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ABSTRACT OF THE DISSERTATION

Fundamental Limits of Robust Interference Management

By

Junge Wang

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2022

Professor Syed Jafar, Chair

Generalized degrees of freedom (GDoF) analysis of wireless networks has contributed signif-

icantly to recent advances in the fundamental understanding of their capacity. A variety of

schemes have been developed that are GDoF-optimal under the assumption that the Chan-

nel State Information at Transmitter(s) (CSIT) is perfect. However, these schemes become

fragile in practice because channel uncertainty is unavoidable. Motivated by the need to

understand the robust information-theoretic limits of wireless networks, we explore three

settings under the assumption that the CSIT is limited to finite precision, and present their

GDoF characterization.

First, the optimality of Treating Interference as Noise (TIN) for K-user Interference Channel

under finite precision CSIT is investigated. TIN is found to be GDoF optimal by Geng et

al. in a parameter regime called the ”TIN regime” under perfect CSIT. Our result shows

that TIN is GDoF optimal in a much larger regime, called the CTIN regime, under finite

precision CSIT.

Next, the GDoF of the two-user interference channel are characterized for all parameter

regimes under finite precision CSIT, when a limited amount of (half-duplex or full-duplex)

cooperation is allowed between the transmitters. In all cases, the number of over-the-air bits

that each cooperation bit buys is shown to be equal to either 0, 1, 1/2 or 1/3. The most

ix



interesting aspect of the result is the 1/3 slope, which appears only under finite precision

CSIT and strong interference, and as such has not been encountered in previous studies that

invariably assumed perfect CSIT.

Finally, we explore the multi-hop interference channel. We consider the sum-GDoF of the

symmetric multi-hop interference channel under finite precision CSIT. The sum-GDoF value

is first characterized for the 2× 2× 2 setting that is comprised of 2 sources, 2 relays, and 2

destinations. The result is then generalized to the 2× 2× · · · × 2 setting that is comprised

of L hops. Remarkably, for large L, the sum-GDoF value approaches that of the one-hop

broadcast channel that is obtained by full cooperation among the two transmitters of the

last hop, under finite precision CSIT. Under finite precision CSIT, a combination of classical

random coding schemes that are simpler and much more robust, namely a rate-splitting

between decode-and-forward and amplify-and-forward, is shown to be GDoF optimal.
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Chapter 1

Introduction

1.1 Background

Information theory studies the fundamental limits of communication. The central question

is: what is maximum data rate of reliable communication? Channel capacity introduced by

Shannon is the answer to this question: for all communication rates above the capacity it

is impossible to have reliable communication, while all rates below are indeed achievable.

The capacity of the point-to-point channel is found to be the mutual information between

the input and output. For the mostly studied channel setting, i.e., Additive White Gaussian

Noise (AWGN) Channel, the capacity is C = 1
2

log(1+SNR) in the unit of bits/channel use.

The study of capacity is extended to multi-terminal networks, which are the focus of network

information theory. The capacity of multi-terminal wireless networks remains generally open,

except in very few cases such as multiple access channel and the Gaussian broadcast channel.

Some of the most powerful ideas for the multi-terminal wireless networks that have come

out of information-theoretic studies, e.g., dirty paper coding and interference alignment,

have had very little practical impact so far in wireless networks. This is at least partially

1



because of the critical assumption of perfect channel knowledge at transmitters. Because

channel uncertainty is unavoidable in practice, and fine aspects of structured codes are

inherently combinatorial, perfect CSIT settings are not only theoretically intractable but also

too optimistic to be practically useful. On the other hand, we have robust schemes that do

not rely on fine channel structure. We will refer them as random coding schemes, for example,

Rate-splitting, TIN, superposition coding and successive decoding. Optimal rates achieved

by these schemes often have closed-form (single-letter) characterizations. These schemes are

more tolerant of channel uncertainty. This motivates us to study the fundamental limits

under channel uncertainty and to see if these random coding schemes are optimal under

channel uncertainty.

Since exact capacity is intractable, the focus has been on capacity approximation through

asymptotic (high SNR) analysis. Most relevant to our purpose are the two metrics: the

degrees of freedom (DoF) and generalized degrees of freedom (GDoF). The DoF metric

relies on the asymptotic proportional scaling of the transmitted powers, while GDoF metric

relies on asymptotic proportional scaling of the link capacities.

To characterize the fundamental limits, it is required to prove two parts: the achievable

scheme, which stands for the inner bound, and the converse, which stands for the outer

bound. In the perfect CSIT setting, the achievability part is much more challenging because it

requires the study of structured codes like interference alignment schemes, while the converse

part is relatively straightforward. However, in the robust setting when the CSIT is available

with finite precision, the achievable scheme is relatively straightforward because we may

only require the random codes. The converse proof becomes challenging and the recently

developed aligned images bounds [16, 17, 21, 20] are necessary.

In this dissertation, we will present the GDoF characterization for three channel settings with

finite precision CSIT assumptions: the optimality of TIN for K-user interference channel,

two user interference channel with limited cooperation and multi-hop Interference channel.

2



The aligned images bounds are essential to our converse proof. The corresponding achievable

coding schemes that match the converse bound are given for the three settings.

1.2 Overview of the Dissertation

In Chapter 2, we characterize the optimality regime of Treating Interference as Noise for

K-user Interference Channel under finite precision CSIT setting in the GDoF sense. The

optimality regime is found to be the Convex TIN regime, which is larger than the TIN

regime [28] under perfect CSIT setting. The aligned images set bounds [17] are essential in

the derivations.

In chapter 3, the GDoF of 2 user Interference Channel with limited transmitter cooperation

for all parameter regimes under finite precision CSIT is studied. In all cases, the number of

over-the-air bits that each cooperation bit buys is shown to be equal to either 0, 1, 1/2 or

1/3. The most interesting aspect of the result is the 1/3 slope, which appears only under

finite precision CSIT and strong interference and was never encountered in previous studies

under perfect CSIT. Indeed, the converse relies on non-trivial applications of Aligned Images

bounds. The result is also extended to the 2-user X channel setting.

In chapter 4, we explore the sum-GDoF of the symmetric layered multi-hop interference

channel under finite precision CSIT setting. The sum-GDoF value is first characterized for

the 2 × 2 × 2 channel. It is shown that the sum-GDoF does not improve even if perfect

CSIT is allowed in the first hop, as long as the CSIT in the second hop is limited to finite

precision. The sum-GDoF characterization is then generalized to the 2× 2× · · · × 2 setting

that is comprised of L hops. In terms of optimal solutions, under finite precision CSIT we

found that ideas such as Interference Neutralization [11, 61, 47, 38, 59], Aligned Interference

Neutralization [34, 64, 33] and Network Diagonalization [58] are too fragile to retain their

3



GDoF benefits, and instead rate-splitting solutions that combine amplify-and-forward and

decode-and-forward principles, along with careful layering (superposition) of messages that

allows each successive stage of relays to acquire more common information, are sum-GDoF

optimal.

1.3 Notations and Abbreviations

The notation (x)+ represents max(x, 0). For integers i, j, the notation [i : j] represents

the set {i, i + 1, · · · , j} if i ≤ j and the empty set otherwise. X [N ] denotes the sequence

{X(1), X(2), · · · , X(N)}. f(x) = o(g(x)) denotes that lim supx→∞
|f(x)|
|g(x)| = 0. Define bxc as

the largest integer that is smaller than or equal to x when x is non-negative, and the smallest

integer that is larger than or equal to x when x is negative.

The following table lists the abbreviations used in this dissertation.

4



Table 1.1: Table of abbreviations

DoF Degrees of Freedom
GDoF Generalized Degrees of Freedom
SNR Signal to Noise Ratio
SINR Signal to Interference and Noise Ratio
MISO Multiple Input Single Output
CSIT Channel State Information at Transmitters
CSIR Channel State Information at Receivers

IC Interference Channel
BC Broadcast Channel
AIS Aligned Images Set
TIN Treating Interference as Noise

CTIN Convex Treating Interference as Noise
AWGN Additive White Gaussian Noise
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Chapter 2

Optimality of Treating Interference as

Noise under Finite Precision CSIT

Under finite precision CSIT setting, the optimal condition of treating interference as noise

is found. Specifically, it is shown that the TIN is optimal in the CTIN regime under finite

precision CSIT.

2.1 Introduction

Treating interference as noise is very attractive from both practical and theoretical perspective[28,

26, 25, 29, 27, 69]. Practically, TIN is very simple to implement and robust to the chan-

nel uncertainty. It only requires coarse knowledge of signal to interference and noise power

ratio (SINR) at the transmitters. In the TIN scheme, each transmitter chooses the power

control value and each receiver decodes its desired message by treating all other interference

as noise. Theoretically, [49, 57, 2] found that in the noisy interference regime, Treating in-

terference as noise achieves the sum capacity of the interference channel. For multiple input
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multiple-output (MIMO) Gaussian interference channels, the extension of the noisy interfer-

ence regime is found in [3]. Later, a surprising result in [28] shows that the simple scheme of

TIN is GDoF optimal in the weak interference regime even with perfect CSIT. The result has

been extended to the compound channel setting [26], multiple messages set [29] and security

setting [25]. These results characterize the optimality of TIN under perfect CSIT setting.

However, the assumption of perfect CSIT is too optimistic to be hold in practice. Thus, in

this chapter we would like to characterize the optimality of TIN in the robust sense, i.e.,

under finite precision CSIT setting. Our new result shows that under finite precision CSIT,

TIN is GDoF optimal in the larger regime called CTIN regime. Therefore, the advantages

of the clever schemes (IA) disappear in this regime. Notably, TIN is not optimal in this new

regime if CSIT is perfect.

2.2 Problem Statements

For GDoF studies, the K user interference channel is modeled as [16, 17]

Yk(t) =
K∑
i=1

P̄αkiGki(t)Xi(t) + Zk(t), ∀k ∈ [K]. (2.1)

During the tth channel use, Xi(t), Yk(t), Zk(t) ∈ C are, respectively, the symbol transmitted

by Transmitter i subject to a normalized unit transmit power constraint, the symbol received

by User k, and the zero mean unit variance additive white Gaussian noise (AWGN) at

User k. P̄ ,
√
P , is a nominal parameter that approaches infinity to define the GDoF

limit. The exponent αki ≥ 0 is referred to as the channel strength of the link between

Transmitter i and Receiver k, and is known to all transmitters and receivers. The channel

coefficients Gki(t) are known perfectly to the receivers but only available to finite precision at

the transmitters. The finite precision CSIT assumption implies that from the transmitter’s

perspective, the joint and conditional probability density functions of the channel coefficients
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exist and the peak values of these distributions are bounded, i.e., they do not grow with P .

Note that the transmitters know the distributions but not the actual realizations of Gki(t),

therefore the transmitted symbols Xi(t) are independent of the realizations of Gki(t). In

the K user IC, there are K independent messages, one for each user, and each message is

independently encoded by its corresponding transmitter. The definitions of achievable rate

tuples and capacity region, CIC(P ) are standard, see e.g., [16]. The GDoF region of the K

user interference channel is defined as

DIC =

(dk)k∈[K]

∣∣∣∣∣∣∣
dk = limP→∞

Rk(P )
log(P )

,

(Rk(P ))k∈[K] ∈ CIC(P )

 . (2.2)

The maximum sum-GDoF value is denoted DΣ,IC. As shown in [16] the GDoF of the channel

model in (2.1) are bounded above by the GDoF of the corresponding deterministic model

with inputs X̄k(t) and outputs Ȳk(t), defined as

Ȳk(t) =
K∑
i=1

⌊
P̄αki−αmax,iGki(t)X̄i(t)

⌋
, (2.3)

where X̄i(t) = X̄R
i (t) + jX̄I

i (t) with X̄R
i (t), X̄I

i (t) ∈ {0, 1, 2, · · · , dP̄αmax,ie}, and αmax,i =

maxj∈[K] αji. For all the parameter regimes considered in this work, αmax,i = αii. The

assumptions regarding channel coefficients Gki(t), channel knowledge at transmitters and

receivers, and definitions of messages, codebooks, achievable rates, and GDoF are the same

as before. Let us also recall a very useful bound for our current purpose, a special case of

Lemma 1 in [17].
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Lemma 2.1 (Lemma 1 in [17]).

H

( K∑
i=1

bP̄ λi−αmax,iGki(t)X̄i(t)c

)[1:T ]
∣∣∣∣∣∣G,WS


−H

( K∑
i=1

bP̄ νi−αmax,iGk′i(t)X̄i(t)c

)[1:T ]
∣∣∣∣∣∣G,WS


≤ max

i∈[K]
(λi − νi)+T log(P ) + T o(log(P )), (2.4)

where H(Z) is the entropy of Z, the notation (A(t))[1:T ] stands for (A(1), A(2), · · · , A(T )), G

is a random vector containing the values of all channel coefficients Gki(t), Gk′i(t) for k, k′, i ∈

[K], t ∈ [1 : T ], the constants λi, νi are arbitrary values between 0 and αmax,i, the set S ⊂

[K] is an arbitrary (possibly empty) subset of users, say S = {i1, i2, · · · , iM}, and WS =

(Wi1 ,Wi2 , · · · ,WiM ) is comprised of the corresponding users’ desired messages.

The significance of Lemma 2.1 may be intuitively understood as follows. Suppose there

are K transmitters, transmitting symbols X̄i(t), i ∈ [K], independent of the realizations

of the bounded density channel coefficients Gki(t), Gk′i(t), for all i, k, k′ ∈ [K], t ∈ [1 : T ],

and the transmitted symbols X̄i(t) can be heard at two receivers, k and k′ with power

levels up to λi and νi respectively. Then the maximum difference of entropies in the GDoF

sense, that can exist between the signals received at the two receivers is no more than the

maximum of the difference of the corresponding values of λi and νi (or zero if the maximum

difference is negative). In other words, the greatest difference in the GDoF sense that

can be created between the entropies of received signals at two receivers can be achieved

by simply transmitting from only one antenna, which is the antenna that experiences the

largest difference of channel strengths between the two receivers.

The GDoF model is essentially a generalization of the deterministic model of [5]. The

significance of the GDoF model may be intuitively understood as follows. The channel
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strength parameters represent the arbitrary and finite values of corresponding link SNRs

and INRs in dB scale for a given network setting, i.e., αii = log(SNRii) and αij = log(INRij)

(see, for example [28] for a more detailed explanation). Note that αii and αij may also be

understood to be the approximate capacities of the corresponding links in isolation. Unlike

the degrees of freedom (DoF) metric which proportionately scales all the transmit powers,

the GDoF model proportionately scales all the link capacities. The exponential scaling of

powers in the GDoF model corresponds to a linear scaling of all of the corresponding link

capacities by the same factor, and this factor is log(P ) (note that the isolated link with

signal strength Pαij has capacity ≈ αij log(P ), thus the scaling factor is log(P )). The linear

scaling of powers in the DoF model causes the ratios of capacities of any two non-zero links

to approach 1 as P → ∞. Thus, a very weak channel and a very strong channel become

essentially equally strong in the DoF limit, thereby fundamentally changing the character of

the original network of interest. The GDoF model on the other hand keeps the ratios of all

capacities unchanged as P →∞, so that strong channels remain strong, and weak channels

remain weak. The intuition behind GDoF is that if the capacities of all the individual links

in a network are scaled by the same factor, then the overall network capacity region should

scale by approximately the same factor as well — essentially a principle of scale invariance.1

If so, then normalizing by the scaling factor log(P ) should produce an approximation to the

capacity region of the original finite SNR network setting. This is precisely how GDoF are

measured, note the normalization by log(P ) in (2.2). Indeed, the validity of this intuition

is borne out by numerous bounded-gap capacity approximations that have been enabled

by GDoF characterizations (e.g., [62, 32, 55, 41, 6]), starting with the original result – the

capacity characterization of the 2 user interference channel within a 1 bit gap in [24].

1While the scaling of P may be interpreted as a physical scaling of transmit powers in the DoF metric
(which unfortunately changes the character of the given network), P does not have the same interpretation
of physical transmit power in GDoF. Instead, in the GDoF setting, P is just a nominal parameter, such that
each value of P identifies a new network according to (2.1). These distinct networks are lumped together
by the GDoF metric based on the intuition that comes from the principle of scale invariance, i.e., when
normalized by log(P ) all of these networks should have approximately the same capacity region (see also the
discussion in [40]).
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Asymptotic analysis under perfect CSIT often leads to fragile schemes that are difficult to

translate into practice, for example the DoF of the K user interference channel have been

shown in [23, 48] to depend on whether the channels take rational or irrational values – a

distinction of no practical significance. Zero forcing schemes that rely on precise channel

phase knowledge to cancel signals can fail catastrophically due to relatively small phase per-

turbations. Robust schemes are much more valuable in practice. Restricting the CSIT to

finite precision naturally shifts the focus to robust schemes that rely primarily on a coarse

knowledge of channel strengths at the transmitters. While the finite precision CSIT model

[44, 16] allows arbitrary fading distributions subject to bounded densities, it is instructive to

consider in particular the model Gki(t) = gRki(t) + jgIki(t) where gRki(t), g
I
ki(t) are independent

and uniformly distributed over (1− ε, 1 + ε) for some arbitrarily small but positive ε. Inter-

preted this way, Gki(t) are seen as arbitrarily small perturbations in the channel state that

serve primarily to limit CSIT in the channel model to ε-precision, while the coarse knowledge

of channel strengths remains available to the transmitters in the form of the parameters αij.

From a GDoF perspective, these perturbations filter out fragile schemes that rely on highly

precise CSIT. Indeed, the GDoF benefits of most sophisticated interference alignment and

zero forcing schemes disappear under finite precision CSIT [16]. However, the benefits of

robust schemes that rely only on the knowledge of channel strengths, such as rate-splitting

[14], elevated multiplexing [71], layered superposition coding [15, 5], and treating interference

as noise [1, 57, 49, 28] remain accessible. Thus, GDoF characterizations under finite preci-

sion CSIT provide approximately optimal solutions for power control, rate-splitting, layered

superposition based schemes that are quite robust in practice. The approximately optimal

solutions serve as good initialization points for finer numerical optimizations needed at fi-

nite SNR, and inspire approximately optimal resource allocation schemes such as ITLinQ

[50] and ITLinQ+ [68]. As such GDoF characterizations under finite precision CSIT are

tremendously useful in bringing theory closer to practice.
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2.3 Definitions

Definition 2.1 (TIN Regime). Define

ATIN =

 [α]K×K

∈ RK×K
+

∣∣∣∣∣∣∣
αii ≥ αil + αmi,

∀i, l,m ∈ [K], i /∈ {l,m}

 . (2.5)

The significance of the TIN regime is that in this regime, it was shown by Geng et al. in

[28] that TIN is GDoF-optimal.

Definition 2.2 (CTIN Regime). Define

ACTIN =


[α]K×K

∈ RK×K
+

∣∣∣∣∣∣∣∣∣∣
αii ≥ max

 αij + αji,

αik + αji − αjk

 ,

∀i, j, k ∈ [K], i /∈ {j, k}

 . (2.6)

The significance of the CTIN regime is that in this regime, it was shown by Yi and Caire in

[69] that the GDoF region achievable with TIN (also known as DTINA, see Definition 2.7), is

convex, without the need for time-sharing, and equal to the polyhedral TIN region over the

set of all K users. The optimal GDoF region was heretofore unknown in the CTIN regime for

the K user interference channel, both under perfect CSIT and under finite precision CSIT.

In this chapter we settle the GDoF region in the CTIN regime under finite precision CSIT,

and show that it is achieved by TIN.

Let us show that the CTIN parameter regime is significantly larger than the TIN parameter

regime through the example illustrated in Fig. 2.1. This is a 3 user cyclic symmetric

interference channel parameterized by channel strengths a, b. We can easily see from the

right figure that TIN regime is included in the CTIN regime. If a = 1/3, b = 2/3, the

network is inside the CTIN regime but outside the TIN regime. we could easily get that TIN
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Figure 2.1: For the 3 user symmetric setting shown here, the TIN regime is marked by the slanted
line pattern, the CTIN regime includes the TIN regime and the region shaded in dark gray, and the
SLS regime includes the CTIN regime and the region shaded in light gray.

can achieve sum-GDoF equal to 1. However, interference alignment achieves 1.5 sum-GDoF

under perfect CSIT. Thus, TIN is not GDoF optimal in the CTIN regime under perfect

CSIT. We will show that TIN is GDoF optimal in the CTIN regime under finite precision

CSIT, in other words, the sum-GDoF value for the example is 1 when a = 1/3, b = 2/3

under finite precision CSIT.

Definition 2.3 (Cycle π). A cycle π of length M > 1 denoted as

π = (i1 → i2 → · · · → iM ) (2.7)

is an ordered collection of links in the K ×K interference network, that includes the desired

link between Transmitter im and Receiver im, and the interfering link between Transmit-

ter im and Receiver im+1, for all m ∈ [1 : M ], where we set iM+1 = i1, and the indices

i1, i2, · · · , iM ∈ [K] are all distinct.

Definition 2.4 (δij). For i, j ∈ [K], define

δij =

 αii − αji, i 6= j,

0, i = j.
(2.8)
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Definition 2.5 (∆π). For any cycle π of length M , π = (i1 → i2 → · · · → iM ), define

∆π =


δi1i2 + δi2i3 + · · ·+ δiM−1iM + δiM i1 , if M > 1,

αi1i1 , if M = 1.

(2.9)

Definition 2.6 (DP-TIN(S)). For any subset of users, S ⊂ [K], the polyhedral-TIN region

[28] is defined as

DP-TIN(S) =


(dk : k ∈ [K])

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 = dk, ∀k ∈ [K]\S,

0 ≤ dk, ∀k ∈ S,∑
k∈{π} dk ≤ ∆π,

∀π ∈ Π, {π} ⊂ S


. (2.10)

The bounds,
∑

k∈{π} dk ≤ ∆π, are called cycle-bounds. Note that these are not bounds on the

general GDoF region, rather these are only bounds on the polyhedral TIN region for a given

subset S. The sum-GDoF value of polyhedral-TIN over the set S is defined as

DΣ,P-TIN(S) = max
DP-TIN(S)

∑
k∈S

dk. (2.11)

If S = [K], then we will simply write DΣ,P-TIN([K]) = DΣ,P-TIN.

A remarkable fact about the polyhedral TIN region is that even if S1 ⊂ S2, it is possible

that the polyhedral region for S1 is strictly larger than the polyhedral region for S2. See the

simple example at the end of this section.

Definition 2.7 (DTINA). The TINA region [28, 69] is defined as

DTINA =
⋃

S:S⊂[K]

DP-TIN(S). (2.12)
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The sum-GDoF over the TINA region are defined as

DΣ,TINA = max
DTINA

∑
k∈[K]

dk. (2.13)

Thus the TINA region is a union of polyhedral TIN regions. In general this union does not

produce a convex region.

2.4 Results

Our result settles the GDoF of the K user interference channel in the CTIN regime. Note

that all our result is under the assumption of finite precision CSIT.

Theorem 2.1. In the CTIN regime, TIN is GDoF optimal for the K user interference

channel.

[α]K×K ∈ ACTIN ⇒ DIC = DTINA. (2.14)

2.5 Proof

The proof for Theorem 2.1 is as follows: Consider any subset of M > 1 users, S ⊂ [K],

|S| = M , and let π be a cycle of length M , involving these M users. We will prove that

the corresponding cycle bound is a valid information theoretic GDoF bound. Since we are

proving an outer bound for an interference channel, without loss of generality, let us eliminate

all users other than these M users. This cannot hurt the M users that remain. Now, for each

of the users π(m),m ∈ [M ], let us apply Fano’s inequality within the deterministic model of

the K user interference channel as follows. As usual o(log(P )) terms that are inconsequential
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for GDoF are ignored for cleaner notation.

TRπ(m)

≤I((X̄π(m)(t))
[1:T ]; (Ȳπ(m))

[1:T ] | G)

=H((Ȳπ(m))
[1:T ] | G)−H((Ȳπ(m))

[1:T ] | G, (X̄π(m)(t))
[1:T ]). (2.15)

Adding these inequalities for all M users,

T
M∑
m=1

Rπ(m)

≤
M∑
m=1

 H((Ȳπ(m))
[1:T ] | G)

−H((Ȳπ(m))
[1:T ] | G, (X̄π(m)(t))

[1:T ])

 (2.16)

=
M∑
m=1

 H((Ȳπ(m))
[1:T ] | G)

−H((Ȳπ(m+1))
[1:T ] | G, (X̄π(m+1)(t))

[1:T ])

 (2.17)

=
M∑
m=1

(
Hg


 απ(m)π(1), απ(m)π(2), · · · ,

απ(m)π(m+1), · · · , απ(m)π(M)




−Hg


 απ(m+1)π(1), απ(m+1)π(2), · · · ,

((((((((απ(m+1)π(m+1)︸ ︷︷ ︸
replace with 0

, · · · , απ(m+1)π(M)


) (2.18)

≤
M∑
m=1

max
(

max
`∈[M ],` 6=m+1

(
απ(m)π(`) − απ(m+1)π(`)

)+
,

απ(m)π(m+1)

)
T log(P ) (2.19)

≤
M∑
m=1

(
απ(m)π(m) − απ(m+1)π(m)

)
T log(P ) (2.20)

=
M∑
m=1

δπ(m)π(m+1)T log(P ) (2.21)

= ∆πT log(P ). (2.22)
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Thus, in the GDoF limit we have the bound,

M∑
m=1

dπ(m) ≤ ∆π. (2.23)

Recall that for a cycle of length M the user indices are modulo M , i.e., π(M + 1) = π(1).

In (2.18) we used the fact that the contribution to Ȳπ(m+1) from X̄π(m+1) can be subtracted

due to the conditioning on X̄π(m+1), after which the conditioning on X̄π(m+1) can be dropped

because in an interference channel the inputs from different transmitters are independent of

each other, i.e., X̄π(m+1) is independent of all remaining inputs X̄π(j), j ∈ [M ], j 6= m + 1.

Removing X̄π(m+1) from Ȳπ(m+1) is equivalent to replacing the channel strength απ(m+1)π(m+1)

with zero. In (2.19) we used the result of Lemma 2.1. In (2.20) we used the definition of the

CTIN regime, which implies that,

απ(m)π(m) + απ(m+1)π(`) ≥ απ(m+1)π(m) + απ(m)π(`), (2.24)

απ(m)π(m) ≥ απ(m+1)π(m) + απ(m)π(m+1). (2.25)

Finally, it is trivial that for cycles of length M = 1, the cycle bound is also an information

theoretic GDoF bound. Thus, we have shown that in the CTIN regime, under finite precision

CSIT, for every cycle π in the K user interference channel the cycle bound is an information

theoretic GDoF bound. The region described by these bounds is the polyhedral TIN region

DP-TIN([K]). Therefore, DIC ⊂ DP-TIN([K]). However, DP-TIN([K]) ⊂ DTINA, and DTINA ⊂ DIC.

Therefore, the TIN achievable region must be the optimal GDoF region, DTINA = DIC. �

2.6 Summary

The optimality of TIN is studied in this chapter for K-user Interference channel. Through

Aligned Images sets it is proved that TIN is optimal in the CTIN regime under finite precision
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CSIT, which is larger than the optimal TIN regime under perfect CSIT.
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Chapter 3

Sum-GDoF of 2-user Interference

Channel with Limited Cooperation

under Finite Precision CSIT

In this chapter, the GDoF of the two user interference channel are characterized for all

parameter regimes under the assumption of finite precision CSIT, when a limited amount of

(half-duplex or full-duplex) cooperation is allowed between the transmitters in the form of π

DoF of shared messages. In all cases, the number of over-the-air bits that each cooperation bit

buys is shown to be equal to either 0, 1, 1/2 or 1/3. The most interesting aspect of the result

is the 1/3 slope, which appears only under finite precision CSIT and strong interference,

and as such has not been encountered in previous studies that invariably assumed perfect

CSIT. Indeed, the achievability and converse for the parameter regimes with 1/3 slope are

the most challenging aspects of this work. In particular, the converse relies on non-trivial

applications of Aligned Images bounds.
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3.1 Introduction

As distributed computing applications become increasingly practical there is renewed interest

in fundamental limits of cooperative communication in robust settings. Partially overlapping

message sets naturally arise as computing tasks are distributed with some redundancy, e.g.,

to account for straggling nodes and adverse channel conditions [70, 51, 45, 42]. Studies of

cellular communication with limited backhaul [56], unreliable cooperating links [37], and

variable delay constrained messages [54] lead to similar scenarios as well. An elementary

model for information theoretic analysis of such settings is an interference network with a

limited amount of shared messages between the transmitters. While the body of literature on

information theoretic benefits of cooperative communication is too vast to survey here (e.g.,

see [60]), it is notable that robust settings with finite precision CSIT remain underexplored,

especially with limited cooperative capacities. Most closely related to this work are degrees

of freedom (DoF) and generalized degrees of freedom (GDoF) studies in [43, 16, 21, 12, 18,

24, 65]. Connections to these prior works are explained in the remainder of this section.

Since exact capacity limits tend to be intractable, DoF and GDoF studies have emerged as an

alternative path to progress for understanding the fundamental limits of wireless networks.

Both metrics rely on an asymptotic scaling of signal strengths, which de-emphasizes the role

of additive noise and allows these metrics to focus on the interference aspects. However,

there is a fundamental distinction between these two metrics. While the DoF metric propor-

tionately scales all transmit powers to infinity, the GDoF metric proportionately scales all

link capacities to infinity. Since link capacities are essentially logarithmic functions of signal

powers, the linear scaling of capacities in the GDoF framework corresponds to an exponen-

tial scaling of powers. The different approaches to the asymptotic regime naturally impart

a distinct character to DoF and GDoF results. In particular, in the DoF setting where all

powers are scaled linearly, all links become asymptotically equally strong from the capacity

perspective (in the sense that every link carries 1 DoF), so that the distinction of strong
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versus weak channels is lost in the DoF framework. On the other hand, the proportional

scaling of link capacities in the GDoF metric preserves the diversity of signal strengths.

Intuitively, a proportional scaling of capacities is the right scaling because of the idea of

approximate scale-invariance — if all the link capacities in a network are scaled by the same

factor, then the capacity of the network should scale approximately by that same factor as

well. Thus, normalizing the asymptotic capacity of a network by the scaling factor should

yield an approximation to the capacity of the network in the original finite SNR setting (see

additional discussion of this aspect following equation (3.2) in Section 3.2). This is also the

intuitive reason why capacity approximations invariably rely on the GDoF metric rather

than the DoF metric.

Robustness is enforced in GDoF studies by limiting the channel state information at the

transmitters (CSIT) to finite precision. Until recently, a stumbling block for robust GDoF

characterizations has been the difficulty of obtaining tight converse bounds under finite

precision CSIT (cf. Lapidoth-Shamai-Wigger conjecture in [43] and the PN conjecture in

[63]). However, the introduction of aligned images bounds in [16] has made it possible

to circumvent this challenge. Building upon this opportunity, in this work we pursue the

the GDoF of the interference channel under finite precision CSIT with limited cooperation

between the transmitters.

