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LASER INDUCED CHEMICAL REACTIONS 

ANN ELIZABETH OREL 

ABSTRACT 

A classical model for the interaction of laser radiation with a 

molecular system is derived. Within this model, all degrees of 

freedom, molecular, radiation and their interaction are described in 

a dynamically consistent framework. The classical dynamics of such 

a system :an be calculated with the addition of the two equations of 

motion representing the field. 

This model is used to study the enhancement of a chemical reaction 

via a collision induced absorption. It was found that an infrared laser 

will in general enhance the rate of a chemical reaction, even if the 

reactants are infrared inactive. Results for a illustrative analytically 

solvable model are presented, as well as results from classical trajectory 

studies on a number of systems. 

The collision induced absorption spectrum in these systems can be 

written as the Fourier transform of a particular dipole correlation 

function. This is used to obtain the collision induced absorption spectrum 

for a state-selected, mono-energetic reactive collision system. Examples 

treated are a one-dimensional barrier problem, reactive and non-reactive 

collisions of H + H„, and a modified H + H 2 potential energy surface which 

leads to a collision intermediate. 

An extension of the classical model to treat laser-induced 

electronically non-adiabatic collision processes is constructed. 

The model treats all degrees of freedom, molecular, electronic and 

radiation, in a dynamically consistent framework within classical 
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I. INTRODUCTION 

The subject of laser interactions with molecular processes has 

generated great interest both experimentally and theoretically. This 

interest has been enhanced by the possibilities for laser-catalyzed 

chemical reactions, isotopic selectivity and perhaps even the 

determination of the transition state structure. The degree of 

success in this area has been limited by the extreme difficulties of 

the experiments involved and also the lack of simple and qualitatively 

accurate theoretical models that can be applied to a wide range of 

systems. 

Classical mechanics has been widely used in studying a variety of 

heavy particle systems. It has been found to provide qualitatively 

accurate results and is relatively simple to apply. Therefore work 

focused on developing a classical model for the interaction of 

radiation with a molecular system. 

This work can be divided into several broad areas. The first 

chapter deals with the interaction of a high power laser with a 

colliding molecular system. A model is developed which treats all 

the degrees of freedom within a classical framework. Due to the 

extreme simplicity of the model, which involves the addition of only 

two more equations of motion to the system of equations governing the 

classical motion of the colliding molecular system, it was possible 

to study a range of molecular systems including a three-ditrensional 

A + EC type reaction. It was found that it is possible to lower the 

activation barrier for a chemical reaction by energy transfer from 

the laser field to the collision system through a collision induced 
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absorption, even if the original reactants are infrared inactive. 

A natural extension of this work is to study the effect of the 

molecular dynamics on the laser field, that is the absorption and 

emission of photons during the collision. Since the interaction between 

the laser field and the colliding molecules in these systems occurs 

primarily in the transition state region of the potential energy 

surface, it is possible to obtain information about the 

structure of the transition state directly, in general a difficult 

if not impossible task. In Chapter III a simple extension of the 

classical model of the previous chapter is used to calculate the 

collision induced absorption spectra for several model systems. 

The previous chapters have concentrated on the interaction of an 

infrared laser with a colliding molecular system, studying the effects 

of energy transfer to transient vibrational modes. Il: is also possible 

to study the interaction of visible/UV lasers witf1 such systems, where 

the energy is now used to make transitions between different electronic 

potential energy surfaces. In Chapter IV, a previously deri/ed 

classical model describing electronically non-adiabatic processes is 

combined with the classical model of the preceeding chapters to create 

a classical model which treats all degrees of freedom, molecular, 

electronic and radiation via classical mechanics. This theory is 

applied to several systems, L1F + H •+ Li + HF both collinear and three-

dimensional, a model collinear reaction where the lower surface is 

approximately H + H 2 + H 2 + H and collinear LiF + D + Li + DF. 

Finally in Chapter V a study is made of vibrational energy 

transfer without a laser field using the classical model for 

electronically non-adiabatic processes. Comparison on this system can 



be made to previous quantum mechanical studies and show that the model 
can produce qualitatively accurate results. 
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II. INFRARED LASER ENHANCEMENT OF CHEMICAL REACTIONS 

A. Introduction 

It is well-known that an infrared laser can accelerate chemical 

reactions by vibrationally exciting one of the reactants. For 

example, in the reaction 

HC£(v) + K •+• KC£<v f) + H 

a laser can be tuned to the frequency which excites HC&(v«0) to HC£(v=l). 

This excited reactant reacts at a much faster rate than the unexcited 

sptcies. This method of laser enhancement of chemical reactions 

requires that the laser be tuned to a transition present in the 

reactants. However in general there exists a collision induced 

absorption that enhances the rates of chemical reactions by effectively 

lowering the activation barrier, even if the laser is far from any 

region where the reactants absorb, or even if the reactants are 
2 3 infrared inactive. 

In order to gain a qualitative understanding of this phenomena, 

consider the simple prototype for a reaction with an activation barrier,H+H, 

The reactants are infrared inactive, but in the transition state region 

of the potential energy surface, the asymmetric stretch mode, 

H • • * 'H • • • *H 

has a non-zero dipole moment which changes with this motion and hence 

will absorb in the infrared. Notice that the dipole moment does not 

vary with the displacement of the symmetric stretch, 
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and so this mode is infrared inactive. The asymmetric stretch is 

notion along the reaction coordinate so the system will absorb energy 

from the radiation field preferentially in that degree of: freedom 

most effective in promoting the reaction, that la helping it to surmount 

the activation barrier. Thus the activation energy for the reaction 

Is lowered by the presence of the infrared laser. Without the field, 

there are no trajectories which react at energies below the classical 

threshold, while in the presence of the laser field, some of these 

non-reactive trajectories gain sufficient energy from the field to 

become reactive. 

This is a general phenomena since displacement of a transition 

state along the reaction coordinate is, in general, the least symmetric 

displacement and will therefore always be infrared active. It is 

also clsar, however, that the phenomena requires very intense radiation 

Clelds (lasers) since the system is in the transition state region of 

the potential energy surface for only a short period of time, that is 

the "concentration of transition states" is small. 

In addition to Interest in this process for the obvious reason of 

being able to accelerate chemical reactions, it is also interesting 

because it allows one in effect to "see" (i.e., to interact with) 

the reactive system in the transition state region itself. In normal 

scattering experiments one can observe the system only before and 

after complete collisions. This collision induced absorption is thus 

the closest in principle that one can come to infrared spectroscopy of 

a transition state. 

In the next section a classical model for the interaction of laser 

radiation with molecular systems is introduced. In this model, the 
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entire system molecules, field and their interaction is treated on a 

dynamically consistent framework, invoking the same approximation 

(classical mechanics) for both. It is thus possible to use classical 

trajectories to describe the system with the extensior into three-

dimensional A + BC systems, an area almost impossible to treat quantum 

mechanically relatively simple to treat. 

Section C presents a simplified one-dimensional model of the 

phenomenon that is analytically solvable. This gives a qualitative 

indication of the nature and order of the magnitude of the effect, i.e., 

how much the activation energy of a reaction is expected to be lowered 

by the radiation field. The results of classical trajectory calcula

tions, including the laser field, for the reactions 

X + H 2 X HX + H 

for X = H, F, Ci are presented in Section D. The qualitative behavior 

predicted by the 1-dimensional model of Section C is seen to be borne 

out by these results. 

In closing this Introduction it should be noted that collision 

induced absorption ?.s a well-known and much studied phenomenon in 

itself, e.g., in mixed rare gases. In the present chapter our 

interest is not so much in the absorption spectrum but rather in how 

the absorption affects the collision dynamics, e.g., by changing non-

reactive trajectories into reactive ones. Also, there has been 

considerable interest in the effect of visible lasers on molecular 

collision processes; this of course involves electronic excitation 

and thus requires the existence of appropriate electronically excited 

potential energy surfaces. 
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B. The Classical Model 

First consider the quantum mechanical Hamiltonian for the system 

in the presence of a single mode radiation field. The extension to 
8 0 an arbitrary number of modes is straightforward. The Hamiltonian is 

+ Hp.n + H T H T (2-1) 

where Ĥ ,.- is the Hamiltonian of the isolated molecular system, H p A n 

is the Harailtonian of the radiation field and H describes their 

interaction. Using second quantization 

HRAD " * " a + a < 2- 2> 

where a ,a are the creation and annihilation operators of the photon 

field, and 10 is the frequency of the field. Within the dipole 

approximation 

HINT " -V(x>#E (2-3) 

where Jj(x) is the dipole moment of the molecular system as a function 

of the molecular coordinates x and E is the electric field. 

E - i v — - — (a -a)E (2.4) 

where £ is the polarization of the photon field and V is the volume 

of the radiation cavity. With these substitutions the total Hamiltonian 

becomes 

H - H^Cp.x) + howja + ±J^fi*(a+-*)u(x> (2.5) 



where p,x are the molecular momentum and coordinates and p(x) = )i(x) •£ 

In order to better illustrate the classical limit, replace the 

operators a and a by P and X where, 

P - V ^ V a V (2.6a) 

X ->/]£ i(a-a+) <2.6h) 

so the Hamiltonian becomes 

H(p,x,P,X) - HJTOJ.CP.X) + J P 2 + J <" 2x 2 

-J^- u(x)X (2.7) 

Notice that the Hamiltonian has the form of an oscillator coupled by 

a forcing term to the molecular system through the dipole moment. 

Since the "oscillator" (the field) is in a state described by large 

quantum numbers (a large number of photons) a classical approximation 

should be valid. Take the classical limit so that the operators, 

p,x,P,X become the classical variables and H(p,x»P,X) becomes the 

classical Hamiltonian function. The equations of motion for the 

system are, 

I « || - p/m (2.8a) 



P - - § - -A +V^f: „(,) (2.8d) 

Since the Haniltonian is not an explicit function of time, the total 

energy of the system is conserved. Classical trajectories can be 

integrated for the colliding system in the presence of the field 

through the addition of only two noxe equations of motion. 

ft is possible to manipulate Eq. (2.8) to eliminate the field 

variabiles. First combine (2.8c) and (2.8d) to eliminate P which 

yields 

X(t) + u2X(t) -J^f- u(x(t)) (2.9) 

This i s a l i n e a r inhomogeneous equation with so lu t ion 

X(t) = XQ(t) + V ^ f 2 Y d t . .ln(u(t-f)). ^ . J J ( 2 - 1 0 ) 

xn(t) -J-l- sindnCt-O+Qj^) (2.11) 

the solution to the homogeneous equation where (N , Q ) are the values 

of the field action-angle variables at t. the initial time. (N1,Q.) 

are defined by 

X - V 7 ! ^ sinQ (2.12a) 

P - J2tim' cosq (2.12b) 

Using Eq. (2.10), a closed form expression for (p,x), the molecular 
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variables can be derived, 

i(t) - p/m (2.13a) 

P(t) - - S g S . + y ^ i ' ^ . .intoCt-tj)^) (2.13b) 

" Cl 

This expression is exact. It is possible to apply perturbation theory 
-1/2 to this expression. To first order in V , x(t) is given by 

x(t) = xQ(t) + Ax(t) + 0(V _ 1) (2.14) 

3V(x0) 
"5b ( t ) + " 3 x ^ = ° < ^ 1 5 ) 

(Thus x_(t) is the field free trajectory) and 

r 2 3 V(x )-i /BnhoiN ' 3]i(x ( t ) ) 
72 + -TT- A- ( t > " ̂ " ^ ~ ^ .lafeCt-t^) (2.16) 
Ldt 3x„ J -0 

The initial conditions are 

x Q(t 1) » X l ; xQ(t1) - p1/m (2.17a) 

Ax(t1) - Ax(tx) - 0 (2.17b) 

Using these initial conditions Eq. (2.16) can be solved yielding the 
following expression Ax(t), 
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te(t) •V—r- (-jpj— • g^- - -jjjT— ĝ -> • 

/ dt' V(x <t'» sin(u(t'-t)-K! ) (2.18) 

where x Q(t) = x_(t;x, ,p.), the field free trajectory as a function of 

its initial conditions. 

