the similarity of genetic influences on all
pairs of brain regions (A). The 18 largest clusters – parts of the
image with common genetic influences – were selected as
regions of interest (ROIs) for GWAS. By associating the mean white

matter integrity of these regions with genetic variants, a genetic
interconnection network was obtained (B), where each network node
represents a single SNP (colored circles). The figure shows only those SNPs
associated with white matter integrity in at least one ROI with a significance
p-value < 10−5. SNPs whose associations reach genome-wide significance are
colored in red, with their names labeled. White lines indicate that SNPs are
“connected,” i.e., their effects on white matter integrity are strongly
correlated. Adapted from Chiang et al. (2011b).

selected, where genetic influences accounted for >60% of the total
variation of white matter integrity. From these, a 5,000 × 5,000
correlation matrix was obtained. Hierarchical clustering was used
to select the largest clusters, and these voxels were defined to be
ROIs. The mean FAs for these ROIs were then tested for evidence of
association with all SNPs genotyped across the genome. By iden-
tifying a genetic network that influences white matter integrity
over multiple brain regions, Chiang et al. (2011b) were able to
boost power to detect associations between FA in these brain areas
and SNPs from the whole genome. In all, they identified 24 SNPs
with genome-wide significance, which is unusual for a study with
fewer than 1,000 subjects. To ensure the findings are not false-
positives, however, simulations of imaging and genomic data may
be necessary (as carried out by Vounou et al., 2010 see below).

Variants near each other on the genome can be highly corre-
lated due to linkage disequilibrium. This leads to problems if all
variants are included in a standard multiple regression model to
predict the values of a trait. To address this, many new mathemat-
ical methods have been used to handle the high dimensionality in
the genome (a p # n problem) and interactions between genetic
variants. These include penalized and sparse regression tech-
niques, such as ridge regression (Hoerl, 1962), the least absolute
shrinkage and selection operator (LASSO; Tibshirani, 1996), the
elastic net (Zou and Hastie, 2005), and penalized orthogonal-
components regression (Malo et al., 2008; Cho et al., 2009; Lin
et al., 2009; Zhang et al., 2009; Chen et al., 2010). The various
penalty terms (e.g., L1 in LASSO and L2 in ridge) in the regularized
regression methods can incorporate large numbers of correlated
variants with possible interaction terms, in single models. These
methods show high statistical power in analyses with both real

and simulated data. Although these studies are almost invariably
applied to case–control GWA studies, similar approaches may
be applied to imaging phenotypes. Kohannim et al. (2011a), for
instance, implemented ridge regression to study the association of
genomic scanning windows with MRI-derived temporal lobe and
hippocampal volume. They reported boosting of power in detect-
ing effects of several SNPs, when compared to univariate imaging
GWA. One statistical challenge of such sliding-window approaches
is finding optimal window sizes, which can capture the correlation
structure in the genomic data without adding excessive degrees of
freedom to the model. Kohannim et al. considered several fixed,
scanning window sizes (50, 100, 500, and 1000 kbp) in their study,
and found boosting of power in detecting SNPs with different win-
dow sizes for different genomic regions. A more flexible approach
may incorporate information such as the sample size and variant-
specific LD structure into the selection of optimal window sizes
for each genomic region (e.g., Li et al., 2007). This could ensure
that SNPs are not missed due to inappropriate window sizes. In
addition, L1-driven methods, such as LASSO, may provide greater
detection power by selecting sparse sets of genomic variants in
association with imaging measures (Kohannim et al., submitted).
As discussed above, however, multivariate methods can be applied
not only to the genome, but also to the images, which are also high
dimensional and show high spatial correlations. Sparse and penal-
ized models can be useful in these situations as well. Vounou et al.
(2010) applied a sparse reduced-rank regression (sRRR) method to
detect whole genome-whole image associations. They computed a
matrix of regression coefficients, C, whose rank was p (number of
SNP genotypes) times q (the number of imaging phenotypes, or
pre-defined anatomical ROIs in their case). They reduced the rank
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of this large matrix to r, by factorizing the matrix into the product
of a p × r matrix, B, and an r × q matrix,A, and constraining A and
B to be sparse (Figure 6). To evaluate the power of their method
and compare it to that of mass univariate modeling, Vounou et al.
generated realistic, simulated imaging and genetic data. Using the
FoRward Evolution of GENomic rEgions (FREGENE) software,
and the ADNI baseline T1-weighted MRI dataset, they obtained
a simulated dataset, to which they introduced genetic effects in a
number of ROIs. It was not feasible for the investigators to con-
sider all possible genetic effect sizes and sample sizes, but they
were able to show boosted power for all parameter settings they
explored. Setting the desired, reduced-rank r equal to 2 or 3, they
obtained higher sensitivities with sRRR at any given specificity for
a sample size of 500. When they increased the sample size from
500 to 1,000, they noted gains in sensitivities with sRRR, which
were more considerable than the merely linear gains obtained
with univariate modeling. They also demonstrated that boosted
sensitivities obtained with sRRR increase with higher numbers of
SNPs; sensitivity ratios (sRRR/mass univariate modeling) could
be boosted even further to ratios far exceeding 5 (observed with
40,000 SNPs) with numbers of SNPs considered in a typical GWAS
(e.g., 500,000 SNPs). Direct power comparisons between associ-
ation methods on DNA microarray data show that models that
incorporate linear combinations of variables perform better than
those that perform simple data reduction (Bovelstad et al., 2007).
Bovelstad et al. found that the penalized method, ridge regression,
was more powerful than LASSO, PCReg, supervised PCReg, and
partial least squares regression (PLS), when it comes to predicting
survival rates in cancer patients from DNA microarray data. In the
future, direct comparisons of methods on imaging genetics data
could inform the direction of new methods development.

Comprehensive modeling of whole-brain voxelwise and
genome-wide data remains challenging, due to the high

FIGURE 6 | Imaging and genomic data are incorporated into a sparse,
reduced-rank regression model, where regions of interest (ROIs), and
single nucleotide polymorphisms (SNPs) attain sparse coefficients,
simultaneously. This approach can select pertinent SNPs and ROIs. In
simulations, it demonstrates higher power than mass univariate models for
detecting effects of genetic variants. Adapted with authors’ and publishers’
permission from Vounou et al. (2010).

dimensionality of the data. This causes both statistical and
computational problems. Recently, there have been new develop-
ments applying sparse regression methods to genome-wide data;
one such method is iterative sure independence screening (ISIS; Fan
and Lv, 2008; Fan and Song, 2010; He and Lin, 2011). ISIS is an
iterative selection procedure that builds a marginal model using
the cyclic coordinate descent (CCD; Friedman et al., 2010) algo-
rithm with the LASSO and combines it with a conditional model of
interactions based on pairwise correlations. The combined model
has lower dimensionality, but effects of individual SNPs are still
identifiable, as are SNP–SNP interactions. This method appears
to be promising for discovery-based searches of the genome. ISIS
has not yet been applied to brain images, but it should be feasi-
ble. Methods such as ISIS could also be modified to jointly select
imaging phenotypes and genomic data as done by Vounou et al.
(2010) but without first having to select ROI or only a small subset
of SNPs from the genome.

CONCLUSION
The field of imaging genetics started with candidate gene studies,
where hypotheses about gene action on brain structure and func-
tion could be tested in a novel way. More recently, candidate gene
studies have been extended to investigate voxelwise associations
between genetic variants and images of the brain, to map 3D pro-
files of genetic effects without requiring a priori selection of ROI.

To consider the entirety of the genome and discover potentially
new variants, however, GWA studies have been introduced to the
field of imaging genetics. In these studies, quantitative measures
derived from images are considered as intermediate phenotypes,
which are in some respects closer to the underlying biology of
brain disorders and processes of interest. Despite their unbiased
consideration of the whole genome, the standard, univariate GWA
approach considers only one SNP at a time and has several limi-
tations. From a genetic perspective, it does not take into account
the interdependence between genetic variants due to linkage dis-
equilibrium; and in regard to imaging, such studies typically rely
on single summary measures from images, which only weakly
represent the wealth of information in a full 3D scan.

Among the most promising applications of imaging genetics
are those that use sparse methods to reduce the data dimension-
ality. Sparse methods create efficient models, and boost power to
identify patterns of association. A major advantage of penalized
or sparse regression methods is that they accommodate collinear-
ity inherent in the genome and in the images, but they still offer
a familiar regression framework to accommodate covariates and
confounding variables. Penalized regression models may include
a large number of genetic predictors. This may discover genetic
effects undetected by other data reduction methods, such as PICA
and PCReg. For studies of large 3D statistical maps of imaging
phenotypes, methods to penalize the selection of both voxels from
the image and associated genetic variants from the genome seem to
have higher power than related discovery-based methods. Even so,
this is largely an empirical question that depends on the structure
of the true signal. Indeed, Vounou et al. (2010) demonstrated the
increased power of the sRRR method, which favors the selection
of an efficient set of ROI and a reduced number of SNPs has
increased power. A major limitation of penalized methods is that
they may fail to converge on a solution when the data dimensions
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are very high. Even methods designed for p ! n problems such as
least angle regression (Efron et al., 2004) tend to fail when given
a full 3D imaging phenotype. This illustrates why current imple-
mentations of penalized regression in imaging genetics often rely
on prior “groupings” of voxels or sliding windows in the genome.
These prior groupings do not appear to be motivated by strong
prior hypotheses, but by limitations in the statistical modeling.
Methods similar to ISIS (Fan and Lv, 2008; Fan and Song, 2010;
He and Lin, 2011) designed for ultra-high dimensional datasets
will likely be useful for future imaging genetics projects.

Once we have a set of validated genetic variants that affect
the brain, multivariate models may be used to combine imaging,
genetics, and other physiological biomarkers to predict outcomes
in patients with brain disorders. The resulting combination of
imaging and genetic data, with other biomarkers, can be used
to predict an individual’s personalized aggregate risk for specific
types of brain disorders. As genomic and proteomic data are added,
prognosis and diagnosis may be possible at an earlier stage or
more accurate than is possible with current biomarkers. Machine
learning algorithms (e.g., decision trees, support vector machines,
and neural networks) have shown promise for making disease

predictions from genomic and proteomic data (Cruz and Wishart,
2007). Similar approaches may be useful in psychiatry research,
and neuroimaging measures such as fiber anisotropy from dif-
fusion imaging may help in making early predictions of brain
integrity from genes. In a recent, preliminary study, our group
incorporated several candidate polymorphisms in a multi-SNP,
machine learning model, to predict personal measures of fiber
integrity in the corpus callosum (Kohannim et al., 2011b). Ide-
ally, by incorporating both genomic and proteomic data from
larger cohorts, one may be able to obtain personalized “scores”
for brain integrity from biomarker profiles. This has consider-
able implications for prevention and early treatment of brain
pathology.
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ABSTRACT 
 
In imaging genomics, there have been rapid advances in 
genome-wide, image-wide searches for genes that influence 
brain structure.  Most efforts focus on univariate tests that 
treat each genetic variation independently, ignoring the joint 
effects of multiple variants. Instead, we present a gene-
based method to detect the joint effect of multiple single 
nucleotide polymorphisms (SNPs) in 18,044 genes across 
31,662 voxels of the whole brain in a tensor-based 
morphometry analysis of baseline MRI scans from 731 
subjects   from   the   Alzheimer’s   Disease   Neuroimaging  
Initiative (ADNI). Our gene-based multivariate statistics use 
principal components regression to test the combined effect 
of multiple genetic variants on an image, using a single test 
statistic. In some situations, which we describe, this can 
boost power by encoding population variations within each 
gene, reducing the effective number of statistical tests, and 
reducing the effect dimension of the search space. 
Multivariate gene-based methods may discover gene effects 
undetectable with standard, univariate methods, accelerating 
ongoing imaging genomics efforts worldwide.  
 

Index Terms— principal components regression, 
multivariate, voxelwise, imaging genomics, GWAS 
 

1. INTRODUCTION 
 
In imaging genomics, the vast amount of information in the 
images (>100,000 voxels) and across the genome (>12 
million known variants) presents computational and 
statistical challenges when relating genetic variants to the 
structure and function of the brain. Power issues arise due to 
the small effect sizes of each genetic variant, and the huge 
numbers of statistical comparisons.  Most techniques use 
some type of data reduction, limiting the number of genetic 
variants or imaging features studied, or both.  The ultimate 
goal of these gene-hunting studies is to create a method that 

discovers which genetic variants affect the brain in a 
statistically powerful and biologically meaningful way. 

In typical GWAS studies, each genetic variant 
(usually a SNP) is independently tested for its association to 
the phenotype – a mass univariate method, where no data 
reduction is used across the genome. For example, one study 
[1] performed a genome-wide search of around 500,000 
SNPs, and found a novel variant in the GRIN2B gene that is 
associated with temporal lobe volume. The gene GRIN2B 
encodes a glutamate receptor that is already the target of 
drugs (memantine) used to treat Alzheimer's disease. 
Findings such as these are promising as they have biological 
relevance, but do not rely on a prior hypothesis about any 
specific SNP. However, performing mass univariate 
methods on imaging summary measures (such as temporal 
lobe volume) or ad hoc regions of interest (ROI), collapses 
the variation across the brain into a single number. 

Several studies now perform genome-wide searches 
at each voxel across the brain [2]. This approach avoids 
having to pre-select an ad hoc brain region of interest and 
does not require prior hypotheses about which genetic 
variants, or which regions of interest, matter. One study [3] 
performed a genome-wide, brain-wide search, termed a 
voxelwise genome-wide association study (vGWAS), in 740 
subjects from ADNI. However, none of the genetic variants 
identified was significant after multiple comparisons 
correction; several variants were promising candidates for 
further analysis. Future GWAS studies in imaging will likely 
need to reduce the number of tests and multiple comparisons 
using Bayesian priors, machine learning, or dimension 
reduction in the image or the genome. This may prioritize 
certain regions of the image or the genome, for later meta-
analysis across multiple datasets.  

Given recent advances in high-throughput 
genotyping, densely-packed sets of SNPs, or genetic 
markers, can capture increasing amounts of variation 
throughout the genome. Methods that consider combinations 
of SNPs from the same gene should more accurately 
describe gene effects on images than methods that test the 
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independent effect of each SNP [4]. By associating the joint 
effect of multiple SNPs within a gene, in this study we set 
out to show that gene-based approaches can be more 
powerful, in some situations, than traditional univariate 
approaches. For example, if a gene contains multiple causal 
variants with small individual effects, univariate methods 
would miss these associations if a very stringent significance 
threshold is used (as in GWAS). 

We assessed whether it would be feasible to extend 
to a neuroimaging database, a gene-based association 
method using principal components regression (PCReg). We 
applied PCReg across all genes, to a large database of 
voxelwise imaging data. We call our method a voxelwise 
“gene-wide”  association  study  (vGeneWAS).  By  performing  
association tests on whole genes, we greatly reduce the 
number of tests (from 437,607 SNPs down to 18,044 genes). 
Using a voxel-based approach, we also avoid known 
problems associated with focusing on ROIs or summary 
measures. In addition, we performed direct power 
comparisons between gene-based tests using PCReg versus 
traditional univariate regression methods for GWAS. 
 

2. METHODS 
 
2.1. Imaging Measures 
 
Structural MRI data were obtained following the standard 
ADNI protocol to ensure multisite consistency. Baseline 
MRI scans for each subject were analyzed using tensor-
based morphometry (TBM) as described previously [5]. 
After quality control selection there were 731 subjects with 
genotyping data available (172 AD, 356 MCI, and 203 
healthy elderly controls; 301 women/430 men; mean age ± 
sd = 75.56 ± 6.78 years). We did not split the subjects by 
diagnosis for this analysis, to exploit the broadest 
phenotypic continuum and maximize statistical power to 
detect genetic associations [6]. 
 
2.2. Genotypes and gene grouping 
 
For details on how genetic data were processed for the 
ADNI study, please see [7]. We used several quality control 
measures to filter our SNPs for our analysis as detailed in 
[1]. Briefly, SNPs were excluded with call rate <95%, 
significant deviation from Hardy-Weinberg equilibrium P < 
5.7x10-7, and a minor allele frequency <0.10. After all 
rounds of quality control and preparation, 437,607 SNPs 
remained. Remaining SNPs were then grouped by gene, 
where   “gene”   is   defined   by   the   gene   transcript   region  
including both introns and exons. SNPs not located in a gene 
were excluded. After quality control, SNP annotation, and 
gene grouping, 18,044 genes were left for analysis. 

 
2.3 Multi-SNP genetic associations 
 
To test the joint effect of all SNPs in a gene on the volume 
difference (calculated from TBM) at each voxel, we 
employed a multiple partial-F test. This first estimates the fit 
of   a   “reduced  model”   of   any  number  of   nuisance  variables  
on a given dependent variable and then estimates the fit of a 
second   “full   model”   with   the   nuisance   variables and any 
number of independent variables on the same dependent 
variable. Each association test results in an F-statistic, which 
represents the joint effect of the independent variables on the 
dependent variable, controlling for nuisance variables 
already in the model.  The multiple partial-F statistic was 
calculated for each gene at each voxel using equation 1 
below. Here k is df(full)-df(reduced) and RSS is the residual 
sum of squares:  

)(
df(full)
RSS(full)

df(full))df(reduced
RSS(full)d)RSS(reduce=F df(full)k, 1          /




Multiple partial-F tests are well suited for testing effects of 
multiple predictors on a given phenotype, but genetic data 
sometimes complicates testing because SNPs in the same 
gene   are   often   correlated   due   to   high   “linkage  
disequilibrium”   (LD).  When   the  SNP  values   in  a  cohort  of  
subjects are treated as a vector (whose components are the 
SNP value in each subject coded in an additive manner: 0, 1, 
or 2), then statistical correlations between adjacent SNPs on 
the   genome   can   make   different   subjects’   vectors   highly  
collinear. The dependence among these almost collinear 
SNP vectors in the multiple partial-F test model can lead to 
improper signs of beta coefficient estimates, wildly 
inaccurate magnitudes of beta coefficients, large standard 
error estimates, and false inferences.  
  To avoid the complications of collinearity in the 
statistical model, we first performed principal component 
analysis (PCA) on the SNPs within each gene, storing all of 
the orthonormal basis vectors of the SNP matrix that 
explained the first 95% of the variance in the set of SNPs. 
Basis vectors with the highest eigenvalues (higher 
proportions of explained variance) were included until 95% 
of the variance in the SNPs was explained. The rest were 
discarded. These new "eigenSNPs" approximate the 
information in the observed SNPs, but lack the collinearity 
that disrupts the multiple partial-F test models. By first 
performing PCA followed by a multiple partial-F test, our 
method may be considered a variant of PCReg and produces 
F-statistics equivalent to those proposed previously for non-
imaging data [8]. In this study, the independent variables 
built into the multiple partial-F test full model were the 
column vector output from PCA performed on each gene 
with age and sex as covariates. In this way, we tested the 
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joint predictive effect of variation throughout a gene on 
brain volume variations on a voxel-by-voxel level. 
 The total number of tests of association for 
vGeneWAS is very high (18,044 genes x 31,662 voxels). 
Because of the massive processing requirement, we coded a 
“threaded”   version   of   the   PCA   and   multiple   partial-F test 
steps of PCReg to split processing over multiple cores in a 
single CPU. Processing was further parallelized over a 
cluster of 10 high-performance 8-core CPU nodes. As a data 
reduction step, we only saved data on the gene with the 
lowest P-value  at  each  voxel  (the  “top  gene”  at  each  voxel).  
The total time required to complete an analysis was 
approximately 13 days. 
 
2.4 Effective number of test for statistical thresholds 
 
As we noted previously [3], the minimum P-value at each 
voxel, in the null case with n independent tests, 
approximately follows a probability density function (PDF) 
such that: 

)(x)n(=(x)f n 2          1 1
min

  
The PDF derived from equation 2 is known as a Beta 
distribution with parameters α=1   and   β=n. At each voxel, 
selecting the minimum P-value for the top gene then follows 
a Beta(1, n) distribution, where n is the effective number of 
independent tests.      
 However, genetic loci are inherited in contiguous 
segments, and some genes co-segregate in blocks. The allele 
frequencies and structure of genes that co-segregate are 
more similar than would be expected by chance if all 
variants were assumed to be independent. Because of this, 
the effective number of independent tests (Meff) is less than 
the total number of tests performed (M). By determining 
Meff, we can more accurately estimate the total number of 
independent tests performed, given the LD structure of our 
genotype data. 
 In our sample, we estimated Meff by performing 
5000 permutation tests at three randomly selected, 
uncorrelated voxels in the brain. We regressed each of the 
18,044 genes on the permuted residuals of the reduced 
model after including the age and sex covariates at each run, 
and stored the minimum P-value. As only the minimum P-
value is retained (for the best fitting gene), one can build up 
a reference distribution for the minimum P-values, to help 
gauge the level of surprise in seeing associations in the data. 
Storing the minimum P-values of the permutation tests 
yields the expected null Beta distribution given our data. We 
used a maximum-likelihood function to estimate the best fit 
for   the  null  Beta  distribution  by  varying   the  β  parameter  of  
Beta(1,β).  The  value  of  β  approximates  the  effective  number  
of independent tests (Meff) performed on our data.  
 

2.5 Estimation of expected values in simulated maps 
 
A certain amount of spatial smoothness is expected among 
voxels in an image. This is most likely explained by the non-
independence of volume difference measures at adjacent 
voxels. We examined whether the size of voxel clusters 
associated with the same gene from our vGeneWAS analysis 
differed from the cluster sizes expected under the null 
hypothesis of no association at all, given the non-
independence of signals at adjacent voxels in our images. In 
addition, we wanted to determine whether the number of 
unique, top genes from across the brain significantly differed 
from the number of top genes expected by chance. We 
generated 100 3D simulated cluster maps based on a linking 
algorithm that forms connections between voxels across the 
brain based on correlation. The probability of any voxel 
being linked to another voxel was directly related to how 
correlated they are to each other. By considering the 
correlation of a given voxel to all other voxels in the image, 
as opposed to using a single summary measure of 
smoothness throughout an image, we were able to model the 
expected 3D clustering among adjacent voxels and non-
independent, spatially separated clusters. 
 

3. RESULTS 
 

3.1 Comparison of methods 
 
To examine differences between gene-based and standard 
univariate association methods, we compared the results of 
PCReg to linear regression using the temporal lobe volume 
(TLV) data from a previous study [1] as the phenotype. We 
first chose to focus on the top gene or SNP identified by 
each method, in order to examine performance when the 
variant chosen is deliberately selected to favor one of the 
two methods. GRIN2B was identified as the gene with the 
SNP variant that was most significantly associated with TLV 
using a standard univariate GWAS analysis (P=4.03x10-7). 
We plotted the –log10(P-value) of the univariate test for each 
of the SNPs in the GRIN2B gene, in Figure 1a. The PCReg 
gene test results are overlaid (black dotted line). Clearly, the 
main effect detected with linear regression is much greater in 
this case, and the p-values are much smaller (i.e., –log10(P-
value) is higher). Notably, we tested each of the 129 SNPs 
within the GRIN2B gene, which would require any 
significant P-values identified to be corrected for multiple 
comparisons before further study. In comparison, the gene-
based test of GRIN2B using PCReg was a single test not 
requiring correction for multiple comparisons and 
maintained a nominal significance value (P=0.012).  Also, 
we compared BEST3 - the gene identified to be most 
significantly associated with TLV via PCReg - with the 
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linear regression output of each SNP within the gene 
(Figure 1b). The main effect of the gene-based test was 
much stronger (P=2.9x10-4) than the best linear regression 
result (P=0.063). This demonstrates a case where variance 
components from individual markers are not significant via 
linear regression, but may be combined into a single 
significant test statistic. 
 
Figure 1. Genetic association plots for univariate linear 
regression versus multi-locus PCReg. The -log10(P-value) 
of each SNP in GRIN2B (a) and BEST3 (b) is plotted against 
its position in the gene. Each of the points is color coded by 
level of LD (compared to the top SNP, the purple diamond 
dot) as measured by r2.The -log10(P-value) of the gene-based 
PCReg test for each gene is overlaid on the plot for 
comparison (dotted black line). Plots were generated using 
the LocusZoom software package. 

 
 
3.2 Voxelwise GeneWAS 
 
By randomly permuting the images, so that they were not 
assigned to the correct individuals, we compared the 
distribution of the cluster size values in simulated (null) 

maps to the cluster sizes obtained from vGeneWAS (Figure 
2). A large proportion of clusters of voxels associated with 
the same top gene in vGeneWAS were larger than would be 
expected based on completely null data. One estimate 
related to the number of independent voxels is the average 
number of clusters in simulated maps. This was 11900.8 ± 
50.6 (mean ± standard deviation) out of the 31,662 total 
voxels. We used the number of clusters estimated from the 
simulation to randomly select (with replacement) from our 
list of 18,044 genes. We tallied the number of unique genes 
represented for each simulated cluster map and found the 
average was 8721.4 ± 44.9 (mean ± standard deviation).  We 
measured the total number of unique genes as 5333 from our 
run of voxelwise GeneWAS, which is much lower than the 
number of genes expected based on the null cluster maps. 
Combined with our cluster size comparisons, this suggests 
that the top genes identified in our analysis tend to have a 
much more broadly distributed effect than would be 
expected if the data were null, even taking into account the 
intrinsic spatial non-independence of our data. 

Among the top genes identified at each voxel 
across the brain, the GRB-associated binding protein 2 
gene, GAB2, was the most significantly associated gene at 
any voxel (with P=2.36x10-9) in our analysis and has 
previously been linked to late-onset   Alzheimer’s   disease  
(LOAD). One study [9] identified 10 SNPs from the GAB2 
gene that were significantly associated with LOAD and 
APOE allele status in 1411 cases and controls from 20 NIA-
sponsored   Alzheimer’s   Disease   Centers.   In vivo testing 
shows that GAB2 is over-expressed in certain brain regions 
such as the hippocampus and posterior cingulate cortex in 
patients with LOAD [9]. In addition, the AlzGene website 
lists GAB2 as being in the top 20 genes likely related to AD 
(October 20, 2010; http://www.alzgene.org/). We identified 
several other genes highly relevant to brain function; a few 
are: LRDD (P=2.60x10-9), PRPRB (P=2.84x10-9), CHRM5 
(P=1.71x10-8), and S100B (P=4.75x10-8).  

 
Figure 2. Cluster sizes in vGeneWAS (red line) are 
compared with a simulated null map (black line). The 
density of the number of voxels (log10 transformed) in a 
cluster across the brain are plotted. The simulated null map 
contains a larger proportion of small cluster sizes than 
vGeneWAS (higher peaks in the black line at values close to 
the origin on the x-axis). The vGeneWAS map contains a 
larger proportion of large cluster sizes than the average 
simulated null map (the red line is higher at larger values 
and is more extended). A single slice view of the 
vGeneWAS and average simulated null cluster maps are 
pictured for comparison (inset). Every unique cluster is 
assigned its own color. There are more unique clusters than 
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distinct colors making visual inspection difficult, but in 
general the clusters in the vGeneWAS maps are larger. 

 
3.3 Correction for multiple comparisons 
 
Our Beta-distributed experimental P-values (with 
Meff=15,636) need to be corrected so that their false 
discovery rate (FDR) can be assessed [10]. Using the 
analytic   β   parameter   from   the   null   Beta   distribution, we 
fitted a cumulative distribution function (CDF) to our 
observed data yielding a new distribution of corrected P-
values that deviate from the uniform distribution only when 
the data are not null.  
  We found that the false discovery rate for the 
second most highly associated gene in our results (LRDD) 
could only be controlled at a threshold of q=0.30 (i.e., 
allowing a 30% false discovery rate) after applying a 
statistical threshold of Pc=5.36x10-4. In addition, the pFDR 
q-value threshold [11] was q=0.23 for the most significantly 
associated gene at any voxel (GAB2). In other words, the 
vGeneWAS results could not be controlled at the 
conventional false discovery rate, but show promise.   
 
3.4 Power comparisons 
 
To assess the differences in power afforded by vGeneWAS 
relative to existing univariate methods, we compared the Pc-
values from vGWAS obtained in our previous study [3], 
with the Pc-values resulting from vGeneWAS (Figure 3). 
The proportion of Pc-values greater than a given FDR 
threshold for each method is directly related to differences in 
effect sizes. The FDR of the results from vGWAS could 
only be controlled at a threshold value of q=0.50, whereas 
the FDR threshold for vGeneWAS is somewhat lower, 
although not passing the conventional FDR level (q=0.30; 
Figure 3). This suggests that the vGeneWAS method may 
have more power, in principle, to detect genetic associations, 

although neither test controlled the false discovery rate at the 
conventional level. 

 
Figure 3. vGeneWAS may control the false discovery 
rate better than vGWAS. The cumulative distribution 
function (CDF) of Pc-values from vGeneWAS (solid green 
line) is compared to the CDF of Pc-values from vGWAS [3]. 
(solid black line). Three lines represent different correction 
thresholds of q=0.05 (red dashed), q=0.30 (black dashed), 
and q=0.50 (blue dotted). 
 