Perhaps the most powerful regime for cooperative communication is the strong interference

regime, because the sharing of messages among transmitters allows essentially a re-routing

of messages through stronger channels. However, this regime turns out to be also the most

challenging regime for information theoretic GDoF characterizations under finite precision

CSIT. For example, in [21] the GDoF are characterized for the K user broadcast channel

obtained by full transmitter cooperation in a K user symmetric interference channel with

partial CSIT levels. Remarkably, while the GDoF are characterized for the weak interfer-

ence regime, the strong interference regime remains open. More recently, the extremal GDoF
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benefits of transmitter cooperation under finite precision CSIT were characterized in [12] for

large interference networks. The benefits of cooperation are shown to be substantial, but

the extremal analysis is again limited to weak interference settings. Evidently the strong

interference regime poses some challenges. To gauge the difficulty of robust GDoF char-

acterizations in different parameter regimes with limited cooperation, especially the strong

interference regime, in this work we explore the 2-user setting.

The main result of this work is the exact GDoF characterization of the 2-user interference

channel under finite precision CSIT, when a limited amount of cooperation is allowed between

the transmitters in the form of π DoF of shared messages. The following table places

this work in perspective. The GDoF region (in fact the capacity region) for the 2-user

Table 3.1: GDoF results for various levels of CSIT and transmitter cooperation.

Perfect CSIT Finite Precision CSIT Intermediate CSIT Levels
Interference Channel

(no cooperation)
[24] [17] implied by[24, 17]

Broadcast Channel
(full cooperation)

[9, 67] [18] [21]

Interference Channel
with limited cooperation

[65] This chapter Open

broadcast channel (where all messages are shared) under perfect CSIT is known from [9, 67].

Under finite-precision CSIT, the GDoF region of the 2-user broadcast channel is found in

[18]. It is noted in [17] that the GDoF region of 2-user interference channel (where no

messages are shared) under finite-precision CSIT is the same as that under perfect CSIT

[24]. The gap between full transmitter cooperation (broadcast channel) and no transmitter

cooperation (interference channel) is bridged under perfect CSIT by Wang and Tse in [65],

where they characterize the GDoF region of the 2-user interference channel with limited

cooperation among transmitters under the assumption of perfect CSIT. This chapter bridges

the corresponding gap under finite precision CSIT. Incidentally, it is also possible to bridge

the gap between finite precision CSIT and perfect CSIT, by adopting ‘intermediate’ CSIT

models where the CSIT precision gets finer with power asymptotically according to P−β. By
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covering the range β ∈ (0,∞), such a model bridges the gap between finite precision CSIT

(β = 0) and perfect CSIT (β = ∞). For the interference channel it is implied by [24, 17],

that the GDoF under intermediate CSIT levels are the same as under perfect CSIT. For

the broadcast channel, the GDoF under intermediate CSIT levels are characterized in [21].

Notably, with limited cooperation and intermediate levels of CSIT, the GDoF remain open.

The significance of finite precision CSIT under limited cooperation may be noted as follows.

Under perfect CSIT and limited cooperation, Wang and Tse found in [65] that each bit

of cooperation buys either 0, 1 or 1/2 bit over-the-air. In this work, with finite precision

CSIT, for all parameter regimes we show that the number of over-the-air bits that each bit

of transmitter cooperation buys is either 0, 1, 1/2 or 1/3. Remarkably, the 1/3 factor shows

up only in the strong interference regime and only under finite precision CSIT. Indeed, the

central contribution of this work, is the strong interference regime which requires the most

sophisticated converse and achievability arguments.

3.2 System Model

Tx1W11,W01

Tx2W22,W02

W01 W02

X1

X2

Y1

Y2

(W11,W01,W02)

(W22,W01,W02)

(Ŵ11, Ŵ01)

(Ŵ22, Ŵ02)

α11

α22

α21

α12

Figure 3.1: Interference Channel with Limited Cooperation. The rates of cooperative messages
W01,W02 are limited by the cooperation capability π.

The interference channel with limited cooperation is comprised of 4 independent messages:

W11,W22,W01,W02. Messages W11,W22 are the noncooperative messages that originate at

Transmitters 1, 2, and are intended for Receivers 1, 2, respectively. Messages W01,W02 are the

cooperative messages intended for Receivers 1, 2, respectively, with the distinction that these
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messages are assumed to be known to both transmitters because they are shared among the

transmitters through the limited conference link. Specifically, message W01 is sent through

the cooperation link by Transmitter 1 to Transmitter 2, and message W02 is sent through

the cooperation link by Transmitter 2 to Transmitter 1.

For GDoF studies, the 2-user interference channel with limited cooperation is described by

the following input-output relationship.

Y1(t) =
√
Pα11G11(t)X1(t) +

√
Pα12G12(t)X2(t) + Z1(t) (3.1)

Y2(t) =
√
Pα21G21(t)X1(t) +

√
Pα22G22(t)X2(t) + Z2(t) (3.2)

During the tth use of the channel, Xi(t) = fi,t(Wii,W01,W02) ∈ C is the symbol sent from

Transmitter i, and is subject to unit transmit power constraint. The symbol observed by

Receiver i is denoted Yi(t) ∈ C, and Zi(t) ∼ NC(0, 1) is the zero mean unit variance additive

white Gaussian noise (AWGN) at Receiver i. The variable P is referred to as power and

represents a nominal parameter that approaches infinity to define the GDoF limit. The

parameters αki ∈ R+ represent the coarse channel strength between Transmitter i and Re-

ceiver k, respectively. To understand the intuition behind the GDoF model, it is useful to

think of αki as the (approximate) capacity of the physical channel between Transmitter i

and Receiver k in a given finite SNR setting that we wish to study. The GDoF model scales

the capacity of every link by the same factor γ = log(P ). Note that in the GDoF model

the capacity of the physical channel between Transmitter i and Receiver k is approximately

αki log(P ). Intuitively, the reason for this proportional scaling of capacities is the expecta-

tion of approximate scale invariance, i.e., when the capacity of every link in a network is

scaled by the same factor γ, then we expect that the capacity of the overall network should

scale approximately by the same factor γ as well. So normalizing the capacity of the network

by γ = log(P ) yields an approximation to the capacity of the original finite SNR network;

hence the normalization by log(P ) of the rates in the GDoF definition (see (3.3)).
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The power P and the channel strengths αki are known to all transmitters and receivers.

Gki(t) ∈ C are the channel coefficient values, known perfectly to the receivers. Robustness

is enforced by the assumption that the channel coefficients are only available to transmitters

with finite precision. Recall that under the finite precision CSIT assumption, as defined

in [16], the transmitters are only aware of the probability density functions of the channel

coefficients, and it is assumed that all joint and conditional probability density functions

of channel coefficients exist and are bounded. Precisely, it is assumed1 that there exists a

finite positive constant fmax, such that for all finite cardinality disjoint subsets G1,G2 of G [n],

where G [n] , {Gij(τ) : i, j ∈ [2], τ ∈ [n]}, the conditional PDF fG1|G2(g1 | g2) exists and is

bounded above by f
|G1|
max. As in [16], to avoid degenerate conditions, the channel coefficients

are assumed to be bounded away from 0 and infinity, i.e., all |Gki(t)| ∈ [1/∆,∆] for some

positive finite constant ∆. For example, a basic model for finite precision CSIT is of the form

Gij(t) ∈ (1−ε, 1+ε), where ε is a small fixed value that represents the level of CSIT precision.

Since |Gij| is limited to values close to 1, it is bounded away from zero and infinity. The set

of all channel coefficient random variables is denoted G = {Gki(t) | i, k ∈ {1, 2}, t ∈ Z+}.

The rates associated with messages W11,W22,W01,W02 are denoted as R11, R22, R01, R02, re-

spectively. The definitions of probability of error, achievable rate tuples (R11, R22, R01, R02),

codebooks and capacity region C are all in the standard Shannon-theoretic sense (see for

example [22]). The GDoF region is defined as,

D =



(d11, d22, d01, d02) :

∃((R11(P ), R22(P ), R01(P ), R02(P )) ∈ C(P )

s.t. d11 = lim
P→∞

R11(P )
log(P )

, d22 = lim
P→∞

R22(P )
log(P )

,

d01 = lim
P→∞

R01(P )
log(P )

, d02 = lim
P→∞

R02(P )
log(P )

.


(3.3)

1While the finite precision CSIT model allows much more general settings, a basic example of this model
is where Gij(t) are all i.i.d. uniform in the interval (1− ε, 1 + ε), with ε representing a small constant that
defines the fixed precision-level of available CSIT.
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The total cooperation capability of the system is fixed by a given parameter π. We focus

in particular on two models for cooperation, half-duplex and full-duplex, represented by the

following assumptions.

Half-duplex Assumption: d01 + d02 ≤ π, (3.4)

Full-duplex Assumption: d01 ≤
π

2
, d02 ≤

π

2
. (3.5)

Thus, the half-duplex assumption implies that the capacity of the cooperation link is limited

to π GDoF, which can be divided arbitrarily between the two one-way modes, while the

full-duplex assumption implies that the capacity of the cooperation link is limited to π
2
,

which can be simultaneously utilized in both directions without mutual interference. The

sum-GDoF value is the maximum value of d11 + d22 + d01 + d02 across all (d11, d22, d01, d02)

tuples in the GDoF region (3.3). It is denoted as DΣ,ICLC for the half-duplex model while as

D′Σ,ICLC
for the full-duplex model.

3.2.1 Interference Channel

The interference channel corresponds to the setting with no cooperation, i.e., π = 0, so there

are no cooperative messages W01,W02. In [24], the GDoF region of the interference channel

is characterized under perfect CSIT. As noted in [17], for the 2-user interference channel,

GDoF under finite precision CSIT are the same as that under perfect CSIT. The sum-GDoF

value, denoted DΣ,IC is found to be,

DΣ,IC = min
(

max(α11 − α21, α12) + max(α22 − α12, α21),

max(α11, α12) + (α22 − α12)+,

max(α21, α22) + (α11 − α21)+,

α11 + α22

)
. (3.6)
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3.2.2 Broadcast Channel

The broadcast channel corresponds to unlimited cooperation, i.e., π → ∞, so that only

cooperative messages W01,W02 are needed for the sum-GDoF characterization. The sum-

GDoF value, denoted DΣ,BC under finite-precision CSIT is found in [18] as,

DΣ,BC = min
(

max(α11, α12) + max(α21 − α11, α22 − α12)+,

max(α21, α22) + max(α11 − α21, α12 − α22)+
)
. (3.7)

Note that unlike the interference channel, the broadcast channel suffers a loss in GDoF due

to finite precision CSIT as compared to perfect CSIT.

3.2.3 Weak, Mixed and Strong Interference Regimes

The range of values of αki parameters is partitioned into three regimes, labeled weak, mixed

and strong interference. These regimes are defined as follows.

Weak interference: max(α12, α21) ≤ min(α11, α22) (3.8)

Mixed interference: min(α12, α21) ≤ max(α11, α22),

max(α12, α21) ≥ min(α11, α22) (3.9)

Strong interference: max(α11, α22) ≤ min(α12, α21) (3.10)

The boundaries between regimes may be considered to belong to either regime.
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3.2.4 Sub-Messages

In the description of the achievable scheme, we partition messages into sub-messages, and

in labeling these sub-messages we use subscripts to indicate transmitter cooperation, while

the superscripts are associated with the decodability of the message. Specifically, if the

subscript contains a 0 then that part of the message is shared between the two transmitters,

otherwise it is not. Similarly, if the superscript is a p then that part of the message is private,

i.e., only decodable at its desired receiver, otherwise it is common, i.e., decodable by both

receivers. Specifically, the noncooperative message Wii and cooperative message W0i are split

into common and private parts, so that Wii = (W c
ii,W

p
ii),W0i = (W c

0i,W
p
0i), and we have the

following sub-messages:

W p
11: Noncooperative private message, encoded by Transmitter 1 and decoded by Receiver 1.

W p
22: Noncooperative private message, encoded by Transmitter 2 and decoded by Receiver 2.

W c
11: Noncooperative common message, encoded by Transmitter 1, decoded by both receivers.

W c
22: Noncooperative common message, encoded by Transmitter 2, decoded by both receivers.

W p
01: Cooperative private message, private part of W01, encoded2 by Transmitter 2, decoded by

Receiver 1.

W p
02: Cooperative private message, private part of W02, encoded by Transmitter 1, decoded by

Receiver 2.

W c
01: Cooperative common message, common part of W01, encoded by both transmitters, decoded

by both receivers.

W c
02: Cooperative common message, common part of W02, encoded by both transmitters, decoded

by both receivers.

W c
0 : Combination3 of common parts of W01,W02, i.e., W c

0 = (W c
01,W

c
02).

2Note that even though W p
01 is a cooperative message, i.e., it is known to both transmitters and as such

could be jointly encoded by both transmitters, our achievable schemes only require it to be encoded by
Transmitter 2. Similar observation holds for W p

02 as well.
3Note that since the cooperative common message W c

0 can be encoded by both transmitters, the scope
of achievable schemes exceeds traditional interference-channel schemes [35].
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3.3 Results

Under the half-duplex model, the sum-GDoF value for the interference channel with limited

transmitter cooperation under finite precision CSIT is characterized in the following theorem.

Theorem 3.1. Under the half-duplex model, in the weak and mixed interference regime, we

have

DΣ,ICLC = min
(
DΣ,IC + π,DΣ,BC

)
, (3.11)

and in the strong interference regime,

DΣ,ICLC = min
(
DΣ,IC + π,

D2e + π

2
,
D3e + π

3
,DΣ,BC

)
, (3.12)

where

D2e = α12 + α21, (3.13)

D3e = α21 + max(α21 − α11, α22) + α12 + max(α12 − α22, α11). (3.14)

As an immediate corollary, we obtain the minimum value of π needed for the interference

channel to achieve the same sum-GDoF value as the broadcast channel.

Corollary 3.1. Let π∗half denote the minimum half-duplex cooperation GDoF needed to

achieve the broadcast channel bound, i.e., π∗half = min
D∑

,ICLC=D∑
,BC

π. In the strong interfer-

ence regime with an assumption α12 ≥ α21, π∗half > DΣ,BC − DΣ,IC, and its value is given
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below

π∗half =



N − 2 max(α11, α22), α12, α21 ≤M,N ≤M + α11,

2N −M − 3 max(α11, α22), α12, α21 ≤M,N ≥M + α11,

N + α21 − 3 max(α11, α22), α12 ≥M,α21 ≤M,

N +M − 3 max(α11, α22), α12 ≥M,α21 ≥M,

(3.15)

where M = α11 +α22, N = α12 +α21. In all other parameter regimes, π∗half = DΣ,BC−DΣ,IC.

Our next result is the sum-GDoF characterization of the interference channel with limited

full-duplex transmitter cooperation, under finite precision CSIT, as presented in the following

theorem.

Theorem 3.2. Under the full-duplex model, in the weak interference regime, we have

D′Σ,ICLC = min
(
DΣ,IC + π,DΣ,BC

)
, (3.16)

in the mixed interference regime we have

D′Σ,ICLC = min
(
DΣ,IC +

π

2
,DΣ,BC

)
, (3.17)

and in the strong interference regime we have

D′Σ,ICLC = min
(
DΣ,IC + π,min(α12, α21) +

π

2
,
D3e + π

3
,DΣ,BC

)
, (3.18)

where D3e is the same as in (3.14).

Similarly, as a corollary we obtain the minimum value of π needed for the interference channel

with full-duplex cooperation to achieve the same sum-GDoF value as the broadcast channel.

Corollary 3.2. Let π∗full denote the minimum full-duplex cooperation GDoF needed to achieve
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the broadcast channel bound, i.e., π∗full = min
D′∑

,ICLC
=D∑

,BC

π. In the weak interference regime,

π∗full = (DΣ,BC − DΣ,IC). In the mixed interference regime, π∗full = 2(DΣ,BC − DΣ,IC). In the

strong interference regime, where we assume α21 ≤ α12 without loss of generality, the value

of π∗full is given below

π∗full =



2N −M − 3 max(α11, α22), α12, α21 ≤M, 2α21 ≥M + max(α11, α22),

N + α21 − 3 max(α11, α22), α12 ≥M,α21 ≤M,α12 ≤ 2α21 −max(α11, α22),

N +M − 3 max(α11, α22), α12 ≥M,α21 ≥M,α12 ≤ α21 + min(α11, α22),

2α12 − 2 max(α11, α22), otherwise,

(3.19)

where M = α11 + α22, N = α12 + α21.

To place the results in perspective, let us present some observations and examples.

1. A comparison of Theorem 3.1 with Theorem 3.2 reveals that the sum-GDoF of the

full-duplex setting are identical to the half-duplex setting, i.e., for the same amount of

total cooperation capability, with only two exceptions – the mixed interference regime

where the full-duplex bound DΣ,IC+ π
2

is different from the half-duplex bound DΣ,IC+π,

and the strong interference regime where the full-duplex bound min(α12, α21) + π
2

is

different from the half-duplex bound 0.5(α12 + α21 + π). A notable insight here is

that when either of these bounds is active in the full-duplex setting, then only one-

way cooperation is needed, i.e., half of the cooperation capability is wasted in the

full-duplex setting.

2. The slope of sum-GDoF with respect to π for full-duplex and half-duplex, respectively,

represents how many over-the-air bits are bought with each bit of total cooperation ca-

pability. Based on Theorem 3.1 and Theorem 3.2 the slope only takes values 0, 1, 1/2,

or 1/3. Figure 3.2 shows an example where the slopes 0, 1, 1/2, 1/3 can all be seen. Note
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Figure 3.2: Sum-GDoF of the interference channel (α11 = 1.2, α22 = 1, α12 = 2, α21 = 1.8)
with limited cooperation for half-duplex and full-duplex settings, under perfect CSIT [65] and finite
precision CSIT (this work).

that in Figure 3.2, half-duplex cooperation has greater slope than full-duplex coopera-

tion for 0 ≤ π ≤ 0.2, and smaller slope than full-duplex cooperation for 0.6 ≤ π ≤ 1.2.

Thus, the incremental benefit from each additional bit of cooperation capability may

be greater for either half-duplex or full-duplex cooperation in different regimes. Also

note that the benefits of cooperation saturate much more quickly under finite precision

CSIT.

3. In general, for both full-duplex and half-duplex settings, each incremental bit of coop-

eration capability buys either 0, 1, 1/2 or 1/3 additional over-the-air bit. Compare this

to the findings in [65] for perfect CSIT, where each incremental bit of cooperation ca-

pability buys either 0, 1, or 1/2 additional bit over-the-air. The 1/3 slope appears only

under finite precision CSIT and only under strong interference. In fact, the GDoF

bounds with slope 1/3 are the only4 bounds in Theorem 3.2 and Theorem 3.1 that

do not appear in the perfect CSIT setting studied in [65]. Indeed, the converse and

4Of course, the bound corresponding to the sum-GDoF of the broadcast channel takes different values
under perfect CSIT and finite precision CSIT. Under perfect CSIT, we have DΣ,BC = max(α11 + α22, α12 +
α21), while under finite precision CSIT, the value is given by (3.7).
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achievability for the parameter regimes where the 1/3 slope appears are the central

contributions of this work.

4. A notable insight here is that when the 1/3 slope appears, it is because each incremental

ε increase in GDoF corresponds to an ε increase in the GDoF of each of the three

cooperative messages W p
01,W

p
02,W

c
0 , and a simultaneous ε decrease in the GDoF of

each of the two noncooperative messages W11,W22. Therefore, the total increase in

GDoF is ε, while the total increase in the required cooperation capability is 3ε, which

gives us the 1/3 slope.
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Figure 3.3: Sum-GDoF of the symmetric interference channel (α11 = α22 = 1, α12 = α21 = α)
with limited cooperation for various half-duplex and full-duplex settings, under perfect CSIT [65]
and finite precision CSIT (this work).

5. Figure 3.3 plots the sum-GDoF value of the 2-user interference channel with limited

cooperation under the symmetric setting (α11 = α22 = 1, α12 = α21 = α) for both

half-duplex and full-duplex cooperation models, under both perfect CSIT [65] and
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finite-precision CSIT (this work). Note that in this symmetric setting, full-duplex

cooperation and half-duplex cooperation have identical sum-GDoF as a function of π.

This is because the mixed interference regime does not appear in the symmetric setting,

and in the strong interference regime the full-duplex bound min(α12, α21) + π
2

matches

the half-duplex bound 0.5(α12 + α21 + π). Note that there is no cooperation gain for

2/3 ≤ α ≤ 1, which recovers the results in [18]. Furthermore, for any fixed cooperation

capability π, as α increases, eventually the sum-GDoF with perfect CSIT match the

sum-GDoF of finite precision CSIT, as they both converge to 2+π. In fact, this is true

more generally (even with asymmetric settings) in the following sense. For any fixed

values of (π, α11, α22), as the cross-channels α12, α21 become stronger, the sum-GDoF

for both finite precision CSIT and perfect CSIT must converge to α11 + α22 + π. This

is because as the cross-channels become stronger, each receiver is able to decode all

interference and desired signals without interference, so the sum-GDoF for each user

are only limited by the min-cut between its transmitter and receiver. Thus, the total

GDoF of User 1, d1 is only limited by α11 + d01, and similarly d2 is only limited by

α22 + d02, so that the sum-GDoF are only limited by α11 + α22 + π.

6. From Theorems 1 and 2 we can find the minimum amount of cooperation capability

needed to achieve any given sum-GDoF value. In particular, the minimum amount of

cooperation needed to achieve the same sum-GDoF as with unlimited cooperation, i.e.,

DΣ,BC, is specified in Corollaries 1 and 2. Since the DΣ,BC was characterized previously

in [18], a natural question is to gauge the efficiency of the achievable schemes used in

[18]. Since cooperation efficiency is not a concern in [18], understandably the schemes

from [18] that achieve DΣ,BC are in general not the most efficient in terms of the amount

of cooperation needed. This is shown explicitly through the examples in Figure 3.7

and Figure 3.8. Evidently, even for settings where the sum-GDoF are already known,

the most efficient solution in terms of the minimum required level of cooperation is a

non-trivial question that is answered by Theorems 3.1 and 3.2.
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The extension from the 2-user interference channel to 2-user X channel turns out to be quite

straightforward. It is characterized by the following proposition.

Proposition 3.1. For the 2-user X channel with limited cooperation (either half-duplex or

full-duplex), the sum-GDoF value is

DΣ,XLC = min(DΣ,X + π,DΣ,BC), (3.20)

where DΣ,XLC denotes the sum-GDoF value of X channel with limited cooperation, DΣ,X de-

notes the sum-GDoF of X channel.

Proof. The converse is trivial because the sum-GDoF of the noncooperative messages are

bounded by DΣ,X and the sum-GDoF of the cooperative messages are bounded by π, so

the total sum-GDoF cannot exceed DΣ,X + π. Also, the broadcast channel is still an

outer bound. For achievability, let us first consider the weak interference channel regime,

where max(α12, α21) ≤ min(α11, α22). From Theorem 2 in [18] we know that in the weak

interference regime, DΣ,X = DΣ,IC, which means X channel boils down to the interfer-

ence channel with message W11,W22 from the sum-GDoF perspective. Therefore DΣ,XLC =

min(DΣ,X +π,DΣ,BC) = min(DΣ,IC +π,DΣ,BC) whose achievability is implied by Theorem 3.1

and Theorem 3.2 in this work. The strong interference regime maps to the weak interfer-

ence regime by relabeling the parameters so the sum-GDoF are established for that as well.

This leaves just the mixed interference regime. But from Theorem 2 in [18], we know that

DΣ,X = DΣ,BC in the mixed interference regime, i.e., cooperation has no gain in the mixed

interference regime. Thus, the sum-GDoF of the 2-user X channel with limited cooperation

are easily characterized and turn out to be much simpler than the 2-user interference channel.
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3.4 Converse

3.4.1 Preliminaries

Let us recall some definitions that are needed for aligned images bounds.

Definition 3.1 (Power Levels). Consider the integer valued random variables Xi over al-

phabet Xλi

Xλi , {0, 1, 2, · · · , b
√
P λic − 1}. (3.21)

We are primarily interested in limits as P → ∞, where P ∈ R+ is denoted as power. The

constant λi refers to the power level of Xi.

Definition 3.2. Consider integer valued random variables X ∈ Xλ, and any non-negative

real numbers λ1, λ2 such that 0 ≤ λ1 ≤ λ2 ≤ λ, define

(X)λ2 ,
⌊ X√

P λ−λ2

⌋
, (3.22)

(X)λ1 , X −
√
P λ1

⌊ X√
P λ1

⌋
, (3.23)

(X)λ2λ1 ,
⌊(X)λ2√

P λ1

⌋
. (3.24)

In other words, (X)λ2 retrieves the top λ2 power levels of X, (X)λ1 retrieves the bottom λ1

power levels of X, (X)λ2λ1 retrieves the partition of X between levels λ1 and λ2. Intuitively, and

in a very coarse sense, one may think of X ∈ Xλ as a non-negative integer value represented

in
√
P -ary alphabet as X = xλxλ−1 · · ·x2x1, which would require a string of λ such

√
P -

ary symbols. In this sense, (X)λ2 corresponds to the integer value represented by the λ2

most significant symbols of that string, i.e., (X)λ2 = xλxλ−1 · · ·xλ−λ2+1, and (X)λ2λ1 is the

integer value represented by the sub-string xλ2xλ2−1 · · · xλ1 . While intuitively helpful, this
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coarse understanding is also a rather extreme oversimplification, because indeed λ1, λ2 can

take arbitrary real (non-integer) values. Thus, the partitioning with real valued λ is a non-

trivial generalization of the original partitions of binary representations that appear in ADT

models [5]. Note that while ADT models are used to study GDoF under perfect CSIT, the

partitioning with real λ values is necessary here because of the focus on finite precision CSIT.

Definition 3.3 (Sub-section, Interval, Level, Size, Disjoint). For X ∈ Xλ, we say that (X)λ2λ1

is a sub-section of X if 0 ≤ λ1 ≤ λ2 ≤ λ. We refer to (λ1, λ2) as the interval corresponding

to sub-section (X)λ2λ1. Furthermore, we define the lower end of the interval (λ1, λ2) as the

‘level’ of the partition, denoted as `((X)λ2λ1) = λ1, and the length of the interval (λ1, λ2) as

the ‘size’ of the partition, denoted as T ((X)λ2λ1) = λ2 − λ1. Sub-sections (X)λ2λ1 and (X)ν2ν1 of

the same X ∈ Xλ are said to be disjoint if the intervals (λ1, λ2) and (ν1, ν2) are disjoint.

X

λ

U3
λ3

U2
λ2

U1

λ1

Figure 3.4: U1 = (X)λλ1 , U2 = (X)λ2λ3 , U3 = (X)λ30 are sub-sections of X. The corresponding
levels are `(U1) = λ1, `(U2) = λ3, `(U3) = 0. Additionally, the size of these sub-sections are
T (U1) = λ− λ1, T (U2) = λ2 − λ3, T (U3) = λ3. U1 and U3 are disjoint.

Our proofs will rely on sum-set inequalities based on Aligned Image sets, from [20]. While

[20] presents these sum-set inequalities in generalized forms, certain simplified forms of those

inequalities will suffice for our purpose. In particular, the following lemma can be obtained

as a special case of Theorem 3 in [20]. Details of this simplification are presented in Appendix

A.1.

Lemma 3.1. Let Y (t) =
∑K

k=1bGk(t)Xk(t)c for Xk ∈ Xµk , and Gk ∈ G for all k ∈ [K]. For

all k ∈ [K], let Sk be a set of finitely many disjoint sub-sections of Xk (the same partitioning

is applied to Xk(t) for every t), and let {U1, U2, · · · , Um} be a subset of ∪Kk=1Sk. The following
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sum-set inequality holds,

H(Y
[n] | WS,G) ≥ H(U

[n]
1 , U

[n]
2 , · · · , U [n]

m | WS,G) + n× o(log(P )), (3.25)

if all of the following conditions (3.26)-(3.30) are satisfied.

0 = I
(

(Xk(t), k ∈ [K], t ∈ [n]),WS ; G
)
, (3.26)

`(U2) ≥ T (U1), (3.27)

`(U3) ≥ T (U1) + T (U2), (3.28)

... (3.29)

`(Um) ≥ T (U1) + T (U2) + · · ·+ T (Um−1). (3.30)

Let us intuitively explain this lemma. For our purpose, Xk are transmitted codewords

(in this chapter since we only consider 2 transmitters, it suffices to set K = 2), and WS

is some subset of messages. Condition (3.26) requires that the messages and transmitted

codewords must be independent of channel coefficient realizations (because of finite precision

CSIT). Conditions (3.27)-(3.30) are quite simple as well. Imagine that we have boxes labeled

U1, · · · , Um, with the size of each box U equal to T (U). Each box U has a certain original

position in Y , which is `(U), representing how high above the ground that box appears in Y .

Let’s call this the original height of U . Now, suppose we stack the boxes vertically on top of

each other, starting with U1 at the bottom, and proceeding in that order until we place Um

on top of the vertical stack. In this stack, box Uj appears at a height above the ground equal

to T (U1) + T (U2) + · · ·+ T (Uj−1) because it sits on top of boxes U1, U2, · · · , Uj−1. Let’s call

this the new height of Uj. Then the conditions (3.27)-(3.30) simply mean that the new height

of each box must be no higher than its original height. In other words, if we can vertically

stack all the sub-sections without elevating the height of any sub-section above its original

height in Y , then the sum-set inequality (3.25) holds. Next, note that while the conditions
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(3.27)-(3.30) seem to fix the stacking order from the bottom to the top as U1, U2, · · · , Um,

the entropy on the RHS of (3.25) does not depend on the ordering of these sub-sections.

So one can equivalently rearrange the ordering of U1, U2, · · · , Um and apply the conditions

(3.27)-(3.30) to the permuted ordering. In other words, if there exists any ordering in which

we can vertically stack all of the sub-sections without elevating the height of any sub-section

above its original height in Y , then the sum-set inequality (3.25) holds.

Figure 3.5 presents a few examples that illustrate the use of Lemma 3.1.

U4

U3

U2

U1

X1

λ1

X2

U7

U6

U5

λ2

Y

U1

U5

U3

U7

3

U3

U7

U6

7

U5

U2

3

Figure 3.5: Lemma 3.1 implies that the sum-set inequality H(Y
[n] | WS ,G) ≥

H(U
[n]
1 , U

[n]
5 , U

[n]
3 , U

[n]
7 | WS) holds in the GDoF sense, because sub-sections U1, U5, U3, U7 can be

vertically stacked without elevating any sub-section above its original height in Y . However, Lemma

3.1 does not imply that H(Y
[n] |WS ,G) ≥ H(U

[n]
3 , U

[n]
6 , U

[n]
7 |WS), because it is impossible to verti-

cally stack U3, U6, U7 in any order without elevating at least one of them above its original position

in Y . As another example, Lemma 3.1 does imply that H(Y
[n] | WS ,G) ≥ H(U

[n]
2 , U

[n]
5 | WS) in

the GDoF sense, because U2 and U5 can be vertically stacked as shown, without elevating either of
them above its original position in Y .

It is worth highlighting that the sum-set inequalities of [20] are quite powerful because

of their generality. In particular, Xk(t) can have any distribution, i.e., no assumption of

independence is made among the codewords sent from different transmitters. Thus, these

sum-set inequalities apply not only to interference channels, but also to broadcast channel

settings as well, where all the codewords can be jointly designed. On the other hand,

these sum-set inequalities are specialized to finite precision CSIT. They do not apply under

perfect CSIT, i.e., if the codewords can be designed with infinitely precise knowledge of the

channel coefficients. For example, it is easy to see that these inequalities can be violated
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if interference alignment was possible. In essence, the sum-set inequality proves that in

the GDoF sense, interference alignment is not possible under finite precision CSIT for any

possible design of the codebooks. Since the goal is to understand robust fundamental limits

of wireless networks, finite precision CSIT is an absolutely essential aspect of this chapter.

