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Abstract 

This paper presents numerical modeling of excavation-induced damage, permeability changes, 

and fluid-pressure responses during excavation of the TSX tunnel at the underground research 
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laboratory (URL) in Canada. Four different numerical models were applied, using a wide range 

of approaches to model damage and permeability changes in the excavation disturbed zone 

(EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could 

reproduce observed spatial distribution of damage and permeability changes around the tunnel, 

as a combination of disturbance induced by stress redistribution around the tunnel and by the 

drill-and-blast operation. The modeling showed that stress-induced permeability increase above 

the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas 

permeability increases alongside the tunnel as a result of opening of existing microfractures 

under decreased mean stress. The remaining observed fracturing and permeability changes 

around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. 

Moreover, a reasonably good agreement was achieved between simulated and observed 

excavation-induced pressure responses around the TSX tunnel for 1 year following its 

excavation. The simulations showed that these pressure responses are caused by poroelastic 

effects as a result of increasing or decreasing mean stress, with corresponding contraction or 

expansion of the pore volume. The simulation results for pressure evolution were consistent with 

previous studies, indicating that the observed pressure responses could be captured in a Biot 

model using a relatively low Biot-Willis’ coefficient, α ≈ 0.2, a porosity of n ≈ 0.007, and a 

relatively low permeability of k ≈ 2×10-22 m2, which is consistent with the very tight, unfractured 

granite at the site.    

Keywords: coupled processes, excavation disturbed zone, damage, permeability, TSX  

1 Introduction 
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The performance assessment of geological disposal for spent nuclear fuel requires consideration 

of coupled thermal, hydrological, and mechanical (THM) processes, especially in the rock near 

disposal tunnels where coupled processes are at their highest intensity.  In particular, coupled 

processes in the excavation disturbed zone (EDZ) and its potential impact on the repository 

performance needs to be understood (Bäckblom and Martin 1999; Rutqvist and Stephansson 

2003; Tsang and others 2005). Several field studies have shown that the EDZ includes a 

damaged zone of induced rock failure and fracturing, stemming from excavation processes, as 

well as a zone with altered stress distribution around the tunnels. For mechanical excavation 

(using no blasting) in a moderate-stress environment, the damage zone may be limited to a few 

centimeters thickness, where a limited change in porosity and permeability may take place. 

When drill-and-blast is used for excavation, the damage zone is more extensive, and therefore 

increased permeability is likely, especially in the tunnel floor, where the permeability can 

increase by two to three orders of magnitude (Bäckblom and Martin 1999).  The EDZ has the 

potential to affect the short- and long-term structural stability of a repository, as well as the 

effectiveness of the rock mass as a contaminant transport barrier.   

 

This paper presents numerical analyses of a tunnel excavation in granitic rock, with the purpose 

of validating and, if necessary, calibrating the hydraulic and mechanical rock properties to be 

used for modeling of a hypothetical nuclear waste repository in the same type of rock. The study 

was conducted as part of the DECOVALEX-THMC project (2004-2007), Task A, related to 

assessing the implications of coupled THM processes in the near field of a typical repository, 

with special emphasis on the impact of rock damage and bentonite behavior on long-term 

repository performance (Nguyen and others 2008a). A major part of this task was development 
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and calibration of material models for Lac du Bonnet granite (Nguyen and others 2008b) and the 

MX-80 bentonite (Chijimatsu and others 2008a), using a variety of laboratory and field 

experiments. This paper focuses on validating and calibrating coupled hydraulic and 

geomechanical material models of Lac du Bonnet granite, using field observations and 

measurements made during excavation of a test tunnel associated with the Tunnel Sealing 

Experiment (TSX) at the Underground Research Laboratory (URL) in Canada. Specifically, 

measurements of excavation-induced damage, permeability changes, and fluid pressure 

responses were used for model validation and calibration. Four research teams simulated the 

excavation of the tunnel using a wide range of approaches for modeling damage and 

permeability changes in the EDZ (Table 1). This paper first summarizes relevant field 

observations at the TSX tunnel and briefly describes the models applied. The next two 

subsections present modeling of excavation-induced damage and permeability changes, as well 

as modeling of excavation-induced pressure changes. We conclude by describing the causes of 

excavation-induced permeability changes as a combination of stress redistribution around the 

tunnel and drill-and-blast damage. Finally, we provide some perspective on how these results can 

be used in predicting the evolution of the EDZ at a spent nuclear fuel repository.  