4. CONCLUSION 
 
We showed that, in certain cases, gene-based methods may 
offer more power than traditional univariate methods. In 
addition,   our   analysis   identified   a   known   Alzheimer’s   risk  
gene, GAB2, lending plausibility to the method. Still, effect 
sizes may be too small to detect even with multivariate 
statistics and meta-analytic approaches may prove most 
useful in the future (e.g., in multi-site efforts such as the 
ENIGMA consortium [12]). 
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Imaging traits provide a powerful and biologically relevant substrate to examine the influence of genetics on
the brain. Interest in genome-wide, brain-wide search for influential genetic variants is growing, but has
mainly focused on univariate, SNP-based association tests. Moving to gene-based multivariate statistics, we
can test the combined effect of multiple genetic variants in a single test statistic. Multivariate models can
reduce the number of statistical tests in gene-wide or genome-wide scans and may discover gene effects
undetectable with SNP-based methods. Here we present a gene-based method for associating the joint effect
of single nucleotide polymorphisms (SNPs) in 18,044 genes across 31,662 voxels of the whole brain in 731
elderly subjects (mean age: 75.56±6.82SD years; 430 males) from the Alzheimer's Disease Neuroimaging
Initiative (ADNI). Structural MRI scans were analyzed using tensor-basedmorphometry (TBM) to compute 3D
maps of regional brain volume differences compared to an average template image based on healthy elderly
subjects. Using the voxel-level volume difference values as the phenotype, we selected the most significantly
associated gene (out of 18,044) at each voxel across the brain. No genes identified were significant after
correction for multiple comparisons, but several known candidates were re-identified, as were other genes
highly relevant to brain function. GAB2, which has been previously associated with late-onset AD, was
identified as the top gene in this study, suggesting the validity of the approach. This multivariate, gene-based
voxelwise association study offers a novel framework to detect genetic influences on the brain.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Recent efforts in imaging genetics have advanced the field rapidly
from identifying heritable features of the brain to genome-wide

searches for specific genetic variants that might account for functional
and structural variations in large populations (Potkin et al., 2009a,
2009b; Shen et al., 2010; Stein et al., 2010b; Thompson et al., 2010).
Variation in the human genome may account for variations in brain
integrity, and multi-national consortia have been set up to discover
and verify genetic effects on brain images (e.g., the ENIGMA project;
http://enigma.loni.ucla.edu). In imaging genomics, the vast amount of
information in the images (N100,000 voxels) and across the genome
(N12 million known variants) requires powerful methods to relate
genetic variants to the structure and function of the brain. Power
issues arise due to the small effect sizes, and the huge numbers of
statistical comparisons. Most techniques use some type of data
reduction, limiting the number of genetic variants studied or the
number of imaging features studied, or both. The ultimate goal of
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these gene-hunting studies is to create a method that addresses the
gene discovery problem in a statistically powerful and biologically
meaningful way.

The current mainstay of gene-hunting efforts in imaging genetics
is the genome-wide association study (GWAS). Most genetic associ-
ation tests relate individual SNPs to phenotypes, but since there are on
average between 20 and 100 SNPS per gene (in our dataset), and
alleles at these SNPs are often highly correlated, amethod that tests all
the SNPs in a gene at once (or most of the variance contributed by
SNPS in a gene) would reduce the number of tests required and be
more powerful. We will hereafter refer to SNP-based approaches and
gene-based approaches. These assess associations between common
SNPs and features in an image. In typical GWAS studies, each genetic
variant (usually a SNP) is independently tested for its association to
the phenotype—a mass univariate method, where no data reduction is
used across the genome. For example, Stein et al. (2010b) performed
a genome-wide search of around 500,000 SNPs, and found a novel
variant in the GRIN2B gene that is associated with temporal lobe
volume. The gene GRIN2B encodes a glutamate receptor that is already
the target of drugs (memantine) used to treat Alzheimer's disease
(Parsons et al., 2007). Findings such as these are promising as they
have biological relevance without relying on a prior hypothesis about
any specific SNP. However, performing mass SNP-based tests on
imaging summary measures (such as temporal lobe volume, hippo-
campal volume, etc.) or ad hoc regions of interest (ROI), collapses the
brain measures into a single number. Studies using an ROI to define
the imaging phenotype may miss fine-grained differences throughout
the brain, across subjects. In addition, a predefined ROI can lead to
false-negative results if a true association signal lies outside or only
partially within a chosen ROI.

Several studies now perform genome-wide searches at each voxel
across the brain (Hibar et al., 2010). This approach avoids pre-
selecting an ad hoc region of interest in the brain and does not require
prior hypotheses about which genetic variants, or which regions of
interest, matter. Stein et al. (2010a) performed a genome-wide, brain-
wide search, termed a voxelwise genome-wide association study
(vGWAS), in 740 subjects from the ADNI. The experiment was
extremely computationally intensive (27 h on 500 nodes), performing
around 16 trillion tests of association. However, the correction for
multiple comparisons was commensurate with the number of tests
performed. None of the variants identified was significant after
multiple comparison correction, but several variants were promising
candidates for further analysis. In an alternative approach, Vounou
et al. (2010) proposed a method that leverages the sparseness of
signals to simultaneously select SNP variants and regions of asso-
ciation, reducing the number of SNPs and phenotypes tested. Future
GWAS studies in imaging will likely reduce the number of tests and
multiple comparisons using Bayesian priors. This can prioritize certain
regions of the image or the genome, for later meta-analysis across
multiple datasets.

Gene-based association methods complement single-marker
GWAS for implicating underlying genetic variants in complex traits
and diseases (Neale and Sham, 2004). Given recent advances in high-
throughput genotyping, densely packed sets of SNPs, or genetic
markers, can capture increasing amounts of variation throughout the
genome. Methods that consider combinations of SNPs from the same
gene should better describe genetic associations than methods that
rely on data from SNPs independently (Neale and Sham, 2004; Schaid,
2004). Whole-gene testing is a biologically plausible approach to the
problem, as the ultimate unit of biological activity is the gene (or its
protein product; Potkin et al., 2009c). By associating the joint effect
of multiple SNPs within a gene, in this study we aimed to show
that gene-based approaches can be more powerful than traditional
SNP-based approaches (with the relative power depending on how
the genetic variants affect the phenotype). For example, if a gene
contains multiple causal variants with small individual effects, SNP-

based methods will miss these associations if a very stringent
significance threshold is used (as in GWAS). In addition, if multiple
loci within a gene combine to jointly affect a phenotype, this may also
be missed by traditional GWAS. These two scenarios are highly
likely, especially if we accept the “common disease, common variant”
hypothesis (Reich and Lander, 2001), but they are not accounted
for in methods that test each SNP, one at a time.

A multi-SNP, gene-based test can consider the combined effect of
each variant within the gene, while accounting for linkage disequi-
librium (LD) or correlation between markers. As such, at least in
theory it may detect associations missed by traditional SNP-based
GWAS. Related to this approach is “multi-locus fitting”—a developing
field in quantitative genetics, for the analysis of complex traits. Some
multi-locus analyses use statistical methods specialized for handling
high-dimensional data, including regularized regression methods
such as ridge regression (Malo et al., 2008; Sun et al., 2009), the
Bayesian lasso (Zou, 2006; Wu et al., 2009), and neural network
models (Lucek et al., 1998; Ott, 2001). Another related approach is
set-based association testing, implemented in the software Plink
(Purcell et al., 2007), which allows for the combination of univariate
test statistics into a single univariate test statistic using permutations.
Gene-based tests also reduce the effective number of statistical tests
by aggregating multiple SNP effects into a single test statistic.
However, for gene-based tests to be feasible, the multivariate test
statistics need to be computationally efficient to implement. Here we
assessed whether it would be feasible to extend to a neuroimaging
database, a gene-based association method using principal compo-
nents regression (PCReg) as proposed byWang and Abbott (2008) for
single-valued traits. We applied PCReg across all genes, to a large
database of voxelwise imaging data. We call our method a voxelwise
“gene-wide” association study (vGeneWAS). By performing associa-
tion tests on whole genes, we greatly reduce the number of tests
(from 437,607 SNPs down to 18,044 genes) while avoiding the
problems associatedwith focusing on ROIs or summarymeasures. Our
framework shows how to conduct vGeneWAS studies, and identify
gene variants that warrant further study.

We hypothesized that vGeneWAS would, in some situations,
have greater power to detect associations than existing SNP-based
methods. One such situationmight be when a gene containsmany loci
withweak individual effects. In addition, we expected that vGeneWAS
would have greater overall power than mass SNP-based methods,
like vGWAS, because of the drastic reduction in the effective number
of statistical tests performed.

Materials and methods

Study design and subjects assessed

ADNI is a large 5-year study initiated in 2003 as a public–private
partnership between the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical
companies, and non-profit organizations. The ADNI study aims to
identify and investigate biological markers of Alzheimer's disease
through a combination of neuroimaging, genetics, neuropsychological
tests and other measures in order to develop new treatments, track
disease progression, and lessen the time required for clinical trials.
The study was conducted according to the Good Clinical Practice
guidelines, the Declaration of Helsinki, and U.S. 21 CFR Part 50—
Protection of Human Subjects, and Part 56—Institutional Review
Boards. Written informed consent was obtained from all participants
before protocol-specific procedures were performed.

The study recruited 202 Alzheimer's disease subjects (AD), 413
with mild cognitive impairment (MCI), and 237 normal elderly
controls (NC) who were assessed every 6 or 12 months for 3 years.
Subjects went through extensive clinical and cognitive tests at the
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time of each scan to determine and track diagnosis. Further infor-
mation on inclusion criteria and the study protocol may be found
online (http://www.adni-info.org/). Baseline structural MRI scans and
genetic data for 818 subjects were obtained on or before May 5, 2010,
from the public ADNI database (http://www.loni.ucla.edu/ADNI/).
Scans for 852 subjects were available, but we excluded 121 subjects
based onquality controlmeasures (poor registration and image quality)
and to avoid a well documented problem in statistical genetics
known as population stratification (McCarthy et al., 2008). When per-
forming association tests on latent subpopulations of different ethnic-
ities or relatedness, spurious associationsmay arise due to differences in
allele frequencies between groups, instead of true association with the
phenotype (Lander and Schork, 1994). Subjects were removed based
on self-reported ethnicity, later verified by multi-dimensional scaling
(MDS) analysis (see previous study: Stein et al., 2010b), leaving 172
AD patients (78 women/94 men; mean age±standard deviation=
75.54±7.62 years), 356 MCI subjects (130 women/226 men; mean
age: 75.23±7.22), and 203 healthy elderly controls (93 women/110
men;meanage: 76.15±4.99).Wedidnot split the subjects bydiagnosis
for this analysis in order to exploit the broadest phenotypic continuum
(Petersen, 2000) and maximize statistical power to detect genetic
associations (Cannon and Keller, 2006).

Imaging methods

Baseline MRI scans for each subject were analyzed using tensor-
based morphometry (TBM) as described previously (Hua et al., 2008).
Briefly, high-resolution T1-weighted structural brain MRI scans
were acquired at 58 ADNI sites on 1.5 T scanners with a protocol
developed for multiple site consistency (Jack et al., 2008; ADNI also
collected somedata at 3 T, whichwe did not analyze here; see Ho et al.,
2010). Additional image corrections were applied to all images in a
processing pipeline including: GradWarp correction of geometric
distortion (Jovicich et al., 2006), B1-correction to adjust image
intensity non-uniformity (Jack et al., 2008), N3 bias correction to
adjust intensity inhomogeneity across a scan (Sled et al., 1998), and
geometric scaling determined by a phantom scan acquired at each
subject's scanning session to adjust for scanner and session-specific
calibration errors (Jack et al., 2008). Imageswere linearly alignedusing
a 9 parameter algorithm to the International Consortium for Brain
Imaging template (ICBM-53; Mazziotta et al., 2001) to align brain
positions to a common standard space, adjusting for global scaling.

The TBM analysis was performed following the protocol of our
prior study, which showed clinical and cognitive test scores correlated
with temporal lobe volumes, in a subset of the ADNI population (Hua
et al., 2008). A minimum deformation template (MDT) was created
based on a random subset of the healthy elderly controls at baseline.
The MDT provides an unbiased representation of MRI scans expected
from a group of average healthy elderly persons. We generated maps
of localized volume difference for each subject compared to the MDT
using an inverse-consistent, symmetric, intensity-based nonlinear
warping algorithm (Leow et al., 2005). Maps of localized volume
differences (called Jacobian maps) are estimated using the Jacobian
determinant of the deformation matrix, which itself is a voxel-level
estimate of volume excess or deficit compared to the MDT. Jacobian
maps for each individual were then down-sampled using trilinear
interpolation to a 4×4×4 mm3 voxel size to reduce computational
burden. The value at each voxel in the Jacobian map represents a
percentage volume difference compared to the MDT; we used this
voxel-based measure of volume difference as the phenotype for
genetic association tests.

SNP filtering and gene grouping

Genome-wide genotype data were collected at 620,901 markers
on the Human610-Quad BeadChip (Illumina, Inc., San Diego, CA). For

details on how genetic data were processed, please see Saykin et al.
(2010) and Stein et al. (2010a). Different types of markers were
genotyped (including copy number probes), but only SNPs were used
in this analysis. Several SNPs were excluded from the analysis based
on standard filtering criteria, measures used in many other GWAS
studies (Wellcome Trust Case Control Consortium, 2007): call rate
b95% (42,670 SNPs removed), significant deviation from Hardy–
Weinberg equilibrium Pb5.7×10−7 (871 markers removed), auto-
somal chromosomes only (10,686 SNPs removed), and an Illumina
GenCall quality control score of b0.15 to eliminate “no call” genotypes
(variable number of missing genotypes across subjects). We chose to
remove SNPs with a minor allele frequency b0.10 (161,354 SNPs
removed) based on our sample size. With our sample of 731 images,
we are underpowered to detect associations with SNPs where the
minor allele frequency is less than 10%, unless effect sizes are large
(Wang et al., 2005; Flint et al., 2010). In addition, excluding SNPs with
low minor allele frequencies avoids the risk of finding significant
associations where only a small subset of subjects have the rare allele
type and do not represent an accurate sampling of the phenotype
of interest. If a very low minor allele frequency cutoff is used (e.g.,
MAFb0.01) in samples of fewer than a thousand subjects, this may
result in cases where an association is driven by a single subject.
Clearly, such a result may be unreliable and is unlikely to replicate, so
the higher MAF cut-off guards against this.

Due to the filtering based on Illumina GenCall quality control
measures, individual subjects have some residual missing genotypes
at random SNPs throughout the dataset. Because PCReg requires data
without missing genotypes and to maximize the number of subjects
included in the analysis, we performed imputation using the software,
Mach (version 1.0), to infer the haplotype phase and automatically
impute the missing genotype data (Li et al., 2009). After all rounds
of quality control and preparation, 437,607 SNPs remained.

Using the retrieval interface of the software package PLINK
(version 1.05; http://pngu.mgh.harvard.edu/~purcell/plink/), SNP
annotations were made by continuously soliciting the TAMAL
database (Hemminger et al., 2006) based chiefly on UCSC genome
browser files (Hinrichs et al., 2006), HapMap (Altshuler et al., 2005),
and dbSNP (Wheeler et al., 2008). The newly annotated SNPs were
grouped by gene, where “gene” is defined by the gene transcript
region including both introns and exons. We chose not to include
SNPs upstream/downstream from the gene region. This may miss
SNPs in promoter or regulatory regions for a gene, but avoids choosing
an arbitrary window that may select regulatory SNPs for some genes,
but not for other genes whose regulatory regions lie beyond the
window length. SNPs that were not located in a gene were excluded
(224,057 SNPs removed). All splice variants were considered as
belonging to the same gene. After applying SNP filtering criteria,
SNP annotation, and gene grouping, 18,044 genes were left for
analysis out of the estimated 20,000–25,000 protein coding genes
in the human genome (International Human Genome Sequencing
Consortium, 2004).

Gene-based association statistics

Independent tests of statistical association with imaging measures
were performed for each gene at 31,622 voxels within a whole-brain
mask of theMDT across 731 subjects. To test the joint effect of all SNPs
in a gene on the volume difference at each voxel, we employed a
multiple partial-F test. A multiple partial-F test works by first
estimating the fit of a “reduced model” of any number of nuisance
variables on a given dependent variable and then estimating the fit of
a second “full model” with the nuisance variables and any number of
independent variables on the same dependent variable. Each
association test results in an F statistic, which represents the joint
effect of the independent variables on the dependent variable,
controlling for the effects of nuisance variables already in the
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model. The multiple partial-F statistic was calculated for each gene
at each voxel using Eq. (1) below. k is df(full)−df(reduced) and RSS
is the residual sum of squares:

Fk;df fullð Þ =
RSS reducedð Þ−RSS fullð Þ
df reducedð Þ−df fullð Þ =

RSS fullð Þ
df fullð Þ ð1Þ

Multiple partial-F tests are well suited for testing the effects of
multiple predictors on a given phenotype, but genetic data sometimes
complicate testing because SNPs in the same gene are often correlated
due to high LD.When the SNP values in a cohort of subjects are treated
as a vector (whose components are the SNP value in each subject
coded in an additive manner: 0, 1, or 2), then the adjacent SNPs can
make different subjects' vectors collinear. The dependence among
these almost collinear SNP vectors in the multiple partial-F test model
can lead to improper signs of beta coefficient estimates, wildly
inaccurate magnitudes of beta coefficients, large standard error
estimates (Kleinbaum, 2007), and false inferences. The reason this
occurs is that standard regressionmodels require the inversion of a set
of “normal” equations, and when predictors (here SNP vectors) are
highly correlated, the equations are not of full rank. This leads to
unstable or unreliable solutions. One way out of this predicament is to
use a type of regularized or penalized regression, such as ridge
regression (also known as sparse regression or Tikhonov regulariza-
tion), which can be used when there are high correlations among the
predictors. Alternatively, dimension reduction may be performed
(which we do here), to create a set of predictors that explain the
variance in the data but that are no longer correlated.

To avoid the complications of collinearity in the statistical model,
we first performed principal component analysis (PCA) on the SNPs
within each gene, storing all of the orthonormal basis vectors of the
SNP matrix that explained the first 95% of the variance in the set of
SNPs. Basis vectors with the highest eigenvalues (higher proportions
of explained variance) were included until 95% of the SNP variance
was explained, and the rest were discarded. These new “eigenSNPs”
approximate the information in the observed SNPs, but lack the
collinearity that disrupts the multiple partial-F test models. By first
performing PCA followed by a multiple partial-F test, our methodmay
be considered a variant of PCReg and produces F statistics equivalent
to those proposed in Wang and Abbott (2008). In this study, the
independent variables built into the multiple partial-F test full
model were the column vector output from PCA performed on each
gene with age and sex as covariates. In this way, we tested the joint
predictive effect of variation throughout a gene on brain volume
variations on a voxel-by-voxel level.

The total number of tests of association for vGeneWAS is very high
(18,044 genes×31,662 voxels). Because of the massive processing
requirement, we coded the PCA and multiple partial-F test steps of
PCReg using the R statistical package (version 2.9.2; http://www.cran.
r-project.org/) using the doMC “multi-core” package (version 1.2.1;
http://www.revolutionanalytics.com/) to split processing over multi-
ple cores in a single CPU. Processing was parallelized over a cluster
of 10 high performance 8-core CPU nodes using the Laboratory of
Neuro Imaging (LONI) Pipeline (http://pipeline.loni.ucla.edu/). For
further data reduction, we only saved data on the gene with the
lowest P-value at each voxel. This is comparable to our prior work
using voxelwise testing of all 500,000 genotyped SNPs, where only
the SNP with the lowest P-value was retained at each voxel (Stein
et al., 2010a). The total time required to complete an analysis was
approximately 13 days.

Comparison of SNP-based and gene-based methods

To examine the situations where PCReg exhibits better (or worse)
performance than traditional simple linear regression, we compared

the twomethods directly on real genetic data. Performing tests on real
genetic data as opposed to simulated data is important because the
power of each method depends upon the underlying LD structure.
Generating simulated data that mimics a chosen LD structure can
be just as biased as selecting actual genes, though a significant treat-
ment of the issue of power in PCReg is discussed in Wang and Abbott
(2008). We used temporal lobe volume (TLV) summary measures
obtained by Stein et al. (2010b), as the phenotype for testing asso-
ciations for both methods. We performed a genome-wide scan of
every SNP from our filtered and annotated genotype data (only
including SNPs located within genes) using simple linear regression
with SNPs coded following an additive model. We took the top SNP
from the analysis, and the rest of the SNPs from the same gene,
and performed PCReg on all of the SNPs in that gene. In addition, we
performed a gene-wide scan of all of the genes in our dataset using
PCReg with SNPs coded following the additive model. We selected
the top gene from the analysis and then ran individual tests of asso-
ciation using simple linear regression at each SNP within the top
gene. In this way, we were able to compare the performance of
each method in cases where the underlying genetic structure might
favor one method over the other.

Statistical thresholds and correction for multiple comparisons

As we noted in Stein et al. (2010a), the minimum P-value at each
voxel, in the null case with n independent tests, approximately
follows a probability density function (PDF) such that (Ewens and
Grant, 2001):

f min xð Þ = n 1−xð Þn−1 ð2Þ

The PDF derived from Eq. (2) is a Beta distributionwith parameters
α=1 and β=n. At each voxel, selecting the minimum P-value for
the top gene then follows a Beta(1, n) distribution, where n is the
independent number of genes tested.

However, it is well known that the adjacent SNP values within
genes are not statistically independent (Frazer et al., 2007). Genetic
loci are inherited in contiguous segments, and some genes co-
segregate in blocks. The allele frequencies and structure of genes that
co-segregate are more similar than would be expected by chance if
they were assumed to be independent. Because of this, the effective
number of independent tests (Meff) is less than the total number of
tests performed (M). By determining Meff, we obtain a more accurate
estimate of the total number of independent tests performed with
vGeneWAS, given the LD structure of our genotype data.

In our sample, we estimated Meff by performing permutation tests
at three randomly selected, uncorrelated voxels in the brain. We
regressed each of the 18,044 genes on the permuted residuals of
the reduced model after including the age and sex covariates at each
run, and stored the minimum P-value. Note that, in this case, the
phenotype data is null. However, because it is computed from the real
data after adjusting for age and sex, the phenotype data (image
values) have the same range and statistical distribution as the data
tested for genetic associations. By using the genes, one at a time, as
regressors on this null data, one can develop a distribution of the
resulting P-values, under null conditions, that can be used to calibrate
the significance values that are ascribed to the observed data. As only
the minimum P-value is retained (for the best fitting gene), one can
build up a reference distribution for the minimum P-values, to help
gauge the level of surprise in seeing associations in true data.
We repeated this process 5000 times at each of the three randomly
chosen voxels and merged the data. The distributions of null
minimum P-values from each voxel were nearly identical (Fig. 1).
Storing the minimum P-values of the permutation tests yields the
expected null Beta distribution given our data. We used a maximum-
likelihood function (betafit; Matlab, The Math Works, Inc.) that
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estimates the best fit for the null Beta distribution by varying the
β parameter of Beta(1, β). The value of β approximates the effective
number of independent tests (Meff) performed on our data. We then
apply an inverse Beta transform using the approximated β parameter
so that the distribution of P-values is now a uniform distribution that
deviates from the null when there is a signal.

After correcting for the effective number of independent gene-
based tests performed at each voxel, we still need to correct for the
multiple comparisons across voxels. We used the original false
discovery rate method (FDR; Benjamini and Hochberg, 1995), which
identifies whether there is any statistical thresholding of the
uncorrected P-value maps that keeps the rate of false positive results
within a predefined threshold (we chose 5%, which is conventionally
used). This means that, if the results pass the FDR test, approximately
95% of the voxels declared as significant associations will be true
positives (averaged over many experiments). In addition, we tested
a less conservative variant of FDR, the positive FDR (pFDR), which
operates under the condition that at least one true positive finding
exists in the data (i.e., one of the null hypotheses is rejected) and
yields q-value correction thresholds similar to the original FDR
method (Storey, 2003). The pFDR test is implemented in the R
statistical package called “qvalue” (Version 1.22.0).

Estimation of expected values in simulated maps

A certain amount of spatial smoothness is expected among voxels
in an image. This is most likely explained by the non-independence
of volume difference measures at adjacent voxels. Relative volume
maps were generated using tensor-based morphometry (TBM),
which relies on non-linear registration of each subject's imaging
data to a common template. The degree of spatial smoothness in
the Jacobian maps derived from the gradient of a deformation
field depends on the choice of the regularizer used by the warping
algorithm (Laplacian, elastic, fluid, sKL, etc.) and on the resolution
of numerical grid chosen to solve the differential equations
whose solution is the deformation field. Volume difference maps
based on the deformation field vectors are spatially smooth, as are
any resulting statistical maps. In addition to image smoothness,
certain noncontiguous voxels in distant regions of the brain can have

surprising covariance patterns despite their spatial separation
(Fillard et al., 2007).

We examined whether the size of voxel clusters associated with
the same gene from our vGeneWAS analysis differed from the cluster
sizes expected under the null hypothesis of no association at all,
given the non-independence of signals at adjacent voxels in our
images. In addition, we wanted to determine whether the number
of unique, top genes from across the brain significantly differed
from the number of top genes expected by chance. We generated
simulated cluster maps by first creating a correlation matrix of r
values representing the Pearson's correlation between any given
voxel and all other voxels in the brain. Next, we randomly selected
(without replacement) a voxel, Vs, and all corresponding voxels with
an r2 value (proportion of variance explained) greater than 0.8 from
the correlation matrix. We chose to only select voxels from the
correlation matrix with an r2 greater than 0.8 because this provided
the largest cluster size estimates in the simulated output maps. The
r2 value of each voxel-to-voxel relationship was then used to divide
the interval [0,1] of a uniform distribution such that the correlation
between a voxel and Vs was directly related to the area under the
curve occupied by that voxel's area under the curve or “bucket.” The
size of each voxel's bucket was recalculated each time we chose a
new Vs. We selected a random number on the interval [0,1], and,
depending on its value (which “bucket” it fell in), assigned the same
categorical variable link (e.g., a, b, and c) to Vs and the voxel whose
bucket was selected from the uniform distribution. This linked the
two voxels. The probability of a given voxel being chosen from the
uniform distribution was directly related to how correlated it was
to Vs. We continued the process by randomly choosing a new Vs

from the correlation matrix. If a randomly selected voxel Vs did not
contain a linking variable, but selected a voxel from the uniform
distribution that already contained a link, then Vs was assigned the
linking variable of the voxel selected from the uniform distribution. If
Vs already contained a linking variable and the voxel chosen from the
uniform distribution had not previously been assigned a variable, the
two voxels were linked using the existing linking variable of Vs. If
both Vs and the voxel selected from the uniform distribution already
contained a linking variable, we kept each variable as-is and then
continued with the process. Finally, voxels that were not correlated
to any other voxels in the image, with an r2 value greater than 0.8,
were assigned a non-linking random variable. After iterating through
every voxel in the image, each voxel had a categorical variable that
either linked it to other voxels or only to itself. We ran this entire
simulation process 100 times, generating a new simulated cluster
map each time. By considering the correlation of a given voxel to
all other voxels in the image, as opposed to using a single summary
measure of smoothness throughout an image, we were able to
model the expected clustering among adjacent voxels and non-
independent, spatially separated clusters.

Based on the 3D pattern of voxels and the variables linking
voxels together, we used a nearest neighbor algorithm to measure
cluster sizes of adjacent voxels with the same linking variable value.
Using the cluster size estimates from each simulated map, we were
able to determine the expected distribution of cluster sizes based
directly on our study dataset. In addition, we used the total number
of unique linking variables in each simulation as an estimate of
the number of independent voxels in our dataset. Because non-
independent, correlated voxels may tend to be associated with the
same gene, we can use the total number of independent voxels to
estimate the number of top associated genes we would expect to
find in null cluster maps made from our actual test data. We used
the estimated number of independent voxels, Vi, to randomly select
(with replacement) a gene from the set of 18,044 genes and
repeated the selection Vi times. We found the number of unique
genes represented for each simulated output map and then took the
average.

Fig. 1. A histogram shows the minimum null P-values obtained from permutation tests.
Data from 3 different voxels are shown on the same graph (blue, red, and black lines);
they are obtained from 3 randomly chosen, uncorrelated voxels in the brain (5000
permutations each). The distributions are nearly identical, and agree with each other, as
well as accurately reflecting the effective number of independent tests (Meff).
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Results

Comparison of methods

To examine the differences between gene-based and SNP-based
association methods (which are more standard), we compared the
results of PCReg to linear regression using temporal lobe volume
(TLV) data from a previous study (Stein et al., 2010b) as the
phenotype. We chose to focus on the top gene or SNP identified by
each method in order to examine performance when the variant
chosen is deliberately selected to favor one of the two methods.
GRIN2B was identified as the gene with the SNP variant that was
most significantly associated with TLV (P=4.03×10−7). We
identified each of the 129 SNPs within the GRIN2B gene, and then
performed linear regression at each SNP and PCReg as a single gene
test with TLV as the phenotype. The −log10(P-value) of each SNP-
based test is shown in Fig. 2a with single gene test results overlaid
(black dotted line). It is clear that the main effect detected with
linear regression is much greater in this case. It is important to note
that we tested each of the 129 SNPs within the GRIN2B gene, which
would require any significant P-values identified to be corrected for
multiple comparisons before further study. In this example,
however, there are several SNPs that beat the Bonferroni-corrected
significance threshold (α=3.9 ×10−4). In comparison, the gene-
based test of GRIN2B using PCReg was a single test not requiring

correction for multiple comparisons and maintained a nominal
significance value (P=0.012). Also, we compared BEST3 – the gene
identified to be most significantly associated with TLV via PCReg –
with the linear regression output of each SNP within the gene
(Fig. 2b). The significance of the main effect of the gene-based test is
much stronger (P=2.9×10−4) than the best linear regression result
(P=0.063). This demonstrates a case where variance components
from individual markers that are not significant via linear regression
may be combined into a single significant test statistic.

Relation of gene significance to number of SNPs

Wang and Abbott examined whether the power to detect
associations in genetic data is influenced by the number of eigenSNPs
included in a PCReg model. They found that models with greater
numbers of eigenSNPs do not have increased power to detect
associations (Wang and Abbott, 2008). However, each additional
eigenSNP included in the model uses a degree of freedom. It is
therefore possible that PCReg and similar regression methods are
biased toward selecting effects of smaller versus larger genes
(Chapman and Whittaker, 2008). We examined our results for
gene-size bias and verified that the number of eigenSNPs in the
PCRegmodel within the top genes from our run of vGeneWASwas not
correlated with the observed P-value, using a Pearson's product-
moment correlation test (r=0.0045; P=0.42). In addition, we
verified that the number of eigenSNPs in each of the 18,044 genes
at a single voxel was not correlated with its significance level
(r=0.0066; P=0.29). We also compared the number of eigenSNPs in
each gene (mean and median: 14.3 and 9) with the number of
eigenSNPs in the top genes from our analysis (mean andmedian: 13.6
and 5). It remains possible that we missed effects of very large genes,
but this is inevitable in small samples as the number of eigenSNPs
needed to adequately encode the majority of variation in large genes
tends to approach the sample sizes, reducing the available numbers of
degrees of freedom for the whole-gene tests.