As such, this sum-set inequality is also essential to this work. Additional lemmas (Lemma

A.1, Lemma A.2, Lemma A.3) that justify some basic manipulations that do not affect GDoF

are included in Appendix A.2.

3.4.2 Proof of Converse

Let us now prove the outer bounds on the GDoF region of the interference channel with

limited cooperation under finite precision CSIT, for arbitrary levels of cooperation, d01 ≤

π01, d02 ≤ π02. These bounds can then be specialized to obtain the tight converse for both

half-duplex and full-duplex models. As noted previously, with the exception of the bounds

that have slope 1/3 (as a function of π), all other bounds that we need for Theorem 3.1 and

Theorem 3.2 also hold under perfect CSIT, so they can be obtained from [65]. However, for

the sake of completeness we will prove all the bounds here.

The bound DΣ,ICLC ≤ DΣ,BC is trivial because full cooperation cannot reduce GDoF. The

bound DΣ,ICLC ≤ DΣ,IC + π01 + π02 is also trivial because d11 + d22 ≤ DΣ,IC and d01 ≤

π01, d02 ≤ π02 by assumption. These bounds suffice for the weak interference regime in both

half-duplex and full-duplex settings.

Next, let us consider the bounds that are needed for the mixed and strong interference

regimes. Here we will use the Aligned Images bounds approach, starting with the deter-

ministic model of [16] whose GDoF region contains the GDoF region of the original channel
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model from above.

Y 1(t) = b
√
Pα11−max(α11,α21)G11(t)X1(t)c+ b

√
Pα12−max(α12,α22)G12(t)X2(t)c (3.31)

Y 2(t) = b
√
Pα21−max(α11,α21)G21(t)X1(t)c+ b

√
Pα12−max(α12,α22)G22(t)X2(t)c (3.32)

whereX i(t) = X iR(t)+jX iI(t), i ∈ {1, 2}, andX1R(t), X1I(t) ∈ {0, 1, 2, · · · , d
√
Pmax(α11,α21)e},

while X2R(t), X2I(t) ∈ {0, 1, 2, · · · , d
√
Pmax(α12,α22)e}. Note that according to Lemma A.2,

we can also write,

Y 1(t) = bG11(t)
(
X1(t)

)α11c+ bG12(t)
(
X2(t)

)α12c︸ ︷︷ ︸
Y
′
1(t)

+ζ1(t) (3.33)

Y 2(t) = bG21(t)
(
X1(t)

)α21c+ bG22(t)
(
X2(t)

)α22c︸ ︷︷ ︸
Y
′
2(t)

+ζ2(t) (3.34)

where ζ1(t), ζ2(t) are integer valued random variables whose magnitude is bounded, so it does

not scale with P . Specifically, according to Lemma A.2, we know that max(|ζ1(t)|, |ζ2(t)|) ≤

2(2 + ∆) = o(log(P )).

Applying Fano’s inequality and ignoring the o(log(P )) terms that are inconsequential for

GDoF,

nR22 + nR02 ≤ I(W22,W02;Y
[n]

2 | G) (3.35)

≤ I(W22,W02;Y
[n]

2 | W01,G) (3.36)

= H(Y
[n]

2 | W01,G)−H(Y
[n]

2 | W22,W01,W02,G) (3.37)

= H(Y
[n]

2 | W01,G)−H(Y
′[n]

2 | W22,W01,W02,G) (3.38)

≤ H(Y
[n]

2 | W01,G)−H(bG[n]
21 (X

[n]

1 )α21c | W22,W01,W02,G) (3.39)

≤ H(Y
[n]

2 | W01,G)−H((X
[n]

1 )α21 | W22,W01,W02,G). (3.40)

(3.38) holds because of Lemma A.1, (3.39) holds because X
[n]

2 is a function of (W01,W02,W22),
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and (3.40) holds because of Lemma A.3.

Similarly, starting with Fano’s inequality again,

nR11 ≤ I(W11;Y
[n]

1 | G) (3.41)

≤ I(W11;Y
[n]

1 | W01,W02,W22,G) (3.42)

≤ H(Y
[n]

1 | W01,W02,W22,G) (3.43)

= H(Y
′[n]

1 | W01,W02,W22,G) (3.44)

= H
(
bG[n]

11

(
X

[n]

1

)α11

c | W01,W02,W22,G
)

(3.45)

≤ H((X
[n]

1 )α11 | W22,W01,W02,G), (3.46)

where (3.42) holds because I(A;B) ≤ I(A;B | C) if C is independent of A, (3.43) holds

because we dropped a negative term, (3.44) holds because of Lemma A.1, (3.45) holds because

X
[n]

2 is a function of (W01,W02,W22), and (3.46) holds because of Lemma A.3.

Adding (3.39) and (3.46), we have,

nR11 + nR22 + nR02 ≤ H(Y
[n]

2 |W01,G)+[
H((X

[n]

1 )α11 | W22,W01,W02,G)−H((X
[n]

1 )α21 | W22,W01,W02,G)
]

(3.47)

≤ H(Y
[n]

2 |W01,G) +H((X
[n]

1 )α11 | (X [n]

1 )α21 ,W22,W01,W02,G)

(3.48)

≤ nmax(α21, α22) log(P ) + n(α11 − α21)+ log(P ). (3.49)

Similarly,

nR11 + nR22 + nR01 ≤ nmax(α12, α11) log(P ) + n(α22 − α12)+ log(P ). (3.50)
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Dividing both sides in (3.49) and (3.50) by n log(P ), and applying the GDoF limit, we obtain

the following GDoF bounds:

d11 + d22 + d02 ≤ max(α21, α22) + (α11 − α21)+, (3.51)

d11 + d22 + d01 ≤ max(α12, α11) + (α22 − α12)+. (3.52)

Thus, the following bound is obtained:

DΣ,ICLC ≤ min(max(α21, α22) + (α11 − α21)+ + π01,max(α12, α11) + (α22 − α12)+ + π02).

(3.53)

This bound is useful in the mixed and strong regimes. Note that in the strong interference

regime, the bound can be simplified as

DΣ,ICLC ≤ min(α21 + π01, α12 + π02). (3.54)

Finally, consider the strong interference regime, and in particular, the case α12 ≥ α21. The

alternative setting of α12 ≤ α21 will follow similarly. For ease of notation, define

A ,

 (X
[n]

1 )α21
α22
, α21 ≤ α11 + α22,

(X
[n]

1 )α21
α21−α11

, α21 ≥ α11 + α22,
(3.55)

B ,

 (X
[n]

1 )α22
α21−α11

, α21 ≤ α11 + α22,

0, α21 ≥ α11 + α22,
(3.56)

C , (X
[n]

2 )α12
α12−α22

. (3.57)

Figure 3.6 illustrates the definitions for the case α21 ≤ α11 + α22, where the notation [n]

is omitted for simplicity. The case α21 ≥ α11 + α22 can be shown similarly. Note that if
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X1

Bθ

Aη

X2

Cα22

α11

α22

α21

α12
Bθ

Aη

(X1)
α21
δ

C α22

X2

Y 1

Bθ

Aη

X1

C α22

(X2)
α12
γ

Y 2

Figure 3.6: Power level partitions A,B,C where η = α21 − α22, θ = α11 + α22 − α21, δ = α21 −
α11, γ = α12 − α22, X1 ∈ Xα21 , X2 ∈ Xα12 and α21 ≤ α11 + α22.

α21 ≤ α11 + α22, then A represents the top α21 − α22 power levels of X
[n]

1 , and B represents

the remaining power level partition of X
[n]

1 that appears above the noise floor at Receiver

1. Otherwise, if α21 ≥ α11 + α22, then A represents the top α11 levels of X
[n]

1 and B is zero.

The combination of A,B is the partition of X
[n]

1 that is heard by Receiver 1 above the noise

floor. Note that in both cases, A represents the power level partition of X
[n]

1 that is heard

above the signal due to X
[n]

2 at Receiver 2, i.e.,

H(A | Y [n]

2 ,G) = n× o(log(P )). (3.58)

C represents the top α22 power levels of X
[n]

2 , which is all that Receiver 2 is able to hear

from Transmitter 2. Note that the sum of power levels of A and C is always less than α12,

which will be important when applying Lemma 3.1.

Because C is a function of W22,W01,W02,

H(C | W22,W02,G)

= I(C;W01 | W22,W02,G) (3.59)

≤ I(A,C;W01 | W22,W02,G)
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= I(A;W01 | W22,W02,G) + I(C;W01 | W22,W02, A,G) (3.60)

≤ I(A;W01 | W22,W02,G) +H(C | W22,W02, A,G). (3.61)

Thus,

I(A;W01 | W22,W02,G) ≥ H(C | W22,W02,G)−H(C | W22,W02, A,G). (3.62)

At the same time, we also have the following bound,

H(C | W22,W02,G) ≥ H(C | W02,G)−H(W22|W02,G) (3.63)

= H(C | W02,G)−H(W22 | G) (3.64)

≥ H(C | W02,G)− I(C;W22 | W11,W01,W02,G) (3.65)

≥ H(C | W02,G)−H(C | W11,W01,W02,G) (3.66)

= I(C;W11,W01 | W02,G) (3.67)

= I(C, Y
[n]

1 ;W11,W01 | W02,G)− I(Y
[n]

1 ;W11,W01 | C,W02,G)

(3.68)

= I(Y
[n]

1 ;W11,W01 | W02,G) + I(C;W11,W01 | Y
[n]

1 ,G)

−H(Y
[n]

1 | C,W02,G) +H(Y
[n]

1 | C,W11,W01,W02,G) (3.69)

≥ I(Y
[n]

1 ;W11,W01 | W02,G)−H(Y
[n]

1 | C,W02,G) (3.70)

≥ I(Y
[n]

1 ;W11,W01 | G)−H(Y
[n]

1 | C,W02,G) (3.71)

≥ I(Y
[n]

1 ;W11,W01 | G)−H(Y
[n]

1 | C,G) (3.72)

≥ nR11 + nR01 −H(Y
[n]

1 | C,G), (3.73)

where (3.70) is because mutual information and entropy are no less than zero. (3.71) is

because (W11,W01) is independent from W02. (3.72) is because conditioning cannot increase

entropy.
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Next, from Fano’s inequality, we have

nR11 + nR01 ≤ I(W11,W01;Y
[n]

1 | G) (3.74)

= H(Y
[n]

1 | G)−H(Y
[n]

1 | W11,W01,G) (3.75)

≤ H(Y
[n]

1 | G)−H(A,C | W11,W01,G) (3.76)

= H(Y
[n]

1 | G)−H(A | W11,W01,G)−H(C | W11,W01, A,G) (3.77)

≤ H(Y
[n]

1 | G)−H(A | W11,W01,G)−H(C | W11,W01, A,W02,G) (3.78)

= H(Y
[n]

1 | G)−H(A | W11,W01,G)−H(C | W11,W01,W02,G) (3.79)

= H(Y
[n]

1 | G)−H(A | W11,W01,G)− nR22 (3.80)

= H(Y
[n]

1 | G)− I(A;W22,W02 | W11,W01,G)− nR22 (3.81)

≤ H(Y
[n]

1 | G)− I(A;W22,W02 | G)− nR22, (3.82)

where (3.76) is due to Lemma 3.1: A,C can be stacked vertically (See Figure 3.6) without

elevating either of them above their original height in Y 1. (3.78) is because conditioning

cannot increase entropy, (3.79) is because A is a function of W11,W01,W02. (3.80) is because

message W22 can only be transmitted through C as it is the partition above the noise floor

that is sent from Transmitter 2 to Receiver 2. Rearranging the above inequality we get

I(A;W22,W02 | G) ≤ H(Y
[n]

1 | G)− n(R11 +R22 +R01). (3.83)

Next, applying Fano’s inequality at Receiver 2, we have

nR22 + nR02

≤ I(W22,W02;Y
[n]

2 | G) (3.84)

≤ I(W22,W02;Y
[n]

2 , A | G) (3.85)

= I(W22,W02;A | G) + I(W22,W02;Y
[n]

2 | A,G) (3.86)
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= I(W22,W02;A | G) +H(Y
[n]

2 | A,G)−H(Y
[n]

2 | A,W22,W02,G) (3.87)

= I(W22,W02;A | G) +H(Y
[n]

2 | A,G)−H(Y
[n]

2 | W22,W02,G)+

I(Y
[n]

2 ;A | W22,W02,G) (3.88)

≤ I(W22,W02;A | G) +H(Y
[n]

2 | A,G)−H(A,C | W22,W02,G)+

I(Y
[n]

2 ;A | W22,W02,G) (3.89)

≤ I(W22,W02;A | G) +H(Y
[n]

2 | A,G)−H(C | A,W22,W02,G), (3.90)

where (3.89) is implied by Lemma 3.1, and (3.90) is because of (3.58). Combining (3.83)

and (3.90),

H(C | A,W22,W02,G) ≤ H(Y
[n]

1 | G) +H(Y
[n]

2 | A,G)− n(R11 + 2R22 +R01 +R02).

(3.91)

Combining (3.62), (3.73), (3.91), we have

I(A;W01 | W22,W02,G) ≥ n(2R11 + 2R22 + 2R01 +R02)

−H(Y
[n]

1 | C,G)−H(Y
[n]

1 | G)−H(Y
[n]

2 | A,G). (3.92)

Using again Lemma 3.1 we have

H(Y
[n]

2 | W22,W02,G) ≥ H(A,B | W22,W02,G). (3.93)

Therefore, from Fano’s inequality, we have

nR22 + nR02 ≤ I(W22,W02;Y
[n]

2 | G) (3.94)

= H(Y
[n]

2 | G)−H(Y
[n]

2 | W22,W02,G) (3.95)

≤ H(Y
[n]

2 | G)−H(A,B | W22,W02,G) (3.96)
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≤ H(Y
[n]

2 | G)−H(A | W22,W02,G)−H(B | W22,W02, A,G). (3.97)

Rearranging the terms we get

H(B | W22,W02, A,G) ≤ H(Y
[n]

2 | G)− n(R22 +R02)

−H(A | W22,W02,G). (3.98)

Message W11 can only be transmitted through A,B as it is the partition above the noise floor

that is sent from Transmitter 1 to Receiver 1, such that W11 can be successfully decoded by

User 1. Therefore,

nR11 ≤ H(A,B | W22,W02,W01,G) (3.99)

= H(A | W22,W02,W01,G) +H(B | W22,W02,W01, A,G) (3.100)

≤ H(A | W22,W02,W01,G) +H(B | W22,W02, A,G). (3.101)

Combining (3.98) and (3.101), we get

I(A;W01 |W02,W22,G) ≤ H(Y
[n]

2 | G)− n(R11 +R22 +R02). (3.102)

Because (3.102) and (3.92) are upper and lower bound on the same mutual information,

combining them we have

3n(R11 +R22) + 2n(R01 +R02) ≤

H(Y
[n]

2 | G) +H(Y
[n]

2 | A,G) +H(Y
[n]

1 | G) +H(Y
[n]

1 | C,G). (3.103)

Note that the following bounds hold, with o(log(P )) terms omitted.

H(Y
[n]

1 | G) ≤ nα12 log(P ), (3.104)
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H(Y
[n]

1 | C,G) ≤ nmax(α12 − α22, α11) log(P ), (3.105)

H(Y
[n]

2 | G) ≤ nα21 log(P ), (3.106)

H(Y
[n]

2 | A,G) ≤ nmax(α21 − α11, α22) log(P ). (3.107)

(3.108)

Thus, (3.103) yields the GDoF bound

3d11 + 3d22 + 2d01 + 2d02 ≤ D3e. (3.109)

Combining it with the assumption d01 ≤ π01, d02 ≤ π02, we get the bound

DΣ,ICLC ≤
D3e + π01 + π02

3
. (3.110)

Proceeding similarly, the same bound is obtained for α21 ≥ α12.

At this point, let us list the bounds that we have shown along with the regimes where they

are useful.

Weak Interference Regime:

DΣ,ICLC ≤ min
(
DΣ,IC + π01 + π02,DΣ,BC

)
,

(3.111)

Mixed Interference Regime:

DΣ,ICLC ≤ min
(
DΣ,IC + π01 + π02,max(α21, α22) + (α11 − α21)+ + π01,
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max(α12, α11) + (α22 − α12)+ + π02,DΣ,BC

)
,

(3.112)

Strong Interference Regime:

DΣ,ICLC ≤ min
(
DΣ,IC + π01 + π02, α12 + π02, α21 + π01,

D3e + π01 + π02

3
,DΣ,BC

)
.

(3.113)

Next, we show how these bounds provide a tight converse for Theorem 3.1 as well as Theorem

3.2. Combining the above bounds with our assumptions (3.4) for half-duplex setting and

(3.5) for full-duplex setting, the converse bounds for all regimes can be found with a few

simple derivations, as shown in the following section.

3.4.3 Converse for Theorem 3.1 and Theorem 3.2

Weak Interference

First consider the weak interference regime where we apply the bound (3.111). Setting

π01 + π02 ≤ π for the half-duplex setting we recover the tight converse bound, DΣ,ICLC ≤

min(DΣ,BC,DΣ,IC + π). Similarly, setting π01 ≤ π
2
, π02 ≤ π

2
for the full-duplex setting, we

obtain the tight converse bound, D′Σ,ICLC
≤ min(DΣ,BC,DΣ,IC + π).

Mixed Interference

Next consider the mixed interference regime. The converse for the half-duplex case with

mixed interference is trivial because the bounds are identical to the weak interference regime.

So let us focus on the full-duplex case. It follows from the sum-GDoF under finite precision
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CSIT of the broadcast channel (reference [18], summarized in (3.7)), and the interference

channel without cooperation (reference [65, 18], summarized in (3.6)), that in the mixed

interference regime, there is no cooperation gain, i.e., DΣ,BC = DΣ,IC, when either of the

following conditions holds.

1. α11 + α22 ≥ α12 + α21

2. min(α11, α22) ≤ min(α12, α21) ≤ max(α12, α21) ≤ max(α11, α22)

In both cases the trivial bound DΣ,ICLC ≤ DΣ,BC is tight. Henceforth in this section we will

only consider the remainder of the mixed interference regime, which excludes α11 + α22 ≥

α12 + α21 and min(α11, α22) ≤ min(α12, α21) ≤ max(α12, α21) ≤ max(α11, α22).

Let us assume without loss of generality that α22 ≤ α11. Next, let us define max(α21, α22) +

(α11 − α21)+ as Λ1, and similarly max(α12, α11) + (α22 − α12)+ as Λ2, so the bound (3.112)

can be written as:

DΣ,ICLC ≤ min (DΣ,IC + π01 + π02,Λ1 + π01,Λ2 + π02,DΣ,BC) .

Now let us show that one of Λ1,Λ2 is equal to DΣ,IC and the other is equal to DΣ,BC. This

will be useful to simplify the bound later. We have the following four cases.

• α21 ≤ α22 ≤ α11 ≤ α12

Λ1 is α11 + α22 − α21 = DΣ,IC, and Λ2 is α12 = DΣ,BC.

• α12 ≤ α22 ≤ α11 ≤ α21

Λ1 is α21 = DΣ,BC, and Λ2 is α11 + α22 − α12 = DΣ,IC.

• α22 ≤ α12 ≤ α11 ≤ α21

Λ1 is α21 = DΣ,BC, and Λ2 is α11 = DΣ,IC.
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• α22 ≤ α21 ≤ α11 ≤ α12

Λ1 is α11 = DΣ,IC, and Λ2 is α12 = DΣ,BC.

Next, let us apply the bound (3.112) to the full-duplex setting (3.5) which corresponds to

π01 ≤ π
2
, π02 ≤ π

2
. In the mixed interference regime with α11 + α22 ≤ α12 + α21, we have,

D′Σ,ICLC ≤ min (DΣ,IC + π01 + π02,Λ1 + π01,Λ2 + π02,DΣ,BC)

≤ min
(
DΣ,IC + π,DΣ,IC +

π

2
,DΣ,BC +

π

2
,DΣ,BC

)
≤ min

(
DΣ,IC +

π

2
,DΣ,BC

)
.

Thus, a tight converse for the full-duplex setting is obtained in the mixed interference regime.

Strong Interference

Let us apply the bound (3.113) to the half-duplex setting (3.4) which corresponds to π01 +

π02 ≤ π. Here we have,

DΣ,ICLC ≤ min
(
DΣ,IC + π01 + π02, α12 + π02, α21 + π01,

D3e + π01 + π02

3
,DΣ,BC

)
≤ min

(
DΣ,IC + π,

α12 + α21 + π01 + π02

2
,
D3e + π

3
,DΣ,BC

)
≤ min

(
DΣ,IC + π,

α12 + α21 + π

2
,
D3e + π

3
,DΣ,BC

)
≤ min

(
DΣ,IC + π,

D2e + π

2
,
D3e + π

3
,DΣ,BC

)
,

which is the tight converse bound for the half-duplex setting in the strong interference regime.

Next, let us apply the bound (3.113) to the full-duplex setting (3.5) which corresponds to

π01 ≤ π
2
, π02 ≤ π

2
. Here we have,

D′Σ,ICLC ≤ min
(
DΣ,IC + π01 + π02, α12 + π02, α21 + π01,

D3e + π01 + π02

3
,DΣ,BC

)
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≤ min
(
DΣ,IC + π, α12 +

π

2
, α21 +

π

2
,
D3e + π

3
,DΣ,BC

)
≤ min

(
DΣ,IC + π,min(α12, α21) +

π

2
,
D3e + π

3
,DΣ,BC

)

which is the tight converse bound for the full-duplex setting in the strong interference regime.

This completes the proof of converse for both Theorem 3.1 and Theorem 3.2.

3.5 Achievability for Weak and Mixed Interference

In this section, we specify the achievable schemes for the weak and mixed interference

regimes, for both the half-duplex setting and the full-duplex setting. Without loss of gener-

ality, we will assume throughout this section that

α11 ≥ α22. (3.114)

3.5.1 Weak Interference Regime: max(α12, α21) ≤ min(α11, α22)

We will assume π ≤ DΣ,BC−DΣ,IC. There is no loss of generality in this assumption because

the achievability for π > DΣ,BC − DΣ,IC is the same as that for π = DΣ,BC − DΣ,IC, i.e.,

the upperbound of DΣ,BC is achieved without need for further cooperation. The achievable

schemes for both half-duplex and full-duplex settings are shown in the Table 3.2. This is

because in the weak interference regime the cooperative messages W01,W02 are combined

into one common message W c
0 = (W01,W02), which carries dc0 DoF and can be decoded by

both users. Therefore, without loss of generality we can assume d01 = d02 = dc0/2. Since the

total cooperation capability is shared equally in the two directions, there is no distinction

between the half-duplex and full-duplex settings in the weak interference regime.
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Table 3.2: The achievability for weak interference regime under both half-duplex and full-duplex
settings, where M , α11 + α22, N , α12 + α21, and π ≤ DΣ,BC − DΣ,IC. The received powers of
different codewords at each receiver are specified in decreasing order, which also corresponds to the
successive decoding order at that receiver.

Sub-cases Codewords’ GDoF and Power
Received Power

User 1 User 2

α11, α22 ≥ N,

π ≤ DΣ,BC −DΣ,IC

= min(α12, α21)

X11 :

{
d11 = α11 − α21

E|X11|2 = P−α21

X22 :

{
d22 = α22 − α12

E|X22|2 = P−α12

Xc
0 :

{
dc0 = π

E|Xc
0|2 = Diag(1− P−α21, 1− P−α12)

Xc
0 :∼ P α11

X11 :∼ P α11−α21

X22 :∼ P 0

Xc
0 :∼ P α22

X22 :∼ P α22−α12

X11 :∼ P 0

α11 ≥ N ,

α22 ≤ N ,

π ≤ DΣ,BC −DΣ,IC

= α22 −max(α12, α21)

α12 ≥ α21

Xp
11 :

{
dp11 = α11 − α21

E|Xp
11|2 = P−α21

Xc
11 :

{
dc11 = α12 + α21 − α22

E|Xc
11|2 = 1− P−dc11

X22 :

{
d22 = α22 − α12

E|X22|2 = P−α12

Xc
0 :

{
dc0 = π

E|Xc
0|2 = Diag(P−d

c
11 − P−α21, 1− P−α12)

Xc
11 :∼ P α11

Xc
0 :∼ P−d

c
11+α11

Xp
11 :∼ P α11−α21

X22 :∼ P 0

Xc
0 :∼ P α22

Xc
11 :∼ P α21

X22 :∼ P α22−α12

Xp
11 :∼ P 0

α12 ≤ α21

Xp
11 :

{
dp11 = α11 − α21

E|Xp
11|2 = P−α21

Xc
11 :

{
dc11 = 2α21 − α22

E|Xc
11|2 = 1− P−dc11

X22 :

{
d22 = α22 − α21

E|X22|2 = P−α21

Xc
0 :

{
dc0 = π

E|Xc
0|2 = Diag(P−d

c
11 − P−α21, 1− P−α12)

Xc
11 :∼ P α11

Xc
0 :∼ P−d

c
11+α11

Xp
11 :∼ P α11−α21

X22 :∼ P 0

Xc
0 :∼ P α22

Xc
11 :∼ P α21

X22 :∼ P α22−α21

Xp
11 :∼ P 0

α11, α22 ≤ N ,

N +max(α12, α21) ≤M ,

π ≤ DΣ,BC −DΣ,IC

=M −N −max(α12, α21)

Xp
11 :

{
dp11 = α11 − α21

E|Xp
11|2 = P−α21

Xc
11 :

{
dc11 = α12 + α21 − α22

E|Xc
11|2 = 1− P−dc11

Xp
22 :

{
dp22 = α22 − α12

E|Xp
22|2 = P−α12

Xc
22 :

{
dc22 = α12 + α21 − α11

E|Xc
22|2 = 1− P−dc22

Xc
0 :

{
dc0 = π

E|Xc
0|2 = Diag(P−d

c
11 − P−α21, P−d

c
22 − P−α12)

Xc
11 :∼ P α11

Xc
0 :∼ P−d

c
11+α11

Xc
22 :∼ P α12

Xp
11 :∼ P α11−α21

Xp
22 :∼ P 0

Xc
22 :∼ P α22

Xc
0 :∼ P−d

c
22+α22

Xc
11 :∼ P α21

Xp
22 :∼ P α22−α12

Xp
11 :∼ P 0

As shown in Table 3.2 the achievable schemes are partitioned into three sub-cases. To

complement Table 3.2, let us explicitly note the sum-GDoF of the interference channel [24]

and the broadcast channel [18] for each -case as follows.

• α11, α22 ≥ N

DΣ,IC = M −N , DΣ,BC = M −max(α12, α21).

• α11 ≥ N,α22 ≤ N
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DΣ,IC = α11, DΣ,BC = M −max(α12, α21).

• α11, α22 ≤ N

DΣ,IC = min(N,M − max(α12, α21)), DΣ,BC = M − max(α12, α21). Note that if N +

max(α12, α21) > M then there is no cooperation gain as DΣ,IC = DΣ,BC = M −

max(α12, α21). This is why we have the constraint N + max(α12, α21) ≤ M in the

last row of the table.

In order to illustrate how the entries in the table describe the achievable scheme for each

case, let us explain the last row of the table. The achievability for all other cases follows

from the description in Table 3.2 in a similar fashion.

In the sub-case corresponding to the last row of Table 3.2, the noncooperative messages

W11,W22 are both split into private and common components, W11 = (W c
11,W

p
11), W22 =

(W c
22,W

p
22). The sub-messages W c

11, W p
11, W c

22, W p
22 carry α12 + α21 − α22, α11 − α21, α12 +

α21−α11, and α22−α12 GDoF respectively. W p
11,W

c
11,W

p
22,W

c
22 are encoded into independent

Gaussian codebooks producing codewords Xp
11, X

c
11, X

p
22, X

c
22 with power levels P−α21 , 1 −

P dc11 , P−α12 , and 1 − P dc22 respectively. The cooperative common message W c
0 carries π

GDoF and is encoded into the vector Gaussian codeword Xc
0 = (Xc

01, X
c
02) with covariance

matrix Diag(P−d
c
11 − P−α21 , P−d

c
22 − P−α12). The transmitted symbols are X1 = Xc

11 +

Xc
01 + Xp

11, X2 = Xc
22 + Xc

02 + Xp
22. Next let us describe the decoding. User 1 (resp. User

2) decodes Xc
11, X

c
0, X

c
22, X

p
11 (resp. Xc

22, X
c
0, X

c
11, X

p
22) successively. Specifically, for User 1,

the received power of Xc
11 is ∼ Pα11 while the interference power is ∼ P−d

c
11+α11 , so that

the SINR is ∼ P dc11 . Therefore Xc
11 for message W c

11 can be successfully decoded. Then

User 1 reconstructs and subtracts the contribution of Xc
11 and starts to decode Xc

0. The

desired power for Xc
0 is ∼ P−d

c
11+α11 while the interference power is Pα12 , so that SINR is

∼ P−d
c
11+α11−α12 = Pα11+α22−2α12−α21 = PM−N−α12 . Since dc0 = π ≤M−N−max(α12, α21) ≤

M −N −α12, it follows that message W c
0 can be successfully decoded. Proceeding similarly,

by using successive interference cancellation, User 1 can decode Xc
22, X

p
11, X

p
22 in that order

55



Table 3.3: The achievability for mixed interference regime under half-duplex setting and full-duplex
setting. It is assumed that π ≤ DΣ,BC − DΣ,IC, because any further cooperation is redundant. The
table also applies to the full-duplex setting, provided that π is replaced by π

2 . This is because one of
W01,W02 is wasted.

Sub-cases Codewords’ GDoF and Power
Received Power

User 1 User 2
α21 ≤ α22 ≤
α11 ≤ α12,

π ≤ DΣ,BC −DΣ,IC

= N −M

X11 : d11 = α11 − α21, E|X11|2 = P−α21

X22 : d22 = α22, E|X22|2 = 1− P−α22

X01 : d01 = π,E|X01|2 = P−α22

X22 :∼ Pα12

X01 :∼ Pα12−α22

X11 :∼ Pα11−α21

X22 :∼ Pα22

X01 :∼ P 0

X11 :∼ P 0

α12 ≤ α22 ≤
α11 ≤ α21,

π ≤ DΣ,BC −DΣ,IC

= N −M

X11 : d11 = α11, E|X11|2 = 1− P−α11

X22 : d22 = α22 − α12, E|X22|2 = P−α12

X02 : d02 = π,E|X02|2 = P−α11

X11 :∼ Pα11

X02 :∼ P 0

X22 :∼ P 0

X11 :∼ Pα21

X02 :∼ Pα21−α11

X22 :∼ Pα22−α12

α22 ≤ α12 ≤
α11 ≤ α21,

π ≤ DΣ,BC −DΣ,IC

= α21 − α11

X11 : d11 = α11, E|X11|2 = 1− P−α11

X02 : d02 = π,E|X02|2 = P−α11

X11 :∼ Pα11

X02 :∼ P 0

X11 :∼ Pα21

X02 :∼ Pα21−α11

α22 ≤ α21 ≤
α11 ≤ α12,

π ≤ DΣ,BC −DΣ,IC

= α12 − α11

X11 : d11 = α11, E|X11|2 = 1
X01 : d01 = π,E|X01|2 = 1

X01 :∼ Pα12

X11 :∼ Pα11

X11 :∼ Pα21

X01 :∼ Pα22

for messages W c
22,W

p
11,W

p
22. Note that the decoding order corresponds to the decreasing

order of power levels at the receiver, which is also the order in which the codewords are

listed in the last two columns of Table 3.2.

