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Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein
families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of
sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million
Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total
of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no
detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of
sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in
the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously
categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans)
from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset
is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins,
the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their
evolution. These observations are illustrated using several protein families, including phosphatases, proteases,
ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS
data has implications for choosing targets for experimental structure characterization as part of structural genomics
efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the
addition of new sequences, implying that we are still far from discovering all protein families in nature.
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Introduction

Despite many efforts to classify and organize proteins [1–6]
from both structural and functional perspectives, we are far
from a clear understanding of the size and diversity of the
protein universe [7–9]. Environmental shotgun sequencing
projects, in which genetic sequences are sampled from
communities of microorganisms [10–14], are poised to make
a dramatic impact on our understanding of proteins and
protein families. These studies are not limited to culturable
organisms, and there are no selection biases for protein
classes or organisms. These studies typically provide a gene-
centric (as opposed to an organism-centric) view of the
environment and allow the examination of questions related
to protein family evolution and diversity. The protein
predictions from some of these studies are characterized
both by their sheer number and diversity. For instance, the
recent Sargasso Sea study [10] resulted in 1.2 million protein
predictions and identified new subfamilies for several known
protein families.

Protein exploration starts by clustering proteins into
groups or families of evolutionarily related sequences. The
notion of a protein family, while biologically very relevant, is
hard to realize precisely in mathematical terms, thereby
making the large-scale computational clustering and classi-
fication problem nontrivial. Techniques for these problems
typically rely on sequence similarity to group sequences.
Proteins can be grouped into families based on the highly
conserved structural units, called domains, that they contain
[15,16]. Alternatively, proteins are grouped into families
based on their full sequence [17,18]. Many of these classi-
fications, together with various expert-curated databases [19]
such as Swiss-Prot [20], Pfam [15,21], and TIGRFAM [22,23],
or integrated efforts such as Uniprot [24] and InterPro [25],

provide rich resources for protein annotation. However, a
vast number of protein predictions remain unclassified both
in terms of structure and function. Given varying rates of
evolution, there is unlikely to be a single similarity threshold
or even a small set of thresholds that can be used to define
every protein family in nature. Consequently, estimates of the
number of families that exist in nature vary considerably
based on the different thresholds used and assumptions made
in the classification process [26–29].
In this study, we explored proteins using a comprehensive

dataset of publicly available sequences together with environ-
mental sequence data generated by the Sorcerer II Global
Ocean Sampling (GOS) expedition [30]. We used a novel
clustering technique based on full-length sequence similarity
both to predict proteins and to group related sequences. The
goals were to understand the rate of discovery of protein
families with the increasing number of protein predictions,
explore novel families, and assess the impact of the environ-
mental sequences from the expedition on known proteins
and protein families. We used hidden Markov model (HMM)
profiling to examine the relative biases in protein domain
distributions in the GOS data and existing protein databases.
This profiling was also used to assess the impact of the GOS
data on target selection for protein structure character-
ization efforts. We carried out in-depth analyses on several
protein families to validate our clustering approach and to
understand the diversity and evolutionary information that
the GOS data added; the families included ultraviolet (UV)
irradiation DNA damage repair enzymes, phosphatases,
proteases, and the metabolic enzymes glutamine synthetase
and RuBisCO.

Results/Discussion

Data Generation, Sequence Clustering, and HMM Profiling
We used the following publicly available datasets in this

study (Table 1)—the National Center for Biotechnology
Information (NCBI)’s nonredundant protein database
(NCBI-nr) [31,32], NCBI Prokaryotic Genomes (PG) [31,33],
TIGR Gene Indices (TGI-EST) [34], and Ensembl (ENS)
[35,36]. The rationale for including these datasets is discussed
in Materials and Methods. All datasets were downloaded on
February 10, 2005.
None of the above-mentioned databases contained sequen-

ces from the Sargasso Sea study [10], the largest environ-
mental survey to date, and so we pooled reads from the
Sargasso Sea study with the reads from the Sorcerer II GOS
expedition [30], creating a combined set that we call the GOS
dataset. The GOS dataset was assembled using the Celera
Assembler [37] as described in [30] (see Materials and
Methods). The GOS dataset was primarily generated from
the 0.1 lm to 0.8 lm size filters and thus is expected to be
mostly microbial [30]. The data also included a small set of
sequences from a viral size (,0.1 lm) fraction (Table 1).
We identified open reading frames (ORFs) from the DNA

sequences in the PG, TGI-EST, and GOS datasets. An ORF is
commonly defined as a translated DNA sequence that begins
with a start codon and ends with a stop codon. To
accommodate partial DNA sequences, we extended this
definition to allow an ORF to be bracketed by either a start
codon or the start of the DNA sequence, and by either a stop
codon or the end of the DNA sequence. ORFs were generated

Author Summary

The rapidly emerging field of metagenomics seeks to examine the
genomic content of communities of organisms to understand their
roles and interactions in an ecosystem. Given the wide-ranging roles
microbes play in many ecosystems, metagenomics studies of
microbial communities will reveal insights into protein families
and their evolution. Because most microbes will not grow in the
laboratory using current cultivation techniques, scientists have
turned to cultivation-independent techniques to study microbial
diversity. One such technique—shotgun sequencing—allows ran-
dom sampling of DNA sequences to examine the genomic material
present in a microbial community. We used shotgun sequencing to
examine microbial communities in water samples collected by the
Sorcerer II Global Ocean Sampling (GOS) expedition. Our analysis
predicted more than six million proteins in the GOS data—nearly
twice the number of proteins present in current databases. These
predictions add tremendous diversity to known protein families and
cover nearly all known prokaryotic protein families. Some of the
predicted proteins had no similarity to any currently known proteins
and therefore represent new families. A higher than expected
fraction of these novel families is predicted to be of viral origin. We
also found that several protein domains that were previously
thought to be kingdom specific have GOS examples in other
kingdoms. Our analysis opens the door for a multitude of follow-up
protein family analyses and indicates that we are a long way from
sampling all the protein families that exist in nature.
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by considering translations of the DNA sequence in all six
frames. For ORFs from the PG and TGI-EST datasets, we used
the appropriate codon usage table for the known organism.
For GOS ORFs from the assembled sequences, we used
translation table 11 (the code for bacteria, archaea, and
prokaryotic viruses) [31]. We did not include alternate codon
translations in this analysis. For all datasets, only ORFs
containing at least 60 amino acids (aa) were considered. Not
all ORFs are proteins. In this paper, ORFs that have
reasonable evidence for being proteins are called predicted
proteins; other ORFs are called spurious ORFs.

In summary, the total input data for this study (Table 1)
consisted of 28,610,994 sequences from NCBI-nr, PG, TGI-
EST, ENS, and GOS. All data and analysis results will be made
publicly available (see Materials and Methods).

We used a sequence similarity clustering to group related
sequences and subsequently predicted proteins from this
grouping. This approach of protein prediction was adopted
for two reasons. First, the GOS data make up a major portion
of the dataset being analyzed, and a large fraction of GOS
ORFs are fragmentary sequences. Traditional annotation
pipelines/gene finders, which presume complete or near-
complete genomic data, perform unsatisfactorily on this type
of data. Second, protein prediction based on the comparison
of ORFs to known protein sequences imposes limits on the
protein families that can be explored. In particular, novel
proteins that belong to known families will not be detected if
they are sufficiently distant from known members of that
family. This is the case even though there may be other novel
proteins that can transitively link them to the known
proteins. Similarly, truly novel protein families will also not
be detected.

As the primary input to our clustering process, we
computed the pairwise sequence similarity of the 28.6 million
aa sequences in our dataset using an all-against-all BLAST
search [38]. This required more than 1 million CPU hours on
two large compute clusters (see Materials and Methods). The
sequences were clustered in four steps (see Materials and
Methods). In the first step, we identified a nonredundant set
of sequences from the entire dataset using only pairwise
matches with �98% similarity and involving �95% of the

length of the shorter sequence. This step served the dual role
of identifying highly conserved groups of sequences (where
each group was represented by a nonredundant sequence) and
removing redundancy in the dataset due to identical and
near-identical sequences. Only nonredundant sequences were
considered for further steps in our clustering procedure. In
the second step, we identified core sets of similar sequences
using only matches between two sequences involving �80%
of the length of the longer sequence. We used a graph-
theoretic procedure to identify dense subgraphs (the core
sets) within a graph defined by these matches. While the
match parameters we used in this step were more relaxed
than those in the first step, we chose them to reduce the
grouping of unrelated sequences while simultaneously re-
ducing the unnecessary splitting of families. In the third step,
these core sets were transformed into profiles, and we used a
profile–profile method [39] to merge related core sets into
larger groups. In the final step, we recruited sequences to
core sets using sequence-profile matching (PSI-BLAST [40])
and BLAST matches to core set members. We required the
match to involve �60% of the length of the sequence being
recruited.
We identified and removed clusters containing likely

spurious ORFs using two filters (see Materials and Methods).
The first filter identified clusters containing shadow ORFs.
The second filter identified clusters containing conserved but
noncoding sequences, as indicated by a lack of selection at the
codon level. Only clusters that remained after the two
filtering steps and contained at least two nonredundant
sequences are reported in this analysis.
We examined the distribution of known protein domains

in the full dataset using profile HMMs [41] from the Pfam [15]
and TIGRFAM [22] databases (see Materials and Methods).
We labeled sequences that end up in clusters (containing at

least two nonredundant sequences) or that have HMM
matches as predicted proteins. The inclusion of the PG ORF
set allowed for the evaluation of protein prediction using our
clustering approach. A comparison of proteins predicted in
the PG ORF set by our clustering against PG ORFs annotated
as proteins by whole-genome annotation techniques revealed
that our protein prediction method via clustering has a

Table 1. The Complete Dataset Consisted of Sequences from NCBI-nr, ENS, TGI-EST, PG, and GOS, for a Total of 28,610,944 Sequences

Dataset Source Number of Amino

Acid Sequences

Mean Sequence

Length

Brief

Description

NCBI-nr NCBI 2,317,995 339 Consists of protein sequences submitted to SWISS-PROT, PDB, PIR, and PRF, and

also predicted proteins from both finished and unfinished genomes in GenBank,

EMBL, and DDBJ.

PG ORFs NCBI 3,049,695 160 ORFs identified from 222 prokaryotic genome projects. Organisms are listed in

Protocol S1.

TGI-EST ORFs TIGR Gene Index 5,458,820 119 ORFs identified from 72 datasets in which each dataset consists of EST assem-

blies. Organisms are listed in Protocol S1.

ENS Ensembl 361,668 466 Sequences from 12 species, including human, mouse, rat, chimp, zebrafish, fruit

fly, mosquito, honey bee, dog, two species of puffer fish, chicken, and worm.

GOS ORFs J. Craig Venter

Institute

17,422,766 134 ORFs identified from an assembly of 7.7 million reads. These reads include both

the reads from the Sorcerer II GOS Expedition and the reads from the earlier Sar-

gasso Sea study. Also included are 36,318 ORFs identified from an assembly of

sequences collected from the viral size (, 0.1 lm) fraction of one sample.

doi:10.1371/journal.pbio.0050016.t001
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sensitivity of 83% and a specificity of 86% (see Materials and
Methods). The HMM profiling allowed for the evaluation of
our clustering technique’s grouping of sequences. We used
Pfam models in two different ways for this assessment (see
Materials and Methods) and make three observations. First,
using a simple Pfam domain architecture-based evaluation,
these clusters are mostly consistent as reflected by 93% of
clusters having less than 2% unrelated pairs of sequences in
them. Second, these clusters are quite conservative and can
split domain families, with 58% of domain architectures
being confined to single clusters and 88% of domain
architectures having more than half of their occurrences in
a single cluster. Third, the size distribution of these clusters is
quite similar to the size distribution of clusters induced by
Pfams.

Protein Prediction
Of the initial 28,610,944 sequences, we labeled 9,978,637

sequences (35%) as predicted proteins based on the cluster-
ing, of which nearly 60% are from GOS (Table 2). The HMM
profiling labeled only an additional 226,743 (0.8%) sequences
as predicted proteins, for a total of 10,205,380 predicted
proteins. This indicates that our clustering method captures
most of the sequences found by profile HMMs. For sequences
both in clusters and with HMM matches, (on average) 73.5%
of their length is covered by HMM matches. For sequences
not in clusters but with HMM matches, this value is only
45.3%. Furthermore, while 64% of sequences in clusters have
HMM matches, there are 3,550,901 sequences that are
grouped into clusters but do not have HMM matches. Most
of these clusters correspond either to families lacking profile
HMMs or contain sequences that are too remote to match
above the cutoffs used. The latter is an indication of the
diversity added to known families that is not picked up by
current profile HMMs.

Using our method, the predicted proteins constitute
different fractions of the totals for the five datasets, with
87% for NCBI-nr, nearly 20% for both PG ORFs and TGI-
EST ORFs, 92% for ENS, and 35% for GOS. The high rate of
prediction for ENS is a reflection of the high degree of
conservation of proteins across the metazoan genomes,
whereas the prediction rates for PG ORFs and TGI-EST
ORFs are similar to rates seen in other protein prediction
approaches. The 13% of NCBI-nr sequences that we marked
as spurious may constitute contaminants in the form of false

predictions or organism-specific proteins. Nearly two-thirds
of these sequences are labeled ‘‘hypotheticals,’’ ‘‘unnamed,’’
or ‘‘unknown.’’ This is more than twice the fraction of
similarly labeled sequences (30%) in the full NCBI-nr dataset.
Of the remaining one-third, half of them are less than 100 aa
in length. This suggests that they are either fast-evolving short
peptides, spurious predictions, or proteins that failed to meet
the length-based thresholds in the clustering.
Based on the clustering and the HMM profiling, there is

evidence for 6,123,395 proteins in the GOS dataset (Table 2).
Given the fragmentary nature of the GOS ORFs (as a result of
the GOS assembly [10,30]), it is not surprising that the average
length of a GOS-predicted protein (199 aa) is smaller than the
average length of predicted proteins in NCBI-nr (359 aa), PG
ORFs (325 aa), TGI-EST ORFs (207 aa), and ENS (489 aa). The
ratio of clustered ORFs to total ORFs is significantly higher
for the GOS ORFs (34%) compared to PG ORFs (19%). This
could be due to a large number of false-positive protein
predictions in the GOS dataset. However, this is unlikely for a
variety of reasons. Nearly 4.64 million GOS ORFs (26.6%)
have significant BLAST matches (with an E-value �1 3 10�10)
to NCBI-nr sequences. The PG ORFs do not have a high false-
positive rate compared to the submitted annotation for the
prokaryotic genomes (see Materials and Methods). Most
importantly, based on the fragmentary nature of GOS
sequencing compared to PG sequencing, the number of
shadow (spurious) ORFs �60 aa is significantly reduced (see
Materials and Methods).
Some pairs of GOS-predicted proteins that belong to the

same cluster are adjacent in the GOS assembly. While some of
them correspond to tandem duplicate genes, an overwhelm-
ing fraction of the pairs are on mini-scaffolds [10], indicating
that they are potentially pieces of the same protein (from the
same clone) that we split into fragments. We estimate that this
effect applies to 3% of GOS-predicted proteins. Sequencing
errors and the use of the wrong translation table can also
result in the ORF generation process producing split ORF
fragments.
The combined set of predicted proteins in NCBI-nr, PG,

TGI-EST, and ENS, as expected, has a lot of redundancy. For
instance, most of the PG protein predictions are in NCBI-nr.
Removing exact substrings of longer sequences (i.e., 100%
identity) reduces this combined set to 3,167,979 predicted
proteins. When we perform the same filtering on the GOS
dataset, 5,654,638 predicted proteins remain. Thus, the GOS-

Table 2. Clustering and HMM Profiling Results Showing the Number of Predicted Proteins (Including Both Redundant and
Nonredundant Sequences) in Each Dataset

Dataset Original Set Clustering (A) HMM

Profiling (B)

A \ B A � B B � A Total Predicted

Proteins A [ B

Mean Length

of Sequence

NCBI-nr 2,317,995 1,939,056 1,645,146 1,566,123 372,933 79,023 2,018,079 359

PG ORFs 3,049,695 575,729 448,159 418,503 157,226 29,656 605,385 325

TGI-EST ORFs 5,458,820 1,097,083 606,779 576,532 520,551 30,247 1,127,330 207

ENS 361,668 319,855 253,007 241,671 78,184 11,336 331,191 489

GOS ORFs 17,422,766 6,046,914 3,701,388 3,624,907 2,422,007 76,481 6,123,395 199

Total 28,610,944 9,978,637 6,654,479 6,427,736 3,550,901 226,743 10,205,380 —

A \ B denotes the number of predicted proteins common to both the clustering and the HMM profiling; A�B, the number of predicted proteins in clusters but not in the HMM profile set;
B� A, the number of predicted proteins in the HMM profile set but not in clusters; and A [ B, the total number of predicted proteins in each dataset.
doi:10.1371/journal.pbio.0050016.t002
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predicted protein set is 1.8 times the size of the predicted
protein set from current publicly available datasets. We used
a simple BLAST based scheme to assign kingdoms for the
GOS sequences (see Materials and Methods). Of the sequences
that we could annotate by kingdom, 63% of the sequences in
the public datasets are from the eukaryotic kingdom, and
90.8% of the sequences in the GOS set are from the bacterial
kingdom (Figure 1).

Protein Clustering
The 9,978,637 protein sequences predicted by our cluster-

ing method are grouped into 297,254 clusters of size two or
more, where size of a cluster is defined to be the number of
nonredundant sequences in the cluster. There are 280,187
small clusters (size , 20), 12,992 medium clusters (size
between 20 and 200), and 4,075 large clusters (size . 200).
While the 17,067 medium- and large-sized clusters constitute
only 6% of the total number of clusters, they account for 85%
of all the sequences that are clustered (Table 3). Many of the

largest clusters correspond to families that have functionally
diversified and expanded (Table 4). While some large families,
such as the HIV envelope glycoprotein family and the
immunoglobulins, also reflect biases in sequence databases,
many more, including ABC transporters, kinases, and short-
chain dehydrogenases, reflect their expected abundance in
nature.

Rate of Discovery of Protein Families
We examined the rate of discovery of protein families using

our clustering method to determine whether our sampling of
the protein universe is reaching saturation. We find that for
the present number of sequences there is an approximately
linear trend in the rate of discovery of clusters with the
addition of new (i.e., nonredundant) sequences (Figure 2).
Moreover, the observed distribution of cluster sizes is well
approximated by a power law [42,43], and this observed
power law can be used to predict the rate of growth of the
number of clusters of a given size (see Materials and
Methods). This rate is dependent on the value of the power
law exponent and decreases with increasing cluster sizes. We
find good agreement between the observed and predicted
growth rates for different cluster sizes. The approximately
linear relationship between the number of clusters and the
number of protein sequences indicates that there are likely
many more protein families (either novel or subfamilies
distantly related to known families) remaining to be
discovered.

GOS versus Known Prokaryotic versus Known
Nonprokaryotic
We also examined the GOS coverage of known proteins

and protein families. Based on the cell-size filtering
performed while collecting the GOS samples, we expected
that the sample would predominantly be a size-limited subset
of prokaryotic organisms [30]. We studied the content of the
17,067 medium- and large-sized clusters across three group-
ings: (1) GOS, (2) known prokaryotic (PG together with
bacterial and archaeal portions of NCBI-nr), and (3) known
nonprokaryotic (TGI-EST and ENS together with viral and
eukaryotic portions of NCBI-nr). The Venn diagram in Figure
3 shows the breakdown of these clusters by content (see
Materials and Methods). The largest section contains GOS-

Figure 1. Proportion of Sequences for Each Kingdom

(A) The combined set of NCBI-nr, PG, TGI-EST, and ENS has 3,167,979
sequences. The eukaryotes account for the largest portion and is more
than twice the bacterial fraction.
(B) Predicted kingdom proportion of sequences in GOS. Out of the
5,654,638 GOS sequences, 5,058,757 are assigned kingdoms using a
BLAST-based scheme. The bacterial kingdom forms by far the largest
fraction in the GOS set.
doi:10.1371/journal.pbio.0050016.g001

Table 3. Cluster Size Distribution and the Distribution of Sequences in These Clusters

Cluster Size Number of Clusters Total Sequences NCBI-nr PG TGI-EST ENS GOS

2–4 214,033 756,269 194,297 87,699 149,687 32,920 291,666

5–9 48,348 415,166 97,759 30,565 71,414 14,828 200,600

10–19 17,806 350,918 90,682 19,904 60,783 23,493 156,056

20–49 7,255 310,770 78,153 13,809 58,496 26,486 133,826

50–99 3,086 337,296 80,470 14,342 55,190 26,150 161,144

100–199 2,631 595,903 165,846 28,100 107,490 40,465 254,002

200–499 2,134 1,036,567 218,940 57,131 164,581 49,797 546,118

500–999 799 914,207 148,084 54,077 90,020 24,047 597,979

1,000–2,000 620 1,503,116 205,196 79,348 105,866 21,883 1,090,823

�2,000 542 3,758,425 659,629 190,754 233,556 59,786 2,614,700

Total 297,254 9,978,637 1,939,056 575,729 1,097,083 319,855 6,046,914

The size of a cluster is the number of nonredundant sequences in it. Column three shows the total number of sequences (both redundant and nonredundant) in these clusters. The
succeeding columns show their breakdown by the five datasets. There are 17,067 medium- and large-size clusters.
doi:10.1371/journal.pbio.0050016.t003
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only clusters (23.40%) emphasizing the significant novelty
provided by the GOS data. The next section consists of
clusters containing sequences from only the known non-
prokaryotic grouping (20.78%), followed closely by the
section containing clusters with sequences from all three
groupings (20.23%). The large known nonprokaryotic–only
grouping shows that our current GOS sampling methodology
will not cover all protein families, and perhaps misses some
protein families that are exclusive to higher eukaryotes. The
large section of clusters that include all three groupings

indicates a large core of well-conserved protein families
across all domains of life. In contrast, the known prokaryotic
protein families are almost entirely covered by the GOS data.