Thus it is possible to describe the interaction of a colliding 

molecular system and a laser field within a dynamically consistent, 

classical framework. Specific applications of the theory are 

described in the following sections. 

C. A One-Dimensional Model 

To obtain a simple analytic solution, to serve as a qualitative 

guide to more quantitative calculations, we carry out in this section 

a calculation for the simplest possible version of the process we 

are describing. We thus assume for the present (1) that the potential 

energy surface is separable in the region of the transition state, (2) 

that only motion along the reaction coordinate is optically active, 

and (3) that the potential barrier in the reaction coordinate is 

parabolic. A further approximation is (4) that the effect of the 

radiation field of the motion along the reaction coordinate is treated 

by lowest order perturbation theory. The calculation is carried out, 

as are the numerical calculations reported in the next section, within 

the framework of the classical theory developed to treat the inter

action of molecular systems with electromagnetic radiation which was 

described in the previous section. 
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Letting x denote the coordinate for motion along the reactive 
direction, consider a classical trajectory beginning at x.. >rc£ 
Figure 1) at t • 0, with initial momentum p, (x < 0 and p. > 0). 
The potential energy barrier V(x) is parabolic, 

V(x) - -~m^x2 , (2.19) 

so that the initial energy in this degree of freedom, E,, is 

2 

If E1 < 0, as shown in Figure 1, rh£u the field-free trajectory will 
clearlv h*> r.on-ieactive. 

N_ and Q- are the initial quantum number and phase of the 
radiation field, and we first determine the trajectory x(t;x.,p.,KL ,Q.), 
noting that it depends on the various initial conditions. According 
to the perturbation result obtained in the previous chapter* x(t) is 
given through first order in the interaction between molecule and 
radiation field by 

x(t) = x 0(t) + Ax(t) , (2.21) 

where x (t) is the field-free trajectory, which in this case is 

p l x Q(t) = x., cosh(o>,t) + - ~ sinhGi^t) , (2.22) 

and where Ax(t) is the correction caused by the radiation field: 



tPj) 3x()(t:';x:l>p1) 
3*1 VSlSuS t. r3x (t;x ,p 

3xQ(t;x ,p ) 3x <t';x ,p )-, 
ax' 3 P l

 1jM'(x 0(f))sinfaf +Q 1) ; 

(2.23) 
y(x) is the dipole moment of the molecular system as a function of x. 

Utilizing Eq. (2.22), Eq. (2.23) becomes 

/87tfwN ' t . 
&x(t) = y — ^ ( m U ) b ) / d C ' " ' ^ O ^ ' ^ s i n h t o ^ t - t ' ) ] s i ndu t '+Q^ . 

(2.24) 

To determine whether the trajectory is reactive or not, we 
consider the limit t -*• + » c o see if x(t-«°) -»• +» (reactive) or -"> 
(non-reactive). Eqs. (2.22) and (2.24) show that as t ++•», 

x(t) E xQ(t) + dx(t) 

1 V h + ^ + y - r 1 ( m V " 1^dt'y'(x 0(t'))e .infof 
(2.25) 

To simplify matters further we also assume that the dipole derivative 
is constant, y'(x) = U', so that 

J dt' u'(x0(t') e " sinfcflt'+Q.̂  

)j ' [OJCOSQ, + u. sinQ. ] 

1 ^ • ( 2- 2 6 ) 

01 + (D. 

and take x 1 large enough so that 
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P 
x i + s^ - x i + ( 2 m E i + " W > 1 / 2 ' ( - V 

= E1/(nub
2|x1|) . (2.27) 

Eq. (2.25), with Eq. (2.26), then implies chat the trajectory is 
reactive or not depending on whether the following quantity is 
positive or negative: 

BTiftuN ' , (wcosQ + (U-sinQ,) E fi5 
- ^ 7 7 + V — r * £c i "2 " • <2-28> 

The c h a r a c t e r i s t i c function for reac t ion x H ( N - . Q . ^ . ) , which i s 1 for 

reac t ive t r a j e c t o r i e s and 0 for non-rear t ive ones, i s thus given by 

WW = h [ E l + ~1~2 tocos<J! + V i n Q l ) ] ' ( 2 , 2 9 ) 

b 

where h( ) i s the usual s tep- func t ion , 

f l , z > 0 •C h(z) 
z < 0 

*% N—5-^ I^'^il • (2-30) 

The net reaction probability is obtained by averaging x R over the 

initial phase of the field, 

N ^ ) - (2TT)"1/' dQx J k O ^ . Q ^ ) , (2, 31) 
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the result is 

(2.32) 

where E , , the threshold for reaction, is given by 

Eth " " h wR ( 1 + w ^ V " 1 7 2 • <2.33) 

Equations (2.32) and (2.33) are the principle results of this 

model calculation, and they should be regarded as qualitative, order-

of-raagnitude indicators. Figure 2 shows the reaction probability of 

Eq. (2.32) as a function of energy E_, compared to the field-free 

result. The important feature is that the threshold for the reaction 

has been depressed by the presence of the radiation field. Eq. (2.33) 

shows that the amount by which the threshold energy is lowered is 

roughly h(UR. 

The numerical classical trajectory calculations described in the 

next section also show the qualitative behavior described by Eqs. (2.32) 

and (2.33). 

The dependence of this absorption on the frequency of the laser is 

also easy to understand qualitatively within the framework of this one-

dimensional picture. For a reactive trajectory, i.e., one that passes 

over the barrier in Figure 1, the time dependence of the molecular 

dipole moment will be of the form sketched in Figure 3a. (This would 

be the case, for example, for the H + H~ -*- H„ + H reaction.) In the 

one photon perturbative limit the absorption coefficient, i.e., the 

probability of the system absorbing a photon, is proportional to the 

square modulus of the Fourier transform of y(t) : 

and it is easy to show that with x R 8 i ven by Eq. (2.29) 

V l ' V " I * •in"1(E1/Eth)/ir , 
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I(u) « |jTdt. e1"* u(t)| 2 • (2.34) 

Suppose, for example, 

y(x) - p' x exp(- | x 2/a 2) (2.35) 

and 

x(t) = vt . (2.36) 

Eq. (2.34) then gives 

1(a) « u 2 exp(-w 2a 2/v 2) , (2.37) 

which is sketched in Figure 3b. The probability of absorption is 

largest in this case for 

0) = v/a ; (2.38) 

frequencies above or below this value are not as effective in promoting 

the reactive, and this optimum laser frequency is seen to vary 

monotonically with the collision energy. 

D. Classical Trajectory Calculations 

To obtain a more quantitatively reliable characterization of 

how this collision induced absorption enhances the rate of reactions, 

we have carried out classical trajectory calculations within the 

framework of the theoretical model developed in the previous section. 

In this model the molecular degrees of freedom,, and also the radiation 

field—approximated as a single mode laser—are treated by classical 

mechanics, i.e., by numerically integrating Hamilton's equations for 
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the complete system, molecules plus radiation field.' 

For the case of a collinear A + BC collision in a single mode 

radiation field, the classical Harailtonian for the complete system 

is 

T> 2 2 2 

P R p r P X 

H«pR.».p r.'.v x>-ir + -ir + -r 
+ V(r fR) + ! < o 2 X Z -\/^-p(r,R)X , C2.39) 

where (R»p n), (r,D ) , and (X,p_) are the coordinates and momenta for K r A 

the translation of A relative to the center of mass of BC, the relative 

vibration of B-C, and the radiation field, respectively, p and m are 

the corresponding reduced masses, (0 is the frequency of the laser, V 

the volume of the radiation cavity, ,:(r,R) is the dipole moment of the 

A-B-C system as a function of its configuration, and V(r,R) is the 

field-free potential energy surface for the A-B-C system. (For the 

three-dimensionaJ case p(r,R) is replaced by p(r,R)»e, where ]i is the 

dipole moment vector of the molecular system and £' is the polarizacion 

vector of the radiation field.) One sees that tha radiation field 

enters in this model as simply one additional mechanical degree of 

freedom, a harmonic oscillator, that is coupled to the molecular 

degrees of freedom. It is convenient to replace the field variables 

(X,pv) by the action-angle variables (N,Q) , defined in the usual oiLnner, 

— sinQ (2.40a) 

/2htdN 4cosQ , (2.40b) 



and Che Hamiltonian Chen becomes 

p 2 P 2 

H(pR,R.Pr,r,N,Q) - -gjj- + -jjp + V(r,R) + huOJ + i ) 

i / M s * 1 U(r,R) sinq . (2.41) 
V 

N is Che quantum number of Che radiaCion field oscillaCor, i.e., Che 

nunber of phocons in Che field, and Q is Che phase of Che field. 

The inicial conditions for Che classical trajectories are 

R(c 1) - large ( » 0) 

P R ( t l ) - - ^ 

N ( t l > = N l 

QO--J) - q x 

PyCtj) - P(n 1,q 1) , (2.42) 

where r(n,q) and p(n,q) are the algebraic functions expressing Che 

vibrational variables (r,p ) in terns of the vibracional accion-

angle variables (n,q). (For the present examples the vibrational 

potential of the isolaced EC molecules is a Morse potential so that 
12 the functions r(n,q) and p(n,q) are chose given before.) E is the 

initial cranslational energy, and the quantum numbers n, and N are 

integers, the initial vibrational state of BC and the initial number 

of photons in Che radiation field, respectively. 
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13 To carry out the usual quasi-classical type calculation it is 

useful to define the characteristic function for reaction XgfaiiQjin.iN ;E,). 

which is 1 if the trajectory with these initial conditions is reactive, 

and 0 if it is non-reactive. The total reaction probability froa the 

initial vibrational state n ^ with initial translational energy E,, 

and with IL photons initially in the radiation field, is then given in 

the quasiclassical framework by 

v v w * a'*)~2' j d qi y dQi v v v v w • (2-43) 

The above discussion is modified in a reasonably obvious fashion 

to treat the three-dimensional version of an A + BC collision process. 

