Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Measurement of the $208 \mathrm{~Pb}(52 \mathrm{Cr}, \mathrm{n}) 259 \mathrm{Sg}$ Excitation Function

Permalink

https://escholarship.org/uc/item/8f19n1tm

Author

Folden III, C.M.
Publication Date
2009-02-01
Peer reviewed

Measurement of the ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, n\right){ }^{259} \mathrm{Sg}$ Excitation Function

C. M. Folden III ${ }^{1,2,{ }^{*}, \dagger}$, I. Dragojević ${ }^{1,2}$, Ch. E. Düllmann ${ }^{1, \ddagger}$, R. Eichler ${ }^{1,3,4}$, M. A. Garcia ${ }^{1,2}$, J. M. Gates 1,2, S. L. Nelson ${ }^{1,2}$, R. Sudowe ${ }^{1, \S}$, K. E. Gregorich ${ }^{1}$, D. C. Hoffman ${ }^{1,2}$, and H. Nitsche ${ }^{1,2}$
${ }^{1}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8169 USA
${ }^{2}$ Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
${ }^{3}$ Labor für Radio- und Umweltchemie, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
${ }^{4}$ Departement für Chemie und Biochemie, Universität Bern, CH-3012 Bern, Switzerland

* Electronic address: Folden@comp.tamu.edu
${ }^{\dagger}$ Present address: Cyclotron Institute, Texas A\&M University, College Station, TX 77843-3366 USA
${ }^{\ddagger}$ Present address: Kernchemie, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
${ }^{\S}$ Present address: Department of Health Physics, University of Nevada, Las Vegas, NV 89154-3037 USA

Abstract

The excitation function for the ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, n\right){ }^{259} \mathrm{Sg}$ reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of $320_{-100}^{+110} \mathrm{pb}$ is observed at a center-of-target laboratory-frame energy of 253.0 MeV . In total, 25 decay chains originating from ${ }^{259} \mathrm{Sg}$ were observed and the

measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, 2 n\right){ }^{258} \mathrm{Sg}$ reaction was obtained, and an improved ${ }^{258} \mathrm{Sg}$ half-life of $2.6_{-0.4}^{+0.6} \mathrm{~ms}$ was calculated by combining all available experimental data.

PACS numbers: 25.70.-z, 25.70.Gh, 23.60.+e, 27.90.+b

I. INTRODUCTION

"Cold" nuclear fusion reactions, using Pb or Bi targets with projectiles ranging from Ca to Zn , have been successfully employed in the production of elements $102-113$ (see [1, 2] for reviews and [3-5] for more information). Most of these experiments used the most neutron-rich stable projectile available, but the lack of information on production cross section systematics for reactions using projectiles with fewer neutrons has stimulated recent research to study this effect. For example, the compound nucleus (CN) in the ${ }^{52} \mathrm{Cr}+{ }^{208} \mathrm{~Pb}$ reaction is more neutron-deficient than in the ${ }^{54} \mathrm{Cr}+{ }^{208} \mathrm{~Pb}$ reaction, so the evaporation residue (EVR) decay energies provide a probe of the ground state mass surface (and hence the shell correction) in this region. Additionally, the measured EVR cross sections provide theorists with information for evaluating systematic trends in the projectile capture cross section $\sigma_{\text {cap }}$, the probability of CN formation P_{CN}, and the ratio of neutron-emission to fission Γ_{n} / Γ_{f}, which are vital for the planning of future experiments.

For these reasons, we conducted an experiment to study the effect of using a less neutronrich projectile using the ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, n\right){ }^{259} \mathrm{Sg}$ reaction. The analogous reaction ${ }^{208} \mathrm{~Pb}\left({ }^{54} \mathrm{Cr}, n\right){ }^{261} \mathrm{Sg}$ has been studied by Antalic et al. [6], so a comparison can be made. We also measured a partial
excitation function for the ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, 2 n\right){ }^{258} \mathrm{Sg}$ reaction and compared it to the ${ }^{209} \mathrm{Bi}\left({ }^{51} \mathrm{~V}, 2 n\right){ }^{258} \mathrm{Sg}$ reaction $[7,8]$, which has the same compound nucleus.

