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ABSTRACT OF THE DISSERTATION

The Dynamics of Collaboration in Knowledge-Based Work Processes

by

Morvarid Rahmani

Doctor of Philosophy in Management

University of California, Los Angeles, 2013

Professor Uday Karmarkar, Co-Chair

Professor Guillaume Roels, Co-Chair

The service sector represents the dominant part of the U.S. economy, accounting

for over 80% of employment as well as GNP (Apte et al. 2011). Although much

scholarly work has been done on services, research on professional or white collar

services is still in its infancy. What makes these services distinctive is that they are

knowledge-intensive and project-based. In addition, they are collaborative by nature;

that is, their value is created from the combined effort of individuals (Hopp et al.

2009). For example, IBM Corporation discovered that their Request For Proposal

(RFP) process for outsourcing services, instead of being linear, well sequenced, and

deterministic, was information-intensive, collaborative, iterative, and stochastic. Im-

proving their understanding of how the work actually took place led them to improve

the efficiency of their work processes (Kieliszewski et al. 2010).

This dissertation focuses on the study of the dynamics of collaboration in knowledge-

based work processes such as new product or service development, management and
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IT consulting, technical projects, and education. It consists of three chapters re-

spectively addressing the effect of contracting, team organization, and learning in

collaboration, so as to generate insights for advancing strategic decision-making both

across organizations and within them. In each chapter, collaboration is modeled as

a dynamic double moral hazard game. Specifically, these models have the following

features in common: (i) the collaborative project is subject to a tight deadline, (ii)

the work dynamics are studied with respect to both time and project progress, and

(iii) the transitions between states are stochastic and depend on the collective amount

of effort exerted. Below is a summary of these three chapters.

The first chapter studies how contractual arrangements affect the work dynamics

between a vendor and a client in finite-deadline collaborative projects that have been

disambiguated and need to be executed. The analysis shows that it is optimal for the

client and the vendor to both exert high effort when the project is near completion, i.e.,

either when the project has reached a high state or when there is limited time left until

the deadline. Otherwise, only one of them needs to exert high effort. When efforts are

not contractible, i.e., in cases of double moral hazard, the dynamics of collaboration

depend on the contractual arrangement. The analysis shows that reward-sharing

contracts yield suboptimal output and give rise to free-riding; fixed-fee completion

bonuses make the vendor exert high effort only when the project has reached a high

state; and with time-and-materials contracts, the vendor attempts to either shirk

work or increase the project scope. Despite these shortcomings, the analysis reveals

that simple contracts can perform well, but that they must be judiciously chosen

based on project characteristics.

The second chapter considers knowledge-intensive projects such as new product or

software development, in which the major resource is labor. The choice of team size

is a crucial decision for project success since it balances effectiveness and efficiency.
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In these knowledge-intensive projects, team size can be chosen either by the team

members themselves or by an internal leader. This chapter studies how the choice of

team size is affected by the leadership structure of the team. The project is modeled as

a stochastic staffing game with a fixed deadline and the staffing decisions are examined

relative to the best solution. The analysis shows that there is always under-staffing

when members choose the team size. With an internal leader, there can be under-

or over-staffing. In particular, there can be over-staffing because the team members’

cost of effort is not internalized by the leader and there can be understanding because

the leader can free ride. Comparing the efficiency of the two leadership structures, the

analysis shows that letting the team members decide team size themselves generates

a higher total surplus when the project reward is neither too small nor too large.

The third chapter analyzes the effect of learning on collaboration in knowledge-

intensive projects. The ultimate success of such projects depends on effectiveness of

collaboration. However at the outset, it may be challenging to predict how effective

two parties may be at collaborating, especially if they have not worked together

before. Accordingly, this chapter studies the dynamics of collaboration when parties

are uncertain about the quality of their relationship, i.e., how effective they will be at

working together. The problem is modeled as a stochastic game between two parties,

in which the probability of success from individual work is known, but the probability

of success from joint work is not. In particular, the parties start the project with

the same prior belief about the effectiveness of their collaboration and update that

belief through time, using Bayesian updating. The analysis shows that learning is

favorable when the parties’ expected prior belief is neither too strong nor too weak.

In this case, the parties choose to collaborate early on to discover the effectiveness of

their teamwork. If their collaboration fails for a certain number of trials, they stop

collaborating and prefer to do the work individually. When the parties’ expected
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prior belief is either too strong or too weak, learning may not be favorable, because

the parties may postpone their collaboration until there is little time left before the

deadline. This chapter can be extended in several directions. For example, what if

the parties have the option to wait or delay the project? What if the parties make

their decisions in a decentralized way, resulting in a situation of double moral hazard?
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Chapter 1

Contracting and Work Dynamics

in Collaborative Projects

∗

1.1 Introduction

Many knowledge-intensive projects, such as research and development, high-technology,

and management and information technology (IT) consulting, involve collaboration

between a client and a vendor over a finite time horizon. For instance, a firm may

hire Xoriant, a software product development and engineering company, to create a

software application (e.g., a mobile application) in a specified time window (e.g., 3

months), with a deadline that is set by the client based on internal needs. Executing

the project typically requires close collaboration between the client firm and Xoriant

so as to address the firm’s market needs, choose the adequate technology, and inte-

∗This chapter is a version of Rahmani, M., Roels, G., and Karmarkar, U.S., 2013. Contracting
and Work Dynamics in Collaborative Projects. Submitted for review.
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grate the application within the firm’s core business processes (Gaitonde 2013). As

another example, a faculty member may hire a PhD student to work on a research

paper. Similarly, industrial research and design is often done collaboratively (Hopp

et al. 2009).

Although knowledge-intensive projects may be subject to a tight deadline (e.g.,

release of a new product, graduation of a PhD student), the content of such projects

is often loosely defined at the outset, even after being disambiguated. Specifically,

the choice of what components to include in a mobile application (e.g., applets to

upload videos, traffic analysis tools) or how far a research idea should be pursued is

often revised on the fly depending on the project progress, the potential benefit from

such additions, and the time remaining until the deadline.

In such projects, how should collaboration be managed? In a software application

development project, should the client outsource most of the work to the vendor,

with the risk that it may take longer to integrate it with its internal processes? Or

should the client bear more responsibility for the development of the application,

with the risk that it may take more trial-and-error to make it run seamlessly? Or

should they work together? Similarly, should an advisor let her PhD student work

alone on a research project or should she be more involved in it? These decisions are

often dependent on the state of completion of the project (e.g., when a research paper

is about to be submitted) and on the deadline (e.g., the PhD student’s graduation

date).

The work dynamics typically depend on the parties’ choice of contract. A com-

mon feature of knowledge-based work is indeed the joint nature of output, making it

impossible to infer the respective inputs from the output (Fuchs 1968). For instance,

it is difficult from the outside to attribute the quality of a software user interface
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to either the firm owning the software or its software developer. Similarly, a jointly

authored research paper does not indicate the authors’ relative contributions. This

is in contrast to many physical projects for which output can be disentangled in pro-

portion to the relative inputs. Such output jointness creates contractual difficulties

(Karmarkar and Pitbladdo 1995) in case of effort unverifiability (Holmström 1982).

In that case, which contract should be adopted? Can simple contracts perform well?

To answer these questions, we consider a knowledge-intensive project that has

already been “disambiguated” and needs to be executed by a vendor and a client.

Specifically, we consider a situation in which a vendor has already been hired and

the scope of the project has already been defined (e.g., building a mobile applica-

tion). What remains to be decided is the choice of components to be executed (e.g.,

video applets, traffic analysis tools) and who should execute them. Each component

addition moves the project to an upper state, but not all components need to be com-

pleted before the deadline. Because low-hanging fruits tend to be executed first, the

final reward from the project is assumed to be increasing concave in its completion

state.