3.5.2 Mixed Interference Regime:

min(α12, α21) ≤ max(α11, α22),max(α12, α21) ≥ min(α11, α22)

In the mixed interference regime, as explained in Section 3.4.3, there are only four cases

where a cooperation gain exists. Therefore, the description of achievable schemes in Table

3.3 shows only these four sub-cases.

The achievability for the full-duplex setting follows by replacing π with π/2. This is because

only one-sided cooperation is needed in the mixed interference regime, i.e., either W01 or
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W02 is not used, thereby wasting one-half of the cooperation capability.

To illustrate how the table describes the achievable scheme, let us consider the first row.

In this regime, User 1 is strictly stronger than User 2. Messages W11,W22,W01 carry α11 −

α21, α22, π GDoF, and they are encoded into independent Gaussian codebooks X11, X22, X01

with powers P−α21 , 1 − P−α22 , and P−α22 , respectively. The transmitted signals are X1 =

X11, X2 = X22 + X01. User 1 decodes X22 for W22 first, while treating everything else as

noise. For this decoding stage, the desired signal power is ∼ Pα12 while the interference

power is ∼ Pα12−α22 so that SINR is ∼ Pα22 , which gives us the GDoF value d22 = α22. After

successfully decoding W22, Receiver 1 is able to reconstruct the codeword X22 and subtract

its contribution from the received signal. Then it decodes the codeword X01 for its message

W01 while treating the remaining signal as noise. The desired power is ∼ Pα12−α22 while

interference power is ∼ Pα11−α21 , so that the SINR for this decoding is ∼ PN−M . Since

π ≤ N −M , W01 can be successfully decoded. After reconstructing and subtracting the

contribution of codeword X01, User 1 decodes X11 for its desired message W11, while treating

the remaining signal as noise. The desired signal power is∼ Pα11−α21 while interference power

is ∼ P 0. Since d11 = α11 − α21, message W11 can be successfully decoded. Receiver 2 is able

to decode X22 by treating everything else as noise.

3.6 Achievability for Strong interference: min(α12, α21) ≥

max(α11, α22)

In this section, we describe the achievable schemes for the strong interference regime, which

are separated into half-duplex and full-duplex settings. The broadcast channel bound for

the strong interference, which is found in [18], is DΣ,BC = α12 + α21 −max(α11, α22). In this

section, we no longer assume that α11 ≥ α22. Instead, in the strong interference regime, it is
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more convenient to assume α12 ≥ α21 without loss of generality.

3.6.1 Half-duplex Setting

Let us begin with an illustrative example where α11 = α22 = 2, α12 = 5, α21 = 3. For this

setting, DΣ,BC = 6 according to [18] and DΣ,IC = 3 according to [24]. Let us consider how

much cooperation is needed in this case to achieve DΣ,BC. The achievable scheme of [18]

summarized in Figure 3.7, requires π = 6 GDoF of cooperation, i.e., all messages must be

shared between the two transmitters. This is because in order to take advantage of the

strong interference links, the private messages of Users 1 and 2, are sent from opposing

transmitters, i.e., Transmitters 2 and 1, respectively. These are messages W p
01,W

p
02 in Figure

3.7. The common message W c
o that is decoded by both users is sent from both transmitters,

so it is shared as well. However, as shown in Theorem 3.1 in this chapter, the sum-GDoF of

X1

W
p
021

Wc
02

X2

W
p
013

Wc
02

2

2

3

5

Wc
02

W
p
01 3

Wc
0 2

Y1

(X1)
3
1

X2

W
p
021

Wc
02

Wc
0 2

Y2

X1

(X2)
5
3

Figure 3.7: The scheme from [18] requires π = 6 GDoF of cooperation to achieve the broadcast
channel bound.

limited cooperation interference channel for this example is DΣ,ICLC = min(3+π, 8+π
2
, 13+π

3
, 6).

Therefore, π∗half = 5 is the minimum value of cooperative GDoF needed to achieve the BC

bound. The optimally efficient scheme is shown in Figure 3.8. The improvement in efficiency

comes from the observation that part of the common message (in this case, W22) can be
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transmitted from only one transmitter (in this case, Transmitter 2), and therefore requires

no cooperation.

The achievable scheme is described as follows: The cooperative messages W01,W02 are split

into a cooperative common5 message W c
0 = (W c

01,W
c
02) and the cooperative private messages

W p
01,W

p
02. Messages W22,W

c
0 ,W

p
01,W

p
02 carry 1, 1, 3, 1 GDoF respectively such that π = 5.

W22,W
p
01,W

p
02 are encoded into independent Gaussian codebooks X22, X

p
01, X

p
02 respectively

with powers E|X22|2 = 1−P−1, E|Xp
01|2 = P−2, E|Xp

02|2 = P−2. Message W c
0 carries 1 GDoF

and is encoded to a vector Gaussian codebook Xc
0 = (Xc

01, X
c
02) with power covariance

matrix Diag(1 − P−2, P−1 − P−2). The transmitted symbols are X1 = Xc
01 + Xp

02, X2 =

X22 +Xc
02 +Xp

01. Suppressing the time index for clarity, the received signals are:

Y1 =
√
P 2G11(Xc

01 +Xp
02) +

√
P 5G12(X22 +Xc

02 +Xp
01) + Z1

Y2 =
√
P 3G21(Xc

01 +Xp
02) +

√
P 2G22(X22 +Xc

02 +Xp
01) + Z2

When decoding, User 1 first decodes X22 for W22 while treating everything else as Gaussian

noise. Since X22 is received at power level∼ P 5 while all other signals are received with power

levels ∼ P 4 or lower, the SINR for decoding W22 is ∼ P 1, which gives us the GDoF value

d22 = 1. After decoding W22, Receiver 1 is able to reconstruct codeword X22 and subtract

its contribution from the received signal. After this, Receiver 1 decodes the codeword Xc
0

for message W c
0 , while treating the remaining signals as Gaussian noise. Since the desired

signal for this decoding is received with power level ∼ P 4 while all other signals are received

with power levels ∼ P 3 or less, the SINR for decoding W c
0 is ∼ P 1 which gives GDoF value

dc0 = 1. Then Receiver 1 subtracts the contribution of Xc
0 and decodes message W p

01 while

treating all other remaining signals as Gaussian noise. As evident from Figure 3.8, the SINR

for this decoding is ∼ P 3 which gives us GDoF value dp01 = 3. Receiver 2 proceeds similarly

by successively decoding W c
0 ,W22,W

p
02.

5The cooperative common message may be arbitrarily divided among the two users, e.g., without loss of
generality, we can assume that half of W c

0 is the desired message for User 1 and the other half of W c
0 is the

desired message for User 2.
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Figure 3.8: The optimally efficient achievable scheme achieves the broadcast channel bound with
only π = 5 GDoF of cooperation.

In general, to prove the achievability for the strong interference regime completely, there

are 4 sub-cases, which cover all possibilities. Note that we assume π ≤ π∗half because the

achievable scheme for π > π∗half is the same as π = π∗half , since π∗half already achieves the

broadcast channel bound.

Case 1: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≤ α11 + α22 + max(α11, α22)

X1

W
p
02dp02

W11d11

X2

W
p
01dp01

W22d22

α11

α22

α21

α12

W11d11

W
p
01 dp01

W22 d22

Y1

(X1)
α21
δ

X2

W
p
02dp02

W11d11

W22 d22

Y2

X1

(X2)
α12
γ

Figure 3.9: Signal partition in the regime α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≤ α11 +
α22 + max(α11, α22), δ = α21 − α11, γ = α12 − α22.
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The sum-GDoF value in this case is characterized as:

DΣ,ICLC = min
(
α21 + π,

α12 + α21 + π

2
,DΣ,BC

)
. (3.115)

• When π ≤ α12 − α21, the first bound is tight, which is achieved by having W11,W22,W
p
01

carry α21 − α22, α22, π GDoF respectively. They are encoded into independent Gaussian

codebooks producing codewords X11, X22, X
p
01 with powers E|X11|2 = 1,E|X22|2 = 1 −

P−α21 ,E|Xp
01|2 = P−α21 . The transmitted signals are X1 = X11, X2 = X22 + Xp

01. When

decoding, User 1 first jointly (acting as the receiver in a multiple access channel) decodes

X11 and X22 while treating everything else as noise, while the noise floor due to Xp
01 is

∼ Pα12−α21 . The GDoF region for this multiple access channel is the following.

{
(d11, d22) : d11 ≤ α11 + α21 − α12, d11 + d22 ≤ α21

}
. (3.116)

Since d11 = α21−α22 ≤ α11 +α21−α12, d11 + d22 = α21 belongs to the GDoF region of the

multiple access channel, User 1 is able to decode X11, X22 for messages W11,W22. After

this, User 1 subtracts the reconstructed codewords X11, X22 and then decodes Xp
01. The

SINR for this decoding is ∼ Pα12−α21 , such that dp01 = π ≤ α12 − α21 and the decoding

is successful. User 2 decodes X11, X22 successively. The SINR values for X11, X22 are

∼ Pα21−α22 ,∼ Pα22 respectively, which give us d11 = α21 − α22, d22 = α22. Therefore

X11, X22 are successfully decoded at User 2.

• When α12 − α21 ≤ π ≤ π∗half , where π∗half = α12 + α21 − 2 max(α11, α22) according to

Corollary 1, the second bound is tight and is achieved as follows: W11,W22,W
p
01,W

p
02 carry

d11 = (α21 + 2α11 − α12 − π)/2, d22 = α12 − α11, d
p
01 = (α12 − α21 + π)/2, dp02 = (α21 −

α12 + π)/2 GDoF respectively. They are encoded into independent Gaussian codewords

X11, X22, X
p
01, X

p
02 with powers E|X11|2 = 1−P−d11−d22 ,E|X22|2 = 1−P−d11−d22 ,E|Xp

01|2 =

P−d11−d22 ,E|Xp
02|2 = P−d11−d22 . The transmitted symbols are X1 = X11 + Xp

02, X2 =

X22 +Xp
01. When decoding, User 1 decodes X22, X11, X

p
01 successively, The SINRs for these
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codewords are ∼ Pα12−α11 ,∼ Pα11−α12+d11+d22 = P d11 ,∼ Pα12−d11−d22 = P dp01 respectively.

User 2 acts as a multiple access receiver, it jointly decodes X11 and X22 while treating

everything else as noise, where the noise floor due to Xp
02 is α21 − d11 − d22 = α21−α12+π

2
.

Hence the GDoF region for this multiple access channel is the following.

{
(d11, d22) : d22 ≤ α22 −

α21 − α12 + π

2
,

d11 + d22 ≤
α12 + α21 − π

2

}
. (3.117)

Since d22 = α12 − α11 ≤ α22 + max(α11, α22) − α21 = α22 −
α21−α12+π∗half

2
≤ α22 −

α21−α12+π
2

, d11 +d22 = α12+α21−π
2

belongs to the GDoF region of the multiple access channel,

the messagesW11,W22 can be jointly decoded successfully by User 2. After this, User 2 sub-

tracts the contribution of X11, X22 and decodes Xp
02, whose SINR is ∼ Pα21−d11−d22 = P dp02 ,

such that Xp
02 for W p

02 can be successfully decoded. The signal partitioning is shown in

Figure 3.9. The cooperation capability beyond π∗half is redundant because with π∗half co-

operation the broadcast GDoF are already achieved.

Case 2: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≥ α11 + α22 + max(α11, α22)
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0dc0

W11d11
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Wc
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W22d22
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W11d11

W
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Wc
0 dc0

W22 d22
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δ
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Figure 3.10: Signal partition in the regime α12, α21 ≤ α11 + α22, α12 + α21 ≥ α11 + α22 +
max(α11, α22), where δ = α21 − α11, γ = α12 − α22.
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In this regime, the sum-GDoF value, as characterized in (3.12), is:

DΣ,ICLC = min
(
α21 + π,

α12 + α21 + π

2
,

α11 + α12 + α21 + α22 + π

3
,DΣ,BC

)
. (3.118)

• When π ≤ α12 − α21, the first bound is active. The achievable scheme is the same as the

achievable scheme in Case 1 which achieves the first bound for the corresponding π value.

• When α21 − α12 ≤ π ≤ 2α11 + 2α22 − α12 − α21, the second bound is active and also

achieved with the same scheme as in Case 1 for corresponding π value.

• When 2α11 +2α22−α12−α21 ≤ π ≤ π∗half , where according to Corollary 1 we have π∗half =

2α12 +2α21−α11−α22−3 max(α11, α22), the third bound is tight. It is achieved by the fol-

lowing: W11,W22,W
p
01,W

p
02 carry (2α21−α12 +2α11−α22−π)/3, (2α12−α21 +2α22−α11−

π)/3, (α11+α22+α12−2α21+π)/3, (α11+α22+α21−2α12+π)/3 GDoF respectively. They are

encoded into independent Gaussian codebooks X11, X22, X
p
01, X

p
02 with powers E|X11|2 =

1−P−d11 ,E|X22|2 = 1−P−d22 ,E|Xp
01|2 = P−d11−d22−d

c
0 = P (α11+α22−2α12−2α21+π)/3,E|Xp

02|2 =

P−d11−d22−d
c
0 = P (α11+α22−2α12−2α21+π)/3. W c

0 carries (α12 +α21− 2α11− 2α22 + π)/3 GDoF

and it is encoded to a vector Gaussian codebook Xc
0 = (Xc

01, X
c
02) with power covari-

ance matrix Diag(P−d11 − P (α11+α22−2α12−2α21+π)/3, P−d22 − P (α11+α22−2α12−2α21+π)/3). The

transmitted symbols are X1 = X11 + Xc
01 + Xp

02, X2 = X22 + Xc
02 + Xp

01. When decod-

ing, User 1 decodes X22, X
c
0, X11, X

p
01 for messages W22,W

c
0 ,W11,W

p
01 successively, whose

SINR values are ∼ P d22 ,∼ P−d22+α12−α11 = P dc0 ,∼ Pα11−(α11+α22+α12−2α21+π)/3 = P d11 ,∼

Pα12+(α11+α22−2α12−2α21+π)/3 = P dp01 respectively. User 2 proceeds similarly by successively

decoding W11,W
c
0 ,W22,W

p
02. See Figure 3.10 for an illustration.
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Figure 3.11: Signal partition depiction for α12 ≥ α11 + α22, α21 ≤ α11 + α22, where where δ =
α21 − α11, γ = α12 − α22.

Case 3: α12 ≥ α11 + α22, α21 ≤ α11 + α22

In this regime, the sum-GDoF value is

DΣ,ICLC = min
(
α21 + π,

2α12 + α21 + π

3
,DΣ,BC

)
. (3.119)

• When π ≤ α12 − α21, the first bound is tight. The achievable scheme is as follows:

W11,W22,W
p
01 carry α21 − α22, α22, π GDoF respectively and they are encoded into inde-

pendent Gaussian codebooks producing codewords X11, X22, X
p
01 with power E|X11|2 =

1,E|X22|2 = 1 − P−α22 ,E|Xp
01|2 = P−α22 . When decoding, User 1 decodes X22 first with

SINR value ∼ Pα22 . Then, it subtracts the reconstructed codeword X22 and acts as a

multiple access receiver to jointly decode X11 and Xp
01. The GDoF region for this multiple

access channel is the following.

{
(d11, d

p
01) : d11 ≤ α11, d11 + dp01 ≤ α12 − α22

}
. (3.120)

Since d11 = α21 − α22 ≤ α11, d11 + dp01 = α21 − α22 + π ≤ α12 − α22 belongs to the GDoF

region, X11, X
p
01 can be successfully decoded at User 1. For User 2, it successively decodes
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X11, X22, whose SINR values are ∼ Pα21−α22 = P d11 ,∼ Pα22 = P d22 respectively. Therefore

W11,W22 are decoded successfully decoded at User 2.

• When α12−α21 ≤ π ≤ π∗half , where according to Corollary 1 we have π∗half = α12 + 2α21−

3 max(α11, α22), the second bound is tight. The achievable scheme is as follows: Messages

W11,W22,W
p
01,W

p
02 carry (2α21 + α12 − 3α22 − π)/3, (3α22 + α12 − α21 − π)/3, (2α12 −

2α21 + π)/3, (α21 − α12 + π)/3 GDoF respectively. They are encoded into independent

Gaussian codebooks producing codewords X11, X22, X
p
01, X

p
02 with powers E|X11|2 = 1 −

P−d11 ,E|X22|2 = 1 − P−d22 ,E|Xp
01|2 = P−α22 , E|Xp

02|2 = P−d11−d22−d
c
0 = P−(2α21+α12−π)/3.

W c
0 carries (α21−α12 +π)/3 GDoF and is encoded into a vector Gaussian codebook Xc

0 =

(Xc
01, X

c
02) with power covariance matrix Diag(P−d11 − P−(2α21+α12−π)/3, P−d22 − P−α22).

The transmitted symbols are X1 = X11+Xc
01+Xp

02, X2 = X22+Xc
02+Xp

01. When decoding,

User 1 decodes W22,W
c
0 successively while treating everything else as noise. Their SINR

values are ∼ P d22 ,∼ Pα22−d22 = P dc0 . After this, User 1 subtracts the reconstructed

codewords X22, X
c
0. Then it acts as a multiple access receiver to jointly decode W11 and

W p
01 while treating the remaining signal as noise. The GDoF region for this multiple access

channel is the following.

{
(d11, d

p
01) : d11 ≤ α11, d11 + dp01 ≤ α12 − α22

}
. (3.121)

Since d11 = (2α21 + α12 − 3α22 − π)/3 ≤ α21 − α22 ≤ α11, d11 + dp01 ≤ α12 − α22 belongs

to this GDoF region, it follows that W22,W
c
0 can be successfully decoded. User 2 decodes

X11, X
c
0, X22, X

p
02 successively, whose SINR values are ∼ P d11 ,∼ Pα21−d11−α22 = P dc0 ,∼

Pα22−α21+(2α21+α12−π)/3 = P d22 ,∼ Pα21−(2α21+α12−π)/3 = P dp02 respectively. The signal parti-

tion is shown in Figure 3.11. Note that cooperation capability beyond π∗half is redundant

because with π∗half cooperation the broadcast GDoF are already achieved.
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Figure 3.12: Signal partition in the regime α12, α21 ≥ α11+α22, where δ = α21−α11, γ = α12−α22.

Case 4: α12 ≥ α11 + α22, α21 ≥ α11 + α22

In this regime, we have

DΣ,ICLC

= min
(
α11 + α22 + π,

2α12 + 2α21 − α11 − α22 + π

3
,DΣ,BC

)
. (3.122)

• When π ≤ α21 − α11 − α22, the first bound is active, which is achieved by letting

W11,W22,W
p
02 carry α11, α22, π GDoF respectively. They are encoded into independent

Gaussian codebooks X11, X22, X
p
02 with power E|X11|2 = 1−P−α11 ,E|X22|2 = 1,E|Xp

02|2 =

P−α11 . The transmitted symbols are X1 = X11 + Xp
02, X2 = X22. When decoding,

User 1 decodes X22, X11 successively, whose SINR values are ∼ Pα12−α11 ,∼ Pα11 respec-

tively. Since d22 = α22 ≤ α12 − α11, d11 = α11, messages W22,W11 can be decoded suc-

cessfully. User 2 decodes X11, X
p
02, X22 successively, whose SINR values are ∼ Pα11 ,∼

Pα21−α11−α22 ,∼ Pα22 respectively. Since d11 = α11, d
p
02 = π ≤ α21 − α11 − α22, d22 = α22,

messages W11,W
p
02,W22 can be decoded successfully.

• When α21 − α11 − α22 ≤ π ≤ α12 + α21 − 2α11 − 2α22, the first bound is still active
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and is achieved by letting W11,W22,W
p
01,W

p
02 carry α11, α22, π + α11 + α22 − α21, α21 −

α11 − α22 GDoF respectively. They are encoded into independent Gaussian codebooks

X11, X22, X
p
01, X

p
02 with power E|X11|2 = 1 − P−α11 ,E|X22|2 = 1 − P−α22 ,E|Xp

01|2 =

P−α22 ,E|Xp
02|2 = P−α11 . The transmitted symbols are X1 = X11 + Xp

02, X2 = X22 + Xp
01.

When decoding, User 1 decodes X22, X
p
01, X11 successively, whose SINR values are ∼

Pα22 ,∼ Pα12−α22−α11 ,∼ Pα11 respectively. Since d22 = α22, d
p
01 = π + α11 + α22 − α21 ≤

α12 − α22 − α11, d11 = α11, X22, X
p
01, X11 can be decoded successfully. User 2 proceeds

similarly by decoding X11, X
p
02, X22 successively.

• When α12 + α21 − 2α11 − 2α22 ≤ π ≤ π∗half , where according to Corollary 1 we have

π∗half = α12 +α21 +α11 +α22−3 max(α11, α22), the second bound is tight. It is achieved as

follows: W11,W22,W
p
01,W

p
02 carry (α12 +α21− 2α22 +α11−π)/3, (α12 +α21− 2α11 +α22−

π)/3, (2α12 + π − α11 − α22 − α21)/3, (2α21 + π − α11 − α22 − α12)/3 GDoF respectively

and are encoded into independent Gaussian codebooks X11, X22, X
p
01, X

p
02 with powers

E|X11|2 = 1 − P−d11 ,E|X22|2 = 1 − P−d22 ,E|Xp
01|2 = P−α22 ,E|Xp

02|2 = P−α11 . W c
0 carries

(2α11 + 2α22 + π − α12 − α21)/3 GDoF and is encoded into a vector Gaussian codebook

Xc
0 = (Xc

01, X
c
02) with power covariance matrix Diag(P−d11 − P−α11 , P−d22 − P−α22). The

transmitted symbols are X1 = X11 + Xc
01 + Xp

02, X2 = X22 + Xc
02 + Xp

01. User 1 decodes

W22,W
c
0 successively while treating everything else as noise, whose SINR values are ∼

P d22 ,∼ Pα22−d22 = P dc0 respectively. After this, User 1 subtracts the contribution of

codewords X22, X
c
0 and then acts as a multiple access receiver by jointly decoding W11

and W p
01 while treating the remaining signals as noise. The GDoF region for this multiple

access channel is the following.

{
(d11, d

p
01) : d11 ≤ α11, d11 + dp01 ≤ α12 − α22

}
. (3.123)

Since d11 = (α12 + α21 − 2α22 + α11 − π)/3 ≤ (α12 + α21 − 2α22 + α11 − (α12 + α21 −

2α11− 2α22))/3 ≤ α11, d11 + dp01 = α12−α22 belongs to the GDoF region, W11,W
p
01 can be
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decoded successfully. User 2 proceeds similarly. See Figure 3.12 for an illustration.

3.6.2 Full-duplex Setting

In this section we consider the achievability for the full-duplex setting. Before presenting the

complete proof, let us use our example (α11 = α22 = 2, α12 = 5, α21 = 3) to convey the main

insights. Here we have D′Σ,ICLC
= min(3 + π, 3 + π

2
, 13+π

3
, 6). The bounds DΣ,IC + π = 3 + π

and D3e+π
3

= 13+π
3

are redundant. To achieve the broadcast channel bound (DΣ,BC = 6),

the GDoF in the conference link is π∗full = 6, which means our proposed scheme is no more

efficient than [18]. This is because in our scheme, dc0 = 1, dp01 = 3, dp02 = 1, which requires

π
2
≥ dp01 = 3. Hence 1 DoF in the W02 conference link is wasted because d02 ≤ dp02 + dc0 = 2.

We can see that under full-duplex setting, one cooperation link is fully wasted in the mixed

interference regime, but in the strong interference regime, one cooperation link is partially

wasted.

In the full-duplex setting, first of all, the achievable schemes even for one cooperative bit to

buy one over-the-air bit or half over-the-air bit become non-trivial as one of the cooperation

links is partially wasted for some π values. Hence we will discuss it in a bit more detail.

On the other hand, the achievable scheme for achieving the 1/3 bound (when the bound is

active) in the full-duplex setting is the same as the corresponding scheme for half-duplex

setting. In general, we also consider the 4 cases. Similarly, π ≤ π∗full is assumed.

Case 1: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≤ α11 + α22 + max(α11, α22)

In this regime, the sum-GDoF is

D′Σ,ICLC = min
(
α21 +

π

2
,DΣ,BC

)
. (3.124)
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• When π
2
≤ α12 − α21, the first bound is active. The achievability is the same as Case 1 in

the half-duplex setting to achieve the first bound, except dp01 = π/2 here.

• When α12 − α21 ≤ π
2
≤ π∗full

2
, where according to Corollary 2 we have π∗full = 2α12 −

2 max(α11, α22), the first bound is still active and is achieved by letting W11,W22,W
p
01,W

p
02

carry α11 − π
2
, α12 − α11,

π
2
, π

2
+ α21 − α12 GDoF respectively. They are encoded into

independent Gaussian codebooks producing codewords X11, X22, X
p
01, X

p
02 with powers

E|X11|2 = 1−P−d11−d22 ,E|X22|2 = 1−P−d11−d22 ,E|Xp
01|2 = P−d11−d22 ,E|Xp

02|2 = P−d11−d22 .

The transmitted signals are X1 = X11 +Xp
02, X2 = X22 +Xp

01. When decoding, Receiver 1

uses successive interference cancellation to decode X22, X11, X
p
01 successively, whose SINR

values are ∼ Pα12−α11 = P d22 ,∼ Pα11−α12+d11+d22 = P d11 ,∼ Pα12−d11−d22 = P
π
2 = P dp01 .

Therefore, W22,W11,W
p
01 can be successfully decoded. User 2 acts as a multiple access

receiver, it jointly decodes X11 and X22, while the noise floor due to Xp
02 is Pα21−α12+π

2 .

The GDoF region for this multiple access channel is the following.

{
(d11, d22) : d22 ≤ α22 − (α21 − α12 +

π

2
),

d11 + d22 ≤ α12 −
π

2

}
. (3.125)

Since d22 = α12 − α11 ≤ α22 − α21 + max(α11, α22) = α22 − (α21 − α12 +
π∗full

2
) ≤ α22 −

(α21−α12 + π
2
), d11 + d22 = α12− π

2
belongs to the GDoF region, W22,W11 can be decoded

successfully. Then User 2 subtracts the contribution of X11, X22 and decodes Xp
02, whose

SINR is ∼ Pα21−d11−d22 = P dp02 , so W p
02 is decoded successfully.
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Case 2: α12 ≤ α11 + α22, α21 ≤ α11 + α22, α12 + α21 ≥ α11 + α22 + max(α11, α22)

• 2α21 ≤ α11 + α22 + max(α11, α22)

In this regime, the sum-GDoF value is

D′Σ,ICLC = min
(
α21 +

π

2
,DΣ,BC

)
. (3.126)

– When π
2
≤ α11 + α22 − α21, the first bound is active. The achievability is the same

as in Case 1 above to achieve the first bound for the corresponding π value.

– When α11 + α22 − α21 ≤ π
2
≤ π∗full

2
, where according to Corollary 2 we have π∗full =

2α12−2 max(α11, α22), the first bound is active and is achieved by lettingW11,W22,W
p
01,

W p
02,W

c
0 carry α11 − π

2
, α12 − α21 + α22 − π

2
, π

2
, α21 − α12 + π

2
, α21 − α11 − α22 + π

2

GDoF respectively. Messages W11,W22,W
p
01,W

p
02 are encoded into independent Gaus-

sian codebooks producing codewords X11, X22, X
p
01, X

p
02 with powers E|X11|2 = 1 −

P−d11 ,E|X22|2 = 1 − P−d22 ,E|Xp
01|2 = Pα11−α12−d11 ,E|Xp

02|2 = Pα22−α21−d22 , respec-

tively. Message W c
0 is encoded into a vector Gaussian codebook producing code-

word Xc
0 = (Xc

01, X
c
02) with the covariance matrix Diag(P−d11−Pα22−α21−d22 , P−d22−

Pα11−α12−d11). The transmitted symbols are X1 = X11 + Xc
01 + Xp

02, X1 = X22 +

Xc
02 + Xp

01. When decoding, User 1 decodes X22, X
c
0, X11, X

p
01 successively, with

SINR values ∼ P d22 ,∼ Pα12−α11−d22 = P dc0 ,∼ P d11 ,∼ Pα11−d11 = P
π
2 = P dp01

respectively. Therefore W22,W
c
0 ,W11,W

p
01 can be successfully decoded at User 1.

User 2 proceeds similarly by decoding W11,W
c
0 ,W22,W

p
02 successively. It can be

checked that d01 = dp01 = π
2
, d02 = dp02 + dc0 = 2α21 − α12 − α11 − α22 + π ≤

2α21 − α12 − α11 − α22 +
π∗full

2
+ π

2
≤ 2α21 − α11 − α22 −max(α11, α22) + π

2
≤ π

2
.

• 2α21 ≥ α11 + α22 + max(α11, α22)

The sum-GDoF value in this regime is

D′Σ,ICLC = min
(
α21 +

π

2
,
α11 + α12 + α21 + α21 + π

3
,DΣ,BC

)
. (3.127)
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– When π
2
≤ α11 + α22 + α12 − 2α21, the first bound is active. The achievable scheme

is identical to 2α21 ≤ α11 + α22 + max(α11, α22) for the same π value.

– When α11 + α22 − 2α12 + α21 ≤ π
2
≤ π∗full

2
, where according to Corollary 2 we have

π∗full = 2α12 + 2α21 − α11 − α22 − 3 max(α11, α22), the second bound is active, whose

achievability is the same as the achievable scheme for the corresponding bound in

Case 2 in the half-duplex setting.

Case 3: α12 ≥ α11 + α22, α21 ≤ α11 + α22

• α12 ≥ 2α21 −max(α11, α22)

In this regime, the sum-GDoF value is

D′Σ,ICLC = min
(
α21 +

π

2
,DΣ,BC

)
. (3.128)

– When π
2
≤ α12−α21, the first bound is tight, and its achievability is identical to first

bound in Case 3 under the half-duplex setting except dp01 = π
2

here.

– When α12 − α21 ≤ π
2
≤ π∗full

2
, where according to Corollary 2 we have π∗full =

2α12 − 2 max(α11, α22), the first bound is still active and is achieved as follows:

Messages W11,W22, W p
01,W

p
02 carry α12 − α22 − π

2
, α22 + α12 − α21 − π

2
, π

2
, α21 −

α12 + π
2

GDoF respectively. They are encoded into independent Gaussian codewords

X11, X22, X
p
01, X

p
02 with powers E|X11|2 = 1 − P−d11 ,E|X22|2 = 1 − P−d22 ,E|Xp

01|2 =

P−α22 ,E|Xp
02|2 = P−d11−d22−d

c
0 = P−α12+π

2 . W c
0 carries α21 − α12 + π

2
GDoF and

is encoded into a vector Gaussian codebook Xc
0 = (Xc

01, X
c
02) with covariance ma-

trix E|Xc
0|2 = Diag(P−d11 − P−α12+π

2 , P−d22 − P−α22). The transmitted symbols are

X1 = X11+Xc
01+Xp

02, X2 = X22+Xc
02+Xp

01. When decoding, User 1 decodes X22, X
c
0

successively while treating everything else as noise. The SINR values for X22, X
c
0 are

∼ P d22 ,∼ Pα22−d22 = P dc0 respectively. After subtracting the contribution of X22, X
c
0,

it jointly decodes X11 and Xp
01. The GDoF region for this multiple access channel is
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the following.