 

2 Relevant field observations at the TSX tunnel 
 

The TSX tunnel (Room 425) excavated at a depth of 420 m is one of a series of experimental 

tunnels at URL that have been studied with respect to the evolution of the EDZ around tunnels in 

granitic rock (Martino and Chandler, 2004). To minimize the EDZ, the TSX tunnel was 

excavated using smooth drill-and-blast techniques in an elliptical cross section of 3.5 m high, 
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4.375 m wide (with a horizontal to vertical aspect ratio of 1.25). At the site, the principal stresses 

are estimated to 60 MPa (maximum stress), 45 MPa (intermediate stress) and 11 MPa (minimum 

stress), with the maximum principal stress being parallel with the tunnel axis and the minimum 

principal stress being subvertical. During excavation, the occurrence and location of 

microseismic events were monitored. After excavation, the resulting EDZ was characterized by a 

variety of methods, including the microvelocity probe (MVP) method for measuring changes in 

sonic velocities, and the SEPPI method for measuring changes in permeability (Figure 1). The 

SEPPI probe provided a measure of the rock transmissivity for small intervals along a series of 

boreholes penetrating the EDZ.  Moreover, for a period of 1 year after excavation, pore pressure 

was monitored in the rock at various distances from the tunnel. 

 

Results from each EDZ characterization method indicated that a damage zone of a certain 

thickness exists around the TSX tunnel. Borehole measurements indicated the existence of an 

inner damage zone within 0.3 m from the tunnel wall, delineated from the outer portion of the 

EDZ by a more rapid decrease in velocity and more rapid increase in transmissivity (Figure 1). 

The outer damage zone, which was detected by all instruments used, displayed a more gradual 

change in velocity and hydraulic transmissivity that ultimately returned to background levels 

with increased downhole distance. Beyond the outer damage zone is the excavation disturbed 

zone. Borehole camera surveys showed an increased degree of macroscopic damage (visible 

fractures) in the inner damage zone area. The highest hydraulic transmissivities were generally 

recorded in the regions where the borehole camera detected the majority of the fracturing along 

the borehole walls (Martino and Chandler, 2004).  
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The cause of the visible (macroscopic) fracturing around the periphery of the tunnel could be a 

combination of damage caused by the excavation process (e.g. dynamic forces during drilling 

and blasting) and damage caused by stress concentrations around the tunnel opening. That at 

least some of the observed fracturing is caused by the excavation process is indicated by 

observations of similar extent of the damage zone around a tunnel (BDA tunnel) excavated with 

the same drill-and-blast method at 240 m depth, where the in situ stress magnitudes are low 

enough that stress-induced damage does not generally occur around the tunnels (Martino and 

Chandler, 2004). However, Figure 1 indicates a notch-like extension of the inner damage zone 

detected by the SEPPI measurements at the top and bottom of the tunnel. This notch may be 

related to high stress concentrations that could create new fractures or extend and open fractures 

created by the drill-and-blast operation. Moreover, monitoring of microseismic events shows 

clusters surrounding the notches at the top and bottom to the tunnel cross section (Martino and 

Chandler, 2004). On the other hand, no extensive fall-out of rock was recorded. This observation 

is consistent with other studies at the URL, because the maximum compressive stress at the top 

of the TSX tunnel is estimated to be about 100 MPa—slightly lower than the in situ compressive 

strength, which has been estimated to be about 120 MPa at URL (Martin, 2005). For example, at 

the URL’s mine-by experiment, the maximum compressive stress exceeded 120 MPa, and 

substantial spalling and notch-shaped fall-out of rock were recorded at the top of the tunnel 

(Martin and others 1997; Martin 2005).  

 

The excavation of the TSX tunnel resulted in changes in fluid pressure in the surrounding rock 

(Figure 2). In general, the initial fluid pressure before excavation of the TSX tunnel was about 3 

MPa, lower than the theoretic hydrostatic pressure at 420 m depth as a result of a pressure sink 
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caused by nearby open excavations. During the excavation of the TSX tunnel, the pressure 

changed rapidly, increasing at locations above the tunnel and decreasing at locations alongside 

the tunnel. This initial pressure pulse was attributed to undrained poroelastic response as a result 

of excavation-induced volumetric contraction or expansion of the low-permeability rock 

surrounding the TSX tunnel. After this initial pressure pulse, Figure 2 shows that the fluid 

pressure slowly decays as fluid pressure tends to equilibrate with the ambient pressure 

conditions.  However, several years after the excavation, fluid pressure was still elevated above 

the TSX tunnel.  