Consistent with the collaborative, iterative, and stochastic nature of knowledge-

intensive processes (Kieliszewski et al. 2010), we model the collaborative work process

as a finite-horizon stochastic game (Shapley 1953, Sobel 1971). That is, the state

of the project evolves according to a Markov chain and the transition probabilities

depend on the parties’ choice of effort levels. In particular, the probability of reaching

a higher-value state increases in the parties’ effort level. For instance, the development

of a software application will progress faster if the client and the vendor work together

(Gaitonde 2013), or a research result may be established more quickly when two

researchers work together.
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We characterize the collaborative dynamics first when efforts are contractible and

then when efforts are not contractible. When efforts are contractible, the first-best

(FB) outcome can be attained. In that case, the players should both exert high effort

when the project is near completion, i.e., either when it has reached a high state or

when there is limited time left until the deadline. Otherwise, only one player needs

to exert high effort.

When efforts are not contractible, the FB outcome is in general not achievable

because of moral hazard (Holmström 1982); and the dynamics of collaboration de-

pend on the type of contract adopted by the players. Reward-sharing (RS) contracts

(e.g., sharing incremental revenue from a marketing campaign, co-authoring a re-

search paper) are attractive because they align incentives well; yet, they can only be

implemented when the outcome is measurable. By contrast, fixed-fee (FF) contracts,

which pay the vendor a bonus upon the project completion, are often simpler to im-

plement. However, they only provide incentives for the vendor to exert high effort

when the bonus is within reach, i.e., in the high states of the project. In addition,

they may give rise to client’s scope creep. Specifically, the client may end up pushing

the vendor to keep working on the project beyond reasonable levels. Similarly, time-

and-materials (TM) contracts, which pay the vendor a per-period fee until project

completion, are also simpler to implement, but they could give rise to vendor’s scope

creep. In that case, it is the vendor who may keep expanding the scope of the project.

Can these simple contracts, despite their shortcomings, perform well? If the project

output is not measurable, when are FF contracts preferable over TM contracts?

Although RS contracts are well known to achieve high efficiency, their adoption

is limited to projects for which the reward is contractible, which is rather uncommon

(Hopp et al. 2009, Gaitonde et al. 2013). When the reward is not contractible,
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only simple contracts, such as FF and TM contracts, are available. Although these

simple contracts perform poorly in static settings (see, e.g., Roels et al. 2010), we find

that they may perform well in dynamic settings. However, the contract choice must

be judiciously made based on the project characteristics. Specifically, FF contracts

tend to outperform TM contracts when the project reward is high; when the costs

of joint work relative to individual work are low; and when the chances of success

through joint work are significantly higher than those associated with individual work.

Otherwise, TM contracts outperform FF contracts.

The remainder of this chapter is organized as follows. We review the related

literature in the next section and present the model in §3.3. We characterize the

FB solution in §3.4 and study the game dynamics for RS, FF, and TM contracts

in §1.5. Benchmarking the equilibrium dynamics under RS, FF, and TM contracts

to the FB work dynamics indicates when those contracts will perform well. We

numerically compare the relative efficiency of the three contract types and validate

our analytical prescriptions in §1.6. We present our conclusions in §1.7. All proofs

appear in Appendix A (§4.1).

1.2 Literature Review

This chapter builds upon the literature on moral hazard in teams and contracting

and upon the literature on new product development, which we review next.

Moral Hazard in Teams and Contracting. Knowledge-intensive projects often

involve multiple players working toward a common output (Fuchs 1968, Karmarkar

and Pitbladdo 1995), resulting in a situation of double moral hazard (Holmström

1982). The literature on double moral hazard and the dynamics of collaboration can
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be classified in four categories, depending on whether the project is deterministic

or stochastic and on whether efforts are simultaneous or sequential. This chapter

considers a stochastic game with simultaneous moves.

Studying deterministic team projects, Admati and Perry (1991) and Varian (1994)

consider sequential moves, and Marx and Matthews (2000) and Demirezen et al.

(2013) consider simultaneous moves. Marx and Matthews (2000) show that, with

a linear reward function, the project is completed in equilibrium only if a bonus is

granted upon completion of the project; otherwise no effort is exerted in equilibrium.

We show that a less extreme equilibrium outcome, i.e., with positive effort, arises

when the reward function is (strictly) concave. We consider a bonus in the context

of fixed-fee contracts and show that the parties’ contribution is decreasing over time,

consistent with Marx and Matthews (2000). Besides FF contracts, we also study

RS and TM contracts and compare their relative efficiency. More importantly, we

consider a stochastic, and not deterministic, project. Demirezen et al. (2013) consider

a deterministic double-moral hazard problem, in which the rate of reward is a function

of the cumulative joint effort. While their model applies well to long-term projects,

in which relationships must be built over time, we consider here a short-term project,

in which the reward is only collected at the end of the project. Accordingly, the work

dynamics are fundamentally different. With a cumulative reward, the equilibrium

effort levels should decrease over time, whereas we find that, with discrete reward,

efforts should increase over time as well as with the state of the project. We thus

complement their study by considering a short-term, discrete (stochastic) project, as

opposed to a long-term, cumulative (deterministic) project.

Studying stochastic team projects with simultaneous moves in static and dynamic

settings, respectively, Teoh (1997) and Bonatti and Horner (2011) analyze informa-
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tional issues in team projects, such as uncertain project outcome and duration. We

contribute to this literature by adopting a finer view on collaborative dynamics: In

contrast to Teoh (1997) and Bonatti and Horner (2011) who consider a one-state

project, we consider here a multi-state project and therefore characterize the work

dynamics with respect to both time and state. In particular, we show that time and

state can in general not be aggregated because the optimal or equilibrium working

mode is time- and state-dependent. Specifically, we find that the parties should in-

crease their effort as deadline gets closer similar to Bonatti and Horner (2011), but

also as the state of the project gets closer to completion, which are distinct events in

a stochastic setting. Besides characterizing the work dynamics, we make contractual

prescriptions for projects with dynamic double moral hazard.

How much efficiency can be generated with double moral hazard depends on the

type of contract. In a static setting, Bhattacharyya and Lafontaine (1995) show that

the second-best outcome can be achieved with a reward-sharing contract and Roels

et al. (2010) study the trade-off between moral hazard and monitoring costs. Instead

of characterizing the nature of second-best contracts in a dynamic setting, which

may turn out to be very complex and therefore impractical, we study the dynamics

of collaboration under such common contracts as fixed-fee, time-and-materials, and

reward-sharing contracts (Czerniawska and Smith 2010, Sheedy 2010) and show these

simple contracts can perform well. In operations management, Plambeck and Taylor

(2006), Bhaskaran and Krishnan (2009), Kwon et al. (2010), Roels et al. (2010), and

Kim and Netessine (2013) study the performance of similar contracts for static (or re-

peated) joint-production games. We complement these studies by opening the “black

box” of their abstract production function and by characterizing the collaborative

dynamics.
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New Product Development Projects. Hopp et al. (2009) overview the key

differences between blue- and white-collar processes, and highlight that the latter are

inherently more knowledge-intensive and creative than the former, and often collab-

orative. New product development projects are a canonical example of knowledge-

intensive projects (Ozkan et al. 2013). Two issues pertain to such projects: team

organization and work scheduling. From the perspective of team organization, the key

issues are how to allocate the work (Tripathy and Eppinger 2012), how to structure

the team in terms of both hierarchy (Sting et al 2012) and diversity (Kavadias and

Sommer 2009, LiCalzi and Surucu 2012), and how to provide incentives to the team

members, either financial (Mihm 2010, Bayiz and Corbett 2005, Wu et al. 2013) or

motivational (Huberman and Loch 1996). In addition, work must be scheduled to

shorten development time (Ha and Porteus 1995, Loch et al. 2001), reduce project

ambiguity (Terwiesch and Loch 2004, Loch and Terwiesch 2005), or leverage flexibility

(Huchzermeier and Loch 2001, Santiago and Vakili 2005). Considering an exogenous

team size and hierarchy (i.e., a client and a vendor) and an exogenous (stochastic)

work process, this research bridges the gap between these two streams of literature

by jointly characterizing how to dynamically structure the work process between two

team members and what incentive mechanism to adopt as a function of the type

of project. These two issues are indeed intrinsically linked given the impact of the

contractual arrangement on the collaborative dynamics.