Voxelwise GeneWAS

We generated maps of significance where each color-coded
voxel in the brain shows the P-value of the most highly associated
gene at that voxel (Fig. 3). There are several spatially contiguous
regions throughout the brain with raw minimum P-values lower
than 10−7. In addition, some of the top genes identified show
symmetric clustering across hemispheres. Brain structures are
highly symmetric between hemispheres, at least for most brain
regions, so symmetric genetic associations may be biologically
plausible because the volumes of symmetric structures co-vary
across subjects, so they may share similar genetic determinants.
However, evidence of symmetric patterns of association in the brain
does not necessarily imply biological plausibility (Fillard et al.,
2007).

We used a simulation-based test to build the expected null
distribution of cluster sizes given our image data. We compared the
distribution of the cluster size values in simulated maps to the
cluster sizes obtained from vGeneWAS. The proportion of the null
(simulated) maps that contained small clusters is much greater than
in vGeneWAS, while the proportion of the vGeneWAS map that
contained large clusters was greater than in the null maps (Fig. 4). The
minimum and maximum cluster sizes for the simulated maps were 1
and 14 voxels (64 and 896 mm3), respectively. The minimum and
maximum cluster sizes for vGeneWAS were 1 and 429 voxels (64 and
27,456 mm3). This demonstrates that a large proportion of clusters
of voxels associated with the same top gene are larger than would
be expected based on completely null data, even taking into account
the non-independence of voxels in our dataset.

Fig. 2. Genetic association plots for univariate linear regression versus multi-locus
PCReg. The −log10(P-value) of each SNP in GRIN2B (a) and BEST3 (b) is plotted against
its position in the gene. Each of the points is color coded by level of LD (compared to the
top SNP, the purple diamond dot) as measured by r2. The −log10(P-value) of the gene-
based PCReg test for each gene is overlaid on the plot for comparison (dotted black line).
Plots were generated using the LocusZoom software (http://csg.sph.umich.edu/
locuszoom/).

1880 D.P. Hibar et al. / NeuroImage 56 (2011) 1875–1891

��

http://csg.sph.umich.edu/locuszoom/
http://csg.sph.umich.edu/locuszoom/


Based on our simulated cluster maps, we used the number of
unique clusters as an estimate of the number of independent voxels.
The estimate of the number of independent voxels based on 100 runs
of the simulation tests was 11,900.8±50.6 (mean±standard devia-
tion) out of the 31,662 total voxels. We performed tests to estimate
the number of genes we should expect to find in our analysis based on
the non-independence of voxels in our data. We used the number of
independent voxels estimated from the simulation to randomly select
(with replacement) from our list of 18,044 genes. We tallied the
number of unique genes represented for each simulated cluster map
and found the average was 8721.4±44.9 (mean±standard devia-
tion). We measured the total number of unique genes to be 5333
from our run of voxelwise GeneWAS. The number of observed genes
is significantly lower than the number of genes expected based
on the null cluster maps (Pb0.01). Combined with our cluster size
comparisons, this suggests that the top genes identified in our analysis
tend to have a much more broadly distributed effect than expected
based on null data, even taking into account the intrinsic spatial non-
independence of our data. The top 20 genes most significantly
associated with any voxel are listed in Table 1.

The GRB-associated binding protein 2 gene, GAB2, is the most
significantly associated gene in our analysis and has previously been
linked to late-onset Alzheimer's disease (LOAD) (Reiman et al., 2007).

Reiman et al. (2007) identified 10 SNPs from the GAB2 gene that were
significantly associated with LOAD and APOE allele status in 1411
cases and controls from 20 NIA-sponsored Alzheimer's Disease
Centers. Replication attempts in independent samples have yielded
mixed results (Ramirez-Lorca et al., 2009; Lin et al., 2010; Chapuis
et al., 2008), but large meta-analyses of several databases shows that
GAB2may indeed have amoderate effect on the development of LOAD
(Ikram et al., 2009; Schjeide et al., 2009). Specifically, the meta-
analysis of the marker rs2373115 in nine studies has an odds ratio of
0.85 and a 95% confidence interval for the odds ratio of [0.76, 0.94]. In
addition, the AlzGene website lists GAB2 as being in the top 20 genes
likely related to Alzheimer's disease (September 3, 2010; http://www.
alzgene.org/). In vivo testing shows that GAB2 is over-expressed in
certain brain regions such as the hippocampus and posterior cingulate
cortex in patients with LOAD (Reiman et al., 2007). Experiments
with small-interfering RNA (siRNA) and GAB2 reveal that the normal
function of GAB2 proteins prevents the formation of serine-262
phosphorylated tau tangles (Reiman et al., 2007). No studies, to our
knowledge, have considered morphometric effects of GAB2 variants.
The GAB2 associations show a symmetric signal in the white matter
superior to the lateral ventricles (Fig. 5).

The second most highly associated gene, leucine-rich repeat and
death domain containing protein (LRDD), is expressed in the brain

Fig. 3. A color-coded significance map of the top gene at each voxel. Sections are shown at 8 mm intervals throughout the brain. The top of each panel represents the anterior of the
brain and bottom the posterior of the brain. The images are in radiological convention (the left side of the image is the patient's right hemisphere). Color coding is based on
the −log10(P-value); warmer colors represent more significant associations.

1881D.P. Hibar et al. / NeuroImage 56 (2011) 1875–1891

��

http://www.alzgene.org/
http://www.alzgene.org/


and may mediate cell apoptosis and DNA repair (Telliez et al., 2000).
In addition, LRDD has been implicated in the p53 tumor-suppression
pathway likely by signaling cell apoptosis in response to DNA damage
(Brown et al., 2009). LRDD was the most significantly associated
gene in a cluster of voxels in a white matter tract of the occipital
lobe, possibly the optic radiations (Fig. 5).

Associations with protein tyrosine phosphatase receptor type
beta, PTPRB, are detected in the cerebellum (Fig. 5). PTPRB interacts
with neural receptors and cell-adhesion molecules and is involved
in neurite development and neuronal differentiation (Ishiguro et al.,
2008). PTPRB has also previously been associated with alcohol
and drug abuse via genome-wide search (Ishiguro et al., 2008). In
addition, an expression study found that PTPRB encoded proteins are
present in the gastric mucus and other tissues of gastric cancer
patients (Wu et al., 2006).

The fourth and fifth most significantly associated genes are zinc
finger protein 462 (ZNF462) and immunoglobin superfamily member
5 (IGSF5), respectively. ZNF462 is the most significantly associated
gene in a cluster of voxels in the upper-left gray matter of the parietal
lobe (Fig. 5). Interestingly, IGSF5 shows symmetrical clusters of
association in the temporal lobe and the surrounding cerebrospinal
fluid (CSF) at the base of the brain (Fig. 5). Neither gene is well
studied, but IGSF5 may be involved with junction cell adhesion
(Hirabayashi et al., 2003).

Other genes of interest identified in our analysis include ARALAR,
which encodes a calcium-binding mitochondrial protein that is highly
expressed in the brain (del Arco and Satrustegui, 1998). ARALAR
has previously been associated with autism (Ramoz et al., 2004), but
the claims are controversial (Rabionet et al., 2004). CHRM5, is a
muscarinic acetylcholine receptor M5 coding gene and has previously
been associated with schizophrenia (De Luca et al., 2004). S100B,
encodes a zinc-binding protein over-expressed in patients with
Alzheimer's disease and interacts with Tau proteins (Yu and Fraser,
2001).

Correction for multiple comparisons

After permutation testing to determine the effective number of
independent gene tests, we need to model the function parameters so
that we can transform the data for correction for multiple compar-
isons. The effective number of independent tests was estimated to
be 15,636, which is a moderate reduction from the 18,044 genes
measured directly in this experiment. We therefore chose to model
the null distribution as Beta(1, 15,636). The probability density
function (PDF) of Beta(1, 15,636) on the normalized histogram
of observed P-values fits the data well with only small deviations
from the original Beta(1, 18,044) (Fig. 6a). We note, however, that our

Fig. 4. Cluster sizes in vGeneWAS (red line) are compared with an average of simulated
null maps (black line). We took the log10 of the number of voxels in a cluster (not
in mm3) across the brain in both maps for scaling purposes and for ease of comparison.
The log10 cluster sizes are then plotted using a density function such that the total
area under each line is equal to 1. The average simulated null map contains a larger
proportion of small cluster sizes than vGeneWAS (higher peaks in the black line at
values close to the origin on the x-axis). The vGeneWAS map contains a larger
proportion of large cluster sizes than the average simulated null map (the red line is
higher at larger values and is more extended). A single slice view of the vGeneWAS and
average simulated null cluster maps are pictured for comparison (inset). Every unique
cluster is assigned its own color. There are more unique clusters than distinct colors
making visual inspection difficult, but in general the clusters in the vGeneWASmaps are
larger.

Table 1
The top 20 genes most significantly associated at any voxel, organized by minimum observed P-value. The common gene name is listed, with the number of SNPs within that gene
(Note: the number of SNPs in a gene will vary depending on the genotyping and quality control methods used). We also list the number of eigenSNPs included in the PCReg models.
The mean observed P-value is also listed; it is the average of the P-values at all voxels where that gene was most significantly associated. Also listed is the volume of voxels (in mm3)
and the percentage of the total volume of voxels in the brain where the gene was the most significantly associated gene. The maximum cluster size observed for each gene is listed as
well as the total number of spatially independent clusters.

Chr Gene # of SNPs in gene # of eigenSNPs Minimum P-value Mean P-value Volume (mm3) Proportion of brain volume Clustermax (mm3) # of clusters

11 GAB2 20 10 2.36×10−9 1.50×10−5 6336 0.0049 2688 9
11 LRDD 2 2 2.60×10−9 1.32×10−5 8128 0.0063 7872 4
12 PTPRB 17 13 2.84×10−9 1.81×10−5 3200 0.0024 3008 5
9 ZNF462 9 6 3.29×10−9 1.84×10−5 2688 0.0021 2688 1
21 IGSF5 27 14 5.32×10−9 1.62×10−5 16,384 0.013 9344 3
2 SLC25A12 10 5 9.48×10−9 2.66×10−5 1856 0.0014 1792 2
11 MRE11A 9 6 9.86×10−9 8.80×10−6 9344 0.0072 9216 3
19 SLC8A2 11 7 1.06×10−8 3.18×10−5 5632 0.0043 5376 3
15 CHRM5 3 3 1.71×10−8 1.77×10−5 1280 0.00099 1216 2
18 SPIRE1 19 14 2.94×10−8 2.88×10−5 6016 0.0046 3072 12
3 C3orf64 9 8 3.71×10−8 2.43×10−5 4352 0.0034 2112 4
21 S100B 1 1 4.75×10−8 2.81×10−5 9344 0.0072 6656 7
1 CRCT1 1 1 5.54×10−8 2.90×10−5 4096 0.0032 3456 4
19 ZNF626 6 5 5.85×10−8 2.12×10−5 2560 0.0020 2112 3
1 ELK4 1 1 6.05×10−8 3.27×10−5 4032 0.0031 2688 4
11 RSF1 8 6 9.30×10−8 1.31×10−5 768 0.00059 768 1
20 WFDC11 2 2 1.06×10−7 2.49×10−5 1280 0.00099 512 5
6 SCML4 27 18 1.07×10−7 1.67×10−5 3328 0.0026 3328 1
12 ERP27 8 14 1.08×10−7 2.61×10−5 2624 0.0020 2176 2
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estimate is determined both by SNP density and degree of coverage in
the SNP marking scheme of our study. Experiments that use different
SNP-chips, include sex chromosomes, or use different annotation
methods may encounter different estimates. To determine how well
the expected null distribution compares to the observed PDF, we
compare each distribution directly in a Q–Q plot (Fig. 6b). The
expected null distribution also fits the observed data well.

P-values suitable for multiple comparison correction via FDR
methods should have a probability distribution on the interval [0,1]

that is uniform in the null case, i.e., its cumulative distribution is
diagonal in the null case (Benjamini and Hochberg, 1995; this is
the basis for the false discovery rate method). Our Beta-distributed
experimental P-values need to be corrected so that they meet the
assumptions of the FDR model. Using the analytic β parameter
from the null Beta distribution, we fit a cumulative distribution
function (CDF) to our observed data yielding a new distribution
of corrected P-values that deviate from the uniform distribution
onlywhen the data are not null. A histogram of the observed corrected

Fig. 5. Regions in the brain associated with the top 5 genes from our vGeneWAS analysis (where the uncorrected P-value at a given voxel is overlaid on the minimum deformation
template). The slices chosen best represent the regions where each gene was the most significantly associated gene in the brain. Images read from inferior to superior (left to right of
the page) following radiological convention and with the top and bottom of each panel representing the anterior and posterior of the brain, respectively.
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P-values (Fig. 6c) shows that the cumulative distribution is approx-
imately equivalent to a uniform distribution. A Q–Q plot of the
expected null distribution corrected P-values against the observed
corrected P-values shows that the two distributions differ (Fig. 6d). A
Q–Q plot of two identical distributions will lie on the null 45-degree
diagonal line (y=x). There are two things that can cause a Q–Q plot to
deviate from the null: incorrectly modeling a distribution or
significant data. The line representing the observed compared to the
expected results in the Q–Q plot in Fig. 6d is steeper than and deviates
from the null line at lower P-values. This suggests that the distribution
of Pc values is left skewed and more dispersed than the theoretical
uniform distribution (Thode, 2002). It is possible to apply a further
correction to our observed Pc distribution by using a Q–Q plot of an
analytic null distribution versus the theoretical uniform distribution
as a hash table. However, we are only selecting the genes with the
lowest P-value at each voxel somonotonic P-value correctionswill not
change the distribution of Pc-values.

We used two methods to control the FDR of the corrected P-values
(Pc). We used the original FDR method (Benjamini and Hochberg,
1995), which appropriately controls for multiple comparisons when

the covariance of test statistics shows a positive regression depen-
dency (Benjamini and Yekutieli, 2001). We found that the false
discovery rate for the second most highly associated gene in our
results (LRDD) could only be controlled at a threshold of q=0.30 (i.e.,
allowing a 30% false discovery rate) after applying a statistical
threshold of Pc=5.36×10−4. In addition, the pFDR q-value threshold
(Storey, 2003) was q=0.23 for the most significantly associated gene
at any voxel (GAB2). In other words, the vGeneWAS results could
not be controlled at the conventional false discovery rate, but show
promise.

Post hoc analysis

Voxelwise GeneWAS results in a map that shows only the top gene
at each voxel. The top gene at each voxel may be the most significant
gene in a certain region, but it may also have a more distributed effect
throughout the brain, with effects in additional regions where it is
not the top gene. In addition, genes that do not have a large main
effect might never be selected in this type of analysis, but still could
have a large distributed effect on the brain.

Fig. 6. (a) The normalized histogram of observed P-values. The dashed line represents the cumulative distribution function (CDF) of Beta(1, 18,044) where Meff is based on the
number of genes tested. The solid line represents the CDF of Beta(1, 15,636) whereMeff is an estimate of the number of independent tests from permutation testing. (b) The Q–Q plot
shows the observed P-values versus those expected from a Beta(1, 15,636) distribution (black dots). The solid gray line represents a purely null distribution of P-values. (c) The
histogram of corrected P-values (Pc) approximately follows a uniform distribution. (d) The Q–Q plot of the observed Pc versus those expected from a null distribution.
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We tested the effect of the top gene in our analysis, GAB2, at
every voxel across the brain using PCReg. We stored each P-value in a
map and applied the original FDR method. Voxels surviving the
FDR threshold are shown in Fig. 7. These are post hoc tests, so are
exploratory, and require replication in independent samples, but it is
quite clear that GAB2 has a much greater distributed effect on the
brain than could be determined from the vGeneWAS results. Future
implementations of vGeneWAS might consider the effects of multiple
genes at a voxel to account for the case where a gene is significant in
its effect of explaining variations in the image, but is not necessarily
the top gene. In addition, vGeneWAS could be further improved by
considering the distributed effects of genes. If a gene has an effect
over a large region, but is not the top voxel, it will be completely
overlooked in the current implementation of vGeneWAS. Adaptation
of cluster-level inference to these maps would be of interest, as well
as tests that combine cluster extent and height (Hayasaka and
Nichols, 2004). Existing adaptations of the original FDR method, such
as “searchlight” FDR, could be useful here as it produces region
correction thresholds that are sensitive to small clusters of positive
signals in imaging data, but appropriately conservative in its
correction of false positives (Langers et al., 2007).

To understand the contributions of each individual SNP in the GAB2
gene, we performed post hoc association tests for each SNP with the
phenotype value from the top voxel in the brain. It should be noted,
however, that choosing the GAB2 gene to compare the results of SNP-
based linear regression with gene-based PCReg provides P-values that
are biased by the previous gene-wide brain-wide search because GAB2
was identified using PCReg. There were 20 SNPs from the GAB2 gene in
our genotypeddata.Of these, only three passed thenominal significance
level in SNP-based association tests (P=0.05). Themost significant SNP
identified, rs7927923, has P=9.1×10−3. The other two significant
SNPs, rs1981405 and rs1893447, showed effects with P=0.027 and
P=0.049, respectively. A total of 16 SNPs out of 20 are in high LD with
the most significantly associated SNP (r2N0.6). Only one of the SNPs
from our analysis overlapped with SNPs used in previous GAB2
association studies, most likely because we are using different
genotyping platforms. Clearly, the gene-based test was more powerful
at detecting an association in this case than each SNP tested individually
(compare the dotted line with the colored dots in Fig. 8).

Power comparisons

To assess the differences in power afforded by vGeneWAS relative
to existing SNP-based methods, we compared the Pc-values from
vGWAS obtained in our previous study by Stein et al. (2010a),
with the Pc-values resulting from vGeneWAS (Fig. 9). The proportion
of Pc-values greater than a given FDR threshold for each method is
directly related to differences in effect sizes. The FDR of the results
from vGWAS could only be controlled at a threshold value of q=0.50,
whereas the FDR threshold for vGeneWAS is somewhat lower,
although not passing the conventional FDR level (q=0.30; Fig. 9).
This suggests that the vGeneWAS method may have more power,
in principle, to detect genetic associations, although neither test
controlled the false discovery rate at the conventional level.

Discussion

Methodological overview

Here we present a method to conduct a voxelwise gene-wide
association study (vGeneWAS), testing the aggregate effect of
multiple SNPs within each gene. In summary, (1) we implemented
a gene-based association test using principal components regression
(PCReg); (2) we performed association tests at every voxel within a
full brain mask where the value at each voxel was the local volume
difference relative to the mean template while controlling for age and
sex; (3) we generated a Beta distribution of P-values by selecting only
the most significant gene at each voxel; (4) with permutation tests,
we estimated the effective number of tests performed; and (5) we
corrected for multiple comparisons in a two step procedure—we
estimated β using the CDF of the analytic Beta distribution and
then corrected the new uniform distribution using two different FDR
methods.

None of the genes identified passed the standard FDR threshold
(q=0.05). However, many of the genes identified have previously
been associated with brain differences or disorders. The top gene
identified is a known Alzheimer's risk gene, GAB2, lending plausibility
to the method. Many of the genes identified are highly expressed in
the brain or differentially expressed, depending on disease status. The

Fig. 7. Map of P-values for GAB2 at every voxel in the brain after correction for multiple comparisons across voxels (but not corrected for search across the genome, as we are only
testing one gene) using the original FDR method. P-values significant after FDR correction (at q=3.4×10−4) are color-coded. Warmer colors are more significant. GAB2 has a more
distributed effect on the brain than is evident in the vGeneWAS results.
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findings in this study warrant further examination and replication
attempts.

Assessment of the model

Our method selects the top gene at each voxel, to reduce the
amount of data. Choosing only the top gene at each voxel, however,
can hinder the extensibility of our results. This may miss many genes
with distributed effects, if the main effect of the gene is never the
largest at any voxel. Future implementations of vGeneWAS could
consider the relationship among voxels when performing association
tests. Liu et al. (2009) used parallel ICA to relate brain network
data from fMRI to SNP data. They selected only a small set of 367
predefined SNPs based on a set of candidate genes for schizophrenia;
this does not leverage all of the available data in the genome. Similar
approaches have been attempted on voxel-based morphometry

(VBM) data from structural MRI (Jagannathan et al., 2010). However,
this approach used the same subset of SNPs used by Liu et al. (2009).
Vounou et al. (2010) proposed a method called sparse reduced-rank
regression (sRRR) which uses the sparseness of signals to simulta-
neously select phenotypes and genotypes. Power estimates suggest
that sRRR is more powerful than using individual tests at each voxel;
this may prove to be very useful in the future.

Principal components regression (PCReg) is an efficient method to
test the joint association of all SNPs within a gene simultaneously.
PCReg detected associations with genes missed by SNP-based
regression (Fig. 2b). By leveraging the LD in a gene, PCReg encodes
variance throughout a gene to test for associations. We identified
situations where SNP-based regression models may have more power
(Fig. 2a). If a single SNP has a large main effect, then testing the joint
effect of all SNPs within that gene may dilute the association; the
cumulative P-value from gene-based tests may be lower. However,
when one considers the drastic reduction in the number of inde-
pendent tests when comparing SNP-based linear regression with
PCReg, gene-based testing offers advantages.

Another concern with PCReg and related regression models is that
each predictor added to the regression model consumes a degree
of freedom. There may then be some detection bias in the regres-
sion model, where smaller genes are found to be more significantly
associated with the phenotype than larger genes, because the
regression models of small genes have more degrees of freedom
(Chapman andWhittaker, 2008).While we did not observe this effect,
it is an important factor to consider when interpreting results.
Additionally, SNPs combined into a single test statistic in PCReg could
have different directions of effects, disrupting the power to detect an
association. However, the situation where a gene contains SNPs with
negative correlations with respect to the phenotype may be relatively
rare as it requires two nearby loci to be in LD with different causal
variants (Chapman and Whittaker, 2008).

Other multivariate regression methods may offer greater power to
detect genetic associations than PCReg, which is used here as an
example. Wang and Elston (2007) compress genome-wide genotyp-
ing data across subjects using a Fourier transform, and assign weights
to the low-frequency components in a regression model. This method
is similar to PCReg, as it collapses the number of genetic tests
performed while capturing much of the variance across markers.
Kernel-based methods have been implemented as non-parametric

Fig. 9. vGeneWAS may control the false discovery rate better than vGWAS. The
cumulative distribution function (CDF) of Pc-values from vGeneWAS (solid green line) is
compared to the CDF of Pc-values from vGWAS (Stein et al., 2010a; solid black line).
Three lines represent different correction thresholds of q=0.05 (red dashed line),
q=0.30 (black dashed line), and q=0.50 (blue dotted line).

Fig. 8. Genetic association plot, for different SNPs in the GAB2 gene, at the top voxel from our analysis. The −log10(P-value) of each SNP in GAB2 is plotted against its position in the
gene. Each of the points is color coded by level of LD (compared to the top SNP, the purple diamond dot) as measured by r2. The−log10(P-value) of the gene-based PCReg test for GAB2
at this voxel is overlaid on the plot for comparison (dotted black line). In this case, the gene-based test shows a greater effect size than univariate tests on any of the component SNPs
treated independently. This shows that the gene-based test can be more powerful than performing separate tests on component SNPs.
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gene-based tests to increase power over SNP-based methods;
however, thesemethods have only been implemented in case–control
studies (Mukhopadhyay et al., 2010). Ridge regression (Malo et al.,
2008; Sun et al., 2009) and lasso-based penalized regression (Zou,
2006; Wu et al., 2009) can both powerfully detect associations in
genetic data. In fact, direct comparisons between ridge regression,
lasso-based penalized regression, and PCReg show that the first two
methods may be more powerful than PCReg depending on the
underlying genetic architecture (Bovelstad et al., 2007; Benner et al.,
2010). However, ridge regression and especially lasso-based penal-
ized regression are extremely computationally intensive compared
to PCReg. There is a huge computational requirement to complete
a vGeneWAS analysis, which searches the whole image in addition
to the whole genome. Due to this, we decided to strike a balance
between power and computational complexity to complete the
analysis in a feasible time frame. Future implementations of
vGeneWAS could be improved by using additional multivariate
regressionmethods, although theymay need to bemodified for speed.

A current limitation of our method, as described here, is that in its
current form family-based designs (such as pedigree structures)
cannot be used. The patterns in allele frequencies in a family cohort
depend on kinship, and mixed-effects models would be required to
control for kinship structure. Several such methods exist for SNP-
based linear regression, such as Efficient Mixed-Model Association
(EMMA; Kang et al., 2008). However, to the best of our knowledge,
multivariate mixed-model regression has not been attempted in a
genetic context. One multivariate gene-based method called versatile
gene-based association (VEGAS) avoids multivariate mixed-model
regression by converting SNP-based P-values into amultivariate gene-
based test statistic (Liu et al., 2010). As there are already many
methods for SNP-based mixed-model regression, VEGAS is aptly
suited to perform gene-based association tests in family-based
populations. As the VEGAS test statistic is determined by SNP-based
P-values, it will not be able to detect associations where the
cumulative P-values are not significant. In this way, if a series of
SNPs contribute a small amount of variance in a gene, VEGASwill miss
them, because the SNP-based method will as well.

While this is one of the largest imaging genetics studies to date,
our sample size still may be underpowered to detect moderate effects
of genetic variants on the brain. Future studies in imaging genetics are
likely to benefit from meta-analysis, which aggregates GWAS results
frommultiple cohorts to determine reproducible genetic associations.
This aggregation of large datasets can be used to boost power to
detect SNPs with smaller effects. One such effort now underway is the
ENIGMA project (ENIGMA Consortium, 2011). In cases where there is
not enough data available to perform a true meta-analysis, discovery
and replication datasets may be useful. In early tests using brain
images, some genetic associations seen in a discovery cohort have
been replicated in independent samples (e.g., Rajagopalan et al.,
2011). However, our main purpose in this study is to demonstrate
a method to conduct voxelwise, gene-based analyses, which will
becomemore powerful as imaging databases continue to grow rapidly
worldwide in size and content. In assessing whether our results may
generalize to new datasets, we note that we examined only a tight age
range in our study (elderly subjects), and this may affect the genes
found to have morphometric effects on the brain. If the genes have a
varying expression pattern over time some of the top genes detected
in our analysis may not be dominant during other parts of the lifespan.
Although we controlled for age effects on brain structure in our
analysis, it is still unknown whether the identified genetic associa-
tions with brain morphology are under some age-related influence; it
is also not known if these genes are expressed in a typical/atypical
age-related fashion. Datasets drawn from different parts of the
lifespan would offer maximal power to detect genetic variants
relevant for brain structure (as discussed in Braskie et al., in press;
see Rajagopalan et al., 2011, for an example).

One limitation of GWAS analyses is that they overlook rare
variants, which are also emerging as key players in the genetic
underpinnings of mental disorders (Bansal et al., 2010). Our method
does not consider these rare variants, but they may play an important
role in explaining variance in complex traits that is not accounted for
by common variants. Examination of rare variants is still relatively
costly (as it requires deep sequencing of large numbers of subjects).
Some types of rare variant can be genotyped on SNP-chip platforms
(such as copy number variants) they require separate analytical
techniques from those considered in this paper (Bansal et al., 2010).
Each of these limitations will be more feasible to address when the
cost of deep sequencing drops and sample sizes are large enough to
reliably implicate many genes simultaneously.

Our gene-based test may be more powerful than univariate
methods in certain cases, but not always. The five top genes identified
in the present study do have some biological plausibility; some are
known to be expressed in the brain and implicated in brain disorders.
However, there are other genesmissing in the short list of genes in the
present findings that are frequently found using univariate ap-
proaches and strongly implicated in complex behavioral pathologies
across mammalian species, such as the BDNF val66met substitution.

To explain this, we note that the analysis of currently available
imaging genetics data is very underpowered. In addition, sample sizes
needed to reliably detect a genetic association are even greater when
multiple genes are assessed or when genome-wide search is
conducted. By contrast, the BDNF val66met substitution is often
treated as a candidate gene, and if that is done, it is conventionally
agreed that its effects must only satisfy a nominal significance level of
Pb0.05, if no other genes or SNPs within it are tested. In our ownwork
on a different cohort scanned with DTI (Chiang et al., 2010), we were
able to detect robust associations between the BDNF val66met
polymorphism and fiber integrity (fractional anisotropy) assessed
with DTI.Wewere also able to replicate these associations in two non-
overlapping (independent) samples of subjects. Even so, the signif-
icance level used (Pb0.05) was far more lenient than the very strict
thresholds required to control for false positives when the whole
genome is searched. As such, false negative results in a GWAS study
(e.g., not finding a significant association of the BDNF val66met
substitution when it is in fact a true association) does not mean that a
gene does not affect a phenotype, just that an association was not
detected at the very stringent statistical cut-off applied to account for
multiple comparisons across the genome.

A review of the literature also suggests that BDNF val66met, while
a popular target of study, has a mixed history. The BDNFval66met
substitution has been inconsistently implicated in mood disorders,
Alzheimer's disease, and quantitative measures of memory (Bagnoli
et al., 2004; Combarros et al., 2004; Nacmias et al., 2004; Nishimura
et al., 2004; Tsai et al., 2004; Desai et al., 2005; Matsushita et al., 2005;
Vepsalainen et al., 2005). In a secondary, post hoc, analysis, we tested
the effect of the BDNFval66met allele in this current sample using
standard univariate regression (with a dominant model, controlling
for age and sex) and it did not survive correction for multiple spatial
comparisons. An association test of the BDNF val66met allele with the
hippocampal volume of the 731 subjects in this dataset did not
survive the nominal significance level of P=0.05. As such, we were
not able to use BDNF as a “gold standard” gene; arguably, there are not
yet any such genes with universally replicable associations on brain
structure that can be used to gauge the face validity of novel methods.