{
(d11, d

p
01) : d11 ≤ α11, d22 + dp01 ≤ α12 − α22

}
. (3.129)

Since d11 = α12−α22− π
2
≤ α12−α22−

π∗full
2

= max(α11, α22)−α22 ≤ α11, d11 + dp01 =

α12 − α22 belongs to the GDoF region of the multiple access channel, W11,W
p
01 can

be decoded successfully. User 2 successively decodes X11, X
c
0, X22, X

p
02, whose SINR

values are ∼ P d11 ,∼ Pα21−d11−α22 = Pα21−α12+π
2 = P dc0 ,∼ Pα22−α21+α12−π2 = P d22 ,∼

Pα21−α12+π
2 = P dp02 respectively. Note that d01 = dp01 = π

2
, d02 = dp02 + dc0 = 2α21 −

2α12 + π ≤ 2α21 − 2α12 +
π∗full

2
+ π

2
= 2α21 − α12 −max(α11, α22) + π

2
≤ π

2
, so the link

for W02 is partially wasted.

• α12 ≤ 2α21 −max(α11, α22)

In this regime, the sum-GDoF value is

D′Σ,ICLC = min
(
α21 +

π

2
,
2α12 + α21 + π

3
,DΣ,BC

)
. (3.130)

– When π
2
≤ 2α12−2α21, the first bound is active. The achievable schemes are identical

to those for α12 ≥ 2α21 −max(α11, α22) for the same π value.

– When 2α12 − 2α21 ≤ π
2
≤ π∗full

2
, where according to Corollary 2 we have π∗full =

α12 + 2α21 − 3 max(α11, α22), the second bound is active, and its achievability is the

same as the corresponding 1/3 factor bound scheme in Case 3 of the half-duplex

setting.

Case 4: α12 ≥ α11 + α22, α21 ≥ α11 + α22

• α12 ≥ α21 + min(α11, α22)

The achievable scheme for this sub-case is shown in Table 3.4. In this regime the sum-
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Table 3.4: The achievable scheme for Case 4 under the condition α12 ≥ α21 +min(α11, α22), where
M = α11 + α22.

Sub-cases Codewords’ GDoF and Power
Received Power

User 1 User 2

α12 ≥M,

α21 ≥M,

α12 ≥ α21+

min(α11, α22)

(α12 ≥ α21 is

assumed)

π
2 ≤ α21 −M ,

D′Σ,ICLC
=M + π

X11 :

{
d11 = α11

E|X11|2 = 1− P−α11

X22 :

{
d22 = α22

E|X22|2 = 1− P−α22

Xp
01 :

{
dp01 =

π
2

E|Xp
01|2 = P−α22

Xp
02 :

{
dp02 =

π
2

E|Xp
02|2 = P−α11

X22 :∼ P α12

Xp
01 :∼ P α12−α22

X11 :∼ P α11

Xp
02 :∼ P 0

X11 :∼ P α21

Xp
02 :∼ P α21−α11

X22 :∼ P α22

Xp
01 :∼ P 0

α21 −M ≤ π
2

≤ α12 −M ,

D′Σ,ICLC
= α21 +

π
2

X11 :

{
d11 = α11

E|X11|2 = 1− P−α11

X22 :

{
d22 = α22

E|X22|2 = 1− P−α22

Xp
01 :

{
dp01 =

π
2

E|Xp
01|2 = P−α22

Xp
02 :

{
dp02 = α21 −M
E|Xp

02|2 = P−α11

X22 :∼ P α12

Xp
01 :∼ P α12−α22

X11 :∼ P α11

Xp
02 :∼ P 0

X11 :∼ P α21

Xp
02 :∼ P α21−α11

X22 :∼ P α22

Xp
01 :∼ P 0

α12 −M ≤ π
2

≤ α12 −max(α11, α22),

D′Σ,ICLC
= α21 +

π
2

X11 :

{
d11 = α12 − α22 − π

2

E|X11|2 = 1− P−d11

X22 :

{
d22 = α12 − α11 − π

2

E|X22|2 = 1− P−d22

Xp
01 :

{
dp01 =

π
2

E|Xp
01|2 = P−α22

Xp
02 :

{
dp02 = α21 − α12 +

π
2

E|Xp
02|2 = P−α11

Xc
0 :

{
dc0 =M − α12 +

π
2

E|Xc
0|2 = Diag(P−d11 − P−α11, P−d22 − P−α22)

X22 :∼ P α12

Xc
0 :∼ P α12−d22

Xp
01 :∼ P α12−α22

X11 :∼ P α11

Xp
02 :∼ P 0

X11 :∼ P α21

Xc
0 :∼ P α21−d11

Xp
02 :∼ P α21−α11

X22 :∼ P α22

Xp
01 :∼ P 0

GDoF value is

D′Σ,ICLC = min
(
α11 + α22 + π, α21 +

π

2
,DΣ,BC

)
. (3.131)

– When π
2
≤ α21 − α11 − α22, the first bound is active. Messages W11,W22,W

p
01,W

p
02

carry α11, α22,
π
2
, π

2
GDoF respectively. They are encoded into independent Gaus-

sian codebooks producing codewords X11, X22, X
p
01, X

p
02 with powers E|X11|2 = 1 −

P−α11 ,E|X22|2 = 1 − P−α22 ,E|Xp
01|2 = P−α22 ,E|Xp

02|2 = P−α11 . The transmitted

signals are X1 = X11 + Xp
02, X2 = X22 + Xp

01. When decoding, User 1 decodes

X22, X
p
01, X11 successively, whose SINR values are ∼ Pα22 ,∼ Pα12−α11−α22 ,∼ Pα11 .

Since d22 = α22, d
p
01 = π

2
≤ α21−α11−α22 ≤ α12−α11−α22, messages W22,W

p
01,W11

can be decoded successfully. User 2 proceeds similarly by decoding X11, X
p
02, X22
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successively.

– When α21−α11−α22 ≤ π
2
≤ α12−α11−α22, the second bound is active. W11,W22,W

p
01,W

p
02

carry α11, α22,
π
2
, α21 − α11 − α22 GDoF respectively. They are encoded into inde-

pendent Gaussian codebooks producing codewords X11, X22, X
p
01, X

p
02 with powers

E|X11|2 = 1−P−α11 ,E|X22|2 = 1−P−α22 ,E|Xp
01|2 = P−α22 ,E|Xp

02|2 = P−α11 . For de-

coding, User 1 decodes X22, X
p
01, X11 successively while User 2 decodes X11, X

p
02, X22

successively. The distinction between the two regimes α21 − α11 − α22 ≤ π
2
≤

α12 − α11 − α22 and π
2
≤ α21 − α11 − α22 is that message W p

02 carries different GDoF

values.

– When α12 − α11 − α22 ≤ π
2
≤ π∗full

2
, where according to Corollary 2 we have π∗full =

2α12−2 max(α11, α22), the second bound is still active. Messages W11,W22, W p
01,W

p
02

carry α12−α22− π
2
, α12−α11− π

2
, π

2
, α21−α12+ π

2
GDoF respectively. They are encoded

into independent Gaussian codebooks producing codewords X11, X22, X
p
01, X

p
02 with

powers E|X11|2 = 1− P−d11 ,E|X22|2 = 1− P−d22 ,E|Xp
01|2 = P−α22 ,E|Xp

02|2 = P−α11 .

W c
0 carries α11 +α22−α12 + π

2
GDoF and is encoded into a vector Gaussian codebook

Xc
0 = (Xc

01, X
c
02) with power covariance E|Xc

0|2 = Diag(P−d11−P−α11 , P−d22−P−α22).

The transmitted symbols are X1 = X11 + Xc
01 + Xp

02, X2 = X22 + Xc
02 + Xp

01. User

1 decodes W22,W
c
0 successively while treating everything else as noise, the SINR

values are ∼ P d22 ,∼ Pα22−d22 = Pα11+α22+π
2
−α12 = P dc0 respectively. After this User

1 subtracts the contribution of X22, X
c
0, and it acts as a multiple access receiver by

jointly decoding W11 and W p
01 while treating the remaining signals as noise. The

GDoF region of this multiple access channel is the following.

{
(d11, d

p
01) : d11 ≤ α11, d11 + dp01 ≤ α12 − α22

}
. (3.132)

Since d11 = α12 − α22 − π
2
≤ α11, d11 + dp01 = α12 − α22 belongs to the GDoF region,

W11, d
p
01 can be decoded successfully. User 2 proceeds similarly. It can be checked
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that d01 = dp01 = π
2
, d02 = dp02+dc0 = α21−2α12+α11+α22+π ≤ α21−2α12+α11+α22+

π∗full
2

+ π
2

= α21−α12+α11+α22−max(α11, α22)+ π
2

= α21−α12+min(α11, α22)+ π
2
≤ π

2
,

so the link for W02 is partially wasted.

• α12 ≤ α21 + min(α11, α22)

The sum-GDoF value is

D′Σ,ICLC = min
(
α11 + α22 + π, α21 +

π

2
,

2α12 + 2α21 − α11 − α22 + π

3
,DΣ,BC

)
. (3.133)

– When π
2
≤ 2α12 − α21 − α11 − α22, the achievability for the first and second bounds

are the corresponding scheme as the regime α12 ≥ α21 + min(α11, α22) for the same

π
2

value.

– When 2α12 − α21 − α11 − α22 ≤ π
2
≤ π∗full

2
, where according to Corollary 2 we have

π∗full = α12 + α21 + α11 + α22 − 3 max(α11, α22) the third bound is active. The

achievability is the same as the corresponding scheme in Case 4 of the half-duplex

setting.

3.7 Summary

The sum-set inequalities of [20] are utilized to characterize the sum-GDoF of the 2-user

interference channel with limited cooperation, both in half-duplex setting and full-duplex

setting, which bridges the gap between the interference channel and broadcast channel. The

sum-GDoF value is characterized for arbitrary parameter regimes. The result is also extended

to the 2-user X channel setting.

75



Chapter 4

Sum-GDoF of Symmetric Multi-hop

Interference Channel under Finite

Precision CSIT using Aligned-Images

Sum-set Inequalities

Aligned-Images Sum-set Inequalities are used in this chapter to study the GDoF of the

symmetric layered multi-hop interference channel under the robust assumption that CSIT

is limited to finite precision. First, the sum-GDoF value is characterized for the 2 × 2 × 2

setting that is comprised of 2 sources, 2 relays, and 2 destinations. It is shown that the

sum-GDoF does not improve even if perfect CSIT is allowed in the first hop, as long as the

CSIT in the second hop is limited to finite precision. The sum GDoF characterization is then

generalized to the 2× 2× · · · × 2 setting that is comprised of L hops. Remarkably, for large

L, the sum-GDoF value approaches that of the one-hop broadcast channel that is obtained

by full cooperation among the two transmitters of the last hop, with finite precision CSIT.

Previous studies of multi-hop interference networks either identified sophisticated GDoF
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optimal schemes under perfect CSIT, such as aligned interference neutralization and network

diagonalization, that are powerful in theory but too fragile to be practical, or studied robust

achievable schemes like classical amplify/decode/compress-and-forward without claims of

information-theoretic optimality. In contrast, under finite precision CSIT, we show that the

benefits of fragile schemes are lost, while a combination of classical random coding schemes

that are simpler and much more robust, namely a rate-splitting between decode-and-forward

and amplify-and-forward, is shown to be GDoF optimal. As such, this chapter represents

another step towards bridging the gap between theory (optimality) and practice (robustness)

with the aid of Aligned-Images Sum-set Inequalities.

4.1 Introduction

There is much interest in multi-hop interference networks due to their essential role in ex-

panding coverage and enabling high data rates over underutilized (e.g., mm-wave/THz)

frequency bands that suffer from high path loss and blockages. However, an information

theoretic understanding of the robust fundamental limits of such networks remains elusive,

even in the approximate or asymptotic (high SNR) sense. Information theoretic studies of

multi-hop interference networks, such as those in [11, 61, 47, 38, 59, 34, 64, 33, 58, 46, 39, 7, 8],

have focused primarily on the idealized setting where the channel state information at the

transmitters (CSIT) is perfect. The search for optimal solutions under idealized assumptions

leads to ideas like Interference Neutralization [11, 61, 47, 38, 59], Aligned Interference Neu-

tralization [34, 64, 33] and Network Diagonalization [58] that are powerful in theory (e.g.,

everyone gets all the cake), but too fragile to be relevant in practice, where CSIT is only

available to finite precision. For example, Gou et al. introduced in [34] an aligned interfer-

ence neutralization scheme for the layered 2× 2× 2 interference channel which is comprised

of two source nodes, two relay nodes and two destination nodes, that achieves the sum De-
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grees of Freedom (DoF) value of 2 under perfect CSIT. This is trivially optimal because

even if all interference is eliminated, each user by itself cannot achieve more than 1 DoF —

a straightforward consequence of the min-cut max-flow bound. The result is generalized to

the K ×K ×K setting in [58] where a network diagonalization scheme is shown to achieve

K DoF, also trivially optimal for the same reason. Such schemes, that are based on precise

alignment and/or neutralization of signals, are difficult to translate to practice because the

residual interference due to imperfections in CSIT can be severely detrimental. Under perfect

CSIT, even constrained alternatives like decode-and-forward, which can achieve 4/3 DoF by

treating each hop as a 2× 2 X channel [46, 39, 7, 8], are too fragile as they rely strongly on

infinitely precise CSIT to achieve perfect interference alignment. Besides the assumption of

perfect CSIT, another limitation of many of these works, e.g., [34, 64, 33, 58, 46, 39, 7, 8],

is that their focus is limited to the DoF metric which implicitly assumes that all non-zero

channels are equally strong (every non-zero link can carry exactly 1 DoF). To overcome this

limitation, the Generalized Degrees of Freedom (GDoF) framework was introduced in [24],

which is capable of representing weak and strong interference conditions and is the critical

stepping stone to approximate capacity characterizations [24, 5, 4, 28, 6, 41, 53]. Evidently,

for a robust information-theoretic understanding of multi-hop interference networks it is

important to study their GDoF under finite precision CSIT.

Despite the early recognition of their importance [44], network GDoF characterizations under

finite precision CSIT have been generally intractable until recently, mainly due to the diffi-

culty of obtaining tight information theoretic outer bounds under CSIT limitations. Indeed,

the highest performing achievable schemes under finite precision CSIT tend to be robust

random coding schemes that are relatively well understood. Note that this is in sharp con-

trast to GDoF studies under perfect CSIT, where the outer bounds tend to be relatively

straightforward (e.g., min-cut max-flow bounds) and the main challenge is the construc-

tion of sophisticated achievable schemes based on alignment and neutralization of signals.

Under finite precision CSIT, the outer bounds tend to be challenging because they need
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to rule out the potential benefits of all forms of signal alignments that are possible under

perfect CSIT but fail under limited CSIT. Since received signals in an interference network

are sums (linear combinations) of transmitted signals up to noise distortion, bounding the

potential benefits of signal alignments amounts to bounding the size (entropy) of sum-sets

(received signals), an inherently combinatorial endeavor that marks a seemingly necessary

departure from the elegance of classical information theoretic arguments. This is indeed the

approach taken by the so called Aligned Images (AI, in short) bounds that were introduced

in [16] and recently expanded significantly in scope to a broad class of sum-set inequalities in

[20]. AI Sum-set Inequalities have been applied successfully to find GDoF characterizations

under finite precision CSIT for a variety of single-hop interference and broadcast settings

[17, 19, 30, 21, 31, 18, 12, 66]. On the other hand, recent observations in [13] indicate that

further generalizations of the AI Sum-set Inequalities may be needed beyond [20]. Given this

relatively new but limited set of tools that have yet to be applied to multi-hop settings, the

extent of their utility for multi-hop interference networks in particular remains an interesting

open question. It is this open question that motivates our work in this chapter. An overview

of our results is provided next.

To avoid the curse of dimensionality we begin our GDoF study with a symmetric, layered,

2-hop interference network, denoted as a 2 × 2 × 2 setting, which is comprised of 2 source

nodes, 2 relay nodes, and 2 destination nodes. Each hop is a 2× 2 network, where the direct

links are capable of carrying 1 GDoF, and the cross-links are capable of carrying α GDoF.

Since well-designed networks invariably operate in the weak interference regime, our primary

focus is on the weak interference regime (α < 1), although extensions to strong interference

are straightforward in this case. As we apply AI Sum-set Inequalities to this setting, an

immediate challenge manifests in the critical first step. All prior applications of AI bounds

begin by transforming the channel to a deterministic model by a sequence of steps that

include removing the Additive White Gaussian Noise (AWGN) and quantizing the noise-

less received signals. This transformation works well for one-hop settings because it can be
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shown that all the steps involved can collectively only contribute a bounded distortion that

is inconsequential in the GDoF sense. However, the same deterministic transformation is

difficult to justify in a multi-hop setting. This is because the relays are free to choose arbitrary

mappings from their input signals to their output signals, but for arbitrary mappings, a

bounded distortion of inputs does not necessarily correspond to a bounded distortion of

their corresponding outputs. Fortunately, we are able to overcome this obstacle by realizing

that a valid outer bound is obtained if we allow perfect CSIT for the first hop and finite

precision CSIT for just the second hop. This requires the deterministic transformation only

for the second hop, i.e., only the outputs of the relays are distorted and not their inputs.

Surprisingly, this outer bound is found to be achievable even with only finite precision CSIT

for both hops. Specifically, using the compact GDoF expression available from the outer

bound for insights, we are able to construct an achievable scheme that uses rate-splitting

between amplify-and-forward and decode-and-forward strategies to match the outer bound.

This settles the GDoF of the 2× 2× 2 setting with finite precision CSIT in both hops, and

also shows as a byproduct that the sum-GDoF do not improve even if perfect CSIT is allowed

in the first hop. While the proof is non-trivial, it is notable the AI Sum-set Inequalities of

[20] turn out to be sufficient for a tight GDoF characterization in this case. The optimal

sum-GDoF value appears in Theorem 4.1 in Section 4.3.1. Also notable is that the results

automatically translate to strong interference settings simply by switching the labels of the

relays. This extension appears as Corollary 4.1 in Section 4.3.1.

Next we generalize the setting to a symmetric layered L-hop interference network, denoted

as a 2 × 2 × · · · × 2 setting. Here the idea of allowing perfect CSIT in all but the last hop

does not work because the resulting bound would be loose for L > 2. Instead, a recursive

approach is taken, that bounds the maximum mutual information that can be delivered from

the source nodes to the nodes in the `th hop, given the maximum mutual information that

can be delivered to the nodes in the (`− 1)th hop. As ` increases from 2 to L, at each stage

of this recursive expansion, the deterministic transformation is used only for the last (`th)
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hop for that stage. This recursive approach, combined with the AI Sum-set Inequalities and

the insights from the L = 2 setting, turns out to be sufficient to characterize the sum-GDoF

value for the L-hop setting. As before, our focus is on the weak interference setting, for

which the sum GDoF value is presented in Theorem 4.2 in Section 4.3.2. The result can be

immediately extended to strong interference by switching the labels of the relays in every

other hop, provided that the number of hops, L is even, thus giving us Corollary 4.2 in

Section 4.3.2. Another remarkable aspect of this result is that as L approaches infinity, the

sum-GDoF value approaches the sum-GDoF of the corresponding one-hop broadcast channel

where the 2 sources are allowed to cooperate fully, under finite precision CSIT. From the

achievability perspective, this happens because of a successive onion peeling approach that

allows the relays in each successive stage to decode one more layer of interference, so that

the common information accumulated asymptotically at the relays as L approaches infinity,

is enough to match the broadcast channel where the transmitters cooperate fully.

4.2 System Model

Figure 4.1 depicts the layered symmetric L-hop interference channel model. Each hop is a

2× 2 topology, comprised of 2 transmitters and 2 receivers. For the `th hop, ` ∈ [1 : L], the

two transmitters are labeled as Tx1[`], Tx2[`], and the corresponding receivers are labeled as

Rx1[`],Rx2[`] respectively. The receivers for the `th hop are the same physical nodes that act

as the transmitters for the (`+ 1)th hop, i.e., Rxi[`] ≡ Txi[`+1], ` ∈ [1 : L− 1], i ∈ [1 : 2]. The

transmitters for the first hop, Tx1[1],Tx2[1] are also referred to as sources, the receivers for

the last hop, Rx1[L],Rx2[L] are also referred to as destinations, and the remaining nodes are

also referred to as relays.

Suppose the communication takes place over N channel uses. There are two independent

messages, W1 ∈ [1 : d2NR1e],W2 ∈ [1 : d2NR2e], such that for i ∈ [1 : 2], message Wi
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Tx1[1] Rx1[1] ≡ Tx1[2]

Tx2[1] Rx2[1] ≡ Tx2[2]

W1

W2

1

1
α

α

Rx1[2] ≡ Tx1[3]

Rx2[2] ≡ Tx2[3]

1

1
α

α 1

1

α

α

1

1
α

α

Rx1[L]

Rx2[L]

Ŵ1

Ŵ2

Figure 4.1: Layered Symmetric L-hop Interference Channel model.

originates from Source Txi[1] and is intended for Destination Rxi[L] respectively. Following

the GDoF formulation, under the nth channel use, n ∈ [1 : N ], the inputs and outputs of the

`th hop are related as follows,

Y1[`](n) =
√
PG11[`](n)X1[`](n) +

√
PαG12[`](n)X2[`](n) + Z1[`](n) (4.1)

Y2[`](n) =
√
PαG21[`](n)X1[`](n) +

√
PG22[`](n)X2[`](n) + Z2[`](n) (4.2)

such that the signal sent from the transmitter Txi[`] is denoted as Xi[`](n), the signal observed

by the receiver Rxi[`] is denoted as Yi[`](n), the channel coefficient between Txi[`] and Rxk[`] is

denoted as Gki[`](n), the additive noise observed by the receiver Rxi[`] is denoted as Zi[`](n),

and i, k ∈ [1 : 2], n ∈ [1 : N ]. All symbols are complex, the noise terms represent i.i.d. zero

mean unit variance circularly symmetric Additive White Gaussian Noise (AWGN), and the

transmitted symbols X1[`](n), X2[`](n) are each subject to a unit transmit power constraint.

We assume that the channel coefficients Gki[`](n) follow the bounded density assumption of

[16], i.e., all joint and conditional probability density functions exist and are bounded. To

make this precise, let G be a set of real-valued random variables, that satisfies the following

two conditions:

• All random variables in G are bounded away from zero and infinity, i.e., g ∈ G =⇒

|g| ∈ [1/∆,∆] for some positive finite constant ∆.
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• There exists a finite positive constant fmax, such that for all finite cardinality disjoint

subsets G1,G2 ⊂ G, the conditional probability density function fG1|G2 exists and is

bounded above by f
|G1|
max.

Now, if we represent each channel coefficient in terms of its real and imaginary components,

Gki[`](n) = Gki[`],R(n) + jGki[`],I(n), then the bounded density assumption means that we

require that Gki[`],R(n), Gki[`],I(n) are distinct elements of G for k, i ∈ [1 : 2], ` ∈ [1 : L], n ∈

[1 : N ].

Next, in order to specify the channel knowledge assumptions, let us define

G[`] = {Guv[`](n) : u, v ∈ [1 : 2], n ∈ [1 : N ]} (4.3)

as the subset of G comprised of only the channel coefficients associated with the `th hop.

For simplicity,1 and since this is a common assumption in practice, let us assume that the

channels across different hops are independent. Also, channels are independent of messages

and additive noise terms.

Similarly, define G[`1:`2] =
⋃`2
l=`1
G[l] as the subset of G comprised of all channel coefficients

across hops [`1 : `2]. We assume that precise channel state information is available at the

receivers (CSIR) for all channels in the preceding hops. Specifically, the receivers in the

`th hop, Rx1[`],Rx2[`], have precise knowledge of the realizations of all random variables in

G[1:`]. Furthermore, since the receivers in the `th hop are the same as the transmitters in the

(`+ 1)th hop, Rxk[`] ≡ Txk[`+1], we allow that the same precise channel knowledge of G[1:`] is

available to Tx1[`+1],Tx2[`+1]. The knowledge of all remaining channel coefficients is limited

to their joint probability density functions. The assumption that these probability density

functions satisfy the bounded density assumption is what limits the CSIT to finite precision.

1This assumption is not strictly necessary for our results, but it will simplify the analysis.
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Note that the CSIT assumptions imply that

I(X
[N ]
1[`] , X

[N ]
2[`] ,G[1:`−1];G[`:L]) = 0. (4.4)

This is because the transmitters over the `th hop have no knowledge of channel realizations

beyond what can be passed to them from preceding hops.

Remark: The assumption that CSIT is available for preceding hops at each node strengthens

the GDoF converse bounds, because additional channel knowledge cannot hurt, but it is

noteworthy that the achievable schemes presented in this chapter that meet those bounds do

not make use of this CSIT at any encoder. The receivers do utilize the corresponding CSIR

of all preceding hops. Similarly, let us note that while we allow a receiver to have perfect

CSIR for the channels associated with the other receiver in the same hop, e.g., Rx1[`] has

perfect knowledge of G22[`](n), such knowledge is not used by the achievable scheme either.

As such this assumption also serves mainly to strengthen the converse, and our GDoF results

hold both with and without it.

While the bounded density assumption allows fairly general distributions for the channel

coefficients, an interesting perspective of the channel coefficients is to view them as small

perturbations, say i.i.d. uniform in a small interval around 1, such that the length of that

interval corresponds to the finite precision constraint — the shorter the length of the pertur-

bation interval, the more precisely the channels are revealed by their statistics, and the larger

the peak value of the probability density function. This also explains the need for density

functions to be bounded in order to limit CSIT to finite precision. The channel coefficients

typically represent physical phenomena like channel fading, but viewed as perturbations they

can also represent artifacts that are deliberately introduced into the GDoF model in order to

filter out or eliminate the possibility of fragile schemes emerging as optimal solutions, thus

allowing us to explore information theoretic optimality of random coding based solutions
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that are also practically appealing for their robustness.

Recall that P is a nominal parameter that approaches infinity to define the GDoF limit,

and the exponents that appear with P in (4.1),(4.2) represent coarse channel strength pa-

rameters that are assumed globally known (equivalently, channel strengths in the absence of

perturbations). Specifically, for our symmetric model, the direct links (between Txi[`] and

Rxi[`]) have channel strength corresponding to the exponent 1 and cross links have coarse

channel strength corresponding to the exponent α ∈ R+. Because well-designed networks

tend to operate in the weak interference regime, our focus is on the setting α < 1, although

some of our results generalize to strong interference settings in a straightforward manner.

Intuitively, we may think of each of these channel strength parameters as the (approximate)

capacity of the corresponding point to point link in its original finite SNR setting, and think

of log(P ) as a uniform scaling factor that is simultaneously applied to the capacities of all

the links. Since each link capacity is logarithmic in P , linear scaling of capacity corresponds

to exponential scaling of P , and the original channel capacities α appear as exponents. The

fundamental intuition behind GDoF is that if the capacity of every link in a network is

scaled by the same constant factor (log(P )), then the network capacity should also scale

(approximately) by the same factor. So normalizing the sum-capacity of the network by

log(P ) should produce an approximation to the capacity of the original network. This is

indeed why we see normalizations by log(P ) in the definition of GDoF, as presented next.

The rate pair (R1, R2) is said to be achievable if there exists a scheme, comprised of encoding

functions at the sources, mappings from inputs to outputs at each of the relays, and decoding

functions at the destinations, under which Rx1[L],Rx2[L] can decode W1,W2 respectively with

arbitrarily small error probability in the standard Shannon-theoretic sense[22]. The closure
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of achievable rate tuples is the capacity region C(P ). The GDoF region is defined as

Df.p. =

 (d1, d2) : ∃(R1(P ), R2(P )) ∈ C(P )

s.t. d1 = lim
P→∞

R1(P )
log(P )

, d2 = lim
P→∞

R2(P )
log(P )

 . (4.5)

The superscript ’f.p.’ highlights the finite precision CSIT constraint. Finally, the sum-GDoF

value is defined as Df.p.Σ = max
(d1,d2)∈Df.p.

(d1 + d2).

4.3 Results

Following the information theoretic mindset of starting from the elemental scenarios, the

simplest multi-hop setting, where L = 2, i.e., the 2-hop interference channel (especially in

the weak interference regime, α ≤ 1) is our main focus in this chapter. Our main result is

the sum-GDoF characterization for this channel under finite precision CSIT, presented in

Section 4.3.1. Due to its relative simplicity the 2-hop setting is also instructive to introduce

the main ideas in their simplest form, whose generalizations eventually allow us to find the

sum-GDoF for arbitrary L, as presented in Section 4.3.2.
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4.3.1 Sum-GDoF of the 2-hop Layered Symmetric Interference

Channel under Finite Precision CSIT

Weak Interference Regime: α ≤ 1

Theorem 4.1. For the 2-hop layered symmetric interference channel under finite precision

CSIT, in the weak interference regime α ≤ 1, the sum-GDoF value is given by,

Df.p.Σ =


2− 4α/3, 0 ≤ α ≤ 1/2,

2/3 + 4α/3, 1/2 ≤ α ≤ 4/7,

2− α, 4/7 ≤ α ≤ 1.

(4.6)

The converse proof for Theorem 4.1 is provided in Section 4.4.3. The converse for the regime

4/7 ≤ α ≤ 1 is already available because it corresponds to the sum-GDoF value established

in [16] under finite precision CSIT for the MISO broadcast channel2 that is obtained by

allowing full cooperation (which cannot hurt) among all nodes except the two destination

nodes. However, the converse for the remaining regime, 0 ≤ α ≤ 4
7
, is non-trivial and is

obtained in this chapter based on the sum-set inequalities of [20]. One of the challenging

aspects of the converse is that the deterministic transformation that is the starting point

of all prior applications of Aligned Images bounds [17, 19, 30, 21, 31, 18, 12, 66], is not

directly applicable to the multi-hop setting as explained in the introduction. This challenge

is overcome essentially by allowing perfect CSIT in the first hop (which cannot hurt) and

only using the deterministic transformation for the second hop. Since this produces a tight

converse bound that is achievable with finite precision CSIT in both hops, evidently the

sum-GDoF value is the same (given by Theorem 4.1) whether the CSIT in the first hop is

perfect or restricted to finite precision, as long as the CSIT in the second hop is limited to

2The MISO broadcast channel refers to a two user broadcast channel, where the transmitter is equipped
with two antennas and each user is equipped with one antenna.
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finite precision.

The achievability for Theorem 4.1 is proved in Section 4.5.1. The achievable scheme is

straightforward when 2/3 ≤ α ≤ 1, because it corresponds to a concatenation of two

interference channels [24, 18] where the intermediate nodes (the relays) simply employ a

decode-and-forward strategy. The achievable scheme is non-trivial for the remaining regime

0 ≤ α ≤ 2
3

and relies on a rate-splitting approach that is comprised of amplify-and-forward

and decode-and-forward schemes. Specifically, the sources split their messages into sub-

messages, the relays are able to decode-and-forward some of the sub-messages, while they

amplify-and-forward the remaining superposition of codewords that they are not able to

decode. The relays further split the sub-messages that they are able to decode and then

use a different superposition approach (assigning different powers) to transmit the decoded

sub-messages. With proper choice of rate-splitting and superposition parameters, the desti-

nations are able to decode their desired messages by a successive decoding approach.