1.3 Model

In this section, we introduce a model of dynamic collaborative process. We consider a

vendor (v) and a client (c), engaged in a multi-period, multi-stage stochastic project

with finite deadline T . The deadline is exogenous and typically dictated by the client’s
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Table 1.1: Actions and work outcomes

Client\Vendor Work W Not work N

Work W Duo Soloc

Not work N Solov Finish

internal constraints (Gaitonde et al. 2013). Let N = {v, c} denote the set of players

and T = {1, . . . , T} be the set of time periods. For each period t ∈ T , the state of the

project xt is assumed to belong to a totally ordered set Xt. Without loss of generality,

we assume that Xt ⊂ Z+. Once the project is stopped in state xt, a common reward

R(xt) is collected. The reward function R(xt) is assumed to be increasing concave,

therefore making it optimal to stop the project beyond a certain state. For instance in

a mobile application development project, xt could represent the number of features

included in the application (e.g., videos, traffic analysis tools). Having more features

is obviously better, but if low-hanging fruits are tackled first, the benefit of additional

features can be reasonably assumed to be decreasing. Time is discounted at a rate

δ ≤ 1, making early project completion desirable.

In each period t < T and state xt, players must decide their effort levels. For

simplicity, we consider binary effort levels, as is common in the project management

literature (Tripathy and Eppinger 2012, Sting et al. 2012) and the principal-agent

contracting literature (see, e.g., Laffont and Martimort 2002). Specifically, we as-

sume that each party can either work (W ) or not work (N). We thus consider an

extreme situation in which low effort is essentially equivalent to not working. That

is, exerting low effort entails virtually no cost and the project stalls if both parties

choose to exert low effort. Although efforts may in reality be continuous, generalizing

the model along that dimension generates limited additional insights, while being

mathematically cumbersome.
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Figure 1.1: State dynamics when both players work (Duo)

Let A = {W,N} denote the set of possible actions, and let ait(xt) ∈ A denote

player i’s action in period t and state xt, for i ∈ N , t < T , and xt ∈ Xt. As a result of

these binary action sets, four outcomes are possible, as depicted in Table 1.1. If both

players work, either jointly or in parallel, i.e., (act(x), avt (x)) = (W,W ), the outcome

is referred to as Duo. If only player i ∈ N work, i.e., (act(x), avt (x)) = (N,W ) or

(act(x), avt (x)) = (W,N), the outcome is referred to as Soloi. Finally, if neither player

works, i.e., (act(x), avt (x)) = (N,N), the project is stopped and the outcome is referred

to as Finish.

The evolution of the state of the project xt is assumed to follow a homogenous

pure-birth Markov process. Implicit in this model are the following three assump-

tions. First, task completion times are assumed to be exponentially distributed, e.g.,

because of repeated experimentation (e.g., Loch et al. 2001, Terwiesch and Loch

2004). See Kwon et al. (2010) for a justification of exponential distributions for

modeling project completion times. Second, only same-state and one-step upward

transitions are allowed. Although downward transitions could potentially happen in

practice (e.g., a result believed to be true turns out to be false), progress is neverthe-

less expected, i.e., upward probabilities are likely dominating downward probabilities.

Similarly, although multi-step transitions could happen in practice, they are presum-

ably of second order relative to one-step transitions. Hence, our pure-birth Markov

model can be interpreted as a first-order approximation of a general birth-and-death

process in which upward one-step transitions dominate. Finally, assuming homoge-

10



neous transition probabilities is almost without loss of generality since the different

states of the project are already differentiated by their reward upon project comple-

tion. Because Markov equilibria are known to be robust to model misspecifications

(Maskin and Tirole 2001), we expect our insights to be robust to those modeling

assumptions.

The evolution of the state of the project is governed by the work dynamics. Specif-

ically, the upward transition probabilities are assumed to be increasing in each party’s

effort level. For instance, the state xt evolves to state xt + 1 with probability pd or

remains at state xt with probability 1− pd if both players work in period t (Duo), as

depicted in Figure 1.1. Similarly if only player i works (Soloi), there is an upward

one-state transition with probability ps, and no transition with probability 1− ps, for

i ∈ N . Because the chances of success are greater when more players are working (e.g.,

Huberman and Loch 1996), we assume that pd > ps. (Marx and Matthews (2000)

and Bonatti and Horner (2011) made a similar, but stricter, assumption, namely

that pd = 2ps. However if players are modeled as independent Bernoulli processes,

pd = 1− (1− ps)2 = ps(2− ps).)

Working is associated with some cost of effort. Although the cost of effort could be

taken as independent of how many players work, as in Bonatti and Horner (2011) and

Marx and Matthews (2000), this may not necessarily be the case in practice. Working

together can indeed induce inefficiencies, e.g., scheduling meetings and travelings (Ha

and Porteus 1995), or could in contrast be less costly, e.g., by making work more

enjoyable (Maldonando et al. 2007). Accordingly, we denote by cd > 0 the cost

of working Duo and by cis > 0 player i’s cost of working Soloi. A player who is

not working incurs no cost. We assume that the cost of working alone is lower for

the vendor than for the client, i.e., cvs ≤ ccs, reflecting the vendor’s greater efficiency,
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which may precisely be the reason for which the client wants to hire him. For instance,

Xoriant can operate from offshore locations, giving them a labor cost advantage. We

assume that players are symmetric on all other dimensions, that is, they both can

do the work equally well (same ps) but at different costs. Although similar results

could have been obtained with identical costs but different probabilities of success,

we adopt the above setup to simplify the mathematical expressions. Similarly, we

assume identical costs of working Duo across players for simplicity. These costs are

furthermore assumed to be stationary, which is a reasonable assumption over a short

time horizon.

We assume perfect information about the project characteristics and the players’

costs. When efforts are contractible, the players can write a contract to maximize the

total surplus. We refer to that situation as first-best (FB), and study its dynamics of

collaboration in §3.4. When efforts are not contractible, the first-best outcome is in

general not achievable, resulting in a situation of double moral hazard (Holmström

1982), studied in §1.5.

1.4 First Best

In this section, we study the FB dynamics of collaboration, i.e., the work processes

that maximize the total surplus. In practice, the FB outcome can be attained when

the players’ efforts are verifiable by writing a profit-sharing contract, i.e., sharing

costs and rewards in fixed proportions.

The optimal policy can be identified by solving a finite-horizon dynamic program

(DP). We denote by EFBt (x) the FB optimal policy in state x and period t. Under

the assumption that cvs ≤ ccs, Solo
v (weakly) dominates Soloc. Accordingly, Soloc is

never optimal and we refer to Solov as Solo in the sequel. Hence, only three outcomes
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are attainable in period t and state x, i.e., EFBt (x) ∈ {Duo, Solo, F inish}. Let Vt(x)

denote the discounted total surplus in period t and state x, recursively defined as

follows:

Vt(x) = max {Vt(x | Duo), Vt(x | Solo), Vt(x | Finish)} t = 1, . . . , T − 1,(1.1)

VT (x) = VT (x | Finish),

in which

Vt(x | Duo) = −2cd + δ[pdVt+1(x+ 1) + (1− pd)Vt+1(x)],

Vt(x | Solo) = −cvs + δ[psVt+1(x+ 1) + (1− ps)Vt+1(x)],

Vt(x | Finish) = R(x).