Another limitation is that any approach that stops after selecting
only one gene per voxel is not biologically plausible as a model
of phenotypes with complex genetic determination. As such, the
development of gene-based tests should be considered as a way
station towards a more sophisticated treatment of complex genetic
effects, in pathway or gene–gene interaction models (Inkster et al.,
2010). However, testing gene–gene interactions in the vGeneWAS
framework is computationally intractable as the number of tests
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quickly approaches nCk=n!/((n−k)!k!) at each voxel in the whole
brain to test for interactions among all sets of k different genes drawn
from an overall pool of N genes. Additionally, interaction effect sizes
are generally much smaller than the main effects we are searching for
in this paper, so our sample size would need to be much larger to
accommodate the necessary correction for multiple comparisons and
smaller effect sizes (Cordell, 2009). As genome-wide interaction
analysis (GWIA; Marchini et al., 2005) is computationally intensive
and underpowered with current imaging datasets, we recently
developed an alternative method (Chiang et al., 2011a,b) to detect
likely gene–gene interactions among SNPs, without having to
compute all N(N−1)/2 pairwise or all n!/((n−k)!k!) kth-order
interactions on the genome. Two advantages of this genetic network
analysis, relative to genome-wide interaction analysis (GWIA) are
apparent: (1) genetic correlation can tap into the natural latent
structure of gene action in a brain image; and (2) voxel clustering by
genetic affinity leads to high power to find SNPs with correlated
effects in genome-wide scans.

Biological significance of the findings

Gene-based tests of association across the genome and brain
have not been attempted before, to our knowledge. Recently, imaging
genetics studies have focused on single-locus associations with
summary brain volume measures or 3D statistical parametric maps.
vGeneWAS advances the burgeoning field of imaging genetics by
providing the framework to perform multivariate, gene-based
association tests. It does not restrict analyses by requiring prior
hypotheses about a specific causal variant or ad hoc region of interest.
vGeneWAS is the first attempt to apply gene-based tests to mor-
phometric imaging data and opens up more possibilities to discover
putative genetic variants that contribute to differences in brain
structure. Thismay helpwhen themain effect of each variant in a gene
is too small to detect with traditional SNP-based methods.

Although vGeneWAS is a multivariate, gene-based method, we
identified genes previously associated with brain disease using SNP-
based tests. Many variants in the GAB2 gene are implicated in the
development of late-onset Alzheimer's disease (LOAD) and are
thought to interact with the APOE epsilon 4 allele. In the pattern of
effects for GAB2 on the brain (Fig. 7), the highlighted areas are
generally periventricular, and ventricular enlargement is a prominent
characteristic of AD (de Leon et al., 1989; Chou et al., 2009). As we
noted in our prior papers on TBM in Alzheimer's disease (Hua et al.,
2008), there is occasionally a ring of voxels around the lateral
ventricles that show partial volume effects that mostly like reflect
ventricular expansion. Clearly, the ventricular expansion itself
indirectly results from the diffuse loss of brain parenchyma, so the
changes detected there may also reflect, to some extent, atrophic
processes more remote than the voxels singled out in the voxel-based
maps. LRDD is highly expressed in the brain and is involved with DNA
repair including signaling apoptosis in tumor cells. PTPRB is associated
with addiction to drugs and alcohol and may be involved with
tumor regulation (Telliez et al., 2000; Wu et al., 2006; Ishiguro et al.,
2008; Brown et al., 2009). Based on gene expression and links to brain
diseases, many of the genes identified in our analysis may have
differential morphometric effects across the brain. In addition to some
of the more well-studied genes, we identified many genes such as
IGSF5 and ZNF462 that have little research available to infer their
plausibility. However, almost all of the genes identified in our analysis
are highly expressed in the brain, which at least suggests that the
genesmay have a role in brain function. Further analysis is required to
examine to what extent each gene variant identified in our analysis
mediates brain differences.

Many of the associations identified here seem to have a plausible
story, but we need to consider that some of the patterns of association,
especially clusters of association, may be due to short-range spatial

correlations in the images. Adjacent voxels in brain scans tend to
covary, as do Jacobian maps used to represent a localized measure of
volume difference. These methods rely on non-linear algorithms that
generate spatially smooth deformations. In addition to the simulated
(null) cluster size maps in this study, Stein et al. (2010a) found that a
small amount of spatial clustering is seen even if the genetic data is
null. Also, voxels were down-sampled which may introduce partial
volume effects. However, performing a vGeneWAS scan on non-
down-sampled, original sized images is estimated to take 4372 days
(or approximately 12 years) to complete. To this end, the extent to
which a gene affects regions of the brain should be interpreted
cautiously; however, certain patterns of gene effects that appear in
non-adjacent structures or in large clusters may signal gene effects
not attributable purely to spatial smoothing or partial volume effects.

To better understand the contribution of genes to global versus
local brain structure differences, we conducted association analysis on
both (1) the globally normalized brain images and (2) estimates of
total intracranial volume (eTIV) that contain information on overall
differences in brain scale. We searched for specific gene effects on
global brain volume differences using our gene-based method. We
computed brain volume measures (eTIV) from our dataset using the
automated FreeSurfer package (Fischl et al., 2002). Using the eTIV
measure as the phenotype we tested each of the 18,044 genes for
association. Looking at the top genes that we found in our analysis of
the normalized images, none of the top 20 most highly associated
genes was associated with eTIV phenotype. This provides further
evidence that the genetic effects we are detecting exert influences on
regional brain volumes rather than simply reflecting non-specific
effects on the overall volume of the brain.

Additionally, results should be interpreted cautiously when global
anatomical normalization is used. By removing, as far as possible, the
effects of individual brain size variation from the data, it is possible to
discover genes thatmay have a specific effect on a particular structure,
above and beyond any overall genetic effects on brain size (as brain
size itself is heritable). Global normalization is commonly performed
in all brain mapping studies, as many extraneous factors affect an
individual's head size, body size or height that may not be relevant for
cognition or for understanding brain function. Global anatomical
normalization adjusts for this source of variance in the data, to a large
extent, making more localized effects easier to identify. Even so, by
applying global anatomical normalization, some genes may be missed
that influence the total size of the brain. In fact, if a gene were
responsible for influencing brain size, but had a uniform effect on all
brain regions, it would be missed in the current analysis, as global
effects are discounted. As such, in addition to mapping gene effects, it
makes sense to also perform genetic analyses of whole brain size, as
has been performed in two recent studies (Paus et al., 2011; ENIGMA
Consortium, 2011).

In conclusion, our method may be used to perform gene-based
tests on any 3D brain maps, such as data from voxel-based
morphometry, diffusion tensor imaging, and cortical surface data. In
addition, we found a set of candidate genes that may substantially
affect brain morphometry and warrant further study.
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The development of late-onset Alzheimer’s disease (LOAD) is under strong genetic control and there
is great interest in the genetic variants that confer increased risk. The Alzheimer’s disease risk gene,
growth factor receptor bound protein 2-associated protein (GAB2), has been shown to provide a 1.27–
1.51 increased odds of developing LOAD for rs7101429 major allele carriers, in case-control analysis.
GAB2 is expressed across the brain throughout life, and its role in LOAD pathology is well understood.
Recent studies have begun to examine the effect of genetic variation in the GAB2 gene on differences
in the brain. However, the effect of GAB2 on the young adult brain has yet to be considered. Here we
found a significant association between the GAB2 gene and morphological brain differences in 755 young
adult twins (469 females) (M = 23.1, SD = 3.1 years), using a gene-based test with principal components
regression (PCReg). Detectable differences in brain morphology are therefore associated with variation in
the GAB2 gene, even in young adults, long before the typical age of onset of Alzheimer’s disease.

! Keywords: GAB2, imaging genetics, tensor-based morphometry, Alzheimer’s disease

Numerous heritability studies show that brain structure is
under moderately strong genetic control (Kremen et al.,
2010; Peper et al., 2007; Thompson et al., 2001). How-
ever, very few genetic variants have been identified that
reliably explain a significant proportion of brain variation
in human populations. Several researchers advocate the use
of brain measures to empower the search for disease risk
genes (Bis et al., 2012; Meyer-Lindenberg & Weinberger,
2006; Stein et al., 2012). If specific genetic variants can be
related to brain differences, they may offer new molecular
targets for drug development, and a deeper understand-
ing of disease susceptibility and treatment response. For
example, young adult carriers of a recently discovered risk
allele for Alzheimer’s disease (AD), CLU-C, have detectable
differences in brain integrity approximately 50 years be-
fore the typical age of AD onset (Braskie et al., 2011), as
do carriers of a common variant in an iron-overload gene,
HFE (Jahanshad et al., 2012). Brain measures related to ge-

netic liability can be helpful for studying factors that may
avert or promote disease (Gogtay et al., in press), and for
defining the biological spectrum underlying psychiatric dis-
orders (Akil et al., 2010). For instance, carriers of the com-
mon Val66Met polymorphism in the brain-derived neu-
rotrophic factor (BDNF) gene are at heightened risk for
bipolar disorder (Fernandes et al., 2011) and schizophre-
nia (Green et al., 2011). They show detectable differ-
ences in white matter microstructure (Chiang et al., 2010),
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hippocampal volume (Hajek et al., 2012), and prefrontal
cortex morphology (Pezawas et al., 2004).

The success of these candidate gene studies has led to in-
creased interest in using neuroimaging endophenotypes to
study genetic determinants of brain disorders (Hibar et al.,
2011a; Thompson et al., 2010). Recently, there has been
increased interest in an AD risk gene, growth factor recep-
tor bound protein 2-associated protein or GAB2. The GAB2
gene is well characterized as a risk gene for the develop-
ment of late-onset AD (Chapuis et al., 2008; Lin et al., 2010;
Ramirez-Lorca et al., 2009; Reiman et al., 2007). Large meta-
analyses confirm that it has a moderate effect on disease risk
with an odds ratio of 1.27–1.51, using a 95% confidence
interval (Ikram et al., 2009; Schjeide et al., 2009). There
is convincing evidence that GAB2 is expressed through-
out the brain and throughout life (Reiman et al., 2007;
Trollmann et al., 2010). In our previous study of 731 elderly
subjects from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI), we identified the GAB2 gene as significantly
associated with morphometric brain volume differences us-
ing gene-based tests (Hibar et al., 2011b). We showed also
that gene-based tests — based on principal component re-
gression (PCReg) encoding the set of single nucleotide poly-
morphisms (SNPs) in a gene — have more power to detect
significant associations than standard univariate statistical
methods, in certain cases. The association of GAB2 with
morphometric brain volume differences was undetectable
with traditional univariate methods, but showed signifi-
cant effects in the brain when the cumulative evidence of
variation across the gene was incorporated into a gene-
based association statistic. Another prior analysis of GAB2
in a separate, independent dataset found that a protective
GAB2 haplotypic variant is associated with increased glu-
cose metabolism in brain regions typically affected in AD
(including the left temporal lobe, right frontal lobe, bi-
lateral parietal lobes, and the precuneus) measured with
fluorodeoxyglucose positron emission tomography (FDG-
PET) (Liang et al., 2011). In addition, Liang et al. (2011)
showed, when studying APOE4 allele carriers specifically,
that carriers have increased glucose metabolism if they also
carry the protective GAB2 haplotype. Lower levels of glu-
cose metabolism in the brain tissue of AD and mild cog-
nitive impairment (MCI) patients may reflect a decrease in
neuronal density, as well as abnormal metabolism (Mag-
istretti & Pellerin, 1996; Mark et al., 1997; Piert et al., 1996).
While the Liang et al. (2011) study focused on haplotype
blocks, certain gene-based tests, such as PCReg performed
by Hibar et al., (2011b), may be considered comparable, as
the GAB2 gene lies in a single linkage-disequilibrium (LD)
block (Reiman et al., 2007). This replication of GAB2 effects
in a separate sample and imaging modality lends credibility
to GAB2 as a risk gene that influences the brain. It is then
reasonable to suspect that GAB2 gene variants have sig-
nificant, observable effects on brain morphology, perhaps
even in early adulthood. However, no studies have exam-

ined how GAB2 relates to brain structure in young adults,
long before the onset of neurodegeneration. In this study,
we hypothesized that gene-based tests in the AD-risk gene,
GAB2, would reveal significant effects on brain morphology
in young adults.

Methods
Subjects
A total of 755 healthy, young adult (mean = 23.1, SD =
3.1 years) twins and their siblings (469 females) from 439
families (294 dizygotic twins, 222 monozygotic twins, 143
singletons, three dizygotic trios, and 87 siblings) were ex-
amined in this study. All subjects had standard T1-weighted
MRI brain scans and genome-wide genotyping informa-
tion available. All subjects were of European ancestry and
recruited as part of the Queensland Twin Imaging Study
(QTIM) in Australia. The QTIM study is an ongoing five-
year longitudinal study of healthy young twins with struc-
tural and functional MRI, diffusion tensor imaging (DTI),
genetics, and comprehensive cognitive assessments (de
Zubicaray et al., 2008). Subjects were excluded if they re-
ported any pathologies known to affect the brain, head
injuries, or major illnesses. All subjects were right-handed,
as determined by the 12-item Annett’s handedness ques-
tionnaire (Annett, 1970). Informed consent was obtained
from each subject and the study was approved by the insti-
tutional review boards of the University of California, Los
Angeles, and the Queensland Institute of Medical Research.

Genotyping and Quality Control Filtering
Genome-wide genotype data were collected on the
Human610-Quad BeadChip (Illumina, Inc., San Diego,
CA). Several SNPs were dropped from the dataset based
on standard quality control filtering measures used in other
large GWAS analyses (Wellcome Trust Case Control Con-
sortium, 2007). Individual SNPs were removed based on the
following criteria: call rate < 95% (8,447 SNPs removed),
minor allele frequency< .01 (33,347 SNPs removed), signif-
icant deviation from Hardy-Weinberg equilibrium p < 1 ×
10−6 (2,841 SNPs removed), autosomal chromosomes only,
and a platform-specific score of .07 to eliminate blank geno-
type calls (results in a variable number of missing genotypes
for each SNP).

After filtering, the hard genotype calls were imputed to
the HapMap Phase II release 21 reference dataset (Altshuler
et al., 2010). Imputation was performed using the robust
and freely available software, MaCH (Abecasis et al., 2010).
The imputed genotypes were further filtered based on mi-
nor allele frequency < .01 (38,481 SNPs removed) and R2

< .3 (54,337 SNPs removed). After imputation, 2,439,807
SNPs passed all quality control criteria.

In this study, we were only interested in SNPs found in
the candidate gene, GAB2, as it was strongly implicated in
our prior study of a different dataset (Hibar et al., 2011b).
We used the gene annotation function in the KGG software
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package (Li et al., 2011; Li et al., 2010) to select SNPs from
our set of imputed genotypes in the GAB2 gene group. SNPs
within 50 Kb upstream or downstream of the GAB2 gene
border were included in the final group of selected SNPs.

Image Acquisition and Processing
High resolution structural MRI scans were obtained for
each subject on a single 4-Tesla scanner (Bruker Med-
spec). T1-weighted images were acquired with an inver-
sion recovery rapid gradient echo sequence (TI/TR/TE =
700/1500/3.35 ms; flip angle = 8◦; slice thickness = 0.9 mm,
with a 2562 acquisition matrix).

Non-brain regions were removed from the T1-weighted
scans using Robex (Iglesias et al., 2011) specifically trained
on manually edited skull-stripped images. Next, scans were
corrected for image field non-uniformity using FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/), and linearly aligned
to a common template using a 9-parameter model (Holmes
et al., 1998).

3D Maps of Morphometric Brain Differences
The minimum deformation template (MDT) represents a
nonlinear average of anatomical differences throughout the
brain, and is used as a reference template to help compare
the brain structure of subjects in the study. Using the MDT
as a target, 3D ‘Jacobian’ maps of regional brain volume
differences were generated for each subject, with a nonlin-
ear, inverse consistent registration algorithm (Leow et al.,
2005), and then downsampled to a 2 × 2 × 2 mm isometric
voxel size. Each voxel value in the 3D maps measures the
difference in volume between the subject’s image and the
template, based on the gradient of the deformation field
required to deform the subject’s scan to match the common
template. As subjects are all registered to the same MDT, we
can examine regional morphometric differences in brain
volume by analyzing the determinant of the Jacobian ma-
trix at the same voxel in each subject. In this study, we
performed a whole-brain analysis of the volume differences
from these 3D morphometric maps for each voxel in the
brain and across all subjects.

Gene-Based Tests
Tests of association of the GAB2 gene with whole-brain,
voxel-wise regional brain volume differences were con-
ducted inside the whole-brain mask of the MDT, using
PCReg (Wang & Abbott, 2008). PCReg test statistics are
generated by first performing principal components analy-
sis (PCA) on a set of n SNPs across our sample of subjects.
The PCA outputs a set of orthogonal eigenvectors that rep-
resent the variance components from the set of SNPs. This
transformation is defined so that the first principal compo-
nent has the largest possible variance (accounts for as much
as possible of the variability in the data), and each suc-
ceeding component in turn accounts for the highest vari-
ance possible under the constraint that it be orthogonal

to (linearly uncorrelated with) the preceding components.
Eigenvectors are then selected (in descending order of the
amount of variance explained) until they explain at least
95% of the total variance in the original SNP set. These
PCA steps provide an efficient means for dimension re-
duction but, more importantly, they provide a means to
test the cumulative evidence for association across a full
gene without being vulnerable to problems due to multi-
collinearity. Association tests with PCReg use a multiple
partial-F test framework, which works by fitting two sepa-
rate regression models (‘full’ and ‘reduced’) such that the
full model contains a set of eigenvectors with age and sex
covariates as regressors, and morphometric volume values
as the dependent variable. The variance explained by the
full model is then compared to the variance explained by
a reduced model that fits the age and sex covariates as re-
gressors, with the same morphometric volume values as
the dependent variable. An F statistic and p-value are as-
signed to each voxel, based on the amount of additional
variance explained by the full model compared to the re-
duced model. Our PCReg tests were implemented using
the Efficient Mixed-Model Association (EMMA) software
package (Kang et al., 2008). EMMA uses a kinship matrix
to control for relatedness in family-based and twin samples,
such as this one, using a mixed-effects model.

Multiple Comparisons Correction
Performing a large number of statistical tests at multiple
voxels across the brain increases the potential of identifying
false-positive findings (i.e., inflating Type I errors). To cor-
rect for the total of number of tests performed, and appro-
priately control Type I errors, we employed the searchlight
false discovery rate procedure (searchlight-FDR; Langers
et al., 2007). Searchlight-FDR controls for the regional sig-
nificance of test statistics under the null hypothesis, and
incorporates information on the spatial extent of the sta-
tistical effects and the smoothness of the underlying image.
The searchlight-FDR procedure implemented in this study
thresholds statistical maps at the standard q = .05 false-
positive rate. Correction for the number of ‘eigen-SNPs’
included in the model is not required, as gene-based tests
with PCReg evaluate association with a multiple partial-
F test that includes the full set of eigen-SNPs in a single
statistical test.

Results
The GAB2 Gene and PCReg
After all quality control filtering, imputation, and anno-
tation, there were 51 SNPs in the GAB2 gene grouping.
Positional and functional annotation data for each SNP in
the analysis are shown in Table 1. After applying PCA to the
set of 51 SNPs, we found that the first 10 principal compo-
nents were sufficient to explain 95% of the total variance in
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TABLE 1
Gene Annotation Results for the GAB2 Gene using KGG
Softwarea

SNP Position Gene feature Conservation score

rs10899500 78125246 intron 0.071
rs10899496 78123831 intron 0.009
rs2063724 78133077 - 0.008
rs2511175 77975081 intron 0.075
rs1981405 77976208 intron 0.002
rs948662 77979829 intron 0.202
rs2511170 77980582 intron 0.11
rs10793302 78040961 intron 0.069
rs7115850 78045071 intron 0.001
rs10899488 78088754 intron 0
rs1893447 77973182 intron 0.023
rs2450130 77943457 intron 0.551
rs1017908 77948095 intron 0.128
rs1893448 77969180 intron 0.102
rs2510038 77966034 intron 0.014
rs2510054 77959659 intron 0.005
rs731600 77963133 intron 0.006
rs1007837 77941076 intron 0.001
rs2248407 77937800 coding-synonymous 0.005
rs1385600 77936166 coding-synonymous 0.813
rs1385601 77936064 intron 0.004
rs1318241 77930792 intron 0.063
rs901104 77930499 intron 0.283
rs6592772 78015563 intron 0.008
rs7939646 78111613 intron 0.014
rs4944196 78008731 intron 0.026
rs4945261 77990260 intron 0.005
rs7101429 77992967 intron 0.021
rs10899456 78000155 intron 0.006
rs4291702 78001248 intron 0.001
rs4944195 78003499 intron 0.728
rs11602622 78010830 intron 0.047
rs2450129 77940385 intron 0.459
rs10899469 78018313 intron 0.286
rs4945265 78027458 intron 0.782
rs10899485 78072383 intron 0.003
rs10501426 78057122 intron 0.296
rs2292573 78053139 intron 0.017
rs2292572 78052864 utr-5 0.001
rs2373115 78091150 intron 0.002
rs10899489 78095373 intron 0.016
rs7112234 78102470 intron 0.017
rs1046780 77926769 utr-3 0
rs866901 77926309 near-gene-3 0.003
rs2912 77926292 near-gene-3 0
rs7927923 77979414 intron 0.001
rs3740677 77928036 utr-3 0.025
rs10793294 77996403 intron 0.879
rs11237451 78025459 intron 0.233
rs2450135 77927995 utr-3 0.049
rs11601726 78068039 intron 0.002

Note: SNP = single nucleotide polymorphism. The starting position of
GAB2 (Entrez Gene ID: 9846) on chromosome 11 is 77916336 (base
pairs) with a total length of 222532 (base pairs). For each of the 51
SNPs in our analysis, we give the positional information in base pairs,
annotation of possible SNP function, and a conservation score from
the UCSC Genome Browser (http://hgdownload.cse.ucsc.edu/).
a see Li et al. (2011) & Li et al. (2010)

the full SNP set. We used this set of 10 eigen-SNPs in the
PCReg association tests at each voxel across the full brain.

Statistical Parametric Maps
The significant regions of the searchlight-FDR adjusted p-
map for the whole-brain GAB2 association tests is shown
in Figure 1. In total, seven clusters survived the searchlight-
FDR correction (here we use cluster to mean sets of con-
tiguous voxels, even though we used a voxel-wise correction

TABLE 2
A Summary of Clusters Significantly Associated with GAB2 after
Correction for Multiple Comparisons Using Searchlight FDR

Cluster # MNI(x) MNI(y) MNI(z) Size (mm3)
Minimum corrected
p-value

1 24 −73 42 10696 .0387 (.0019)
2 48 −58 48 2489 .0387 (.0017)
3 −48 −34 20 1884 .0387 (.0016)
4 25 41 44 1164 .0408 (.004)
5 −21 −75 −49 694 .0387 (.0014)
6 67 −24 −3 690 .0387 (.0018)
7 18 −24 −21 117 .0470 (.0045)

Note: MNI = Montreal Neurological Institute. Here we define ‘cluster’ to
mean any set of significant contiguous voxels after correction for
multiple comparisons. The location of the most highly associated
voxel in each cluster is given in MNI coordinates: MNI(x,y,z). The size
or extent of each cluster is given in mm3. The minimum corrected
p-value is the most highly associated voxel in a given cluster in the
searchlight-FDR corrected map; uncorrected p-values for that voxel
are given in parentheses.

method). The associated regions after correction for multi-
ple comparisons are summarized in Table 2.

Post Hoc Analysis
The multiple partial F-test yields F-test statistics that are
non-directional (in other words, they do not tell you the
‘direction’ of an effect). So, for our primary analysis, we
report only p-value statistics for each voxel that passes re-
gional FDR correction, using searchlight-FDR. These p-
values only indicate that there was a significant association
between GAB2 and volume differences in the cohort at a
given voxel, not its direction. To get a better idea of the
direction of an effect, we performed a post hoc analysis us-
ing the first principal component from the PCA of GAB2
SNPs as a regressor, along with age and sex covariates, in a
mixed-effect regression (MER) model (as implemented in
EMMA), at each point across the brain. In this way, we were
able to obtain approximate directional effects of the GAB2
gene (i.e., those implied by the first principal component)
on brain volume differences using the Beta coefficients from
the MER model (Figure 2).

Discussion
Here we found a significant association between morpho-
logical differences in young-adult brains and variation in
the GAB2 gene. These results augment our previous work
with the elderly ADNI sample that demonstrated for the
first time that variation in the GAB2 gene was associated
with observable morphological differences in the brain.
Our study of the QTIM sample expands on the litera-
ture that has established GAB2 as an AD risk gene. Prior
studies have not considered how this gene might affect the
brain long before the typical age of onset of the disease.
We found significant differences in regional brain volume
in a large region of the right parietal lobe, and additional
smaller significant clusters in the left parietal, and along the
tissue/cerebral spinal fluid (CSF) boundary, in the temporal
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FIGURE 1
An adjusted p-map of GAB2 association tests after correcting for multiple comparisons using searchlight FDR. Adjusted p-values < .05
are considered significant and are overlaid on the MNI-152 T1 template for anatomical reference. The largest clusters of significant
associations of GAB2 with morphological differences occur in the right parietal lobe.

lobes of the young-adult twins. A post hoc analysis was also
performed to determine the direction of the GAB2 gene
effects on brain morphology. There was a negative correla-
tion between overall tissue volume and GAB2 loading in the
right parietal lobe region. In addition, we found a positive
correlation between GAB2 loading and CSF volume along
the sulci of the temporal lobes (partial volume effects along
the tissue/CSF boundary means that voxels along the bor-
der usually represent the effect of CSF volume change), as
shown in Figure 2.

Function of GAB2
GAB2 encodes a human adapter protein that acts in a num-
ber of cell proliferation pathways, especially in endothelial
cells (Zhang & Broxmeyer, 2000) and is expressed through-
out the human brain (Zhao et al., 1999). The mechanism
by which the GAB2 gene leads to increased neurodegen-
eration is well understood. Reiman et al. (2007) showed
that normally functioning GAB2 protein is responsible for
suppressing the phosphorylation of tau tangles associated
with the development of Alzheimer’s disease. Using small-

interfering RNA (siRNA) to knock-down GAB2 function,
Reiman et al. also demonstrated a significant increase in tau
tangle formation in neuronal tissue with the GAB2 protein
function diminished. While the role of GAB2 in the pathway
that leads to the formation of tau tangles is well understood,
there is scant evidence in the literature about functional
mechanisms and pathways through which changes in the
efficiency of the GAB2 protein might lead to morphological
differences in young-adult brains.

Knowing that an AD risk gene such as GAB2 may have
a detectable effect in the young adult brain is useful, as it
may indicate a developmental vulnerability to AD, without
directly promoting AD pathology (e.g., amyloid plaque and
neurofibrillary tangle formation). This is the most likely
scenario as the young-adult brain is fairly low in amyloid
deposits (Bartzokis, 2011; Braak & Braak, 1997). Even so, re-
cent studies of some other AD risk genes have also revealed
detectable effects in young adults. Shaw et al. (2007) showed
that adolescent APOE4 allele carriers have a thinner cortex
and slower cortical thickening than their APOE2/3 counter-
parts. A genetic variant (rs11136000) in the AD risk gene,
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FIGURE 2
Beta coefficient values are shown for the first principal component of the GAB2 SNPs used in a multiple linear regression with age
and sex as covariates. Only regions that were significant after correction for multiple comparisons using searchlight FDR are shown.
The coefficient maps are overlaid on the MNI-152 T1 template for anatomical reference. Negative Beta values (warmer colors) in the
tissue of the parietal lobe indicate a negative relationship of tissue volume and GAB2 loading. Positive Beta values (cooler colors) in
and around the cerebrospinal fluid of the lateral sulcus and temporal lobes indicate a positive relationship of CSF expansion with GAB2
loading.

CLU, found in 88% of Caucasian subjects, confers nearly a
20% lifetime increase in the risk for AD and is associated
with white matter differences in DTI scans of young adults
(Braskie et al., 2011). Similarly, the H63D variant in HFE,
an iron overload gene, is associated with white matter mi-
crostructure in young adults and is thought to be associated
with AD risk (Jahanshad et al., 2012).

Conclusions and Interpretations
An essential part of endophenotype theory suggests that
complex brain disorders may be better described by traits
related to a disease, but with simpler genetic determinants
than case-control phenotypes (Gottesman & Gould, 2003).
Neuroimaging endophenotypes are now widely used to as-
sess genetic contributions to complex neurodegenerative
disorders such as late-onset Alzheimer’s disease (LOAD).
Given the cost and difficulty of collecting large neuroimag-
ing datasets, it can be challenging to collect enough data for
unbiased gene discovery methods such as GWAS (de Geus,

2010). Very large neuroimaging genetics consortia are only
just beginning to aggregate samples large enough to dis-
cover and replicate GWAS findings from imaging studies
(ENIGMA; http://enigma.loni.ucla.edu; Stein et al., 2012).
Even so, hypothesis-driven candidate gene studies may be
performed in smaller datasets, without such a heavy correc-
tion for the number of SNPs assessed. Several such studies
of disease risk genes (e.g., CLU, Braskie et al., 2011; and
HFE, Jahanshad et al., 2012) have revealed how variants in
these genes affect the brain, offering a plausible mechanistic
explanation of how they may promote risk for neurological
disease. Endophenotypes can help to localize gene effects,
revealing functional and anatomical differences between
carriers of different variants; they may also help to classify
disease subtypes that may not be apparent in case-control
studies (de Geus, 2010).