Extension to Strong Interference Regime: α ≥ 1

As noted previously our main focus is on the weak interference regime, α ≤ 1. However, the

extension of Theorem 4.1 to the strong interference regime, where α ≥ 1, turns out to be

straightforward for the 2-hop setting, as stated in the following corollary.

Corollary 4.1. For the 2-hop layered symmetric interference channel under finite precision

CSIT, in the strong interference regime α ≥ 1, the sum-GDoF value is given by,

Df.p.Σ =


2α− 1, 1 ≤ α ≤ 7/4,

2α/3 + 4/3, 7/4 ≤ α ≤ 2,

2α− 4/3, α ≥ 2.

(4.7)

The corollary follows from Theorem 4.1 directly, because switching the labels of the two
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relays immediately converts the weak interference setting into a strong interference setting.

Specifically, switching the relays gives us a channel where the direct channels have strength

α and the cross-channels have strength 1. Now, let us scale all channel strength parameters

by 1/α, so that we have direct channels with strength α × 1/α = 1 and cross-channels

with strength α′ = 1 × 1/α > 1. It follows from the definition of GDoF that if all channel

strength parameters are scaled by the same constant,3 then the GDoF value will be scaled

by precisely the same constant as well. Thus, if we denote the sum-GDoF as a function

of α as Df.p.Σ (α), then we must have Df.p.Σ (1/α) = 1/αDf.p.Σ (α) for α ≤ 1, or equivalently,

Df.p.Σ (α′) = α′Df.p.Σ (1/α′) for α′ > 1, which gives us Corollary 4.1. Thus, Theorem 4.1 and

Corollary 4.1 together fully characterize the sum-GDoF value of the 2-hop layered symmetric

interference channel under finite precision CSIT, for all α.

Comparisons

To place the sum-GDoF result in perspective, let us compare it against a few benchmarks,

as illustrated in Figure 4.2. These benchmarks are explained below.

• Optimal Sum-GDoF under Perfect CSIT: Recall the aligned interference neural-

ization scheme introduced by Gou et al. in [34], which was originally used to show that

a sum-DoF value of 2 is achievable for the 2-hop interference channel under perfect

CSIT. It is not difficult to apply the same scheme to find the sum-GDoF value, DpΣ

under perfect CSIT (the ‘p’ in the superscript stands for ‘perfect ’ CSIT), which turns

out to be equal to the sum-GDoF value of the one-hop MISO broadcast channel with

3Essentially this corresponds to defining P ′ = Pα and substituting for P with P ′, so that P → P ′1/α =
P ′α′ , and Pα → P ′. The normalization factor in the definition of GDoF similarly maps as log(P ) →
1/α log(P ′).
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Figure 4.2: Sum-GDoF comparisons for the layered symmetric 2-hop interference channel.

perfect CSIT.

DpΣ =

 2, α ≤ 1,

2α, α ≥ 1.
(4.8)

• Sum-GDoF with Decode-and-Forward under Finite Precision CSIT: A decode-

and-forward solution for the 2-hop interference channel corresponds to treating each

hop as an X channel. Recall that a 2 × 2 X channel is a one-hop setting with two

transmitters, two receivers, and 4 independent messages, one from each transmitter to

each receiver. By treating each hop as an X channel, each transmitter in the 2-hop

interference channel is able to split its message into two independent sub-messages,

that are then decoded by different relays, and re-encoded for the X channel on the

next hop so that they can be finally decoded by their desired destination. Using the
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sum-GDoF of the X channel under finite precision CSIT as characterized in [18] we

obtain the sum-GDoF value of the 2-hop layered symmetric interference channel with

decode-and-forward under finite precision CSIT as follows.

Df.p.Σ,DF
=



2− 2α, α ≤ 1
2
,

2α, 1
2
≤ α ≤ 2

3
,

2− α, 2
3
≤ α ≤ 1,

2α− 1, 1 ≤ α ≤ 3
2
,

2, 3
2
≤ α ≤ 2,

2α− 2, α ≥ 2.

(4.9)

• Sum-GDoF with Decode-and-Forward under Perfect CSIT: Using the sum-

GDoF value of the X channel under perfect CSIT as characterized in [36, 7, 39, 46],

we obtain the sum-GDoF value of the 2-hop layered symmetric interference channel

with decode-and-forward under perfect CSIT as follows.

DpΣ,DF
=



2− 2α, α ≤ 1
2
,

2α, 1
2
≤ α ≤ 3

4
,

6−2α
3
, 3

4
≤ α ≤ 1,

6α−2
3
, 1 ≤ α ≤ 4

3
,

2, 4
3
≤ α ≤ 2,

2α− 2, α ≥ 2.

(4.10)

From Figure 4.2 we note that except for the degenerate case of α = 0, there is always

a significant loss of sum-GDoF relative to its optimal value under perfect CSIT, i.e., the

GDoF benefits of aligned interference neutralization [34] are pervasive and powerful under

perfect CSIT but too fragile to survive under finite precision CSIT. Remarkably, we note that

Df.p.Σ,DF
= min

(
DpΣ,DF

,Df.p.Σ

)
even though DpΣ,DF

and Df.p.Σ are almost always different values
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(with the exception of cross-overs that occur at α = 2/3, 3/2). Thus, relative to the baseline

of robust (finite precision) decode-and-forward, the robust (finite precision) gains of multi-

hopping appear in the regimes where cross-channels are significantly weaker or stronger, i.e.,

α ≤ 2/3, α ≥ 3/2, whereas the fragile gains of interference alignment under perfect CSIT

appear precisely in the complementary regime 2/3 ≤ α ≤ 3/2 where the cross-channels are

relatively of similar strength as direct channels. Remarkably, when α ≤ 2/3 and α ≥ 3/2,

the optimal scheme takes advantage of partial decoding: the relays partially decode part

of the information to construct the common information, and they forward the remaining

interfered information in its mixed form, leaving it for the destination nodes to resolve the

interfered information at a later stage with the help of the common information.

4.3.2 Sum-GDoF of the L-hop Layered Symmetric Interference

Channel under Finite Precision CSIT

Building on the insights from the 2-hop setting, in this section we generalize the sum-GDoF

results to the L-hop case under finite precision CSIT. As before we start with the weak

interference regime.

Weak Interference Regime: α ≤ 1

Theorem 4.2. For the L-hop layered symmetric interference channel under finite precision

CSIT,4 in the weak interference regime α ≤ 1, the sum-GDoF value is given by,

Df.p.Σ =


2− α− α/(2L − 1), 0 ≤ α ≤ 1/2,

1 + α− (1− α)/(2L − 1), 1/2 ≤ α ≤ 2L/(2L+1 − 1),

2− α, 2L/(2L+1 − 1) ≤ α ≤ 1.

(4.11)

4The sum-GDoF value with perfect CSIT for any L ≥ 2 is the same as L = 2, as discussed in [34].
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Figure 4.3: Sum-GDoF of the layered symmetric L-hop interference channel in a subinterval of
the weak interference regime.

The sum-GDoF value specified in Theorem 4.2 is illustrated in Figure 4.3 over a subinterval

of the weak interference regime (since the plots are close together, the figure is zoomed in for

clarity) for various L. Evidently, as L approaches infinity, the sum-GDoF value of the L-hop

interference channel approaches that of the corresponding one-hop broadcast channel with

the same cross link strength under finite precision CSIT. The intuition is that a successive

onion peeling approach allows the relays in each successive stage to decode one more layer of

interference. Therefore, more common information can be decoded at the successive relays

and they have more cooperation capability compared to the precedent stage. As L→∞, the

common information accumulated at the relays is enough to match the broadcast channel,

in which the transmitters cooperate fully.

The converse for Theorem 4.2 is proved in Section 4.4.4. For the converse proof, the regime

2L/(2L+1 − 1) ≤ α ≤ 1 is straightforward because this is simply the GDoF value of the

broadcast channel [16] that is obtained by allowing full cooperation among all nodes except

the destination nodes. For the remaining regimes, as with the 2-hop case, a challenging

aspect is the deterministic transformation. Whereas in the 2-hop case it was sufficient to

enforce finite precision CSIT only in the last hop, the same idea does not work directly in

the L-hop setting. Instead the problem is circumvented by first considering only ` hops at a

time, as in Lemma 4.1 that appears in Section 4.4.2, and enforcing finite precision CSIT in
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the ‘last’ (i.e., the `th hop) to bound the mutual information that can be transferred from the

sources to the receivers in the `th hop. Then a recursive argument is developed in Lemma

4.4 in Section 4.4.2 to obtain a bound for ` hops based on the bound for `− 1 hops.

The proof of achievability for Theorem 4.2 appears in Section 4.5.2. The regime 2/3 ≤ α ≤ 1

is straightforward as in the 2-hop case, because it corresponds to a concatenation of L inter-

ference channels [24, 18] and a simple decode-and-forward strategy suffices. In other regimes

however, the achievable scheme for the L-hop setting is a non-trivial extension of the 2-hop

case. While in principle the construction is still based on rate-splitting between amplify-

and-forward and decode-and-forward schemes, there is an important element of onion-peeling

which allows each successive relay stage to decode one more layer of interference, so that with

each hop the nodes acquire more common information and are closer to acting as a broadcast

channel. Indeed, as the number of hops L → ∞, the sum-GDoF value does approach that

of a broadcast channel where all information is shared between the two transmitters of the

last hop.

Extension to Strong Interference Regime: α ≥ 1

As in the 2-hop case, the sum-GDoF result in Theorem 4.2 for the weak interference regime

immediately implies an extension to the strong interference regime by the same argument of

switching relay positions, and is presented in the following corollary.

Corollary 4.2. If L is even, then for the L-hop layered symmetric interference channel

under finite precision CSIT, in the strong interference regime α ≥ 1, the sum-GDoF value

is given by,

Df.p.Σ =


2α− 1, 1 ≤ α ≤ 2− 2−L,

α + 1− (α− 1)/(2L − 1), 2− 2−L ≤ α ≤ 2,

2α− 1− 1/(2L − 1), α ≥ 2.

(4.12)

94



A new constraint appears in Corollary 4.2, that L must be even. This is because the idea

of interchanging the positions of the relay nodes to convert weak interference into strong

interference only works when we switch relays in every other hop, which can only be done if

the number of hops is even. To see this explicitly, consider Figure 4.4 which shows an L = 4

hop setting. The bold edges represent strong channels while the dashed edges represent weak

channels. The original network topology is shown on the left side of Figure 4.4, where the

cross-channels are weak and the direct channels are strong. Now, if we re-draw the same

network but switch the positions of the dark red relay with the dark blue relay, and the light

red relay with the light blue relay, then we obtain the representation shown on the right side

of Figure 4.4, where the direct channels are weak and cross channels are strong. However,

this idea of switching the positions of relays in every alternate hop only works when L is

even.

Sum-GDoF vs L: Non-Monotonicity

Corollary 4.2 establishes the sum-GDoF in the strong interference regime when L is even,

but leaves the sum-GDoF open for odd L in the same regime. One might expect that the

GDoF values for odd L may be sandwiched between their even neighbors. The expectation

is supported by the observation that the expressions in (4.11) and (4.12) as well as the

illustration in Figure 4.3 all seem to show that the Sum-GDoF value monotonically increases

with the number of hops, L. In fact, the gap between plots is rather small in Figure 4.3,

which suggests that the sum-GDoF values for odd L may be estimated quite accurately from

Figure 4.4: Two representations of the same network. Interchanging the positions of relay nodes
in every other hop changes the representation of the network from a weak interference setting to a
strong interference setting. This works only when the number of hops, L, is even.
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the neighboring even L values. Somewhat surprisingly, this is not the case, as we show in

this section. To highlight the non-monotonic behavior of sum-GDoF vs L, we characterize

the sum-GDoF for odd L in the very strong interference regime, in the following theorem.

Theorem 4.3. If L is odd, then for the L-hop layered symmetric interference channel under

finite precision CSIT, in the very strong interference regime where α ≥ L+1, the sum-GDoF

value is given by,

Df.p.Σ = 2L = DpΣ. (4.13)

The converse proof of Theorem 4.3 is presented in Section 4.4.5 and the achievability is

proved in Section 4.5.3. Both are relatively straightforward. The converse is simply the

min-cut bound, and achievability is a rate-splitting partitioning of multiple decode-and-

forward schemes that require some filtering and rearrangement of the superposition order of

codewords as they pass through the relays. Since the min-cut bound applies equally under

perfect CSIT, the result of Theorem 4.3 also holds under perfect CSIT.

From Corollary 4.2 and Theorem 4.3 we note that as α → ∞ the sum-GDoF value of the

L-hop layered symmetric interference channel approaches infinity if L is even, but is only 2L

if L is odd, thus proving that the sum-GDoF value is not a monotonic function of L. To see

this intuitively, consider again the network shown on the right side of Figure 4.4 and for this

intuitive understanding assume that the dashed links are extremely weak (say, strength 0)

while the solid links are extremely strong (say, strength approaching infinity). In this L = 4

hop network, consider the communication from Source 1 to Destination 1, for which there

exists a very strong path, so the GDoF of this communication approach infinity. However,

suppose the network had only 3 hops, so Destination 1 was the light blue node. Note that in

this L = 3 hop network there exists no path from Source 1 to Destination 1, i.e., the GDoF

of this communication is 0. This toy example intuitively shows why we notice abrupt drops
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of sum-GDoF for odd L in the very strong interference regime. Figure 4.5 illustrates this

fact as we note the different behaviors of sum-GDoF vs L in the weak (monotonic) and very

strong (non-monotonic) regimes.
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Figure 4.5: Sum-GDoF of the layered symmetric L-hop interference channel vs the number of hops
L for α = 1/2 (weak interference) shown in blue, and α = 20 (very strong interference) shown in
red.

To summarize our results for the L-hop layered symmetric interference channel, we have

found the robust sum-GDoF for arbitrary number of hops L if the network is in the weak

interference regime (α ≤ 1) which is our main focus, or the very strong interference regime

(α ≥ L + 1). For the remaining strong interference regime (1 ≤ α ≤ L + 1), we have found

the sum-GDoF if L is even, but the sum-GDoF value for odd L remains a non-trivial open

problem in the sense that the answer may not even be approximated by sandwiching between

adjacent even values of L.

4.4 Converse Proofs

In this section we provide the converse proofs for Theorem 4.1, Theorem 4.2 and Theorem

4.3. We start with the basic definitions, inherited from [16][20], that are essential for Aligned

97



Images bounds.

4.4.1 Definitions

Definition 4.1 (Power Levels). An integer valued random variable Xi with power level λi

takes values over the alphabet set Xλi defined as

Xλi , {0, 1, 2, · · · , P
λi − 1} (4.14)

where P
λi , b

√
P λic. We are primarily interested in limits as P → ∞, where P ∈ R+ is

referred to as power.

Definition 4.2. For an integer valued random variable X ∈ Xλ, and any non-negative real

numbers λ1, λ2 such that 0 ≤ λ1 ≤ λ2 ≤ λ, define

(X)λ2 ,
⌊ X

P
λ−λ2

⌋
, (4.15)

(X)λ1 , X − P λ1
⌊ X
P
λ1

⌋
, (4.16)

(X)λ2λ1 ,
⌊(X)λ2

P
λ1

⌋
. (4.17)

In other words, (X)λ2 retrieves the top λ2 power levels of X, (X)λ1 retrieves the bottom λ1

power levels of X and (X)λ2λ1 retrieves the partition of X between power levels λ1 and λ2. As

a somewhat oversimplified interpretation for intuitive purposes, X can be thought as a non-

negative integer value represented in
√
P -ary alphabet expansion, as X = xλxλ−1 · · · x2x1,

and (X)λ2 retrieves the most significant λ2 symbols, i.e., (X)λ2 = xλ · · ·xλ−λ2+1. Similarly,

(X)λ2λ1 is the sub-string xλ2 · · ·xλ1, (X)λ1 is the sub-string xλ1−1 · · · x1. This is oversimplified

because λ1, λ2, λ are not restricted to take only integer values. This is a generalization to the

ADT models [5], where binary expansions are used to study GDoF under perfect CSIT.
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Definition 4.3 (Sub-section, Interval, Level, Size, Disjoint). For X ∈ Xλ, we define (X)λ2λ1

as a ‘sub-section’ of X if 0 ≤ λ1 ≤ λ2 ≤ λ, where (λ1, λ2) is the corresponding ‘interval’.

Furthermore, we define the lower end of the interval (λ1, λ2) as the ‘level’ of the partition,

denoted as `((X)λ2λ1) = λ1. The length of the interval (λ1, λ2), denoted as T ((X)λ2λ1) = λ2−λ1

is called the ‘size’ of the partition. Sub-sections (X)λ2λ1 and (X)ν2ν1 of the same X ∈ Xλ are

‘disjoint’ if the two intervals (λ1, λ2) and (ν1, ν2) are disjoint.

Next we recall the definition of the particular deterministic transformation [16] that is used

for Aligned Images bounds. The transformation has thus far been used only in single-

hop settings, and as noted previously, extensions to multi-hop settings are not immediate.

Fortunately, for our purpose and for all our arguments we only need to apply the deterministic

transformation to one of the L hops at any time, say the `th hop. This transformation for

the `th hop is defined next.

Definition 4.4 (Deterministic Transformation of the `th hop). In the `th hop, define the

mapping from the original input Xi[`] to the deterministic input X i[`] as

X i[`] = b
√
Pmax(1,α)Xi[`]c mod d

√
Pmax(1,α)e (4.18)

such that X i[`](n) = X iR[`](n) + jX iI[`](n), i ∈ [1 : 2] and X iR[`](n), X iI[`](n) ∈ {0, 1, 2, · · · ,

d
√
Pmax(1,α)e − 1} for all n ∈ [1 : N ]. Then the deterministic transformation for the `th hop

is represented as follows:

Y 1[`](n) = b
√
P 1−max(1,α)G11[`](n)X1[`](n)c+ b

√
Pα−max(1,α)G12[`](n)X2[`](n)c (4.19)

Y 2[`](n) = b
√
Pα−max(1,α)G21[`](n)X1[`](n)c+ b

√
P 1−max(1,α)G22[`](n)X2[`](n)c (4.20)

Note that |Y i[`](n)| ≤ 4
√
P∆, and since the real and imaginary parts of Y i[`](n) are both

integer valued, we must have H(Y i[`](n)) ≤ 2 log(8
√
P∆) = log(P ) + o(log(P )). Similarly
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over N channel uses, we must have

H(Y
[N ]

i[`] ) ≤ N log(P ) +No(log(P )). (4.21)

As noted in [66], we can also represent this as:

Y 1[`](n) = bG11[`](n)
(
X1[`](n)

)1c+ bG12[`](n)
(
X2[`](n)

)αc+ ζ1[`](n) (4.22)

Y 2[`](n) = bG21[`](n)
(
X1[`](n)

)αc+ bG22[`](n)
(
X2[`](n)

)1c+ ζ2[`](n) (4.23)

where ζ1[`](n), ζ2[`](n) are complex random variables whose real and imaginary parts are in-

teger valued and whose magnitude is bounded, so it does not scale with P . Specifically,

max(|ζ1[`](n)|, |ζ2[`](n)|) ≤ 2(2 + ∆) = o(log(P )), and ∆ corresponds to the bounded range of

the channel coefficients, i.e., |Gij[`],R(n)|, |Gij[`],I(n)| ∈ [1/∆,∆], i, j ∈ [1 : 2], ` ∈ [1 : L], as

previously stated in Section 4.2. Note that the superscript, e.g., (X i[`])
α, refers to the top α

power levels of X i[`], according to Definition 2.

4.4.2 Lemmas

Our first three lemmas are inherited from prior works [16, 18, 20, 66] on Aligned Images

bounds in single-hop scenarios, and specialized to our multi-hop setting where the determin-

istic transformation has been applied only to the `th hop.

Lemma 4.1 (Deterministic Bound [16]). With the deterministic transformation applied only

to the `th hop, we have the following bound for i ∈ [1 : 2],

I(Wi;Y
[N ]
i[`] | G[1:`]) ≤ I(Wi;Y

[N ]

i[`] | G[1:`]) +No(log(P )). (4.24)

Lemma 4.1 above is obtained from Lemma 1 of [16] as applied to our setting. Recall that in
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[16] the same deterministic transformation that we apply to the `th hop, is applied to the one-

hop MISO BC, and it is shown that this cannot reduce the mutual information in the GDoF

sense between the messages and the corresponding deterministic outputs, conditioned on the

one-hop channels for which only finite precision CSIT is available to the transmitters. There

are two key distinctions in our setting. First, unlike the MISO BC where the transmitters

cooperate fully, because the transmitters in the `th hop do not directly have access to the

messages, their coding functions are more restricted. Second, because transmitters in the

`th hop have knowledge of channel realizations of preceding hops, the coding functions may

utilize this knowledge, which means that the transmitted symbols need not be independent

of the G[1:`−1] terms that are included in the conditioning in (4.24), unlike the one-hop MISO

BC where the transmitted symbols are independent of the channels that appear in the

conditioning. However, neither of these distinctions affects the validity of Lemma 4.1 because

upon inspection of the proof of Lemma 1 of [16] it becomes evident that the proof holds for

all feasible coding functions in the MISO BC, which includes the restricted class of coding

functions available to the transmitters in the `th hop in the multi-hop setting. Furthermore,

it turns out that the proof of Lemma 1 of [16] also holds under the additional conditioning

on the channels G[1:`−1] which are not necessarily independent of the transmitted symbols;

what matters for the proof is that these additional conditioning terms are independent of

the additive noise encountered by the receivers of the `th hop. Thus, the proof of Lemma 1

of [16] carries over to Lemma 4.1 in this chapter. For the sake of completeness, the proof is

summarized in the Appendix section.

Remark: Note that because G[`+1:L] are independent of all terms that appear in (4.24), the

result of Lemma 4.1 can also be stated with additional conditioning on G[`+1:L] as:

I(Wi;Y
[N ]
i[`] | G[1:L]) ≤ I(Wi;Y

[N ]

i[`] | G[1:L]) +No(log(P )). (4.25)
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Next let us recall two sum-set inequalities that will be critical to our converse proofs, as

applied to our setting. The first sum-set inequality, namely Sum-set Inequality 1, originally

shown in [18, Theorem 1], is used to bound the entropy difference of two received signals

in the GDoF sense. Intuitively, this sum-set inequality says that in the GDoF sense the

entropy difference is upper bounded by the maximum difference of the corresponding link

strengths. The inequality applies to our setting because, as explained for Lemma 4.1, the

original version in [18] is proved for the MISO broadcast channel which allows arbitrary

coding functions, including the ones available to the transmitters in the `th hop.

Lemma 4.2. (Sum-set Inequality 1) Let U
[N ]

i[`] = bG[N ]
i1[`](X

[N ]

1[`])
µic + bG[N ]

i2[`](X
[N ]

2[`])
νic, then for

i, j ∈ {1, 2}, i 6= j,

H(U
[N ]

i[`] | WS,G[`])−H(U
[N ]

j[`] | WS,G[`]) ≤ max(µi − µj, νi − νj)+N log(P ) +No(log(P )),

(4.26)

where WS is a set of random variables satisfying

I(X
[N ]

1[`], X
[N ]

2[`],WS;G[`]) = 0. (4.27)

The next sum-set inequality, Sum-set Inequality 2, appeared originally in a generalized form

in [20, Theorem 4]. The following simplified form, taken from [66, Lemma 1] and specialized

to our setting, is sufficient for our purpose.

Lemma 4.3. (Sum-set Inequality 2) Let Y [`](n) =
∑2

k=1bGk[`](n)Xk[`](n)c for Xk[`](n) ∈

Xµk[`], and let Gk[`](n) be distinct elements of G for all k ∈ [2], n ∈ [1 : N ]. For k ∈ [2], let

Sk be a set of finitely many disjoint sub-sections of Xk[`] (the same partitioning is applied to

Xk[`](n) for every n), and let {U1, U2, · · · , Um} be a subset of S1∪S2. The following sum-set
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Figure 4.6: An illustration of Lemma 4.3. Lemma 4.3 implies the sum-set inequalities H(Y
[N ]
[`] |

WS ,G[`]) ≥ H(U
[N ]
2 , U

[N ]
5 | WS ,G[`]) and H(Y

[N ]
[`] | WS ,G[`]) ≥ H(U

[N ]
1 , U

[N ]
4 , U

[N ]
5 | WS ,G[`]) in the

GDoF sense because the boxes in these inequalities can be vertically stacked without elevating any

sub-section of them above its original height in Y [`]. However, Lemma 4.3 implies neither H(Y
[N ]
[`] |

WS ,G[`]) ≥ H(U
[N ]
2 , U

[N ]
3 , U

[N ]
5 , U

[N ]
7 | WS ,G[`]) nor H(Y

[N ]
[`] | WS ,G[`]) ≥ H(U

[N ]
3 , U

[N ]
6 , U

[N ]
7 |

WS ,G[`]), because it is impossible to vertically stack the corresponding boxes in any order without

elevating at least one of them above its original position in Y [`].

inequality holds,

H(Y
[N ]

[`] | WS,G[`]) ≥ H(U
[N ]
1 , U

[N ]
2 , · · · , U [N ]

m | WS,G[`]) +No(log(P )), (4.28)

if both of the following conditions are satisfied.

I
(
X

[N ]

1[`], X
[N ]

2[`],WS ; G[`]

)
= 0, (4.29)

i−1∑
j=1

T (Uj) ≤ `(Ui), ∀i ∈ [2 : m]. (4.30)

Condition (4.30) can be visualized in terms of a vertical stacking of m boxes U1, · · · , Um

in that order from bottom to top where the jth box has height T (Uj). Conditions (4.30)

simply mean that the height at which the ith box appears in the vertical stacking (the LHS

of (4.30)) should not be higher than its original level in Y [`], i.e., `(Ui). In other words, if

there exists any ordering such that we can vertically stack all of the sub-sections without

lifting up any one of them above its original height in Y [`], then the sum-set inequality (4.28)

holds. Figure 4.6 presents a few examples that satisfy or violate Lemma 4.3.
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Next we present our main lemma that is developed in this chapter specifically for the multi-

hop setting, to capture a recursive bounding argument which will allow us to use the deter-

ministic bounds for each hop, one-hop at a time.

Lemma 4.4. The following inequality holds for any ` ∈ [2 : L], and any α ∈ [0, 1].

NR1 +NR2 + 2I(W1;Y
[N ]

1[`] | G[1:L]) + 2I(W2;Y
[N ]

2[`] | G[1:L])

≤ (2 + 2 max(1− α, α))N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L])

+No(log(P )). (4.31)

Corollary 4.1. Let Df.p.Σ (n) represent the sum-GDoF for the n hop setting. Intuitively, one

may loosely interpret the terms on the LHS of (4.31) as Df.p.Σ (L) + 2Df.p.Σ (`) and the terms

on the RHS as 2 +Df.p.Σ (1) +Df.p.Σ (`− 1). Note that Df.p.Σ (1) = 2 max(1−α, α) in the regime

α < 2/3 where Lemma 4.4 will be primarily used.

Proof. For compact notation, in this proof we will occasionally suppress No(log(P )) terms

that are inconsequential for GDoF. Starting with (4.25), we have

I(W1;Y
[N ]

1[`] | G[1:L]) ≤ I(W1;Y
[N ]

1[`] | G[1:L]), (4.32)

I(W2;Y
[N ]

2[`] | G[1:L]) ≤ I(W2;Y
[N ]

2[`] | G[1:L]). (4.33)

Next, we have the Markov chain,

(W1,W2)↔ (Y
[N ]

1[`] , Y
[N ]

2[`] ,G[1:`])↔ (Y
[N ]

1[L], Y
[N ]

2[L],G[1:L]). (4.34)

Using this Markov chain and the data processing inequality, we proceed as follows.

NR1 +NR2 ≤ I
(
W1,W2;Y

[N ]
1[L], Y

[N ]
2[L],G[1:L]

)
(4.35)

≤ I
(
W1,W2;Y

[N ]
1[`] , Y

[N ]
2[`] ,G[1:`]

)
(4.36)
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= I
(
W1,W2;Y

[N ]
1[`] , Y

[N ]
2[`] | G[1:`]

)
(4.37)

≤ I(W1,W2;Y
[N ]

1[`], Y
[N ]

2[`] | G[1:`]) (4.38)

≤ I(W1,W2;X
[N ]

1[`], X
[N ]

2[`], Y
[N ]

1[`], Y
[N ]

2[`] | G[1:`]) (4.39)

= I(W1,W2;X
[N ]

1[`], X
[N ]

2[`] | G[1:`]) (4.40)

≤ H(X
[N ]

1[`], X
[N ]

2[`] | G[1:`]) (4.41)

= H(X
[N ]

1[`], X
[N ]

2[`] | G[1:L]) (4.42)

= H(X
[N ]

1[`] | G[1:L]) +H(X
[N ]

2[`] | X
[N ]

1[`],G[1:L]). (4.43)

Step (4.35) is obtained by Fano’s inequality. Step (4.36) follows from the Markov chain

in (4.34) and the data processing inequality. Step (4.37) uses the chain rule of mutual

information and the fact that the messages are independent of the channels. Step (4.38) is

obtained by reasoning similar to Lemma 4.1. Step (4.39) uses the property that I(A;B |

C) ≤ I(A;B,D | C). Step (4.40) is because (Y
[N ]

1[`], Y
[N ]

2[`]) is determined by (X
[N ]

1[`], X
[N ]

2[`],G[`]).
5

Step (4.41) uses the definition of mutual information I(A;B | C) = H(B | C)−H(B | A,C)

and the non-negativity of entropy in dropping the negative term. Including G[`+1:L] in the

conditioning in (4.42) is justified because these channels are independent of all the other

terms that appear in the entropy expression. Step (4.43) is simply the chain rule of entropy.