II. EXPERIMENTS

Experiments were conducted at the Lawrence Berkeley National Laboratory (LBNL) 88Inch Cyclotron using the Berkeley Gas-filled Separator (BGS), and the setup was identical to that described in [9] except for the beam shutoff parameters described below. The ${ }^{52} \mathrm{Cr}^{12+}$ beam (with average intensity 120 particle $n A$ and energy error $\approx 1 \%$ [10]) passed from the evacuated beamline to the 0.5 -torr He chamber of the BGS by passing through a $45-\mu \mathrm{g} / \mathrm{cm}^{2}{ }^{\text {nat }} \mathrm{C}$ entrance window. Approximately 0.5 cm downstream the beam passed through a $35-\mu \mathrm{g} / \mathrm{cm}^{2}$ nat C target backing which supported $(470 \pm 60)-\mu \mathrm{g} / \mathrm{cm}^{2}$-thick Pb targets (isotopic composition $98.4 \%{ }^{208} \mathrm{~Pb}$, $1.1 \%{ }^{207} \mathrm{~Pb}, 0.5 \%{ }^{206} \mathrm{~Pb}$). A $5-\mu \mathrm{g} / \mathrm{cm}^{2}{ }^{\text {nat }} \mathrm{C}$ layer covered the target material to prevent sputtering and enhance cooling. The nine arc-shaped targets were mounted on the periphery of a 14-inchdiameter wheel that rotated at $\approx 7 \mathrm{~Hz}$ to prevent excessive target heating. Energy losses of the beam in these materials were calculated using the SRIM-2003 program [11] and used to determine the lab-frame center-of-target (cot) energy $E_{\text {cot }}$. Luminosity and primary beam energy were monitored via Rutherford scattering using two p-i-n detectors mounted at $\approx 27^{\circ}$ to the beam axis. The experimental conditions are summarized in Table I.

The focal plane detectors were calibrated using external alpha-particle sources of ${ }^{148} \mathrm{Gd}$, ${ }^{239} \mathrm{Pu},{ }^{241} \mathrm{Am}$, and ${ }^{244} \mathrm{Cm}$. A correction for the energy of the daughter recoils was calculated using the implanted alpha-decaying products of the reaction of the ${ }^{52} \mathrm{Cr}$ beam with stationary targets of ${ }^{112,114}$ Sn. The energy resolution (1σ) for alpha particles fully stopped in the strip detectors was $\approx 0.023 \mathrm{MeV}$; it was $\approx 0.052 \mathrm{MeV}$ for "reconstructed" alpha particles which escaped from the front of a strip and implanted in an upstream detector so that the energies could
be summed. The efficiencies for detecting fully stopped and reconstructed alphas were $\approx 55 \%$ and $\approx 30 \%$, respectively. In this work uncertainties are quoted at the 1σ (68%) confidence level using methods described in [12] unless specified otherwise.

The average charge state of Sg EVRs was estimated to be approximately +7.6 using Eq. 1 in [10], resulting in an estimated magnetic rigidity of 2.13 T m . The first six decay chains were observed with higher rigidities, so the central rigidity was increased to 2.17 T m for the remainder of the experiments.

An online program continuously searched for evidence of a heavy element decay chain and could interrupt the primary beam within $\approx 140 \mu$ s if an implantation event with energy 7-25 MeV was followed within 10 s by an alpha particle with energy $8-11 \mathrm{MeV}$. These events were required to occur in the same strip and to have vertical positions within 3 standard deviations, calculated according to Eqs. 1 and 2 in [9]. A correlation meeting these conditions switched the beam off for 180 s , and the total fraction of time with the beam off was 1.8%.