The current study shows detectable associations between
the AD risk gene GAB2 and morphological brain differences
in young adults. Our findings build on our previous work
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in a separate cohort of elderly subjects that shows signif-
icant morphological differences associated with variation
in the GAB2 gene (Hibar et al., 2011b). While we report
significant associations in the right parietal lobe, lateral sul-
cus, and bilateral temporal lobes, none of the voxels overlap
with the voxels that survived statistical thresholding in the
original ADNI sample. In this analysis, we performed an
unbiased search across each voxel of the full brain without
incorporating information from our prior tests in the ADNI
dataset. The reason for this is that voxels that are significant
after correction for multiple comparisons do not necessarily
represent the only voxels where GAB2 may have an effect.
We wanted to perform an analysis that allowed for the pos-
sibility to observe an effect anywhere in the brain. As such,
the most appropriate test is a brain-wide search, as it as-
serts only that the gene has some effect in the brain, rather
than making a stronger assertion about its specific local-
ization. In addition, the QTIM dataset differs substantially
from the ADNI dataset (subjects are, on average, around
50 years younger in the QTIM study, and are scanned at
a different field strength on a different continent). Given
this, the regions where GAB2 is associated with brain mor-
phology may be very different from those observed in the
elderly ADNI sample. From a biological point of view, it
may also be that a gene has regional effects on the brain
that either spread out or become more regionally specific
over the human lifespan. Or, perhaps more likely, it could
be that a very weak effect is spread over the entire brain
in both samples, but due to noise and anatomical vari-
ability in the two cohorts, different locations in the brain
contribute to the statistical results in each cohort. As an
alternative, more stringent, approach, a conjunction test
(Nichols et al., 2005) could be performed to directly iden-
tify voxels where a gene effect is statistically significant in
several cohorts at once. Such tests have relatively low power,
as they require that the gene effect be found consistently in
the same voxels in all cohorts, rather than across the brain
in aggregate in each cohort. Different formulations of the
null hypothesis may therefore greatly affect the power and
scope of the inferences. We found a large set of significant
voxels in the parietal and temporal lobes that were asso-
ciated with tissue volume differences. Regions of both the
parietal and temporal lobes have been associated with sus-
ceptibility for and progression of Alzheimer’s disease (Leow
et al., 2009). Parietal lobe atrophy (Scahill et al., 2002), im-
paired white matter microstructure (Bozzali et al., 2002),
and glucose hypometabolism (Langbaum et al., 2009), are
well-studied effects of Alzheimer’s disease progression on
the brain. Additionally, Liang et al. (2011) showed reduced
glucose metabolism bilaterally in the parietal and temporal
lobes of carriers of a GAB2 haplotypic risk variant. Many
of the significant regions from that study appear to overlap
with the regions found in this study, especially in the parietal
lobes. Volume changes in the temporal lobes, specifically,
have been commonly used as a biomarker for tracking the

progression of Alzheimer’s disease, and also for image-based
diagnostic classification (Jack et al., 1998; Jack et al., 1997).
Here we found that GAB2 is associated with differences in
regional brain volumes in young adults, in regions strongly
implicated in the progression of Alzheimer’s disease. This
adds support to the notion that GAB2 may be used to help
identify individuals at heightened risk for AD long before
the onset of disease.

Further replication of observed effects of the GAB2 gene
in young adults is still required in order to aggregate evi-
dence about true morphological effects. While searching for
genetic determinants of morphological brain differences,
the interpretation of results should consider not only in-
dividual genetic contributions, but potentially correlated
alleles as well. In our study, we detected a very mild positive
correlation of the 51 SNPs from the GAB2 gene and the
CLU Alzheimer’s disease risk SNP rs11136000 (Pearson’s
r = .07–.08), though none of the test statistics passed a
Bonferroni correction for the number of SNPs tested (p <

9.8 × 10−4). Tests of other major candidate gene SNPs, such
as the BDNF Val66Met polymorphism (Chiang et al., 2010),
and the H63D polymorphism of the HFE gene (Jahanshad
et al., 2012), showed no evidence of positive correlation.
There could, in principle, be correlations between risk al-
leles, especially in an elderly population, due to a survivor
effect. This could arise if adverse variants in a gene were as-
sociated with early mortality. Protective variants might then
be present together in the survivors more frequently than
their random co-occurrence in randomly selected people.
Our analysis provides new evidence for an association be-
tween morphological differences and variation in the GAB2
in young adults, long before the onset of AD pathology. We
hope that our findings will inform future research on the
functional relevance of GAB2 in neural development.
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Abstract. Imaging genetics aims to discover how variants in the human 
genome influence brain measures derived from images. Genome-wide 
association scans (GWAS) can screen the genome for common differ-
ences in our DNA that relate to brain measures. In small samples, 
GWAS has low power as individual gene effects are weak and one must 
also correct for multiple comparisons across the genome and the image. 
Here we extend recent work on genetic clustering of images, to analyze 
surface-based models of anatomy using GWAS. We performed spheri-
cal harmonic analysis of hippocampal surfaces, automatically extracted 
from brain MRI scans of 1254 subjects. We clustered hippocampal sur-
face regions with common genetic influences by examining genetic cor-
relations (rg) between the normalized deformation values at all pairs of 
surface points. Using genetic correlations to cluster surface measures, 
we were able to boost effect sizes for genetic associations, compared to 
clustering with traditional phenotypic correlations using Pearson's r.  
 
Keywords: heritability, GWAS, clustering, hippocampus, 3D surfaces, 
imaging genetics 

 
1 Introduction 
 
An important focus of biomedical research is the analysis of biomarkers – easily at-
tainable and reproducible measurements that relate to disease severity or predict clini-
cal decline. In neuroimaging, methods that quantify brain morphometry (e.g., anatom-
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ical volumes or shapes, expansions, contractions, etc.) offer promising biomarkers for 
a variety of brain diseases and disorders. Surface-based morphometry of cortical and 
subcortical structures has been greatly advanced by ideas in computational geometry 
– many groups have applied surface meshes, “M-reps”, spectral analysis, differential 
forms, or partial differential equations – to map disease effects and dynamic changes 
in the brain [1]. Surface models of subcortical structures such as the hippocampus can 
reveal 3D shape differences between healthy controls and patients with neurological 
or psychiatric disorders such as schizophrenia [2] and Alzheimer’s disease [3].  

More recently, researchers in imaging genetics have adapted computational 
anatomy methods to analyze genetic effects on the brain. Many brain diseases are 
genetically influenced, and there is an urgent need to find specific variants in our 
DNA – both common and rare – that contribute to variations in disease and brain 
measures. It is now feasible to test how variants along the human genome relate to 
disease biomarkers or imaging measures using genome-wide association scans 
(GWAS). One study recently applied GWAS to brain MRI data from over 21,000 
people, discovering new genetic variants affecting hippocampal volumes [4]. Howev-
er, GWA studies have low power if they test a large number of individual phenotypes 
– if GWAS is run at each voxel in an image, an astronomical correction must be made 
for the multiple statistical tests across the image and genome [5,6]. Here we build on 
recent work [7,8] using genetic clustering to increase power and prioritize regions for 
GWAS. We develop a framework to perform GWAS on 3D anatomical surface mod-
els. We demonstrate our method on hippocampal surfaces from a large cohort of 1254 
subjects, scanned in independent studies on 3 continents.  
 
2 Methods 
 
2.1 Imaging data 
 
3D T1-weighted structural brain MRI and genotyping data were obtained from three 
independent cohorts: the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
Queensland Twins Imaging Study (QTIM), and Thematically Organized Psychosis 
Study (TOP). We focused on healthy controls from each study, but we also included 
people with mild cognitive impairment (MCI) in the ADNI. In total, there were 511 
ADNI subjects (299 males; age mean±sd: 75.5±6.5 years; 323 MCI patients), 571 
QTIM subjects (218 males; age mean±sd: 23.9±2.3 years; monozygotic and dizygotic 
twins and siblings from 335 families), and 172 TOP subjects (90 males; age mean±sd: 
35.8±9.8). Genotyping data was filtered to remove SNPs with minor allele frequency 
<0.01, call rate <95%, violations of Hardy-Weinberg Equilibrium p<1x10-6. The fil-
tered genotype data was imputed to a custom ‘1000 Genomes’ reference set (phase 1, 
release 3) which excludes non-European samples and singleton SNPs [9].  
 
2.2 Hippocampal surface generation 
 
Hippocampal (HP) segmentations were obtained using the freely-available and auto-
mated FSL FIRST segmentation algorithm [10]. Segmentation quality for the left and 
right hippocampus across all three cohorts was individually inspected by the first 
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author. Subjects with segmentations not covering the entire HP, or including regions 
outside the HP (defined by [11]) were removed. The SPHARM-MAT Toolbox for 
Matlab (V1.0) [12,13] was used to generate hippocampal surface models. First, we 
ensured that each binary segmentation label had a spherical topology. Binary segmen-
tations were parameterized using triangular mesh surfaces, with a bijective mapping 
of each point p on the surface to a unit sphere with (θ, φ) coordinates, such that: 
! !,! = (! !,! , ! !,! , ! !,! )!, using the Control of Area and Length Distor-
tions (CALD) algorithm [12]. The object surface was then expanded in terms of a set 
of spherical harmonic basis functions of order m and degree l [13]. This expansion has 
the form ! !,! = ! !!

!!
!!!! !!

! !,! ,!
!!!   where p is defined as above and !!

! is a 
set of Fourier coefficient weights for the basis functions: !!

! = (!!"
! , !!"

! , !!"
!)!. The 

spherical harmonic models of the surfaces were then aligned using 12 degrees of free-
dom to a common template model comprised of an average of 40 healthy controls 
from the QTIM sample using the SHREC algorithm [14]. A translation and rotation 
matrix for a given mesh to the common template using SHREC matches landmarks on 
the surface of an object to similar points on the template (a solution is found by mini-
mizing the root mean squared distance) [14]. In this way, we mapped the points along 
the surface to a common space across subjects and studies, while preserving individu-
al morphometric differences of interest. 
 
2.3 Quantifying morphometric differences on surfaces 
 
We determined the distance a given point on the hippocampal surface had to be de-
formed to match the equivalent point on the common template surface by first calcu-
lating the simple deformation matrix, ! = ! (!!, !!, !!), where i is the index of vertices 
of length n, from a coordinates matrix V of vertices compared to the vertices in the 
average template A: ! = ! − !. Next we calculated the vertex normals of each indi-
vidual’s 3D mesh in MATLAB using the patch function, which returns an n-by-3 
normalization matrix, N. We project the deformation onto the vertex normals and 
obtain a vector of deformation scalars for each vertex, s, such that: !! = (! ∙!

!!!
!)!,!. The deformation value preserves in-out differences along the surface normal (a 
contraction or expansion to match the template). Each value in the normalized defor-
mation vector, s, represents the expansion or contraction required to match a given 
vertex on the surface of an individual subject’s hippocampal surface to the equivalent 
point on the average template surface.  
 
2.4 Optimizing parameters using test-retest data 
 
To examine the ideal parameters required to maximize the reliability of the hippo-
campus surface reconstruction while minimizing data smoothing and the density of 
the reconstructed 3D mesh, we obtained test-retest data from 40 healthy young adults 
in the QTIM study scanned twice on the same scanner with a mean interval of four 
months. We examined how the reliability of surface reconstruction within the same 
subject changes, as a function of the surface sampling density and the extent of heat 
kernel smoothing [14]. We calculated the intraclass correlation coefficient (ICC) at 
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each point along the surface to quantify the reproducibility of hippocampal surface 
models across test-retest data. 
 
2.5 Genetic versus phenotypic clustering and GWAS 
 
We wanted to compare the GWAS performance of clustered regions of interest on the 
hippocampal surfaces chosen by genetic correlation (rg) relative to those chosen by 
traditional phenotypic correlations using Pearson's rp. We calculated the genetic and 
phenotypic correlations between the normalized deformation values at each point on 
the surface with all other deformation values on the surface bilaterally, yielding a 
genetic correlation matrix and a separate phenotypic correlation matrix of the same 
size. We calculated rg using the cross-twin, cross-trait method in 142 dizygotic and 
120 monozygotic twin pairs, controlling for age and sex [15]. The phenotypic correla-
tion rp was the partial correlation between traits, controlling for age and sex. The ge-
netic correlation determines areas on the surface of the hippocampus with common 
genetic determinants by using the known genetic relationships between monozygotic 
and dizygotic twins. This is not the same as phenotypic correlations, where measures 
from different regions can covary due to a combination of genetic and environmental 
effects. The genetic correlation is calculated from the covariance between two traits: 
Cov(Gx,Gy)/√(Var(Gx) * Var(Gy)), where Gx  and Gy are the genetic effects that influ-
ence the two traits x and y. When the two traits are controlled by overlapping genetic 
factors they will covary, leading to a high genetic correlation value.We applied x-
means clustering to the genetic and phenotypic correlation matrices, separately. The 
x-means algorithm is an iterative form of the k-means clustering algorithm that choos-
es the best number of clusters, k, using the Bayesian Information Criterion (BIC) [16]. 
Cluster membership was mapped back onto the 3D surface. Deformation values in the 
clustered regions were averaged across the cluster. Values in each cluster, for each 
subject, were used as phenotype values in a GWAS.  

Genome-wide association tests were conducted separately within each sam-
ple and combined meta-analytically (described below) for the final results. In ADNI 
and TOP samples, we performed association tests using multiple linear regression, 
implemented in the mach2qtl program [18]. Association tests in the family-based 
QTIM study employed mixed-effects models to account for twin and family relation-
ships, as implemented in merlin-offline [19]. All association tests controlled for sex, 
age, and intracranial volume (ICV). Each subject’s ICV was estimated as the determi-
nant of the affine transformation matrix to the standard FSL template. GWAS results 
from within each cluster were combined using an inverse variance-weighted meta-
analysis, implemented in metal [20].  
 
3 Results 
 
Test-retest data show that reproducibility of our hippocampus surface models was 
moderate but in line with the reproducibility of volume segmentations achieved by 
others [4] (ICC=0.66 for the left hippocampus and ICC=0.73 for the right) using a 
low-density icosahedral sampling mesh (called ‘icosa2’ in SPHARM-MAT) and 
without smoothing the data (see Table 1). We used the most parsimonious model for 
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our analysis; we examined the surface morphology of the ‘icosa2’ sample surface at 
162 vertices (so 324 vertices left and right) with no heat kernel smoothing [17]. 
 
Table 1. Intraclass correlation coefficient values for left and right hippocampal surfaces. ‘ico-
saX’ is the name of the sampling mesh provided in SPHARM-MAT; larger values in the name 
represent a finer sampling mesh (more vertices). Heat kernel smoothing was performed at three 
different standard deviation values (a parameter of the heat kernel smoothing algorithm) for 100 
iterations. The most parsimonious model bilaterally uses the 'icosa2' mesh, with no smoothing.     

Left  
Hippo. 

No 
Smoothing 

 
1mm 

 
2mm 

 
3mm 

‘icosa2’ 0.67 0.53 0.53 0.51 
‘icosa4’ 0.67 0.67 0.67 0.67 
‘icosa6’ 0.67 0.67 0.67 0.67 
Right  
Hippo. 

    

‘icosa2’ 0.73 0.63 0.62 0.62 
‘icosa4’ 0.73 0.73 0.73 0.73 
‘icosa6’ 0.73 0.73 0.73 0.74 

We estimated the number of clusters sufficient to group related vertices 
based on their phenotypic correlations and separately their genetic correlations with 
all other points on the hippocampal surface using x-means clustering. The most par-
simonious models for both the phenotypic and genotypic correlation matrices deter-
mined by BIC were k-means clustering with 2 groups. To visualize the clusters, we 
mapped the cluster membership back onto the 3D average template surfaces. The 
cluster memberships determined by the phenotypic correlation are shown in Fig. 1 
and the genotypic correlation in Fig. 2.  The cluster regions of interest selected by 
phenotypic correlation are highly similar to those chosen by genotypic correlation. 
There does seem to be noticeable differences in the cluster membership along the 
bottom left hippocampal surface. In addition, there was a clear bilateral symmetry, 
with cluster 1 (in green) occupying the outer curves of the structure and cluster 2 (in 
red) the inner curve.   
 
 

 
Fig. 1. A 3D projection of the cluster membership determined by phenotypic clustering onto the 
average template images (A and P denote anterior and posterior).  
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Fig. 2. A 3D projection of the cluster membership from genetic clustering onto the average 
template images (A and P denote anterior and posterior). These are regions where coherent 
genetic influences are detected, so they are clustered together to provide a coherent signal for 
GWA.  
 

We conducted a genome-wide association study on the average deformation 
values in each of the clusters across subjects. Our criterion for significance is the 
standard genome-wide cut-off (p<5x10-8), but after applying a further Bonferroni 
correction, for testing two separate phenotypes in each condition, our new signifi-
cance criterion is p<2.5x10-8.  

After meta-analysis, only cluster 1 from the genetic correlation clustering 
yielded a region of genome-wide significance. The most strongly associated SNP in 
the FBLN2 gene was rs145212527 after meta-analysis: PMA= 1.25x10-8; Effect Allele 
= T; Freq = 0.956; BetaMA= 0.354; SEMA=0.0621 (Fig. 3). Each individual study pro-
vided support for this SNP and the same direction of effect (ADNI: p=0.0073, 
β=0.389, SE=0.145; QTIM: p=0.00059, β=0.300, SE=0.087; TOP: p=0.00017, 
β=0.421, SE=0.112). Neither of the GWAS analyses of the clusters determined by 
phenotypic clustering yielded significant results. The top SNP in cluster 1 
(rs145212527) was the same SNP found in the genetic clustering analysis of cluster 1. 
However, the p-value was less strong than for the genetic clustering GWAS and did 
not pass significance (p=4.6x10-7).  
 

 

��



Fig. 3. LocusZoom plot [21] of the most highly associated SNP from the GWAS of cluster 1 
from genetic clustering, after meta-analysis. Each point is a SNP; points above the red horizon-
tal line are genome-wide significant. Each point’s color gives the linkage disequilibrium (r2) of 
that point to rs145212527. 
 
4 Discussion 
 
This paper’s major contributions are to: 1) perform the first-ever genetic clustering 
analysis on the hippocampal surface, 2) use genetic correlation values to prioritize and 
group related regions based on genetic similarity in an image to reduce the multiple 
comparisons correction, and 3) to demonstrate a case where the added information 
about common genetic determinants from genetic correlations can boost power for 
genomic association analyses compared to traditional phenotypic correlation. 

In addition, we identified a genome-wide significant SNP affecting hippo-
campal structure in the FBLN2 gene. The Allen Human Brain Atlas shows that this 
gene is differentially expressed in the hippocampus. FBLN2 is involved with tissue 
organization, and in differentiation of neurons and other cells [22]. In some ways, 
clustering the data before performing GWAS is related to performing a GWAS at 
each point and performing cluster-wise correction for multiple comparisons. The clus-
ter-wise correction methods of Hayasaka and Nichols may be useful for this purpose 
[23]. However, in this current paper we show that using cluster-wise methods that 
incorporate genetic correlation methods are more powerful and the methods of [23] do 
not incorporate genetic correlation into the model. Another paper [24] used sparse 
models to simultaneously select SNPs from a subset of candidate SNPs and correlated 
features along the surface. However, the model in [24] has limited utility in high di-
mensional applications, such as searching the full genome as we did in this study. 
Additionally, further work is still necessary to confirm that clustering methods are 
more powerful that voxel-wise analyses. However, this was discussed previously [7]. 
These are promising findings; further studies will attempt to replicate the genetic re-
sults and study the biological pathways they may affect. 
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CHAPTER 4 

 

 

Examining the effects of epistatic interactions in full-brain phenotypes   
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4.1 GPU-accelerated interaction testing in the full SNP-SNP 

interactome 

 

This section is adapted from: 
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1SNP (=single nucleotide polymorphism): a single-letter variant in the genome; these variations 
are common, even in healthy human populations, and their effects on brain measures can be 
assessed using association testing, at one SNP or up to a million genotyped SNPs. 
2Interactome: The study of interactions between genetic variants or sets of variants in terms of 
their effects on traits such as brain measures. 
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Abstract. The SNP-SNP interactome has rarely been explored in the 
context of neuroimaging genetics mainly due to the complexity of con-
ducting ~1011 pairwise statistical tests. However, recent advances in 
machine learning, specifically the iterative sure independence screening 
(SIS) method, have enabled the analysis of datasets where the number 
of predictors is much larger than the number of observations. Using an 
implementation of the SIS algorithm (called EPISIS), we used exhaus-
tive search of the genome-wide, SNP-SNP interactome to identify and 
prioritize SNPs for interaction analysis. We identified a significant SNP 
pair, rs1345203 and rs1213205, associated with temporal lobe volume. 
We further examined the full-brain, voxelwise effects of the interaction 
in the ADNI dataset and separately in an independent dataset of healthy 
twins (QTIM). We found that each additional loading in the epistatic ef-
fect was associated with ~5% greater brain regional brain volume (a 
protective effect) in both the ADNI and QTIM samples. 
 
Keywords: epistasis, interaction, genome, sure independence, tensor-
based morphometry 

 
1 Introduction 
 
Traditional univariate methods can test the association of common genetic variants 
with complex quantitative traits, but they only consider the marginal effect of a single 
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locus and potentially miss variance explained by synergistic or interacting effects of 
pairs or sets of SNPs1 [1]. For many complex traits, the similarity of family members 
drops faster than would be expected as relatedness decreases [2]. This implies that 
there are non-additive (epistatic) interactions involved in the etiology of many com-
plex traits. Statistical interactions have been demonstrated to be plausible representa-
tions of the complex interactions of genes in biological pathways [3-4].  

Some prior studies have examined second-order interactive effects of SNPs 
on brain structure [5-7]. However, none of these studies has considered genome-wide 
genotype data; the closest conceptually related study tested for SNP effects on diffu-
sion imaging measures, and aggregated all SNPs with correlated effects into a net-
work [8]. The concept here is different, and aims to assess gene pairs that influence 
each other’s effects on the brain. Prior studies tested interaction effects only for a 
limited number of popular candidate genes. Any approach based on pre-selecting a 
pair of genes will overlook a vast search space of potential interactions among SNPs 
in the genome that have no obvious prior connection. Also, a large main effect is not 
necessary to be able to detect significant second-order interactions [9]. Given this, 
prior hypotheses focusing on SNPs with large individual effects may also overlook 
large second-order effects. Importantly, power estimates for detecting interactive 
effects are comparable to those for single SNP tests [1]. In simulation studies, the 
inclusion of interaction terms can boost the power to detect main effects, at least for 
certain genetic tests [10]. Here we examined the genome-wide, SNP-SNP interac-
tome2 to test genetic associations with a quantitative biomarker of Alzheimer’s dis-
ease (temporal lobe volume) in the public Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset. We further examine the whole-brain effects of interaction pairs 
in statistical parametric maps generated with tensor-based morphometry (TBM); we 
also replicate our tests in an independent, non-overlapping dataset of young healthy 
twins from the Queensland Twin Imaging (QTIM) study [11].  
 
2 Methods 
 
2.1 Imaging Parameters and Study Information 
 
We downloaded the full baseline set of 818 high-resolution, T1-weighted structural 
MRI brain scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
ADNI is a multi-site, longitudinal study of patients with Alzheimer’s disease (AD), 
mild cognitive impairment (MCI) and healthy elderly controls (HC). Subjects were 
scanned with a standardized protocol to maximize consistency across sites. We used 
the baseline 1.5 Tesla MRI scans, i.e., the T1-weighted 3D MP-RAGE scans, with 
TR/TE = 2400/1000 ms, flip angle = 8˚, slice thickness = 1.2 mm, and a final voxel 
resolution = 0.9375 x 0.9375 x 1.2 mm3. Raw MRI scans were pre-processed to re-
move signal inhomogeneity, non-brain tissue, and affine registered to the MNI tem-
plate (using 9 parameters). 

Additionally, we obtained 753 high-resolution, T1-weighted structural MRI 
brain scans from the Queensland Twin Imaging (QTIM) study. QTIM is a longitudi-
nal neuroimaging and genetic study of young, healthy twins and their family mem-
bers. All structural MRI scans were acquired on a single 4-Tesla scanner (Bruker 
Medspec): T1-weighted images, inversion recovery rapid gradient echo sequence, 
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TR/TE = 1500/3.35 ms, flip angle = 8˚, slice thickness = 0.9 mm, 256 x 256 acquisi-
tion matrix, with a final voxel resolution!=!0.9375!×!0.9375!×!0.9 mm3. Raw MRI 
scans were pre-processed to remove signal inhomogeneity, non-brain tissue, and af-
fine registered to the ICBM template (using 9 parameters). 
 
2.2 Genotype Pre-processing and Study Demographics 
 
Genome-wide genotyping data were available for the full set of ADNI subjects. We 
performed standard quality control procedures to ascertain the largest homogenous 
genetic sub-population in the dataset, using multi-dimensional scaling (MDS) com-
pared to a dataset of subjects of known genetic identity (HapMap III; 
http://hapmap.ncbi.nlm.nih.gov/). The largest subset contained 737 subjects from the 
CEU population (Caucasians). We therefore removed the remaining 81 subjects from 
our analysis to limit the effects of genetic stratification on our statistical analyses [12]. 
Additionally, we applied filter rules to the genotype data to remove rare SNPs (minor 
allele frequency < 0.01), violations of Hardy-Weinberg Equilibrium (HWE p < 
5.7x10-7), and poor call rate (<95%). Data were further “phased” to impute any miss-
ing individual genotypes after filtering using the MaCH program [13] following the 
ENIGMA imputation protocol [14]. After filtering and phasing, 534,033 SNPs re-
mained. 

All QTIM subjects were ascertained for genetic similarity, so no subjects 
were removed before analysis. All 753 subjects in the QTIM dataset clustered with 
the CEU population, in the MDS analysis. The same genotype filter rules from the 
ADNI dataset were applied to the QTIM sample’s genetic data. After filtering and 
phasing, 521,232 SNPs remained. 

After all rounds of genotype pre-processing, the ADNI sample contained 737 
subjects (mean age±sd: 75.5±6.8 yrs; 436 males) comprised of 173 patients diagnosed 
with Alzheimer’s disease, 358 subjects with mild cognitive impairment, and 206 
healthy elderly controls. The QTIM sample contained 753 subjects (mean age±sd: 
23.1±3.0 yrs; 286 males) and consisted of 110 monozygotic twin pairs, 147 dizygotic 
twin pairs, 3 dizygotic twin trios, 143 singletons, and 87 siblings from 438 families.  
 
2.3 Tensor-Based Morphometric Differences in the Full Brain 
 
We calculated information on regional brain morphometry using an elastic, nonlinear 
registration algorithm (3DMI) [15] applied to the entire brain. Voxelwise volumetric 
differences were stored, using the Jacobian value of the deformation matrix obtained 
by nonlinearly registering a subject’s scan to a study-specific minimum deformation 
template (MDT). Scans from the ADNI and QTIM datasets were processed and ana-
lyzed separately (using separate study templates). The MDT for the ADNI sample is a 
nonlinear average of 40 age-and-sex matched healthy elderly controls [16]. The MDT 
for the QTIM is a nonlinear average of 32 age- and sex- matched, unrelated subjects 
[17]. Nonlinear registration with 3DMI yields a 110 x 110 x 110 voxel statistical par-
ametric map, where the Jacobian value at each voxel represents the expansion re-
quired to match the same voxel in the study-specific MDT.  
 
2.4 Genome-Wide, Gene-Gene Interaction Testing 
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The EPISIS software is an implementation of the machine-learning algorithm called 
sure independence screening (SIS) developed by Fan and Lv [18]. The SIS algorithm 
is a correlation learning method that can be applied to ultra-high dimensional datasets 
where the number of predictors p is much greater than the number of observations n. 
Despite the development of robust methods for cases where p>n (e.g., the Dantzig 
selector of Candes and Tao [19]) the properties of the selector fail when p>>n. Fan 
and Lv [18] developed the SIS algorithm to reduce the ultra-high dimension of p to a 
moderately-sized subset, while guaranteeing that the subset still explains the maxi-
mum amount of variance explained by the full set of predictors.   

We conducted an exhaustive search of association tests of genome-wide 
SNP-SNP interactions with temporal lobe volume (computed by integrating the Jaco-
bian over an temporal lobe ROI on the MDT) [20] in the ADNI dataset using the 
EPISIS software. EPISIS utilizes the massively parallel processing available in 
GPGPU (General-purpose computing on graphics processing units) framework to test 
p(p-1)/2 SNP-SNP interactions in the ADNI dataset in a feasible timeframe. We used 
the SIS algorithm with cell-wise dummy coding (CDC) [21] to reduce the full predic-
tor space into a subset d of n/log(n) interaction terms [18]. After screening the full set 
of possible two-way SNP-SNP interactions, we applied ridge regression [22-23] to the 
subset of interaction terms (the multiplicative loading of each SNP-SNP pair) and 
selected significant SNP-SNP interaction terms using the extended Bayesian Infor-
mation Criterion (EBIC) [24] with γ = 0.5. The choice of the parameter γ was chosen 
based on simulations [21]. The EPISIS software is implemented in CUDA and opti-
mized for parallel processing across multiple NVIDIA GPU cards as detailed else-
where [21]. A single exhaustive search of the genome-wide, SNP-SNP interactome 
with EPISIS was completed in 7 hours (using one NVIDIA Tesla C2050 GPU card). 
 
2.5 Voxelwise Interaction Analysis and Replication 
 
We tested the significant SNP-SNP interaction pair selected by ridge regression for 
association with voxelwise, regional volume differences (V) at each point, i, in the full 
brain. The association test at each voxel in the ADNI dataset followed the multiplica-
tive interaction model in multiple linear regression: 
 
Vi ~ β0 + βageXage + βsexXsex + βsnp1Xsnp1 + βsnp2Xsnp2 + βsnp1,2Xsnp1*Xsnp2 + ε     (1) 
 

Additionally, we used QTIM as an independent replication sample of the top 
SNP-SNP interaction pair identified by ridge regression after EPISIS. The voxelwise 
association tests assume the multiplicative interaction model, detailed previously. Due 
to the family design of the QTIM sample, we tested association using mixed-effects 
modeling as implemented in the R package kinship (version 1.3) in order to account 
for relatedness.  
 