Throughout the chapter, we denote ∆Vt(x) ≡ Vt(x+ 1)− Vt(x) and ∆R(x) ≡ R(x+

1)−R(x).

We present the characterization of the FB optimal policy in Proposition 1.1. We

first show that there exists a time-independent state threshold xFBf above which

it is optimal to stop the project and below which it is optimal to keep on working.

Effectively, the Finish state threshold xFBf can be viewed as a self-imposed completion

state. Consequently, the DP recursion (1.1) simplifies to:

Vt(x) = max {Vt(x | Duo), Vt(x | Solo)} ∀x < xFBf and t ≤ T − 1,

Vt(x) = Vt(x | Finish), ∀x ≥ xFBf and t ≤ T − 1.

Comparing Vt(x | Duo) and Vt(x | Solo) yields the following characterization of the
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Figure 1.2: FB policy for the cases where ∆R(xFBf −1) ≤ (2cd− cvs)/[δ(pd−ps)] (left)
and ∆R(xFBf − 1) > (2cd − cvs)/[δ(pd − ps)] (right)
The parameters are: T = 24, cd = 30, cvs = 10, pd = 0.89, ps = 0.5, R(x) = 950

√
x,

δ = 0.985 (left) δ = 0.975 (right). The state thresholds are: xFBf = 14, xFBθ = 15,
xFBϕ = 13 (left) and xFBf = 10, xFBθ = 6, xFBϕ = 3 (right).

optimal policy in states x < xFBf and periods t ≤ T − 1:

EFBt (x) = Duo if ∆Vt+1(x) ≥ 2cd − cvs
δ(pd − ps)

EFBt (x) = Solo if ∆Vt+1(x) ≤ 2cd − cvs
δ(pd − ps)

. (1.2)

The next proposition provides a full characterization of the FB dynamics. The

proof consists in decomposing the space (t, xt) into distinct regions in which the value

function has such local properties as concavity or increasing differences in (t, xt) and

then applying a standard induction argument. The FB dynamics are illustrated in

Figure 1.2. The horizontal axis denotes time, from the project start (t = 0) to the

deadline (t = T ), and the vertical axis represents the project state xt. Because the

state increases by at most one unit each period (Figure 1.1), the set of feasible states

lies below the 45-degree line, i.e., xt ≤ t.

Proposition 1.1. There exist state thresholds xFBf , xFBθ , and xFBϕ < min{xFBθ , xFBf }

such that
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(i) EFBt (x) = Finish for all t if and only if x ≥ xFBf .

(ii) If ∆R(xFBf − 1) ≤ (2cd − cvs)/[δ(pd − ps)], then

(a) EFBt (x) = Solo for all xFBϕ ≤ x < xFBf ;

(b) for 1 ≤ x < xFBϕ , there exists a time threshold τ(x), nondecreasing in x,

such that EFBt (x) = Duo for all T > t > τ(x) and EFBt (x) = Solo for all

x ≤ t ≤ τ(x).

(iii) If ∆R(xFBf − 1) > (2cd − cvs)/[δ(pd − ps)], then

(a) if xFBθ < xFBf , EFBt (x) = Duo for all xFBθ ≤ x < xFBf and all t;

(b) for all xFBϕ ≤ x < min{xFBθ , xFBf }, there exists a time threshold τ(x),

nonincreasing in x, such that EFBt (x) = Duo for all T > t > τ(x) and

EFBt (x) = Solo for all x ≤ t ≤ τ(x);

(c) EFBt (x) = Duo for any x ≤ xFBd,t and t < T , in which xFBd,t ≡ max{x ≤

xFBd,t+1 − 1 | EFBt (x) = Duo} for t < T − 1 and xFBd,T−1 ≡ xFBf − 1.

Proposition 1.1 identifies two phases in which both players should work: when

there is limited time left until the deadline (Figure 1.2, left and right) and when the

state of the project has reached a high completion state (Figure 1.2, right only). The

phase of collaboration induced by the project deadline is established in Proposition

1.1 (ii.b) and (iii.c). Although Solo is optimal in the early periods, Duo is optimal

near the deadline, especially in low-value states. The rush to meet a deadline is a well-

reported phenomenon in project management (Repenning 2001, Wu et al. 2013) and

beyond. For instance, König and Kleinmann (2005) report that “researchers submit

their papers for a conference just before the submission deadline ends, taxpayers in the

United States queue in the post office on April 15 to send their tax forms, and students
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start to study just a few days before the exams.” Although this “student syndrome” is

often qualified as undesirable (Goldratt 1997, Mackenzie 1997), our analytical model

shows that it can in fact be optimal, based on purely rational grounds.

The Duo phase when the project state is close to the completion state is estab-

lished in Proposition 1.1 (iii.a) and (iii.b). Similar to a runner who sprints in the

last mile, the players realize that they only need to work hard for a few more periods

to reach the completion state and collect their reward sooner. (Interestingly, Scrum,

an iterative and incremental agile software development method, extensively uses the

concept of sprint; see, e.g., Schwaber 2004.)

The emergence of this latter Duo phase arises in particular when R(xFBf ) >

(2cdps− cvspd)/[(1− δ)(pd− ps)]. Because xFBf depends on R(x) only through ∆R(x),

this upper Duo phase turns out to arise when R(x) is large, i.e., in high-reward

projects. Moreover, for any given completion state xFBf , this upper Duo phase will

tend to arise when the cost of joint work (cd) is low and its success rate (pd) is high,

relative to the cost and success rate of individual work. In addition, this upper Duo

phase will tend to arise when the discount factor δ is small. Naturally, impatient

workers are more willing to sprint in the last stage of the project to collect their re-

ward sooner. However, they are also less willing to push the project further, resulting

in a lower completion state xFBf . The total effects are illustrated in Figure 1.2: As δ

decreases from δ = 0.985 (left) to δ = 0.975 (right), the Finish state threshold de-

creases, the Duo phase in the high states of the project appears, and the Duo phase

induced by the deadline shrinks.

We next investigate how the equilibrium work dynamics under double moral haz-

ard compare to these FB work dynamics.
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1.5 Double Moral Hazard

In this section, we assume that efforts are not contractible, which typically happens

when they are exerted in the back stage. For instance, one of the parties may come

unprepared to a joint meeting and contribute only incrementally. Although one can

verify that both parties attended the meeting, verifying their level of preparation is

more challenging. See Bapna et al. (2010) for a discussion of effort non-verifiability

in the context of joint-production IT projects. We may therefore face a situation of

double moral hazard (Holmström 1982).

In addition to efforts, we assume that the state of the project xt is not contractible

at any point in time; otherwise, different contracts could be written for each state of

the project. However, the reward R(x) obtained at completion may be contractible.

(Mathematically, this is ensured when R(x) is a random variable stochastically in-

creasing in x.) Hopp et al. (2009) take the example of a new product design, which

value may be fully understood only after the product has been on the market for some

time. Similarly, the quality of an unpublished research paper is rather subjective and

hard to contract on, but contracts can be written on the ranking of the journal the

paper is ultimately published in or on the number of citations the paper receives after

publication.