The assignment of decay chains to ${ }^{259} \mathrm{Sg}$ or ${ }^{258} \mathrm{Sg}$ is straightforward based on the significantly differing decay properties of these two nuclides. ${ }^{259} \mathrm{Sg}$ decays with an alpha branch of $(90 \pm 10) \%$, spontaneous fission (SF) branch $<20 \%$, and half-life of $0.48_{-0.13}^{+0.28} \mathrm{~s}$ [13]. ${ }^{258} \mathrm{Sg}$ decays by SF with $\mathrm{a} \approx 100 \%$ branch and half-life of $2.9_{-0.7}^{+1.3} \mathrm{~ms}$ [14]. The probabilities for detecting alpha particles (either fully stopped or reconstructed) and SF events are $\approx 85 \%$ and $\approx 100 \%$, respectively. Based on the known decay properties, the probability of observing a ${ }^{259} \mathrm{Sg}$ or ${ }^{258} \mathrm{Sg}$ decay chain is estimated to be $(91 \pm 5) \%$ and $(100 \pm 2) \%$, respectively. The transmission of the BGS for products of the ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, n\right){ }^{259} \mathrm{Sg}$ and ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, 2 n\right){ }^{258} \mathrm{Sg}$ reactions is estimated to be $(51 \pm 5) \%$ using the Monte Carlo simulation described in Ref. [15] with a small correction for the fact that the vertical distribution of implantation events was off-center by
a small amount. Overall cross section systematic error is comparable to that reported in [10] (12\%).

III. RESULTS

A total of 25 decay chains originating from ${ }^{259} \mathrm{Sg}$ was detected and in all cases alpha decay was observed. The measured half-life (see [16]) is $320_{-60}^{+80} \mathrm{~ms}$, and agrees with the previously reported value of $480_{-130}^{+280} \mathrm{~ms}$ [13] within the reported errors. The 14 events with alpha energies greater than 9.5 MeV form a single group with an energy of $9.593 \pm 0.046 \mathrm{MeV}$, in good agreement with the reported literature value of $9.62 \pm 0.03 \mathrm{MeV}$ [13]. The remaining alpha energies were distributed in the range $9.00-9.47 \mathrm{MeV}$, except for two escape alphas. A spectrum of all alpha-like events is available online in the Electronic Physics Auxiliary Publication Service (EPAPS) repository as document number [***]. (For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html). The upper limit branching ratio for fission of ${ }^{259} \mathrm{Sg}$ is $\leq 8.6 \%$ at the 84% confidence level, corresponding to a lower limit of $\geq 3.0 \mathrm{~s}$ for the partial fission half-life. In order to estimate the electron capture (EC) branch of ${ }^{259} \mathrm{Sg}$ it was necessary to estimate the alpha branch in ${ }^{259} \mathrm{Db}$, the ${ }^{259} \mathrm{Sg}$ EC daughter. Combining experimental [17] and theoretical [18,19] decay properties of ${ }^{259} \mathrm{Db}$, we estimate an alpha branch of $\approx 96 \%$. This leads to a ${ }^{259} \mathrm{Sg}$ upper limit EC branch of $\leq 13 \%$, and a lower limit partial EC half-life of $\geq 2.1 \mathrm{~s}$.