3 TSX model setup 
 

All the research teams discretized the problem into a two-dimensional vertical cross section. This 

cross section was symmetrical, so only one half of the tunnel had to be discretized. The initial 

stresses were set to σ1 = 60 MPa, σ2 = 45 MPa, σ3 = 11 MPa, according to the best estimate of 

the in situ stress field at TSX. The initial fluid pressure was set to 3 MPa, whereas after 

excavation, the fluid pressure at the tunnel wall was set to atmospheric.   

 

A consistent set of basic mechanical and hydraulic material parameters, representing the Lac du 

Bonnet granite and the Canadian Shield rock properties, were provided to the research teams. 

This included Young’s modulus of E = 60 GPa, Poisson’s ratio of ν = 0.2, Biot-Willis’ effective 

stress coefficient of α = 0.2, permeability of k = 7.0×10-19 m2, as well a recommended rock-mass 

strength parameters for the Hoek and Brown failure criterion (Nguyen and Jing, 2008). For 

determining the safety factor of excavations in Lac du Bonnet granite, Baumgartner and others 

(1996) recommended the use of the Hoek and Brown criterion  
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with the following parameters: σci = 100 MPa, s = 1, m = 16.6, and a = 0.5. These rock mass 

strength parameters were recommended as to reflect the in situ rock-mass strength, including in 

situ uniaxial compressive strength that is roughly half of the instantaneous uniaxial compressive 

strength determined from testing of core samples.   

 

The given set of parameters were those recommended for the analysis of the hypothetical nuclear 

waste repository (Nguyen and others 2008a) and were to be used as a set of starting parameters 

in the TSX tunnel analysis. It was recognized early on though, that the permeability of 7.0×10-19 

m2 recommended for sparsely fractured rock of the Canadian Shield was too high for the 

virtually unfractured (intact) rock surrounding the TSX tunnel. For example, the estimates from 

the SEPPI probe indicate permeability on the order of 1×10-20 m2 (Martino and Chandler, 2004) 

or 1×10-21 m2 (Souley and others, 2001), but a value as low as 1×10-23 m2 has been calibrated in 

an earlier modeling study of poroelastic responses during a heating experiment at TSX (Gou and 

Dixon 2006). Moreover, the apparent low value of Biot-Willis’ effective stress parameter (α = 

0.2) was also determined by model calibration (Gou and Dixon, 2006), whereas laboratory tests 

on core samples by Lau and Chandler (2004) indicate a much higher value of  α = 0.73. 

Accordingly, an important task for this study was to validate or refute these recommended 

parameters and perform model calibration of the parameters required for the respective models.  

 
The original plan was to develop, test, and calibrate damage models against laboratory 

experiments, following the approach used in an earlier study by Souley and others (2001). 

However, it was found that the model parameters derived from the short-term cyclic triaxial 
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laboratory tests were not representative of in situ behavior, but had to be calibrated to represent 

the lower in situ strength at the TSX tunnel.  The continuum damage model used by the JAEA 

team and the Drucker-Prager model used by the CLAY-SKB team are described in detail in the 

accompanying paper by Nguyen and others (2008b). In contrast, here we focus on how the 

respective models were applied to simulate damage and permeability changes, and how the input 

parameters to the respective models had to be adjusted to represent the in situ behavior at the 

TSX tunnel.  

 

4 Modeling of excavation-induced damage and permeability change  
 

With the assumed stress field, the maximum principal compressive stress is about 100 MPa at the 

top of the tunnel, whereas a slight tensile stress occurs at the side of the tunnel. Thus, for 

macroscopic failure to occur at the top of the tunnel, the in situ compressive strength should be 

less than about 100 MPa. Moreover, the high stress concentration at the top of the tunnel leads to 

a volumetric contraction in that area, whereas a general unloading leads to volumetric expansion 

at the side of the tunnel. This fact is important for explaining the difference in the excavation 

induced damage, permeability, and pressure responses around the tunnel. In the next four 

subsections, the model calibration and results for induced damage and permeability derived by 

each of the four research teams are described in more detail.  

4.1 The CNSC model calibration of damage and permeability change 
The CNSC research team evaluated damage using the MSDPu criterion proposed by Aubertin 

and others (2000) and Li and others (2005). The input parameters for the MSDPu criterion were 

inferred from laboratory triaxial test and field observations. In particular, the input parameters 

defining the MSDPu yield function were derived by fitting it to the recommended Hoek and 
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Brown yield function. The resulting strength parameters include a uniaxial compressive strength 

of 110 MPa, and a uniaxial tensile strength of 5 MPa (Nguyen and Jing, 2008).  Using these 

parameters, the calculated extent and shape of the yield zone (the zone in which the stress state 

has exceeded the rock strength) is similar to the so-called inner damage zone observed in the 

field (compare Figure 3a with Figure 1).  