3 Results 
 
After screening the full set of SNP-SNP interaction pairs for association with tem-
poral lobe volume in the ADNI dataset, we obtained a subset d of SNP-SNP interac-
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tion pairs such that d = n/log(n). The subset is chosen by ranking the marginal correla-
tion coefficients of each interaction pair and selecting the top d SNP-SNP pairs (cor-
relation learning) [18], in this case d = 111 pairs. Next, we applied ridge regression to 
the pruned subset of SNP-SNP interaction pairs. Using the extended BIC (γ = 0.5) 
[21] to estimate significance in our ridge regression, we identified a significant inter-
action between rs1345203 and rs1213205. The distribution of alleles for each SNP 
and their interaction is given in Table 1. 
 
Table 1. The distribution of alleles for the significant SNPs and the number of subjects with 
each genotype by study. For rs1345203 the minor allele is G and the major allele is A in both 
studies. The minor allele is A and the major allele is G for rs1213205. The association testing 
assumes an additive model (each subject is assigned a value 0,1,2 based on the number of mi-
nor alleles they have at a given SNP). The interaction column gives the number of subjects in 
each category after multiplying together the counts of each of the alleles.  
 

Study rs1345203 rs1213205 Interaction 
ADNI (n=737) G/G: 27 A/A: 93 0 loadings: 612 
 A/G: 223 G/A: 297 1 loadings: 79 
 A/A: 487 G/G: 347 2 loadings: 46 
QTIM (n=753) G/G: 5 A/A: 78 0 loadings: 664 
 A/G: 193 G/A: 300 1 loadings: 70 
 A/A: 555 G/G: 375 2 loadings: 19 

 
 

We further examined the significant SNP pair, rs1345203 and rs1213205, for 
whole-brain effects in the statistical parametric maps generated using tensor-based 
morphometry (TBM). In the ADNI dataset, we found broad effects bilaterally in the 
temporal and occipital lobes (Fig. 1) after correcting for multiple tests at a 5% false 
discovery rate (FDR) using the searchlight FDR method [25].  
 

 
 
Fig. 1. 3D maps of percent tissue change for each additional genetic variant in the interaction in 
ADNI. Only significant regions are shown after correcting for multiple comparisons with 
searchlight FDR [25] at a 5% false discovery rate. Images follow radiological orientation. The 
origin is placed at the Posterior-Right-Inferior corner. Cooler colors over the tissue represent 
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tissue expansion (larger regional brain volume) compared to an average template. There is a 
clear protective effect of the epistatic loadings bilaterally in the temporal (# in the figure) and 
occipital lobes (## in the figure): as the number of alleles a subject has increases, the amount of 
local brain tissue they have is also increased on average.   
 

We examined the whole-brain effects of the SNP pair on voxelwise, regional 
brain volume in the statistical parametric maps in an independent dataset (QTIM). 
The distribution of alleles for each SNP and their interaction in the QTIM sample is 
given in Table 1. In the QTIM, we identified significant effects in the left temporal 
lobe and along the border of the left frontal and occipital lobes (Fig. 2) after correc-
tion for multiple tests at 5% false discovery rate (FDR) using the searchlight FDR 
method. 
 

 
 
Fig. 2. 3D maps of percent tissue change for each additional genetic variant in the interaction in 
QTIM. Only significant regions are shown after correcting for multiple comparisons with 
searchlight FDR [25] at a 5% false discovery rate. Images follow radiological orientation. The 
origin is placed at the Posterior-Right-Inferior corner. Cooler colors over the tissue represent 
tissue expansion (larger regional brain volume) compared to an average template. There is a 
clear protective effect of the epistatic loadings in the left temporal (# in the figure) and along 
the boundary of the frontal and occipital lobes (## in the figure): as the number of alleles a 
subject has increases, the amount of local brain tissue they have is also increased on average.   
 
4 Discussion 
 
The genome is incredibly complex and statistical epistasis has been suggested as an 
appropriate model for the biological interactions among genes and protein products in 
related pathways [3-4]. Here we examined the multiplicative effect of SNP-SNP pairs 
on brain volume differences. Significant interaction terms explain additional variance 
in brain volume beyond what is already explained by the additive SNP terms. In our 
primary tests of associations with temporal lobe volume in the ADNI dataset, we 
screened 1011 possible SNP-SNP interaction pairs using the GPU acceleration imple-
mented in the EPISIS software. The top 111 interaction pairs were selected after rank-
ing the marginal effect of each SNP-SNP pair on temporal lobe volume, using an 
implementation of the sure independence screening (SIS) algorithm [18]. We used 
ridge regression and the extended BIC [24] to identify a significant interaction be-
tween rs1345203 and rs1213205. The functional relevance of the two SNPs is as yet 
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unknown. However, data obtained from the ENCODE dataset 
(http://genome.ucsc.edu/) show that rs1345203 is located in a transcription factor gene 
(ELF1/CEBPB) that demonstrates regulatory influence on the DNA structure. The 
SNP rs1213205 is located in a region of hypersensitivity to cleavage by DNase regu-
latory elements. It is worth noting that the parameter choices made in the interaction 
analysis may influence the results, however, parameters were chosen based on the 
recommended values for EPISIS [21] and SIS [18]. Additional work is still required 
to identify precisely how these two SNPs might affect brain structure, and to further 
replicate their interaction. Specifically, we need to identify how changes at a given 
SNP are related to changes in activity in gene transcription or translation into protein 
products involved in similar biological pathways.  
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(ADNI; N0706) and the Queensland Twin Imaging Study
(QTIM; N0639). Statistics of association from each cohort
were combined meta-analytically using a fixed-effects model
to boost power and to reduce the prevalence of false positive
findings. We identified a number of associations in and around
the flavin-containing monooxygenase (FMO) gene cluster.
The most highly associated SNP, rs1795240, was located in
the FMO3 gene; after meta-analysis, it showed genome-wide
significant evidence of association with lentiform nucleus vol-
ume (PMA04.79×10

−8). This commonly-carried genetic vari-
ant accounted for 2.68 % and 0.84 % of the trait variability in
the ADNI and QTIM samples, respectively, even though the
QTIM sample was on average 50 years younger. Pathway
enrichment analysis revealed significant contributions of this
gene to the cytochrome P450 pathway, which is involved in
metabolizing numerous therapeutic drugs for pain, seizures,
mania, depression, anxiety, and psychosis. The genetic variants
we identified provide replicated, genome-wide significant ev-
idence for the FMO gene cluster’s involvement in lentiform
nucleus volume differences in human populations.

Keywords Basal ganglia . Genome-wide association
study (GWAS) . MRI . Replication . Morphometry .

Drug metabolism

Introduction

The lentiform nucleus is a lens-shaped, bilateral structure in the
basal ganglia bounded by the internal and external capsules. It
has three components: the internal and external globus pallidus
(Diamond et al. 1985) and the putamen (Fig. 1). The putamen
receives dense corticostriate projections from throughout the
cortex and funnels information to the external and internal
globus pallidus through dense intrabasal ganglionar fibers
(Snell 2010). In addition, fibers from the internal globus pal-
lidus project to several thalamic nuclei and continue back to the
cortex, primarily to premotor area 6. These projections form
the cortico-striato-thalamo-cortical loop, which is involved in
initiating and terminating movements (Snell 2010). Both the
globus pallidus, and the putamen especially, receive dopamine-
rich connections from the substantia nigra—the main source
of dopamine for the basal ganglia (Snell 2010). Dopamine
projections to the basal ganglia are part of the brain’s reward
circuitry (Schultz 2002).

The lentiform nucleus is implicated in several heritable
degenerative and psychiatric disorders. Its role in movement
disorders was first identified in studies of hepatolenticular
degeneration (Wilson 1912)—a disorder that affects both
the liver and the lentiform nucleus. Deficits in lentiform
nucleus volume have been observed in Parkinson’s disease
(Dexter et al. 1991; Obeso et al. 2000), Huntington’s disease
(Marsden et al. 1983; Reiner et al. 1988), and normal aging

(Raz et al. 2003). More subtle differences in lentiform
nucleus volume are reported in some but not all studies of
bipolar disorder (Arnone et al. 2009; Kempton et al. 2008;
Strakowski et al. 1999), attention deficit hyperactivity dis-
order (Castellanos et al. 1996; Ellison-Wright et al. 2008)
and schizophrenia (Elkashef et al. 1994; Ellison-Wright et
al. 2008). Lesions in the midbrain tegmentum—which has
reciprocal connections with the lentiform nucleus—are as-
sociated with visual and auditory hallucinations (Cascino
and Adams 1986). In addition to its many links with known
pathology, the lentiform nucleus is a plausible target for
genetic analysis, as its volume is highly heritable (Kremen
et al. 2010) and can be reliably measured using automated
segmentation methods (Morey et al. 2010).

Building on prior studies, here we performed an unbi-
ased genome-wide association study (GWAS) in two
large independent cohorts to discover common genetic
variants associated with differences in lentiform nucleus
volume. The term “unbiased” is often used to describe
the type of genetic analysis we performed—a genome-
wide association scan—in which we search the whole
genome for statistical associations, rather than prioritizing
or choosing only a limited subset of variants, such as
candidate genes. Arguably, if the genetic loci influencing
a given trait are unknown, a broad survey of the genome
may avoid missing associations in regions that have no
currently known relation to the trait. Association statistics
for the genetic variants were combined meta-analytically
across two cohorts to boost power and reduce the risk of
false positive findings. We assessed both an elderly and a
young adult cohort to discover genes with robust associ-
ations throughout life.

Fig. 1 A coronal slice in a subject from the ADNI sample. The light-
blue label represents the left globus pallidus and the darker blue label
shows the putamen. External and internal portions of the globus
pallidus are segmented as a single structure in FSL/FIRST (Patenaude
et al. 2011)
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Methods and materials

Subjects

We analyzed neuroimaging and genome-wide genotype
data from two independent samples: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the Queensland
Twin Imaging Study (QTIM). The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is a large longitudinal study
initiated in 2003 as a public-private partnership between the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical com-
panies, and non-profit organizations. The study aims for ADNI
are to identify and investigate biological markers of
Alzheimer’s disease through a combination of neuroimaging,
genetics, neuropsychological tests and other measures in order
to develop new treatments, track disease progression, and
lessen the time required for clinical trials. The study was
conducted according to the Good Clinical Practice guidelines,
the Declaration of Helsinki, and U.S. 21 CFR Part 50—
Protection of Human Subjects, and Part 56—Institutional
Review Boards. Written informed consent was obtained from
all participants before protocol-specific procedures were per-
formed. Further information on inclusion criteria and the study
protocol may be found online (http://adni-info.org/). Baseline
structural MRI scans and genetic data were available for 818
subjects (as of August 1, 2011) from the public ADNI database
(http://www.loni.ucla.edu/ADNI/). Here we analyzed all
ADNI subjects as a single group, to exploit the broader phe-
notypic continuum (Petersen 2000) and increase power
(Durston et al. 2005; Stein et al. 2010). Some subjects were
excluded to eliminate problems caused by population stratifi-
cation (Lander and Schork 1994; McCarthy et al. 2008) using
multi-dimensional scaling as outlined previously for the same
dataset (Stein et al. 2010). The remaining sample had 742
Caucasian subjects left for the analysis; this represented the
largest homogeneous group attainable from the ADNI cohort.
After removing subjects by applying quality control criteria to
the lentiform nucleus segmentations (discussed below), the
final ADNI dataset consisted of 706 subjects (average age±
s.d.: 75.5±6.8 years; 413 men/293 women) including 162
patients with AD (75.6±7.6 years; 88 men/74 women), 346
with mild cognitive impairment or MCI (75.0±7.3 years; 221
men/125 women), and 198 healthy elderly controls (76.1±
4.8 years; 104 men/94 women).

The Queensland Twin Imaging Study (QTIM) is an ongo-
ing, 5-year longitudinal project tasked with identifying genetic
influences on brain structure. As of August 1, 2011 there were
672 subjects with both structuralMRI scans and genome-wide
genotyping data. An additional 40 subjects underwent repeat-
ed scans, which we used to verify the reliability of the seg-
mentation algorithm. Each member of every twin pair and

their siblings was assessed via extensive diagnostic interviews
to exclude anyone with a history of brain related disorders,
diseases, or injuries. To avoid problems caused by population
stratification in this Caucasian sample, 10 subjects were re-
moved from the QTIM sample, as determined by MDS anal-
ysis. All subjects were right-hand dominant as determined by
Annett’s Handedness Questionnaire (Annett 1970). Written
informed consent was obtained from all participants before
protocol-specific procedures were performed. After quality
control of the lentiform nucleus segmentations (discussed
below), the final group we analyzed consisted of 639 subjects
from 364 families (98 monozygotic twin pairs; 127 dizygotic
twin pairs; 3 dizygotic triplet trios; 117 singletons; 63 siblings;
23.1±3.1 years; 251 men and 388 women).

Genotyping and imputation

Genome-wide genotype data were collected using the
Human610-Quad BeadChip (Illumina, Inc., San Diego, CA)
in both samples. Several SNPs were excluded from the analy-
sis based on standard filtering criteria, as is standard in many
other GWAS studies (Wellcome Trust Case Control
Consortium 2007). In the ADNI sample, SNPs were excluded
based on: call rate <95 % (42,176 SNPs removed), significant
deviation from Hardy-Weinberg equilibrium P<1×10−6 (263
SNPs removed), minor allele frequency <0.01 (60,919 SNPs
removed), autosomal chromosomes only, and a platform-
specific quality control score of <0.15 to eliminate “no call”
genotypes (variable number of missing genotypes across sub-
jects). Similarly, in the QTIM sample SNPs were excluded
based on: call rate <95 % (8,447 SNPs removed), significant
deviation from Hardy-Weinberg equilibrium P<1×10−6

(2,841 SNPs removed), minor allele frequency <0.01 (33,347
SNPs removed), and a platform-specific quality control score
of <0.07 to eliminate “no call” genotypes (variable number of
missing genotypes across subjects). Also, we chose to focus
only on autosomal SNPs rather than those in mitochondrial
DNA and sex chromosomes.

Imputation of hard genotype calls may be used to infer
missing values based on the linkage among SNP sets. In
addition, imputation may be used to infer SNPs not directly
genotyped in a given sample, but genotyped in a reference
dataset. The quality of imputed SNPs depends on the
strength of the linkage between hard genotyped SNPs and
the imputed SNPs. In ADNI, we excluded any SNPs imput-
ed with an R2 value of <0.3 from the analysis (62,053 SNPs
removed); the same steps were taken for the QTIM (54,337
SNPs removed). We also excluded imputed SNPs with a
minor allele frequency of <0.01 for both the ADNI (45,818
SNPs removed) and QTIM (38,481 SNPs removed). For
each sample, we performed imputation with MaCH, which
uses the Markov Chain Monte Carlo method to infer miss-
ing genotypes and SNPs robustly and accurately (Abecasis
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et al. 2010). After all rounds of quality control filtering, the
ADNI dataset had 2,449,382 SNPs and the QTIM dataset
had 2,439,807 SNPs. We analyzed the set of overlapping
SNPs present in both datasets, totaling 2,380,200 SNPs.

Image acquisition and pre-processing

High-resolution structural brain MR images were collected
from both the ADNI and QTIM samples. Structural MRI
scans in the ADNI study were obtained using a standardized
protocol to maximize consistency across 58 image acquisition
sites, using 1.5 Tesla MRI scanners. A T1-weighted 3D
MP-RAGE sequence was used (TR/TE02400/1000 ms;
flip angle08˚; FOV024 cm; with a final voxel resolution0
0.9375×0.9375×1.2 mm3).

In the QTIM cohort, structural MRI scans were obtained on
a single 4 Tesla scanner (Bruker Medspec). T1-weighted
images were acquired with an inversion recovery rapid gradient
echo sequence (TI/TR/TE0700/1500/3.35 ms; flip angle08˚;
slice thickness00.9 mm, with a 256×256 acquisition matrix;
with a final voxel resolution00.9375×0.9375×0.9 mm3).

Skull and all other non-brain tissues were removed from
each subject’s scan using the brain extraction tool (Smith
2002) (BET) prior to analysis. Test-retest data were also
available for 40 young normal individuals scanned on two
occasions approximately 4 months apart.

Automated delineation of lentiform nucleus volume

We delineated the lentiform nucleus structures using the well-
validated, automated FIRST segmentation algorithm (http://
www.fmrib.ox.ac.uk/fsl/first/index.html), which is part of the
FSL (Smith et al. 2004) image processing package. Morey et
al. (2010) showed that the FIRST segmentation algorithm has
relatively high reproducibility and accuracy for each of the
subcortical structures segmented. Using a Bayesian frame-
work, FIRST provides accurate and validated segmentations
of subcortical brain structures (Patenaude et al. 2011).

Quality control of lentiform nucleus segmentation

The quality of segmentations was assessed by examining the
left and right globus pallidus and putamen separately; these
were checked by hand (by DPH) following established guide-
lines (Duvernoy and Bourgouin 1999). If any segmentation did
not properly delineate any single structure the subject was
removed from the analysis. After quality checking, 36 subjects
were excluded from the ADNI sample and 23 subjects were
excluded from the QTIM sample. As a further measure of
segmentation quality, we examined the consistency of indepen-
dent runs of the FIRST algorithm on repeated scans of 40
subjects, taken a short interval apart. The reliability of lenti-
form nucleus segmentation was tested by computing

intraclass correlation coefficients (ICC) from the 40 repeat-
ed scans. All ICC calculations were performed using the
psy package in the R statistical software (version 2.13.0;
http://www.r-project.org/).

Heritability analysis

To evaluate the overall genetic contribution to the variability
in volumes, the heritability of the lentiform nucleus volume
was estimated using a structural equation model (SEM) as
implemented in the software package, Mx (version 1.68;
http://www.vcu.edu/mx/). Heritability was estimated using
the classic pathway-based ‘ACE’model (Chiang et al. 2012;
Neale et al. 1992). In families from the full QTIM sample,
we used this analysis to compare the observed pattern of
covariances in lentiform nucleus volume to what would be
expected given different degrees of genetic influence.
The heritability of the left, right, and average bilateral
lentiform nucleus volumes were analyzed separately. We
chose to study the average bilateral lentiform nucleus
because it shows higher heritability than the left and
right lentiform nucleus separately and because the inevi-
table segmentation errors should be a smaller proportion
of the total volume if both sides are combined.
Additionally, we estimated the genetic correlation (rg)
between the putamen and globus pallidus volumes using
Mx in the full QTIM sample.

Genetic analysis

In the ADNI sample, we tested each SNP dosage value for
association with the lentiform nucleus volume, assuming, by
default, an additive model - each SNP dosage value was
recorded as the number of minor alleles, with an implicit
correction for the accuracy of imputation at that SNP. Tests
of association were conducted using linear regression as
implemented in the publicly available program, mach2qtl
(Abecasis et al. 2010). We controlled for age and sex, which
both showed significant effects on lentiform nucleus volume.
We also covaried for age2, sex x age, and sex x age2 to account
for any quadratic or interaction effects. In addition we con-
trolled for intracranial volume (ICV), calculated as 1/(deter-
minant) of the transformation matrix from registration to the
FSL common template. We chose to correct for head size
because we are interested in individual differences in lenti-
form nucleus volume unrelated to differences in head size
(Buckner et al. 2004). In the QTIM sample, association testing
was carried out using mixed-model regression, to control for
family structure. We also included the same covariates as in
the ADNI model. Because of the kinship structure of the twin
sample, association tests in QTIM were conducted using the
family-based association test implemented in merlin (Chen
and Abecasis 2007).
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Meta-analysis of genetic results

Genome-wide association results from the ADNI and QTIM
samples were meta-analyzed using a fixed effects inverse
variance-weighted method, as implemented in METASOFT
(Han and Eskin 2011). Beta coefficients from the regression
analysis of each SNP from both studies were pooled based
on the inverse of the variance of each beta coefficient. In
addition to the standard fixed-effects meta-analysis, we per-
formed a random-effects meta-analysis in METASOFT. The
random-effects meta-analysis still follows the inverse
variance-weighted model, but can more appropriately model
the population statistics in cases where the effect size is not
the same across cohorts (Han and Eskin 2011).

Gene-based tests and pathway enrichment analysis

The meta-analyzed PMA-values from the full set of SNPs from
the GWAS analysis were used for gene-wide, gene-based
association testing with the software package KGG (Li et al.
2010). No prioritizing or pre-selection of genes was per-
formed. Gene-based tests in KGG combine univariate associ-
ation statistics to evaluate the cumulative evidence of
association in a gene with a phenotype, using the GATES-
Simes test (Li et al. 2011). Similarly, KGG is integrated with
biological pathway databases (e.g., KEGG) and combines
gene sets to test for significant enrichment of a number of
disease and biological pathways (Li et al. 2011). Pathways are
considered to be significantly enriched if they contain more
significant gene-based test statistics than expected by chance.

Results

Lentiform nucleus segmentations

In the ADNI sample, the volumes of the left (6422.2±
723.9 mm3) and right (6450.9±686.9 mm3) lentiform

nucleus were highly correlated (r00.83; P<0.0001; df0
704). Similarly, in the QTIM sample the volumes of the left
(6554.4±744.8 mm3) and right (6729.5±765.4 mm3) lenti-
form nucleus were highly correlated (r00.84; P<0.0001;
df0637). Both samples have a slight asymmetry between
left and right lentiform nucleus volume. In the ADNI sample
the right lentiform nucleus was 0.4 % larger on average than
the left. Similarly, in the QTIM sample the right lentiform
nucleus was 2.6 % larger on average than the left. This
follows a general trend in the brain where bilateral subcor-
tical structures are slightly larger in the right hemisphere
(Toga and Thompson 2003). As expected, because the co-
hort is younger, the average volumes for the QTIM sample
were larger than the ADNI sample (Left: t03.30; P00.0010;
∆2.0 %; Right: t07.00; P<0.0001; ∆4.1 %; Average Bilateral:
t05.37; P<0.0001; ∆3.1 %).

Reliability of lentiform nucleus segmentation

To examine how reliable the automated segmentations were,
when measured by FIRST, we obtained repeated scans for 40
subjects from the QTIM sample (time between scans: 120±
55 days) and applied the FIRST algorithm to each scan sepa-
rately. Using the intraclass correlation coefficient (ICC), we
found the FIRST segmentations to be very highly reliable for
the left (ICC00.922), right (ICC00.890), and average bilat-
eral (ICC00.928) lentiform nucleus volumes (Fig. 2).

Heritability of lentiform nucleus volume

Using twin and family data from the QTIM, we modeled the
additive genetic effects (A), effects of the common environ-
ment shared by both twins (C), and unique environment effects
and experimental error (E). The components of the ‘ACE’
model are used to estimate the amount of variance in a measure
that can be ascribed to purely genetic influences (its heritabil-
ity). Lentiform nucleus volume is highly heritable (between 70
and 80 %) as has been found for many other structures in the

Fig. 2 Scan and re-scan volume values of the lentiform nucleus
delineated using the automated FIRST segmentation algorithm. The
black line on the diagonal represents the ideal situation where the

segmented volumes are identical. In general, there is good agreement
between the segmented volumes for both scans
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brain (Kremen et al. 2010) (Table 1). The heritability of the
lentiform nucleus volume is also evident in a scatterplot show-
ing the similarity among twin pairs, monozygotic twins (black
dots) have more similar lentiform nucleus volumes in general
compared to dizygotic twins (open dots; Fig. 3). The genetic
correlation (rg) is the proportion of the observed variance
between two traits that can be explained by common genetic
influences (Neale et al. 1992). As the structures of the lentiform
nucleus are closely related, we expect them to share common
genetic determinants. Indeed, the genetic correlation between
the putamen and globus pallidus was high: rg00.54 (95 % CIs
0.39, 0.82) for the left and rg00.56 (95 % CIs 0.40, 0.69) on
the right. In addition, the genetic correlation between the left
and right lentiform nucleus reveals that the volume of the
structure on each side has almost perfect overlap in its genetic
determinants: rg00.93 (95 % CIs 0.88, 1.00).

Genome-wide association testing

As the lentiform nucleus is involved in a number of brain
disorders and its volume is heritable, we conducted genome-
wide tests of association on a large set of SNPs from the two
independent cohorts to identify genetic variants that help to
explain the considerable genetic influence on lentiform nucleus
volume. Q-Q plots of the distribution of P-values for each
individual sample show that the association statistics are ap-
proximately Normal (Fig. 4). Genomic inflation factor values
(lambda) indicate that the distribution of P-values is unbiased
and that the results are not likely to be attributable to population
stratification.

Meta-analysis

Test statistics from each study were combined meta-analytically
to increase the power to detect real effects and to reduce false
positives. Beta values, and their standard error, for SNPs from
each regression model were combined across samples. The
signs of Beta values were determined based on the reference
allele in each study and combined using a fixed-effects, inverse
variance-weighted meta-analysis (Han and Eskin 2011). Meta-
analysis is preferred in this case, as opposed to combining all
subjects into a single combined analysis, as the two samples
have very different age distributions, image acquisition param-
eters, and the QTIM is a family-based study that requires
complex regression methods (to account for kinship).

In the Manhattan plot of the P-values from each meta-
analysis, a number of promising genetic variants were associ-
ated with lentiform nucleus volume, including one SNP that
exceeds the standard, nominal genome-wide significance level
P<5×10-8 after meta-analysis (Fig. 5). A list of the top SNPs
from each analysis with a meta-analyzed P-value (PMA) thresh-
old of PMA<1x10

-6 is given in Table 2.
A broad band of SNPs shows high association with lenti-

form nucleus volume in the flavin-containing monooxygenase
gene cluster on chromosome 1 (Fig. 6). The most highly
associated SNP, rs1795240, is located approximately 5 Kb
outside of the flavin-containing monooxygenase 3 (FMO3)
gene. It shows genome-wide significant associations with len-
tiform nucleus volume (PMA04.79×10

−8). Individual associa-
tion statistics for rs1795240 show significance in both the
ADNI (β0−143.48; SE(β)028.15; minor allele0A; P0

Table 1 Heritability estimates (a2) for lentiform nucleus volume.
These analyses were run in Mx on 637 individuals (i.e., including up
to 3 individuals per family so two non-twin siblings who were the 4th

family member were not included). Data were winsorised to ±3.3SD.
Sex and age were included as covariates

Model -2LL df Δ-2LL Δdf AIC a2 (95%CI) c2 (95%CI) e2 (95%CI)

Avg. Lent.

ACE 1447.604 631 – – 185.6 0.78 (0.60, 0.84) 0.00 (0.00, 0.18) 0.22 (0.16, 0.29)

AE 1447.604 632 0.00 1 183.6 0.78 (0.71, 0.84) – 0.22 (0.16, 0.29)

CE 1486.895 632 39.3 1 222.9 – 0.52 (0.43, 0.59) 0.48 (0.41, 0.57)

E 1580.518 633 132.9 2 314.5 – – 1.00 (1.00, 1.00)

Left Lent.

ACE 1475.217 631 – – 213.2 0.76 (0.57, 0.82) 0.00 (0.00, 0.17) 0.24 (0.18, 0.32)

AE 1475.217 632 0.00 1 211.2 0.76 (0.68, 0.82) – 0.24 (0.18, 0.32)

CE 1508.829 632 33.6 1 244.8 – 0.50 (0.40, 0.58) 0.50 (0.42, 0.60)

E 1595.305 633 120.1 2 329.3 – – 1.00 (1.00, 1.00)

Right Lent.

ACE 1498.969 631 – – 237.0 0.71 (0.52, 0.78) 0.00 (0.00, 0.16) 0.29 (0.22, 0.39)

AE 1498.969 632 0.00 1 235.0 0.71 (0.61, 0.78) – 0.29 (0.22, 0.39)

CE 1526.486 632 27.5 1 262.5 – 0.46 (0.36, 0.55) 0.54 (0.45, 0.64)

E 1595.929 633 97.0 2 329.9 – – 1.00 (1.00, 1.00)
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3.46×10−7) and QTIM (β0−76.57; SE(β)030.12; minor
allele0A; P00.011) samples. The observed effect is likely
greater in the ADNI sample due to the greater sample size, but
the effect may also increase with age or disease. Additionally,
the second most associated SNP, rs1795243 (PMA08.76×10

−8),
lies in an untranslated region of the FMO6P pseudogene. The
variant rs1795243 shows strong evidence for association in both
samples (ADNI: β0−141.44; SE(β)028.53; minor allele0C;
P07.12×10−7; QTIM: β0−76.805; SE(β)030.20; minor
allele0C; P00.011). Additionally, a number of the top hits were
located in GATAD2B and EPB41L2 among others (detailed in
Table 2). After controlling for diagnosis in the ADNI sample,
there was little change in observed P-values (See the Pdiag
column in Table 2). Two dummy variables were added as
covariates to the regression model to account for each of the
three different diagnostic categories in the ADNI sample. This
was not necessary in the QTIM sample, as they are all healthy
young adults. The random effects meta-analysis of these same
SNPs gave nearly identical results to the fixed-effects meta-
analysis (see Fig. 7).

Gene-based tests and pathway analysis

The genes FMO3 (P01.03×10−6) and FMO6P (P01.32×
10−6) exceed the nominal gene-wide significance level of

P<5×10−6. A number of other genes show promising
evidence of association with lentiform nucleus volume:
SLC39A1 (P07.56×10−6), DENND4B (P01.53×10−5),
GATAD2B (P02.25×10−5), and FOXF2 (P09.59×10−5).
Pathway enrichment analysis in KGG reveals seven path-
ways that exceed the nominal significance level for pathway
enrichment (5×10−4) including the reactome phase 1 func-
tionalization pathway (P01.34×10−5) and the KEGG drug
metabolism pathway of cytochrome P450 (P05.66×10−5).
Additional results of the pathway analysis are given in
Table 3.

Discussion

In this study, we identified specific genetic variants associ-
ated with differences in lentiform nucleus volume in two
large independent samples, including both young and elder-
ly subjects (N01345). We were well powered to find genetic
variants that explain some of the heritability of the lentiform
nucleus volume, with one SNP exceeding the nominal
genome-wide significance threshold. Our two cohorts dif-
fered in many ways, but mainly in mean age (50 years).
Despite the differences, we identified a number of variants
with compelling evidence for association in both samples.