Accordingly, the payment from the client to the vendor at the project completion,

denoted by g(R(xt), t), can be a function of only the completion time (t) and the

reward (R(xt)) whenever it is contractible. Although, there may exist other sources

of incentives in practice, such as career concerns and reputation (Bolton and Dewa-

tripont 2005, Hopp et al. 2009), we do not consider them in our model and focus on

monetary payments as the only source of incentive for the players. In addition to the

payments at the project completion (g(R(xt), t)), we assume that the client makes a
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Table 1.2: Payoff matrix (V c
t (x), V v

t (x)) in period t and state x

Client\Vendor Work W Not work N

Work W
(−cd + δEd

[
V c
t+1 (x+ ξ)

]
, (−ccs + δEs

[
V c
t+1 (x+ ξ)

]
,

−cd + δEd
[
V v
t+1 (x+ ξ)

]
) δEs

[
V v
t+1 (x+ ξ)

]
)

Not Work N
(δEs

[
V c
t+1 (x+ ξ)

]
, (R(x)− g(R(x), t),

−cvs + δEs
[
V v
t+1 (x+ ξ)

]
) g(R(x), t))

(potentially negative) upfront payment F to the vendor. It is thus possible for the

client to capture the total surplus generated from the project after proper deduction

of the vendor’s reservation utility (Bolton and Dewatripont 2005).

We model the work process as a dynamic stochastic game with finite deadline

(Shapley 1953). Let V i
t (x) be the discounted equilibrium payoff-to-go function of

player i ∈ {c, v} upon reaching state x ∈ Xt in period t. Table 1.2 depicts a normal

form representation of the sub-game in period t and state x. Similar to (1.1), we

define the payoff functions associated with the possible game outcomes as follows, for

any t < T, x ∈ Xt, and i ∈ N :

V i
t (x | Duo) = −cd + δEd

[
V i
t+1 (x+ ξ)

]
,

V i
t (x | Soloi) = −cis + δEs

[
V i
t+1 (x+ ξ)

]
and V i

t (x | Solo−i) = δEs
[
V i
t+1 (x+ ξ)

]
,

V v
t (x | Finish) = g(R(x), t) and V c

t (x | Finish) = R(x)− g(R(x), t),

in which Ek[V i
t+1(x+ ξ)] := pkV

i
t+1(x+ 1) + (1− pk)V i

t+1(x), for k = d, s.

Considering a feedback information structure (Başar and Olsder 1999), we focus

on pure-strategy Markov-perfect equilibria (Maskin and Tirole 2001), as is common

in dynamic games; see, e.g., Adlakha et al. (2012), Doraszelski and Satterthwaite

(2010). Markov equilibria are the simplest form of behavior that is consistent with
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rationality and support the notion that bygones are bygones (Maskin and Tirole 2001).

Moreover, they are sub game-perfect and always exist (Fudenberg and Tirole 1991,

Theorem 13.1). Although the model could be enhanced to incorporate non-Markovian

strategies, such as punishments and renegotiations, we show that there may not

be a need to have recourse to such strategies because simple contracts can achieve

high efficiency. (Consistent with our findings, less than 5% of Xoriant contracts are

renegotiated, according to Gaitonde 2013.)

Similar to Marx and Matthews (2000), we analytically characterize the work dy-

namics only when a pure-strategy equilibrium exists. In our numerical analysis in

§1.6, we however allow for mixed-strategy equilibria whenever a pure-strategy equi-

librium does not exist. In addition, the game may admit multiple equilibria in pure

strategies. A common situation with multiple equilibria is the chicken game (Osborne

2002), in which each player knows that someone should do the work, but neither of

them wants to be the one working. Another common scenario is the stag-hunt game

(Osborne 2002), in which players face a dilemma between collaboration (Duo) and

safety (Finish), as in Marx and Matthews (2000). Although there exist many equi-

librium selection rules (e.g., Pareto dominance, risk dominance), the collaborative

dynamics turn out to be not significantly affected by the selection rule. For simplic-

ity of exposition, we assume that the client has the authority, or decision right, to

select the equilibrium to be played in case of multiple equilibria. We denote by Et(x)

the selected pure-strategy Markov equilibrium played in period t and state x. For

instance, the notations Et(x) = Duo and Et(x) 6= Duo respectively mean that Duo is

or is not the selected pure-strategy Markov perfect equilibrium in period t and state

x.
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1.5.1 Contractible Reward – Reward Sharing

In this section, we assume that the reward R(x) is contractible. As a result, a reward-

sharing (RS) contract can be adopted; that is, g(R(x), t) = αvR(xt) and R(x) −

g(R(x), t) = αcR(xt) with αc + αv = 1, αc ≥ 0, and αv ≥ 0. There is also a

transfer payment F at time t = 0. Reward sharing contracts have become more

common in new product development projects (Bhaskaran and Krishnan 2009) and

in consulting projects (e.g., Czerniawska and Smith 2010, Sheedy 2010). In addition,

these contracts are known to be second-best in static games (Bhattacharyya and

Lafontaine 1995).

We find that the collaborative dynamics under RS contracts are by and large sim-

ilar to the FB solution. However, the players tend to stop the project at a lower state

and to work less jointly than in the FB solution. Moreover, the work organization

tends to be less structured. Proposition 1.2 characterizes the RS dynamics of collabo-

ration and Figure 1.3 illustrates that result. For the purpose of analytical characteri-

zation, we assume that ∆R(xRSf −1) > cd/[δpd min{αc, αv}]+(1−δ)R(xRSf −1)/(δpd),

in which xRSf is defined in the proposition; our numerical simulations in §1.6 however

show that the results of Proposition 1.2 are robust to that assumption.

Proposition 1.2. There exist state thresholds xRSf , xRSd , and xRSf,T−1 ≤ xRSf such that

if ∆R(xRSf − 1) > cd/[δpd min{αc, αv}] + (1− δ)R(xRSf − 1)/(δpd),

(i) ERSt (x) = Finish for all x ≥ xRSf ;

(ii) If xRSd < xRSf,T−1, ERSt (x) 6= Finish for all t < T and 0 < x < xRSf ;

(iii) If xRSd < xRSf,T−1 and αc ≤ αv, ERSt (x) = Solov for all t < T and all xRSd ≤ x <

xRSf ;
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Figure 1.3: RS contract equilibrium outcome
Same parameters as in Figure 1.2 (right) with αc = 0.495. The state thresholds are:
xRSf = 9, xRSf,T−1 = 8, and xRSd = 8.

(iv) ERSt (x) = Duo for any x ≤ xRSd,t and t < T , in which xRSd,T−1 = min{xRSd , xRSf −1}

and xRSd,t = max{x ≤ xRSd,t+1 − 1 | ERSt (x) = Duo} for t < T − 1.

As shown in Proposition 1.2, the collaboration dynamics under an RS contract

are in general similar to the FB solution (Proposition 1.1). However, the players turn

out to stop the project at a lower state (i.e., xRSf ≤ xFBf ) because of double moral

hazard when either αc ≤ αv or xRSd < xRSf,T−1. Also, the highest state in which they

work Duo is lower than in the FB solution due to free-riding.

In addition, the work organization in an RS game appears less structured than in

the FB solution. As illustrated in Figure 1.3, there may not exist a time-independent

stopping threshold if xRSd ≥ xRSf,T−1, preventing any clear expectation about the final

state of the project if there was no deadline. Moreover, there may not exist an

equilibrium in pure strategies or there may exist multiple equilibria, e.g., chicken

games or stag-hunt games, which could lead to conflicts in practice. Hence, the

complexity of managing collaboration under RS contracts may be another impediment

to their adoption, besides the difficult of measuring outcomes.
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1.5.2 Non-Contractible Reward – Fixed-Fee and Time-and-

Materials

In many projects, the reward is not contractible (Hopp et al. 2009). For instance,

it may be difficult to assess, and therefore to contract on, the value of a strategic

management consultant report. In that case, the payment from the client to the

vendor may only be a function of the completion time, i.e., g(R(x), t) = g(t). We

next consider the following two pure contractual forms:

1. Fixed-Fee (FF): g(t) = b, with b ≥ 0.

2. Time-and-Materials (TM): g(t) =
∑t−1

s=1 δ
s−tf , with f ≥ cvs .