 

To simulate the increased permeability around the tunnel and in the EDZ, using an approach 

similar to that used by Mahyari and Selvadurai (1998) and Shirazi and Selvadurai (2005), the 

CNSC research team assumed that permeability, k, varied with equivalent deviatoric strain, 

according to 

)exp( dikk βε=        (2)  

where ki is the initial (pre-excavation) permeability and β is a fitting constant, and εd is 

equivalent deviatoric strain defined as 

( ) ( ) ( )213
2

32
2

21
6

2
εεεεεεε −+−+−=d      (3)   

where ε1, ε2, and ε3 are principal strains.   

 

By adopting ki = 0.5×10-21 m2 and β = 7000, the CNSC research team obtained a reasonable good 

match between simulated and measured values of permeability increases above the tunnel 

(Figure 3b). The calculated permeability profile indicates progressively increasing permeability 

towards the tunnel wall as a result of the increasing deviatoric strain. In the damaged (yield) zone 

extending about 0.2 m into the rock above the tunnel, the permeability increase is amplified by 

the additional plastic deviatoric strain. However, this model may not predict any significant 
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permeability increase near the side wall of the tunnel, where deviatoric stress and strain are 

small.  

 

4.2 The JAEA model calibration of damage and permeability change 
The JAEA research team applied a classical continuum damage model (Lemaitre, 1992) to 

simulate the damage evolution and its impact on permeability (Murakami and Kamiya, 1997). 

The JAEA first simulated laboratory experiments to determine six damage parameters needed for 

the damage model—see Chijimatsu and others (2008b) and Nguyen and others (2008b). 

However, when simulating the TSX experiment, some of the damage variables had to be 

significantly lowered to match field observations (Chijimatsu and others 2008b). This included 

lowering a parameter called the initial damage potential, B0, as well as another parameter, Kv, 

that affects the rate of expansive strain with damage. Using such lowering of the damage 

parameters, the JEAE research team achieved a better agreement between the simulated and 

observed damage pattern. Specifically, if the damage parameters determined from the small-

scale laboratory experiments were used as input, no damage occurred. When the parameters 

where lowered, damage occurred around the entire periphery of the tunnel, including at the top 

of the tunnel, where the failure is caused by high compressive stresses (Compare Figure 4a with 

Figure 1).  

 

Changes in permeability around the tunnel were estimated by first calculating the evolution of 

porosity as a function of total volumetric strain, εv, which is the sum of the elastic volumetric 

strain and the isotropic expansive strain caused by damage, according to:   

damage
v

elastic
vv εεε +=        (4) 
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According to the damage model, the isotropic expansive strain is proportional to the equivalent 

conjugate damage force, which in turn depends on the damage variable, D, and the damage 

parameters B0 and Kv (Chijimatsu and others 2008b: Nguyen and others 2008b). The 

permeability, k, (unit of m2) was related to porosity, n, using the following empirical 

permeability-versus-porosity function: 

18310 108155.510186.2 −− ×−×= nk       (5) 

This permeability-versus-porosity function has been derived using grantitic rock samples from 

the Canadian Shield (Katsube and Kamineni, 1983), with permeability ranging between 10-19 m2 

and 10-17 m2. The function in Equation (5) and its match with the experimental data is presented 

in Chijimatsu and others (2005), and was also applied in Millard and others (2005) for modeling 

of permeability changes around a hypothetical nuclear waste repository in the same type of rock. 

The JAEA assumed the initial permeability to be 7.0×10-19 m2, which according to Equation (5) 

corresponds to an initial porosity 0.0031. Permeability on the order of 7.0×10-19 m2 is 

representative of an equivalent permeability for sparsely fractured rock, intended to be used as a 

base case for modeling of a hypothetical repository in Nguyen and others (2008a). However, this 

value is several orders of magnitude higher than the initial (pre-excavation) permeability 

measured for the tight intact rock surrounding the TSX experiments.  

 

The simulated post-excavation permeability distribution is shown in Figure 4b. The simulated 

result shows a two-order-of-magnitude increase at the side of the tunnel, which is comparable to 

the observed changes in transmissivity in Figure 1. The simulated results indicated smaller 

changes in permeability above the tunnel. In that region, the expansive volumetric strain by 
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damage may be offset by a contractive elastic volumetric strain caused by the strongly increased 

mean stress.  