Nine events were assigned to ${ }^{258} \mathrm{Sg}$, and all nine decayed via SF. The measured half-life is $2.1_{-0.6}^{+1.0} \mathrm{~ms}$, in good agreement with $2.9_{-0.7}^{+1.3} \mathrm{~ms}$ reported in [8] and $2.7_{-0.7}^{+0.9} \mathrm{~ms}$ reported in [7]. Combining data from [7,8] with the current work, the overall half-life of $28{ }^{258} \mathrm{Sg}$ fission events is $2.6_{-0.4}^{+0.6} \mathrm{~ms}$, in good agreement with all three experiments. Although small alpha branches in even-even Rf isotopes have recently been observed [8, 20], alpha decay of even-even ${ }^{258} \mathrm{Sg}$ was
not observed, corresponding to an upper limit for the alpha branch of $\leq 38 \%$. (An upper limit of $\leq 20 \%$ was reported in [8]). The corresponding lower limit for the partial alpha decay half-life is $\geq 5.8 \mathrm{~ms}$, compared to $\geq 182 \mathrm{~ms}$ calculated using Parkhomenko and Sobiczewski alpha-decay systematics [21] with shell-corrected mass excesses from [22]. Although, our experimental setup was not suitable for measuring the total kinetic energy (TKE) of fission fragments, the data for three pairs of coincident fragments are consistent with known TKE systematics as a function of $Z^{2} / A^{1 / 3}$ (see Fig. 9 in [23] and references therein).

The average magnetic rigidity of all ${ }^{258,259} \mathrm{Sg}$ EVRs in He is $2.16 \pm 0.03 \mathrm{~T} \mathrm{~m}$ (statistical uncertainty only), corresponding to an average charge state of +7.4 . A detailed listing of all decay chains is available online in the EPAPS repository referenced above.

Decay of ${ }^{255} \mathrm{Rf}$ was observed after all 25 decays of ${ }^{259} \mathrm{Sg}$. In addition, a decay chain was observed in the $E_{\text {cot }}=261.8 \mathrm{MeV}$ run that was consistent with an implantation event followed by the alpha decay of ${ }^{255} \mathrm{Rf}$ and ${ }^{251}$ No. Including this EVR- ${ }^{255} \mathrm{Rf}-{ }^{251}$ No chain, there were $26{ }^{255} \mathrm{Rf}$ decays, 13 by alpha particle emission and 13 by fission. The combined half-life of all 26 observed decays is $2.3_{-0.5}^{+0.8} \mathrm{~s}$, compared to $1.68 \pm 0.09 \mathrm{~s}$ [24] reported previously. The alpha and SF branching ratios are $\left(52_{-17}^{+13}\right) \%$ and $\left(48_{-13}^{+17}\right) \%$, respectively. The SF branching ratio is consistent with two earlier reports: $(52 \pm 7) \%$ [25] and $(45 \pm 6) \%$ [8]. The data from six coincident pairs of fission fragments are consistent with known TKE systematics.

The 13 alpha decays of ${ }^{255} \mathrm{Rf}$ led to ${ }^{251} \mathrm{No}$, and 11 subsequent alpha decays are attributed to the decay of the latter isotope. In a twelfth chain the ${ }^{255} \mathrm{Rf}$ alpha was followed by a reconstructed alpha with energy 7.509 MeV and lifetime 158.52 s , consistent with EC decay of ${ }^{251}$ No to ${ }^{251} \mathrm{Md}$, which then underwent alpha decay. In the thirteenth chain, no additional decays were observed after alpha decay of ${ }^{255} \mathrm{Rf}$. Our experiment did not have sufficient energy
resolution to distinguish decay of the ground state $\left(E_{\alpha}=8.612 \pm 0.004 \mathrm{MeV}, t_{1 / 2}=0.80 \pm 0.01 \mathrm{~s}\right)$ from decay of the first isomeric state $\left(E_{\alpha}=8.668 \pm 0.004 \mathrm{MeV}, t_{1 / 2}=1.02 \pm 0.03 \mathrm{~s}\right)$ of ${ }^{251} \mathrm{No}$ [24], but the measured half-life of all $11{ }^{251} \mathrm{No}$ alpha decays combined is $0.78_{-0.22}^{+0.38} \mathrm{~s}$, in excellent agreement with the ground state half-life.