Although this reaction is not of great interest in itself, it is 

the simplest prototype chemical reaction, and since it is so well-

characterized and since the reactants are infrared inactive, it is a 

good example to illustrate this collisionally induced absorption. 
14 The Porter-Karplus potential energy surface was employed in the 

trajectory calculations reported here, and the following dipole moment 

function was used: 

u(r,R) - s sech 2(s) , (2.44) 

3 
2 r 

s is the asynraetric stretch coordinate at the saddle point of the 
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potential energy surface. Although not quantitative, this dipole 

moment function is qualitatively correct, and an overall multiplicative 

constant is absorbed in the definition of w_. Three field strengths 

were studied, corresponding to bo)R - 0.001, 0.01, and 0.1 eV. At the 

lowest value little effect is observable, but for nuL ~ .01 eV the 

reactive threshold was lowered as expected and as explained by the 

model in Section C. For the largest laser power (hw "0.1 eV) the 

effect is most significant, and these results are shown in Figure 4. 

The variation of threshold lowering with laser frequency is 

summarized in Table I. Since the dipole moment is similar to that 

shown in Figure 3a, it was expected that the absorption would be 

similar to that of Figure 3b and that the effect would thus peak at 

some finite laser frequency. This is observable in Table I, the 

optimum laser frequency being 'u 500 cm . 

b- F + H 2 t HF + H 

This system has a very asymmetric barrier. In the forward 

direction it is enhanced by translational energy, and in the back

ward direction HF will not react collinearly unless excited to the 

v=2 vibrational state. 

Polanyi's SE1 surface, a semi-empirical modified LEPS (London-

Eyring-Polanyi-Sato) potential surface, was used in this calculation, 

the parameters for which are summarized in Table II. The dipole 

moment function for F-H-H was approximated as the sum of the two 

individual H-F dipole moments, where the H-F moment a" a function of 

internuclear distance is the theoretical result of Lie which was 

fit to the form 



21 

5 
U(r) - e"01* £ c xn ; (2.45) 

the parameters of this fit are given In Table III. 

The collinear results for F + H2(v*0) •• HF + H are shown in Figure 
2 5 for huL. * 0.1 eV, corresponding to a laser power of *v 30 gigawatts/cm ; 

they are seen to be qualitatively similar to H + H„ -*• H2 + H above. 

Similar results for the reverse reactio. , H + HF(v) •* H 2 + F, are shown 
in Figure 6 for v«2. There is no reaction, with or without che laser, 
for v«0,l, and for v*3 the increased vibrational energy damps out the 
laser effect. 

In contrast to the H + Hn reaction, the variation of the dipole 
moment with time for F + H* t- HF + H behaves qualitatively as a smooth 
step-function, i.e., it rises from zero to a finite value along the 
reaction coordinate, unlike that in Figure (3a). In this case its 
Fourier transform is a monotonically decreasing function of frequency 
(ii; i.e., I(oi) increases as 0) decreases. In this case one thus expects 
the effect of the collision induced absorption to increase monotonically 
with decreasing laser frequency. The dependence of the threshold 
lowering on laser frequency for this reaction (cf. Table I) does indeed 
show this behavior. 

c. C& + H 2 X HC& + H 
The parameters for the modified LEPS potential surface used in 

the calculation are summarized in Table II. The dipole moment 
function of HC& was fit to the same general shape as the HF dipole 
moment but scaled so that the correct value was obtained for both the 
dipole moment and dipole moment derivative at the equilibrium bond 



22 

distance. The parameters are summarized in Table III. 

The results for collinear Cl + H,(vO) •* HCfc + H are shown in 

Figure 7 for hta * 0.1 eV and for 0.01 eV, and the effect of varying 

the laser frequency is summarized in Table I. Results for the 

reverse reaction, H + HCJt(v*0) -*• H, + Ot, are shown in Figure 8 for 

huL » 0.1 eV. The overall behavior is similar to that of F + H„ 

discussed above. 

Note however that the effect in this case is much larger» with a 

noticeable lowering occuring even at a laser field strength of 0.01 eV. 

This can be explained simply in terms of a mass effect. The threshold 

lowering is dependent not only on the field strength, but also on 

the time the system spends in the interaction region. In the case 

of chlorine, for a given translational energy, the system spends a 

longer period of time near the transition region, hence the effect is 

larger. 

d. Cl + K2 -» HCfc + H (3 dimensions) 

Finally, three dimensional trajectory calculations were carried 

out for CZ + H 2(v-0, j»0) + HC£ + H for ha>R «= 0.1 eV. The interest 

here is to see if the effect of threshold lowering is diminished by 

the additional degrees of freedom present for the three dimensional 

collision system. The potential surface and dipole moment function 

are the same as those used above for the collinear calculation. 

Another interesting feature of the three-dimensional system is 

the effect of polarization of the laser beam. One thus imagines a 

molecular beam experiment with beams of C& and of H„ crossed at 

right angles,and with the laser beam perpendicular to the two of them; 
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i.e., the three beams form the edge of a cube. The electric field 

vector of the laser beam, i.e., the polarization vector, then lies 

in the plane of the two molecular beans, and we consider the two 

canonical cases that the polarization vector is parallel to the 

initial relative velocity vector of CJt and H 2 or that it is 

perpendicular to the initial relative velocity vector. 

If the reaction proceeds primarily through nearly collinear 

geometries and is limited to small impact parameters, then one 

expects the parallel polarization to be most effective in enhancing 

the reaction since the dipole moment function y(r,R) would then be 

approximately parallel to the polarization vector e, so that |e*pj 

has its largest value. Conversely, perpendicular polarization would 

cause p to be approximately perpendicular to £, so that |£**M| ^ 0. 

Figure 9 shows the reactive cross section as a function of initial 

translation energy for the field-free case and for parallel and 

perpendicular polarizations. One sees that parallel polarization is 

indeed more effective—perpendicular polarization gives almost no 

effect at all— and one sees that the effect is not at all diminished 

in three dimensions. 

The frequency dependence of the threshold lowering is given in 

Table I and is similar to t va above results for the collinear case. 

E. Conclusion 

The classical trajectory calculations for the various A + BC -*-

AB + C reactions described in Section D give a good characterization 

of how this collision induced absorption effects the reaction 

probability, most significantly by lowering the activation energy 
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for reaction. The three-dimensional calculations for CZ + H 2 •*• HC& + H 

showed that the effect is not significantly diminished by the 

additional degrees of freedom present in the three-dimensional 

case, and that the polarization of the laser field can be a very 

interesting parameter of the process. 

In these calculations the field strengths necessary to produce 

noticeable effects were disappointingly large. However the value of 

the calculations is in indicating that such an effect is indeed 

possible but the ideal system for such an observation were not the 

simple systems which were studied here. Such a system requires a 

very large dipole moment in the transition state region, as well as 

(for the largest possible effect), a system which spends several 

vibrational periods in the transition state region, that is one that 

forms a collision complex. If this does occur, other properties 

of the system, in some ways more interesting than the simple effects 

described here, can be studied. A system of this type is discussed 

in the next chapter. 



25 

III. COLLISION INDUCED ABSORPTION SPECTRA 

A. Introduction 

In the previous chapter it was shown that a high power infrared 
2 3 

laser could influence the rate of a chemical reaction. * That 

study concentrated on the influence of the laser field on the 

molecular dynamics. However, the converse effect, that is the 

effect of the molecular dynamics on the laser field in the form of 

emission and absorption of photons, is in some ways much more 

interesting. This chapter will study the collision induced 
18 absorption (CIA) spectrum of the reacting system. This is the 

analog of the well-known non-reactive CIA process for a reacting 

system. 

As noted previously, the system gains and loses energy (thereby 

absorbing or emitting photons) only in the region of the transition 

state. Thus it should be possible to observe directly the molecular 

motion in the transition state region of the potential energy surface, 

to perform spectroscopy of the transition state itself. This is 

in contrast to the majority of conventional scattering experiments 

which prepare the system in a given state before reaction and then 

observe the products after the reaction is complete, gaining only 

indirect information as to the transition state structure. 

This method would also probe the reaction dynamics. Qualitatively, 

if the reaction was direct, the collision induced absorption spectrum 

should be broad with differences perhaps between reactive and non-

reactive systems. If a long-lived collision complex was formed 

during the reaction, the spectrum would have structure. Information 
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as to the lifetimes and structure of the complex could be abstracted 

by considering the widths and positions of the absorption bands. 

In this chapter two special features which arise in the study 

of collision induced absorption for reactive systems are considered; 

the differences due to reactive vs. non-reactive trajectories, and 

the additional structure which appears in the CIA spectrum when a 

collision complex is formed. Section B derives the theoretical basis 

for the study of collision induced absorption in a completely 

classical framework, building on the results of the previous chapter. 

In order to ga.-;n a qualitative feel for the differences between CIA 

spectra for reactive vs. non-reactive processes, Section C treats the 

model problem of a particle passing over (reacting) or being reflected 

by (not reacting) a one-dimensional barrier. In Section D a more 

realistic model, collinear H + H« **• H« + H is studied and found to 

exhibit many of the features which were present in the one-dimensional 

model of Section C. Finally, Section E treats a modified H + H 2 

like system where a small potential well is introduced at the saddle 

point of the potential energy surface. This causes some trajectories 

to form short-lived collision complexes which cause additional 

features in the CIA spectrum. 

B. Theory 

In the previous chapter it was shown that 

jew = x0(t) J^jrdt< " ° y » p(,(f» o.i) 

Using the equations of motion and the definitions of N and Q, 
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x = v /2!pr s i n Q (3,2a) 

P - ^NhuPcosQ (3.2b) 

ftuN(t2) = j X ( t 2 ) 2 + i t o 2 X ( t 2 ) 2 (3.3) 

Using the expressions for X(t) and X(t) yields 

h h a W v J 
£ 1 

"T 1 '2 
f-\f 4t e - 1 ( U S( . x ( t ) ) | 2 (3.4) 

K 2 h w = N l f t 0 i + V / d t Vi(x<t))cos<(D<t-t1)+Q1) 

u l 

where N = N(t ) , Q, is the initial phase of the field and x(t) is n n 1 
the molecular trajectory determined from integrating the full 

equations of motion of the system. The second term which has no N. 

term present is the classical analog of spontaneous emission 
5 19 20 within this model. It has been discussed elsewhere. In 

the present application this term is insignificant and will be 

ignored. 

This expression for ANhw is exact within this model. In the 

following sections this expression is used to calculation collision 

induced absorption spectra and to check more approximate 

perturbation expressions. The perturbative limit of this equation 

is very interesting and will also be used in this chapter. 
-1/2 As before the perturbation limit is taken in terms of V where 
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x(t) = x Q(t) + txlt) + 0(V - 1) (3.5) 

and the equations for x n(t) and Ax(t) are given in the previous 
chapter. (Eqs. 2.15 and 2.18). To order V 

-V^/ ANhcu -V ^ - ^ - f d t !*(;„(<:)) cos(u<t-ta)+q1) 

kvhuhl' *2 3u(x.(t) 
(3.6) 

Substituting in for Ax(t) and averaging over Q 1 the initial phase of 

the field yields, 

fiu N, ,2 t 3u(xn(t 3u(x (t)) 3u(x.(t')) 3u<x„(t)> 3u( x (t')) 
m a = _ _ i / d t / d f [_^° 0 ^0 -0 , 

ax 3x, 3p, 

sin(ojt?-wt) (3.7) 

Therefore it is possible to compute the energy change of the 
colliding molecular system (the change in the energy of the field) 
and hence the absorption and emission properties of the system, by 
integrating classical trajectories with the two additional equations 
of motion for the field. Several examples of this technique are given 
in the following sections. 