4.3 The CLAY-SKB model calibration of damage 
 

The CLAY-SKB research team applied a Drucker-Prager plasticity model to simulate damage 

around the TSX tunnel. The Drucker-Prager model was also successfully applied to model the 

cyclic stress-strain behavior of small scale laboratory experiments (See Börgesson and Hernelind 

2008; Nguyen and others 2008b). However, similarly to the results of CNSC and JAEA, the 

elasto-plastic material parameters derived from the small-scale laboratory experiment could not 

be used to reproduce the observed damage at the TSX tunnel. The possibility of reducing both 

cohesion and friction angle were investigated: Lowering the cohesion to zero resulted in small 

compressive failure at the side of the tunnel, whereas lowering the friction angle to zero resulted 

in compressive failure at the top of the tunnel (Figure 5). Lowering the friction angle to zero is 

consistent with a so-called spalling criterion according to Martin (2005), which tends to better 

predict the shape of spalled zone around tunnels. However, the cohesion should then be chosen 

to represent the in situ compressive strength.  

4.4 The LBNL-SKI model calibration of damage and permeability change 
 

The approach adopted by the LBNL-SKI team was to derive a simplified but practical model that 

could be implemented in the ROCMAS code, but could yet capture reasonably well the observed 

damage and permeability changes at the URL field experiments. Parameters for a Mohr-

Coulomb criterion were fitted to the recommended Hoek-Brown failure envelope to derive an 

equivalent cohesion of C = 18.7 MPa and an equivalent friction angle of φ = 49°. Using such 
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parameters, the LBNL-SKI simulation resulted in a limited yielding at the crown of the tunnel, 

which is in agreement with observed increased macroscopic fracturing at the top of the TSX 

tunnel. This area also coincides with the region where most microseismic events were clustered. 

Similarly to previous studies at the URL Mine-by experiments (Martin, 2005), the LBNL team 

found that the region of microseismic events is the area of highest shear stress.  

 

The permeability around the tunnel was simulated using an empirical stress-versus-permeability 

relationship in which permeability is a function of effective mean stress, σ′m, and deviatoric 

stress, σd, according to: 

)exp()]exp([ 1max dmr kkk σγσβ ∆⋅′∆+=
    (6)

 

where kr is residual (or irreducible) permeability at high compressive mean stress, and ∆kmax, β1 

and γ are fitting constants. The effective mean stress, σ′m, formally the mean of normal stresses 

and the deviatoric stress, σd, are defined as  

( ) Pm −++=′ 3213

1
σσσσ       (7) 

( ) ( ) ( )231
2
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2
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2

1
σσσσσσσ −+−+−=d       (8) 

where σ1, σ2  and σ3 are the principal stresses with compressive stress positive.   

 

Figure 6 compares simulated and measured permeability changes for β1 = 4·10-7 Pa-1, kr = 2·10-21 

m2, ∆kmax = 8·10-17 m2, γ = 3·10-7 Pa-1, and the critical deviatoric stress for onset of shear induced 

permeability is set to 55 MPa. The 55 MPa critical deviatoric stress roughly coincides with the 

extent of the observed cluster of microseismic events at the top of the tunnel (see microseismic 

clusters in Martino and Chandler 2004).  Thus, the 55 MPa critical stress is an important 
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parameter for matching the observed permeability changes at the top of the tunnel. The 55 MPa 

deviatoric stress corresponds to about 0.3 of the instantaneous uniaxial compressive stress of 

small-scale core samples, which is consistent with the stress level at which crack-initiation has 

been observed in studies of Lac du Bonnet granitic samples (Martin and Chandler, 1994). Thus, 

this indicates that at least part of the observed permeability increase above the tunnel are caused 

by microfracturing under high compression, whereas permeability increases off the side of the 

tunnel is caused by opening of existing microfractures as a result of decreased mean stress. 

However, the comparison of the simulated and measured permeability changes around the tunnel 

indicates that the model captures the permeability increase caused by reduction in mean stress at 

the side of the tunnel reasonably well, whereas the permeability increases at the top of the tunnel 

are partly underestimated (Figure 6). It is possible that the several-orders-of-magnitude increase 

in permeability measured at the top of the tunnel is caused by macroscopic fracturing that was 

indeed observed in the boreholes. The macrofracturing implies that a simple relationship 

between mean and deviatoric stress, as defined in Equation (6) may not longer be valid. Instead, 

the permeability may be governed by fracture permeability as a function of stress normal to the 

fracture planes.  