Two isomers of ${ }^{247} \mathrm{Fm}$ are known: ${ }^{247} \mathrm{Fm}^{\mathrm{g}}\left(E_{\alpha}=7.824 \mathrm{MeV}, t_{1 / 2}=31 \pm 1 \mathrm{~s}\right)$ and ${ }^{247} \mathrm{Fm}^{\mathrm{m}}$ $\left(E_{\alpha}=8.172 \mathrm{MeV}, t_{1 / 2}=5.1 \pm 0.2 \mathrm{~s}\right)$ [24]. Five alpha decays following the decay of ${ }^{251}$ No were observed and are attributed to ${ }^{247} \mathrm{Fm}^{\mathrm{g}}$ based on the decay energies. A sixth escape alpha could not be assigned to a specific isomer but its lifetime was 78.4 s , consistent with ${ }^{247} \mathrm{Fm}^{\mathrm{g}}$. The combined half-life of all six decays is $57_{-17}^{+30} \mathrm{~s}$, which is in fair agreement with the known ground-state half-life. Heßberger et al. [24] observed that ${ }^{251} \mathrm{No}^{\mathrm{g}}$ decays primarily to ${ }^{247} \mathrm{Fm}^{\mathrm{g}}$ and ${ }^{251} \mathrm{No}^{\mathrm{m}}$ decays primarily to ${ }^{247} \mathrm{Fm}^{\mathrm{m}}$; our observations are consistent with these results.

An analysis of possible random correlations was conducted using methods described in the Appendix of [9]. The average rates of alpha-particle events, both fully stopped and reconstructed, across the entire focal plane with energies from $7-11 \mathrm{MeV}$ was $4.47 \times 10^{-3} \mathrm{~s}^{-1}$. The total number of implantation events with energies from $7-25 \mathrm{MeV}$ was 1.56×10^{5}. During data analysis, a minimum of two alpha particles or one valid fission event correlated to an implantation event was considered necessary for establishing a decay chain. The expected number of random EVR- $\alpha-\alpha$ correlations within a $5.0-\mathrm{mm}$ vertical pixel and 180 s of implantation is 0.16 , while 12 were observed. The overall rate of fission-like events with energies from $100-300 \mathrm{MeV}$ was $4.8 \times 10^{-5} \mathrm{~s}^{-1}$. Using a similar analysis, the expected number of random EVR-SF correlations in a $5.0-\mathrm{mm}$ pixel and within 20 ms of implantation is 2.7×10^{-4}, while the actual number of observed ${ }^{258} \mathrm{Sg}$ decay chains was 9 . The expected number of random

EVR- α-SF correlations (corresponding to ${ }^{259} \mathrm{Sg} \alpha$ decay followed by SF of ${ }^{255} \mathrm{Rf}$) within 10 s is $\approx 10^{-5}$, compared to 13 observed decay chains.

$$
\text { IV. } \left.{ }^{208} \mathrm{~Pb}{ }^{52} \mathrm{Cr} ; n, 2 n\right)^{259,}{ }^{258} \mathrm{Sg} \text { EXCITATION FUNCTIONS }
$$

The measured ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, n\right){ }^{259} \mathrm{Sg}$ excitation function is shown in Fig. 1, and is symmetrical in shape, consistent with the majority of other measured cold fusion excitation functions (see Fig. 4 in [26]). The maximum observed cross section is $320_{-100}^{+110} \mathrm{pb}$ at $E_{\text {cot }}=253.0$ MeV . The upper limit measured at $E_{\text {cot }}=255.6 \mathrm{MeV}$ is unexpected since much larger cross sections were observed at energies slightly above and below this energy. The 84% confidence limit for the expected cross section at this energy is $\geq 200 \mathrm{pb}$, so ≥ 4.3 decay chains would have been expected given the measured dose. The Poisson probability of observing zero decay chains when ≥ 4.3 are expected is $\leq 1.6 \%$. Although this probability is small, we believe that the smooth variation in the other observed cross sections and the good agreement of the observed decay properties with previous reports suggests that the remaining data should not be discredited, and form a complete excitation function.