Novelty Added by GOS Data
There are 3,995 medium and large clusters that contain

only sequences from the GOS dataset. Some are divergent
members of known families that failed to be merged by the
clustering parameters used, or are too divergent to be
detected by any current homology detection methods. The

Table 4. List of the Top 25 Clusters from the Clustering Process

Cluster ID Cluster

Annotation

Nonredundant

Sequences

Total

Sequences

NCBI-nr PG TGI-EST ENS GOS

3510 Immunoglobulin 37,227 51,944 49,206 0 1,649 1,089 0

2568 ABC transporter 34,130 69,010 8,886 6,248 150 13 53,713

49 Short chain dehydrogenase 33,406 56,266 7,607 3,055 2,852 747 42,005

4294 NAD dependent epimerase/dehydratase 29,445 35,555 2,745 1,265 1,500 111 29,934

1239 AMP-binding enzyme 22,111 37,598 3,838 1,614 2,246 613 29,287

2630 Envelope glycoprotein 21,161 41,205 41,189 2 10 0 4

157 Glycosyl transferases group 1 20,366 27,012 2,766 1,446 557 42 22,201

183 Integral membrane protein 17,627 33,079 2,154 1,298 1,198 95 28,334

530 Aldehyde dehydrogenase 15,851 30,929 3,116 1,349 1,589 388 24,487

1308 Aminotransferase class-V and

DegT/DnrJ/EryC1/StrS aminotransferase

15,757 22,484 1,849 1,086 413 71 19,065

244 Kinase family, including pknb, epk, c6 15,112 21,641 6,384 83 10,809 2,761 1,604

336 Histidine kinase–, DNA gyrase B–, and HSP90-like ATPase 14,724 23,355 3,809 2,469 54 4 17,019

357 Tetratricopeptide repeat 14,323 17,058 1,598 609 1,320 315 13,216

4325 Alpha/Beta hydrolase fold 13,806 20,886 2,828 1,334 1,625 196 14,903

113 Aminotransferase class I and II 13,006 22,186 2,931 1,534 1,239 120 16,362

333 Zinc-binding dehydrogenase 12,737 22,298 4,055 1,370 2,383 269 14,221

1315 tRNA synthetases class I (I, L, M, and V) 12,545 19,992 1,152 600 472 131 17,637

26 Acyl-CoA dehydrogenase 12,150 22,340 2,081 1,152 541 179 18,387

159 ABC transporter and ABC transporter transmembrane 11,984 17,650 2,697 1,442 797 170 12,544

3357 Cytochrome P450 11,929 17,302 5,355 249 6,994 1,399 3,305

4556 Response regulator 11,928 21,903 5,387 3,320 348 5 12,843

1720 TonB-dependent receptor 11,890 17,080 1,789 1,090 34 2 14,165

514 NADH dehydrogenase (various subunits) 11,224 25,068 11,624 635 253 10 12,546

4235 Glycosyl transferase family 2 10,954 13,593 1,236 724 74 14 11,545

186 7 transmembrane receptor 10,654 22,252 13,943 0 1,475 6,829 5

Clusters were annotated using the most commonly matching Pfam domains. Many of these clusters correspond to families that have expanded and functionally diversified.
doi:10.1371/journal.pbio.0050016.t004

Figure 2. Rate of Discovery of Clusters as (Nonredundant) Sequences Are Added

The x-axis denotes the number of sequences (in millions) and the y-axis denotes the number of clusters (in thousands). Seven datasets with increasing
numbers of (nonredundant) sequences are chosen as described in the text. The blue curve shows the number of core sets of size �3 for the seven
datasets. Curves for core set sizes �5, �10, and �20 are also shown. Linear regression gives slopes 0.027 (R2¼ 0.999), 0.011 (R2¼ 0.999), 0.0053 (R2¼
0.999), and 0.0024 (R2 ¼ 0.996) for size �3, size �5, size �10, and size �20, respectively.
doi:10.1371/journal.pbio.0050016.g002
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remaining clusters are completely novel families. In exploring
the 3,995 GOS-only clusters, 44.9% of them contain
sequences that have HMM matches, or BLAST matches to
sequences in a more recent snapshot of NCBI-nr (down-
loaded in August 2005) than was used in this study. The recent
NCBI-nr matches include phage sequences from cyanophages
(P-SSM2 and P-SSM4) [44] and sequences from the SAR-11
genome (Candidatus pelagibacter ubique HTCC1062) [45]. We
used profile–profile searches [39] to show that an additional
12.5% of the GOS-only clusters can be linked to profiles built
from Protein Data Bank (PDB), COG, or Pfam. The 2,295
clusters with detected homology are referred to as Group I
clusters. The remaining 1,700 (42.6%) GOS-only clusters with
no detectable homology to known families are labeled as
Group II clusters.

We applied a guilt-by-association operon method to
annotate the GOS-only clusters with a strategy that did not
rely on direct sequence homology to known families.
Function was inferred for the GOS-only clusters by examin-
ing their same-strand neighbors on the assembly (see
Materials and Methods). Similar strategies have been success-
fully used to infer protein function in finished microbial
genomes [46–48]. Despite minimal assembly of GOS reads,
many scaffolds and mini-scaffolds contain at least partial
fragments of more than one predicted ORF, thereby making
this approach feasible. For 90 (5.3%) of the Group II clusters,
and for 214 (9.3%) of the Group I clusters, at least one Gene
Ontology (GO) [49] biological process term at p-value �0.05
can be inferred. The inferred functions and neighbors of
some of these GOS-only clusters are highlighted in Table 5.
We observed that for Group I clusters, the neighbor-inferred
function is often bolstered by some information from weak
homology to known sequences. While neighboring clusters as
a whole are of diverse function, a number of GOS-only
clusters seem to be next to clusters implicated in photosyn-

thesis or electron transport. These GOS-only clusters could
be of viral origin, as cyanophage genomes contain and
express some photosynthetic genes that appear to be derived
from their hosts [44,50,51]. In support of these observations,
we identified five photosynthesis-related clusters containing
hundreds to thousands of viral sequences, including psbA,
psbD, petE, SpeD, and hli in the GOS data; furthermore, our
nearest-neighbor analysis of these sequences reveals the
presence of multiple viral proteins (unpublished data).
Although the majority of GOS-only sequences are bacterial,

a higher than expected proportion of the GOS-only clusters
are predicted to be of viral origin, implying that viral
sequences and families are poorly explored relative to other
microbes. To assign a kingdom to the GOS-only clusters, we
first inferred the kingdom of neighboring sequences based on
the taxonomy of the top four BLAST matches to the NCBI-nr
database (see Materials and Methods). A possible kingdom was
assigned to the GOS-only cluster if more than 50% of
assignable neighboring sequences belong to the same king-
dom. Viewed in this way, 11.8% of Group I clusters and
17.3% of Group II clusters with at least one kingdom-assigned
neighbor have more than 50% viral neighbors (Figure 4).
Only 3.3% and 3.4% of random samples of clusters with size
distributions matching that of Group I and Group II clusters
have more than 50% viral neighbors, while 7.7% of all
clusters pass this criterion. A total of 547 GOS-only clusters
contain sequences collected from the viral size fraction
included in the GOS dataset. For these clusters, 38.9% of the
Group I subset and 27.5% of the Group II subset with one or
more kingdom-assigned neighbors would be inferred as viral,
based on the conservative criteria of having more than 50%
viral assignable neighbors. Several alternative kingdom
assignment methods were tried (see Materials and Methods)
and provide for a similar conclusion.
The GOS-only clusters also tend to be more AT-rich than

sequences from a random size-matched sample of clusters
(35.9% 6 8% GC content for Group II clusters versus 49.5%
6 11% GC content for sample). Phage genomes with a
Prochlorococcus host [44] are also AT rich (37% average GC
content). Our analysis of the graph constructed based on
inferred operon linkages between all clusters indicates that
the GOS-only clusters may constitute large sets of cotran-
scribed genes (see Materials and Methods).
The high proportion of potentially viral novel clusters

observed here is reasonable, as 60%–80% of the ORFs in
most finished marine phage genomes are not homologous to
known protein sequences [52]. Viral metagenomics projects
have reported an equally high fraction of novel ORFs [53],
and a recent marine metagenomics project estimated that up
to 21% of photic zone sequences could be of viral origin [51].
It has also been reported that 40% of ORFans (sequences that
lack similarity to known proteins and predicted proteins)
exist in close spatial proximity to each other in bacterial
genomes, and this combined with proximity to integration
signals has been used to suggest a viral horizontally trans-
ferred origin for many bacterial ORFans [54]. Others have
noted a clustering of ORFans in genome islands and
suggested they derive from a phage-related gene pool [55].
A recent analysis of genome islands from related Prochlor-
ococcus found that phage-like genes and novel genes cohabit
these dynamic areas of the genome [56]. In our GOS-only
clusters, 37 of the 1,700 clusters with no detectable similarity

Figure 3. Venn Diagram Showing Breakdown of the 17,067 Medium and

Large Clusters by Three Categories—GOS, Known Prokaryotic, and

Known Nonprokaryotic

doi:10.1371/journal.pbio.0050016.g003

PLoS Biology | www.plosbiology.org March 2007 | Volume 5 | Issue 3 | e160438

Expanding the Protein Family Universe



T
a

b
le

5
.

N
e

ig
h

b
o

r-
B

as
e

d
In

fe
re

n
ce

o
f

Fu
n

ct
io

n
fo

r
N

o
ve

l
C

lu
st

e
rs

o
f

G
O

S
Se

q
u

e
n

ce
s

N
o

v
e

l

C
lu

st
e

r

ID

In
fe

rr
e

d
F

u
n

ct
io

n
p

-V
a

lu
e

a
N

e
ig

h
b

o
ri

n
g

C
lu

st
e

rs
w

it
h

C
o

n
tr

ib
u

ti
n

g
G

O
A

n
n

o
ta

ti
o

n

O
th

e
r

N
e

ig
h

b
o

rs

o
f

In
te

re
st

b
C

o
m

m
e

n
ts

G
O

ID
B

io
lo

g
ic

a
l

p
ro

ce
ss

C
lu

st
e

r
ID

G
O

A
n

n
o

ta
ti

o
n

8
8

3
7

G
O

:0
0

0
6

2
6

0
D

N
A

re
p

lic
at

io
n

4
.7

0
3

1
0
�

4
8

1
2

A
T

P
as

e
in

vo
lv

e
d

in
D

N
A

re
p

lic
at

io
n

P
h

ag
e

M
u

M
o

m
D

N
A

m
o

d
if

ic
at

io
n

e
n

zy
m

e

P
ro

fi
le

–
p

ro
fi

le
m

at
ch

:
D

N
A

p
o

ly
m

e
ra

se

p
ro

ce
ss

iv
it

y
fa

ct
o

r

2
,6

5
5

D
N

A
p

o
ly

m
e

ra
se

fa
m

ily
B

D
N

A
m

e
th

yl
as

e

1
2

5
1

9
G

O
:0

0
0

6
1

1
8

El
e

ct
ro

n
tr

an
sp

o
rt

4
.5

4
3

1
0
�

3
1

,3
6

2
C

yt
o

ch
ro

m
e

c
o

xi
d

as
e

su
b

u
n

it
III

P
ro

fi
le

–
p

ro
fi

le
m

at
ch

:
P

F0
3

6
2

6
—

cy
to

ch
ro

m
e

c
o

xi
d

as
e

su
b

u
n

it
IV

;
3

p
re

d
ic

te
d

tr
an

sm
e

m
b

ra
n

e
h

e
lic

e
s

1
,7

7
1

SC
O

1
/S

e
n

C
—

b
io

g
e

n
e

si
s

o
f

p
h

o
to

sy
n

th
e

ti
c

sy
st

e
m

s

1
1

0
1

0
1

5
1

G
O

:0
0

1
7

0
0

4
C

yt
o

ch
ro

m
e

co
m

p
le

x

as
se

m
b

ly

�
1

.0
0

3
1

0
�

5
8

,1
3

6
T

h
io

re
d

o
xi

n
.

2
0

d
iv

e
rs

e
p

ro
fi

le
–

p
ro

fi
le

m
at

ch
e

s,
o

n
e

o
f

w
h

ic
h

is

cy
to

ch
ro

m
e

c
b

io
g

e
n

e
si

s
fa

ct
o

r
cc

m
H

_
2

9
,3

6
4

C
yt

o
ch

ro
m

e
c

b
io

g
e

n
e

si
s

p
ro

te
in

1
,3

1
7

C
yt

o
ch

ro
m

e
c

as
se

m
b

ly
p

ro
te

in

1
8

4
5

6
G

O
:0

0
0

9
2

5
2

P
e

p
ti

d
o

g
ly

ca
n

b
io

sy
n

th
e

si
s

�
1

.0
0

3
1

0
�

5
1

,2
5

2
FA

D
b

in
d

in
g

d
o

m
ai

n
Ex

tr
ac

yt
o

p
la

sm
ic

fu
n

ct
io

n

(E
C

F)
si

g
m

a
fa

ct
o

r
2

4

O
n

e
p

re
d

ic
te

d
T

M
h

e
lix

1
0

,7
6

4
U

D
P

-N
-a

ce
ty

le
n

o
lp

yr
u

vo
yl

g
lu

co
s-

am
in

e
re

d
u

ct
as

e

V
ir

al
R

N
A

h
e

lic
as

e

1
4

2
1

9
G

O
:0

0
0

9
6

2
8

R
e

sp
o

n
se

to
ab

io
ti

c
st

im
u

lu
s

3
.1

0
3

1
0
�

4
5

,9
3

6
C

o
lic

in
V

p
ro

d
u

ct
io

n
p

ro
te

in
P

re
d

ic
te

d
so

lu
b

le
;

e
xc

lu
si

ve
ly

n
e

ig
h

b
o

rs
to

ju
st

tw
o

cl
u

st
e

rs
.

M
at

E
m

u
lt

id
ru

g
e

ff
lu

x
p

u
m

p

1
1

4
8

0
G

O
:0

0
1

5
0

3
1

P
ro

te
in

tr
an

sp
o

rt
3

.0
0

3
1

0
�

4
4

,1
7

7
M

o
tA

/T
o

lQ
/E

xb
B

p
ro

to
n

ch
an

n
e

l
fa

m
ily

Fo
u

r
p

re
d

ic
te

d
T

M
h

e
lic

e
s;

T
o

l
p

ro
te

in
s

fa
ci

lit
at

e

tr
an

sp
o

rt
o

f

co
lic

in
s,

ir
o

n
,

an
d

p
h

ag
e

D
N

A

9
,5

6
9

B
io

p
o

ly
m

e
r

tr
an

sp
o

rt
p

ro
te

in

Ex
b

D
/T

o
lR

1
4

3
6

0
G

O
:0

0
0

6
7

7
7

M
o

-m
o

ly
b

d
o

p
te

ri
n

co
fa

ct
o

r

b
io

sy
n

th
e

si
s

�
1

.0
0

3
1

0
�

5
9

,7
4

5
M

o
aC

fa
m

ily
Su

lf
it

e
o

xi
d

as
e

SA
R

1
1

b
la

st
m

at
ch

an
n

o
ta

te
d

as
p

ro
b

ab
le

m
o

aD
;

p
ro

fi
le

–
p

ro
fi

le
m

at
ch

e
s

to
T

h
iS

an
d

m
o

ly
b

d
o

p
te

ri
n

co
n

ve
rt

in
g

fa
ct

o
r;

,
.0

5
%

o
f

se
q

u
e

n
ce

s
h

av
e

P
FA

M

m
at

ch
to

T
h

iS
fa

m
ily

9
,9

4
8

M
o

aE
p

ro
te

in
P

re
d

ic
te

d
th

io
e

st
e

ra
se

2
5

5
R

ad
ic

al
SA

M
su

p
e

rf
am

ily

8
3

9
7

G
O

:0
0

1
7

0
0

4
C

yt
o

ch
ro

m
e

co
m

p
le

x

as
se

m
b

ly

�
1

.0
0

3
1

0
�

5
8

,1
3

6
T

h
io

re
d

o
xi

n
SM

C
su

p
e

rf
am

ily
(h

o
m

o
lo

g
o

u
s

to

A
B

C
fa

m
ily

)

B
la

st
m

at
ch

to
‘‘

p
e

ri
p

la
sm

ic
o

r
in

n
e

r
m

e
m

b
ra

n
e

–

as
so

ci
at

e
d

p
ro

te
in
’’

;
tw

o
p

re
d

ic
te

d
T

M
h

e
lic

e
s;

0
.7

%
o

f
se

q
u

e
n

ce
s

h
av

e
P

FA
M

m
at

ch
to

cy
to

ch
ro

m
e

c
b

io
g

e
n

e
si

s
p

ro
te

in

9
,3

6
4

U
n

ch
ar

ac
te

ri
ze

d
cy

to
ch

ro
m

e
c

b
io

g
e

n
e

si
s

p
ro

te
in

1
3

9
0

9
G

O
:0

0
1

5
9

7
9

P
h

o
to

sy
n

th
e

si
s

�
1

.0
0

3
1

0
�

5
1

3
,9

9
0

P
h

o
to

sy
st

e
m

II
re

ac
ti

o
n

ce
n

tr
e

N
p

ro
te

in
(p

sb
N

)

P
re

d
ic

te
d

so
lu

b
le

;
si

n
g

le
b

la
st

m
at

ch
to

cy
an

o
p

h
ag

e

P
-S

SM
2

h
yp

o
th

e
ti

ca
l

p
ro

te
in

;
m

an
y

p
h

ag
e

p
ro

te
in

s

as
m

in
o

r
n

e
ig

h
b

o
rs

5
,1

8
4

P
h

o
to

sy
n

th
e

ti
c

re
ac

ti
o

n
ce

n
tr

e

p
ro

te
in

D
1

(p
sb

A
)

7
,6

6
4

Fe
rr

e
d

o
xi

n
-d

e
p

e
n

d
e

n
t

b
ili

n
re

d
u

ct
as

e

a
p

-V
al

u
e

s
w

e
re

co
m

p
u

te
d

b
y

si
m

u
la

ti
n

g
1

0
0

,0
0

0
n

e
ig

h
b

o
r

cl
u

st
e

r
se

ts
o

f
e

q
u

iv
al

e
n

t
si

ze
.

b
N

o
t

al
l

cl
u

st
e

rs
co

u
ld

b
e

m
ap

p
e

d
to

a
G

O
te

rm
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

b
io

.0
0

5
0

0
1

6
.t

0
0

5

PLoS Biology | www.plosbiology.org March 2007 | Volume 5 | Issue 3 | e160439

Expanding the Protein Family Universe



(2.2%) have at least ten bacterial-classified and ten viral-
classified neighboring ORFs. This is 6.2-fold higher than the
rate seen for the size-matched sample of all clusters (six
clusters, 0.35%). This would seem to add more support to a
phage origin for at least some ORFans found in bacterial
genomes.