Fig. 3 Scatterplot of lentiform nucleus volume in monozygotic (black
dots) and dizygotic (open dots) twin pairs from the QTIM. Data points
closer to the diagonal line represent similar lentiform nucleus volumes
across a given twin pair. In general, the lentiform nucleus volumes in

the monozygotic twins are closer than their dizygotic counterparts,
which is a sign of genetic influence (confirmed by our heritability
analysis)

Fig. 4 Q-Q plots for observed
association P-values of SNPs
from both datasets (after
removing poorly imputed SNPs
and SNPs with a minor allele
frequency below 0.01). The
genomic inflation factor
(lambda) is given for each
measure (inset). There is no
evidence of inflated P-values
influencing the meta-analysis
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Associations were detectable despite differences in study
protocols; the genes implicated may therefore have a statis-
tical effect on lentiform nucleus volume throughout life.
Further replication in independent samples (e.g. as in Stein
et al. 2012 and Bis et al. 2012) and examination of func-
tional relevance will still be required to further support a
causal role for these variants.

We originally chose to study the lentiform nucleus as it is
implicated in several genetically mediated disorders includ-
ing Parkinsonian syndromes, Huntington’s disease,
Wilson’s disease, Tourette’s syndrome, and ADHD. While
the putamen is more similar to the caudate histologically, the
putamen and globus pallidus are linked by dense intrabasal
ganglionar fiber projections. In addition, the genetic corre-
lations between the two structures of the lentiform nucleus
were very high (rg00.56 and rg00.54, for left and right,
respectively). This high genetic correlation means that the
two structures share many common genetic determinants.
This provided empirical support for analyzing the two struc-
tures together, in addition to our theoretical reasons for
choosing to study the lentiform nucleus. Even so, we note
that other natural groupings of structures may be beneficial
for future assessment. Although we opted to combine the
putamen and globus pallidus, the putamen is functionally
more related to the caudate, and together they make up the
striatum, which receives afferent projections from large
parts of the cortex. In the future, when a broad range of
subcortical segmentations are available in large family-
based samples, it will be possible to perform genetic clus-
tering to determine logical groupings of subcortical nuclei
with coherent genetic determination (C. H. Chen et al. 2012;
Chiang et al. 2012). By clustering regions with overlapping
genetic determinants, it should be possible to boost the
power to detect underlying genetic determinants via
GWAS (as shown by (Chiang et al. 2012). In addition,
variance component modeling performed in the QTIM sam-
ple shows that the left and right lentiform nucleus volume
are around 70–80 % heritable (see Table 1). This agrees with
published heritability estimates for the putamen and globus

pallidus (Kremen et al. 2010; Peper et al. 2007). We exam-
ined the reliability of lentiform nucleus segmentations by
processing repeated scans in 40 subjects from the QTIM
sample. The resulting volumes were highly reliable using
the automated FSL FIRST software (Patenaude et al.
2011)(Fig. 2), and the reproducibility also agrees with prior
estimates (Morey et al. 2010).

Awide band of SNPs from the flavin-containing monoox-
ygenase (FMO) gene cluster on chromosome 1 showed sig-
nificant evidence of association in both samples and after
meta-analysis, with one SNP exceeding the nominal
genome-wide significance level. The FMO gene cluster con-
sists of five tightly-spaced genes (FMO1-4 and FMO6P)
responsible for the metabolism of trimethylamine, methio-
nine, and cysteamine as well as a number of therapeutic
medications including tamoxifen, ranitidine, sulindac, and
itopride (Williams et al. 2004). Additionally, the FMO gene
cluster is involved in the oxidation of certain environmental
toxicants like insecticides and aldicarb (Krueger andWilliams
2005). Of the genes in the FMO gene cluster, FMO1 and
FMO3 have been studied extensively. Carriers of a number
of common genetic variants have reduced efficacy metaboliz-
ing certain drug substrates (Koukouritaki et al. 2002; Overby
et al. 1997; Yeung et al. 2000). The role of the FMO gene
cluster in the metabolism of common environmental toxicants
suggests a common underlying mechanism that might yield
association results in the young, healthy population of twins
that overlaps with association we found in our sample of
elderly controls and patients. It is unlikely that the association
in these samples were driven by the use of therapeutic med-
ications such as opiates or anti-depressants, as most partici-
pants were healthy. Follow up studies are still needed to
determine whether commonly used substances, such as alco-
hol, nicotine, commonly abused drugs, or anti-inflammatory
drugs exert detectable and systematic anatomical effects on
structures in the reward circuitry, and if they lead to any
detectable changes in FMO gene expression.

The most highly associated SNP, rs1795240, is located
just downstream of the FMO3 gene. A number of common

Fig. 5 Manhattan plot of meta-analyzed P-values (PMA) from both the
ADNI and QTIM samples (N01345). Each plotted point is the –
log10(PMA) of a given SNP sorted by chromosome. The dotted gray

line denotes the standard, nominal genome-wide significance level –
log10(5×10

−8). Each point plotted above the gray line indicates a
genome-wide significant SNP
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genetic variants in the FMO3 gene have been linked with
decreased catalytic activity and the disorder trimethylami-
nuria (Hines 2006; Koukouritaki et al. 2007). The FMO3
gene is expressed mainly in the liver but also in the human
brain, and may affect how numerous therapeutic drugs are
metabolized by the central nervous system (Cashman and
Zhang 2002). In addition, an analysis of the Allen Brain
Atlas (http://human.brain-map.org/) shows that FMO3 is
differentially expressed in the posterior portion of the lenti-
form nucleus (Fig. 8).

The second most highly associated SNP, rs1795243, was
found in the FMO6P pseudogene, which is transcribed into
mRNA, but not translated into a protein product (Hines et al.
2002). Pseudogenes are not ultimately converted to proteins,
but can act as regulatory elements and are under evolutionary
control (Poliseno et al. 2010; Wen et al. 2011). The exact
mechanism of action of the FMO6P pseudogene is still un-
known, but the associations identified in this study may make

it an ideal candidate for future genetic studies of neurodegen-
erative disorders and functional tests of FMO6P mechanistic
effects. Previously, a large case-control GWAS study found
mild evidence of association of the FMO6P gene with schizo-
phrenia (Athanasiu et al. 2010).

Gene-based test statistics confirmed the association of
FMO3 and FMO6P with lentiform nucleus volume—as
found in the univariate study—with both genes exceeding
the nominal gene-wide significance level. The gene-based
tests also promoted SLC39A1 to a higher significance level
(P07.56×10−6) than might be expected compared to the
other genes in the univariate SNP GWAS. The role of
SLC39A1 is very well studied. It is expressed in the brain
and is involved in maintaining an appropriate zinc concen-
tration inside the blood-brain barrier (Bobilya et al. 2008).
Pathway enrichment analysis, performed with KGG, com-
bines gene-based test statistics to examine whether known
disease and biological pathways are over-represented in the

Fig. 6 Detailed view of the
flavin-containing monooxyge-
nase gene cluster. Points corre-
spond to the –log10(PMA-value)
for the average lentiform nu-
cleus volume. The colors of
each point correspond to level
of linkage disequilibrium (LD)
between a given SNP and the
most associated SNP
rs1795240. Plots were generat-
ed using the LocusZoom soft-
ware (http://csg.sph.umich.edu/
locuszoom/)

Fig. 7 Manhattan plot of meta-analyzed P-values (PMA) from both the
ADNI and QTIM samples (N01345) using a random effects model
(Han and Eskin 2011). Each plotted point is the –log10(PMA) of a given
SNP sorted by chromosome; points plotted higher on the y-axis are

more significant. The dotted grey line denotes the nominal genome-
wide significance level –log10(5×10

−8). The results are consistent with
those found using the standard fixed effects analysis
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gene sets from our analysis, relative to what might be
expected by chance. In all, there were seven biological
pathways that reached significance (see Table 3). The most
significant pathway, reactome phase 1 functionalization,
supports the many studies suggesting that the FMO3 gene
is involved in processing environmental toxins (Krueger and
Williams 2005; Williams et al. 2004). The next most signif-
icant pathway, KEGG drug metabolism pathway of cyto-
chrome P450, involves the cytochrome P450 superfamily of
enzymes responsible for metabolizing numerous drugs

including codeine, morphine, carbamazepine, citalopram,
and clozapine (Hines et al. 2008). Cashman and Zhang
showed that FMO3 is expressed in various regions through-
out the brain including in the striatum (Cashman and Zhang
2002). Earlier studies using human microsomes showed that
numerous brain tissues actively metabolize psychoactive
drug substrates including chlorpromazine, imipramine and
fluoxetine (Bhagwat et al. 1996; Bhamre et al. 1995). In
addition, several positron emission tomography studies have
demonstrated significant differences in glucose metabolism

Table 3 Significantly enriched pathways determined by pathway analysis with KGG (Li et al. 2010, 2011). Details for the pathways given can be
found of the Gene Set Enrichment Analysis website (http://www.broadinstitute.org/gsea/). Pathways that exceed the threshold P<5×10−4 were
considered to be significantly enriched

Pathway Name Pathway P-value Gene Gene P-value Chr Length (bp) SNP#

REACTOME_PHASE_1_FUNCTIONALIZATION 1.34×10−5 FMO3 1.03×10−6 1 46941 40

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 5.66×10−5 FMO1 0.0073 1 57450 48

– – FMO2 0.0077 1 47434 44

– – FMO3 1.03×10−6 1 46941 40

REACTOME_PHASE_1_FUNCTIONALIZATION_
OF_COMPOUNDS

6.49×10−5 FMO1 0.0073 1 57450 48

– – CYP51A1 0.028 7 42596 5

– – FMO2 0.0077 1 47434 44

– – FMO3 1.03×10−6 1 46941 40

REACTOME_ZINC_INFLUX_INTO_CELLS_
BY_THE_SLC39_GENES_FAMILY

6.81×10−5 SLC39A1 7.56×10−6 1 28600 2

REACTOME_BIOLOGICAL_OXIDATIONS 1.10×10−4 MAT2A 0.034 2 26115 5

– – FMO1 0.0073 1 57450 48

– – CYP51A1 0.028 7 42596 5

– – FMO2 0.0077 1 47434 44

– – FMO3 1.03×10−6 1 46941 40

– – NNMT 0.039 11 36703 16

REACTOME_ZINC_TRANSPORTATION 1.21×10−4 SLC39A1 7.56×10−6 1 28600 2

REACTOME_METAL_ION_SLC_TRANSPORTERS 1.66×10−4 SLC39A1 7.56×10−6 1 28600 2

Fig. 8 Expression levels of FMO3 gene in the lentiform nucleus of
two different subjects (a and b; details can be found at http://human.
brain-map.org/). Expression levels were standardized to a mean ex-
pression level to eliminate background noise and are presented here as

Z-scores (where |Z-score|>2.5 indicate evidence of differential expres-
sion of the FMO3 compared to other regions of the brain). Numerous
points in the posterior portion of the lentiform nucleus show evidence
of significant differential expression of the FMO3 gene
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in the lentiform nucleus in patient-versus-control compar-
isons of psychoactive drugs like fluoxetine and chlor-
promazine (Chen et al. 2009; Mayberg et al. 2000; Wik
et al. 1989). Each of these studies lends credibility to the
findings in this study and future endeavors to further
understand the mechanisms by which gene variants in
the FMO gene cluster may influence lentiform nucleus
volume.

Several weaknesses of our study should be mentioned.
First, we provide evidence for association of genetic variants
in the flavin-containing monooxygenase (FMO) cluster but
we do not yet know the mechanistic means bywhich theymay
change expression levels or protein structures, or how they
might affect lentiform nucleus volumes. Unfortunately, func-
tional and expression data are not yet available for either
cohort, but they may be available in future cohorts. Second,
the two samples have very differentmean ages (over 50 years).
Combining data meta-analytically between groups penalizes
SNPs that are significant in one sample, but not the other. This
analysis of two cohorts is a special case of a meta-analysis,
which tends to boost power to detect true positive associations
by aggregating information frommultiple cohorts. Clearly the
power to detect an association with a given effect size depends
on the available sample size, so in general the power is
increased by increasing the sample size alone. The power of
a meta-analysis may be slightly lower than that obtainable in a
very large sample all scanned on the same scanner with the
same protocol, but practical limitations constrain how many
subjects can be scanned and genotyped at any one center, so
multi-site efforts can be more efficient than studies at any
single site. In that case, meta-analyses may offer high power
so long as the chosen phenotypes are measured consistently
and reliably across datasets. At the same time, meta-analysis
reduces the chance of false positives as it penalizes results that
are not consistently detectable across sites; in other words, it
finds effects that are known to generalize to other cohorts, and
less likely to be spurious associations attributable to the ge-
netic diversity or particular ascertainment or sampling of any
one cohort. In cases where the genetic expression has a
compact temporal expression pattern, our analysis may lead
to false negatives, as an effect could be detected in one sample
but not the other. The genes identified in our analysis should
be thought of as those associated with lentiform nucleus
volume throughout life. Genetic variants that were not asso-
ciated with lentiform nucleus volume could certainly still be
involved in cellular or functional differences, so the findings
must be interpreted recognizing the power and limitations of
the study. Third, the proportion of the sample variance
explained by the top SNP, rs1795240, is relatively small
(ADNI: 2.68 %; QTIM: 0.84 %). However, a SNP that
explains 1–3 % of the overall variability is comparable to
the strongest SNP effects observed for other complex traits
in even larger studies (Bis et al. 2012; Stein et al. 2012). The

small effect sizes and complexity of phenotypic traits mean
that individual common SNPs will each probably explain a
small portion of the overall observed variability of a given
trait. In addition, the proportion of variability explained by the
top SNP in each sample is different. Further exploration is
needed to determine age related effects ofFMO3 gene variants
on lentiform nucleus volume.

The genetic variants identified in our analysis provide
replicated, genome-wide significant evidence for the FMO
gene cluster’s involvement in lentiform nucleus volume. In
addition, gene-based tests and pathway enrichment analysis
provide evidence of probable mechanistic actions through
which the variants in our analysis might affect lentiform
nucleus volume. Future study is still needed to explain the
functional mechanisms of change.
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Identifying genetic variants influencing human brain structures 
may reveal new biological mechanisms underlying cognition 
and neuropsychiatric illness. The volume of the hippocampus is 
a biomarker of incipient Alzheimer’s disease1,2 and is reduced 
in schizophrenia3, major depression4 and medial temporal lobe 
epilepsy5. Whereas many brain imaging phenotypes are highly 
heritable6,7, identifying and replicating genetic influences has 
been difficult, as small effects and the high costs of magnetic 
resonance imaging (MRI) have led to underpowered studies. 
Here we report genome-wide association meta-analyses and 
replication for mean bilateral hippocampal, total brain and 
intracranial volumes from a large multinational consortium. 
The intergenic variant rs7294919 was associated with 
hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) 
and the expression levels of the positional candidate gene 
TESC in brain tissue. Additionally, rs10784502, located within 
HMGA2, was associated with intracranial volume (12q14.3; 
N = 15,782; P = 1.12 × 10−12). We also identified a suggestive 
association with total brain volume at rs10494373 within 
DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).

The hippocampal formation is a key brain structure for learning, 
memory8,9 and stress regulation10 and is implicated in many neuro-
psychiatric disorders. Further, overall brain and head sizes are altered 
in many disorders and are significantly correlated with general cogni-
tive ability11–13. Hippocampal, total brain and intracranial volumes 
are highly heritable in non-human primates14,15 and in humans6,7. 
Finding loci that influence these measures may lead to the identifica-
tion of genes underlying susceptibility for neuropsychiatric diseases. 
Here we sought to identify common genetic polymorphisms influ-
encing hippocampal, total brain and intracranial volumes in a large 
multinational consortium.

Our discovery sample comprised 17 cohorts of European ancestry 
from whom genome-wide SNPs and structural MRI data were collected 
(Supplementary Tables 1–3). Unselected population samples and 
case-control studies were included, with cases ascertained for neuro-
psychiatric disorders including depression, anxiety, Alzheimer’s dis-
ease and schizophrenia. To distinguish whether putative effects at these 
loci varied with disease status, analyses were run in the full sample  
(N = 7,795) and in a healthy subsample (N = 5,775). To help disentangle 
overall brain size effects from those specific to hippocampal volume, 
associations were assessed with and without controlling for total brain 
and intracranial volumes (Online Methods). As the initial goal of the 

study was to explore associations with hippocampal volume, total brain 
and intracranial volumes were analyzed in healthy subjects only.

Phenotypes were computed from three-dimensional anatomical  
T1-weighted magnetic resonance images, using validated auto-
mated segmentation programs16–18 (Supplementary Fig. 1 and 
Supplementary Tables 4 and 5). Extensive quality control analysis of 
segmentation was performed on sample outliers; subjects with poorly 
delineated brain volume phenotypes were removed (Supplementary 
Figs. 2–6). The mean bilateral hippocampal volume across the dis-
covery cohorts was 3,917.4 mm3 (s.d. = 441.0 mm3).

Heritability of structural brain phenotypes was estimated in a 
 sample of Australian monozygotic and dizygotic twins and their 
 siblings (Queensland Twin Imaging (QTIM) study; N = 646, including 
ungenotyped participants; age range = 20–30 years) for hippocampal 
volume (h2 = 0.62), total brain volume (h2 = 0.89) and intracranial 
volume (h2 = 0.78). Hippocampal volume was also highly heritable in 
an extended pedigree cohort of Mexican-Americans from the United 
States (Genetics of Brain Structure and Function (GOBS); N = 605; 
age range = 18–85; h2 = 0.74), as were total brain volume (h2 = 0.77) 
and intracranial volume (h2 = 0.84). All heritability estimates were 
highly significant (P < 0.001).

To enable consortium-wide comparison of ancestry and to adjust 
appropriately for population stratification, each site conducted 
multidimensional scaling (MDS) analyses comparing their data 
to the HapMap 3 reference populations (Supplementary Fig. 7).  
All subsequent analyses included the following covariates: sex,  
linear and quadratic effects of age, interactions of sex with age covariates,  
MDS components and dummy covariates for different magnetic 
resonance acquisitions. Analyses were filtered for genotyping and 
imputation quality (Supplementary Fig. 8 and Supplementary  
Table 6); distributions of test statistics were examined at the cohort 
level through Manhattan and quantile-quantile plots (Supplementary 
Figs. 9–24). We conducted fixed-effects meta-analysis with METAL, 
applying genomic control19 (Supplementary Figs. 25–32). For com-
pleteness and to account for heterogeneity across sites, a random- 
effects meta-analysis was also performed20 (Supplementary  
Figs. 33–40). We attempted in silico replication of the top five loci for 
each trait within the combined CHARGE Consortium discovery set 
and 3C replication sample21 (N = 10,779), as well as in two cohorts 
of European ancestry (imputed to the Utah residents of Northern 
and Western European ancestry (CEU) and/or Toscani in Italy (TSI) 
HapMap cohorts; N = 449) and in two additional cohorts (imputed 
to combined CEU and Yoruba in Ibadan, Nigeria (YRI), and to 
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Mexican ancestry in Los Angeles, California 
(MEX); N = 842). We also undertook custom  
 genotyping of the two most promising  
SNPs in two additional samples of European 
ancestry (BIG replication and Trinity College 
Dublin/National University of Ireland, 
Galway (TCD/NUIG); N = 1,286).

In general, previously identified poly-
morphisms associated with hippocampal 
volume showed little association in our meta-
analysis (BDNF, TOMM40, CLU, PICALM, 
ZNF804A, COMT, DISC1, NRG1, DTNBP1; 
Supplementary Table 7), nor did SNPs pre-
viously associated with schizophrenia22 and 
bipolar disorder23 (Supplementary Table 8). 
The most significant SNPs in each analysis 
from the discovery sample (P  5 × 10−5) 
are listed (Supplementary Tables 9–16). No 
markers reached genome-wide significance 
(P < 1.25 × 10−8; Online Methods) in the dis-
covery sample alone. However, the strongest 
associations for hippocampal and intracranial 
volumes were replicated, yielding results at genome-wide significance 
(Fig. 1 and Table 1; see Supplementary Tables 17–25 for additional 
results and gene-based tests24).

In our discovery sample, two SNPs in the same linkage disequilib-
rium (LD) block showed strong associations with hippocampal volume 
after controlling for intracranial volume (rs7294919 and rs7315280; 
r2 = 0.81, CEU 1000 Genomes Pilot 1). A random-effects analysis of 
the discovery sample, conducted to examine heterogeneity between 
cohorts, reduced significance only slightly for rs7294919 (P = 4.43 ×  
10−7) compared to the primary fixed-effects analysis (P = 2.42 ×  
10−7). The association was consistent, although stronger, in the full 
sample compared to the healthy subset (Fig. 2). Notably, the association 
was robust to the effects of head and brain size (Fig. 2), and the locus 
was not significantly associated with intracranial volume (P = 0.54)  
or total brain volume (P = 0.41). This suggests an effect at the level of 
the hippocampus rather than on brain size in general. The direction of 
the effect was consistent across samples and ages (Fig. 1). Haplotype 
analysis of directly genotyped variants near rs7294919 in two samples 
confirmed that the association was present across the haplotype and 
that the causal variant was well marked by rs7294919 (Supplementary 
Note). rs7294919 was also significantly associated with hippocampal 
volume in the cohorts from the CHARGE Consortium, which are 

composed of elderly subjects. Meta-analysis of the Enhancing Neuro 
Imaging Genetics through Meta-Analysis (ENIGMA) discovery 
and replication samples with those from the CHARGE Consortium 
yielded a highly significant association for rs7294919 (P = 6.70 × 
10−16; N = 21,151).

rs7294919 lies between HRK and FBXW8 (12q24.22; Fig. 1) 
and is not in LD with any SNPs within coding sequences, UTRs or 
splice sites within 500 kb (r2 > 0.4) in the CEU sample from the 
1000 Genomes Project Phase 1. To determine whether the observed 
association is related to a regulatory mechanism, we examined poten-
tial cis effects of this variant on expression levels of genes within a 
1-Mb region. In temporal lobe tissue resected from 71 individuals 
with mesial temporal lobe epilepsy and hippocampal sclerosis in the 
University College London (UCL) epilepsy cohort, we examined 
association between rs4767492 (a proxy for rs7294919, which was 
not directly genotyped; r2 = 0.636 in 1000 Genomes Project Phase 1)  
and expression levels. This analysis suggested an association (P = 
0.006, controlling for age) with expression of the TESC gene, which 
lies 3  to FBXW8 (149 kb; Fig. 3). To corroborate this finding, we 
used the publicly available SNPExpress database (see URLs), which 
includes data on gene expression in post-mortem frontal cortex from 
93 subjects. In this independent sample, expression levels of TESC 
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Figure 1 Association results and meta-analysis 
of effects in individual and combined analyses. 
(a) The strongest association with hippocampal 
volume was found for rs7294919. Fixed-
effects meta-analysis P values are shown41 
after controlling for intracranial volume using 
all subjects in the discovery sample. (b) The 
strongest association with intracranial volume 
was found for rs10784502. Fixed-effects meta-
analysis P values are shown in healthy subjects 
only. (c,d) The effect within each sample 
contributing to the meta-analysis is shown in 
forest plots for hippocampal volume (c) and 
intracranial volume (d). Association data using 
intracranial volume as a phenotype were not 
available for the EPIGEN sample. Head size was 
not controlled for in the CHARGE Consortium 
association analyses.
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again significantly differed by genotype (rs4767492; P = 0.0021). 
Additional replication came from the UK Brain Expression Database, 
where TESC expression in post-mortem brain tissues from 134 indivi-
duals free from neurological disorders showed a strong difference by 
genotype in temporal cortex (rs7294919; P = 9.7 × 10−4 for gene and 
4.8 × 10−5 for exon 8). Given the small sample sizes and low minor 
allele frequency of this SNP (MAF = 0.099), no homozygotes for 
the minor allele were observed in any brain tissue sample, limiting 
the inferences we can draw regarding mode of action. Expression of 
HRK showed little evidence of association with the proxy genotype 

in the UCL epilepsy cohort (P = 0.11) or SNPExpress (P = 0.16) but 
was associated with rs7294919 in temporal cortex within the UK 
Brain Expression Database (P = 0.0051). Additional associations 
were observed in peripheral blood mononuclear cells (PBMCs; 
Supplementary Note).

The expression results in brain tissue suggest that TESC is a primary 
positional candidate for our quantitative trait locus (QTL). Studies of 
mouse and chicken embryos show that TESC is expressed throughout 
the brain during development, with the strongest expression in the devel-
oping telencephalon and mesencephalon and near the developing ven-
tricles25. TESC also has moderate expression in the human hippocampus 
during adulthood (Allen Institute Brain Atlas, see URLs; Fig. 3). Its pro-
tein product, tescalcin, interacts with the Na+/H+ exchanger (NHE1)26, 
which is involved in the regulation of intracellular pH21, cell volume 
and cytoskeletal organization27. TESC expression is strongly regulated 
during cell differentiation in a cell lineage–specific fashion28,29. Our data 
suggest that this role in cell proliferation and differentiation is relevant 
for hippocampal volume and brain development.

Table 1 Results from the genome-wide association meta-analyses of mean hippocampal, intracranial and total brain volumes

Sample N
Freq. of the  
effect allele  (mm3) S.E. (mm3) P value

Heterogeneity  
P value

Variance  
explained (%)h

Mean bilateral hippocampal volumea

rs7294919b

Discovery Fixed-effects model 7,795 0.104 50.27 9.71 2.42 × 10−7 0.913 0.242
     Random-effects model 50.12 9.65 4.43 × 10−7 0.910 0.241
ENIGMA CEU and TSI replication 1,735 0.101 22.05 19.00 0.246 0.924 0.042
ENIGMA CEU and YRI or MEX replication 842 0.125 27.77 25.96 0.285 0.127 0.095
Discovery and replication 10,372 0.106 42.74 8.22 1.99 × 10−7 0.347 0.177
CHARGE in silico replication 10,779 0.093 52.70 8.45 3.40 × 10−10 0.442 0.458
ENIGMA and CHARGE 21,151 0.099 47.58 5.89 6.70 × 10−16 0.419 0.265

Intracranial volumec

rs10784502d

Discovery Fixed-effects model 5,778 0.488 11860.73 2319.00 3.14 × 10−7 0.783 0.281
     Random-effects model 11841.80 2270.07 3.93 × 10−7 0.771 0.280
ENIGMA CEU and TSI replicatione 1,130 0.525 15758.59 5244.69 0.003 0.065 0.468
ENIGMA CEU and YRI or MEX replication 699 0.348 1928.43 6215.31 0.756 0.710 0.008
Discovery and replication 7,607 0.479 11395.74 2007.27 1.37 × 10−8 0.217 0.261
CHARGE in silico replication 8,175 0.501 7429.56 1630.92 5.23 × 10−6 NA 0.110
ENIGMA and CHARGE 15,782 0.491 9006.71 1265.78 1.12 × 10−12 0.145 0.166

Total brain volumef

rs10494373g

Discovery Fixed-effects model 5,778 0.082 13693.29 3187.51 1.74 × 10−5 0.688 0.198
     Random-effects model 13562.00 3114.17 2.69 × 10−5 0.728 0.194
ENIGMA CEU and TSI replication 117 0.107 8435.89 20256.09 0.678 NA 0.001
ENIGMA MEX replication 605 0.097 26883.36 8608.20 0.001 NA 0.964
Discovery and replication 6,500 0.085 14778.23 2957.14 5.81 × 10−7 0.182 0.240

Freq., frequency. CEU, TSI YRI and MEX refer to the HapMap 3 reference panels most representative of the sample and used for imputation; NA, not applicable.
aMean bilateral hippocampal volume association results were corrected for intracranial volume, sex, age, age2, sex × age and sex × age2, and individuals with disease were included in the 
analysis. brs7294919 is located at 12q24.22: position 115,811,975. Effect allele, C; non-effect allele, T. Genomic positions are based on the NCBI36/hg18 (March 2006) genome assembly. 
cAssociation results for intracranial volume were corrected for sex, age, age2, sex × age, sex × age2, and individuals with disease were excluded from this analysis. drs10784502 is at 12q14.3: 
position 64,630,077. Effect allele, C; non-effect allele, T. eIntracranial volume and total brain volume were available for two participants in MPIP and one participant in the BIG cohort who did 
not have hippocampal volume measures. The proxy SNP rs8756 was genotyped in the TDC/NUIG cohort. fAnalysis for total brain volume was corrected for sex, age, age2, sex × age, sex × age2, 
and individuals with disease were excluded. Total brain volume was not available for the ENIGMA replication cohorts. Within the CHARGE Consortium, a normalized version of total brain volume 
was analyzed and defined as total brain volume intracranial volume, and, because of this, the results are not comparable between consortia. grs10494373 is at 1q23.3: position 160,885,986. 
Effect allele, C; non-effect allele, A.hCalculated as 2pq × 2 / (s.d.)2, where p and q are the minor and major allele frequencies,  is the unstandardized regression coefficient and s.d. is from the 
phenotype in the absence of covariate corrections. Intracranial volume phenotypic variance from the ENIGMA discovery sample was used to calculate percent variance explained in the CHARGE 
in silico replications, as this information was not available from the CHARGE consortium.

rs7294919

Hippocampal I ICV; healthy only (P = 9.2 × 10–5)

Hippocampal I TBV; healthy only (P = 0.00022)

Hippocampal I Other; healthy only (P = 0.00012)

Hippocampal I ICV; all subjects (P = 2.4 × 10–7)

Hippocampal I TBV; all subjects (P = 5.8 × 10–7)

Hippocampal I Other; all subjects (P = 2.2 × 10–7)
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Figure 2 Association of rs7294919 with hippocampal volume stratified 
by disease and covariates. Effects are consistent in the discovery sample 
regardless of whether individuals with disease (N = 7,795) or only healthy 
subjects (N = 5,775) were included. The effect is also consistent whether 
accounting for intracranial volume (ICV), total brain volume (TBV) or 
without a measure of head size (Other).
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The strongest association with intracranial volume was observed at 
rs10784502 (Table 1), an intronic SNP near the 3  UTR of the HMGA2 
gene (12q14.3; Fig. 1). This locus was associated with intracranial 
volume across lifespan, as shown by the strong replication in samples 
from healthy elderly individuals in the CHARGE Consortium. The 
combined analysis resulted in the identification of a highly significant 
association (P = 1.12 × 10−12). Of note, rs10784502 has been reliably 
associated with increased adult height (P = 3.636 × 10−32; effect allele: 
C)30. The genetic correlation between height and intracranial volume 
within the QTIM sample was significant (rg = 0.31; P = 1.34 × 10−7), as 
was that observed in the GOBS sample (rg = 0.20; P = 0.026), suggest-
ing modest overlap of shared genetic determinants. rs10784502 also 
had an effect on total brain volume in the discovery sample (P = 9.49 × 
10−5). When considering the results from the intracranial volume meta-
analysis in SNPs previously associated with height31–33 (NSNPs = 175;  

Supplementary Fig. 41), a clear inflation of the test statistic was 
observed (  = 1.44), indicating that SNPs associated with height 
are also associated with intracranial volume. This enrichment, 
which was not observed for hippocampal volume (Supplementary  
Figs. 42 and 43), was due to a systematically higher degree of association  
throughout the candidate SNP set rather than a small number of 
large effects. Structural equation modeling showed that the effect of 
rs10784502 on intracranial volume could not completely be accounted 
for by the indirect effects of this SNP on height or by the correlation 
between height and intracranial volume (Supplementary Fig. 44).