A partial excitation function for the ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, 2 n\right)^{258} \mathrm{Sg}$ reaction was measured but additional measurements are needed to complete the $2 n$ excitation function. The maximum observed cross section is $150_{-57}^{+74} \mathrm{pb}$ at $E_{\text {cot }}=261.8 \mathrm{MeV}$. For comparison, previous measurements of the maximum cross section of the analogous $\left.{ }^{209} \mathrm{Bi}^{51}{ }^{51} \mathrm{~V}, 2 n\right){ }^{258} \mathrm{Sg}$ reaction are $38 \pm 13 \mathrm{pb}$ [8] and $50_{-20}^{+30} \mathrm{pb}$ [7]. Using laboratory-frame Coulomb barriers calculated from Eq. 5 in [27], the maximum of the ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, 2 n\right){ }^{258} \mathrm{Sg}$ reaction is $\approx 2.4 \mathrm{MeV}$ below the barrier while that for the ${ }^{209} \mathrm{Bi}\left({ }^{51} \mathrm{~V}, 2 n\right){ }^{258} \mathrm{Sg}$ reaction is peaked $\approx 7 \mathrm{MeV}$ below the barrier, possibly explaining the difference in their cross sections. Since these two reactions produce the same CN , this
difference may also be due to a hindrance in the ${ }^{51} \mathrm{~V}+{ }^{209} \mathrm{Bi}$ reaction resulting from the need to pair the odd proton in the projectile and target when forming the CN .

Recently, the ${ }^{208} \mathrm{~Pb}\left({ }^{54} \mathrm{Cr}, x n\right)^{262-x} \mathrm{Sg}$ reaction has been studied by Antalic et al [6]. They observed maximum $1 n$ and $2 n$ cross sections of approximately $1900 \pm 190 \mathrm{pb}$ and $600 \pm 120 \mathrm{pb}$ (see Fig. 4 in [6]), respectively, while our current study finds that the corresponding cross sections with ${ }^{52} \mathrm{Cr}$ beams are $320_{-100}^{+110} \mathrm{pb}$ and $150_{-57}^{+74} \mathrm{pb}$, respectively. These results indicate a ratio of $\left.{ }^{54} \mathrm{Cr}\right)^{52} \mathrm{Cr} 1 n$ cross sections of $5.9_{-2.1}^{+2.0}$, while Dragojević et al. measured a ratio of 101_{-22}^{+34} in the case of ${ }^{50} \mathrm{Ti} /{ }^{48} \mathrm{Ti}$ [28]. The Fusion by Diffusion theory [27] with updated parameters [29] predicts these ratios to be ≈ 18 for ${ }^{54} \mathrm{Cr} /{ }^{52} \mathrm{Cr}$ and ≈ 37 for ${ }^{50} \mathrm{Ti} /^{48} \mathrm{Ti}$, which can be considered fair agreement with the experimental data given the large error bars reported.

The differences in cross section ratios with different projectile pairs can be attributed to the interplay of the Q-value for CN formation, Q_{CN}, and the energies relative to the Coulomb barriers. In all four cases (projectiles of ${ }^{48,50} \mathrm{Ti}$ and ${ }^{52,54} \mathrm{Cr}$ reacting with ${ }^{208} \mathrm{~Pb}$), the maxima of the excitation functions are observed to occur at CN excitation energies in the narrow range of $16.0-18.6 \mathrm{MeV}$. Thus, the energy required to produce the initial CN excited state is the dominant factor in determining the most favorable $1 n$ energy, as suggested by the "Optimum Energy Rule" [27]. At the same time, the maxima for the more neutron-rich ${ }^{54} \mathrm{Cr}$ and ${ }^{50} \mathrm{Ti} 1 n$ reactions are 8.28.6 MeV below the laboratory-frame Coulomb barrier, while those for the ${ }^{52} \mathrm{Cr}$ and ${ }^{48} \mathrm{Ti} 1 n$ reactions are $14.6-15.3 \mathrm{MeV}$ below. The fusion cross section is larger closer to the barrier, resulting in larger EVR cross sections for the neutron-rich projectiles. Comparing projectiles with the same Z, Q_{CN} is 4.0 MeV more negative for ${ }^{54} \mathrm{Cr}$ than ${ }^{52} \mathrm{Cr}$, while it is 5.5 MeV more negative for ${ }^{50} \mathrm{Ti}$ than ${ }^{48} \mathrm{Ti}$. When Q_{CN} is more negative, higher projectile energies are needed to reach the optimum excitation energy, leading to larger EVR cross sections for neutron-rich
projectiles. Thus, the difference in Q_{CN} explains the difference in the ${ }^{54} \mathrm{Cr} /{ }^{52} \mathrm{Cr}$ and ${ }^{50} \mathrm{Ti} /{ }^{48} \mathrm{Ti}$ ratios.