If a sizable portion of the novel families in the GOS data
are in fact of viral origin, it suggests that we are far from fully
exploring the molecular diversity of viruses, a conclusion
echoed in previous studies of viral metagenomes [53,57,58]. In
studies of bacterial genomes, discovery of new ORFans shows
no sign of reaching saturation [59]. Coverage of many phage
families in the GOS data may be low, given that there are
inherent differences in the abundance of their presumed
bacterial hosts. These GOS-only clusters were operationally
defined as having at least 20 nonredundant sequences.
Reducing this threshold to ten nonredundant sequences adds
7,241 additional clusters. Whether this vast diversity repre-
sents new families or is a reflection of the inability to detect
distant homology will require structural and biochemical
studies, as well as continued development of computational
methods to identify remotely related sequences.

Comparison of Domain Profiles in GOS and PG Datasets
We used HMM profiling to address the question of which

biochemical and biological functions are expanded or
contracted in GOS compared to the largely terrestrial
genomes in PG. Significant differences are seen in 68% of
domains (4,722 out of the 6,975 domains that match either
GOS or PG; p-value ,0.001, chi-square test). These differ-

ences reflect several factors, including differing biochemical
needs of oceanic life and taxonomic biases in the two
datasets. An initial comparison of these domain profiles
helps shed light on these factors. 91% (964/1,056) of GOS-only
domains are viral and/or eukaryotic specific (by Pfam
annotation). Most of the remaining 92 domains are rare (63
domains have less than ten copies in GOS), are predom-
inantly eukaryotic/viral, or are specific to narrow bacterial
taxa without completed genome sequences. Most of the 879
PG-only domains are also rare (444 have ten or less members),
and/or are restricted to tight lineages, such as Mycoplasma (104
matches to five domains) or largely extremeophile archaeal-
specific domains (1,254 matches to 99 domains). Highly PG-
enriched domains also tend to belong in these categories.
Many moderately skewed domains reflect the taxonomic skew
between PG and GOS. For instance, we found that a set of six
sarcosine oxidase-related domains are 4.8-fold enriched in
GOS (Table 6). They are mostly found in a- and c-
proteobacteria, which are widespread in GOS. Normalizing
to the taxonomic class level predicts a 1.8-fold enrichment in
GOS, indicating that taxonomy alone cannot fully explain the
prevalence of these proteins in oceanic bacteria.

Figure 4. Enrichment in the GOS-Only Set of Clusters for Viral Neighbors

Cluster sets from left to right are: I, GOS-only clusters with detectable
BLAST, HMM, or profile-profile homology (Group I); II, GOS-only clusters
with no detectable homology (Group II); I-S, a sample from all clusters
chosen to have the same size distribution as Group I; II-S, a sample from
all clusters chosen to have the same size distribution as Group II; I-V, a
subset of clusters in Group I containing sequences collected from the
viral size fraction; II-V, a subset of clusters in Group II from the viral size
fraction; and all clusters. Notice that although predominantly bacterial,
GOS-only clusters are assigned as viral based on their neighbors more
often than the size-matched samples and the set of all clusters.
doi:10.1371/journal.pbio.0050016.g004

Table 6. Functions Skewed in Domain Representation between
PG and GOS

Process Number

of HMMs

Number

in PG

Number

in GOS

GOS

Enrichment

Sarcosine oxidase 6 686 19,295 4.766

Oxidative stress 5 524 9,804 3.170

Ubiquinone synthesis 4 245 4,035 2.790

RecA 1 215 3,728 2.938

Topoisomerase IV 4 2,163 33,472 2.622

Photosynthesis 41 919 13,889 2.561

DNA polymerase 20 3,682 51,224 2.357

tRNA synthetases 11 5,499 71,294 2.197

Transketolase 4 2,127 26,440 2.106

DNA gyrase 7 4,146 49,677 2.030

TCA cycle 30 12,057 135,294 1.901

Shikimate metabolism 8 2,393 24,316 1.722

DnaJ 3 1,103 12,389 1.891

Universal ribosomal

components (found in

all three kingdoms)

39 8,555 80,321 1.591

UVR exonuclease operon 6 4,108 38,223 1.577

ABC transporter 39 193,689 727,314 0.636

Flagellum 38 3,771 12,988 0.584

Sugar transport 7 3,601 4,453 0.210

Transposase 13 4,354 4,365 0.170

Che operon (chemotaxis) 7 1,142 1,119 0.166

Ethanolamine 9 231 218 0.160

Hydrogenases 16 1,179 1,061 0.152

Pilus 14 700 623 0.151

PTS phosphotransferase

system

32 11,439 6,661 0.099

Gas vesicle 6 49 19 0.066

Grþ nonspore 22 1,063 52 0.008

Grþ spores 15 503 0 0.000

Functionally related families of domains were grouped by GO terms or by inspection to
sum up total domain counts in GOS and PG. There were 8,935,364 domain matches in the
GOS data (corresponding to 3,701,388 sequences) and 1,513,880 domain matches in the
PG data (corresponding to 448,159 sequences). The GOS enrichment ratio is computed
from columns three and four, and then normalized to account for the 5.9 times the
number of domain matches in GOS compared to PG.
doi:10.1371/journal.pbio.0050016.t006
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Mysterious Lack of Characteristic Gram-Positive Domains
Gram-positive bacteria (Firmicutes and Actinobacteria) repre-

sent 26.7% of PG and ;12% of GOS [30]. Given the larger
size of the GOS dataset, one might predict Gram-positive–
specific domains to be ;2.4-fold enriched in GOS. Instead,
the opposite is consistently seen. Of 15 firmicute-specific
spore-associated domains, PG has 503 members, but GOS has
none. For another 22 firmicute-restricted domains of varying
or unknown function, the PG/GOS ratio is 1797:77 (Table 6).
Hence, it appears that GOS Gram-positive lineages lack most
of their characteristic protein domains. Two sequenced
marine Gram-positives (Oceanobacillus iheyensis [60] and Bacillus
sp. NRRL B-14911) have a large complement of these
domains. However, another recently assembled genome from
Sargasso sea surface waters, the actinomycete Janibacter sp.
HTCC2649, has just two of these domains, and may reveal a
whole-genome context for this curious loss of characteristic
domains.

Flagellae and Pili Are Selectively Lost from Oceanic
Species

Flagellum components from both eubacteria and archaea
are significantly underrepresented in the GOS dataset by
about 2-fold (Table 6). Ironically, at a bacterial scale,
swimming may be worthwhile on an almost dry surface, but
not in open water. The chemotaxis (che) operon that often
directs flagellar activity is also rare in GOS. Another direc-
tional appendage, the pilus, is even more reduced, though its
taxonomic distribution (mostly in proteobacteria, predom-
inantly c-proteobacteria) would have predicted enrichment.

Skew in Core Cellular Pathways
While taxonomically specialized domains are likely to be

skewed by taxonomic differences, core pathways found in
many or all organisms paint a different picture. We used GO
term mapping and text mining to group domains into major
functions and to look for consistent skews across several
domains. Several core functions, including DNA-associated
proteins (DNA polymerase, gyrase, topoisomerase), ribosomal

subunits shared by all three kingdoms, marker proteins such
as recA and dnaJ, and TCA cycle enzymes all tend to be GOS
enriched. This suggests that oceanic genomes may be more
compact than sequenced genomes and so have a higher
proportion of core pathways.

Characteristics and Kingdom Distribution of Known
Protein Domains
A decade ago, databases were highly biased towards

proteins of known function. Today, whole-genome sequenc-
ing and structural genomics efforts have presumably reduced
the biases that are a result of targeted protein sequencing. We
used the Pfam database to compare the characteristics and
kingdom distribution of known protein domains in the GOS
dataset to that of proteins in the publicly available datasets
(NCBI-nr, PG, TGI-EST, and ENS). Such an effort can be used
to assess biases in these datasets, help direct future sampling
efforts (of underrepresented organisms, proteins, and protein
families), make more informed generalizations about the
protein universe, and provide important context for deter-
mination of protein evolutionary relationships (as biased
sampling could indicate expected but missing sequences).
For this analysis we used the nonredundant datasets (at

100% identity) discussed in Figure 1. We refer to the set of
3,167,979 nonredundant sequences from NCBI-nr, PG, TGI-
EST, and ENS as the public-100 set and the similarly filtered set
of 5,654,638 sequences from the GOS data as the GOS-100 set.
About 70% of public-100 sequences and 56% of GOS-100

sequences significantly match at least one Pfam model. The
most obvious difference between the sets is that the vast
majority of GOS sequences are bacterial, and this has to be
taken into account when comparing the numbers. Since
different Pfam families appear with different frequencies in
the kingdoms, we considered the results for each kingdom
separately (Figure 5). We then evaluated all kingdoms
together, with results normalized by relative abundance of
members from the different kingdoms. A domain found
commonly and exclusively in eukaryotes and abundant in

Figure 5. Coverage of GOS-100 and Public-100 by Pfam and Relative Sizes of Pfam Families by Kingdom, Sorted by Size

The public-100 sequences are annotated using the NCBI taxonomy and the source public database annotations. GOS-100 sequences were given
kingdom weights as described in Materials and Methods. For each kingdom, the fraction of sequences with �1 Pfam match are shown, while the ten
largest Pfam families shown as discrete sections whose size is proportional to the number of matches between that family and GOS-100 or public-100
sequences. Pfam families that are smaller than the ten largest are binned together in each column’s bottom section. Pfam covers public-100 better than
GOS-100 in all kingdoms, with the greatest difference occurring in the viral kingdom, where 89.1% of public-100 viral sequences match a Pfam domain,
while only 27.5% of GOS-100s have a sequence match.
doi:10.1371/journal.pbio.0050016.g005
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public-100 would be expected to be found rarely in GOS-100.
We used a conservative BLAST-based kingdom assignment
method to assign kingdoms to the GOS sequences (see
Materials and Methods).

In each kingdom, sequences in GOS-100 are less likely to
match a Pfam family than those in public-100 (Figure 5). For
the cellular kingdoms, these differences are comparatively
modest. While diversity of the GOS data accounts for some of
this difference, it might also be explained in part by the
fragmentary nature of the GOS sequences. Viruses tell a
dramatic and different story. Of public-100 viral sequences,
89.1% match a Pfam domain, while only 27.5% of GOS-100
viral sequences have a match. This tremendous difference
appears to be due to heavy enrichment of the public data for
minor variants of a few protein families, indicated by the sizes
of the ten most populous Pfams in each kingdom (Figure 5).
Sequences from three Pfam families (envelope glycoprotein
GP120, reverse transcriptase, and retroviral aspartyl pro-
tease) account for a third of all public viral sequences. By
contrast, the most populous three families in the GOS-100
data (bacteriophage T4-like capsid assembly protein [Gp20],
major capsid protein Gp23, and phage tail sheath protein)
account for only about 7% of public-100 sequences. Such a
difference may be due to intentional oversampling of
proteins that come from disease-causing organisms in the
public dataset.

While the total proportion of proteins with a Pfam hit is
fairly similar between public-100 (70%) and GOS-100 (56%)
datasets, there are considerable differences with regard to the
distributions of protein families within these two datasets.
The most highly represented Pfam families in GOS-100
compared to public-100 are shown in Table 7. Notably, we
found that while many known viral families are absent in
GOS-100, viral protein families dominate the list of the
families more highly represented in GOS-100; this is
presumably because of biases in the collection of previously
known viral sequences. Surprisingly few bacterial families
were among the most represented in GOS-100 compared with
public-100. By contrast, we also observed that those families
found more rarely in GOS-100 than public-100 were
frequently bacterial (Table 7). This appears to be a result of
the large number of key bacterial and viral pathogen proteins
in public-100 that are comparatively less abundant in the
oceanic samples and/or less intensively sampled.

GOS-100 Data Suggest That a Number of ‘‘Kingdom-
Specific’’ Pfams Actually Are Represented in Multiple
Kingdoms

Of the 7,868 Pfam models in Pfam 17.0, 4,050 match
proteins from only a single kingdom in public-100. The
additional sequences from GOS-100 reveal that some of these
families actually have representatives in multiple kingdoms.
Table 8 shows 12 families that have a Pfam match to at least
one GOS-100 protein with an E-value � 1 3 10�10, and which
we confidently assigned to a kingdom different from that of
all the public-100 matches. Because our criteria for a
‘‘confident’’ kingdom assignment are conservative, there are
only one or a few confident assignments for each Pfam
domain to a ‘‘new’’ kingdom. Our ‘‘confident’’ criteria are
especially difficult to meet in the case of kingdom-crossing,
due to the votes contributed by the crossing protein (see
Materials and Methods). Thus, many scaffolds have no

confident kingdom assignment. Our examination of each of
the scaffolds responsible for a determination of kingdom-
crossing confirms that each one had both a highly significant
match to the Pfam model in question and an overwhelming
number of votes for the unexpected kingdom. These scaffold
assemblies were also manually inspected. No clear anomalies
were observed. In most instances, the assemblies in question
were composed of a single unitig, and as such are high-
confidence assemblies. Mate pair coverage and consistent
depth of coverage provide further support for the correct-
ness of those assemblies that are built from multiple unitigs.
Examples of kingdom-crossing families include indoleamine
2,3-dioxygenase (IDO), MAM domain, and MYND finger [15],
which have previously only been seen in eukaryotes, but we
find them also to be present in bacteria. These Pfams now
cross kingdoms, due either to their being more ancient than
previously realized or to lateral transfer.
We explored the IDO family further. This family has

representatives in vertebrates, invertebrates, and multiple
fungal lineages [15,61] in public-100. Members of the IDO
family are heme-binding, and mammalian IDOs catalyze the
rate-limiting step in the catabolic breakdown of tryptophan
[62], while family members in mollusks have a myoglobin
function [63]. In mammals, IDO also appears to have a role in
the immune system [62,64–66]. The IDO Pfam has matches to
66 proteins in public-100, all of which are eukaryotic.
However, it also has matches to ten GOS-100 sequences that
we confidently labeled as bacterial proteins and matches to
206 GOS-100 sequences for which a confident kingdom
assignment could not be made (many of these are likely
bacterial sequences due to the GOS sampling bias). To
reconstruct a phylogeny of the IDO family, we searched a
recent version of NCBI-nr (March 5, 2006) for IDO proteins
that were not included in the public-100 dataset. The search
identified two bacterial proteins from the whole genomes of
the marine bacteria Erythrobacter litoralis and Nitrosococcus
oceani, and 24 eukaryotic proteins (see Materials and Methods).
The phylogeny shown in Figure 6 shows 54% bootstrap
support for a separation of the clade containing exclusively
public-100 and NCBI-nr 2006 eukaryotic sequences from a
clade with the GOS-100 sequences as well as the two NCBI-nr
E. litoralis andN. oceani sequences. We confirmed this feature of
the tree topology with multiple other phylogeny reconstruc-
tion methods. Curiously, there is considerable intermixing of
bacterial and eukaryotic sequences in the clade of GOS-100
sequences and the two NCBI-nr bacteria. A manual inspection
of the scaffolds that contain the ten GOS-100 sequences
(containing the IDO domain) that we confidently labeled as
bacterial, overwhelmingly supports the kingdom assignment.
However, a manual inspection of the scaffolds that contain the
ten GOS-100 sequences (containing the IDO domain) that we
confidently labeled as eukaryotes presents a less convincing
picture. These scaffolds are short, with most of them
containing only two voting ORFs. Since the NCBI-nr version
used in the public-100 set has IDO from eukaryotes only, the
ORF with the IDO domain itself would cast four votes for
eukaryotes. Thus, these GOS-100 eukaryotic labelings are not
nearly as confident as the ones labeled bacterial.

Structural Genomics Implications
Knowledge about global protein distributions can be used

to inform priorities in related fields such as structural
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genomics. Structural genomics is an international effort to
determine the 3-D shapes of all important biological macro-
molecules, with a primary focus on proteins [67–72]. Previous
studies have shown that an efficient strategy for covering the
protein structure universe is to choose protein targets for
experimental structure characterization from among the
largest families with unknown structure [73,74]. If the
structure of one family member is determined, it may be
used to accurately infer the fold of other family members,
even if the sequence similarity between family members is too
low to enable accurate structural modeling [75]. Therefore,
large families are a focus of the production phase of the
Protein Structure Initiative (PSI), the National Institutes of
Health–funded structural genomics project that commenced
in October 2005 [76].
In March 2005, 2,729 (36%) of 7,677 Pfam families had at

least one member of known structure; these families could be
used to infer folds for approximately 51% of all pre-GOS
prokaryotic proteins (covering 44% of residues) [74]. The
Pfam5000 strategy is to solve one structure from each of the
largest remaining families, until a total of 5,000 families have
at least onemember with known structure [73]. As this strategy
is similar to that being used at PSI centers to choose targets,
projections based on the Pfam5000 should reflect PSI results.
Completion of the Pfam5000, a tractable goal within the
production phase of PSI, would enable accurate fold assign-
ment for approximately 65% of all pre-GOS prokaryotic
proteins. In the GOS-100 dataset, we observed that 46% of the
proteins might currently be assigned a fold based on Pfam
families of known structure (see Materials and Methods).
Completion of the Pfam5000 would increase this coverage to
55%.

Figure 6. Maximum Likelihood Phylogeny for the IDO Family

The phylogeny is based on an alignment of 93 sequences from GOS-100
and 51 sequences from public-100 and NCBI-nr from March 2006 that
matched the IDO Pfam model and satisfied multiple alignment quality
criteria. The IDO family is eukaryotic specific in public-100. The
phylogeny shows a clade with all the GOS sequences, predicted to be
bacterial (navy blue), eukaryotic (yellow), or unknown (gray), along with
two sequences from the marine bacteria Erythrobacter litoralis and
Nitrosococcus oceani (lime green) submitted to the sequence database
after February 2005, and a public-only clade of only eukaryotic
sequences (orange).
doi:10.1371/journal.pbio.0050016.g006
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The GOS sequences will affect Pfam in two ways: some will
be classified in existing protein families, thus increasing the
size of these families; others may eventually be classified into
new GOS-specific families. Both of these will alter the relative
sizes of different families, and thus their prioritization for
structural genomics studies. We calculated the sizes for all
Pfam families based on the number of occurrences of each
family in the public-100 dataset. Proteins in GOS-100 were
then added and the family sizes were recalculated. A total of
190 families that are not in the Pfam5000 based on public-100
are moved into the Pfam5000 after addition of the GOS data.
The 30 largest such families are shown in Table 9. As 20 of the
30 families are annotated as domains of unknown function in
Pfam, structural characterization might be helpful in identi-
fying their cellular or molecular functions. Reshuffling the
Pfam5000 to prioritize these 190 families would improve
structural coverage of GOS sequences after completion of the
Pfam5000 by almost 1% relative to the original Pfam5000
(from 55.4% to 56.1%), with only a small decrease in coverage
of public-100 sequences (from 67.7% to 67.5%).

The Pfam5000 would be further reprioritized by the
classification of clusters of GOS sequences into Pfam.
Assuming each cluster of pooled GOS-100 and public-100
sequences without a current Pfam match would be classified
as a single Pfam family, 885 such families would replace
existing families in the Pfam5000. These 885 clusters contain
a total of 383,019 proteins in GOS-100 and public-100. The
reprioritized Pfam5000 would also retain 1,183 families of
unknown structure from the current Pfam5000; these families
comprise a total of 1,040,330 proteins in GOS-100 and public-
100.

Known Protein Families and Increased Diversity Due to
GOS Data

Several protein families serve as examples to further
highlight the diversity added by the GOS dataset. In this
paper, we examined UV irradiation DNA damage repair
enzymes, phosphatases, proteases, and the metabolic enzymes
glutamine synthetase and RuBisCO (Table 10). The RecA
family (unpublished data) and the kinase family [77] have also
been explored in the context of the GOS data. There are
more than 5,000 RecA and RecA-like sequences in the GOS
dataset (Table 10). An analysis of the RecA phylogeny
including the GOS data reveals several completely new RecA
subfamilies. A detailed study of kinases in the GOS dataset
demonstrated the power of additional sequence diversity in
defining and exploring protein families [77]. The discovery of
16,248 GOS protein kinase–like enzymes enabled the defi-
nition and analysis of 20 distinct kinase-like families. The
diverse sequences allowed the definition of key residues for
each family, revealing novel core motifs within the entire
superfamily, and predicted structural adaptations in individ-
ual families. This data enabled the fusion of choline and
aminoglycoside kinases into a single family, whose sequence
diversity is now seen to be at least as great as the eukaryotic
protein kinases themselves.

Proteins Involved in the Repair of UV-Induced DNA
Damage

Much of the attention in studies of the microbes in the
world’s oceans has justifiably focused on phototrophy, such
as that carried out by the proteorhodopsin proteins.