 

Figure 7 presents contours of simulated permeability change around the tunnel. Figure 7a 

presents the stress induced permeability changes using Equation (6). To obtain a good match 

with field observations in Figure 1, the LBNL-SKI team manually added additional damage 

induced permeability caused by drill-and-blast operations for a zone extending about 0.3 m all 

around the tunnel (Figure 7b). The resulting calibrated stress-versus-permeability function 

according to Equation (6) is presented in Figure 8 at various confining stresses. The curves in 
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Figure 8 bear some resemblance to laboratory data on permeability versus deviatoric stress 

presented in Shao and others (2005). However, the laboratory data in Shao and others (2005) 

were from a short-term experiment, which can explain the higher deviatoric stress required to 

observe substantial dilatant permeability increase.  

5 Results of excavation-induced pressure changes  
 

Two teams, CNSC and LBNL-SKI modeled stress-induced changes in pore pressure during 

excavation of the TSX tunnel. Both teams simulated the excavation of the TSX tunnel by 

gradually removing the internal fluid pressure and stresses within the tunnel over one month. The 

modeling explains the observed pressure responses as an initial stress-induced pressure pulse 

when an excavation front passes parallel to the monitoring points, followed by a year-long 

diffusion-induced pressure recovery. These early-time pressure changes are caused by pore-

volume changes that are in turn caused by changes in mean stress and volumetric strain around 

the excavation (Figure 9a). Above the tunnel, the mean stress increases, causing contractive 

volumetric strain and reduced pore-volume, which in turn leads to a transient increase in fluid 

pressure.  Alongside the tunnel, the mean stress decreases, causing expansion of the pore-volume 

that leads to a decrease in fluid pressure. After one year, much of the stress-induced pressure 

change has diffused by fluid flow (Figure 9b).   

 

Parameter studies showed that the excavation-induced evolution of fluid pressure depends on the 

following material parameters: 

1) Permeability 

2) Biot’s parameters α and M 
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3) Bulk modulus, K 

The bulk modulus is given from the Young’s modulus and Poisson’s ratio used above and is 

roughly 33 MPa for the undisturbed rock. Biot-Willis’ constant α is defined as 

sK

K
−=1α        (9) 

where Ks  is the bulk modulus of the grains (Wang 2000). As a starting point, a Biot-Willis’ 

constant of α = 0.2 was suggested. Moreover, Biot’s modulus M, can be estimated using the 

following relationship (Detournay and Cheng 1993): 

sf K

n

K

n

M

−
+=
α1

      (10) 

where n is porosity and Kf is the fluid bulk modulus.  

 

The parameter study showed that the poroelastic parameters (Biot’s parameters α and M, and the 

bulk modulus K) strongly affect the magnitude of the initial pressure pulse, whereas the 

permeability mostly affects the subsequent pressure recovery.  The effect of α, M, and K on the 

pressure pulse can be explained by the Skempton’s coefficient, B, defined to be the ratio of the 

induced pore pressure to the change in applied stress for undrained conditions, which can be 

related to the above parameters as (Detournay and Cheng, 1993): 

MK

M
B

2α
α

+
=        (11) 

The CNSC research team used a permeability of 5×10-21 m2, as estimated from SEPPI 

measurements, and which the CNSC team also previously used for their analysis of excavation-

induced permeability changes. However, it was found that pressure dissipation would be too fast 

with such permeability and would not match the very slow pressure dissipation observed in the 

field.  
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Figure 10 presents the results from the LBNL-SKI research team, with a detailed comparison of 

simulated and measured pressure responses at the four measurement points closest to the TSX 

tunnel. Using α = 0.2, M = 130 GPa, K = 60 MPa, and a very low permeability of k = 2×10-22 m2 

(simulation a) the calculated pressure response in HTG1-4 closely matches the measured one.  

However, using this set of data, the pressure pulse in HTG1-5 would be overestimated. To obtain 

a good match in HTG1-5 the parameters were adjusted to α = 0.17, M = 140 GPa, K = 60 MPa, 

and k = 3×10-22 m2 (Simulation b). This slight adjustment of the parameters may not be 

unrealistic, considering natural heterogeneities and the fact that stresses increase to a much 

higher level at HTG1-5 than at HTG1-4. In fact, the poroelastic parameters K, α, M are likely to 

be stress dependent; a lower α and higher modulus are indeed expected at a higher stress. Using 

the two sets of parameters (simulation a and b), a porosity of n ≈ 0.007 can be estimated from 

Equation (10).  