There is also a transfer payment F at time t = 0.

The FF contract pays the vendor a fixed bonus b upon project completion, as

is common in IT consulting projects. Note that, since the project state is non-

contractible, this bonus is not contingent upon reaching a certain state, but is rather

paid when both players agree to stop the project. Although it is time-independent,

it incentivizes the vendor to work so as to collect b sooner.

By contrast, the TM contract pays the vendor a constant fee f every period until

the project is completed, as is common with independent contractors (e.g., in IT

maintenance). Note that since efforts are not contractible, this fee is not contingent

on the vendor’s active work, but is instead paid every period until both players agree

to stop the project. The incentives associated with TM contracts are thus opposite

to those associated with FF contracts, in the sense that they reward the vendor for

keeping on working on the project.

Although g(t) could in principle be any nonlinear function of the completion time,

we focus on fixed and linear payments for simplicity. In addition, contracts could have
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more stringent terms, such as giving the client the right to stop the project at any

point in time, whereas in our model stopping must arise in equilibrium. Our first-

order analysis allows us to derive clear insights onto the dynamics of collaboration

that would arise under more complicated settings. More importantly, we show in §1.6

that these simple contracts can perform very well and that there is therefore limited

value considering more complicated contracts or more stringent terms.

Fixed-Fee.

We first characterize the collaboration dynamics under FF contracts, i.e., when the

client pays the vendor a fixed fee b ≥ 0 upon project completion. We show that FF

contracts may lead to a higher completion state than the FB solution and, although

they do not induce joint work near the project deadline, they may give rise to joint

work when the project is near its completion state and the deadline is still far.

The next proposition characterizes the equilibrium work dynamics under FF con-

tracts and Figure 1.4 illustrates the results. For tractability, we assume that the

client’s net payoff when the project is completed (R(xFFf ) − b) is greater than the

vendor’s (b); our numerical simulations in §1.6 however show that our results are

robust to that assumption.

Proposition 1.3. There exist state thresholds xFFf and xFFθ such that when R(xFFf ) ≥

2b,

(i) EFFt (x) = Finish for all t if and only if x ≥ xFFf ;

(ii) If xFFf < xFFθ , EFFt (x) = Soloc for all t < T and x < xFFf ;

(iii) If xFFf ≥ xFFθ , for any x < xFFf there exists a time period τ(x), increasing in x,

such that EFFt (x) = Soloc for t ≥ τ(x) and it is Duo for t < τ(x).
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Figure 1.4: FF contract equilibrium outcome
Same parameters as in Figure 1.2 (right) with ps = 0.35 and b = 1500. The state
thresholds are: xFFf = 11 and xFFθ = 6.

Proposition 1.3 (i) demonstrates that there exists a time-independent threshold

xFFf above which the players stop working and below which they keep on working.

Moreover Proposition 1.3 (ii) and (iii) show that there is no Duo work near the dead-

line. Specifically, in states below xFFf and near the project deadline, the equilibrium

outcome is Soloc, i.e., the client is the only one working. Intuitively, the vendor

knows that the deadline will be reached soon, and therefore that he will receive b

soon, irrespective of how much work he puts in. Although the vendor may appear to

be reluctant to work at all, as would be the case in a static setting, joint work may

still occur. In particular, Proposition 1.3 (iii) shows that the equilibrium outcome is

Duo in the high states if there remains ample time before the deadline. In that case,

the vendor realizes that the project is near its completion state and if he puts in some

effort, he would receive his bonus sooner.

It turns out that the condition characterizing the upper Duo phase, i.e., xFFf ≥

xFFθ , is satisfied when the project has a high reward (high R(xFFf )) and when the

players are impatient (low δ). It is also satisfied when the success rate from joint work

pd is high relative to ps and when the cost of joint work cd is low. These conditions

are thus similar to the conditions under which the upper Duo phase emerged in the
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FB solution, described in Proposition 1.1 (iii) (see Figure 1.2, right). However unlike

the FB solution, this Duo phase near the completion state tends to be larger in the

earlier periods; the slope of that Duo phase is thus reversed compared to the FB

solution.

In addition, comparing the completion state thresholds xFFf and xFBf reveals that

FF contracts lead to effort under-provision when the discount factor δ is large and

when the vendor’s bonus b is small, and to effort over-provision otherwise. In partic-

ular, xFFf ≤ xFBf when (1− δ)b < ccs− cvs and xFFf ≥ xFBf when (1− δ)b ≥ ccs− cvs and

xFBθ ≥ xFBf . In contrast to RS contracts, the completion state can thus be higher than

optimal with FF contracts. This is because the client wants to postpone the time

she would need to pay the bonus to the vendor and, at the same time, increasing her

chances of collecting a higher reward R(xFFf ). Hence, the bonus does not offer only

benefits, in terms of providing incentives to the vendor, it may also encourage the

client to creep the scope of the project, as is commonly observed with FF contracts

(Sheedy 2010).

Time-and-Materials.

We next characterize the collaboration dynamics under the TM contract, i.e., when

the client pays the vendor a fixed fee f ≥ cvs every period until the project is stopped.

We find that TM contracts never lead to joint work near the deadline or in the upper

states of the project.

The next proposition characterizes the equilibrium work dynamics under the TM

contract and Figure 1.5 illustrates the results. For the purpose of analytical char-

acterization, we consider the case that f ≥ cd; our numerical simulations in §1.6

however show that the results of Proposition 1.4 are robust to that assumption.
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Figure 1.5: TM contract equilibrium outcome
Same parameters as in Figure 1.2 (left) with pd = 0.65 and f = 10 (left) or f = 11
(right). The state thresholds are: xTMf = 9, xTMsv = 6, and xTMsc = 5.

Proposition 1.4. There exist state thresholds xTMf , xTMsv , and xTMsc such that if f ≥ cd

(i) If f = cvs, then

(a) ETMt (x) = Finish if and only if x ≥ xTMf ;

(b) ETMt (x) = Solov for all t and xTMsv ≤ x < xTMf .

(ii) If f > cvs, then

(a) ETMt (x) = Solov for all t and x ≥ xTMsv ;

(b) ETMt (x) 6= Finish for all t and x < xTMsv .

(iii) ETMt (x) = Soloc for any x ≤ xTMsc,t and t < T , in which xTMsc,t = max{x ≤

xTMsc,t+1 − 1 | ETMt (x) = Soloc} for t < T − 1 and xTMsc,T−1 = min{xTMsv , xTMsc } − 1.

Proposition 1.4 (i.a) and (ii.a) demonstrate the existence of thresholds (xTMf and

xTMsv ) above which the equilibrium outcome is Finish if f = cvs (Figure 1.5, left) and

Solov if f > cvs (Figure 1.5, right). Moreover, Proposition 1.4 (i.b) shows that the

equilibrium outcome is Solov for states above xTMsv and below xTMf ; that is, there is no

joint work in the upper states of the project, i.e., when x ≥ xTMsv . Finally, Proposition
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1.4 (iii) shows the equilibrium outcome is Soloc for states below min{xTMsv , xTMsc } and

near the project deadline, which implies that there is no joint work near the deadline

either, unlike the FB solution.

Intuitively, there is no incentive for the vendor to jointly work with the client.