Previously, in the Sargasso Sea study [10] it was shown that
shotgun sequencing reveals a much greater diversity of
proteorhodopsin-like proteins than was previously known
from cloning and PCR studies. However, along with the
potential benefits of phototrophy come many risks, such as
the damage caused to cells by exposure to solar irradiation,
especially the UV wavelengths. Organisms deal with the
potential damage from UV irradiation in several ways,
including protection (e.g., UV absorption), tolerance, and
repair [78]. Our examination of the protein family clusters
reveals that the GOS data provides an order of magnitude
increase in the diversity (in both numbers and types) of
homologs of proteins known to be involved in pathways
specifically for repairing UV damage.
One aspect of the diversity of UV repair genes is seen in the

overrepresentation of photolyase homologs in the GOS data
(see Table 10). Photolyases are enzymes that chemically
reverse the UV-generated inappropriate covalent bonds in
cyclobutane pyrimidine dimers and 6–4 photoproducts [79].
The massive numbers of homologs of these proteins in the
GOS data (11,569 GOS proteins in four clusters; see Table 10)
is likely a reflection of their presence in diverse species and
the existence of novel functions in this family. New repair
functions could include repair of other forms of UV dimers
(e.g., involving altered bases), use of novel wavelengths of light
to provide the energy for repair, repair of RNA, or repair in
different sequence contexts. In addition, some of these
proteins may be involved in regulating circadian rhythms,
as seen for photolyase homologs in various species. Our
findings are consistent with the recent results of a compara-
tive metagenomic survey of microbes from different depths
that found an overabundance of photolyase-like proteins at
the surface [51].
A good deal was known about the functions and diversity of

photolyases prior to this project. However, much less is
known about other UV damage–specific repair enzymes, and
examination of the GOS data reveals a remarkable diversity
of each of these. For example, prior to this project, there were
only some 25 homologs of UV dimer endonucleases (UVDEs)
available [80], and most of these were from the Bacillus
species. There are 420 homologs of UVDE (cluster 6239) in
the GOS data representing many new subfamilies (Figure 7A
and Materials and Methods). A similar pattern is seen for
spore lyases (which repair a UV lesion specific to spores [81])
and the pyrimidine dimer endonuclease (DenV, which was
originally identified in T4 phage [82]). We believe this will also
be true for UV dimer glycosylases [83], but predictions of
function for homologs of these genes are difficult since they
are in a large superfamily of glycosylases.
Our analysis of the kingdom classification assignments

suggests that the diversity of UV-specific repair pathways is
seen for all types of organisms in the GOS samples. This
apparently extends even to the viral world (e.g., 51 of the
UVDE homologs are assigned putatively to viruses), suggest-
ing that UV damage repair may be a critical function that
phages provide for themselves and their hosts in ocean
surface environments. Based on the sheer numbers of genes,
their sequence diversity, and the diversity of types of
organisms in which they are apparently found, we conclude
that many novel UV damage–repair processes remain to be
discovered in organisms from the ocean surface water.
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Evidence of Reversible Phosphorylation in the Oceans
Reversible phosphorylation of proteins represents a major

mechanism for cellular processes, including signal trans-
duction, development, and cell division [84]. The activity of
protein kinases and phosphatases serve as antagonistic

regulators of the cellular response. Protein phosphatases
are divided into three major groups based on substrate
specificity [85]. The Mg2þ- or Mn2þ-dependent phosphoserine/
phosphothreonine protein phosphatase family, exemplified
by the human protein phosphatase 2C (PP2C), represents the

Table 9. The 30 Largest Structural Genomics Target Families Added to the Pfam5000 Based on Inclusion of GOS Sequences

Accession Number Description Family Size after GOS Family Size before GOS

PF06213.2 Cobalamin biosynthesis protein CobT 2,188 33

PF04244.3 Deoxyribodipyrimidine photolyase-related protein 1,628 51

PF07021.1 Methionine biosynthesis protein MetW 1,305 50

PF03420.3 Prohead core protein protease 1,234 11

PF06347.2 Protein of unknown function (DUF1058) 1,114 40

PF06439.1 Domain of unknown function (DUF1080) 1,021 48

PF06253.1 Trimethylamine methyltransferase (MTTB) 942 38

PF06242.1 Protein of unknown function (DUF1013) 915 36

PF06841.2 T4-like virus tail tube protein gp19 808 13

PF05992.2 SbmA/BacA-like family 746 26

PF04018.3 Domain of unknown function (DUF368) 720 54

PF06230.1 Protein of unknown function (DUF1009) 703 38

PF07583.1 Protein of unknown function (DUF1549) 703 58

PF07864.1 Protein of unknown function (DUF1651) 539 20

PF06539.1 Protein of unknown function (DUF1112) 529 38

PF06684.1 Protein of unknown function (DUF1185) 519 32

PF07586.1 Protein of unknown function (DUF1552) 491 21

PF06844.1 Protein of unknown function (DUF1244) 470 32

PF06938.1 Protein of unknown function (DUF1285) 451 27

PF07075.1 Protein of unknown function (DUF1343) 441 49

PF07587.1 Protein of unknown function (DUF1553) 439 58

PF06041.1 Bacterial protein of unknown function (DUF924) 416 59

PF03209.5 PUCC protein 415 48

PF01996.6 Protein of unknown function (DUF129) 414 53

PF06146.1 Phosphate-starvation-inducible E 393 44

PF07627.1 Protein of unknown function (DUF1588) 372 31

PF05610.1 Protein of unknown function (DUF779) 356 30

PF06245.1 Protein of unknown function (DUF1015) 348 47

PF06175.1 tRNA-(MS[2]IO[6]A)-hydroxylase (MiaE) 342 46

PF01969.7 Protein of unknown function (DUF111) 337 60

The 30 largest families after inclusion of GOS data that were not among the 5000 largest families before inclusion of GOS data are shown here. Family size was calculated as the number of
matches in public-100 (before GOS) and in the combined GOS-100 and public-100 datasets (after GOS).
doi:10.1371/journal.pbio.0050016.t009

Table 10. Clustering of Sequences in Families That Are Explored in This and Companion Papers

Protein Family Cluster ID Nonredundant Sequences Total Sequences NCBI-nr PG TGI-EST ENS GOS

RecA 1146 2,897 7,423 1,683 235 288 104 5,113

UVDE 6239 417 484 38 25 1 0 420

Photolyase 411 1,387 2,261 19 9 0 0 2,233

1285 5,907 9,796 302 145 182 15 9,152

3077 319 482 149 2 176 42 113

3454 67 73 1 1 0 0 71

Spore lyase 5283 237 331 39 25 0 0 267

PP2C phosphatase 78 2,917 3,933 762 112 2,295 199 565

3673 62 106 39 0 22 45 0

9118 68 73 0 0 72 1 0

11012181 36 69 34 0 15 20 0

11021747 19 72 13 11 0 0 48

11066319 19 38 14 0 15 9 0

Glutamine synthetase (type I, II, III) 3709 4,284 11,322 1,504 320 489 48 8,961

3072 159 192 46 11 6 0 129

4547 30 32 1 0 1 0 30

RuBisCO (large subunit) 3734 1,979 14,149 13,532 41 148 0 428

doi:10.1371/journal.pbio.0050016.t010
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smallest group in number. An understanding of their
physiological roles has only recently begun to emerge. In
eukaryotes, one of the major roles of PP2C activity is to
reverse stress-induced kinase cascades [86–89].

We identified 613 PP2C-like sequences in the GOS dataset,
and they are grouped into two clusters (Table 10). These

sequences contain at least seven motifs known to be
important for phosphatase structure and function [90,91].
Invariant residues involved in metal binding (aspartate in
motifs I, II, VIII) and phosphate ion binding (arginine in
motif I) are highly conserved among the GOS sequences.
Using the catalytic domain portion of these sequences we

Figure 7. Phylogenies Illustrating the Diversity Added by GOS Data to Known Families That We Examined

Kingdom assignments of the sequences are indicated by color: yellow, GOS-eukaryotic; navy blue, GOS-bacterial/archaeal; aqua, GOS-viral; orange,
NCBI-nr–eukaryotic; lime green, NCBI-nr–bacterial/archaeal; pink, NCBI-nr–viral; gray, unclassified.
(A) Phylogeny of UVDE homologs.
(B) Phylogeny of PP2C-like sequences.
(C) Phylogeny of type II GS gene family. In addition to the large amount of diversity of bacterial type II GS in the GOS data, a large group of GOS viral
sequences and eukaryotic GS co-occur at the top of the tree with the eukaryotic virus Acanthamoeba polyphaga mimivirus (shown in pink). The red stars
indicate the locations of eight type II GS sequences found in the type I–type II GS gene pairs. They are located in different branches of the phylogenetic
tree. The rest of the type II GS sequences were filtered out by the 98% identity cutoff.
(D) Phylogeny of the homologs of RuBisCO large subunit. A large portion of the RuBisCO sequences from the GOS data forms new branches that are
distinct from the previously known RuBisCO sequences in the NCBI-nr database.
doi:10.1371/journal.pbio.0050016.g007
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constructed a phylogeny showing that despite the overall
conserved structure of the PP2C family of proteins, the
known bacterial PP2C-like sequences group together with the
GOS bacterial PP2C-like sequences (Figure 7B, Materials and
Methods). Furthermore, the eukaryotic PP2Cs display a much
greater degree of sequence divergence compared to the
bacterial PP2C sequences.

We also examined the combined dataset of PP2C-like
phosphatases further for potential differences in amino acid
composition between the bacterial and eukaryotic groups.
We observed a striking distinction between the eukaryotic
and bacterial PP2C-like phosphatases in motif II, where a
histidine residue (His62 in human PP2Ca) is conserved in
more than 90% of sequences, but not observed in the
bacterial group. The bacterial PP2C group contains a
methionine (at the corresponding position) in the majority
of the cases (70%). This histidine residue is involved in the
formation of a beta hairpin in the crystal structure of human
PP2C [91]. Furthermore, His62 is proposed to act as a general
acid for PP2C catalysis [92]. Both amino acids lie in the
proximity of the phosphate-binding domain, but at this time
it is unclear how the difference at this position would
contribute to the overall structure and function of the two
PP2C groups. Nonetheless, the large number of diverse PP2C-
like phosphatases in this dataset allowed us to identify a
previously unrecognized key difference between bacterial
and eukaryotic PP2Cs.

Bacterial genes that perform closely related functions can
be organized in close proximity to each other and often in
functional units. Linked Ser/Thr kinase-phosphatase genetic
units have been described in several bacterial species,
including Streptococcus pneumoniae, Bacillus subtilis, and Myco-
bacterium tuberculosis [93–96]. Two major neighboring clusters
are found to be associated with the set of PP2C-like
phosphatases in the GOS bacterial group. We observed that
one of these clusters contained a protein serine/threonine
kinase domain as its most common Pfam domain. An
additional neighboring cluster found to be associated with
the GOS set of bacterial PP2Cs was identified as a set of
sequences containing a PASTA (penicillin-binding protein
and serine/threonine kinase–associated) domain. This domain
is unique to bacterial species, and is believed to play
important roles in regulating cell wall biosynthesis [97].

Our identification of a conserved group of unique PP2C-
like phosphatases in the GOS dataset significantly increases
the number and diversity of this enzyme family. This analysis
of the NCBI-nr, PG ORFs, TGI-EST ORFs, and ENS datasets
along with the sequences obtained from the GOS dataset
significantly increases the overall number of PP2C-like
sequences from that estimated just a year ago [98]. The
presence of genes encoding bacterial serine/threonine kinase
domains located adjacent to PP2Cs in the GOS data supports
the notion that the process of reversible phosphorylation on
Ser/Thr residues controls important physiological processes
in bacteria.

Proteases in GOS Data
Proteases are a group of enzymes that degrades other

proteins and, as such, plays important roles in all organisms
[99]. On the basis of their catalysis mechanism, proteases are
divided into six distinct catalytic types: aspartic, cysteine,
metallo, serine, threonine, and glutamic proteases [99]. They

differ from each other by the presence of specific amino acids
in the active site and by their mode of action. The MEROPS
database [100] is a comprehensive source of information for
this large divergent group of sequences and provides a widely
accepted classification of proteases into families, based on the
amino acid sequence comparison, and then into clans based
on the similarity of their 3-D structures.
We identified 222,738 potential proteases in the GOS

dataset based on similarity to sequences in MEROPS (see
Materials and Methods). According to our clustering method,
95% of these sequences are grouped into 190 clusters, with
each cluster on the average containing more than 1,100 GOS
sequences. These sequences were compared to proteases in
NCBI-nr. There are groups of proteases in NCBI-nr that are
highly redundant. For example, there are a large number of
viral proteases from HIV-1 and hepatitis C viruses that
dominate the NCBI-nr protease set. Thus, we computed a
nonredundant set of NCBI-nr proteases and, for the sake of
consistency, a nonredundant set of proteases from the GOS
set using the same parameters. The majority of proteases in
both sets are dominated by cysteine, metallo, and serine
proteases. The GOS dataset is dominated by proteases
belonging to the bacterial kingdom. That is not surprising,
given the filter sizes used to collect the samples. In NCBI-nr
the proteases are more evenly distributed between the
bacterial and the eukaryotic kingdoms.
Our comparison of the protease clan distribution of the

bacterial sequences in the NCBI-nr and GOS sets reveals that
the distribution of clans is very similar for metallo- and serine
proteases. However, the distribution of clans in aspartic and
cysteine proteases is different in the two datasets. Among
aspartic proteases, the most visible difference is the increased
ratio of proteases of the AC clan and the decreased ratio in
the AD clan. Proteases in the former clan are involved in
bacterial cell wall production, while those in the latter clan
are involved in pilin maturation and toxin secretion [99].
Among cysteine proteases, the most apparent is the decrease
in the CA clan and an increase in the number of proteases
from the PB(C) clan. Bacterial members of the CA clan are
mostly involved in degradation of bacterial cell wall compo-
nents and in various aspects of biofilm formation [99]. It is
possible that both activities are less important for marine
bacteria present in surface water. Proteases from the PB(C)
clan are involved in activation (including self-activation) of
enzymes from acetyltransferase family. In fungi this family is
involved in penicillin synthesis, while their function in
bacteria is unknown [99].
We were unable to detect any caspases (members of the CD

clan) in the GOS data. This is consistent with the apoptotic
cell death mechanism being present only in multicellular
eukaryotes, which, based on the filter sizes, are expected to be
very rare in the GOS dataset.

Metabolic Enzymes in the GOS Data
To gain insights into the diversity of metabolism of the

organisms in the sea, we studied the abundance and diversity
of glutamine synthetase (GS) and ribulose 1,5-bisphosphate
carboxylase/oxygenase (RuBisCO), two key enzymes in nitro-
gen and carbon metabolism.
GS is the central player of nitrogen metabolism in all

organisms on earth. It is one of the oldest enzymes in
evolution [101]. It converts ammonia and glutamate into
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glutamine that can be utilized by cells. GS can be classified
into three types based on sequence [101]. Type I has been
found only in bacteria, and it forms a dodecameric structure
[102,103]. Type II has been found mainly in eukaryotes, and in
some bacteria. Type III GS is less well studied, but has been
found in some anaerobic bacteria and cyanobacteria. There
are 18 active site residues in both bacterial and eukaryotic GS
that play important roles in binding substrates and catalyzing
the enzymatic reactions [104].

We found 9,120 GS and GS-like sequences in the GOS data
(Table 10). Using profile HMMs [41,105] constructed from
known GS sequences of different types, we were able to
classify 4,350 sequences as type I GS, 1,021 sequences as type
II GS, and 469 sequences as type III GS (see Materials and
Methods).

The number of type II GS sequences found in the GOS data
is surprisingly high, since previously type II GS were
considered to be mainly eukaryotic and very few eukaryotic
organisms were expected to be included in the GOS
sequencing (Figure 7C and Materials and Methods). We used
gene neighbor analysis to classify the origin of GS genes by
the nature of other proteins found on the same scaffold.
Using this approach, most of the neighboring genes of the
type II GS in the GOS data are identified as bacterial genes.
The neighboring genes of the type II GS include nitrogen
regulatory protein PII, signal transduction histidine kinase,
NH3-dependent NADþ synthetase, A/G-specific adenine gly-
cosylase, coenzyme PQQ synthesis protein c, pyridoxine
biosynthesis enzyme, aerobic-type carbon monoxide dehy-
drogenase, etc. We were able to assign more than 90% of the
type II GS sequences in the GOS data to bacterial scaffolds
based on a BLAST-based kingdom assignment method (see
Materials and Methods). Both neighboring genes and king-
dom assignments suggest that most of the type II GS
sequences in the GOS data come from bacterial organisms.
In comparison, the same type II GS profile HMM detects only
12 putative type II GS sequences from the PG dataset of 222
prokaryotic genomes. Within these, there are only seven
unique type II GS sequences and six unique bacterial species
represented. The reason why bacteria in the ocean have so
many type II GS genes is unclear.

Two hypotheses have been raised to explain the origin of
type II GS in bacterial genomes: lateral gene transfer from
eukaryotic organisms [106] and gene duplication prior to the
divergence of prokaryotes and eukaryotes [101]. The type II
GS sequences in the predominantly bacterial GOS data are
not only abundant, but also diverse and divergent from most
of known eukaryotic GS sequences (Figure 7C). This makes
the hypothesis of lateral gene transfer less favorable. If the GS
gene duplication preceded the prokaryote–eukaryote diver-
gence according to the gene duplication hypothesis, it is
possible that many oceanic organisms retained type II GS
genes during evolution.

Interestingly, we found 19 cases where a type I GS gene is
adjacent to a type II GS gene on the same scaffold. Both GS
genes seem to be functional based on the high degree of
conservation of active site residues. The same gene arrange-
ment was observed previously in Frankia alni CpI1 [107]. The
functional significance of maintaining two types of GS genes
adjacent to one another in the genome remains to be
elucidated. Most of the sequences of these GS genes are
highly similar. We examined the geographic distribution of

these adjacent GS sequences across all the GOS samples. They
are mainly found in the samples taken from two sites. Their
geographic distribution is significantly different from the
distributions of types I and II GS across the samples. The high
sequence similarity among the adjacent GS pairs and their
geographic distribution suggest that these adjacent GS
sequences may come from only a few closely related
organisms. This is consistent with the protein sequence tree
of type II GS, where the type II GS sequences from the GS
gene pairs mainly reside in two distinct branches (Figure 7C).
The active site residues are very well conserved in all GS

sequences in the GOS data, except one residue, Y179, which
coordinates the ammonium-binding pocket. We observed
substitutions of Y179 to phenylalanine in about half of the
type II GS sequences. The activity of type I GS in some
bacteria is regulated by adenylylation at residue Tyr397. In
the GOS data, Tyr397 is relatively conserved in type I GS, with
variations to phenylalanine and tryptophan in about half of
the sequences. This indicates that the activity of some of the
type I GS is not regulated by adenylylation, as shown
previously in some Gram-positive bacteria [108,109].
RuBisCO is the key enzyme in carbon fixation. It is the

most abundant enzyme on earth [110] and plays an important
role in carbon metabolism and CO2 cycle. RuBisCO can be
classified into four forms. Form I has been found in both
plants and bacteria, and has an octameric structure. Form II
has been found in many bacteria, and it forms a dimer in
Rhodospirillum rubrum. Form III is mainly found in archaea,
and forms various oligomers. Form IV, also called the
RuBisCO-like protein (RLP), has been recently discovered
from bacterial genome-sequencing projects [111,112]. RLP
represents a group of proteins that do not have RuBisCO
activity, but resemble RuBisCO in both sequence and
structure [111,113]. The functions of RLPs are largely
unknown and seem to differ from each other.
Contrary to the large number of GS sequences, we

identified only 428 sequences homologous to the RuBisCO
large subunit in the GOS data. The small number of RuBisCO
sequences may partly be due to the fact that larger-sized
bacterial organisms were not included in the sequencing
because of size filtering. However, it could also indicate that
CO2 is not the major carbon source for these sequenced
ocean organisms.
The RuBisCO homologs in the GOS data are more diverse

than the currently known RuBisCOs (Figure 7D, Materials
and Methods). Six of 19 active site residues—N123, K177,
D198, F199, H327, and G404—are not well conserved in all
sequences, suggesting that the proteins with these mutations
may have evolved to have new functions, such as in the case of
RLPs. From the studies of the RLPs from Chlorobium tepidum
and B. subtilis [111,114], it has been shown that the active site
of RuBisCO can accommodate different substrates and is
potentially capable of evolving new catalytic functions
[113,114]. On the other hand, two sequence motifs, helices
aB and a8, that are not involved in substrate binding and
catalytic activity are well conserved in the GOS RuBisCO
sequences. The higher degree of conservation of these
nonactive site residues than that of active site residues
suggests that these motifs are important for their structure,
function, or interaction with other proteins.
We found 47 (31 at 90% identity filtering) GOS sequences

in the branch with known RLP sequences in a phylogenetic
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tree of RuBisCO (Figure 7D). In this phylogenetic tree, in
addition to the clades for each of the four forms of RuBisCO,
there are also new groups of 65 (58 at 90% identity filtering)
GOS sequences that do not cluster with any known RuBisCO
sequences. This indicates that there could be more than one
type of RuBisCO-like protein existing in organisms. The
novel groups of RuBisCO homologs in the GOS data also
suggest that we have not fully explored the entire RuBisCO
family of proteins (Figure 7D).