Next,

I(W1;Y
[N ]

1[`] | G[1:L]) = H(Y
[N ]

1[`] | G[1:L])−H(Y
[N ]

1[`] | W1,G[1:L]) (4.44)

≤ H(Y
[N ]

1[`] | G[1:L])−H(X
[N ]

1[`] | W1,G[1:L]) (4.45)

= H(Y
[N ]

1[`] | G[1:L]) + I(X
[N ]

1[`];W1 | G[1:L])−H(X
[N ]

1[`] | G[1:L]) (4.46)

≤ H(Y
[N ]

1[`] | G[1:L]) + I(Y
[N ]

1[`−1];W1 | G[1:L])−H(X
[N ]

1[`] | G[1:L]) (4.47)

≤ N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L])−H(X
[N ]

1[`] | G[1:L]). (4.48)

5Note that X
[N ]

i[`] has power level max(1, α) = 1 in the weak interference regime (α ≤ 1). In other words,

X
[N ]

i[`] is equivalent to (X
[N ]

i[`] )
1 in the weak interference regime.
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Notably in (4.45) we used Sum-set Inequality 1 from Lemma 4.2 as follows. Since H(Y
[N ]

1[`] |

W1,G[1:L]) = H(bG[N ]
11[`](X

[N ]

1[`])
1c + bG[N ]

12[`](X
[N ]

2[`])
αc | W1,G[1:L]) if we set WS = (W1,G[1:L]\[`]),

then from Lemma 4.2 we obtain,

No(log(P )) = max(1− 1, 0− α)+N log(P ) +No(log(P )) (4.49)

≥ H(bG[N ]
21[`](X

[N ]

1[`])
1c+ bG[N ]

22[`](X
[N ]

2[`])
0c | W1,G[1:L])

−H(bG[N ]
11[`](X

[N ]

1[`])
1c+ bG[N ]

12[`](X
[N ]

2[`])
αc | W1,G[1:L]) (4.50)

≥ H(X
[N ]

1[`] | W1,G[1:L])−H(Y
[N ]

1[`] | W1,G[1:L]) +No(log(P )). (4.51)

Step (4.47) holds because the output of the relay node is a function of its input signal and the

channels of the preceding hops. Specifically, X
[N ]

1[`] is a function of X
[N ]
1[`] according to (4.18);

and X
[N ]
1[`] is a function of (Y

[N ]
1[`−1],G[1:`−1]) according to the relay mapping function, so it is

also a function of (Y
[N ]

1[`−1],G[1:L]). Step (4.48) follows from (4.21) which uses the fact that a

uniform distribution maximizes entropy over a discrete alphabet of bounded cardinality. By

symmetry, it follows from (4.48), that we must also have,

I(W2;Y
[N ]

2[`] | G[1:L]) ≤ N log(P ) + I(W2;Y
[N ]

2[`−1] | G[1:L])−H(X
[N ]

2[`] | G[1:L]) (4.52)

Adding (4.43),(4.48),(4.52) together, we have

NR1 +NR2 + I(W1;Y
[N ]

1[`] | G[1:L]) + I(W2;Y
[N ]

2[`] | G[1:L])

≤ 2N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L])

+H(X
[N ]

2[`] | X
[N ]

1[`],G[1:L])−H(X
[N ]

2[`] | G[1:L]) (4.53)

= 2N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L])− I(X
[N ]

1[`];X
[N ]

2[`] | G[1:L])

(4.54)

≤ 2N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L])

− I((X
[N ]

1[`])
min(α,1−α); (X

[N ]

2[`])
min(α,1−α) | G[1:L]). (4.55)
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U1

1
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Y 1[`]

U1 α

U2 α

U3

1 U4
α

Y 1[`]

U3 1− α
U4 1− α

Figure 4.7: In the left figure, α ≤ 1
2
, U1 = (X1[`])

α, U2 = (X2[`])
α, evidently U1, U2 can

be stacked without elevating either one of them above the level at which it appears in Ȳ1[`].
On the right, α ≥ 1

2
, U3 = (X1[`])

1−α, U4 = (X2[`])
1−α; U3, U4 can also be stacked without

elevating either of them.

The definition of mutual information was used to obtain (4.54), and in (4.55) we used the

property that I(A;B) ≥ I(f(A); g(B)) for any functions f, g. Next, we bound I(W1;Y
[N ]

1[`] |

G[1:L]) as follows.

I(W1;Y
[N ]

1[`] | G[1:L]) = H(Y
[N ]

1[`] | G[1:L])−H(Y
[N ]

1[`] | W1,G[1:L]) (4.56)

≤ H(Y
[N ]

1[`] | G[1:L])−H((X
[N ]

1[`])
min(α,1−α), (X

[N ]

2[`])
min(α,1−α) | W1,G[1:L]).

(4.57)

This step is significant, because it invokes Sum-set Inequality 2 from Lemma 4.3, noting that

(X
[N ]

1[`])
min(1−α,α), (X

[N ]

2[`])
min(1−α,α) can be stacked vertically without elevating either of them

above their original height in Y
[N ]

1[`]. See Figure 4.7 for an illustration of the stacking.

Similarly,

I(W2;Y
[N ]

2[`] | G[1:L]) ≤ H(Y
[N ]

2[`] | G[1:L])−H((X
[N ]

1[`])
min(α,1−α), (X

[N ]

2[`])
min(α,1−α) | W2,G[1:L]).

(4.58)

Adding (4.57) and (4.58), we get

I(W1;Y
[N ]

1[`] | G[1:L]) + I(W2;Y
[N ]

2[`] | G[1:L])

≤ H(Y
[N ]

1[`] | G[1:L]) +H(Y
[N ]

2[`] | G[1:L])−H((X
[N ]

1[`])
min(α,1−α), (X

[N ]

2[`])
min(α,1−α) | W1,G[1:L])

−H((X
[N ]

1[`])
min(α,1−α), (X

[N ]

2[`])
min(α,1−α) | W2,G[1:L]) (4.59)
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≤ H(Y
[N ]

1[`] | G[1:L]) +H(Y
[N ]

2[`] | G[1:L])−H((X
[N ]

1[`])
min(α,1−α), (X

[N ]

2[`])
min(α,1−α) | G[1:L])

−H((X
[N ]

1[`])
min(α,1−α), (X

[N ]

2[`])
min(α,1−α) | W1,W2,G[1:L]) (4.60)

≤ H(Y
[N ]

1[`] | G[1:L]) +H(Y
[N ]

2[`] | G[1:L])−H((X
[N ]

1[`])
min(α,1−α), (X

[N ]

2[`])
min(α,1−α) | G[1:L])

(4.61)

where (4.60) follows from the property that for any three random variables A,B,C, if B,C

are independent, then

H(A | B) +H(A | C) ≥ H(A) +H(A | B,C) (4.62)

and (4.61) simply uses the fact that entropy is non-negative. Adding 2×(4.32)+2×(4.33)+

(4.55) + (4.61), we obtain,

NR1 +NR2 + 2I(W1;Y
[N ]

1[`] | G[1:L]) + 2I(W2;Y
[N ]

2[`] | G[1:L])

≤ 2N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L]) +H(Y
[N ]

1[`] | G[1:L])

+H(Y
[N ]

2[`] | G[1:L])− I((X
[N ]

1[`])
min(α,1−α); (X

[N ]

2[`])
min(α,1−α) | G[1:L])

−H((X
[N ]

1[`])
min(α,1−α), (X

[N ]

2[`])
min(α,1−α) | G[1:L]) (4.63)

= 2N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L]) +H(Y
[N ]

1[`] | G[1:L])

+H(Y
[N ]

2[`] | G[1:L])−H((X
[N ]

1[`])
min(α,1−α) | G[1:L])

−H((X
[N ]

2[`])
min(α,1−α) | G[1:L]) (4.64)

= 2N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L])

+ {H(Y
[N ]

1[`] | G[1:L])−H((X
[N ]

1[`])
min(α,1−α) | G[1:L])}

+ {H(Y
[N ]

2[`] | G[1:L])−H((X
[N ]

2[`])
min(α,1−α) | G[1:L)} (4.65)

≤ 2N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L])

+ 2 max(α, 1− α)N log(P ) (4.66)
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= (2 + 2 max(α, 1− α))N log(P ) + I(W1;Y
[N ]

1[`−1] | G[1:L]) + I(W2;Y
[N ]

2[`−1] | G[1:L])

(4.67)

where (4.64) follows from the definition of mutual information, and (4.65) is simply a rear-

rangement of terms. Step (4.66) is significant because it invokes Sum-set Inequality 1 from

Lemma 4.2 as follows.

H(Y
[N ]

1[`] | G[1:L])−H((X
[N ]

1[`])
min(α,1−α) | G[1:L]) (4.68)

= H
(⌊
G

[N ]
11[`](X

[N ]

1[`])
1
⌋

+
⌊
G

[N ]
12[`](X

[N ]

2[`])
α
⌋∣∣∣G[1:L]

)
−H((X

[N ]

1[`])
min(α,1−α) | G[1:L])

≤ H
(⌊
G

[N ]
11[`](X

[N ]

1[`])
1
⌋

+
⌊
G

[N ]
12[`](X

[N ]

2[`])
α
⌋∣∣∣G[1:L]

)
−H

(⌊
G

[N ]
21[`](X

[N ]

1[`])
min(α,1−α)

⌋
+
⌊
G

[N ]
22[`](X

[N ]

2[`])
0
⌋∣∣∣G[1:L]

)
(4.69)

≤ max (1−min(α, 1− α), α− 0)+N log(P ) (4.70)

= max (α, 1− α)N log(P ) (4.71)

Note that (4.67) matches the RHS of (4.31), so that the proof of Lemma 4.4 is complete.

With the help of these lemmas, we are now ready to present the converse proof of Theorem

4.1.

4.4.3 Converse Proof for Theorem 4.1

As noted previously, the upper bound DΣ ≤ 2 − α in the regime 4
7
≤ α ≤ 1 is immediate,

because it corresponds to the sum-GDoF of the MISO broadcast channel [18] formed at the

second hop by allowing full cooperation among the relays, which cannot decrease the GDoF.

Therefore, we will assume α ≤ 4
7

in the following proof. As usual, we will sometimes suppress

the o(log(P )) terms for simplicity as they are inconsequential for GDoF studies. Starting
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with Fano’s inequality, we have

3NR1 + 3NR2

≤ 2I(W1;Y
[N ]

1[2] | G[1:2]) + 2I(W2;Y
[N ]

2[2] | G[1:2]) +NR1 +NR2 (4.72)

≤
(
2 + 2 max(1− α, α)

)
N log(P ) + I(W1;Y

[N ]
1[1] | G[1:2]) + I(W2;Y

[N ]
2[1] | G[1:2])

(4.73)

≤
(
2 + 2 max(1− α, α) + 2 max(1− α, α)

)
N log(P ) (4.74)

=
(
2 + 4 max(1− α, α)

)
N log(P ). (4.75)

where (4.73) is obtained from Lemma 4.4 by setting ` = 2, and (4.74) is essentially the well-

known sum-GDoF bound for the single-hop interference channel (corresponding to the first

hop) that is obtained in [24, Section III. D] when α ≤ 2
3

by using a genie-aided approach.

Since 4
7
≤ 2

3
, the bound holds for α ≤ 4

7
. Normalizing both sides by 3N log(P ) and applying

the GDoF limit (P →∞), we obtain the sum-GDoF bound Df.p.Σ ≤ 2+4 max(1−α,α)
3

. Therefore,

when α ≤ 1
2
, we get the bound Df.p.Σ ≤ 6−4α

3
, and when 1

2
≤ α ≤ 4

7
, we obtain the bound

Df.p.Σ ≤ 2+4α
3

.

4.4.4 Converse Proof for Theorem 4.2

In the symmetric multi-hop channel, the bound 2 − α for the regime 2L

2L+1−1
≤ α ≤ 1 is

also trivial, because it is the sum-GDoF of the broadcast channel [18] formed in the last

hop under finite precision CSIT by allowing full cooperation among the relays which cannot

reduce the GDoF. Next, to derive the upper bounds for α ≤ 2L

2L+1−1
, we need to recursively

apply Lemma 4.4. Starting with Fano’s inequality, we have

N(R1 +R2)

110



≤
2I(W1;Y

[N ]
1[L] | G[1:L]) + 2I(W2;Y

[N ]
2[L] | G[1:L]) +NR1 +NR2

3
(4.76)

≤ (2 + 2 max(1− α, α))N log(P )

3
+
I(W1;Y

[N ]
1[L−1] | G[1:L]) + I(W2;Y

[N ]
2[L−1] | G[1:L])

3

(4.77)

=
(2 + 2 max(1− α, α))N log(P )

3
+

2I(W1;Y
[N ]

1[L−1] | G[1:L]) + 2I(W2;Y
[N ]

2[L−1] | G[1:L])

6

(4.78)

≤ (2 + 2 max(1− α, α))N log(P )

3
+

(2 + 2 max(1− α, α))N log(P )

6

+
I(W1;Y

[N ]
1[L−2] | G[1:L]) + I(W2;Y

[N ]
2[L−2] | G[1:L])

6
− N(R1 +R2)

6

(4.79)

≤ · · ·

≤ (2 + 2 max(1− α, α))

(
M−1∑
m=0

1

3× 2m

)
N log(P )

+
I(W1;Y

[N ]
1[L−M ] | G[1:L]) + I(W2;Y

[N ]
2[L−M ] | G[1:L])

3× 2M−1
−

(
M−1∑
k=1

1

3× 2k

)
N(R1 +R2)

(4.80)

≤ · · ·

≤ (2 + 2 max(1− α, α))

(
L−3∑
m=0

1

3× 2m

)
N log(P )

+
I(W1;Y

[N ]
1[2] | G[1:L]) + I(W2;Y

[N ]
2[2] | G[1:L])

3× 2L−3
−

(
L−3∑
k=1

1

3× 2k

)
N(R1 +R2)

(4.81)

≤ (2 + 2 max(1− α, α))

(
L−2∑
m=0

1

3× 2m

)
N log(P )

+
I(W1;Y

[N ]
1[1] | G[1:L]) + I(W2;Y

[N ]
2[1] | G[1:L])

3× 2L−2
−

(
L−2∑
k=1

1

3× 2k

)
N(R1 +R2)

(4.82)
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≤ (2 + 2 max(1− α, α))

(
L−2∑
m=0

1

3× 2m

)
N log(P )

+
I(X

[N ]
1[1];Y

[N ]
1[1] | G[1:L]) + I(X

[N ]
2[1];Y

[N ]
2[1] | G[1:L])

3× 2L−2
−

(
L−2∑
k=1

1

3× 2k

)
N(R1 +R2)

(4.83)

where (4.77), (4.79), (4.80), (4.82) are obtained by setting ` = L,L − 1, 3, 2 in Lemma

4.4, respectively. For (4.83) we used the data processing inequality, the Markov chains

W1 ↔ X
[N ]
1[1] ↔ (Y

[N ]
1[1] ,G[1:L]), W2 ↔ X

[N ]
2[1] ↔ (Y

[N ]
2[1] ,G[1:L]) and the independence of channels

G[1:L] with the messages and codewords sent over the first hop. Rearranging (4.83), we obtain

(
1 +

2L−2 − 1

3× 2L−2

)
N(R1 +R2) ≤ (2 + 2 max(1− α, α))

(
2L−1 − 1

3× 2L−2

)
N log(P )

+
I(X

[N ]
1[1];Y

[N ]
1[1] | G[1:L]) + I(X

[N ]
2[1];Y

[N ]
2[1] | G[1:L])

3× 2L−2
.

(4.84)

With the inequality I(X
[N ]
1[1];Y

[N ]
1[1] | G[1:L]) + I(X

[N ]
2[1];Y

[N ]
2[1] | G[1:L]) ≤ (2 max(1−α, α))N log(P )

obtained in [24, Section III. D]6 when α ≤ 2
3
, we have,

(
1 +

2L−2 − 1

3× 2L−2

)
N(R1 +R2) ≤ (2 + 2 max(1− α, α))

(
2L−1 − 1

3× 2L−2

)
N log(P )

+
2 max(1− α, α)

3× 2L−2
N log(P ). (4.85)

Dividing by (1 + 2L−2−1
3×2L−2 ), we get

N(R1 +R2) ≤ (1 + max(α, 1− α))× (2L − 2) + 2 max(α, 1− α)

2L − 1
N log(P ) (4.86)

=

(
1 + max(α, 1− α)− 1−max(α, 1− α)

2L − 1

)
N log(P ). (4.87)

6The original proof assumes perfect CSIT, but since the availability of CSIT cannot hurt, such bounds
also hold with finite precision CSIT.
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Normalizing both sides by N log(P ) and applying the GDoF limit, we obtain the bound,

Df.p.Σ ≤ 1 + max(α, 1− α)− 1−max(α, 1− α)

2L − 1
. (4.88)

Thus, when α ≤ 1
2
, we have Df.p.Σ ≤ 2 − α − α

2L−1
, when 1

2
≤ α ≤ 2L

2L+1−1
, we have Df.p.Σ ≤

1 + α− 1−α
2L−1

.

4.4.5 Converse Proof for Theorem 4.3

The upper bound is straightforward by using the cut-set bound and considering the multi-hop

channel as a two-unicast channel.

NR1 ≤ I(X
[N ]
1[1];Y

[N ]
1[L] | G[1:L]) (4.89)

≤ I(X
[N ]
1[1];Y

[N ]
1[1] , Y

[N ]
2[2] , Y

[N ]
1[3] , Y

[N ]
2[4] , · · · , Y

[N ]
1[L] | G[1:L]) (4.90)

= I(X
[N ]
1[1];Y

[N ]
1[1] | G[1:L]) + I(X

[N ]
1[1];Y

[N ]
2[2] | Y

[N ]
1[1] ,G[1:L])

+ I(X
[N ]
1[1];Y

[N ]
1[3] | Y

[N ]
1[1] , Y

[N ]
2[2] ,G[1:L]) + · · ·

+ I(X
[N ]
1[1];Y

[N ]
1[L] | Y

[N ]
1[1] , Y

[N ]
2[2] , · · · , Y

[N ]
2[L−1],G[1:L]) (4.91)

≤ I(X
[N ]
1[1];Y

[N ]
1[1] | G[1:L]) + h(Y

[N ]
2[2] | Y

[N ]
1[1] ,G[1:L]) + h(Y

[N ]
1[3] | Y

[N ]
1[1] , Y

[N ]
2[2] ,G[1:L]) + · · ·

+ h(Y
[N ]

1[L] | Y
[N ]

1[1] , Y
[N ]

2[2] , · · · , Y
[N ]

2[L−1],G[1:L]) (4.92)

= N log(P ) + h(Y
[N ]

2[2] | X
[N ]
1[2], Y

[N ]
1[1] ,G[1:L]) + h(Y

[N ]
1[3] | X

[N ]
2[3], Y

[N ]
1[1] , Y

[N ]
2[2] ,G[1:L]) + · · ·

+ h(Y
[N ]

1[L] | X
[N ]
2[L], Y

[N ]
1[1] , Y

[N ]
2[2] , · · · , Y

[N ]
2[L−1],G[1:L]) (4.93)

≤ L×N log(P ). (4.94)

The negative differential entropy terms in (4.92) disappear because upon further conditioning

(which cannot increase differential entropy) they reduce to noise terms that are inconsequen-
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tial in the GDoF sense:

h(Y
[N ]
i[`] |Y

[N ]
1[1] , Y

[N ]
2[2] , · · · , Y

[N ]

ī[`−1]
,G[1:L])

≥ h(Y
[N ]
i[`] | X

[N ]
1[`] , X

[N ]
2[`] , Y

[N ]
1[1] , Y

[N ]
2[2] , · · · , Y

[N ]

ī[`−1]
,G[1:L]) (4.95)

= h(Z
[N ]
i[`] | X

[N ]
1[`] , X

[N ]
2[`] , Y

[N ]
1[1] , Y

[N ]
2[2] , · · · , Y

[N ]

ī[`−1]
,G[1:L]) (4.96)

= h(Z
[N ]
i[`] ) (4.97)

= No(log(P )) (4.98)

Note that for (4.95) we used the fact that conditioning cannot increase differential entropy,

and (4.97) holds because the noise term is independent of all the conditioning terms.

Next, we note that (4.93) holds since X
[N ]
i[`] is determined by (Y

[N ]
i[`−1],G[1:L]). The bound in

(4.94) holds because at `th hop, we have

h(Y
[N ]
i[`] | X

[N ]

ī[`]
, Y

[N ]
1[1] , Y

[N ]
2[2] , · · · , Y

[N ]

ī[`−1]
,G[1:L])

= h(
√
P 1G

[N ]
ii[`]X

[N ]
i[`] +

√
PαG

[N ]

īi[`]
X

[N ]

ī[`]
+ Z

[N ]
i[`] | X

[N ]

ī[`]
, Y

[N ]
1[1] , Y

[N ]
2[2] , · · · , Y

[N ]

ī[`−1]
,G[1:L])

(4.99)

= h(
√
P 1X

[N ]
i[`] + Z

[N ]
i[`] | X

[N ]

ī[`]
, Y

[N ]
1[1] , Y

[N ]
2[2] , · · · , Y

[N ]

ī[`−1]
,G[1:L]) (4.100)

≤ h(
√
P 1X

[N ]
i[`] + Z

[N ]
i[`] ) (4.101)

≤ N log(P ). (4.102)

Symmetrically, we get

NR2 ≤ L×N log(P ) +No(log(P )). (4.103)

Combining (4.94)(4.103) and dividing by N log(P ) at both sides, we get DpΣ ≤ 2L. Since

perfect CSIT cannot hurt the GDoF value, we also get Df.p.Σ ≤ 2L.
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4.5 Achievability

4.5.1 Proof of Achievability for Theorem 4.1

There are 4 sub-cases for the achievable scheme.

• α ≤ 1
2

The achievable scheme is as follows: message Wi is split into 4 sub-messages Wi =

(Wi1,Wi2,Wi3,Wi4). They carry di1 = 2α
3
, di2 = α

3
, di3 = 1 − 2α, di4 = α

3
GDoF re-

spectively. They are encoded into independent Gaussian codebooks producing codewords

Xi1, Xi2, Xi3, Xi4 with powers E|Xi1|2 = 1− P−di1 ,E|Xi2|2 = P−di1 − P−di1−di2 ,E|Xi3|2 =

P−di1−di2 − P−1+di4 ,E|Xi4|2 = P−1+di4 . The transmitted signals at the sources are X1[1] =

X11 + X12 + X13 + X14, X2[1] = X21 + X22 + X23 + X24. Relay Rx1[1] is able to decode

W11,W12,W13,W21 successively with the corresponding SINR values ∼ P d11 ,∼ P d12 ,∼

P d13 ,∼ P d21 . Relay Rx1[1] then reconstructs the codewords X11, X12, X13, X21 and re-

moves their contribution from its received signal. The remaining signal above the noise

floor is a linear combination of X14 and X22, which is denoted as L1(X14, X22). Relay Rx1[1]

amplifies the remaining signals by power P−1, such that the power is E|L1|2 = P−1+d14 .

Then, Relay Rx1[1] splits the messages W11,W21 into W11 = (W 1
11,W

2
11),W21 = (W 1

21,W
2
21),

with the corresponding GDoF value d1
11 = d2

11 = d1
21 = d2

21 = d11
2

= α
3
. After that, Relay

Tx1[2] ≡ Rx1[1] re-encodes W 1
11,W

1
12,W12,W13,W

1
21 into codewords X1

11, X
1
12, X12, X13, X

1
21

by assigning power E|X12|2 = 1−P−d12 , E|X1
11|2 = P−d12−P−d12−d111 , E|X1

21|2 = P−d12−d
1
11−

P−d12−d
1
11−d121 ,E|X21|2 = P−d12−d

1
11−d121 − P−d12−d

1
11−d121−d21 , E|X13|2 = P−d12−d

1
11−d121−d21 −

P−1+d14+d211 , E|X2
11|2 = P−1+d14+d211 − P−1+d14 . Relay Tx2[2] ≡ Rx2[1] proceeds simi-

larly. The transmitted signals at relays are X1[2] = X12 + X1
11 + X1

21 + X13 + X2
11 +

L1, X2[2] = X22 + X1
11 + X1

21 + X23 + X2
21 + L2. Destination Rx1[2] is able to decode

W12,W
1
11,W

1
21,W13,W22,W

2
11,W14 successively, with the corresponding SINR values ∼
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Tx1[1] Rx1[1]

Tx2[1] Rx2[1]

X1[1]

X14
α
3

X131− 2α

X12
α
3

X11
2α
3

X2[1]

X24
α
3

X231− 2α

X22
α
3

X21
2α
3

1

1

α

α

Y1[1]

X14
α
3

X131− 2α

X12
α
3

X11
2α
3

X22
α
3

X21
2α
3

Y2[1]

X12
α
3

X11
2α
3

X24
α
3

X23 1− 2α

X22
α
3

X21
2α
3

X1[2]

L1
α
3

X2
11

α
3

X131− 2α

X1
21

X1
112α

3

X12
α
3

X2[2]

L2
α
3

X2
21

α
3

X23
1− 2α

X1
21

X1
112α

3

X22
α
3

Tx1[2] Rx1[2]

Tx2[2] Rx2[2]

1

1

α

α

Y1[2]

L1
α
3

X2
11

α
3

X131− 2α

X1
21

X1
112α

3

X12
α
3

X1
21

X1
11 2α

3

X22
α
3

Y2[2]

X1
21

X1
112α

3

X12
α
3

L2
α
3

X2
21

α
3

X23 1− 2α

X1
21

X1
11 2α

3

X22
α
3

Figure 4.8: Achievable scheme for α ≤ 1
2 . The dashed line at the receivers represents the noise

floor, at the transmitters it represents unit power. L1,L2 are short for L1(X14, X22),L2(X24, X12),
respectively. The left figure is the first hop while the right figure represents the second hop.

P d12 ,∼ P d111 ,∼ P d121 ,∼ P d13 ,∼ P d22 ,∼ P d211 ,∼ P d14 . Destination Rx2[2] proceeds similarly

to decode W22,W
1
11,W

1
21,W23,W12,W

2
21,W24 successively. See Figure 4.8 for an illustration.

• 1
2
≤ α ≤ 4

7

The achievable scheme is as follows: Wi is split into 3 sub-messages, i.e., Wi = (Wi1,Wi2,Wi3),

whose corresponding GDoF are di1 = 2−2α
3
, di2 = 1−α

3
, di3 = 5α−2

3
. They are encoded into

independent Gaussian codebooks producing codewords Xi1, Xi2, Xi3 with assigned power

E|Xi1|2 = 1−P−di1 ,E|Xi2|2 = P−di1−P−1+di3 ,E|Xi3|2 = P−1+di3 . The transmitted signals

at the sources areX1[1] = X11+X12+X13, X2[1] = X21+X22+X23. Relay Rx1[1] is able to de-

code W11,W12,W21 successively by treating everything else as noise. Then Relay Rx1[1] re-

constructs and subtracts the codewords X11, X12, X21 from its received signal. The remain-

ing signal above the noise floor at Relay Rx1[1] is a linear combination of X13, X22, which

we denote as L1. Relay Rx1[1] amplifies the remaining signals such that they carry power

E|L1|2 = P−1+d13 . Then, the relay Rx1[1] splits W11,W21 into W11 = (W 1
11,W

2
11),W21 =

(W 1
21,W

2
21), with the corresponding GDoF d1

11 = d2
11 = d1

22 = d2
22 = d11

2
= 1−α

3
. Re-
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Tx1[1] Rx1[1]

Tx2[1] Rx2[1]

X1[1]
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3
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3
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3
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3
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1

1

α

α

Y1[2]
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3
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112−2α
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3

X22
1−α
3

Figure 4.9: Achievable scheme for 1
2 ≤ α ≤ 4

7 . L1 = L(X13, X22),L2 = L(X23, X12). The left
figure is the first hop while the right figure represents the second hop.

lay Tx1[2] ≡ Rx1[1] then re-encodes W12,W
1
11,W

2
11,W

1
22 into independent Gaussian code-

books producing codewords X12, X
1
11, X

2
11, X

1
22 with power E|X12|2 = 1−P−d12 ,E|X1

11|2 =

P−d12 − P−d12−d
1
11 ,E|X1

21|2 = P−d12−d
1
11 − P−1+d211+d13 ,E|X2

11|2 = P−1+d211+d13 − P−1+d13 .

Relay Tx2[2] ≡ Rx2[1] proceeds similarly. The transmitted signals at the relays are X1[2] =

X12+X1
11+X1

21+X2
11+L1, X2[2] = X22+X1

11+X1
21+X2

21+L2. Then destination node Rx1[2] is

able to decode W12,W
1
11,W

1
21,W22,W

2
11,W13 successively, while treating the other signals as

noise, with the corresponding SINR values ∼ P d12 ,∼ P d111 ,∼ P d121 ,∼ P d22 ,∼ P d211 ,∼ P d13 .

Destination Rx2[2] proceeds similarly by decoding W22,W
1
11,W

1
21,W12,W

2
21,W23 succes-

sively. See Figure 4.9 for an illustration.

• α ∈ [4/7, 2/3]

In the regime α ∈ [4/7, 2/3], we have the bound Df.p.Σ = 2− α. The achievable scheme is

similar to the case α ∈ [1/2, 4/7] except that di1 = 2−2α
3
, di2 = 1−α

3
, di3 = α

2
.

• 2
3
≤ α ≤ 1

As noted previously, the achievable scheme in this regime is quite simple, the 2-hop network

simply operates as a concatenation of two interference channels using decode-and-forward.
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4.5.2 Proof of Achievability for Theorem 4.2

Building on the insights from the 2-hop solution, the achievable scheme for L-hop setting

makes use of rate-splitting at the sources and partial decode-and-forward combined with

amplify and forward at the relays. It can be visualized as incremental peeling off of interfered

layers, such that the relays of the next layer can decode one more interfered layer compared

to the relays in the previous layer. The main ideas are illustrated through the following

example of a 3-hop network.

Example 4.1. Suppose L = 3, α = 1
2
. Then we have the sum-GDoF value Df.p.Σ = 10/7.

The achievable scheme is illustrated in Figure 4.10.

In general, the achievable schemes have the following four sub-cases when α ≤ 1.

• α ≤ 1
2

In this regime, message Wi is split into 2L sub-messages, i.e., Wi = (Wi1,Wi2, · · · ,Wi(2L)),

which carry di1 = α×2L

2(2L−1)
, di2 = α×2L−1

2(2L−1)
, · · · , diL = α×21

2(2L−1)
, diL+1 = 1−2α, diL+2 = α×2L−1

2(2L−1)
,

· · · , di(2L) = α×21

2(2L−1)
GDoF respectively. These sub-messages are encoded into indepen-

dent Gaussian codebooks with codewords Xi1, Xi2, · · · , Xi(2L) with the corresponding pow-

ers E|Xi1|2 = 1, E|Xi2|2 = P−di1 ,E|Xi3|2 = P−di1−di2 , · · · ,E|XiL|2 = P−di1−di2−···−di(L−1) ,

E|Xi(L+1)|2 = P−di1−di2−···−di(L) , E|Xi(L+2)|2 = P di(L+1)+di(L+2)+···+di(2L)−1, · · · ,E|Xi(2L−1)|2 =

P di(2L−1)+di(2L)−1, E|Xi(2L)|2 = P di(2L)−1 respectively, up to scaling by an O(1) constant

to ensure a sum-power of unity. The relay node Rx1[1] is able to decode X11, X12,

· · · , X1L, X1(L+1), X21 successively. The remaining signal above the noise floor of re-

lay Rx1[1] is the combination of codewords: (X1(L+2), · · · , X1(2L), X22, · · · , X2(L)), and

we denote the combination as L1[1]. Relay Rx1[1] scales this combination (amplify and

forward) such that the power of this combination is P d1(L+2)+···+d1(2L)−1 = P
α(2L−2)

2(2L−1)
−1

.