When there is limited time until the deadline, the client is willing to work if the

project state is low so as to increase her reward, otherwise deemed too low. Seeing

the client working hard, the vendor chooses to free ride since his fee is not affected

by the ultimate state of the project. Although this outcome may appear caricatured,

it raises the importance of free riding in TM contracts and therefore the potential

benefits of setting up monitoring systems to verify the vendor’s effort (Roels et al.

2010).

On the other hand, the vendor exerts high effort in the high states of the project,

even though (or because) the client would like to stop the project, so as to keep being

paid until the deadline. This equilibrium pattern is also consistent with the common

belief that TM contracts can drag on forever because of vendor’s scope creep (Sheedy

2010). This raises the importance of adopting a different structure of decision rights

under TM contracts, such as letting the client unilaterally choose when to stop the

project. Nevertheless, we show in §1.6 that TM contracts often perform well, despite

these shortcomings.

Comparing the completion state thresholds xTMf and xFBf reveals that TM con-

tracts lead to effort over-provision when f > cvs , because the players never stop the

project before the deadline. In contrast when f = cvs , the project completion state is

lower under the TM contract than in the FB solution (xTMf ≤ xFBf ); in that case, the

TM contract leads to effort under-provision. Overall, the work dynamics under TM

contracts are similar to the FB solution when joint work is neither efficient (cd high)
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nor effective (pd low), leading to predominantly Solo work.

1.6 Contract Efficiency

In this section, we numerically validate our analytical contractual prescriptions and

show that simple contracts, such as FF and TM contracts, may perform well when

they are chosen judiciously.

In our analytical characterization in §1.5, we obtained that RS contracts lead to

similar dynamics to the FB solution, but with some inefficiencies due to moral hazard;

FF contracts lead to joint work in the high states, similar to the FB solution, when

R(x) is large, δ is small, pd/ps is large, and cd/c
v
s is small; and TM contracts primarily

lead to individual work, similar to the FB solution when R(x) is small, δ is large,

pd/ps is small, and cd/c
v
s is large. Based on this analytical characterization, we infer

that (i) if the reward is contractible, RS contracts will tend to perform well, similar

to static settings (Bhattacharyya and Lafontaine 1995) and that (ii) if the reward is

noncontractible, FF tend to outperform TM contracts when R(x) is large, δ is small,

pd/ps is large, and cd/c
v
s is small and vice versa.

To validate these contractual prescriptions, we compare the performance of the

three contracts over randomly generated problem instances. We say that a contract

outperforms another if it generates higher total surplus. Since we consider an upfront

fixed transfer payment F when t = 0 for all contracts, the total surplus is a proxy for

the client’s total payoff (Bolton and Dewatripont 2005). Loss of efficiency is measured

as the relative loss in total surplus from the FB solution.

We randomly generated 500 sets of parameter values over the ranges of parameters

depicted in Table 1.3. For each contract type, we find the optimal payment parame-
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Table 1.3: Ranges of parameters

Parameters Ranges

Reward R(x) = q + rxk q ∼ U [0, 10, 000], r ∼ U [500, 1, 500], k ∼ U [0.35, 1]
Costs cd ∼ U [0, 50], ccs ∼ U [0, 50], cvs ∼ U [0, ccs]

Transition Probabilities pd ∼ U [0.5, 1], ps ∼ U [0.2, pd]
Discount Factor δ ∼ U [0.955, 1]

Table 1.4: Loss of efficiency

Loss of efficiency RS FF TM Best b/w FF and TM

Average 0.25% 6.43% 9.90% 5.81%
25% quantiles 0% 0% 1.37% 0%
50% quantiles 0% 1.59% 5.64% 0.72%
75% quantiles 0% 9.19% 13.73% 8.41%

Maximum 21.53% 56.30% 63.87% 56.30%

ters, i.e., the optimal reward share α for RS contracts (αv ∈ [0, 1]), the optimal bonus

b for FF contracts (b ≥ 0), and the optimal fee f for TM contracts (f ≥ cvs). When

a pure-strategy equilibrium did not exist, we considered the unique mixed-strategy

equilibrium. With multiple pure-strategy equilibria, we selected the equilibrium that

maximized client’s payoff, consistent with our analytical characterization. Table 1.4

depicts the average, quartiles, and maximum loss of efficiency associated with each

contract type, and the same statistics associated with the best contract between the

FF and TM contracts.

Overall, RS contracts outperform FF and TM contracts. Consistent with our

analytical results in §1.5.1, which showed that the collaborative dynamics under RS

contracts are similar to the FB solution, our numerical analysis reveals that the total

surplus generated under RS contracts is very close to the maximum total surplus. In

fact, in 431 out of 500 instances, the RS contract attains 100%-efficiency; moreover the

average loss of efficiency across all the problem instances is 0.25%. This high efficiency
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thus demonstrates the robustness of the second-best optimality of RS contracts in

static settings (Bhattacharyya and Lafontaine 1995) to dynamic settings.

When the reward is not contractible, which is more the norm than the exception in

knowledge-intensive work (Hopp et al. 2009), only FF and TM contracts are available.

Although such simple contracts would perform very poorly in static settings without

effort monitoring (Roels et al. 2010), Table 1.4 reveals that they can perform well in

our dynamic setting: the median loss of efficiency is only 1.59% for FF contracts and

5.64% for TM contracts, which is remarkable despite their simplicity. This illustrates

the importance of using time (an in particular deadlines) and the project state as a

way to foster the incentives associated with these simple contracts.

Should the client be concerned about the type of contractual arrangement? Pre-

sumably, one of the reasons for which these simple contracts perform well could be

that “anything goes,” i.e., that as long as a contract is written, high efficiency can be

achieved. As we shall demonstrate next, such presumption would be erroneous, i.e.,

the choice of contract matters. In fact, FF contracts tend to perform well precisely

when TM contracts fail, and vice versa. The last column of Table 1.4 shows that,

optimally choosing between FF and TM contracts can further reduce the median

loss of efficiency to 0.72%. We next characterize when FF contracts outperform TM

contracts.

As shown in §3.4, joint work in the high states of the project is more likely to

arise in the FB solution when R(xFBf ) > (2cdps − cvspd)/[(1 − δ)(pd − ps)]. This

condition holds when R(xFFf ) is large, δ is small, the cost of joint work cd is low and

its success rate pd is high, relative to the cost and success rate of individual work.

As shown in Proposition 1.3, these are precisely the circumstances under which joint

work will arise in the high states of the project under an FF contract (i.e., when
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Table 1.5: Dominance of FF versus TM contracts

Subsets Problem instances are ranked in increasing order of the following:
of ranked pd/ps 1− δ
instances TM>FF TM=FF TM<FF TM>FF TM=FF TM<FF

1-100 68 17 15 43 47 10
101-200 29 41 30 33 30 37
201-300 14 33 53 27 17 56
301-400 14 19 67 17 16 67
401-500 10 13 77 15 13 72

Subsets Problem instances are ranked in increasing order of the following:
of ranked q cvs/cd
instances TM>FF TM=FF TM<FF TM>FF TM=FF TM<FF

1-100 42 27 31 28 43 29
101-200 34 24 42 32 21 47
201-300 19 26 55 26 23 51
301-400 22 19 59 25 22 53
401-500 18 27 55 24 14 62

Note. ‘TM>FF’ (‘TM<FF’) denotes the number of instances, in which TM (FF)
contract strictly outperforms FF (TM) contract. ‘TM=FF’ denotes the number of
instances, in which FF and TM contracts generate the same total surplus.

xFFf ≥ xFFθ ). Accordingly, we expect that FF contracts outperform TM contracts

under those circumstances. Conversely, only Solo work is optimal in the FB solution

when R(xFFf ) is small, δ is large, the cost of joint work cd is high and its success

rate pd is low, relative to the cost and success rate of individual work. Since TM

contracts only lead to individual work, we thus expect that TM contracts outperform

FF contracts precisely under those circumstances.