V. SUMMARY AND CONCLUSIONS

The ${ }^{208} \mathrm{~Pb}\left({ }^{52} \mathrm{Cr}, n\right){ }^{259} \mathrm{Sg}$ excitation function has been measured using the BGS at the LBNL 88-Inch Cyclotron. It is symmetric in shape, in agreement with other cold fusion excitation functions, and the maximum cross section is $320_{-100}^{+110} \mathrm{pb}$ at $E_{\text {cot }}=253.0 \mathrm{MeV}$. In total, 25 decay chains from ${ }^{259} \mathrm{Sg}$ and 9 decay chains from ${ }^{258} \mathrm{Sg}$ were observed. The observed decay properties are in good agreement with previous reports.

VI. ACKNOWLEDGEMENTS

We thank D. Leitner and the staff of the LBNL 88-Inch Cyclotron for developing and delivering the intense, stable beams of ${ }^{52} \mathrm{Cr}$. The authors wish to express their appreciation to W . J. Świątecki for many informative discussions. We thank the staff of the target laboratory at the Gesellschaft für Schwerionenforschung mbH for preparing the ${ }^{208} \mathrm{~Pb}$ targets. This work was supported in part by the Director, Office of High Energy and Nuclear Physics, Nuclear Physics Division, United States Department of Energy and the Director, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under contract number DE-AC02-05CH11231. R. Eichler acknowledges the financial support of the Swiss National Science Foundation under award PA002-104962.

VII. REFERENCES

[1] S. Hofmann, Rep. Prog. Phys. 61, 639 (1998).
[2] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).
[3] S. Hofmann et al., Eur. Phys. J. A 14, 147 (2002).
[4] K. Morita et al., J. Phys. Soc. Japan 76, 043201 (2007).
[5] K. Morita et al., J. Phys. Soc. Japan 73, 2593 (2004).
[6] S. Antalic, B. Streicher, F. P. Hessberger, S. Hofmann, D. Ackerman, S. Saro, and B. Sulignano, Acta Phys. Slovaca 56, 87 (2006).
[7] J. B. Patin, Ph.D. Thesis, University of California, Berkeley (2002).
[8] F. P. Heßberger et al., Z. Phys. A 359, 415 (1997).
[9] C. M. Folden, III, S. L. Nelson, Ch. E. Düllmann, J. M. Schwantes, R. Sudowe, P. M. Zielinski, K. E. Gregorich, H. Nitsche, and D. C. Hoffman, Phys. Rev. C 73, 014611 (2006).
[10] K. E. Gregorich et al., Phys. Rev. C 72, 014605 (2005).
[11] J. F. Ziegler, Nucl. Instrum. Methods Phys. Res. Sect. B 219-220, 1027 (2004).
[12] K.-H. Schmidt, C.-C. Sahm, K. Pielenz, and H.-G. Clerc, Z. Phys. A 316, 19 (1984).
[13] G. Münzenberg et al., Z. Phys. A 322, 227 (1985).
[14] F. P. Hessberger, J. Phys. G 25, 877 (1999).
[15] K. E. Gregorich et al., Eur. Phys. J. A 18, 633 (2003).
[16] K. E. Gregorich, Nucl. Instrum. Methods Phys. Res. Sect. A 302, 135 (1991).
[17] Z. G. Gan et al., Eur. Phys. J. A 10, 21 (2001).
[18] P. Möller, J. R. Nix, and K. L. Kratz, Atom. Data Nucl. Data Tables 66, 131 (1997).
[19] Z. Łojewski and A. Baran, Z. Phys. A 329, 161 (1988).
[20] J. M. Gates et al., Phys. Rev. C 77, 034603 (2008).
[21] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36, 3095 (2005).
[22] W. D. Myers and W. J. Świątecki, Nucl. Phys. A 601, 141 (1996).
[23] M. R. Lane et al., Phys. Rev. C 53, 2893 (1996).
[24] F. P. Heßberger et al., Eur. Phys. J. A 30, 561 (2006).
[25] F. P. Heßberger et al., Z. Phys. A 321, 317 (1985).
[26] S. Hofmann et al., Nucl. Phys. A 734, 93 (2004).
[27] W. J. Świątecki, K. Siwek-Wilczyńska, and J. Wilczyński, Phys. Rev. C 71, 014602 (2005).
[28] I. Dragojević, K. E. Gregorich, Ch. E. Düllmann, M. A. Garcia, J. M. Gates, S. L. Nelson, L. Stavsetra, R. Sudowe, and H. Nitsche, Phys. Rev. C 78, 024605 (2008).
[29] W. J. Świątecki (private communication).