C. A One Dimensional Barrier 

This calculation was carried out, as were the calculations 
presented in later sections, within the framework of the classical 
theory developed In the previous chapters to treat the interaction 
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of molecular systems with electromagnetic radiation. The usefulness 

of this classical model is that it provides a dynamically consistent 

description of the molecular system and of the radiation field and 

permits essentially exact (i.e., non-perturbative) calculations to be 

carried out. (Because the molecular dynamics is that of reactive 

scattering, a completely quantum mechanical treatment would be 

prohibitive.) Quantum effects could in principle be incorporated 
21 via classical S-matrix theory, although the nature of such effects 

is well understood and are not expected to change any of the essential 

features of the results. 

As shown in the previous section the change in the energy of the 

radiation field during the collision is given by 

(N2-N1)fito = ANhu * 

VSTThioV' £2 
—r^ J d c vl* (t)] cos[u(t-t1) + Q 1l (3.8) 

where N.,Q. are the initial number of photons and initial phase of the 

field, N. is the final number of photons, x(t) is the molecular 

trajectory, p[x(t)] is the component of the dipole moment along the 

polarization vector of the electric field as a function of time along 

the trajectory, u is the frequency of the laser, V is the volume of 

the radiation cavity and t.,t„ are the initial and final times, 

respectively. 

Though.this model allows the calculation of non-perturbative 

results, it is useful to consider the analytic expression obtained in 

the perturbative limit. If x and p denote the molecular coordinates 
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and momenta, then the fractional change in the photon energy for 

in i t i a l conditions (x, ,p.) is 

Fftu) Sg.m*2& J d t jTdf Sin[0>(t'-t)] 

„ r3u(t) . 3u(t') 3u(t) . 3u(t ') , 

By introducing the transformation 

t'-t = At 

t = t 

Eq. (3.9) can be written 

-0 

where the correlation function C(At) is 

FCw) = ^ f 5 / d(At) sin(u)At) C(At) , (3.10) 
v -0 

elation function C(At) is 

^ A O - J d t ^ . l ^ - ^ l . M ^ i , . (3.11, 

The correlation function must be averaged over the appropriate 

distribution of initial conditions (x-»p,). If this were a Boltzmann 

distribution, then F((o) would be proportional to the standard 
22 

expression for the absorption coefficient of a molecular systeiu «... 

would always be positive. For a state- and energy-selected collision 

process, however, this average is only over the angle variables 

conjugate to the bound degrees of freedom. For a collinear A + BC 

collision, for e: mple, with a specific initial translational energy 

and a specific initial vibrational state of BC, the average over 
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initial conditions is only over the initial phase of the vibrational 
degree of freedom. As a consequence the averaged value F(oi) need not 
be positive. 

To illustrate the qualitative nature of C(At) and F(w) as a 
function of laser frequency, a simple one-dimensional potential 
barrier was studied. 

V(x) = - imu),x2 . (3.12) 2 ,aMbA 

The initial energy is given by 

E i= i r - !™bV • ( 3 - 1 3 > 

respectively; cf. Figure 1. The field-free trajectory is given by 

x n(t) - x. cosh(ti).t) + — — sinh(ai c) , (3.14) 0 1 b mw, b 

and dipold moment Vi(x) selected for the calculation was 

2 p(x) = x sech x . (3.15) 

Choosing 0). (=.001 atomic unit), m (= 1 amu) and x. (= -10.0 art, b 1 0 

large enough that U(x) £ 0.0) allows C(At) and F(tu) to be calculated 
for a series of fixed initial energies E . Figures 10 and 11 show 
typical results for the case of a non-reactive (NR) trajectory 
(E. = -0.1 eV) and a reactive (R) trajectory (E 1 = 0.1 eV). For 
both C(At) and F(a)) the NR result is very similar to conventional 



32 

collision induced absorption spectra in non-reactive systems, but 

the R case is seen to be qualitatively different: depending on tht. 

laser frequency w, the molecular system can either gain energy from 

or lose energy to the radiation field. This was also indicated in 

the previous chapter where, depending on the translational energy 

and laser frequency, the reaction probability was either increased 

or decreased. 

D. Classical Trajectory Calculations 

To obtain a more quantitatively reliable characterization of 

the correlation function and its corresponding collision induced 

absorption spectrum, classical trajectories were carried out for 

the collinear H + H„ reaction within the framework of the theoretical 

model described previously. The classical Hamiltonian for the 

complete system, molecular system plus radiation field, is 

P 2 2 

H(p,r,P,R,N,Q) = fn" + 2m" + v( r» R> + h u N 

->/M^u(r,R> s ± n Q ^ 0 i e y 

and the initial conditions for the trajectories are 

R(tj) - large 

NCtp => M x 

Q<t 1) - Q x 

r( t l) - r( n i, q i) 
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p(t ) - Pdlj^.q^ (3.17) 

where r(n »q.), p(n ,q ) are the algebraic functions expressing the 

vibrational variables (r,p) in terns of the vibrational action-

angle variables (n»q). In Eq- (3.16) V(r,R) is the potential energy 

surface and y(r,R) the dipole moment of the H + H, system. For 

the potential energy surface a modified LEPS (London-Eyring-Polanyi-

Sato) function was used, the parameters of which are summarized in 
23 Table IV. The dipole moment function was taken to be 

M<r,R) - M Q s sech2s , (3.18) 

3 

where s - — r-R is the asymmetric stretch coordinate at the saddle 

point of the potential surface. This form for the dipole moment is 

qualitatively correct, although there is no reason to believe that 

it is quantitative. Within the perturbation limit the constant Vu 

enters as simply a multiplicative constant in C(At) .ind F(di). 

The CIA spectrum F( ) is given in an exact calculation by 

F(u) = (N.ho)) A V T ~ ^ <27r> f d*X f d% "1""' v v * "' r n L ^i 

xj dt u[x(t)] cos[u(t-t1) + Q1J , (3.19) 
. C l 

where x(t) is the molecular trajectory determined by integrating 

Hamilton's equations (generated from the Harailtonian in Eq. (3.16) 

with the initial conditions of Eq. (3.17)). In a perturbative calcula

tion only the field-free trajectory is calculated. This corresponds 
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to the following equations of motion: 

* - ! ? - * / » 

i M 1Z 
r * ~ 3R * ~ 3R 

However since the derivatives of the dipole moment with respect to 

the initial conditions as a function of time are also necessary, 

the additional equations of motion governing the derivatives of the 

dynamical variables with respect to the initial conditions must 
24 also be integrated. These are 

4- lR(t)] + [F(t)-R<t)J = 0 (3.21) 
OC s; ** =; 

3q(t) 3q(t) 

R(t) 

F(t) 

/ 33i 'Ei \ 

\ 3p(c) 3p(t) / 

( 

33i 3Ei 

2 
3 H 

" 3p3q 
3 2H 

" 3 E 2 

2 

aq 2 

3 2H 
3q3p 
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where R(C.) is the unit matrix. This information allows the 

construction of C(At) via [Eq. (3.11)], which is Fourier sine-

transformed [Eq. (3.10)] to obtain I (to). As in the exact case 

C(At), and hence I(u), requires an average over initial conditions, 

which in the case of the collinear perturbative result is just an 

average over the initial phase of the BC oscillator. 

A typical correlation function generated by non-reactive 

trajectories is shown in Figure 12. (The initial vibrational state 

n^O, the translational energy E- » 0.1 eV, and all trajectories .:n 

this case are non-reactive.) The overall shape is basically the 

same as the NR correlation function in Figure 10 except for a 

superimposed high frequency oscillation. This oscillation is due 

to changes in the dipole moment caused by the H„ vibrational motion 

relative to the incoming H [Eq. (3.18)]. The absorption spectra 

(calculated perturbatively) is shown in Figure 13. There are two 

peaks, one at low frequency due basically to translational motion 

and one at high frequency (at the H 2 vibrational frequency). The 

spectrum was also computed non-perturbatively and found to agree 

well with the perturbative calculation. 

Figures 14 and 15 show the correlation function and corresponding 

absorption spectrum, respectively, which are determined from 

reactive trajectories of H + Hn. (In this case n-=0, E.=0.30 eV 

and 94% of the trajectories are reactive.) One again sees a high 

frequency oscillation in C(At) which comes from vibration of H 2 , 

and apart from this the correlation function and spectrum are 

similar to the reactive case of the one-dimensional model of 

Section III. 
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Referring to the absorption spectra in Figures 13 and 15, 

one sees that the collision system will absorb frequencies in 

the vicinity of the H, vibrational frequency. The collisional 

perturbation induces a dipole in H« and thus makes it IR active, 

and such an effect would exist for any collision partner. Wormer 
25 and Van Dijk, for example, have recently carried out calculations 

for absorption in H 2 induced by collision with He atoms. 

Absorption at the lover frequencies (cf. Figures 13 and 15), 

however, is more relevant to the process of our interest; it is 

related to translational motion along the reaction coordinate. It 

is this region of the absorption spectrum, therefore, that is most 

closely related to the reaction dynamics. 

E. Model for a Short-Lived Collision Intermediate 

To investigate the sensitivity of the correlation function and 

absorption spectrum to the reaction dynamics, the H + Ho potential 

energy surface was modified by introducing a well at the top of the 

potential barrier. This causes H and H^ to form a short-lived 

collision intermediate, i.e., some trajectories oscillate several 

times in the vicinity of the well before passing on to products 

(or back to reactants). 

The potential surface used in the calculation was the LEPS 

surface described in Lhe previous section plus an additional term 

Vwell> w h e r e 

-a[(R,-c ) 2 + (R,-c,)2] 
* ,, " c e (3.22) 
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where ot, c, c., c„ are constants and R. ,R- are the interatomic 

distances. For this calculation, c. * c- * 1.7574 a Q, a - -0.01, 

which placed a gaussian well at the saddle point. The frequencies 

of the normal modes abSiciet-d with the bottom of the well are 

oy, * 0.008 and tu. - O.OIJ (atomic units). 

The correlation function for this system is shown in Figure 16 

for a translational energy of 0.1 eV. Due to the changes in the 

surface caused by the well *v* 82% of the trajectories reacted, ^ 37% 

remained in the well for one or more complete vibrations, *u 14% 

for two or more complete vibrations and ^ 2% for three complete 

vibrations. Due to these effects the correlation function has more 

structure than in the calculation without the well, and it retains 

a high frequency oscillation due to the H„ vibration. 

Figure 17 shows the absorption spectrum, which also shows 

considerably more structure. This spectrum is essentially that of 

the collision complex, and one does, in fact, see peaks at o>. and 

W-» Che harmonic frequencies related to the potential well, as well 

as peaks of 201- and u) + OJ„. There are other peaks, however, which 

are not readily identified in terms of the harmonic frequencies. 

Since the potential well is shallow and very unharmonic, this is 

not surprising. 