 

The results alongside the tunnel (HGT2-3 and HGT2-4) indicate similar trends between 

simulated and measured responses, except for the measured trend of increasing pressure in 

HGT2-3. Such an upward trend in fluid pressure was observed in several measurement intervals 

(not shown in Figure 10) located away from the TSX tunnel, and seem to reflect a general 

pressure trend in the area, possibly affected by other nearby activities.  

 

6 Concluding remarks 
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In this study, a wide range of models and approaches were applied to investigate excavation-

induced evolution of damage, permeability changes, and fluid pressure around the TSX tunnel at 

URL, Canada.   

 

To match the observed damage and permeability increases around the tunnel, the model 

parameters had to be calibrated using lower strength parameters than those obtained from short-

term laboratory experiments on the same type of rock. Using a lowering for the rock strength 

parameters, e.g. a uniaxial compressive strength of 50 to 60% of the laboratory short-term 

strength, the models predicts limited damage and yielding at the crown (top) of the tunnel as a 

result of high compressive and deviatoric stress (up to 100 MPa) in that area. Some models also 

predict damage at the springline (side) of the tunnel. The limited yielding at the top of the tunnel 

is consistent with an increase in macrofracturing and microseismic events observed in that area.   

 

The observed permeability increases around the tunnel could be explained by a decrease in mean 

effective stress where permeability increased at the side of the tunnel, or by high deviatoric 

(shear) stress and strain at the top of the tunnel. The increased permeability at the top of the 

tunnel is consistent with a zone of observed microseismic events, indicating that these 

permeability changes are caused by microfracturing, and macrofracturing, which is also 

consistent with the calculated zone of yielding close to the tunnel wall in this area. In addition to 

the stress-induced damage and permeability changes, effects of the drill-and-blast operation 

would have to be added to explain the observed damage and permeability enhancement around 

the entire periphery of the tunnel.   
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The observed transient pressure evolution could be reasonably well captured and explained by 

coupled hydraulic and mechanical responses, according to Biot’s theory. In general, to match the 

observed pressure evolution, the basic rock permeability had to be lowered by more than one 

order of magnitude compared to the values estimated from borehole probe measurements. On the 

other hand, the best-match permeability of about k ≈ 2×10-22 m2 is consistent with intact rock 

permeability of low-permeability granite. Such a low permeability and an apparent low Biot-

Willis’ coefficient (α ≈ 0.2) is also consistent with earlier in situ estimates at the tunnel site (Gou 

and Dixon, 2006).  

 

This study demonstrates the usefulness and the importance of in situ experiments for model 

calibration and validation. The important differences and relations between laboratory and in situ 

strength properties were highlighted. However, with proper consideration, the model simulations 

conducted in this study could be used to capture and explain the observed coupled hydraulic and 

mechanical responses at the TSX experiment. In particular, the observed stress-induced 

permeability changes in the EDZ could be explained and captured in the modeling. This provides 

confidence in the models, which can then be used to predict how permeability will evolve after 

emplacement of heat-releasing waste. Such processes and their implications for the performance 

of a nuclear waste repository are studied in the accompanying paper by Nguyen and others 

(2008a) in the same type of rock, as well as in Rutqvist and others (2008) for repository in a 

fractured rock mass.  
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Table 1. Research teams and simulators applied in this study  

Research Team Numerical 
Simulator 

Brief Description of Numerical Simulator and Model Approaches 

CNSC: Canadian 
Nuclear Safety 
Commission   

FRACON The CNSC team used the basic THM formulation of Nguyen and 
Selvadorai (1995), originally implemented in the in-house FEM code 
FRACON, but for the analysis of the TSX experiment, the commercial 
general purpose FEM package COMSOL multiphysics was utilized. For 
the modeling of rock damage and permeability changes, the coupled 
THM formulation by Nguyen and Selvadurai (1995) was extended from 
linear elasticity to nonlinear elasto-plasticity. Damage was evaluated 
using the MSDPu criterion proposed by Aubertin and other (2000) and 
Li and others (2005). 

JAEA: Japan Atomic 
Energy Agency’s 
Research Team, 
including Hazama 
Cooperation 

THAMES THAMES is a finite-element code to simulate coupled THM behavior in 
a fully or partially saturated medium developed at Kyoto University, 
Japan (e.g., Ohnishi and others 1987, Kobayashi and others 2001). This 
code has been extensively applied in the DECOVALEX project and 
within the Japanese nuclear waste program (e.g., Rutqvist and others 
2001b; Chijimatsu and others 2005). Along with the study presented in 
this report, a continuum-damage model was implemented. In this model 
the volumetric strain increases with damage evolution, resulting in 
changes in porosity that in turn are related to permeability of the 
medium.  