GOS Data and Remote Homology Detection
The addition of GOS sequences may help greatly in

defining the range and diversity of many known protein
families, both by addition of many new sequences and by the
increased diversity of GOS sequences. Our comparison of
HMM scores for GOS sequences with those from the other
four datasets shows that GOS sequences consistently tend to
have lower scores, which indicates additional diversity from
that captured in the original HMM (Figure 8). The addition of
GOS data into domain profiles may broaden the profile and
allow it to detect additional remote family members in both
GOS and other datasets. As a trial, we rebuilt the Pfam model
PF01396, which describes a zinc finger domain within
bacterial DNA topoisomerase. The original model finds 821
matches to 481 proteins in NCBI-nr. Our model that includes
GOS sequences reveals 1,497 matches to 722 sequences, an
increase of 50% in sequences and 82% in domains (most
topoisomerases have three such domains, of which one is
divergent and difficult to detect). Of these new matches, 104
are validated by the presence of additional topoisomerase
domains, or they are annotated as topoisomerase, while most

others are unannotated or similar to other DNA-modifying
enzymes not previously thought to have zinc finger domains.
HMM profiles can be further exploited by using matches

beyond the conservative trusted cutoff (TC) used in this study.
For instance, the Pfam for the poxvirus A22 protein family
has no GOS matches above the TC, but 137 matches with E-
values of 1 3 10�3 to 1 3 10�10, containing a short conserved
motif overlap with A22 proteins. Alignment of these matches
shows an additional two short motifs in common with A22,
establishing their homology, and using a profile HMM, we
found a total of 269 family members in GOS and eight family
members in NCBI-nr. Many members of this new family are
surrounded by other novel clusters, or are in putative viral
scaffolds, suggesting that these weak matches are an entry
point into a new clade of viruses.

ORFans with Matches in GOS Data
Further evidence of the diversity added by GOS sequences

is provided by their matches to ORFans. ORFans are
sequences in current protein databases that do not have
any recognizable homologs [117]. ORFan sequences (dis-
counting those that may be spurious gene predictions)
represent genes with organism-specific functions or very
remote homologs of known families. They have the potential
to shed light on how new proteins emerge and how old ones
diversify.
We identified 84,911 ORFans (5,538 archaea, 35,292

bacteria, 37,427 eukaryotic, 5,314 virus, and 1,340 unclassi-
fied) from the NCBI-nr dataset using CD-HIT [116,117] and
BLAST (see Materials and Methods). Of these, 6,044 have
matches to GOS sequences using BLAST (E-value �1 3 10�6).
Figure 9 shows the distribution of the matched ORFans
grouped by organisms, number of their GOS matches, and
the lowest E-value of the matches. We found matches to GOS
sequences for 13%, 6.3%, 0.89%, and 8.9% of bacterial,
archaeal, eukaryotic, and viral ORFans, respectively. While
most of these ORFans have very few GOS matches, 626 of
them have �20 GOS matches. The similarities between GOS
sequences and eukaryotic ORFans are much weaker than
those between GOS sequences and noneukaryotic ORFans.
The average sequence identity between eukaryotic ORFans
and their closest GOS matches is 38%. This is 6% lower than
the identity between noneukaryotic ORFans and their closest
GOS matches.
The ORFans that match GOS sequences are from approx-

imately 600 organisms. Table 11 lists the 20 most populated
organisms. Out of the 6,044 matched ORFans, approximately
2,000 are from these 20 organisms. For example, Rhodopirellula
baltica SH 1, a marine bacterium, has 7,325 proteins deposited
in NCBI-nr. We identified 1,418 ORFans in this organism, of
which 322 have GOS matches. Another interesting example in
this list is Escherichia coli. Although there are .20 different
strains sequenced, 168 ORFans are identified in strain
CFT073, and 67 of them have GOS matches. The only
eukaryotic organism in this list is Candida albicans SC5314, a
fungal human pathogen, which has 49 ORFans with GOS
matches.
We examined a small but interesting subset of the ORFans

that have 3-D structures deposited in PDB. Out of 65 PDB
ORFans, GOS matches for eight of them are found (see
Supporting Information for their PDB identifiers and names).

Figure 8. Distribution of Average HMM Score Difference between GOS

and Public (NCBI-nr, MG, TGI-EST, and ENS)

Only matches to the full length of an HMM are considered, and only
HMMs that have at least 100 matches to each of GOS and public
databases are considered. This results in 1,686 HMMs whose average
scores to GOS and public databases are considered. The mean of the
distribution is �50, showing that GOS sequences tend to score lower
than sequences in public, thereby reflecting diversity compared to
sequences in public.
doi:10.1371/journal.pbio.0050016.g008
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They include four restriction endonucleases, three hypo-
thetical proteins, and a glucosyltransferase.

GOS sequences can play an important role in identifying
the functions of existing ORFans or in confirming protein
predictions. For example, we found that the hypothetical
protein AF1548, which is a PDB ORFan, has matches to 16
GOS sequences. A PSI-BLAST search with AF1548 as the
query against a combined set of GOS and NCBI-nr identified
several significant restriction endonucleases after three
iterations. With the support of 3-D structure and multiple
sequence alignment of AF1548 and its GOS matches, we
predict that AF1548 along with its GOS homologs are
restriction endonucleases (Figure 10). When combined with
an established consensus of active sites of the related

endonucleases families [118], we predicted three catalytic
residues.

Genome Sequencing Projects and Protein Exploration
With respect to protein exploration and novel family

discovery, microbial sequencing offers more promise com-
pared to sequencing more mammalian genomes. This is
illustrated by Figure 11, where the number of clusters that
protein predictions from various finished mammalian ge-
nomes fall into was compared to the number of clusters that
similar-sized random subsets of microbial sequences fall into
(see Materials and Methods). As the figure shows, the rate of
protein family discovery is higher for microbes than for
mammals. Indeed, the rate of new family discovery is
plateauing for mammalian sequences. This is not surprising,

Table 11. Top 20 Organisms with Most ORFans Matched by GOS

Organism Total Proteinsa Total ORFans ORFans Matched

Rhodopirellula baltica SH 1 7,325 1,418 322

Shewanella oneidensis MR-1 4,472 292 206

Cytophaga hutchinsonii 3,686 555 170

Bdellovibrio bacteriovorus HD100 3,587 753 152

Kineococcus radiotolerans SRS30216 4,559 1,070 125

Synechococcus sp. WH 8102 2,517 143 116

Burkholderia cepacia R18194 7,717 198 100

Aeropyrum pernix K1 1,841 1,312 95

Burkholderia cepacia R1808 7,915 292 94

Magnetospirillum magnetotacticum MS-1 10,146 826 92

Microbulbifer degradans 2–40 4,038 386 85

Burkholderia fungorum LB400 7,994 190 84

Desulfitobacterium hafniense DCB-2 4,389 758 75

Escherichia coli CFT073 5,379 168 67

Bradyrhizobium japonicum USDA 110 8,317 580 66

Acanthamoeba polyphaga mimivirus 911 304 57

Caulobacter crescentus CB15 3,737 333 56

Rubrivivax gelatinosus PM1 4,307 287 53

Mesorhizobium loti MAFF303099 7,272 370 53

Candida albicans SC5314 14,107 1,647 49

aTotal number of proteins of this organism deposited at NCBI; may have redundant entries.
doi:10.1371/journal.pbio.0050016.t011

Figure 9. Pie Chart of ORFans That Had GOS Matches

ORFans are grouped by organism (left), number of their GOS matches (middle), and the lowest E-value to their GOS matches in negative logarithm form
(right). For both middle and right charts, inner and outer circles represent noneukaryotic and eukaryotic ORFans, respectively. From the middle chart it
is seen that 626 (¼ 404þ 180þ 21 þ 21) ORFans form significant protein families with �20 GOS matches.
doi:10.1371/journal.pbio.0050016.g009
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as mammalian divergence from a common ancestor is much
more recent than microbial divergence from a common
ancestor, which suggests that mammals will share a larger
core set of less-diverged proteins. Microbial sequencing is
also more cost effective than mammalian sequencing for
acquiring protein sequences because microbial protein
density is typically 80%–90% versus 1%–2% for mammals.
This could be addressed with mammalian mRNA sequencing,
but issues with acquiring rarely expressed mRNAs would need
to be considered. There are, of course, other reasons to
sequence mammalian genomes, such as understanding
mammalian evolution and mammalian gene regulation.

Conclusions
The rate of protein family discovery is approximately

linear in the (current) number of protein sequences. Addi-
tional sequencing, especially of microbial environments, is
expected to reveal many more protein families and sub-
families. The potential for discovering new protein families is
also supported by the GOS diversity seen at the nucleotide
level across the different sampling sites [30]. Averaged over
the sites, 14% of the GOS sequence reads from a site are
unique (at 70% nucleotide identity) to that site [30].

The GOS data provides almost complete coverage of
known prokaryotic protein families. In addition, it adds a
great deal of diversity to many known families and offers new
insights into the evolution of these families. This is illustrated
using several protein families, including UV damage–repair
enzymes, phosphatases, proteases, glutamine synthetase,
RuBisCO, RecA (unpublished data), and kinases [77]. Only a
handful of protein families have been examined thus far, and
many thousands more remain to be explored.
The protein analysis presented indicates that we are far

from exploring the diversity of viruses. This is reflected in
several of the analyses. The GOS-only clusters show an
overrepresentation of sequences of viral origin. In addition,
our domain analysis using HMM profiling shows a lower Pfam
coverage of the GOS sequences in the viral kingdom
compared to the other kingdoms. At least two of the protein
families we explored in detail (UV repair enzymes and
glutamine synthetase) contain abundant new viral additions.
The extraordinary diversity of viruses in a variety of
environmental settings is only now beginning to be under-
stood [57,119–121]. A separate analysis of GOS microbial and
viral sequences (unpublished data) shows that multiple viral
protein clusters contain significant numbers of host-derived

Figure 11. Rate of Cluster Discovery for Mammals Compared to That for Microbes

The x-axis denotes the number of sequences (in thousands), and the y-axis denotes the number of clusters (in thousands). Five mammalian genomes
are considered for the ‘‘Mammalian’’ dataset, and the plot shows the number of clusters that are hit when each additional genome is added. For the
‘‘Mammalian Random’’ dataset, the order of the sequences from the ‘‘Mammalian’’ dataset is randomized. For the NCBI-nr prokaryotic and GOS
datasets, random subsets of size similar to that of the mammalian set are considered.
doi:10.1371/journal.pbio.0050016.g011

Figure 10. Structure and GOS Homologs of Hypothetical Protein AF1548

Yellow bars represent b-strands. Highlighted are predicted catalytic residues: 38D, 51E, and 53K.
doi:10.1371/journal.pbio.0050016.g010
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proteins, suggesting that viral acquisition of host genes is
quite widespread in the oceans.

Data generated by this GOS study and similar environ-
mental shotgun sequencing studies present their own analysis
challenges. Methods for various analyses (e.g., sequence
alignment, profile construction, phylogeny inference, etc.)
are generally designed and optimized to work with full
sequences. They have to be tailored to analyze the mostly
fragmentary sequences that are generated by these projects.
Nevertheless, these data are a valuable source of new
discoveries. These data have the potential to refine old
hypotheses and make new observations about proteins and
their evolution. Our preliminary exploration of the GOS data
identified novel protein families and also showed that many
ORFan sequences from current databases have homologs in
these data. The diversity added by GOS data to protein
families also allows for the building of better profile models
and thereby improves remote homology detection. The
discovery of kingdom-crossing protein families that were
previously thought to be kingdom-specific presents evidence
that the GOS project has excavated proteins of more ancient
lineage than that previously known, or that have undergone
lateral gene transfer. This is another example of how
metagenomics studies are changing our understanding of
protein sequences, their evolution, and their distribution
across the various forms of life and environments. Biases in
the currently published databases due to oversampling of
some proteins or organisms are illuminated by environ-
mental surveys that lack such biases. Such knowledge can help
us make better predictions of the real distribution patterns of
proteins in the natural world and indicate where increased
sampling would be likely to uncover new families or family
members of tremendous diversity (such as in the viral
kingdom).

These data have other significant implications for the fields
of protein evolution and protein structure prediction.
Having several hundreds or even tens of thousands of diverse
proteins from a family or examples of a specific protein fold
should provide new approaches for developing protein
structure prediction models. Development of algorithms that
consider the alignments of all these family members/protein
folds and analyze how amino acid sequence can vary without
significantly altering the tertiary structure or function may
provide insights that can be used to develop new ab inito
methods for predicting protein structures. These same
datasets could also be used to begin to understand how a
protein evolves a new function. Finally, this large database of
amino acid sequence data could help to better understand
and predict the molecular interactions between proteins. For
example, they may be used to predict the protein–protein
interactions so critical for the formation of specific func-
tional complexes within cells.

The GOS data also have implications for nearly all
computational methods relying on sequence data. The
increase in the number of known protein sequences presents
challenges to many algorithms due to the increased volume of
sequences. In most cases this increase in sequence data can be
compensated for with additional CPU cycles, but it is also a
foreshadowing of times to come as the pace of large-scale
sequence-collecting accelerates. A related challenge is the
increase in the diversity of protein families, with many new
divergent clades present. With more protein similarity

relationships falling into the twilight zone overlapping with
random sequence similarity, the number of false positives for
homology detection methods increases, making the true
relationships more difficult to identify. Nevertheless, a deeper
knowledge of protein sequence and family diversity intro-
duces unprecedented opportunities to mine similarity rela-
tionships for clues on molecular function and molecular
interactions as well as providing much expanded data for all
methods utilizing homologous sequence information data.
The GOS dataset has demonstrated the usefulness of large-

scale environmental shotgun sequencing projects in explor-
ing proteins. These projects offer an unbiased view of
proteins and protein families in an environmental sample.
However, it should be noted that the GOS data reported here
are limited to mostly ocean surface microbes. Even with this
targeted sampling a tremendous amount of diversity is added
to known families, and there is evidence for a large number of
novel families. Additional data from larger filter sizes (that
will sample more eukaryotes) coupled with metagenomic
studies of different environments like soil, air, deep sea, etc.
will help to achieve the ultimate goal of a whole-earth catalog
for proteins.

Materials and Methods

Data description. NCBI-nr [31,32] is the single largest publicly
available protein resource and includes protein sequences submitted
to SWISS-PROT (curated protein database) [122], PDB (a database of
amino acid sequences with solved structures) [123], PIR (Protein
Information Resource) [124], and PRF (Protein Research Founda-
tion). In addition, NCBI-nr also contains protein predictions from
DNA sequences from both finished and unfinished genomes in
GenBank [125], EMBL [126], and DNA Databank of Japan (DDBJ)
[127]. The nonredundancy in NCBI-nr is only to the level of distinct
sequences, and any two sequences of the same length and content are
merged into a single entry. NCBI-nr contains partial protein
sequences and is not a fully curated database. Therefore it also
contains contaminants in the form of sequences that are falsely
predicted to be proteins.

Expressed sequence tag (EST) databases also provide the potential
to add a great deal of information to protein exploration and contain
information that is not well represented in NCBI-nr. To this end,
assemblies of EST sequences from the TIGR Gene Indices [34], an EST
database, were included in this study. To minimize redundancy, only
EST assemblies from those organisms for which the full genome is not
yet known, were included. The protein predictions on metazoan
genomes that are fully sequenced and annotated were obtained by
including the Ensembl database [35,36] in this study.

Both finished and unfinished sequences from prokaryotic genome
projects submitted to NCBI were included. The protein predictions
from the individual sequencing projects are submitted to NCBI-nr.
Nevertheless, these genomes were included in this dataset both for
the purpose of evaluating our approach and also for the purpose of
identifying any proteins that were missed by the annotation process
used in these projects.

Thus, for this study the following publicly available datasets, all
downloaded on February 10, 2005—NCBI-nr, PG, TGI-EST, and
ENS—were used. The organisms in the PG set and the TGI-EST set
are listed in Protocol S1.

Assembly of the GOS dataset. Initial assembly (construction of
‘‘unitigs’’) was performed so that only overlaps of at least 98% DNA
sequence identity and no conflicts with other overlaps were accepted.
False assemblies at this phase of the assembler are extremely rare,
even in the presence of complex datasets [37,128]. Paired-end (also
known as mate-pair) data were then used to order, orient, and merge
unitigs into the final assemblies, but only when two mate pairs or a
single mate pair and an overlap between unitigs implied the same
layout. In one respect, mate pair data was used more aggressively than
is typical in assembly of a single genome in that depth-of-coverage
information was largely ignored [10]. This potentially allows chimeric
assemblies through a repeat within a genome or through an ortholog
between genomes. Thus, a conclusion that relies on the correctness of
a single assembly involving multiple unitigs should be considered
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tentative until the assembly can be confirmed in some way.
Assemblies involved in key results in this paper were subjected to
expert manual review based on thickness of overlaps, presence of
well-placed mate pairs across thin overlaps or across gaps between
contigs, and consistency of depth of coverage.

Data release and availability. All the GOS protein predictions will
be submitted to GenBank. In addition, all the data supporting this
paper, including the clustering and the various analyses, will be made
publicly available via the CAMERA project (Community Cyberinfras-
tructure for Advanced Marine Microbial Ecology Research and
Analysis; http://camera.calit2.net), which is funded by the Gordon
and Betty Moore Foundation.

All-against-all BLASTP search. We used two sets of computer
resources. At the J. Craig Venter Institute, 125 dual 3.06-GHz Xeon
processor systems with 2 Gb of memory per system were used. Each
system had 80 GB local storage and was connected by GBit ethernet
with storage area network (SAN) I/O of ;24 GBit/sec and network
attached storage (NAS) I/O of ;16 GBit/sec. A total of 466,366 CPU
hours was used on this system. In addition, access to the National
Energy Research Scientific Computing Center (NERSC) Seaborg
computer cluster was available, including 380 nodes each with sixteen
375-MHz Power3 processors. The systems had between 16 GB and 64
GB of memory. Only 128 nodes were used at a time. A total of 588,298
CPU hours was used on this system. The dataset of 28.6 million
sequences was searched against itself in a half-matrix using NCBI
BLAST [38] with the following parameters: -F ‘‘m L’’ -U T -p blastp -e
1 3 10�10 -z 3 3 109 -b 8000 -v 10. In this paper, similarity of an
alignment is defined to be the fraction of aligned residues with a
positive score according to the BLOSUM62 substitution matrix [129]
used in the BLAST searches.

Identification of nonredundant sequences. Given a set of sequences
S and a threshold T, a nonredundant subset S9 of S was identified by
first partitioning S (using the threshold T) and then picking a
representative from each partition. The set of representatives
constitutes the nonredundant set S9. The process was implemented
using the following graph-theoretic approach. A directed graph G ¼
(V, E) is constructed with vertex set V and edge set E. Each vertex in V
represents a sequence from S. A directed edge (u,v) 2 E if sequence u
is longer than sequence v and their sequence comparison satisfies the
threshold T; for sequences of identical length, the sequence with the
lexicographically larger id is considered the longer of the two. Note
that G does not have any cycles. Source vertices (i.e., vertices with no
in-degree) are sorted in decreasing order of their out-degrees and
(from largest out-degree to smallest) processed in this order. A source
vertex u is processed as follows: mark all vertices that have not been
seen before and are reachable from vertex u as being redundant and
mark vertex u as their representative.

We used two thresholds in this paper, 98% similarity and 100%
identity. The former was used in the first stage of the clustering and
the later was used in the HMM profile analysis. For the 98% similarity
threshold, two sequences satisfy the threshold if the following three
criteria are met: (1) similarity of the match is at least 98%; (2) at least
95% of the shorter sequence is covered by the match; and (3) (match
score)/(self score of shorter sequence) � 95%.

For the 100% identity threshold, two sequences satisfy the
threshold if their match identity is 100%.

Description of the clustering algorithm. The starting point for the
clustering was the set of pairwise sequence similarities identified
using the all-against-all BLASTP compute. Because of both the
volume and nature of the data, the clustering was carried out in four
steps: redundancy removal, core set identification, core set merging,
and final recruitment.