If the collision complex were long-lived, one would expect to 

see much sharper lines in the absorption spectrum. From these one 

could in principle determine the geometry and force constants of the 

collision intermediate. 
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F. Conclusion 

We have given the basic equations (cf. Section B) which relate 

the CIA absorption spectrum for a state-selected, mono-energetic 

collision system to a particular dipole correlation function. A 

Boltzmann average over initial states and collision energy converts 
22 these expressions into the standard ones. 

The first application of these formulae (Section C) was to a 

particle moving in one dimension over, or being reflected by, a 

potential barrier. Application (in Section D) to a more realistic 

model of a chemical reaction, collinpar H •*• H 2, showed that the 

quantitative behavior seen in the one-dimensional model also 

appears in the more realislie model. 

Finally, the model treated in Section E showed how the CIA 

spectrum is changed when the reaction mechanism involves the 

formation of a collision intermediate. It is effects such as this 

that would make experimental observation, of these spectra informative 

of the reaction dynamics. 
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IV. LASER-INDUCED NON-ADIABATIC COLLISION PROCESSES 

A. Introduction 

There has been considerable interest recently in how high 

power lasers affect molecular collision processes. Host papers on 
2 o c i 10 ?fi—^1 

the topic have been theoretical, » » » » » although there 
32—36 have been some reports of experiments which show these effects. 

Most workers, both theoretical and experimental, have dealt with 

the effect of visible/UV lasers, i.e., those which can cause 

electronic excitations, but it has been pointed out in the previous 

chapters that high power infrared lasers can also modify collision 

processes (e.g., increase rate constants for chemical reactions) 

without causing electronic excitation. 

The purpose of this chapter, which also considers the effect 

of visible/UV lasers on. collision, phenomena, is two-fold. First, 

we show how a completely classical model can be constructed for 

such processes, i.e., one which describes the nuclear motion 

(translation, rotation, and vibration), electronic degrees of 

freedom, and the laser radiation field all by classical mechanics 

and thus in a dynamically consistent framework. The usefulness of 

this kind of approach is apparent if one wishes to describe 

molecular collision phenomena, e.g., atom-diatom inelastic and 

reactive collisions: the large number of quantum states (electronic, 

vibrational, rotational, and photon) involved makes quantum 

mechanical treatments extremely difficult and limited to special 

cases (e.g., collinear A + BC collision systems). With the 

classical model described below, on the other hand, calculations 
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can he carried out with standard classical trajectory methods; for 

A + BC collisions, for example, the only difference from the standard 

situation is that there are two additional classical degrees of 

freedom, the electronic degree of freedom and the photon degree of 

freedom. Quantum effects, if they are thought to be significant, 

can be incorporated to some extent within the "classical S-matrix" 
A t 21 model. 

This classical model, which we develop in Section B, is 

essentially a synthesis of two earlier developments: In the 

previous chapters a classical model has been developed and applied 

for molecular collisions on one potential energy surface (i.e., 

one adiabatic electronic state) in a radiation field—i.e., a model 

which treats the nuclear degrees of freedom (i.e., translation, 

rotation, and vibration) and the photon degree of freedom by 
l o t ig oi 

classical mechanics. * * * Meyer, McCurdy, and Miller have 

developed a model for electronically non-adiabatic collision pro

cesses which treats the nuclear degree of freedom and the electronic 

degrees of freedom all classically. Here, therefore, we present 

a classical model which treats everything—nuclear degrees of 

freedom, electronic degrees of freedom, and the photon degrees of 

freedom—classically. Again, the advantage of this approach is 

that it is straightforward, via numerical integration of the 

classical equations of motion, to describe the interaction of 
30 all these degrees of freedom dynamically consistently. 

Section C of this chapter applys this classical model to a 

test problem, the- reaction 
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LiF + H -+ Li + HF 

29 as considered by Light and Altenberger-Siczek, who carried out 

quantum mechanical coupled-channel calculations. The interest is 

to see how the reaction probability is affected by a visible/UV 

laser which can cause electronic excitation during the collision. 

The results of our classical model are consistent with the quantum 

results, where the latter exist, but more importantly, we investigate 

a wider range of initial collision energies and this reveals an 

interesting structure in the energy dependence of the reaction 

probability: at energies below the threshold for reaction without 

the laser, the reaction probability is significantly enhanced at 

particular collision energies (which depend on the frequency of the 

laser). This effect is understood as a Franck-Condon-like effect 

and should pertain in general. Also in this section the additional 

complications involved in a full three-dimensional calculation are 

discussed and results presented for three dimensional LiF + H •* 

Li + FH for a variety of field strengths and frequencies. 

Finally, in the last two sections we present calculations on 

two other interesting phenomena. The possibility of laser 

inhibition of a chemical reaction is studied using a collinear model 

with parameters similar to H + H ?. This inhibition is a very large 

effect which can be seen at quite small laser field strengths, and 

which can sometimes destroy the effect of increased reaction 

probability on the lower state. The last section deals with the 

isotopic effects on reaction probability induced by the substitution 

of deuterium for hydrogen in the collinear reaction LiF + H. 
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B. The Classical Model 

The classical Hamiltonian for a molecular system and a single 

mode radiation field has the standard form 

mol rad int J 

where the various terms are the molecular Hamiltonian, which involves 

nuclear (i.e., translational, rotational, and vibrational) and 

electronic degrees of freedom, the Hamiltonian for the pure 

radiation field, and the interaction between the two, respectively. 

If (x,p) denote the nuclear coordinates and momenta and (n,q) the 

classical action-angle variables for the electronic degrees of 

freedom (assuming a 2-state electronic system), then the Meyer-
37 McCurdy-Miller theory gives the molecular Hamiltonian as 

2 
WE"5-n'«> = 1m + W\»« + H11 C?> 

+ 2yn(l-nT H Q 1(x) cosq , (4.2) 

where H ,(x), n.n' = 0,1, is the diabatic electronic potential 
n,n ~ 

energy surface. If (N,Q) are the classical action-angle variables 

of the radiation field, then the theory of the previous chapters 

gives H , and H. (in the dipole approximation) as 

H r a d = *m (4.3) 

H i n t = -\j^ir V^s inQ p(x,n ,q) , (A.A) 

where to i s the frequency of the l a s e r , V the volume of the rad ia t ion 
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cavity, and p(x,n,q) is the component of the molecular dipole 
moment along the polarization vector of the laser. Finally, to 
express the dipole moment U as a function of the classical 

electronic action-angle variables (n,q) we invoke the Heisenberg 
37a correspondence relation as discussed by McCurdy and Killer; 

this gives 

Vi(x,n,q) = (l-n)P00(x) + m ^ <x) 

+ 2v
/n(l-nj' M 0 1(x) cosq , (4.5) 

where ]i t(x), n,n? = 0,1 is the matrix of the dipole moment 
operator in the 2-state electronic basis, as a function of the 
nuclear coordinates x. 

Combining Eqs. (4,l)-(4.5) gives the complete classical 
Hamiltonian for the nuclear (p,x), electronic (n,q), and photon 
(N,Q) degrees of freedom as 

2 
H(p,x,n,q,N,Q) = JL + (l-n)Hnn(x) + nH.,<x) 2m u o - L 1 -

+ 2 v
/n(l-n) H Q 1(x) cosq + ftcoN 

-v /^ ,v^ TsinQ[(l-n)y 0 0(x) + ^ ( x ) + VnU-nJu^Cx) cosq]. 

(4.6) 

From this Hamiltonian one can numerically integrate Hamilton's 
13 equations in the standard way. Initial conditions for the nuclear 

13 
coordinates and momenta (x,p) are specified in the usual way, and 



44 

for the electronic and photon variables, the initial values of n 

and N are integers, the Initial electronic state and the initial 

number of photons in the radiation field, respectively. If the 
13 popular quasiclassical model is employed, then q and Q are chosen 

initially by Monte Carlo sampling methods. (Section C discusses 

this in more detail). 

For the application in the next section, the temiltonian of 
29 "q. 0-6) is simplified following Light et al: 

H o i " " o o ^ = "u^ = ° • ( 4 - 7 ) 

Setting H_- = 0 corresponds to neglecting electronically non-

adiabatic effects in the absence of the radiation field, and 

setting P Q Q O O = p..(x) = 0 corresponds to neglecting the inter

action of nuclear motion within a given electronic state wirh the 

radiation field (the effect studied in the previous chapter); at 

the frequency of laser employed here (i.e., visual/UV), this latter 

interaction is indeed negligible. The quantitites H_A(X) and H..(x) 

are thus the two adiabatic electronic potential energy surfaces 

V (x) and V.(x), respectively, so that the Hamiltonian of Eq. (4.6) 

simplifies to 

2 
H(p,:i,n,q,N,Q) = !_ + (l-n)Vn(x) + nV. (x) + huN - - 2m U ~ 1 

- v / M ^ 1
 2\/Nna-n) u n i 0 0 sinQ • (4.8) 

This is the classical Hamiltonian used for the applications in the 
37 nev.t section. (The usual Langer-like modification —i.e., in the 

last term, /n(l-n) •*• /<n+i)(|--n)—is also made to Eq. (4.8). N 
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is so large that replacing N by N + r has no significant effecc). 

C. Classical Trajectory Calculations 
29 31 

Light et^ al. and later Kulander et̂  al. considered a 

collinear version of the above reaction, and this is the example -we 

also treat j, using the same two potential energy surfaces as these 

authors used. (The parameters defining the two LEPS potential 

surfaces are given in Table II of reference 29). The classical 

Hamiltonian of Eq. (4.8) then defines the collision system, and 

the calculations reported below were carried out within the 

standard quasi-classical model. 

The methodology of quasi-classical trajectory calculations is 
13 well-known. For this example, there are two nuclear degrees of 

freedom, i.e., Cp,x) = (P,p,R,r), where (R,P) are the coordinate 

and momentum for relative translation of LiF and H, and (r,p) are 

the coordinate and momentum for vibration for LiF. (n,q) denote 

the vibrational action-angle variables for LiF, and r(n,q) and 

p(n,q) are the algebraic functions which express the cartesian 

vibrational variables in terms of their action-angle variables. 

The initial conditions (at time t ) for a trajectory are 

then specified as 

n(t,) = n. (the electronic quantum number) = 0 or 1 

N(t.) = N_ (the photon quantum number) = integer 

q ( t l ) = q l 
Q<t 1) = Q x 

rttj^) = r(n 1,q 1) 

p(tx) = ptf^qp (4.9) 



R(t 1) - large 

PCt^) - / 2 p l ^ 

If xr(l-i »QT »5i »ni »ni »"•] »E ) is the characteristic function for 

reaction—i.e., x r " 1 if Che trajectory with the indicated initial 

conditions is reactive, and is 0 otherwise—then the total reaction 

translational energy E is 

2n 2¥ 2jr 

" Jb - - - J 

(4.10) 

, 2n 2¥ 7s 
P r < n 1 . » l . S l ' B t r > = (2n)" j f ^ j f x i i j f 5j. X r ( q 1 . Q 1 . 5 1 . n 1 . « 1 . H 1 ; E t 

The integrals over q., Q , and q. are performed by Monte Carlo. 

The explicit form of Hamilton's equations for the present 
29 example are (since Light et al. assume that P 0 1(x) = P Q, is 

coordinate independent) 

3H , r > g^ = p/m 

i-ff-P/y 
3H „ , _ . „ , „. fflnftu' v V l - 2 n ) . . 