Since both relays know messages W11,W21, they split these two messages into two sub-

messages: W11 = (W 1
11,W

2
11),W21 = (W 1

21,W
2
21), where d1

i1 = d2
i1 = di1

2
. Relay Tx1[2] ≡
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Figure 4.10: Achievable scheme for L = 3, α = 1/2. X14, X24 have 0 GDoF so they are
not shown in the figure. L1[1] = L(X15, X22, X16, X23),L2[1] = L(X25, X12, X26, X13),L1[2] =

L(X16, X23),L2[2] = L(X26, X13). The top left, top right, bottom figures are the 1st, 2nd, 3rd hop
respectively. The interfered layer at Rxi[1] are Xi5, Xi2, Xi6, Xi3. It can do nothing but amplify and
forward this layer. Then, the relay at the next hop, Rxi[2] is able to decode Wi5,Wi2, such that the
interfered layer becomes Xi6, Xi3. After that, Rxi[3] is able to decode Wi6,Wi3.
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Rx1[1] re-encodes message W12, W 1
11, W 1

21, W13, W14, · · · , W1L, W1(L+1), W
2
11 into in-

dependent Gaussian codebooks producing codewords X12, X1
11, X1

21, X13, X14,· · · , X1L,

X1(L+1), X
2
11 with the corresponding powers E|X12|2 = 1, E|X1

11|2 = P−d12 , E|X1
21|2 =

P−d12−d
1
11 , E|X13|2 = P−d12−d

1
11−d121 , · · · , E|X1(L+1)|2 = P−d12−d

1
11−d121−d13−···−d1L , E|X2

11|2 =

P d211+d1(L+2)+···+d1(2L)−1 − P d1(L+2)+···+d1(2L)−1. Relay Tx2[2] ≡ Rx2[1] proceeds similarly. The

transmitted signals are X1[2] = X12 +X1
11 +X1

21 +X13 +X14 + · · ·+X1L +X1(L+1) +X2
11 +

L1[1], X1[2] = X22 +X1
11 +X1

21 +X23 +X24 +· · ·+X2L+X2(L+1) +X2
21 +L2[1]. Then, the relay

at the next layer: Relay Rx1[2] is able to decode W12,W
1
11,W 1

21,W13,W14, · · · ,W1L,W1(L+1),

W22,W
2
11,W1(L+2) successively. Compared to Relay Rx1[1], an additional sub-message

W1(L+2) can also be decoded at Relay Rx1[2]. The remaining signal above the noise floor of

relay Rx1[2] is the combination of codewords: (X1(L+3), · · · , X1(2L), X23, · · · , X2(L)), which

is denoted as L1[2] and amplified with power P−1. Then relays Rx1[2],Rx2[2] split W12,W22,

i.e., W12 = (W 1
12,W

2
12),W22 = (W 1

12,W
2
12), with the corresponding GDoF d1

i2 = d2
i2 = di2

2
.

Relay Rx1[2] ≡ Tx1[3] re-encodes message W13, W 1
11, W 1

21, W 1
12, W 1

22, W13, W14, · · · ,W1L,

W1(L+1), W
2
11, W 2

12 into independent Gaussian codebooks producing codewords X12, X1
11,

X1
21, X1

12, X1
22, X13, X14, · · · , X1L, X1(L+1), X

2
11, X

2
12. The transmitted signals at Relay

Rx1[2] ≡ Tx1[3] is X1[3] = X13 +X1
11 +X1

21 +X1
12 +X1

22 +X14 +X15 + · · ·+X1L +X1(L+1) +

X2
11 +X2

12 +X1(L+2) +L1[2]. This idea applies to all the subsequent layers, such that Relay

Rx1[l] is able to decode one more sub-message Wi(L+l) compared to the Relay Rx1[l−1]. In

other words, the relays at the next layer can decode one more sub-message compared to

the relays in the preceding layer. In the `th hop, Relay Tx1[l+1] ≡ Rx1[l] splits the message

Wi(i−1), i.e., Wi(i−1) = (W 1
i(i−1),W

2
i(i−1)). The transmitted signal at Relay Tx1[l+1] ≡ Rx1[l]

is X1[l+1] = X1(l+1)+X
1
11+X1

21+X1
12+X1

22+· · ·+X1
1(l)+X

1
2(l)+X1(l+2)+· · ·+X1L+X2(L+1)+

X2
11 + X2

12 + · · ·X2
1(l) + L1[l]. Therefore, in the last hop, Destination Rx1[L] can decode

W1(L),W
1
11,W

1
21,W

1
12,W

1
22, · · · ,W 1

1(L−1),W
1
2(L−1),W1(L+1),W

2
11, · · · ,W 2

1(L−1),W1(2L) succes-

sively.

• 1
2
≤ α ≤ 2L

2L+1−1
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In the achievable scheme, Wi is split into (2L − 1) sub-messages, i.e., Wi = (Wi1, Wi2,

· · · ,Wi(2L−1)), which carry (1−α)×2L

2(2L−1)
, (1−α)×2L−1

2(2L−1)
, · · · , (1−α)×21

2(2L−1)
, α×2L−1

2(2L−1)
, · · · , α×21

2(2L−1)
, 2α − 1 +

1−α
2L−1

GDoF respectively. The idea of message splitting, successive decoding, partial

decode-and-forward and amplify-and-forward at the relays is similar to the case α ≤ 1
2
.

• 2L

2L+1−1
≤ α ≤ 2

3

In the achievable scheme, Wi is split into (2L−1) sub-messages, i.e., Wi = (Wi1, Wi2, · · · ,

Wi(2L−1)), which carry (1−α)×2L

2(2L−1)
, (1−α)×2L−1

2(2L−1)
, · · · , (1−α)×21

2(2L−1)
, α×2L−1

2(2L−1)
, · · · , α×21

2(2L−1)
, α

2
− (1−α)(2L−1−2)

2L−1

GDoF respectively. The idea of message splitting, successive decoding, partial decode-and-

forward and amplify-and-forward at the relays is similar to the case α ≤ 1
2
.

• 2
3
≤ α ≤ 1 The achievable scheme for this case is simple as the bound equals to 2 − α,

so each hop acts as the interference channel, and a simple decode and forward strategy

suffices.

4.5.3 Proof of Achievability for Theorem 4.3

The lower bound is achieved as follows: W1,W2 are split into L sub-messages: W1 =

(W11,W12,· · · ,W1L), W2 = (W21, W22,· · · , W2L), and each sub-message carries 1 GDoF. At

Source Txi[1], the sub-messages Wi1, Wi2, · · · , WiL are encoded into independent Gaussian

codebooks producing codewords Xi1, Xi2, · · · , XiL with powers E|Xi1|2 = 1, E|Xi2|2 = P−1,

· · · , E|XiL| = P−L+1, up to an O(1) scaling factor to ensure the sum power of unity. Then the

relay node Rxi[1] is able to decode Wī1, Wī2, · · · , WīL, Wi1 by successive decoding. Next, the

relay acts as transmitter Txi[2] and re-encodes Wī2, · · · ,WīL,Wi1 into independent Gaussian

codebooks producing codewords Xī2, · · · , XīL, Xi1 with power E|Xī2|2 = 1, E|Xī3|2 = P−1,

· · · , E|XīL|2 = P−L+2, E|Xi1|2 = P−L+1, respectively, up to an O(1) normalizing factor.

There is a simple interpretation for this scheme: the relays remove (decode and subtract)

the sub-message that has the maximum power (topmost layer) and re-transmit the remain-
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Figure 4.11: Achievable scheme for L = 3, α = 4.

ing sub-messages by keeping their original layers and scaling power to meet the maximum

allowed power level. Hence, if ` is even, Rxi[`] is able to decode Wi`, · · · ,WiL,Wī1, · · · ,WīL

successively. Then as a transmitter, Txi[`+1] transmits Wi(`+1), · · · ,WiL,Wī1, · · · ,WīL. If `

is odd, Rxi[`] is able to decode Wī`, · · · ,WīL,Wi1, · · · ,Wi` successively, and then as a trans-

mitter, Txi[`+1] transmits Wī(`+1), · · · ,WīL,Wi1, · · · ,Wi`. Hence, at the last hop, where L

is odd, destination Rxi[L] is able to decode WīL,Wi1, · · · ,WiL successively. An example of

L = 3, α = 4 is illustrated in Figure 4.11.
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4.6 Extension to the Asymmetric Setting

In this section, we explore the 2×2×2 asymmetric interference channel where the direct link

strength values at both hops are 1 and cross link strength values at the first hop and second

hop are denoted as α[1], α[2] respectively. See Fig. 4.12 for an illustration. We will show

an achievable scheme that is a rate-splitting between decode-and-forward and quantize-and-

forward via an example. Such an scheme is GDoF optimal by extending the converse proof

in this chapter from symmetric setting to the asymmetric setting straightforwardly.

S1 R1

S2 R2

W1

W2

1

1

α[1]

α[1]

1

1

α[2]

α[2]

Ŵ1

Ŵ2

D1

D2

Figure 4.12: Layered 2× 2× 2 interference channel model.

Example 4.2. Let us consider the setting α[1] = 1
2
, α[2] = 1

4
, through which we are able to

see the idea of combination of Rate Splitting, Decode-and-forward and Quantize-and-forward

schemes. The sum-GDoF value is DΣ = 1.5. The achievable scheme is as follows: Wi is split

into 3 sub-messages, i.e., Wi = (Wi1,Wi2,Wi3), each carry 1
4

GDoF, they are encoded into

independent Gaussian codebooks producing codewords Xi1, Xi2, Xi3 with the corresponding

power E|Xi1|2 = 1 − P−1/4,E|Xi2|2 = P−1/4 − P−1/2,E|Xi3|2 = P−1/2 respectively. The

transmitted codewords at Source i is Xi[1] = Xi1 + Xi2 + Xi3. At Relay 1, it use successive

decoding to decode X, the remaining signal is the noisy linear combination of X13, X22, let

us denote it as L1, i.e., L1 = G11[1]

√
PX13 + G12[1]

√
P 1/2X22 + Z1[1], which contains power

δL1 ,E|δL1| = P 1/4. Vector quantization is used to quantize the remaining signal over N

channel uses by setting the quadratic distortion at the noise level in order not to incur the

GDoF loss, i.e., L1 = L̂1 +∆1 with E|∆1|2 = 1. This in effect extracts the information of the
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remaining signals above the noise level. According to the rate-distortion theorem, 1
4
N log(P )

bits are needed to quantize the interfered signal over N channel uses. Since L̂1 has 1
4
N log(P )

bits, it is equivalently to say the it has 1/4 GDoF. The transmission at the Relay 1 is as

follows: It re-encodes W12,W11, L̂1 into independent Gaussian codebooks producing codewords

X12, X11, XL̂1. The transmitted signals at Relay 1 is X1[2] = X12+X11+XL̂1. Relay 2 proceeds

similarly. Note that Source i and Relay i have different power assignment for Xi2, Xi1. They

are significant as Xi2 appears above the noise floor and Xi1 appears below at the Destination

ī, such that Destination ī is able to decode Xi2. Destination 1 is able to use successive

decoding to decode W12,W11, L̂1,W22 sequentially. Thus, it is able to reconstruct X22 from

W22. Then, since

L̂1 = L1 −∆1 (4.104)

= G11[1]

√
PX13 +G12[1]

√
P 1/2X22 + Z1[1] −∆1 (4.105)

= G11[1]

√
PX13 +G12[1]

√
P 1/2X22 + Ẑ1[1]. (4.106)

where Ẑ1[1] , Z1[1] − ∆1. Destination 1 can subtract the term G12[1]

√
P 1/2X22 from L̂1 as

it already decode W22. Since the aggregated noise term Ẑ1[1] has power O(1)7, it is able to

decode X13 for W13, which contains 1/4 GDoF.

4.7 Summary

Motivated by the need to understand the robust information-theoretic limits of multi-hop

communication networks, in this chapter we initiated the study of the sum-GDoF of layered

symmetric L-hop 2 × 2 × · · · × 2 networks comprised of 2 nodes in each layer, under finite

precision CSIT. As our main contribution, recently introduced sum-set inequalities [20] that

7We can observe the noise accumulation due to the quantization, but this is inconsequential in the GDoF
sense.
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Figure 4.13: Achievable scheme for α[1] = 1
2 , α[2] = 1

4 , where the dashed line represents the noise
floor. L1 = L(X13, X22),L1 = L(X12, X23). The top figure is the first hop while the bottom figure
represents the second hop.

build upon Aligned Images bounds of [16] were shown to be sufficient to settle the sum-

GDoF of this symmetric setting. Notable technical issues that surfaced in our study include

the challenge of applying deterministic transformations that were developed for one-hop

communication to multi-hop settings, as well as the dependence of coding functions on CSIT

that may be available for previous hops and need not satisfy the finite precision assumption.

These challenges were overcome through recursive reasoning that applies the deterministic

transformation to only one-hop at a time. In terms of optimal solutions, under finite precision

CSIT we found that ideas such as Interference Neutralization [11, 61, 47, 38, 59], Aligned

Interference Neutralization [34, 64, 33] and Network Diagonalization [58] are too fragile to

retain their GDoF benefits, and instead rate-splitting solutions that combine amplify-and-

forward and decode-and-forward principles, along with careful layering (superposition) of
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messages that allows each successive stage of relays to acquire more common information,

are sum-GDoF optimal. The compact expressions obtained from converse bounds prove

insightful in designing the optimal achievable schemes. From the big-picture perspective,

a takeaway message from the sum-GDoF characterizations is that, on one hand, optimal

robust solutions tend to not improve much upon basic alternatives (in this case, the trivial

decode-and-forward solution) when all channels are of comparable strength, but on the other

hand, when the channel strengths are sufficiently different then significant gains over basic

alternatives are possible by optimizing robust solutions. The latter is particularly important

for the high-frequency communication networks that motivated this chapter, where due to

high path loss, blockages, and often due to directional transmission, there tends to be a much

higher spatial variance in channel strengths than in conventional cellular networks. Thus,

the results of this chapter, while clearly limited by the simplifying assumptions of layered

structure and symmetric gains, nevertheless indicate that significant robust gains are possible

by optimizing multi-hop communication for the types of richly diverse topologies that would

be typical in high-frequency directed communication networks.

126



Chapter 5

Conclusion

In this dissertation, by utilizing the Aligned Images set and its extension called Sum-set

inequalities, we characterize the GDoF for three channel settings under finite precision CSIT.

The corresponding achievable schemes are found to match the upper bounds. The finite

precision CSIT assumption blurs the channel coefficients, thus, the structured coding schemes

such as zero forcing, interference alignment are filtered out. Random coding schemes that

are simpler and more robust become optimal under the finite precision CSIT assumption.

The contributions are summarized as follows:

In chapter 2, we explored the optimality condition of Treating Interference as noise under

finite precision CSIT. TIN is shown to be GDoF optimal in the CTIN regime, which is a

larger regime than the TIN regime under perfect CSIT setting.

In chapter 3, the sum-GDoF characterization for the 2-user interference channel with limited

transmitter cooperation under finite precision CSIT is considered. We explored the cooper-

ation benefit for arbitrary channel strength parameters. The cooperation gain is found to

be either 0, 1, 1/2 or 1/3, i.e., the number of over-the-air bits that each cooperation bit buys

is shown to be equal to either 0, 1, 1/2 or 1/3. The most interesting and challenging result
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is the 1/3 slope that appears only in the strong interference regime under finite precision

CSIT. The achievable scheme utilizes rate splitting scheme and the converse proof relies on

non-trivial application of Aligned Images set.

In chapter 4, we explore the multi-hop symmetric interference channel under finite precision

CSIT assumption. A recursive approach combined with the aligned images sum-set inequal-

ities is utilized for the multi-hop interference channel under finite precision CSIT to charac-

terize the sum-GDoF upper bound. A combination of classical random coding schemes: Rate

Splitting, Decode-and-forward and Amplify-and-forward is shown to be GDoF optimal. An

interesting observation is that the sum-GDoF value approaches that of one-hop broadcast

channel with full transmitter cooperation under finite precision CSIT as the number of hops

approaches infinity.

An interesting future direction is to find the sum-GDoF of general asymmetric multi-hop

interference channel. The asymmetric multi-hop interference channel is challenging because

there are more channel strength parameters. It is an interesting open problem to see whether

the current aligned images sum-set inequalities are enough to obtain a tight upper bound.

Moreover, we give an example in chapter 4 that shows the quantize-and-forward scheme is

necessary to match the upper bound. In general, it is non-trivial to find the optimal random

coding schemes for the asymmetric multi-hop networks.

Another research direction under channel uncertainty is to study the computation prob-

lems over wireless networks. Computation over multiple access channel [52, 10] attracts

researchers’ attention in recent years as it is able to reduce the communication overhead

for the sensor network and federated learning. Since channel uncertainty is unavoidable in

practice, the fundamental limits of the over-the-air computation problem is an interesting

research direction when channel uncertainty is involved.
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Appendix A

Appendix of Chapter 3

A.1 Proof of Lemma 3.1 as a special case of Theorem

3 of [20]

For ease of reference, let us copy here Theorem 3 of [20], but since we only need a special

case, let us make a few substitutions into the general statement of Theorem 3 of [20] before

we copy it here. Let l,M be arbitrary positive integers, and let m(1),m(2), · · · ,m(l) ∈ [M ]

be arbitrary elements of [M ] that are in decreasing order, i.e., m(1) ≥ m(2) ≥ · · · ≥ m(l).

Let us substitute Ij = {m(j)} in the statement of Theorem 3 of [20]. Furthermore, we

specialize L~γ
~δ
j (x1, x2, · · · , xN) = xj for some j ∈ [N ]. With these substitutions, the following

special case of Theorem 3 of [20] is obtained.

Theorem A.1. [Special case of Theorem 3 of [20]] Consider M non-negative real numbers

λ1, · · · , λM and random variables Xk(t) ∈ Xλ1+λ2+···+λM , k ∈ [K], t ∈ N, and another
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random variable W , all independent of G, and define

Z(t) =
K∑
k=1

bGk(t)Xk(t)c,

Z1(t) = (Xk1(t))
λ1+λ2+···+λm(1)

λ1+λ2+···+λm(1)−1
for some k1 ∈ [K],

Z2(t) = (Xk2(t))
λ1+λ2+···+λm(2)

λ1+λ2+···+λm(2)−1
for some k2 ∈ [K],

...

Zl(t) = (Xkl(t))
λ1+λ2+···+λm(l)

λ1+λ2+···+λm(l)−1
for some kl ∈ [K].

Then

H(Z [n] | W,G) ≥ H(Z
[n]
1 , Z

[n]
2 , · · · , Z [n]

l | W ) + n× o(logP ), (A.1)

if for each s ∈ {1, 2, · · · , l − 1},

λm(s+1) + λm(s+2) + · · ·+ λm(l) ≤ λ1 + λ2 + · · ·+ λ(m(s)−1). (A.2)

Condition (A.2) of Theorem A.1 has a similar interpretation as conditions (3.27)-(3.30) of

Lemma 3.1. Note that sub-section Zs has level `(Zs) = λ1 + λ2 + · · · + λm(s)−1, and size

T (Zs) = λm(s). If we vertically stack Z1, Z2, · · · , Zl in that order from top to bottom, then

the LHS of (A.2) is the height of the block Zs above the ground, i.e., its new height. The

RHS of (A.2) is the height of Zs as it appears in Z, i.e., its original height. Thus, Condition

(A.2) simply checks that if Z1, · · · , Zl are stacked vertically in that order from top to bottom,

then no sub-section is elevated above its original height in Z.

Next, to see how Lemma 3.1 is implied by Theorem A.1, let us start with sub-sections

U1, U2, · · · , Um that satisfy conditions (3.27)-(3.30), and map the parameters of Lemma 3.1

to the parameters of Theorem A.1. Figure A.1 presents an example that will be illustrative
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for this purpose.

Lemma 3.1

U3

U1

X1

λ

X2

U2

Y

U3

U2

U1

3

Theorem 3 in [20]

Z5

Z1
Z2

X1

λ1
v1

v2
λ3

λ2

λ4

λ5
X2

Z4

Z3

Z

v3

v4

v5
Z1
Z2

Z3

Z4

Z5

3

Figure A.1: Starting from U1, U2, U3 that satisfy the conditions for Lemma 3.1, the figure shows
how the parameters are mapped to Theorem 3 of [20] so that the condition (A.2) is satisfied. Here,
K = 2, l = 5,M = 5, (m(1),m(2),m(3),m(4),m(5)) = (5, 4, 4, 3, 1), I1 = {5}, I2 = {4}, I3 =
{4}, I4 = {3}, I5 = {1}. Note that in the vertical stacking each Zi sub-section is not elevated above
its original position in Z because in the corresponding vertical stacking each Uj sub-section is not
elevated above its original position in Y .

Let λ , maxk∈[K] µk. Let the interval (aj, bj) correspond to the sub-section Uj, and let

V = {aj : j ∈ [m]} ∪ {bj : j ∈ [m]} ∪ {0, λ} (A.3)

, {v0, v1, v2, · · · , vM} (A.4)

be the set containing all interval boundaries with 0 = v0 < v1 < v2 < · · · < vM = λ. Now

we can define λ1 = v1 − v0, λ2 = v2 − v1, · · · , λM = vM − vM−1.

Note that the intervals (vi−1, vi) partition the interval (0, λ) into M contiguous sub-intervals,

let us call them v-intervals, so that we have a total of M such v-intervals. If any sub-section

Uj spans more than one of these M intervals, let us split it further into smaller sub-sections

according to to the v-intervals. These splits are shown with red lines in Fig. A.1 that split

each of U1, U2. These partitions are reflected in the vertical stack, and then the sub-sections

in the vertical stack are labeled as Z1, Z2, · · · , Zl from top to bottom. This completes the

mapping of parameters. The construction trivially guarantees that the condition (A.2) is

satisfied. Therefore, according to Theorem A.1, the sum-set inequality (A.1) must hold,
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which in turn implies the sum-set inequality (3.25) of Lemma 3.1 holds as well.

A.2 Appendix: Basic Lemmas

The first lemma shows that in the GDoF sense, entropy (even with arbitrary conditioning)

does not change if an integer valued random variable is replaced with another integer valued

random variable as long as they are always within a constant distance of each other. Note

that while S(i), T (i) may depend on P , the RHS of (A.5) is bounded (does not scale with

P ) so it has 0 GDoF.

Lemma A.1. For integer valued random variables S(1), S(2), · · · , S(n), T (1), T (2), · · · , T (n)

and any random variable Z, if |S(i)− T (i)| ≤ c for all i ∈ [n], where c is a finite constant,

then

|H(S[n] | Z)−H(T [n] | Z)| ≤ n log(2c+ 1). (A.5)

Proof. Since H(T [n] | Z) −H(T [n] | S[n], Z) ≤ H(S[n] | Z) ≤ H(T [n] | Z) + H(S[n] | T [n], Z)

we have

|H(S[n] | Z)−H(T [n] | Z)|

≤ max(H(S[n] | T [n], Z), H(T [n] | S[n], Z)) (A.6)

= max(H(S[n] − T [n] | T [n], Z), H(T [n] − S[n] | S[n], Z)) (A.7)

≤ max(H(S[n] − T [n]), H(T [n] − S[n])) (A.8)

≤ n log(2c+ 1). (A.9)

The last step follows because the support of integer valued S(i) − T (i) has cardinality no

more than 2c+ 1, and entropy of a discrete random variable is bounded by the logarithm of
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the cardinality of its support. �

The next lemma shows that additional floor operations can only have a bounded effect, so

for example, b
√
PαcXc is within bounded distance from bcb

√
PαXcc if c is bounded.

Lemma A.2. For any S, c ∈ R,

∣∣∣bcSc − bcbScc∣∣∣ ≤ (2 + |c|).

Proof. Note1 that bcbScc ∈ bcS ± |c|c ⊂ cS ± (1 + |c|) and bcSc ∈ cS ± 1. Therefore,

|bcSc − bcbScc| ≤ (2 + |c|). �

The next lemma shows that scaling by a real-valued constant bounded away from zero and

infinity followed by a subsequent rounding operation does not change the entropy in the

GDoF sense. Thus, for example the entropy H(X) is equal to the entropy H(bGXc | G)

because conditioned on G, the value G is a bounded constant scaling factor.

Lemma A.3. For any integer valued random variables S(1), S(2), · · · , S(n), any random

variable Z, and constants c(1), c(2), · · · , c(n) such that |c(i)| ∈ [1/∆,∆] for all i ∈ [n],

∣∣∣H(S[n] | Z)−H(
(
bc[n]S[n]c

)
| Z)

∣∣∣ ≤ n× log(5 + 2∆). (A.10)

Proof.

H(S[n] | Z)−H(
(
bc[n]S[n]c

)
| Z)

≤ H(S[n] |
(
bc[n]S[n]c

)
, Z) (A.11)

= H

(
S[n] −

(
bbc

[n]S[n]c
c[n]

c
)
|
(
bc[n]S[n]c

)
, Z

)
(A.12)

≤ n× log(5 + 2∆). (A.13)

1We use the notation y ± z to denote the interval [y − z, y + z].
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In the last step we used Lemma A.1 and the fact that |S(i)−b bc(i)S(i)c
c(i)

c| ≤ (2+ 1
|c(i)|) ≤ (2+∆).

On the other hand,

H(bc[n]S[n]c | Z)−H(S[n] | Z) ≤ H(bc[n]S[n]c | S[n], Z) (A.14)

= 0. (A.15)

�
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Appendix B

Appendix of Chapter 4

B.1 Proof for Lemma 4.1

Let us present the proof of the bound I(W1;Y
[N ]

1[`] | G[1:L]) ≤ I(W1;Y
[N ]

1[`] | G[1:L]), which

converts from the original canonical channel to the deterministic channel with conditioning

on G[1:L] instead of G[1:`].
1 Following the proof that appears in the Appendix section of [16],

the first step is to limit the input and output to integers. Let an intermediate deterministic

channel model of the `th hop have integer inputs bPmax(1,α)
X

[N ]
1[`]c, bP

max(1,α)
X

[N ]
2[`]c, and integer

outputs2

¯̄Y1[`](n) = bP 1−max(1,α)
G11[`](n)bPmax(1,α)

X1[`](n)cc

+ bPα−max(1,α)
G12[`](n)bPmax(1,α)

X2[`](n)cc (B.1)

¯̄Y2[`](n) = bPα−max(1,α)
G21[`](n)bPmax(1,α)

X1[`](n)cc

+ bP 1−max(1,α)
G22[`](n)bPmax(1,α)

X2[`](n)cc (B.2)

1Since the channels G[`+1:L] do not appear until after the `th hop, the conditioning can be reduced to
G[1:`] trivially.

2By integer-valued inputs and outputs, we mean that the real and imaginary parts of these inputs and
outputs are integer valued.
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while the original canonical channel is

Y1[`](n) = P
1−max(1,α)

G11[`](n)(P
max(1,α)

X1[`](n))

+ P
α−max(1,α)

G12[`](n)(P
max(1,α)

X2[`](n)) + Z1[`](n) (B.3)

Y2[`](n) = P
α−max(1,α)

G21[`](n)(P
max(1,α)

X1[`](n))

+ P
1−max(1,α)

G22[`](n)(P
max(1,α)

X2[`](n)) + Z2[`](n) (B.4)

Define

E
[N ]
i[`] , Y

[N ]
i[`] −

¯̄Y
[N ]
i[`] . (B.5)

Then we have,

I(W1;Y
[N ]

1[`] | G[1:L])

= I(W1; ¯̄Y
[N ]

1[`] + E
[N ]
1[`] | G[1:L]) (B.6)

≤ I(W1; ¯̄Y
[N ]

1[`] | G[1:L]) + I(W1;E
[N ]
1[`] |

¯̄Y
[N ]

1[`] ,G[1:L]) (B.7)

≤ I(W1; ¯̄Y
[N ]

1[`] | G[1:L]) + h(E
[N ]
1[`] | G[1:L])

− h(E
[N ]
1[`] | W1, X

[N ]
1[`] , X

[N ]
2[`] ,

¯̄Y
[N ]

1[`] ,G[1:L]) (B.8)

= I(W1; ¯̄Y
[N ]

1[`] | G[1:L]) + h(E
[N ]
1[`] | G[1:L])

− h(Z
[N ]
1[`] | W1, X

[N ]
1[`] , X

[N ]
2[`] ,

¯̄Y
[N ]

1[`] ,G[1:L]) (B.9)

= I(W1; ¯̄Y
[N ]

1[`] | G[1:L]) + h(E
[N ]
1[`] | G[1:L])− h(Z

[N ]
1[`]) (B.10)

≤ I(W1; ¯̄Y
[N ]

1[`] | G[1:L]) +
N∑
n=1

h(E1[`](n) | G[1:L])− h(Z1[`](n)) (B.11)

= I(W1; ¯̄Y
[N ]

1[`] | G[1:L]) +No(log(P )) (B.12)

where (B.8) is because conditioning cannot increase differential entropy, (B.10) holds because
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the the noise is independent of all messages and channel coefficients, i.e.,

I(Z
[N ]
1[`] ;W1, X

[N ]
1[`] , X

[N ]
2[`] ,G[1:L]) = 0. (B.13)

For (B.12) note that according to its definition in (B.5), E1[`](n) is the sum of an AWGN term

(Z1[`](n)) of unit variance, and an independent term whose magnitude is at most 2 + 2∆.

Therefore, the variance of Ei[`](n) is not more than (2 + 2∆)2 + 1. For a given variance

constraint Gaussians maximize differential entropy, so the differential entropy h(Ei[`](n) |

G[1:L]) is not more than log(2πe(1 + (2 + 2∆)2)), which is o(log(P )). Similarly, h(Z1[`](n)) is

equal to log(2πe) which is also o(log(P )). So the difference between I(W1;Y
[N ]

1[N ] | G[1:L]) and

I(W1; ¯̄Y
[N ]

1[N ] | G[1:L]) approaches 0 when normalized by N log(P ).

Thus, the integer input and output channel with the per-codeword power constraints,

N∑
n=1

(
(bPmax(1,α)

X1[`](n)c)2
)
≤ NPmax(1,α) (B.14)

N∑
n=1

(
(bPmax(1,α)

X2[`](n)c)2
)
≤ NPmax(1,α) (B.15)

achieves at least the same GDoF as the original canonical channel model.

The next step is to convert the per-codeword power constraints into per-symbol power con-

straints. Let us define

X1[`](n) , bPmax(1,α)
X1[`](n)c mod dPmax(1,α)e (B.16)

X2[`](n) , bPmax(1,α)
X2[`](n)c mod dPmax(1,α)e (B.17)

Y 1[`](n) , bP 1−max(1,α)
G11[`](n)X1[`](n)c

+ bPα−max(1,α)
G12[`](n)X2[`]c (B.18)

Y 2[`](n) = bPα−max(1,α)
G21[`](n)X1[`](n)c

+ bP 1−max(1,α)
G22[`](n)X2[`]c (B.19)
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Ŷ1[`](n) = ¯̄Y1[`](n)− Y 1[`](n) (B.20)

Ŷ2[`](n) = ¯̄Y2[`](n)− Y 2[`](n) (B.21)

Now we have,

I(W1; ¯̄Y
[N ]

1[`] | G
[N ]
[1:L]) = I(W1;Y

[N ]

1[`] + Ŷ
[N ]

1[`] | G[1:L]) (B.22)

≤ I(W1;Y
[N ]

1[`], Ŷ
[N ]

1[`] | G[1:L]) (B.23)

≤ I(W1;Y
[N ]

1[`] | G[1:L]) +H(Ŷ
[N ]

1[`] | G[1:L]) (B.24)

≤ I(W1;Y
[N ]

1[`] | G[1:L]) +H(Ŷ
[N ]

1[`] | G[`]). (B.25)

It can now be shown that the term H(Ŷ
[N ]

1[`] | G[`]) is negligible in the GDoF sense following

the same proof as in [16, eq. (124)-(149)]. Therefore, at the `th hop, replacing the long-

term (per-codeword) power constraint with short-term (per-symbol) power constraint will

not reduce the GDoF value.

The other bound I(W2;Y
[N ]

2[`] | G[1:L]) ≤ I(W2, Y
[N ]

2[`] | G[1:L]) follows by symmetry. The bound

I(W1,W2;Y
[N ]

1[`] , Y
[N ]

2[`] | G[1:L]) ≤ I(W1,W2;Y
[N ]

1[`], Y
[N ]

2[`] | G[1:L]) that is needed in (4.38) is ob-

tained similarly.

�
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