A set of nonredundant sequences (at 98% similarity) was identified
using the procedure given in Materials and Methods (Identification of
nonredundant sequences). Only the nonredundant sequences were
considered in further steps of the clustering process.

The aim of the core set identification step was to identify core sets of
highly related sequences. In graph-theoretic terms, this involves
looking for dense subgraphs in a graph where the vertices correspond
to sequences and an edge exists between two sequences if their
sequence match satisfies some reasonable threshold (for instance,
40% similarity match over 80% of at least one sequence and are
clearly homologous based on the BLAST threshold). Dense subgraphs
were identified by using a heuristic. This approach utilizes long edges.
These are edges where the match threshold is computed relative to
the longer sequence. This was done to prevent, as much as possible,
unrelated proteins from being put into the same core set. If all the
sequences were full length, using long edges would have offered a
good solution to keeping unrelated proteins apart. However, the
situation here is complicated by the presence of a large amount of

fragmentary sequence data of varying lengths. This was dealt with
somewhat by working with rather stringent match thresholds and a
two-stage process to identify the core sets. We used the concept of
strict long edges and weak long edges. A strict long edge exists between
two vertices (sequences) if their match has the following properties:
(1) 90% of the longer sequence is involved in the match; (2) the match
has 70% similarity; and (3) the score of the match is at least 60% of
the self-score of the longer sequence. A weak long edge exists between
two vertices (sequences) if their match has the following properties:
(1) 80% of the longer sequence is involved in the match; (2) the match
has 40% similarity; and (3) the score of the match is at least 30% of
the self-score of the longer sequence. Core set identification had two
substages: large core initialization and core extension. The large core
initialization step identified sets of sequences where these sets were of
a reasonable size and the sequences in them were very similar to each
other. Furthermore, these sets could be extended in the core
extension step by adding related sequences. In the large core
initialization step, a directed graph G was constructed on the
sequences using strict long edges, with each long edge being directed
from the longer to the shorter sequence. For each vertex v in G, let
S(v) denote the friends set of v consisting of v and all neighbors that v
has an out-going edge to.

Initially all the vertices in G are unmarked. Consider the set of all
friends sets in the decreasing order of their size. For S(v) that is
currently being considered, do the following: (1) initialize seed set A¼
S(v); (2) while there exists some v9 such that jS(v) \ S(v9)j � k, set A¼A
[ S(v9). (Note: k¼ 10 is chosen); (3) output set A and mark all vertices
in A; and (4) update all friends sets to contain only unmarked vertices.

In the core extension step, we constructed a graph G using weak
long edges. All vertices in seed sets (computed from the large core
initialization step) were marked and the rest of the vertices
unmarked. Each seed set was then greedily extended to be a core
set by adding a currently unmarked vertex that has at least k
neighbors (k¼ 10 is chosen) in the set; the added vertex was marked.
After this process, a clique-finding heuristic was used to identify
smaller cliques (of size at most k � 1) consisting of currently
unmarked vertices; these were also extended to become core sets. A
final step involved merging the computed core sets on the basis of
weak edges connecting them.

In the core set merging step, we constructed an FFAS (Fold and
Function Assignment System) profile [39] for each core set using the
longest sequence in the core set as query. FFAS was then used to carry
out profile–profile comparisons in order to merge the core sets into
larger sets of related sequences. Due to computational constraints
imposed by the number of core sets, profiles were built on only core
sets containing at least 20 sequences.

Final recruitment involved constructing a PSI-BLAST profile [40]
on core sets of size 20 or more (using the longest sequence in the core
set as query) and then using PSI-BLAST (–z 13109, –e 10) to recruit as
yet unclustered sequences or small-sized clusters (size less than 20) to
the larger core sets. For a sequence to be recruited, the sequence–
profile match had to cover at least 60% of the length of the sequence
with an E-value � 1310�7. In a final step, unclustered sequences were
recruited to the clusters using their BLAST search results. A length-
based threshold was used to determine if the sequence is to be
recruited.

Identification of clusters containing shadow ORFs. A well-known
problem in predicting coding intervals for DNA sequences is shadow
ORFs. The key requirement that coding intervals not contain in-
frame stop codons requires that coding intervals be subintervals of
ORFs. Long ORFs are therefore obvious candidates to be coding
intervals. Unfortunately, the constraints on the coding interval to be
an ORF often cause subintervals and overlapping intervals of the
coding interval to also be ORFS in one of the five other reading
frames (two on the same strand and three on the opposite strand).
These coincidental ORFs are called shadow ORFs since they are
found in the shadow of the coding ORF. In rare cases (and more
frequently in certain viruses) coding intervals in different reading
frames can overlap but usually only slightly. Overwhelmingly distinct
coding intervals do not overlap. However, this constraint is not as
strict for ORFs that contain a coding interval, as the exact extent of
the coding interval is not known. Prokaryotes predominate in these
data and are the focus of the ORF predictions. Their 39 end of an
ORF is very likely to be part of the coding interval because a stop
codon is a clear signal for the termination of both the ORF and the
coding interval (this signal could be obscured by frameshift errors in
sequencing). The 59 end is more problematic because the true start
codon is not so easily identified and so the longest ORF with a
reasonable start codon is chosen and this may extend the ORF
beyond the true coding interval. For this reason different criteria
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were set for when ORFs have a significant overlap depending on the
orientation (or the 59 or 39 ends) of the ORFs involved. Two ORFs on
the same strand are considered overlapping if their intervals overlap
by at least 100 bp. Two ORFs that are on the opposite strands are
considered overlapping either if their intervals overlap by at least 50
bp and their 39 ends are within each others intervals, or if their
intervals overlap by at least 150 bp and the 59 end of one is in the
interval of the other.

ORFs for coding intervals are clustered based on sequence
similarity. In most cases this sequence similarity is due to the ORFs
evolving from a common ancestral sequence. Due to functional
constraints on the protein being coded for by the ORF, some
sequence similarity is retained. There are no known explicit
constraints on the shadow ORFs to constrain drift from the ancestral
sequences. However, the shadow ORFs still tend to cluster together
for some obvious reasons. The drift has not yet obliterated the
similarity. There are implicit constraints due to the functional
constraints on the overlapping coding ORF. There are also other
possible unknown functional constraints beyond the coding ORF. At
first it was surmised that within shadow ORF clusters the diversity
should be higher than for the coding ORF, but this did not prove to
be a reliable signal. The apparent problem is that the shadow ORFs
tend to be fractured into more clusters due to the introduction of
stop codons that are not constrained because the shadow ORFs are
noncoding. What rapidly became apparent is that the most reliable
signal that a cluster was made up of shadow ORFs is that the cluster
was smaller than the coding cluster containing the ORFs overlapping
the shadow ORFs.

The basic rule for labeling a cluster as a shadow ORF cluster is that
the size of the shadow ORF cluster is less than the size of another
cluster that contained a significant proportion of the overlapping
ORFs for the shadow ORF cluster. A specific set of rules was used to
label shadow ORF clusters based on comparison to other clusters that
contained ORFs overlapping ORFS in the shadow ORF cluster (called
the overlapping cluster for this discussion). First, the overlapping
cluster cannot be the same cluster as the shadow ORF cluster (there
are sometimes overlapping ORFs within the same cluster due to
frameshifts). Second, both the redundant and nonredundant sizes of
the shadow ORF cluster must be smaller than the corresponding sizes
of the overlapping cluster. Third, at least one-third of the shadow
ORFs must have overlapping ORFs in the overlapping cluster. Fourth,
less than one-half of the shadow ORFs are allowed to contain their
overlapping ORFs (this test is rarely needed but did eliminate the vast
majority of the very few obvious false positives that were found using
these rules). Finally, the majority of the shadow ORFs that overlapped
must overlap by more than half their length.

When using this rule, 1,274,919 clusters were labeled as shadow
ORF clusters, and 6,570,824 singletons were labeled as shadow ORFs.
The rules need to be somewhat conservative so as not to eliminate
coding clusters. To test these rules, clusters containing at least two
NCBI-nr sequences were examined. Two sequences were used instead
of one because occasional spurious shadow ORFs have been
submitted to NCBI-nr. There were 989 shadow ORF clusters
containing at least two NCBI-nr sequences and with more than
one-tenth as many NCBI-nr sequences as the overlapping cluster.
This was 0.86% of all clusters (114,331 in total) with at least two
NCBI-nr sequences. Of these 989, a few were obvious mistakes, and
the others involved very few NCBI-nr sequences of dubious curation,

such as ‘‘hypothetical.’’ Just to be conservative, all of these 989
clusters were rescued and not labeled as shadow ORF clusters.

Ka/Ks test to determine if sequences in a cluster are under selective
pressure. For a cluster containing conserved but noncoding
sequences, it is expected that there is no selection at the codon
level. We checked this by computing the ratio of nonsynonymous to
synonymous substitutions (Ka/Ks test) [130,131] on the DNA
sequences from which the ORFs in the cluster were derived. For
most proteins, Ka/Ks � 1, and for proteins that are under strong
positive selection, Ka/Ks� 1. A Ka/Ks value close to 1 is an indication
that sequences are under no selective pressure and hence are unlikely
to encode proteins [134,135]. Weakly selected but legitimate coding
sequences can have a Ka/Ks value close to 1. These were identified to
some extent by using a model in which different partitions of the
codons experience different levels of selective pressure. A cluster was
rejected only if no partition was found to be under purifying
selection at the amino acid level.

The Ka/Ks test [130,131] was run only on those clusters (remaining
after the shadow ORF filtering step) that did not contain sequences
with HMM matches or have NCBI-nr sequences in them. Only the
nonredundant sequences in a cluster were considered. Sequences in
each of the clusters were aligned with MUSCLE [134]. For each
cluster, a strongly aligning subset of sequences was selected for the
Ka/Ks analysis. The codeml program from PAML [135,136] was run
using model M0 to calculate an overall (i.e., branch- and position-
independent) Ka/Ks value for the cluster. Clusters with Ka/Ks � 0.5,
indicating purifying selection and therefore very likely coding, were
considered as passing the Ka/Ks filter. In addition, the remaining
clusters were examined by running codeml with model M3. This
partitioned the positions of the alignment into three classes that may
be evolving differently (typically, a few positions may be under
positive selection while the remainder of the sequence is conserved).
A likelihood ratio test was applied to select clusters for which M3
explained the data significantly better than M0 [136]. If a cluster was
thus selected, and if one of the resulting partitions had a Ka/Ks � 0.5
and comprised at least 10% of the sequence, then that cluster was also
considered as passing the Ka/Ks filter. All other clusters were marked
as containing spurious ORFs.

Statistics for the various stages of the clustering process The
number of sequences that remain after redundancy removal (at 98%
similarity) for each dataset is given in Table 12. Recall that the size of
a cluster is the number of nonredundant sequences in it.

Number of core sets of size two or more totals 1,586,454; number
of nonredundant sequences in core sets of size two or more totals
8,337,256; and total number of sequences in core sets of size two or
more is 12,797,641.

Total number of clusters after profile merging and (PSI-BLAST
and BLAST) recruitment is 1,871,434; number of clusters of size two
or more totals 1,388,287; number of nonredundant sequences in
clusters of size two or more totals 11,494,078; total number of
sequences in clusters of size two or more is 16,565,015.

The final clustering statistics (after shadow ORF detection and Ka/
Ks tests) are as follows: number of clusters of size two or more totals
297,254; number of nonredundant sequences in clusters of size two or
more totals 6,212,610; total number of sequences in clusters of size
two or more is 9,978,637.

In the final BLAST recruitment step, a pattern was seen involving
highly compositionally biased sequences that recruited unrelated
sequences to clusters. This was reflected in the pre- and post-BLAST
recruitment numbers, where the postrecruitment sizes were more
than three to four times the size of the prerecruitment numbers.
There were 75 such clusters, and these were removed.

Searching sequences using profile HMMs. The full set of 7,868
Pfam release 17 models was used, along with additional nonredun-
dant profiles from TIGRFAM (1,720 of 2,443 profiles; version 4.1).
HMM profiling was carried out using a TimeLogic DeCypher system
(Active Motif, Inc., http://www.activemotif.com) and took 327 hours in
total (on an eight-card machine). A sequence was considered as
matching a Pfam (fragment model) if its sequence score was above the
TC score for that Pfam and had an E-value � 1 3 10�3. It was
considered as matching a TIGRFAM if the match had an E-value � 1
3 10�7.

Evaluation of protein prediction via clustering. Our evaluation of
protein prediction via the clustering shows a very favorable
comparison to currently used protein prediction methods for
prokaryotic genomes. We used the PG dataset for this evaluation
(Table 2). Of the 3,049,695 PG ORFs, 575,729 sequences (19%) were
clustered (the clustered set). Of the 614,100 predictions made by the
genome projects, 600,911 sequences could be mapped to the PG ORF
set (the submitted set); 93% of the unmapped sequences were ,60 aa

Table 12. The Number of Sequences in NCBI-nr, PG ORFs, TGI-
EST ORFs, ENS, and GOS ORFs prior to and after the Redundancy
Removal Step of Our Clustering

Data Number of Amino Acid Sequences

Original Set Nonredundant Set

NCBI-nr 2,317,995 1,017,058

PG ORFs 3,049,695 2,424,016

TGI-EST ORFs 5,458,820 5,085,945

ENS 361,668 137,057

GOS ORFs 17,422,766 14,134,842

Total 28,610,944 22,798,918

doi:10.1371/journal.pbio.0050016.t012
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(recall that the ORF calling procedure only produced ORFs of length
�60 aa). The clustered set and submitted set had 493,756 ORFs in
common. Of the 107,155 sequences that were only in the submitted
set, 24,217 sequences (23%) had HMM matches. As with other
unclustered HMM matches, most were weak or partial. These
sequences had an average of only 48% of their lengths covered by
HMMs. Of the remaining 82,938 sequences that did not have an HMM
match, 13,724 (17%) were removed by the filters used, and the rest fell
into clusters with only one nonredundant sequence (and thus were
not labeled as predicted proteins by the clustering analysis). Based on
NCBI-nr sequences in them, these clusters were mostly labeled as
‘‘hypothetical,’’ ‘‘unnamed,’’ or ‘‘unknown.’’ Our clustering method
identified 81,973 ORFs not predicted by the genome projects, of
which 16,042 (20%) were validated by HMM matches (with average
HMM coverage of 69% of sequence length) and an additional 27,120
(33%) had significant BLAST matches (E-value � 1 3 10�10) to
sequences in NCBI-nr. Thus, if the submitted set is considered as
truth, then protein prediction via clustering produces 493,756 true
positives (TP), 81,973 false positives (FP), and 107,155 false negatives
(FN), thereby having a sensitivity (TP/[TP þ FN]) of 83% and
specificity (TP/[TP þ FP]) of 86%. However, if truth is considered as
those sequences that are common to both the clustered and
submitted sets in addition to those sequences with HMM matches,
then our protein prediction method via clustering has 95% sensitivity
and 89% specificity, while protein prediction by the prokaryotic
genome projects has 97% sensitivity and 86% specificity.

Evaluation of protein clustering. We used Pfams to evaluate the
clustering method in two ways. For both evaluations the clustering
was restricted to only those sequences with Pfam matches. It should
be kept in mind that there are redundancies among Pfams in that
there can be more than one Pfam for a homologous domain family
(for instance, the kinase domain Pfams—PF00069 protein kinase
domain and PF07714 protein tyrosine kinase), and these redundan-
cies can affect the evaluation statistics reported below.

For the first evaluation, each sequence was represented by the set
of Pfams that match it. This is referred to as the domain architecture for
a sequence. While Pfams provide a domain-centric view of proteins,
the domain architecture attempts to approximate the full sequence-
based approach used here, and thus could be used to shed light on the
general performance of the clustering. We measured how often
unrelated sequences were present in a given cluster. Two sequences
were defined to be unrelated if their domain architectures each had
at least one Pfam that was not present in the other’s domain
architecture. Note that this measure did not penalize the case when
the domain architecture of one sequence was a proper subset of the
domain architecture of the other sequence. This was done to allow
fragmentary sequences in clusters to be included in the evaluation as
well (and also because it is not always easy to determine whether an
amino acid sequence is fragmentary or not). For each cluster, we
computed the percentage of sequence pairs that are unrelated under
this measure. A total of 92% of the clusters had at most 2% unrelated
pairs. Then we carried out an assessment of how many instances of a

given domain architecture appear in a single cluster. A total of 58%
of the domain architectures were confined to single clusters (i.e.,
100% of their occurence is in one cluster), and 88% of the domain
architectures was such that .50% of their occurences is in one
cluster.

For the second evaluation, we selected all sequences with Pfam
matches, and each sequence was assigned to the Pfam that matches it
with the highest score. With this assignment, the Pfams induce a
partition on the sequences. The distribution of the number of
sequences in clusters induced by the Pfams was compared to those of
clusters from the clustering method. Figure 12A shows comparison as
a log–log plot of the number of sequences versus the number of
clusters with at least that many sequences for the two cases. The plot
shows that cluster size distributions are quite similar, with both the
methods having an inflection point around 2,500. The difference
between the two curves is that there are more big clusters (and also
fewer small clusters) induced by the Pfams as compared to the
clustering method. This can be explained by noting that two
sequences that are in the same Pfam cluster can nevertheless be put
into different clusters by the clustering method if they differ in their
remaining portions.

Our clustering also shows a good correspondence with HMM
profiling on the phylogenetic markers that we looked at. The
clustering identifies 7,423, 12,553, and 13,657 sequences, respectively,
for RecA (cluster ID 1146), Hsp70 (cluster ID 197), and RpoB (cluster
ID 1187). HMM profiling identifies 5,292, 12,298, and 12,165
sequences, respectively, for these families. For each of these families,
there are at least 94% of sequences (relative to the smaller set) in
common between clustering and HMM profiling.

Difference in ratio of predicted proteins to total ORFs for the PG
set and the GOS set. The ratio of clustered ORFs to total ORFs is
significantly higher for the GOS ORFs (0.3471) compared to the PG
ORFs (0.1888). This can be explained by the fragmentary nature of
the GOS data. For the large majority of the GOS data, the average
sequence length is 920 bp compared to full-length genomes for the
PG data. For the PG data, clustered ORFs have a mean length of 325
aa and a median length of 280 aa. Unclustered ORFs have a mean
length of 119 aa and a median length of 87 aa. Assuming that the
genomic GOS data has a similar underlying ORF structure to PG data,
the effect that GOS fragmentation had on ORF lengths is estimated.
Each reading frame will have a mixture of clustered and unclustered
ORFs, but on average there will be 2 ORFs per reading frame per 920-
bp GOS fragment, and both ORFs will be truncated. Assuming the
truncation point for the ORF is uniformly distributed across the
ORF, the truncated ORF will drop below the 60-aa threshold to be
considered as an ORF with a probability of 60/(length of the ORF).
Using the median length, the percentage of clustered ORFs dropping
below the threshold due to truncation is 21%; for unclustered ORFs,
it is 69%. Accounting for this truncation, the expected ratio of
clustered ORFs to total ORFs for the GOS ORFs based on the PG
ORFs would be 0.3708, which is very close to the observed value.

Kingdom assignment strategy and its evaluation. We used several

Figure 12. Log–Log Plots of Cluster Size Distributions

The x-axis is logarithm of the cluster size X and the y-axis is the logarithm of the number of clusters of size at least X; logarithms are base 10.
(A) Plot comparing the sizes of clusters produced by our clustering approach (red) to those of clusters produced by Pfams (green). The curves track each
other quite well, with both of them having an inflection point around cluster size 2,500 (approximately 3.4 on the x-axis). Each sequence is assigned to
the highest scoring Pfam that it matches. Two sequences that are assigned to the same Pfam can nevertheless be assigned to different clusters by the
full-sequence–based clustering approach if they differ in the remaining portion. This is especially true for commonly occurring domains that are present
in different multidomain proteins. Thus, there tends to be a larger number of big clusters in the Pfam approach as compared to the full-sequence–
based approach. Hence, the green curve is above the red curve at the higher sizes.
(B) Plot of the cluster size distributions for core sets (green) and for final clusters (red). Both curves have an inflection point around cluster size 2,500
(approximately 3.4 on the x-axis). Note that these plots give the cumulative distribution function (cdf), while the power law exponents reported in the
text are for the number of clusters of size X (i.e., the probability density function [pdf]). The relationship between these exponents is bpdf¼ 1þ bcdf.
doi:10.1371/journal.pbio.0050016.g012
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approaches to assign kingdoms for GOS sequences. They are all
fundamentally based upon a strategy that takes into account top
BLAST matches of a GOS sequence to sequences in NCBI-nr, and
then voting on a majority.