« * In" " V l ( r ' R > " V r , R > " V V " Z l l w 3 ; " n Q C ° S q 

/ 1 x V VCn + Y ) (^ - n) 

Q , _ . } , ( , _ P 0 ^ l ^ - - ^ s l n Q cosq 

P = - fjr - -d-n) "5F ~ n "3T C 4 - n ' 
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ft-^V^2^^7"7 3 1"" » - ~ aT " - H 

8Q M yOl\/~V~. 2vN<n + Y>(^-n) cosQ cosq 

which are integrated with our usual variable step-size predictor-
21 corrector algorithm. 

Before presenting the results of these trajectory calculations, 
it is useful to discuss some qualitative aspects of the process. 
Figure 18 shows a sketch of the energy profiles—the potential energy 

along a "reaction coordinate"—for the two potential energy surfaces. 
Referring to this figure, one sees that the ground state potential 
energy surface has an activation barrier of % 0.4 eV, so with no 

laser present the reaction probability as a function of initial 
translational energy should have a threshold of % 0.4 eV. With a 
laser of frequency it), though, the electronic energy gap v i - v

0 comes 

into resonance with the laser when classical motion on the (initial) 
ground state surface reaches the position s„ indicated in Figure 18, 
i.e., s_ is the value for which V.-Vfl = hu). For initial translational 
energies E > V Q C S Q ) J therefore, classical motion will reach this 
position and there will be the possibility of resonant electronic 
excitation; if this happens, then reaction (to electronically excited 
Li + HF) occurs with high probability because motion on the excited 
potential surface is "downhill all the way" to products. 

Qualitatively, therefore, one expects a laser of frequency 0) 
to reduce the threshold of the reaction to approximately V-(s-). 
(Note that for the surfaces in Figure 18 V 0(s f l) decreases with 
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increasing op • It is also clear that an initial translational energy 

E - v
0 ( s

0 ) i s t n e optimum translational energy for reaction (below 

the laser-free threshold of ^ 0.4 eV) because in this case the 

classical notion spends the most time in the resonant region V.-Vfl 

- nu>, i.e., for higher translational energies, the classical motion 

will pass the "resonance region" with finite velocity and thus have 

a smaller probability of being electronically excited. 

The primary qualitative effect of the laser is thus to cause a_ 

peak in the reaction probability at the translational energy E -

V n(s f l), i.e., where the classical turning point on the ground state 

potential surface coincides with the resonance region V-( sn^~ vn^ sn^ = 

huj. This is the classical version of a Franck-Condon effect, and 

one can characterize this behavior semi-quantitatively by calculating 

the electronic transition probability in the Landau-Zener approxi

mation to the curve-crossing picture in the electronic-field 

representation. (One considers the two potential curves V and 

V_ + htu). Within this model, the1 probability of the electronic 

transition 0 -*• 1 with photon transition N -*• N - 1 is given by 

WM • 1 - •"* «•"' 

.-»££, 
where 
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*y-v<. 0)-vc 0> 

-^'vw' 
In this approximation the probability of electronic excitation is 

0 for E < V 0(s_>, jumps to 1 for E = V-.(s0), and then falls for 

For still higher translational energies, E > 0.4 eV, the 

reaction probability will again rise since reaction can then take 

place on the ground state potential energy surface. Figure J9 

shows a sketch of this expected energy dependence of the reaction 

probability. One can estimate the width of the Franck-Condon peak 

in the reaction probability rear E - V Q ^ S A ^ ^y determining the 

value of E t r-V 0(s 0) for which P * ~. Using Eq. (4.12), this 

"half-width" is easily found to be 

2 -2 

rEtr-VVW/2 = !(7z!7r ras]' ' ( '" 1 3 ) 

which is seen to be proportional to the square of the laser 

intensity. 

This qualitative discussion above, which is based on the one 

dimensional picture of the reaction in Figure 18 is modified in 

several ways when the vibrational degree of freedom Is taken into 

account. Most significantly, the Franck-Condon maximum in the 

cross section below the laser-free threshold will, in general, be 
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split into two maxima. This is because the "Franck-Condon region", 

i.e., the place where the classical motion spends the most time, is 

now where the vibrational motion, as well as the translational 

motion, experiences a classical turning point. Vibrational motion 

has two classical turning points, however, so there will be two 

points on the ground state potential surface where the translational 

and vibrational motion simultaneously experience classical turning 

points (i.e., have zero momenta). The electronic energy gap V.-V n 

will, in general, be different at these two points, and this leads 

to two different Franck-Condon maxima, (If there were no translation-

vibration coupling in the potential energy surfaces and if the 

vibrational potential functions for the two electronic states were 

the same, then V.-V- would be the same at the two simultaneous 

translation-vibration turning points and the two Franck-Condon 

maxima would be coincident). This will be seen more explicitly 

later in this discussion. 

Figure 20 shows the total reaction probability -is a function of 

initial translational energy for the quasi-classical trajectory 

model as described above. LiF is always in its ground vibrational 

state initially. The dotted curve is the laser-free result, show

ing the expected threshold at ^ 0.4 eV. The solid curve is 

obtained for a laser with frequency hw = 6.2 eV and a power such 

that VQJEQ = 0.01 eV (E Q ~ i/BifiiuXS./v), and the dashed curve is the 

result for a laser of the same frequency but lower power, P 0 1 E n = 

0.008 eV. 

Both laser-induced curves in Figure 20 show the two Franck-Condon 

maxima as discussed at the end of the previous section, and the 
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height: and width of the peaks increase with increasing laser power. 

At the still lower power corresponding to W 0 ]
E

0 * 0.001 eV, the 

peaks have disappeared. 

The Franck-Condon peaks in Figure 20 show the asymmetric 

"line shape" suggested by the Landau-Zener model discussed above 

with increasing translational energy, the reaction probability rises 

almost vertically to a maximum and then falls more gradually. 

Quantum mechanical effects may, of course, modify this structure 

in some of its details, but the gross features are expected to 

persist in a quantum description. 

Figure 21 illustrates the effect of varying the laser frequency. 

(The laser-free reaction probability is also shown again here). For 

a power corresponding to V n-,E n - 0.01 eV, the solid curve is for a 

frequency ho) ~ 6.2 eV (the same curve as shown in Figure 20), and 

the dashed curve is for a frequency nw = 6.4 eV. The higher 

frequency is thus seen to lead to a lower threshold for reaction, 

as is understood from the discussion above. A surprise though, 

is that the higher frequency (dashed curve in Figure 21) has only 

one peak, not two, in the region below the laser-free threshold. 

To understand this latter feature and to confirm that our 

interpretation of these "Franck-Condon maxima" is actually correct, 

we computed laser-free classical trajectories on the ground state 

potential energy surface to determine the Franck-Condon transition 

points. For a given translational energy E (and with LiF initially 

in its ground vibrational state) the initial vibrational angle 

variable was varied over its range (0,2TT) to determine the two 

points, (r-,R.) and (r-sK^)* a t w ^ i c h translation and vibration 
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have simultaneous classical turning points. The electronic energy 

gaps, V--V-, at these two points define two frequencies, via hw = 

V_-V_, for which E is a Franck-Condon maximum. 

Figure 22 shows, as a function of translational energy E , 

these two frequencies hw * Vi^11].!*],) ~ vo^\» rk^* w l i e r e ^ Rk» rk^» 

k - 1,2 are the two simultaneous turning points for energy E . 

A horizontal line at a given frequency then gives the two 

translational energies at which Franck-Condon maxima should appear 

for that laser frequency. 

For frequency hw = 6.2 eV, Figure 22 thus indicates that Franck-

Condon Htxima should appear at E - 0.15 eV and 0.19 eV, and from 

the Landau-Zener discussion it is clear that these are actually the 

energies at which the reaction probability has its sharp vertical 

rise at these energies. 

For the higher frequency, fito = 6.4 eV, Figure 22 indicates the 

two Franck-Condon energies to be E - 0.116 eV and 0.15 eV. The 

reaction probability for this frequency (dashed curve in Figure 21) 

does indeed show a sharp rise at E - 0.116 eV and also a 

broadened structure at E - 0.15 eV, but it is clear that this is 

a case for which the two Franck-Condon maxima have merged into a 

single broadened peak. 

It seems clear, therefore, that this Franck-Condon picture of 

the structure in the reaction probability is physically correct. 

Note however that quantum mechanically the lowest vibrational state 

is not peaked at the classical turning points so only one peak is 

expected. Recent quantum mechanical studies of this system have 

found a peak at the "outer" (that is "small r" vibrational turning 
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pointX These results are in qualitative agreement with the 
31 classical results. 

In the three-dimensional calculations the equations of motion 

become slightly more complicated. As in the collinear case JĴ , (x) 

is taken as a constant. However 

"oiV = "di"' = W' 0 < 4 a 4 ) 

# which is perpendicular to the plane of the three atom system. 

Therefore — r - , where x is the vector of coordinates of the 

particles, is no longer zero as in the collinear case but a 

function of the relative positions of the atoms. 

Besides this additional complication the calculation is carried 
13 out using standard quasi-classical trajectory methods (which 

have been described elsewhere) with the inclusion of the four 

equations of motion describing the laser field and electronic 

degree of freedom. 

It was found that the cross-sections for three-dimensional 

LiF + H on the ground state surface without the field were extremely 

small. The cross-section at one laser intensity and several laser 

frequencies is compared to that without the field in Figure 23. 

The threshold for reaction was lowered in all cases. There was no 

significant variation found with the polarization of the laser field. 

At most frequencies there were no low translational energy peaks and 

those that occurred were significantly reduced. This is due in 

part to the three-dimensional nature of the problem since the simple 
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vibrational/translational turning point structure is washed out by 

the rotation of the system. Also, the motion on the ground state 

is primarily repulsive for many of the approach parameters so the 

system cannot enter into a favorable region for excitation to the 

upper potential energy surface. 

D. Laser Inhibition of Chemical Reactions 

The model used in this calculation is very similar to that 
29 described by Light, et al._ The ground state surface was taken 

14 
to be the Karplus-Porter potential surface for H + H 2- The 

excited state was taken to be a LEPS surface for H + H 2 shifted 

upward by 0.5 eV but with the Sato parameter 6 as 0.20. The effect 

of this change is to lower the barrier to reaction and shift the 

reaction path slightly. As described in the previous section it is 

possible to predict for a given laser frequency the resonant 

translational energies, that is the translational energies where 

transitions to the excited potential energy come into resonance 

causing a peak in the reactive probability. Figure 24 shows the 

difference between the two potential energy surfaces at the 

vibrational/translational turning points for the system as a 

function of translational energy. To obtain the translational 

energies where the Franck-Condon like factors are favorable for 

transition to the upper surface, a horizontal line is drawn across 

the graph at the laser frequency. 

A quasi-classical calculation was carried out for this system 

as described in the previous section. In Figure 25 the probability 

of transition to the excited potential energy surface as a function 
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of translational energy is plotted for one laser field strength and 

a series of laser frequencies. Peaks occur at the predicted 

translational energies. 