Examining correlations between rs10784502 and expression levels  
of genes within a 1-Mb region, we identified a significant effect 
on the expression of HMGA2 (P = 0.0077) as the single significant 
result in the GOBS transcriptional profile data. Additionally, HMGA2 
expression levels in PBMCs were significantly negatively genetically 
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Figure 3 Regulatory effects of hippocampal-associated variant and  
expression of TESC within the hippocampus. (a–d) The locus most  
associated with hippocampal volume was also associated with mRNA  
expression of the TESC gene in brain in three independent samples,  
the UCL epilepsy cohort (a), the SNPExpress database (b), where a  
proxy SNP was used, and the UK Brain Expression Database (d), where  
differences in TESC expression of the directly genotyped hippocampal  
variant (rs7294919) were strongest in the temporal cortex (TCTX)  
(red box) but also found in the average expression of all cortex (AvgCTX)  
and average expression of all brain structures tested (AvgALL). Symbol  
color represents genotype in a and d. These regional gradients in  
expression support the hypothesis that the SNP may associate with  
hippocampal but not total brain volume. No effects were detected in  
PBMCs from the SNPExpress database (c). CRBL, cerebellar cortex;  
FCTX, frontal cortex; HIPP, hippocampus; MEDU, medulla (specifically  
the inferior olivary nucleus); OCTX, occipital cortex; PUTM, putamen;  
SNIG, substantia nigra; THAL, thalamus; WHMT, intralobular white  
matter. (e) TESC is differentially expressed within the fetal human brain  
(P = 1.33 × 10−12), with the highest expression in striatum (STRIAT) and hippocampus (HIPP)42. Box plots represent median and 25th to 75th 
percentiles. Upper and lower lines show minimum and maximum values, respectively. CBLM, cerebellum; DLPFC, dorsolateral prefrontal neocortex; 
MPFC, medial prefrontal neocortex; MS, motor-somatosensory neocortex; OCC, occipital visual neocortex; OFC, orbital prefrontal neocortex; PAS, 
parietal association neocortex; TAC, temporal association neocortex; TAU, temporal auditory neocortex; THAL, mediodorsal thalamus; VLPFC, 
ventrolateral prefrontal neocortex. (f) TESC has moderate to high gene expression throughout the adult human hippocampus (shown in green), as 
visualized in the Allen Institute Human Brain Atlas using Brain Explorer 2 software. An inferior view of the brain is shown in two subjects; the anterior 
portion of the brain is at the top. The colors of spheres within the hippocampus indicate the Z-scores of TESC expression normalized within each subject 
across brain structures. Heat maps show that expression of TESC is higher in the hippocampus (HiF) and striatum (Str) than in other brain structures.

��



NATURE GENETICS ADVANCE ONLINE PUBLICATION 5

L E T T E R S

 correlated with intracranial volume (rg = −0.49; P = 0.016) in this 
cohort. These results support HMGA2 as a positional candidate gene 
 underlying our observed QTL. HMGA2 encodes the high-mobility 
group AT-hook 2 protein, which is a chromatin-associated protein 
that regulates stem cell renewal during development34. It is implicated 
in human growth through genetic association studies and the pres-
ence of rare mutations35 and also has known roles in neural precursor  
cells36. Whether both functions are due to the same underlying mech-
anisms warrants further study.

To test for pleiotropic effects of rs7294919 and rs10784502, we 
examined the influence of these variants on cognition in the Brisbane 
Adolescent Twin Study37 (N = 1642). The C allele of rs10784502, which 
was associated with increased intracranial volume, was also associated 
with increased full-scale IQ, as measured via the Multidimensional 
Aptitude Battery38 (effect size ( ) = 1.29, standard error (S.E.) = 0.47; 
P = 0.0073; phenotypic correlations are shown in Supplementary 
Table 26). This effect was driven by performance (PIQ;  = 1.74,  
S.E. = 0.61; P = 0.0044) rather than by verbal subtests (VIQ;  
P = 0.103). rs7294919 was not associated with full-scale IQ (P = 0.139) 
or PIQ (P = 0.489) but showed nominal association with VIQ (effect 
allele: C;  = 0.126, S.E. = 0.062; P = 0.043).

No associations at genome-wide significance were detected for 
total brain volume. Following inclusion of the replication samples, the 
strongest evidence for association was detected at rs10494373 within 
DDR2 (1q23.3; P = 5.81 × 10−7) (Table 1), which encodes a receptor 
tyrosine kinase involved in cell growth and differentiation39.

The current study identified and replicated two quantitative trait 
loci for hippocampal and intracranial volumes across lifespan in a 
large sample including both healthy subjects and those with neuro-
psychiatric diagnoses. The rs7294919 variant was associated with 
decreased hippocampal volume of 47.6 mm3 or 1.2% of the average 
hippocampal volume per risk allele. Although further work is neces-
sary to confirm the causal variant(s) and functional mechanisms, this 
QTL influencing hippocampal volume differences may act by regulat-
ing expression of TESC specifically within the brain. In addition, the 
C allele of rs10784502 is associated, on average, with 9,006.7 mm3 
larger intracranial volume, or 0.58% of intracranial volume per risk 
allele and is weakly associated with increased general intelligence by 
approximately 1.29 IQ points per allele.

It has previously been hypothesized that brain imaging endo-
phenotypes would have large effect sizes; however, this has proven not 
to be the case for the specific volumetric traits measured here, which had 
comparable effect sizes to those observed in other genome-wide asso-
ciation studies of complex traits40. Notably, the discovery sample had 
99.92% power to detect variants with effect sizes of 1% of the variance 
for MAF  0.05. It remains to be determined whether specific genetic 
variations linked to volumetric brain differences are also associated with 
other neuropsychiatric disorders, brain function and other cognitive 
traits. If this is the case, neuroimaging genetics may also discover new 
treatment targets related to the neurobiology of these disorders, in addi-
tion to improving phenomenologically based diagnostic criteria.

URLs. Allen Institute Brain Atlas, http://human.brain-map.org/; 
SNPExpress database, http://compute1.lsrc.duke.edu/softwares/
SNPExpress/index.php; ADNI database, http://adni.loni.ucla.edu/; 
ADNI acknowledgements, http://adni.loni.ucla.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf; the 
Foundation for the NIH, http://www.fnih.org/; ADNI informa-
tion, http://www.adni-info.org/; Brain Research Imaging Centre 
Edinburgh, http://www.bric.ed.ac.uk/; SINAPSE Collaboration, 
http://www.sinapse.ac.uk/; fBIRN, http://www.birncommunity.org/;  

SYS, http://www.saguenay-youth-study.org/; SHIP, http://ship.
community-medicine.de/; ENIGMA Consortium protocols, http://
enigma.loni.ucla.edu/protocols/; Mx, http://www.vcu.edu/mx/; 
SOLAR, http://solar.txbiomedgenetics.org/; Genetic Power Calculator, 
http://pngu.mgh.harvard.edu/~purcell/gpc/; HapMap, http://hapmap.
ncbi.nlm.nih.gov/; Data upload site for participating studies, http://
enigma.loni.ucla.edu/; METAL, http://www.sph.umich.edu/csg/ 
abecasis/Metal/; METASOFT, http://genetics.cs.ucla.edu/meta/; 
maspD, http://gump.qimr.edu.au/general/daleN/matSpD/.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
All participants provided written informed consent, and studies were approved 
by the respective Local Research Ethics committees or Institutional Review 
Boards. MRI scans came from previously collected data. Suggested protocols  
for imaging analysis are publicly available on the ENIGMA Consortium web-
site (see URLs); however, any validated segmentation software was permitted. 
Accuracy of segmentation programs is influenced by scanner and head-coil 
type and scanner sequences and by participant characteristics, such as age. Each 
site was permitted to use any validated automated segmentation algorithm that 
worked most accurately in their data set. The two most commonly used hippo-
campal segmentation packages were the FMRIB’s Integrated Registration and 
Segmentation Tool (FIRST)16 from the FMRIB Software Library (FSL) package 
of tools43 and FreeSurfer17. Brain volume, the sum of gray and white matter 
excluding ventricles and cerebrospinal fluid (CSF), was calculated using the 
FSL  FMRIB’s Automated Segmentation Tool (FAST)44 package or FreeSurfer. 
Estimated total intracranial volume was calculated through registration of each 
MRI scan to a standard brain image template18, using either FSL FLIRT45 or 
FreeSurfer (exceptions referenced in Supplementary Table 2). To calculate 
intracranial volume, the inverse of the determinant of the transformation 
matrix was multiplied by the template volume (1,948,105 mm3). Extensive 
quality control analysis on phenotype segmentations included manual exami-
nation of phenotype volume histograms (Supplementary Figs. 2–6) and box 
plots of all volumetric measures. Outliers were manually evaluated by over-
laying the automated segmentations on the original MRI scan. Subjects were 
excluded from the analysis if structures were poorly segmented.

As assessed previously, the correlation in volumes between automatic and 
manually segmented hippocampi was high; the accuracy was reported to be 
higher with FreeSurfer than with FIRST in one study (FreeSurfer r = 0.82;  
FIRST r = 0.66)46 and similar between the two in another (FreeSurfer  
r = 0.73; FIRST r = 0.71)47. Scan-rescan reliability was also high for both 
methods (FreeSurfer intraclass correlation (ICC) = 0.98; FIRST ICC = 0.93)48. 
We undertook a large-scale assessment to determine the correspondence 
between segmentations from both FSL and FreeSurfer in the same subjects. 
Correspondence was found to be reasonably high for average bilateral hippo-
campal segmentation (r = 0.75; N = 6,093; Supplementary Table 4). This is 
close to the agreement between different human raters, as quantified by inter-
rater reliability (ICC = 0.73–0.85)49,50, which may be a reasonable upper bound 
on the accuracy of automated segmentation. Brain volume and intracranial 
volume were delineated with high correspondence between the two methods 
(r = 0.95, r = 0.90, respectively; N = 4,321).

Heritability estimates for trait measures were calculated in two family-based 
samples, QTIM and GOBS. Estimates for the QTIM sample used a twin and  
sibling analysis within Mx. An extended family analysis in Sequential Oligogenic 
Linkage Analysis Routines (SOLAR)51 was used for the GOBS sample.

Given sample size and the heritability of hippocampal volume, power calcu-
lations were performed using the Genetic Power Calculator52. We had 99.92% 
power to detect variants with effect sizes of 1% of the variance and 71.16% power 
to detect variants with effect sizes of 0.5% of the variance for MAF  0.05.

All cohorts were genotyped using commercially available arrays. Genetics 
protocols were developed to standardize the filtering, imputation and asso-
ciation of genome-wide genotype data (see ENIGMA protocols in URLs). 
SNPs were filtered out of samples on the basis of standard quality control 
criteria, including low MAF (<0.01), poor genotype calling (call rate of <95%) 
and deviations from Hardy-Weinberg equilibrium indicating possible errors 
in genotyping (P < 1 × 10−6). Genotyping methods and exceptions to these 
thresholds are summarized in Supplementary Table 3.

Genetic homogeneity within each sample was assessed through MDS plots 
(Supplementary Fig. 7). Ancestry outliers were excluded through visual 
inspection. A standardized population template from HapMap 3 represent-
ing those sampled was selected for imputation. Performance of software for 
imputation is generally similar between the most used methods53,54 for com-
mon variants (MACH55, IMPUTE56 and BEAGLE57); the protocols provided 
included use of the MACH tool. As raw genotype data were not directly trans-
ferred to the meta-analysis site, a histogram of allele frequency differences 
between each contributing group and the HapMap 3 CEU population was gen-
erated for each group (Supplementary Fig. 8) to further examine genotyping 
and imputation quality. A simulation to determine the effect of varying quality 

control thresholds on imputation quality (Supplementary Table 6) showed 
that the minor variation in quality control thresholds and imputation reference 
panels between sites was unlikely to have influenced imputation accuracy.

Genome-wide association analyses were performed that included and 
excluded individuals with disease. Including individuals with disease (all 
subjects) offers advantages of greater sample size and wider phenotype dis-
tribution, which may provide greater power to detect genetic effects58–60. We 
reanalyzed phenotypes after we excluded individuals with disease to confirm 
that the observed associations were not due to confounds relating to disease, 
medication or the possibly altered environments and experiences of these 
persons. To aid in the interpretation of results, we reanalyzed hippocampal 
volume after controlling for intracranial volume and total brain volume in two 
separate analyses. This helped to determine whether the observed associations 
were caused by direct effects on hippocampal volume or were attributable 
to more global associations with head size. In addition, genome-wide asso-
ciation analyses of intracranial volume and brain volume were conducted in 
the healthy controls to clarify whether observed associations were specific to 
hippocampal volume or influenced brain size in general. Participating sites 
were asked to conduct five genome-wide association analyses (three analyses 
of hippocampal volume, intracranial volume and brain volume). In addi-
tion, cohorts with groups of individuals with disease were asked to perform  
hippocampal analyses including data from these individuals.

Evidence for association was assessed using the allelic dosage of each SNP 
(accounting for familial relationships in the GOBS, QTIM and SYS samples). 
SNP-derived covariates were tested as fixed effects, while explicitly modeling 
the genetic relationships between family members in these pedigree-based 
studies51,61,62. Analyses used multiple linear regression with the phenotype 
of interest as a dependent variable and the additive dosage of each SNP as an 
independent variable of interest, controlling for covariates of population strati-
fication (four MDS components), age, age2, sex and the interactions between 
age and sex and age2 and sex. Dummy covariates were used to control for dif-
ferent scanner sequences or equipment within a site when needed. We refer to 
these covariates as ‘other covariates’, and these were included in all analyses. 
The extensive regression model was used to statistically control for factors 
known to affect hippocampal volume that are not specific genetic influences. 
Recommended protocols for association were provided to the studies based 
on those used in mach2qtl software (see ENIGMA protocols).

To combine information from multiple studies, we generated a secure web-
accessible upload site for participants to upload their association results. An 
automated system parsed the uploaded results files (see URLs). This parser 
was designed to read raw results files from a variety of association software 
packages (mach2qtl, PLINK, SOLAR, SNPTEST, QUICKTEST, Merlin-offline 
and ProbABEL), perform a series of tests on the incoming data to ensure 
quality, correctly assign the effect allele (dependent on both the imputation 
and association programs used) and correctly scale the  values and standard 
errors from association into the same units. Quality control was performed 
on imputed SNPs to filter out SNPs with low frequency (MAF of <0.01) or 
poor imputation quality (estimated R2 of <0.3). Result files and summary 
statistics from each group were pooled for meta-analysis. Meta-analysis was 
undertaken for each SNP across all groups based on a fixed-effects model using 
an inverse standard error–weighted meta-analysis protocol implemented in 
METAL19. Genomic control was applied at the level of each study and at the 
meta-analysis level to adjust for population stratification or cryptic relatedness 
not accounted for by MDS components63. To account for heterogeneity across 
samples, a random-effects meta-analysis20 was also conducted via the pro-
gram METASOFT without using genomic control. Using KGG64 we performed 
gene-based tests on the double genome-controlled meta-analysis results, using 
the extended Simes test24 to obtain an overall P value for association of the 
entire gene with a 50-kb boundary on either side. Results from genes with  
P  1 × 10−4 are presented (Supplementary Tables 18–25).

Meta-analysis was performed separately on the discovery sample, the 
CEU and TSI replication sample and the CEU and YRI or MEX replication 
sample. These results were then pooled to form the combined meta-analysis 
statistics for discovery and replication. The in silico replication results from 
the CHARGE Consortium were added to this, and a final meta-analysis was 
conducted. The location of Manhattan and quantile-quantile plots is specified 
in Supplementary Table 27.
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To appropriately account for the multiple comparisons conducted, we first 
sought to determine the effective number of independent phenotypes among 
the eight highly correlated genome-wide association analyses. This was cal-
culated by creating an 8 × 8 matrix derived from cross-correlations of meta- 
analytic t statistics of association for each SNP across phenotypes. The result-
ing correlation matrix provided an estimate of the similarity between pheno-
types after adjusting for covariates of interest and appropriately controlling for 
family structure. The effective number of tests was then calculated by summing 
eigenvalues of the correlation matrix, weighted by a formula that appropriately 
controls false positive rates in simulation65. The effective number of tests was 
determined to be 4 and an overall genome-wide significance threshold of  
5 × 10−8/4 = 1.25 × 10−8 was used throughout the manuscript.

Regulatory potential of SNPs identified in the genome-wide association 
analysis was examined in three samples. In the UCL epilepsy cohort, tissue 
was obtained from resection material from affected individuals who had 
undergone surgery for drug-resistant mesial temporal lobe epilepsy with 
hippocampal sclerosis, according to established clinical protocols. Total RNA 
from the middle temporal cortex (Brodmann areas 20 and 21) from 86 sub-
jects was isolated and randomly hybridized to Affymetrix Human Exon 1.0 
ST arrays, and quality control analysis was performed using standard meth-
ods. The effects of several methodological (day of expression hybridization, 
RNA integrity number (RIN)) and biological covariates (sex, age and medica-
tion) on exon–gene expression relationships were tested for significance. Of 
these individuals, 71 had participated in a published epilepsy genome-wide 
association study, and, therefore, genotyping data were available. Details of 
sample collection and genotyping quality control steps have been published 
previously66. These samples were assayed with Illumina HumanHap550v3  
(N = 44) and Illumina Human610-Quadv1 (N = 27) arrays.

In the UK Brain Expression database, post-mortem brain tissues from 134 
individuals free from neurological disorders were obtained from the MRC 
Sudden Death Brain Bank in Edinburgh and Sun Health Research Institute67. 
Genotype information was obtained using Illumina HumanOmni 1M arrays 
and standard quality control methods. Expression profiling was conducted in 
up to ten separate brain regions for each individual brain using the Affymetrix 
GeneChip Human Exon 1.0 ST array. Expression levels were normalized using 
the Robust Multi-array Analysis (RMA) algorithm restricting to probe sets 
containing more than three probes, unique hybridization target (probes that 
map to a single position within the genome) and supported by evidence from 
EntrezGene. The average signals for all neocortex (AvgCTX) and all brain 
regions (AvgAll) were tested, as were individual cortical and subcortical 
regions. Any significant association where the probe set contained the SNP 
or a SNP in high LD (r2 > 0.50) were removed from further analysis.

SNPExpress, a publically available database, was also used for replication of 
the findings. The SNPExpress database68 used autopsy-collected frontal cortex 
brain tissue in 93 samples from human subjects with no neuropsychiatric con-
ditions and PBMCs in 80 samples. In this database, transcript expression levels 
were measured on Affymetrix Human ST 1.0 exon arrays, and genome-wide 
genotyping was performed using Illumina HumanHap550K arrays.

Raw gene expression data from human fetal brain were gathered from a 
published study42. Post-mortem specimens from four late mid-fetal human 
brains (18, 19, 21 and 23 weeks of gestation) were collected from the Human 
Fetal Tissue Repository at the Albert Einstein College of Medicine. Details 
of specimens, tissue processing, microdissection and neuropathological  
assessment have been described elsewhere42.
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CHAPTER 6 

Future works 

 

From the work presented in this dissertation, there is a clear trend toward collaborative 

science especially in decentralized consortia that protect the investments of individual 

investigators by allowing participation without requiring full access to datasets while still 

allowing for the consortia to tackle problems and hypotheses that would be difficult to 

convincingly address alone. Further, I think we will see a renewed push to apply 

collaborative efforts to the study of disease and disease biomarkers.  

 

6.1 GWAS meta-analysis of subcortical brain volumes, ENIGMA2 

  

Neuroimaging genetics has the potential to identify genetic contributions to disease 

pathology by discovering both common and rare genetic variants that relate to brain 

structure and function. Many studies have identified significant genetic associations with 

brain measures, but effect sizes are generally small so vast samples are needed to find and 

replicate genetic associations (Stein et al., 2012). In addition to small effect sizes, data 

collection is expensive and small datasets are common. To maximize power to detect 

genetic effects on brain measures, we formed the ENIGMA Consortium 

(http://enigma.loni.ucla.edu/) to help coordinate and harmonize neuroimaging genetics 

efforts at sites around the world. 

Our pilot project, studying genetic influences on hippocampal volume, 

intracranial volume, and total brain volume found several genome-wide significant SNPs 
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(Stein et al., 2012). Expanding the scope of the initial project, we are now examining 

genetic influences on the volumes of subcortical structures: caudate, putamen, pallidum, 

thalamus, nucleus accumbens, amygdala, hippocampus and intracranial volume (ICV). 

The ENIGMA Consortium is comprised of 28 groups that span 5 continents, 

including 16,125 subjects. ENIGMA follows a meta-analysis framework, where analyses 

are conducted at local sites and group-level, de-identified statistics are contributed for 

meta-analysis. To harmonize analyses across sites, we developed standardized protocols 

for image analysis, imputation of genetic data, and genetic association analysis 

(http://enigma.loni.ucla.edu/protocols/). 

Image analysis was conducted using fully-automated and validated neuroimaging 

segmentation algorithms (either FSL FIRST or FreeSurfer). The heritability of each 

structure was estimated using structural equation modeling (SEM) from 801 twins and 

siblings from the QTIM study. Genetic data were imputed to the latest 1000 Genomes 

reference panel (phase I, version 3) using MaCH and minimac 

(http://www.sph.umich.edu/csg/abecasis/MACH/download/). The imputation results were 

cleaned to remove poorly imputed SNPs (Rsq < 0.3) and SNPs with low minor allele 

frequency (MAF < 0.005). Association testing was conducted using mach2qtl for samples 

with only unrelated subjects and merlin-offline 

(http://www.sph.umich.edu/csg/abecasis/Merlin/) for samples with a family design. 

Association tests conducted at each SNP controlled for age, sex, 4 MDS components, 

intracranial volume (ICV), site variables (for multi-site studies) and disease status (if 

applicable). Association was conducted separately for each brain structure phenotype. 

Data were combined across sites using the inverse variance-weighted meta-analysis. 
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Inverse variance-weighted meta-analysis combines effect sizes (regression 

coefficients) across sites in a way that penalizes SNPs with an inconsistent direction of 

effect. In this way, we minimize the chance of finding false-positive results while 

boosting power to detect even small genetic effects across sites. In future, the ENIGMA 

Consortium will examine genetic influences on cortical surface phenotypes, 3D 

morphometry, white-matter integrity, and many other brain-derived measures. In 

addition, we are examining disease-specific hypotheses in bipolar disorder, 

schizophrenia, and major depressive disorder. New groups with neuroimaging data are 

encouraged to join in or propose new projects; many ongoing projects do not require 

genotyped cohorts. 

 

6.2 Meta-analysis of structural brain differences in bipolar disorder: 

the ENIGMA-Bipolar project 

 

Neuroimaging analyses of bipolar disorder (BD) have reported significant structural 

differences in volumes of subcortical brain structures including the amygdala (DeBello 

2004; Strakowski 1999), hippocampus, thalamus, accumbens and lateral ventricles 

(Rimol 2010). A literature search of subcortical structures indicated that the lateral 

ventricle was the only structure consistently reported across studies to be significantly 

different between patients with BD and controls (Kempton 2008). More recently, a large 

international multisite mega-analysis of a large cohort (321 cases and 442 controls) found 

that the right lateral ventricle, left temporal lobe, and right putamen differed in volume 

between BD patients and controls (Hallahan 2011). The inconsistency across sites and 

���



studies, and the relative small number of subjects ascertained per site makes a combined 

meta- analytic approach advantageous. 

Here we developed a standardized image analysis and consensus quality control 

protocol at a large number of international sites participating in the Enhancing Neuro 

Imaging Genetics Through Meta- Analysis (ENIGMA) Consortium. We formed the 

ENIGMA-Bipolar Disorder Working Group to coordinate our efforts across multiple 

international laboratories interested in bipolar disorder. In our pilot project, presented 

here, we examine patient v. control effect sizes for subcortical volume differences, in the 

largest neuroimaging study of BD to date. 

Current members of the ENIGMA Bipolar Working Group are listed in Table 6.1 

and we are actively recruiting new members to join future analyses. High-resolution 

structural MR images were processed with fully automated, validated segmentation 

software (FSL FIRST or FreeSurfer) to extract a set of subcortical structures: caudate, 

hippocampus, putamen, pallidum, thalamus, nucleus accumbens, amygdala, lateral 

ventricles, as well as intracranial volume (ICV). We obtained Cohen's d effect size 

estimates for the left, right, and average volume of each subcortical structure. Effect size 

estimates were calculated per site and combined using an inverse variance-weighted 

meta-analysis framework. 
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Table 6.1. Demographic breakdown of the number of patients diagnosed with bipolar 

disorder and healthy controls contributed by each site. 

 
# of cases # of controls total n 

Cardiff 60 43 103 

Pittsburgh 72 32 104 

CLING 35 321 356 

HMS 41 55 96 

Oslo-Malt 44 44 88 

NUIG 60 60 120 

TOP 193 305 498 

UCLA-Families 153 374* 527 

    
Combined 658 860 1892 
 

The heterogeneity of results across previous BD studies has created the need for 

an international effort to examine the effects of BD on the brain through meta-analysis, 

while recognizing that cohorts differ in symptom profiles, duration of illness and 

medication exposure. The ENIGMA framework allows new sites to participate in 

analyses without requiring them to share raw scan data, just pre-agreed summary 

statistics for meta-analysis. In addition, ENIGMA provides standardized protocols to 

process, quality check, and analyze data. In future, the ENIGMA-Bipolar Disorder 

���



Project will examine cortical phenotypes, 3D surface morphometry, and genetic influence 

on brain-derived measures, and we welcome additional projects. 

 

6.3 A prospective meta-analysis of subcortical brain volumes in 

schizophrenia: the ENIGMA-Schizophrenia project 

 

Schizophrenia patients show significant subcortical brain abnormalities but there is 

considerable heterogeneity of findings across studies. Retrospective meta-analyses of 

published results are limited because image segmentation and analysis methods differ 

across the studies reviewed. Here we present a coordinated, large-scale meta-analysis that 

applies consistent quality assurance (QA) metrics and statistical models across 

independent datasets. Using the methods developed by the Enhancing Neuro Imaging 

Genetics Through Meta-Analysis (ENIGMA) Consortium, participating researchers 

provide their analysis results for prospective aggregation and meta-analysis.  

The ENIGMA Schizophrenia project currently comprises datasets from sites 

listed in Table 6.2 and encourages other sites to join ongoing collaborative analysis 

efforts. At each site, total intracranial and subcortical volumes (for pallidum, 

hippocampus, putamen, lateral ventricle, amygdala, caudate, thalamus, nucleus 

accumbens) were extracted using FreeSurfer from high-resolution structural brain MRI 

scans of schizophrenia patients and healthy volunteers of similar mean age and sex 

distribution. The analyses of each cohort included age, sex, and total intracranial volume 

as covariates, and dummy variables for site effects in multi-site datasets. For each 
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subcortical region, we computed Cohen's d effect sizes within each study, and weighted 

mean effect sizes for patient-control group differences across all studies. 

 

Table 6.2. Demographic breakdown for the number of patients diagnosed with 

schizophrenia and healthy controls contributed by each site. In addition, mean age and 

gender for each group is given. For some groups duration of illness (DOI) was also 

available. 

Datasets N (HC) N (SZ) M/F (HV) M/F (SZ) Mean 
Age 

Mean 
DOI 

TOP 305 219 160/145 130/89 34 7 
AMC 170 206 114/56 180/26 23 2 

FBIRN 177 186 127/51 141/46 38 17 
UMCU 116 159 72/44 130/29 32 11 
MCIC 165 158 103/62 119/39 32 11 

NU 93 108 52/41 74/34 33 13 
CLING 323 49 132/191 36/13 26  

HMS 55 46 21/34 32/14 34  
Total 

Analyzed 
1401 1131 781/624 842/290 31  

 

Combining data using harmonized methods from many large cohorts through 

consortia such as ENIGMA can provide robust effect size estimations. This helps focus 

on the most consistent neuroimaging measures for genetic analysis, for example; ongoing 

analyses are exploring potential causes of variations in effect sizes across studies. Such 

meta-analyses may be particularly useful in research areas where study samples are 

traditionally small (e.g., high-risk, first-episode, and medication studies of 

schizophrenia). Future work will explore clinical and cognitive factors that influence 

disease effects within the consortium infrastructure. These more granular analyses can be 

addressed in subsets of the overall samples with relevant measures in common. The 
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ENIGMA- Schizophrenia group actively encourages other participating research groups 

to contribute their analyses and collaborative efforts, as ongoing meta-analyses are 

developed and expanded. 
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