We evaluated a simple strict-majority voting scheme (of the top
four BLAST matches) using the NCBI-nr set. First, the redundancy in
NCBI-nr was removed using a two-staged process. A nonredundant
set of NCBI-nr sequences was computed involving matches with 98%
similarity over 95% of the length of the shorter sequence (using the
procedure discussed in Materials and Methods [Identification of
nonredundant sequences]). This set was made further nonredundant
by considering matches involving 90% similarity over 95% of the
length of the shorter sequence. The nonredundant sequences that
remained after this step constituted the evaluation dataset S. For each
sequence in S, its top four BLAST matches to other sequences in S
(ignoring self-matches) were used to assign a kingdom for it (based on
a strict majority rule). This predicted kingdom assignment for the
sequence was compared to its actual kingdom. A correct classification
is obtained for 93% of the sequences. The correct classification rate
per kingdom is given in Table 13.

While this evaluation shows that the BLAST-based voting scheme
provides a reasonable handle on the kingdom assignment problem,
there are caveats associated with it. The kingdom assignment for a set
of query sequences is greatly influenced by the taxonomic groups
from each kingdom that are represented in the reference dataset
against which these queries are being compared. If certain taxa are
only sparsely represented in the reference set, then, depending on
their position in the tree of life, queries from these taxa can be
misclassified (using a nearest-neighbor type approach based on
BLAST matches). This explains why the archaeal classification rate is
quite low compared to the others. Thus, the true classification rate
for the GOS dataset based on this approach will also depend on the
differences in taxonomic biases in the GOS dataset (query) and the
NCBI-nr set (reference).

The kingdom proportion for the GOS dataset reported in Figure 1
is based on a kingdom assignment of scaffolds. Those GOS ORFs with
BLAST matches to NCBI-nr were considered, and the top-four
majority rule was used to assign a kingdom to each of them. Using the
ORF coordinates on the scaffold, the fraction (of bp) of a scafffold
assigned to each kingdom was computed. The scaffold was labeled as
belonging to a kingdom if the fraction of the scaffold assigned to that
kingdom was .50%. All ORFs on this scaffold were then assigned to
the same kingdom.

Cluster size distribution, the power law, and the rate of protein
family discovery. Earlier studies of protein family sizes in single
organisms [137–139] have suggested that P(d), the frequency of
protein families of size d, satisfies a power law: that is, P(d) ’ d � b

with exponent b reported between 2.68 and 4.02. Power laws have
been used to model various biological systems, including protein–
protein interaction networks and gene regulatory networks [42,43].
Figure 12B illustrates the distribution of the cluster sizes from our
data on a log–log scale, a scale for which a power law distribution
gives a line. In contrast to family size distributions reported in single
organisms, the cluster sizes from our data are not well described by a
single power law. Rather, there appear to be different power laws:
one governs the size distribution of very large clusters, and another
describes the rest. This behavior is observed both in the distribution
of the core set sizes and also in the distribution of the final cluster
sizes. We identified an inflection point for both the core set
distribution and the final clusters at around size 2,500, and estimated
the power law exponent b via linear regression separately in each size
regime. For the core set distribution, the exponent b ¼ 1.99 (R2 ¼
0.994) for clusters of size � 2,500, and b ¼ 3.34 (R2 ¼ 0.996) for
clusters of size . 2,500. For the final cluster sizes, the exponent b ¼

1.72 (R2¼ 0.995) for clusters of size � 2,500, and b¼ 2.72 (R2¼ 0.995)
for clusters of size . 2,500. The estimates for b are different for the
core clusters compared to the final clusters, reflecting a larger
number of medium and large clusters in the final clustering as a
result of the cluster-merging and additional recruitment steps. A
similar dichotomy between the size distributions of large and small
protein families was observed in a study [140] of protein families
contained in the ProDom, Protomap, and COG databases, where the
exponent b reported was in the range of 1.83 to 1.98 for the 50
smallest clusters and 2.54 to 3.27 for the 500 largest clusters in these
databases.

Our clustering method was run separately on the following seven
datasets: set 1 consisted of only NCBI-nr sequences; set 2 consisted of
all sequences in NCBI-nr, ENS, TGI-EST, and PG; sets 3 through 6
consisted of set 2 in combination with a random subset of 20%, 40%,
60%, and 80% of the GOS sequences, respectively; set 7 consisted of
set 2 in combination with all the GOS sequences. On each of the
seven datasets, the redundancy removal (using the 98% similarity
filter) was run, followed by the core set detection steps. Figure 2
shows the number of core sets of varying sizes (�3, �5, �10, and �20)
as a function of the number of nonredundant sequences for each
dataset.

The observed linear growth in number of families with increase in
sample size n is related to the power law distribution in the following
way. We model protein families as a graph where each vertex
corresponds to a protein sequence and an edge between two vertices
indicates sequence similarity between the corresponding proteins.
Consider a clustering (partitioning) of the vertices of a graph with n
vertices such that the cluster sizes obey a power law distribution. Let
Cd(n) [respectively, C�d(n)] denote the number of clusters of size d
(respectively, �d). Since the distribution of cluster sizes follows a
power law, there exist constants a, b such that for all x � n, Cx(n) ¼
ax�b.

As every vertex of the graph is a member of exactly one cluster,

n ¼
Xn
x¼1

xCxðnÞ ¼
Xn
x¼1

a x1�b ’
a

n2�b � 1
2� b

� �
b 6¼ 2

alnn b ¼ 2

8<
: ð1Þ

The number of clusters of size at least d is

C�dðnÞ ¼
Xn
x¼d

CxðnÞ’ a
n1�b � d1�b

1� b

� �
b 6¼ 1

alnn b ¼ 1

8<
: ð2Þ

Combining the two equations, we obtain values (up to a multiplicative
constant) for C�d(n) as shown in Table 14. In all cases with b . 1, the
number of clusters C�d(n) increases as n increases, and as d decreases.
Specifically, for b . 2, the growth is linear in n for all d, with slope
decreasing as d increases. For 1 , b , 2, the growth is sublinear in n
for all d.

Note that while the observed distribution of protein family sizes is
fit by two different power laws, one for clusters of size less than 2,500
with b¼1.99 and another for clusters of size greater than 2,500 with b
¼ 3.34 for the current number of (nonredundant) sequences, the
contribution of large families to the rate of growth is negligible
compared to the small families.

The above formulas for C�d(n) also suggest the dependence of the
rate of growth of clusters on the cluster size d. For example, in the
case when b is very close to 2,

C�dðnÞ ¼ m
n

db�1 ð3Þ

Table 13. BLAST-Based Classification Rate per Kingdom

Kingdom Total Number Correct Classification Percent Correct

Eukaryota 440,951 422,173 95.7

Bacteria 465,692 430,014 92.3

Archae 36,894 25,527 69.2

Viruses 36,346 32,381 89.0

doi:10.1371/journal.pbio.0050016.t013

Table 14. The Values for C�d(n), the Number of Clusters of Size
�d, as a Function of the Power Law Exponent b and Constant a

b a C�d(n)

b , 1 nb�1 1

b ¼ 1 1 ln n

1 , b , 2 nb�1 ðn d= Þb�1
b ¼ 2 n lnn= Þð n d ln n= Þð
b . 2 n n db�1� ��

doi:10.1371/journal.pbio.0050016.t014
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for some constant m. Thus, the rate of growth of cluster sizes is linear,
and the slope m(d) of rate of growth is given by m(d)¼md1�b. Figure 13
shows how well the observed rates of growth match the values
predicted by this equation. A fit to a sublinear function (not shown)
also gives similar results as in Figure 13.

GOS versus known prokaryotic versus known nonprokaryotic.
Examples of top five clusters in the various categories (except GOS-
only) are given below. The cluster identifiers are in parentheses.

Known prokaryotic only: (Cluster ID 1319) outer surface protein in
Anaplasma ovis, Wolbachia, Ehrlichia canis; (Cluster ID 10911) nitrite
reductase in uncultured bacterium; (Cluster ID 1266) outer mem-
brane lipoprotein in Borrelia; (Cluster ID 8595) methyl-coenzyme M
reductase subunit A in uncultured archaeon; (Cluster ID 2959) outer
membrane protein in Helicobacter. Known nonprokaryotic only:
(Cluster ID 2226) Pol polyprotein HIV sequences; (Cluster ID 4023)
maturase K; (Cluster ID 6257) NADH dehydrogenase subunit 2;
(Cluster ID 8644) HIV protease; (Cluster ID 12196) MHC class I and II
antigens. GOS and known prokaryotic only: (Cluster ID 3369)
carbamoyl transferase; (Cluster ID 688) apolipoprotein N-acyltrans-
ferase; (Cluster ID 3726) potassium uptake proteins; (Cluster ID 300)
primosomal protein N9; (Cluster ID 4605) DNA polymerase III delta
subunit. GOS and known nonprokaryotic only: (Cluster ID 186) seven
transmembrane helix receptors; (Cluster ID 2069) zinc finger
proteins; (Cluster ID 3092) MAP kinase; (Cluster ID 1413) potential
mitochondrial carrier proteins; (Cluster ID 233) pentatricopeptide
(PPR) repeat-containing protein. Known prokaryotic and known
nonprokaryotic only: (Cluster ID 3510) immunoglobulin (and
immunoglobulin-binding) proteins; (Cluster ID 600) expansin; (Clus-
ter ID 50) pectin methylesterase; (Cluster ID 6492) lectin; (Cluster ID
986) BURP domain-containing protein. GOS and known prokaryotic
and known nonprokaryotic: (Cluster ID 2568) ABC transporters;
(Cluster ID 49) short-chain dehydrogenases; (Cluster ID 4294)
epimerases; (Cluster ID 1239) AMP-binding enzyme; (Cluster ID
2630) envelope glycoprotein.

Neighbor functional linkage methods. For the sequences in each
GOS-only cluster, we determined if neighboring ORFs occurring on
the same strand had a similar biological process in the GO [49]. If this
shared biological process of the neighbors occurred statistically more
often than expected by chance, that inferred a potential operon
linkage and a biological process term for the GOS-only cluster. This
approach weighted ORFs by sequence similarity to reduce the
skewing effect of sequences from highly related organisms.

For definition of linked ORFs, we collected pairs of same-strand
ORF protein predictions with intergenic distances less than 500 bp.
Negative distances were possible if the 59 end of the downstream ORF
in the pair occurred 59 to the 39 end of the upstream ORF. We used a
probability function to estimate the probability that two putative
genes belong to the same operon given their intergenic distance [47].
Because sequences come from a variety of unknown organisms, the
probability distribution was created by averaging properties of 33
randomly chosen divergent genomes. The exact choice of genomes
did not greatly affect the ability of the distribution to separate
experimentally determined same-operon gene pairs from adjacent,
same-strand gene pairs in different known operons annotated in a
version of RegulonDB downloaded on March 29, 2005 [141].

We measured the functional linkage between two protein clusters

by searching for all occurrences of nearby pairs of ORFs belonging to
the two clusters of interest. Sufficiently close pairs were more likely to
be encoded in the same operon. We devised a scoring mechanism to
reward those pairs of clusters for which many divergent examples of
likely operon pairs existed in the set of ORF pairs. For each pair of
clusters, a weight was applied to the contribution of each pair of
ORFs, and this was proportional to how similar the pair of ORFs was
to other example pairs. Thus, many near-identical pairs of ORFs,
likely from the same or similar species, are not overrepresented in the
final cluster pair score, while conserved examples of neighboring
position from more divergent sequences contribute an increased
weight. The score for each cluster pair is calculated as:

SðC1C2Þ ¼ 1� P
i¼n

i¼1
½1� PrðOgi1g

i
2jdistÞ � wi

1 � wi
2� ð4Þ

where S(C1C2) is the linkage score of clusters C1 and C2. The
probability PrðOgi1g

i
2jdistÞ that any two genes gi1 from C1 and gi2 from

C2 are in an operon is dependent on the distance between them as
calculated by [47], and is weighted according to the sequence weights
wi
1 and wi

2 described below, for all example pairs i.
We calculated sequence weights in a manner similar to that used in

progressive multiple sequence alignment [142]. Briefly, neighbor-
joining trees were built for all clusters using the QuickJoin [143] and
QuickTree programs [144] based on a distance matrix constructed
from all-against-all BLAST scores within a cluster, normalized to self-
scores. For those few clusters with more than 30,000 members, trees
were not built. Instead, equal sequence weights for all members were
assigned because of computational limitations. The root of each tree
was placed at the midpoint of the tree by using the retree package in
PHYLIP [145]. The individual sequence weights were then computed
by summing the distance from each leaf to the root after dividing
each branch’s weight by the number of nodes in the subtree below it.
Weights were normalized so that the sum of weights in any given tree
was equal to 1.0. This weighting scheme is superior to one in which
weights are normalized to the largest weight in the tree, one that does
not weight sequences according to divergence, and one that only
considers the number of example pairs seen (Figure 14). To compare
the different scoring methods, pairs of clusters annotated with GO
terms that contained adjacent ORFs in the data were gathered. These
pairs were divided into into functionally related and unrelated
clusters based on a measure of GO term similarity (p-value � 0.01)
[146]. We evaluated scoring methods for the ability to recover

Figure 13. Log–Log plot of Slopes m(d) of Linear Regression Fit to the

Rate of Growth in Figure 2 for Different Values of Cluster Size d

According to the equation derived in the text, m(d) ¼ md1�b for some
constant m. The best linear fit to log [m(d)] gives a line with slope�0.91
(R2 ¼ 0.98) that is close to the predicted value 1� b¼�0.99.
doi:10.1371/journal.pbio.0050016.g013

Figure 14. Receiver Operating Characteristic Curve Used to Evaluate

Various Methods of Scoring Pairs of Clusters for Functional Similarity

Pairs of clusters with �1 example of neighboring ORFs and assigned GO
terms were divided into a set of functionally related (true positive) and
functionally unrelated (true negative) cluster pairs based on the similarity
of their GO terms. The scoring methods evaluated are described in the
text.
doi:10.1371/journal.pbio.0050016.g014
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functionally similar pairs. In all analyses, linkages between clusters
were ignored if there were fewer than five examples of cluster
member ORFs adjacent to each other on a scaffold.

Function for novel families was inferred as follows. (1) Assignment
of GO terms to clusters. We downloaded the GO [49] database on
September 21, 2005, from http://www.geneontology.org, along with the
files gene_association.goa_uniprot and pfam2go.txt dated July 12,
2005. Only the biological process component of the ontology was
considered. If a cluster had at least 10% of its redundant sequences
annotated by the most abundant Pfam domain for that cluster, and
that Pfam domain had a GO biological process term provided by the
pfam2go mapping, then we assigned a cluster the GO term of its most
abundant Pfam annotation. In addition, if a cluster contained at least
20% of its Uniprot GO annotations the same, it was assigned that GO
term. For each cluster, redundant GO terms found on the same path
to the root were removed. (2) Identification of neighbors to GOS-only
clusters. Neighbors of GOS-only clusters were defined as those
clusters that had a cluster linkage score above a predetermined
threshold (1310�6) and had at least five examples of cluster members
adjacent to each other in the data. These neighbors were then
screened for those that had been annotated with a GO term by the
process described above. (3) Overrepresentation of neighbor GO
terms. We attempted to define GO terms for a set of GOS-only
neighbors that were statistically overrepresented. Because of the
highly dependent nature of the terms in the GO, a simulation-based
approach was chosen to determine which terms might be over-
represented. Annotated neighbors to a cluster of unknown function
were identified as described above. For each annotated neighbor,
counts for the associated GO term and all terms on the path to the
root of the ontology were incremented. A total of 100,000 simulated
neighbor lists of the same size as the true neighbor list were computed
by selecting without replacement from those clusters with annotated
GO terms, and an identical counting scheme was performed for each
simulation. Overrepresentation of neighbor terms was calculated for
each term on the ontology by asking how many times out of the
100,000 simulations the count for each GO term in the ontology met
or exceeded the observed count for the actual neighbors. This
fraction of simulations was interpreted as a p-value. If a term is
unusually prevalent in the true observed neighbors, it should be
relatively infrequent in the simulated data. For the purpose of the
metric used here, ‘‘is-a’’ and ‘‘part-of’’ relationships were treated
equally. In cases where a cluster had more than one GO term assigned
to it, any redundant terms occurring on each other’s path to the root
were first removed. For any remaining clusters with nonredundant,
multiple GO annotations, all possible lists of functions for each list of
neighbor clusters were enumerated, and one function from each
cluster was chosen. Each node in the ontology was assigned the
maximum count observed from the enumerated function lists. We
consistently applied this rule for the observed and simulated data.

The following descriptive measures of the novel GOS-only cluster
set were obtained. Transmembrane helix prediction was carried out

with the programs TMHMM [147] and SPLIT4 [148]. GC content was
calculated as (GþC)/(GþCþAþT) bases for each ORF in a cluster,
and averaged for each cluster within a set. The GC content, reported
as the mean and standard deviation of the cluster averages, is as
follows for each cluster set: Group I, 36.7% 6 8.0%; Group II, 35.9%
6 7.9%. Group I size-matched sample, 48.8% 6 11.1%; Group II size-
matched sample, 49.5% 6 11.2%; Group I viral fraction, 37.8% 6
5.1%; Group II viral fraction, 37.3% 6 4.6%. To address the
interconnectivity of the novel clusters within the context of all
operon linkages, we constructed a graph with clusters as nodes and
inferred operon linkages (with score � 1 3 10�6) as edges. We then
asked for every node in the set of novel clusters what was the
cumulative fraction of novel nodes that could be reached within a
varying edge distance from the starting node. The expectation of this
fraction was calculated at each distance, and the procedure was
repeated for the set of size-matched clusters (Figure 15).

We tried three different BLAST-based approaches for kingdom
assignment of ORFs. The first method, used in the analysis, required a
majority of the four top BLAST matches to vote for the same
kingdom (archaea, bacteria, eukaryota, or viruses; see Materials and
Methods [Kingdom assignment strategy and its evaluation]). The
second method required all eight top BLAST matches to vote for the
same kingdom. The last method we used was the scaffold-based
kingdom assignment described in Materials and Methods (Kingdom
assignment strategy and its evaluation). Figure 16 shows the results of
using these assignments to infer the kingdom of GOS-only clusters
(Figure 16D–16F) and their neighboring ORFs (Figure 16A–16C).
GOS-only clusters were assigned a kingdom only if .50% of their
neighboring ORFs were assigned the same kingdom. The general
trends observed are the same for each method, though the coverage
decreases slightly for the more stringent methods.

Characteristics and kingdom distribution of known protein
domains. For these analyses we used the predicted proteins from
the public (NCBI-nr, PG, TGI-EST, and ENS) and GOS datasets. The
public dataset contains multiple identical copies of some sequences
due to overlaps between the source datasets. For example, many
sequences in PG are also found in NCBI-nr. We filtered the public set
at 100% identity to avoid overcounting these sequences. Because this
filtering was necessary for the public dataset, the GOS dataset was
also filtered at 100% identity. If two or more sequences were 100%
identical at the residue level, but were of different lengths, only the
longest sequence was kept. The resulting datasets of nonredundant
proteins are referred to as public-100 and GOS-100.

We assigned each protein in public-100 to a kingdom based on the
species annotations provided in the source datasets (NCBI-nr,
Ensembl, TIGR, and PG). The NCBI taxonomy tree was used to
determine the kingdom of each species. Of 3,167,979 protein
sequences in public-100, 3,158,907 can be annotated by kingdom.
The remaining 9,072 sequences are largely synthetic.

Determining the kingdom of origin of an environmental sequence
can be difficult; while an unambiguous assignment can be made for
some sequences, others can be assigned only tentatively or not at all.
Therefore, we took a probabilistic approach (kingdom-weighting
method), calculating ‘‘weights’’ or probabilities that each protein
sequence originated from a given kingdom.

The top four BLAST matches (E-value , 1310�10) of GOS ORFs to
NCBI-nr were considered. The kingdom of origin for each match was
determined. We pooled these ‘‘kingdom votes’’ for each scaffold,
since (presuming accurate assembly) each scaffold must come from a
single species and hence from a single kingdom. Each ORF on a
scaffold contributed up to four votes. If an ORF had fewer than four
BLAST matches with an E-value , 1 3 10�10, then it contributed
fewer votes. ORFs with no BLAST matches contributed no votes.