So far only the effect of the laser on the reactive 

probability on the lower surface has been considered. It is also 

possible to study the effect of the laser on the reaction 

probability on the excited surface. At the laser frequencies 

and field strengths studied for LiF + H the effect was small, due 

to the large differences in the potential energy surfaces. However 

in this model the two potential energy surfaces are very similar 

so the region of favorable interaction overlaps considerably. In 

Figure 26 the reaction probability in the presence of the field 

at several laser frequencies is compared to that of the field-

free case. There is significant inhibition of reaction on the 

upper state potential energy surface. In Figure 27 this effect 

is illustrated as a function of field strengths. For even quite 

low field strengths (u #E = 0.001 eV) the effect is still pronounced. 

It is important to note that the largest probability for 

transition to the upper state potential energy surface from the 

lower surface occurs where a large inhibition of the reaction 

probability on the upper surface occurs. These two effects tend 

to cancel, resulting in the reaction probability on the lower 

surface shown in Figure 28- Quantum mechanically a similar effect 

occurs, however a residual peak is still seen at the positions 
31 marked in Figure 24. It is interesting to note that these again 

occur at the "small r" (outer) turning point. 
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E. Effect of Isotopic Substitution 

In this section results on the effect of isotopic 

substitution on the enhancement of chemical reactions via a 

collision induced absorption is discussed. The system studied 

is the same as that used in Section IX but with the hydrogen 

replaced with deuterium. All other parameters remained the 

same. In Figure 29 the results for LiF + D are compared to 

those of LiF + H for one laser frequency and field strength. 

As can be seen, the peak is shifted and narrowed. This suggests 

the interesting possibility that isotopic-specific enhancement 

may occur during a chemical reaction. 

F. Conclusion 

The purpose of this paper was to illustrate the use of a 

completely classical model to study the laser enhancement of 

chemical reactions via a collision induced absorption. Because 

calculations can be carried out within the standard quasi-classical 

framework, it was relatively easy to apply this model to a wide 

range of collinear and three-dimensional systems. When comparison 

was made to the available quantum mechanical results, they were 

found to be in qualitative agreement though the quantitative 
29 31 agreement was much worse. *• As will be illustrated by th? 

next chapter, the .classical model while correctly predicting 

positions of peaks, has .the heights of the peaks always too large. 

Therefore this method does as well (or as poorly) as do other 

quasiclassical studies of more conventional processes (such as 

vibrational or rotational excitation during a molecular collision). 



57 

However the quantum mechanical calculation can only be carried out on 

simple collinear systems. It is not possible (at present) to carry out 

quantum mechanical three-dimensional calculations on these systems, 

whereas the classical calculation is relatively simple to perform. 

The Franck-Condon structure in the cross section is certainly 

the most interesting feature revealed by the present calculations. 

The fact that a laser of frequency w will significantly enhance the 

reaction probability at a particular collision energy E. (more 

precisely, in a narrow range of collision energies) is an important 

point to be aware of: knowing how this Franck-Condon energy varies 

with to provides fairly direct information about the potential energy 

surfaces that are involved in the process, and in a molecular beam 

experiment, for example, the laser-induced effect will be largest when 

the collision energy is "tuned." to this Franck-Condon region. It is 

in predicting this Franck-Condon structure that the method is the most 

accurate. A simple calculation, even in regions where the classical 

probability is very small, can predict the Franck-Condon structure in 

the quantum mechanical reaction probabilities. 

The other interesting feature point0'? out in this chapter include 

isotopic selectivity in these Franck-Condon peaks a result reflected 
31 

in the quantum mechanical studies, as well as a strong laser 

inhibition of a chemical reaction. These effects seem to be quite 

general and are expected to be gran in other systems. The laser 

inhibition oi chemical reaction is of particular interest as the effect 

is still noticeable for small field strengths (of the order of mega

watts) and hence could be possibly seen experimentally in some systems. 
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V. RESONANCE EFFECTS IN ELECTRONIC-VIBRATIONAL ENERGY TRANSFER 

A. Introduction 

This final chapter illustrates another example of a completely 

classical model for all degrees of freedom of a collinear system. A 
37 i eries of papers over the last few years has developed and applied 

a classical model for treating electronically non-adiabatic processes 

in molecular collisions. The novel feature of this model is that 

electronic, as well as heavy particle (i.e., translation, rotation, 

and vibration), degrees of freedom are described by classical mechanics, 

and its attractiveness from a practical point of view is that calcu

lations can be carried out within the framework of standard Monte Carlo 
13 classical trajectory methodology. 

One of the motivations for developing this completely classical 
38 model was the realization that "mixed" dynamical models—i.e., those 

which characterize some degrees of freedom by classical mechanics and 

others by quantum mechanics—fail to describe some features of the 

dynamics correctly. The very popular and often successful surface-
39 hopping model, for example, which treats heavy particle motion 

classically but electronic degrees of freedom quantum mechanically 

(as states, i.e., distinct potential energy surfaces) is unable to 

describe resonance effects between electronic and heavy particle degrees 

of freedom. Such resonance effects are important in the quenching of 

excited fluorine atoms ( P. .„) by collision with H_ because the 

404 cm excitation energy of fluorine is roughly equal (within ^ 10%) 

to the energy of the 0 •+ 2 rotational excitation of H_. Similarly, 

Br ( P . / 9 ) is thought to be quenched efficiently by H, because 
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the vibra -±onal quantum of H 2 approximately matches the 3685 cm 
37 excitation energy of bromine. Since the classical model treats all 

degrees of freedom on the same dynamical footing, i.e., by classical 

mechanics, it has been reasoned that it should be able to describe 

these aspects of resonance energy transfer at least qualitatively 

correctly. To see how quantitative the model is, however, requires 

numerical applications., and such is the purpose of this chapter. 

Earlier calculations have shown that the classical model does 

indeed provide a reasonably good description of the resonance effect 

between electronic and rotational degrees of freedom in F-H,, collisions, 

F*( 2P 1 / 2) + H 2(j=0) •+ F ( 2 P 3 / 2 ) + H 2(j=2) ; (5.1) 

The cross section for this process is much larger at low collision 

energies than for quenching by a comparable rare gas atom that does 

not have rotational degrees of freedom. The present paper considers 

a simple model of electronic-vibrational energy transfer that would 

pertain, for example, to the quenching of Br by H_, 

Br*( 2P 1 / 2) + H 2(v=0) - B r ( 2 P 3 / 2 ) + H 2(v=l) . ,'5.2) 

The particular example we consider is the collinear version of such 
42 a system for which Lee, Lam, DeVries, and George have recently 

carried out quantum mechanical coupled channel calculations. Lee 

et al.'s calculations provide the exact results for this model 

problem, which can thus serve as a benchmark to see hou well the 

classical mode) is able to describe such non-adiabatic processes. 

Section B defines the system treated by Lee et al. and briefly 
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summarizes the classical model as it applies to this example. The 

results are discussed in Section C. 

B. The Classical Model 
42 Lee ejt a_l. consider a collinear atom-diatom collision, system, 

A + BC, with two potential energy surfaces, i.e., two electronic 

states, corresponding to ground and excited states of the atom A. 

The 2 x 2 diahatie interaction potential surface is 

V 0 ( )( R,r) V 0 1(R,r)\ /A 4_A 

V (R,r) V (R,r)/ \ </2 X 2X 
lu j.i. \ 3 3 

C 1) -cc(R - \ r-pn) \ \ , 0.3) 

where r is the vibrational coordinate of BC and R the translational 

coordinate, the distance of A to the center of mass of BC. It is 

useful to make a unitary transformation of this potential matrix to 

diagonalize the first term, the atomic part of the interaction that 

survives as R + ». The appropriate unitary transformation matrix is 

Z 7 1 /? /r 

and for the transformed potential matrix V , 
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V = U+'V-U , (5.5) 

one obtains 

/*00 f 0 l \ / " ° \ -a(R-|r- P ( ))/ 500 A 0 l \ 
(5.6) 

A o o " f A o + 5 A i ( 5 - 7 a ) 

A n = J A o + f A i < 5 - 7 b ) 

A o i = Aio - f < V V • ( 5 - 7 c > 

37 The classical model for the electronic degrees of freedom 
replaces the diabatic potential matrix V H ,(R,r), N,N' = 0,1 of 

Eq. (5.3) by a classical electronic Hamiltonian V(R,r,N,Q) which 

is defined in terms of the matrix elements by 

V(R,r,N,Q) = NVu(R,r) + (l-N)V0()(R,r) 

+ 2 VQ1(R,r) ̂ CN+fxf-N) cosQ . v (5.8) 

(N,Q) are the classical action-angle variables for che electronic 
degrees of freedom; i.e., N is the classical electronic quantum 
number. With Eq. (5.6) one notes that as R -»• » Eq. (5.8) becomes 

V(R-+o°,r,N,Q) = NX ; (5.9) 

thus N is a conserved quantity in the asymptotic region, with N=0 
corresponding to the ground electronic state of atom A (with energy 
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0) and N=l Co Che excited state A (with energy A). 

To obtain the classical Hamiltonian for the complete system one 

adds to V(R,r,N,Q) the potential energy for free vibrational motion 

of BC and the kinetic energy for vibration and translation, and with 

Eqs. (5.6) and (5.8) this gives 

2 2 H(P,R,p,r,N,Q) = 1 ^ + 1^ + 1 ™ 2 ( r - r 0 ) 2 

-aCR-yr- p ) 
+ NX + e U [d-N)A00 + N A U 

+ 2 A01%/(N+i)(J-N) cosQ] . (5.10) 

where m and y are Che reduced masses for BC vibracion and A-BC 

translation, respectively. To obtain the final form of the 

classical Hamiltonian one replaces the vibrational coordinate and 

momentum (r,p) by their action-angle variables (n,q), 

(5.11a) 

v/(2n+l)mu sinq , (5.11b) 

giving 

P 1 
H(P,R,n,q,N,Q) = 2jj + (n + j)u) + NX 

+ e x p { - a [ R - R 0 - i V ^ M S q ] } [(1-N)A 0 0 + N A n 

+ 2 A., / ( N + i ) ( | - ( 0 cosQJ . (5.12) 
"01 V " ' 2' *2 
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The results presented in the next section corresponds to 

implementation of the classical model within the framework of the 
13 21 standard quasiclassical histogram approach. Thus to compute 

the probability for the following vibration-to-electronic transition, 

A + BC(n-l) + A* + BC(n-O) , (5.13) 

one integrates Hamiltonian's equations (generated from the Hamiltonian 

of Eq. (5.12) with initial conditions 

n(t 1) " l E i i j 

N(t1) - O H j 

q(t1) = 2 ^ 

Q C t ^ = 27r£2 

Mtj) = large 

P(t 1) = - / 2 »,.,-(»! +j) -NjAj' • (5.14) 

where £. and £« are random numbers in (0,1) and E is the initial 

tran lational energy. The final values of n and N that correspond 

to Eq. (5.13) are n=0, N*=l, and the quasiclassical approximation to 

the probability of this transition is the fraction of trajectories 

with the above initial conditions that have their actual final values 

of n and N within a "box" of unit width about these values n=0, N=l. 