CLAY-SKB: Clay 
Technology funded by 
the Swedish Nuclear 
Fuel and Waste 
Management Company  

ABAQUS The general-purpose commercial FEM code ABAQUS has been 
extensively applied by the Clay Technology for in the Swedish nuclear 
waste program as well in earlier DECOVALEX phases (e.g. Börgesson 
and others, 2001 Alonso and others 2005, Nguyen and others 2001). 
Damage around the TSX drift was considered using a modified 
Drucker-Prager plasticity model. Permeability change was not 
considered.   

LBNL-SKI: Lawrence 
Berkeley National 
Laboratory funded by 
the Swedish Nuclear 
Power Inspectorate 

ROCMAS ROCMAS is a finite element program for analysis of coupled THM 
processes in porous and fractured rock developed at LBNL since the 
late 1980s (Noorishad and Tsang 1996; Rutqvist and others 2001a). The 
code has been extensively applied in earlier phases of the 
DECOVALEX project for THM analysis in bentonite-rock systems (e.g. 
Rutqvist and others 2005; Min and others 2005).  In this study, a 
standard Mohr-Coulomb model was applied to simulate rock failure, 
and an empirical relationship between stress and permeability was used 
to simulate excavation-induced permeability changes.  
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Figure 1. Change in velocity and hydraulic transmissivity indicating an inner and outer damage 
zone and the plot of inner and outer damage zone at the TSX tunnel, URL, Canada (Martino and 
Chandler 2004). MVP 14.5 cm and MVP 8 cm refers to MPV measurements using respectively 
14.5 cm and 8 cm spacing between transmitter and receiver along the borehole.  
 
 
 



 27 

 
 
 
 
 
 
 
 
 
 
 

1.5 m

4.0 m

1.5 m
4.0 m

HGT1-4

HGT1-5
HGT2-3HGT2-4

TSX

Time (days)

P
re

ss
ur

e
(K

P
a)

0 100 200 300
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1.5 m

4.0 m

1.5 m
4.0 m

HGT1-4

HGT1-5
HGT2-3HGT2-4

HGT1-4

HGT1-5

HGT2-4

HGT2-3

TSX

 
 
 
Figure 2. Pore pressure responses in the rock due to excavation of the TSX tunnel (data extracted 
from Chandler and others 2002).  
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(a)       (b) 
 
Figure 3. The CNSC calculated (a) plastic zone (representing the inner damage zone) and (b) 
permeability changes along a profile extending upward from the top of the drift.  
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(a)      (b) 
 
Figure 4. The JAEA calculated (a) volumetric strain by damage and (b) permeability changes 
along a profile extending horizontally from the side of the drift.  Case 4 to 9 in (b) represent 
different cases of lowering of the damage parameters B0 and Kv with Case 9 representing the 
lowest values and best match to observed permeability change near the drift (Chijimatsu and 
others 2008b). The volumetric strain by damage shown in (a) is for Case 9.  
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(a)       (b) 
 
 
Figure 5. The CLAY-SKB calculated equivalent plastic strain (a) for cohesion C = 60 MPa, and 
internal friction angle φ = 0 and (b) for C = 0, and internal friction angle φ = 66° in the Drucker-
Prager plasticity model.  
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(a)       (b) 
 
 
Figure 6. Comparison of LBNL-SKI calculated and measured permeability profiles (a) extending 
horizontally from the side of the drift and (b) extending vertically from the top of the drift. The 
field data are SEPPI permeability extracted from Souley and others (2001).  
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(a)       (b) 
 
Figure 7. LBNL-SKI calculated permeability distribution around the drift (a) without drill-and-
blast-induced effects and (b) with effects of drill and blast added.  
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Figure 8. LBNL-SKI calibrated stress-versus-permeability relationship according to Equation 
(6), with  β1 = 4·10-7 Pa-1, kr = 2·10-21 m2, ∆kmax = 8·10-17 m2, γ = 3·10-7 Pa-1, and the critical 
deviatoric stress for onset of shear induced permeability set to 55 MPa.  
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(a)       (b) 
 
 
Figure 9. Excavation induced pressure (in MPa) at  (a) 1 months and (b) at 1 year (LBNL-SKI 
model). 
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Figure 10. Comparison of calculated and measured pressure evolution (LBNL-SKI model). 
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