This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, US Department of Energy under Contract No. DE-AC02-05CH11231.

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

TABLE

TABLE I. Summary of experimental results. $E_{\text {cot }}$ is the beam energy at the center-of-target.
Upper limit cross sections are reported at the 84% (1.84-event) confidence limit.

Energy from Cyclotron (MeV)	$\begin{gathered} E_{\text {cot }} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	$\begin{gathered} E_{\mathrm{cot}}^{*} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	Target Thickness ($\mu \mathrm{g} / \mathrm{cm}^{2}$)	$\begin{gathered} \text { Dose } \\ \left(10^{16}\right) \end{gathered}$	${ }^{259} \mathrm{Sg}$		${ }^{258} \mathrm{Sg}$	
					Events	Cross Section (pb)	Events	Cross Section (pb)
250.7	246.3	13.3	470 ± 60	4.9	1	33_{-27}^{+75}	0	< 55
254.0	249.6	15.9	470 ± 60	4.3	6	$230{ }_{-100}^{+140}$	0	<63
$257.4{ }^{\text {a }}$	253.0	18.6	470 ± 60	8.0	16	$320{ }_{-100}^{+110}$	0	<34
260.0	255.6	20.7	470 ± 60	3.4	0	<88	1	44^{+100}
263.1	258.7	23.2	470 ± 60	1.9	2	170_{-110}^{+220}	0	<140
266.2	261.8	25.7	470 ± 60	7.9	$0^{\text {b }}$	<38	8	$150{ }_{-57}^{+74}$

${ }^{\bar{a}}$ Combines data from runs with beam energies of 257.8 MeV and 256.9 MeV .
${ }^{\mathrm{b}}$ A chain beginning with ${ }^{255} \mathrm{Rf}$ was observed at this energy.

FIGURE CAPTION

FIG. 1. (Color online) Excitation function for the production of ${ }^{259} \mathrm{Sg}$ (squares) and ${ }^{258} \mathrm{Sg}$ (circles) in the reaction of ${ }^{52} \mathrm{Cr}$ with ${ }^{208} \mathrm{~Pb}$. The abscissa shows the energy of the projectile in the laboratory frame at the center of the targets. Upper limits are indicated with arrows at the 84% (1.84-event) confidence limit. The vertical error bars represent statistical and systematic errors, and the horizontal error bars represent the range of projectile energies subtended by the targets.

FIGURE
FIG. 1.