The parameters in the classical Hamiltonian, Eq. (5.12), which 
42 correspond to Lee et al.'s calculations are 

a - 0.02 a = 3 
R 0 - 4.7 A 0 Q - f x ID"5 
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m = 1000 ^11 = T" X 1 0 ~ 5 

P = 3896.1 A Q 1 = - ^ * 10~ 5 (5.15) 

These values, in atomic units, correspond roughly to the Br-H, system. 
A 

The parameter A, the A •*• A excitation energy, is varied in these 
model calculations to assess the significance of resonance in the 
electronic-vibrational energy transfer. Exact resonance, for 
example, corresponds to A = to = 0.02, so for very low translational 
energies, where resonance considerations are most important, one 
would expect the transition probability for Eq. (5.13) to be largest 
for X - 0.02. By varying A. one can see how prominent the resonance 
effect is and how well the classical model is able to describe it. 
C. Results and Discussion 

Figures 30-32 show the transition probability for Eq. (5.12) as 
a function of the atomic energy gap A for translational energies of 
0.01 eV, 0.035 eV, and 0.055 eV, respectively. The solid curves are 

42 the exact -juantum mechanical results computed by Lee et_ aJ ., and 
the broken curves the present results of the classical model. As 

expected, the resonance structures is sharpest at the lowest 
translational energy; i.e., in Figure 30 the transition probability 
peaks sharply at X = 0.02. At higher translational energy the 
resonance structure broadens and shifts. 

The significant point to note is that this classical model does 
describe the resonance features in this process reasonably well. 
The position and width of the resonance peak are described well 
over the entire energy range considered. Used in this primitive 
histogram mode, however, the classical results do have shortcomings: 
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the peak heights are too large (by a factor of two in the worst case> 

Figure 1) and the classical results do not describe the wings of the 

resonance l->'ne shape well. This latter failing is typical of all 

quasiclassical histogram treatments, namely the inability to describe 
21 weak (classically forbidden) processes. 

The encouraging note is that the quasiclassical results for this 

electronically inelastic process are no worse than typical quasi-

classj.cal results for rotationally and vibrationally inelastic 
43 processes. Thus the classical model for electronic degrees of 

freedom seems to do about as well (or as poorly, depending on one's 

point of view) in describing electronically inelastic processes as 

classical mechanics does for inelastic processes involving only 

heavy particle degrees of freedom. To the extent that this level 

of accuracy is sufficient one thus has a consistent dynamical model 

for treating both electronically non-adiabatic as well as adiabatic 

collision processes. 



Table I. Dependence of Threshold Lowering on Laser Frequency. 

A E t h < e V ) a 

* Laser 
Frequency 

(cm"1) 
H + H 2 F + H 2 H + HF CSL + K 2 H + HCJ, CI 

3-
+ H 2 
dimensional 

47 — — ~ 0.13 

H + HCJ, CI 
3-

— 
94 0.05 > 0.05 0.03 0.12 0.C4 0.07 

219 0.06 — — — — -
472 — 0.01 0.03 0.05 0.02 0.03 

519 0.09 — - — - — 
768 0.08 — — — - — 
944 0.07 0 0.02 0.01 0.01 0.01 

2195 0.01 — 

Amount by which the threshold cf the reaction is lowerad by a laser 

field of a power corresponding to fiw_ = 0.1 eV. 



Table II. LEPS Parameters for Potential Energy Surfaces. 

H-l 
, " 

HF 

D (kcal/mole) 140.5 

eCA" 1) 2.22 

r 0(A) 0.917 

A 0.150 

[-F H-H-CJt 
, , A _ 

HH HCH HH 

109.5 106.41 109.43 

1.94 1.87 1.94 

0.742 1.27 0.742 

0.080 0.187 0.167 



Table III. Parameters for the HX Dipole Moment Function. 

n 
/• 

it HF HC& 

0 2.35 - 236.95 

1 - 3.40 1151.69 

2 - 40.16 -2011.50 

3 112.15 1631.43 

4 - 87.97 - 635.97 

5 30.31 101.24 

a = 2.5 bohr"1. 
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Table IV. LEPS parameters for H + H. potential energy surface. 

De(kcal/raole) 109.5 

0(A _ 1) 1.542 

r 0(A) 0.7417 

A 0.1413 
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FIGU2E CAPTIONS 

Sketch of a one-dimensional potential energy barrier, x is the 

Reaction probability as a function of initial translational energy 

[as given by Eq. (2.13] for the one-dimensional model problem. 

(a) Sketch of the time dependence of the dipole moment of the 

H-H-H system along a reactive trajectory H + H, + H, + H. 

(b) Sketch of the absorption spectrum corresponding to the time-

dependent dipole in (a). 

Reaction probability for the collinear H + H, •* H, + H reaction 

as a function of initial translational energy, without the laser 

field ( ) and with it ( ) ; tin) = 944 cm and hio„ = 0.1 eV. 

Same as Figure 4 except for the reaction F + H ?(v=Q) + P + B; 
-1 tin) = 94 cm and hu = 0.1 eV. 

Same as Figure 4 except for the reaction H + HF(v=2) -*- H~ + F; 

hco = 94 cm and ha - 0.1 eV. 

Same as Figure 4 except for the reaction C£ + H,(v=0) + HCJt + H; 

hw = 94 cm" , and toR = 0.01 eV and 0.1 eV as labeled. 

Same as Figure 4 except for the reaction H + HM(v=0) •* H, + c£; 

hw = 94 c m - 1 . < " • ) . 472 cm" 1 ( ) , and toR = 0.1 eV. 

Reactive cross section for the three-dimensional reaction CH + H, •* 

HCJl f H a s a function of initial translational energy, without the 

laser < ) and with it ( ); I and (_ Indicate the cases of 

parallel and perpendicular polarization vector of the laser to 

the initial relative velocity vector, respectively, ft&j = 94 cm , 

hu - 0.1 eV. R 
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10. Correlation function C(At) for the one-dimensional barrier in 

the reactive (R, E. > 0) and non-reactive (NR, E, < 0) cases. 

11. Absorption spectrum corresponding to the correlation fun2tion in 

Figure 10. 

12. 'Joi^Dlation function for non-reactive trajectories of the collinear 

H + H 2 collision, 

13. Absorption spectrum corresponding to the correlation function in 

Figure 12. 

14. Correlation function for reactive trajectories of the collinear 

H + H« collision. 

15. Absorption spectrum corresponding to the correlation function in 

Figure 14. 

16. Correlation function for the modified H + H 2 potential surface. 

17. Absorption spectrum corresponding to the correlation function in 

Figure 16. 

18. Sketch of the potential energy along the reaction coordinate s 

for the two electronic potential energy surfaces for the system 

H + LiF •»• HF + Li. E denotes the initial transitional energy 

and to the frequency of the laser. 

19. Sketch of the qualitative dependence of the total react in 

probability on initial translational energy E . 

20. Total reaction probability for H + LiF *> HF + Li as a function of 

the initial translational energy Ej. r, from a quasi-classical 

trajectory calculation. LiF is initially in its ground vibrational 

state. The dotted curve is the laser-free result. The other two 

curves are for a laser frequency hw * 6.2 eV, the laser power 

being such that P n,E n - 0.01 eV (solid curve) and 0.008 eV 



(dashed curve). 

21. Total reaction probability as in Figure 20. The dotted curve 

is the laser-free result as in Figure 20. The other two curves 

are for a laser power such that Prt-iEn = 0.01 eV and a frequency 

hoi - 6.2 eV (solid curve) and hcu = 6.4 (dahsed curve). 

22. Shown are the two Franck-Condon frequencies hoi = V. (R, ,r ) -

V (R^,r ) , where (R^.r ) , k = 1,2, are the two simultaneous 

translation-vibration turning points on the ground state poten

tial surface, as a function of the initial translational energy 

E . The intersection of the dashed line at frequency hoj = 6.4 eV 

with the two curves gives the two translation energies at which 

Franck-Condon maxima should appear for that laser frequency, 

and similarly for frequency hto = 6.2 eV. 
2 

23. Total cross-section (a. ) for three-dimensional H + LiF *+• HF + Li 

as a function of the initial translaticnal energy E , from a 

quasi-classical trajectory calculations. LiF is initially in its 

ground vibrational-rotational state. The dotted curve is the 

laser-free result. The other two curves are for a laser power 

such that U n i E n = 0.01 eV and a frequency hto = 6.5 eV (solid 

curve) and 6.2 eV (dashed curve). 

24. Shown are the Franck-Condon frequencies AV = V.. (R.,rk) - v
0 ( R

k > r
k ) 

where (R. ,r,), k = 1,2 are the. two simultaneous translation-

vibration turning points on the ground state potential surface, 

as a function of the initial translational energy, E , for the 

model system with H + H« parameters. The position of peaks in 

the quantum mechanical probability for U 0 1
E

0 =0.01 are marked 

by crosses. 



75 

25. The probability for transition to the upper state potential 
surface for the model H + H„ system as a function of the 
initial translational energy E , from a quasi-classical 
trajectory calculation. H, is initially in its ground vibrational 
state. The curves are for a laser power such that VU-.E- = 
0.01 eV and a frequency hid = 0.017 a Q (solid curve), 0.0165 a n 

(dashed cui/e) and 0.016 a- (dash-dot curve). 
26. Total reaction probability on the upper state surface for the 

model H + H2 system as a function of initial translational 
energy, E > from a quasi-classical calculation. H„ is initially 
in its ground vibrational state. The dotted curve is the laser-
free result. The curves are for a laser power such that IJ E_ = 
0.01 eV and frequency iiw ~ 0.017 a_ (solid curve), 0.0165 a„ 
(dashed curve) and 0.016 a_ (dot-dash curve). 

27. Total reaction probability as in Figure 26. The dotted curvj 
is the laser-free result as in Figure 26. The las^r frequency 
is h<o = 0.017 a. and the laser field strength is such that 

VQ1E0 = °' 0 1 e V ( s o l i d c u r v e ) > 0.005 eV (dashed curve) and 0.001 
eV (dash-dot curve). 

28. Total reaction probability on the state surface for the model 
H + H- system as a function of initial translational energy, 
E s from a quasi-classical calculation. H ? is initially in. 
its ground vibrational state. The dotted curve is the laser-
free result. The curves are for a laser power such that P n i E n = 
0.01 eV and frequency I«o = 0.017 a_ (solid curve), 0.0165 a n 

(dashed curve) and 0.016 3Q (dash-dot curve). 
29. Total reaction probability for collinear LiF + K ->• HF + Li 
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(solid curve) and collinear LiF + D •*• DF + Li (dashed curve) as 

a function of initial translational energy, E , from a quasi-

classical calculation. LiF is initially in its ground vibrational 

state. The cm .res are for a laser power such that VUi En * 

0.01 eV and a laser frequency hoi - 6.2 eV. 

30. Transition probability for Eq. (2.11) as a function of the atomic 

excitation energy \, for an initial translational energy E = 

0.01 eV. The solid curve is the exact quantum result of Lee et al. 

(reference 42) and the broken curve the results of the present 

classical model; the error bar is the usual Monte Carlo error 

estimate. 

31. Same as Figure 30 except E = 0.035 eV. 

32. Same as Figure 30 except E = 0.055 eV. 
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