In many cases, the votes were not unanimous, indicating that some
uncertainty must be associated with any kingdom assignment. An
additional source of uncertainty is the finite number of votes. We
accounted for these statistical issues by applying the following
procedure to each scaffold. First, two pseudocounts were added to
the votes for the ‘‘unknown’’ kingdom to represent the uncertainty
that remains even when votes are unanimous (especially when there
are few votes). The frequency of votes for each kingdom was
calculated. The vote frequency for a kingdom provides the maximum
likelihood estimate of the kingdom probability (i.e., the vote
frequency that would have been observed on a scaffold of similar
composition but with infinitely many voting ORFs). However, that
estimate may not be accurate or precise. Therefore, the multinomial
standard deviation was calculated for each vote frequency p as SQRT
[p3 (1� p)/(n� 1)], where n is the number of votes. A distance of two
standard deviations from the mean corresponds roughly to a 95%
confidence interval. Thus, two standard deviations were subtracted

Figure 15. Novel GOS-Only Clusters Are More Interconnected Than a

Size-Matched Sample of Clusters

Red line, novel clusters; green line, size-matched sample; blue line (right
axis), log2 ratio of fraction novel clusters recovered divided by fraction
sample clusters recovered.
doi:10.1371/journal.pbio.0050016.g015
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from each vote frequency, and called the result (or zero, if the result
was negative) the ‘‘kingdom weight.’’ This ‘‘kingdom weight’’ is a
conservative estimate. There is 95% chance that the actual kingdom
probability is greater.

The kingdom weights do not sum to one because of the standard
deviation penalty. The difference between the sum of the kingdom
weights and unity is a measure of the total uncertainty about the
kingdom assignment. This is called the ‘‘unknown weight.’’

Finally, we assigned each ORF the kingdom weights calculated for
the scaffold as a whole. This procedure assigned kingdom weights to
many ORFs with no BLAST matches. Overall, 4,745,649 (84%) of the
5,654,638 proteins in GOS-100 receive nonzero kingdom weights.

The kingdom weights calculated in this way provide a basis for
estimating the proportion of sequences originating from each
kingdom, pGOS(K). The weights over all sequences in GOS-100 were
summed for each of the known kingdoms, and divided by the sum of
the weights for all kingdoms (excluding the unknown weight). This
procedure suggested that 96% of the sequences are bacterial, a
somewhat higher proportion than is estimated by the method
described in Materials and Methods (Kingdom assignment strategy
and its evaluation). Similarly, kingdom proportions, pGOS–Pfam(K),
were calculated for the subset of GOS-100 sequences that have a
significant Pfam hit, and 97% are found to be bacterial.

We used the kingdom weights directly in the analyses where

possible (e.g., to calculate the expected kingdom distribution of a
given set of proteins by summing the weights). However, it was
necessary in some cases to use discrete assignments of a single
kingdom to each ORF. A tentative assignment can be made for a
given scaffold by choosing the kingdom with the highest weight. The
possibility remains, in this case, that a fraction of the ‘‘unknown’’
weight should rightfully belong to a different kingdom. However, if a
kingdom weight is greater than 0.5, then this danger is averted, and a
‘‘confident’’ assignment of the scaffold and its constituent ORFs to
that kingdom can be made.

Given the uncertainty penalty above, achieving a kingdom weight
greater than 0.5 generally requires overwhelming support for one
kingdom over the others. In particular, on a given scaffold, at least
eight unanimous votes for a kingdom are needed (i.e., two ORFs
contributing four votes each) to make a confident assignment to that
kingdom. Any disagreement between the votes increases the required
number rapidly: for instance, 15 votes for a single kingdom are
required to override four votes for other kingdoms.

‘‘Confident’’ kingdom assignments were made for 2,626,178 (46%)
of the 5,654,638 proteins in GOS-100.

In the analysis that identified new multi-kingdom Pfams, we used
the subset of confidently kingdom-annotated proteins. Here, a Pfam
model was designated as ‘‘kingdom-specific’’ in public-100 if there
were only matches to proteins in one particular kingdom, and no
‘‘unknown’’ matches. A Pfam model that was kingdom specific in
public-100 was further designated as newly ‘‘multi-kingdom’’ if it had
matches to one or more GOS-100 proteins that were confidently
labeled as belonging to a kingdom different from that found in the
public-100 matches. Also, we filtered Pfam matches with an E-value
cutoff of 1 3 10�10. In every case, the bit score is at least five bits
greater than the trusted cutoff for the model. In addition to passing
the ‘‘confident’’ criteria, the kingdom assignments were all confirmed
by visual inspection of the BLAST kingdom vote distributions for the
respective scaffolds. Because the criteria for a ‘‘confident’’ kingdom
assignment were conservative, there were only one or a few confident
assignments for each domain to a ‘‘new’’ kingdom. The ‘‘confident’’
criteria are especially difficult to meet in the case of kingdom-
crossing due to the votes contributed by the crossing protein. For
instance, because the IDO domain itself always contributes four votes
for ‘‘Eukaryota,’’ at least 15 votes for ‘‘Bacteria’’ were required to call
a scaffold ‘‘bacterial.’’ Thus, many scaffolds have no confident
kingdom assignment.

We compared the relative diversities of protein families between
GOS-100 and public-100 as represented by Pfam sequence models. In
order to do this, the number of matches expected to be found for
each Pfam model in the GOS-100 data was computed, assuming that
the matches were distributed among the models in the same
proportions that they were in the public-100 data. These ‘‘expected’’
match counts were compared with the observed counts to identify
domains that are more diverse in GOS-100 than in public-100 and
vice versa.

Because kingdoms differ in their protein usage, Pfam models
match sequences from different kingdoms with different frequencies,
and some models match sequences exclusively from one kingdom.
Thus, to calculate the expected number of matches to a given Pfam in
GOS-100 based on the number of matches observed in public-100, we
corrected for the radically different kingdom composition of the two
datasets.

The expected proportion of all Pfam matches in GOS-100 that are
to a given model M was calculated as follows. First, we made a
simplifying assumption that sequences from different kingdoms were
equally likely to have a Pfam hit, and thus that the Pfam matches in
GOS-100 would be distributed among the kingdoms according to the
kingdom proportions calculated using the weighted method above
(for instance, it is assumed that 97% of the matches would be to
bacterial sequences). Probability that a Pfam hit in GOS-100 is from K
’ pGOS-Pfam(K) (for sequences in GOS-100 with at least one Pfam hit)
for kingdoms K in fArchae, Bacteria, Eukaryotes, Virusesg.

Second, we assumed that Pfam models match with the same
relative rates within each kingdom in GOS-100 as they do in public-
100. For instance, since twice as many SH3 domains as SH2 domains
are found in public-100 eukaryotic sequences, the same ratio is
expected to be found in GOS-100 eukaryotic sequences. Using the
public-100 data, we calculated the frequency of matches for each
Pfam model M within each kingdom, relative to the total number of
Pfam matches to that kingdom. Pseudocounts of one were added to
both the ‘‘match’’ and ‘‘no match’’ counts (i.e., using a uniform
Dirichlet prior), to allow proper statistical treatment of families with
few or no matches in the public databases for some kingdom. In
Equation 5 below, Obspublic(M,K) is the observed number of public-

Figure 16. GOS-Only Clusters Are Enriched for Sequences of Viral Origin

Independently of the Kingdom Assignment Method Employed

For each panel, clusters are as in Figure 4. For (A–C), a kingdom is
assigned to each neighboring ORF within each cluster set; the
percentage of all neighboring ORFs with a given kingdom assignment
is plotted. For (D–F), a kingdom is assigned to each cluster if more than
50% of all that cluster’s neighbors with a kingdom assignment share the
same assignment; the percentage of clusters in each set with a given
assignment is plotted. In (A) and (D), a kingdom is assigned to a
neighboring ORF by a majority vote of the top four BLAST matches to a
protein in NCBI-nr (Materials and Methods). In (B) and (E), a kingdom is
assigned if all eight highest-scoring BLAST matches agree in kingdom. In
(C) and (F), all ORFs on a scaffold are assigned the same kingdom by
voting among all ORFs with BLAST matches to NCBI-nr on that scaffold
(Materials and Methods). In all graphs, only clusters with at least one
assignable neighbor are considered. When compared to the size-
matched controls, in all cases the GOS-only clusters show enrichment
for viral sequences.
doi:10.1371/journal.pbio.0050016.g016
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100 hits to M in K, and Obspublic(K) is the observed number of public-
100 hits to all models in K.

pGOS�PfamðMjKÞ’ ppub�PfamðMjKÞ ¼
ObspublicðM;KÞ þ 1
ObspublicðKÞ þ 2

ð5Þ

By multiplying the conditional probability of each model given a
kingdom by the respective kingdom probability (pGOS-Pfam(K),
calculated as described above in ‘‘Kingdom annotation of GOS-100
proteins: kingdom weighting method’’), the proportions of Pfam
matches in GOS-100 due to each combination of kingdom and Pfam
model were then predicted. Finally, these predictions were summed
across kingdoms to obtain the expected proportion of matches to
each model.

pGOS�PfamðMÞ ¼ SUMðK ¼ fA;B;E;VgÞ½pGOS�PfamðMjKÞpGOS�PfamðKÞ�
ð6Þ

Relatively fewer GOS-100 sequences than public-100 sequences
have a Pfam hit (likely because Pfam is based on sequences in the
public databases). To avoid systematically overestimating the number
of GOS-100 hits for each Pfam model due to this global effect, the
predicted counts were based on the observed total number of Pfam
matches to all models in GOS-100, and an attempt was made to predict
only how these matches are distributed among models. Thus, the
expected number of Pfam hits to a given model in GOS-100 is equal to
the expected proportion of hits to that model, as calculated above,
multiplied by the total number of Pfam hits. In the equation below,
ObsGOS is the total number of Pfam hits to all models in GOS-100.

Expected count of hits to M in GOS�100 ¼ pGOS�PfamðMÞ3ObsGOS

ð7Þ

In summary, calculation of the expected number of Pfam hits to a
model M in GOS-100 for all kingdoms can be expressed in one
equation as follows:

ðSUMðK 2 fA;B;E;VgÞ½ððObspublicðM;KÞ þ 1Þ=ðObspublicðKÞ þ 2ÞÞ

3 pGOS�PfamðKÞ�Þ3ObsGOS

ð8Þ

where Obspublic(M,K) is the observed number of public-100 hits to
model M in K, Obspublic(K) is the observed number of public-100 hits
to all models in K, pGOS-Pfam(K) is the proportion of GOS-100
sequences that have at least one Pfam hit in K, and ObsGOS is the total
number of Pfam hits to all models in GOS-100.

The ratio of the observed to the predicted number of hits for each
Pfam model is a measure of the relative diversity of that Pfam family
in GOS-100 compared to public-100, corrected for the differing
kingdom proportions in the two datasets. We computed the
significance of this ratio using the CHITEST function in Excel, which
implements the standard Pearson’s Chi-square test with one degree of
freedom and expresses the result as a probability. For many protein
families, the difference in diversity between the two datasets was so
pronounced that Excel reports a probability of zero due to numerical
underflow, indicating a p-value less than 1 3 10�303.

IDO analysis. The GOS-100 and public-100 sequences selected for
the IDO family alignment matched the PF01231 Pfam fs model with a
score above the trusted bit-score cutoff at the sequence level. In
addition, the sequences were required to have the width of their
matching region spanning over 50% of the Pfam IDO HMM model
length. Next, all sequence matches to the Pfam IDO model from the
NCBI-nr database downloaded on March 6, 2006, were added (these
also satisfied the trusted score cutoff and model alignment span
criteria). An additional 26 IDO sequences were found in the new
sequence database relative to the GOS public sequence data freeze
after filtering for identical and 1 aa different sequences and presence
of first and last residues in the final trimmed alignment. Jevtrace
(version 3.14) [149] was used to assess alignment quality, to remove
sequences problematic for alignment, to remove sequence redun-
dancy (at the 0-aa and 1-aa difference levels) while allowing for
redundant nonoverlapping sequences, to trim the alignment to a
block of aligned columns, to delete columns with more than 50%
gaps, and to remove sequences with missing first or last residues. One
sequence (GenBank ID 72038700) was likely a multidomain protein
problematic for alignment and was removed manually. This set of
procedures produced a block sequence alignment of 144 sequences
and 231 characters. We aligned sequences with MUSCLE (version
3.52) [134] using default parameters. The final alignment was used to
reconstruct phylogenies with a series of phylogeny reconstruction
methods: PHYML [150], Tree-Puzzle [151], Weighbor [152], and the
protpars program from the PHYLIP package (version 3.6a3) [145].
Bootstrapping was performed with the protpars program using 1,000
bootstrap replicates, each with 100 jumbles; the majority consensus
tree was produced by the consense program in the PHYLIP package.

Structural genomics implications. The Pfam5000 families used in
this study were chosen from among the manually curated (Pfam-A)
families in from Pfam version 17. We added 2,932 families with a
structurally characterized representative as of October 27, 2005, to
the Pfam5000 in descending order by family size, followed by 2,068
additional families without a structurally characterized representa-
tive, in descending order by family size. Pre-GOS family size was
calculated as the number of sequences in public-100 that had a match
to the Pfam family. Post-GOS family size was calculated as the
number of sequences in public-100 and GOS-100 that matched each
family. We used the results of the HMM profiling effort (using Pfams)
used for this analysis.

Coverage of GOS-100 and public-100 sequences by both versions
of the Pfam5000 was measured using the subset of families in Pfam 17
that were also in Pfam 16. This was done in order to enable direct
comparison of coverage results with a previous study of coverage of
fully sequenced bacterial and eukaryotic genomes [73]. The versions
of Pfam are similar in size (Pfam 16 contains 7,677 families, and Pfam
17 contains 7,868 families).

Phylogeny construction for various families. For the UVDE family,
sequences were aligned using MUSCLE [134] and a tree was built
using QuickTree [144].

For the PP2C family, the catalytic domain portions of the
sequences were identified and aligned using the PP2C Pfam model.
Sequences that contained �70% nongaps in this alignment were used
to generate a phylogenetic tree of all the PP2C-like sequences. The
phylogeny was inferred using the protdist and neighbor-joining
programs in PHYLIP [145]. We used 1,941 total PP2C-like sequences
for the phylogenetic analysis. The breakdown was as follows: public

Figure 17. Content of Protease Types in NCBI-nr and GOS, and Kingdom

Distribution of All Proteases

Due to the highly redundant nature of some NCBI-nr protease groups,
nonredundant sets for both NCBI-nr and GOS are computed; these
nonredundant sets are referred to as NCBI-nr60 and GOS60.
doi:10.1371/journal.pbio.0050016.g017
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Figure 18. Content of Bacterial Protease Clans

doi:10.1371/journal.pbio.0050016.g018

PLoS Biology | www.plosbiology.org March 2007 | Volume 5 | Issue 3 | e160462

Expanding the Protein Family Universe



eukaryotic sequences, 73%; public bacterial sequences, 14%; GOS-
eukaryotic sequences, 2%; GOS-bacterial sequences, 10%; and GOS-
viral and GOS-unknown sequences, less than 1% combined.

For the type II GS family, sequences in GOS and NCBI-nr were
searched with a type II GS HMM constructed from 17 previously
known bacterial and eukaryotic type II GS sequences. Matching
sequences from NCBI-nr and GOS were filtered separately for
redundancy at 98% identity; the combined set of sequences was
aligned and a neighbor-joining tree was constructed.

For the RuBisCO family, matching RuBisCO sequences from GOS
and NCBI-nr were filtered separately for redundancy at 90% identity,
resulting in 724 sequences in total. The 724 RuBisCO sequences were
then aligned and a neighbor-joining tree was constructed.

Identification of proteases.We clustered sequences in the MEROPS
Peptidase Database [100] using CD-HIT [116,117] at 40% similarity
level. This resulted in 7,081 sequences, which were then divided into
groups based on catalytic type and Clan identifier. These sequences
were used as queries to search against a clustered version of NCBI-nr
(clustered at 60% similarity threshold) using BLASTP (E-value � 1 3
10�10). A similar search was carried out against GOS (clustered at 60%
similarity threshold). Figure 17 shows the content of protease types in
NCBI-nr and GOS together with the kingdom distributions. Figure 18
shows the content of bacterial protease clans.

Metabolic enzymes in GOS. Hmmsearch from the HMMER
package [105] was used to search the GOS sequences for different
GS types. The GlnA TIGRFAM model was used for finding GSI
sequences. The HMMs built from known examples of 17 GSII and 18
GSIII sequences from NCBI-nr were used to search the GOS
sequences.

Identification of ORFans in NCBI-nr. ORFans are proteins that do
not have any recognizable homologs in known protein databases. A
straightforward way to identify ORFans is through all-against-all
sequence comparison using relaxed match parameters. However, this
is not computationally practical. An effective approach is to first
remove the non-ORFans that can be easily found, and then to identify
ORFans from the remaining sequences.

We identified non-ORFans by clustering the NCBI-nr with CD-HIT
[116,117], an ultrafast sequence clustering program. A multistep
iterated clustering was performed with a series of decreasing
similarity thresholds. NCBI-nr was first clustered to NCBI-nr90,
where sequences with .90% similarities were grouped. NCBI-nr90
was then clustered to NCBI-nr80/70/60/50 and finally NCBI-nr30.
After each clustering stage, the total number of clusters of NCBI-nr
was decreased and non-ORFans were identified. A one-step clustering
from NCBI-nr directly to NCBI-nr30 can be performed. However, the
multistep clustering is computationally more efficient.

At the 30% similarity level, all the NCBI-nr proteins were grouped
into 391,833 clusters, including 259,571 singleton clusters. The
proteins in nonsingleton clusters are by definition non-ORFans.
However, proteins that remain as singletons are not necessarily
ORFans, because their similarity to other proteins may not be
reported for two reasons: (1) significant sequence similarity can be
,30%; and (2) in order to prevent a cluster from being too diverse,
CD-HIT, like all other clustering algorithms, may not add a sequence
to that cluster even if the similarity between this sequence and a
sequence in that cluster meet the similarity threshold.

The 259,571 singletons were compared to NCBI-nr with BLASTP
[38] to identify real ORFans from them. The default low-complexity

filter was enabled in the BLAST comparisons, and similarity thresh-
old in the form of an E-value was set to 1 3 10�6. In the end, 84,911
proteins with at least 100 aa are identified as ORFans. About 100,000
short ORFans less than 100 aa were removed from this study, because
they may not be real proteins.

Genome sequencing projects and rate of discovery. We used
Ensembl sequences for Homo sapiens, Mus musculus, Rattus norvegicus,
Canis familiaris, and Pan troglodytes. Their clustering information is
shown in Table 15. When we considered the datasets in the order HS,
HSþMM, HSþMMþRN, HSþMMþRNþCF, and HSþMMþRNþ
CFþ PT, the numbers of distinct clusters were 10,536, 12,731, 13,605,
14,606, and 14,993, respectively. These numbers were compared
against a random subset of NCBI-nr bacterial sequences (of a similar
size) and also against a random subset of GOS sequences. We also
randomized the order of the mammalian sequences to produce a
dataset that was independent of the genome order being considered.

Supporting Information

Protocol S1. Supplementary Information

Found at doi:10.1371/journal.pbio.0050016.sd001 (25 KB DOC).

Accession Numbers

All NCBI-nr sequences from February 10, 2005 were used in our
analysis. Protocol S1 lists the GenBank (http://www.ncbi.nlm.nih.gov/
Genbank) accession numbers of (1) the genomic sequences used in
the PG set, (2) the sequences used in building GS profiles, and (3) the
NCBI-nr sequences used in building the IDO phylogeny. The other
GenBank sequences discussed in this paper are Bacillus sp. NRRL B-
14911 (89089741), Janibacter sp. HTCC2649 (84385106), Erythrobacter
litoralis (84785911), and Nitrosococcus oceani (76881875). The Pfam
(http://pfam.cgb.ki.se) structures discussed in this paper are envelope
glycoprotein GP120 (PF00516), reverse transcriptase (PF00078),
retroviral aspartyl protease (PF00077), bacteriophage T4-like capsid
assembly protein (Gp20) (PF07230), major capsid protein Gp23
(PF07068), phage tail sheath protein (PF04984), IDO (PF01231),
poxvirus A22 protein family (PF04848), and PP2C (PF00481). The
glutamine synthetase TIGRFAM (http://www.tigr.org/TIGRFAMs) used
in the paper is GlnA: glutamine synthetase, type I (TIGR00653). The
PDB (http://www.rcsb.org/pdb) identifiers and the names of the eight
PDB ORFans with GOS matches are: restriction endonuclease MunI
(1D02), restriction endonuclease BglI (1DMU), restriction endonu-
clease BstYI (1SDO), restriction endonuclease HincII (1TX3); alpha-
glucosyltransferase (1Y8Z), hypothetical protein PA1492 (1T1J),
putative protein (1T6T), and hypothetical protein AF1548 (1Y88).
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