To validate these prescriptions built upon our analytical characterizations of the

work dynamics, we conduct the following experiment. We first rank the 500 problem

instances in increasing order of pd/ps, 1−δ, q (i.e., the location parameter of R(x)), or

cvs/cd. For each successive set of 100 problem instances, Table 1.5 reports the number

of instances in which TM outperforms FF, in which FF outperforms TM, and in
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which TM and FF generate the same total surplus. For example, when the problem

instances are ranked in increasing order of pd/ps, the first 100 problem instances

(i.e., for which pd/ps is small) are such that TM outperforms FF in 68 instances,

TM and FF generate the same total surplus in 17 instances, and FF outperforms

TM in 15 instances. Considering the following sets of 100 problem instances reveals

that, as pd/ps increases, TM tends to outperform FF less often and FF tends to

outperform TM more often, consistent with our predictions. Similar results hold

when the problem instances are ranked in increasing order of 1 − δ, q, or cvs/cd.

Overall, this experiment indicates that FF contracts tend to outperform TM contracts

when collaboration is effective (i.e., high pd/ps) and efficient (i.e., high cvs/cd), when

players are impatient (i.e., high 1 − δ), and when the project reward is high (i.e.,

high q), supporting our initial predictions based on our analytical characterization of

the collaborative dynamics. Hence, contract choice matters, and that choice must be

judiciously made based on the project characteristics.

These simple contracts could obviously be enhanced to mitigate undesirable be-

haviors, by contractually specifying a completion milestone (if feasible), by giving the

client full decision rights to unilaterally stop the project, or by making payments a

nonlinear function of the completion time. However, Table 1.4 reveals that the simple

contracts studied here can be very efficient. In most cases, therefore, such contractual

enhancements could only marginally improve efficiency. It is only when the perfor-

mance of both FF and TM contract suffers, as shown in the last row of Table 1.4,

that these more complex contract enhancements could be desirable.
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1.7 Conclusions

In this chapter, we study how contractual arrangements affect the work dynamics

between a client and a vendor in finite-horizon collaborative processes. We identify

two phases in which the parties should both exert high effort: when there is limited

time before the deadline and when the project has reached a high completion state.

A practical implication of our characterization of the first-best (FB) work dynamics

is that the end-of-project rush, be it either in the high states of the project or near

the deadline, is optimal (and rational) and should be planned for.

When efforts are not contractible, i.e., with double moral hazard, the collaboration

dynamics depend on the type of contract. We consider three contract types: Reward-

sharing (RS), fixed-fee (FF), and time-and-materials (TM). RS contracts yield similar

dynamics to the FB solution, but with less joint work and a lower completion state.

RS contracts tend to perform very well, consistent with their second-best nature in

static settings. However, their application is restricted to cases where the project

reward is measurable. When neither efforts nor the project reward are contractible,

only contracts with payments contingent on the completion time, such as FF and

TM contracts, can be adopted. FF contracts, which pay the vendor a bonus upon

project completion, only provide incentives for the vendor to exert high effort in the

high states of the project, thereby leading to joint high effort in those states. Under

a TM contract, only the client exerts high effort in the low states of the project to

improve her potential reward, whereas only the vendor exerts high effort in the high

states so as to prevent the project-and his contract–to be stopped too early. FF

contracts tend to dominate TM contracts when the project reward is large, when the

players are impatient, and when joint work is more efficient than individual work.

Otherwise, TM contracts dominate FF contracts. Overall, our analysis reveals that

33



Table 1.6: Contractual prescriptions

Effort
Contractible Non-contractible

Reward
Contractible

FB
RS

Non-contractible
FF if high pd/ps, low cd/c

v
s , low δ, high R

TM if low pd/ps, high cd/c
v
s , high δ, low R

simple contracts can perform well, especially when they are chosen judiciously. Table

1.6 summarizes our contractual prescriptions based on the project characteristics.

This work can be extended in several directions. First, one can generalize several

modeling assumptions (e.g., continuous efforts, birth-and-death Markov process, giv-

ing the client the right to unilaterally stop the project), although we have conducted

robustness tests that indicate that the fundamental insights presented here remain

unchanged. More fundamentally, this model can be used as a backbone model to

address other managerially relevant questions:

• If the project structure is unknown at the outset, i.e., if the project has not

been disambiguated, shall players collaborate upfront to jointly learn about it?

This is likely, thus making Duo work desirable at the beginning and at the end

of the project.

• If the project has been disambiguated, but the vendor has not been hired yet,

when should the client offer the contract to the vendor? Our analysis of collab-

orative dynamics suggests that, since joint work occurs only in the later stages

of the project, the client may be better off starting working alone and hiring

the vendor if not enough progress has been made.

• In the few cases for which both FF and TM contracts fail to perform well, what

contractual enhancement would be the most beneficial? Should the contract be
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renegotiable?

Collaboration also raises questions about team management and organization. Given

the ubiquity of collaborative work in today’s business processes and the need to adapt

traditional process analysis tools to knowledge-based work (Karmarkar et al. 1995,

Hopp et al. 2009, Kieliszewski et al. 2010, Staats and Upton 2011), investigating

these questions would be worthwhile.
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Chapter 2

Team Size in Collaborative

Projects: The Effect of Leadership

Structure

2.1 Introduction

According to the Bureau of Labor Statistics, 34% of jobs in the United States are

white collar (Davenport et al. 2002). Many white-collar processes are inherently

more knowledge-intensive, creative, and collaborative than blue-collar (manufactur-

ing) processes (Hopp et al. 2009). Canonical examples of knowledge-intensive projects

are new product and software development, which are often done collaboratively by

members of an organization, i.e., a research group or an IT department. The major

resource required for these collaborative projects is labor. According to Gratton and

Erickson (2007), one out of the four traits that are crucial for a project success is the

size of a project team. Small teams may not have enough workers to get the work
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done (effectiveness) and large teams may involve overwhelming cost of coordination

(efficiency). One relevant question is: how should team size be chosen? Should one

appoint a leader and let her assign workers from the organization to the team? Or

should one let the members of the organization voluntarily choose to join the team?

On the one hand, a project leader can monitor team members to prevent free-riding

(Holmström 1982) or social loafing (Karau and Williams 19931993). On the other

hand, project leaders often over-staff the projects. As stated by Hackman (2002),

“probably the single biggest mistake team leaders make is believing that the bigger

[the team], the better is the right approach [... i.e.,] if the project is a dozen person-

months behind, perhaps assigning a dozen extra people to it for one month will get

it back on track.”

To answer above questions, we consider an organization responsible for a knowledge-

intensive project, consisting of a group of individuals from which a team is formed.

We model the staffing decision as a stochastic game over a finite time horizon and

study the effect of leadership on the evolution of team size. The following example by

Hackman (2002) illustrates the distinction between organization and team: a start-

up company with a dozen founding officers wanted to come up with a reorganization

plan. Because of such enormous personal stakes, the CEO could not expect the dozen

funding officers to come up with a reorganization plan that they all could accept. As

a result, the CEO selected a team of four officers to develop a proposal for the new

structure. In this example the dozen founding officers constitute the organization and

the four selected officers constitute the team. Although only four officers worked on

the proposal, all members of the organization received benefits from the project.

Accordingly, we consider a project in which a fixed reward is collected when the

project succeeds. For instance in research projects, the authors collect their reward
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when their paper or patent is published. Similarly, a department may receive a

bonus upon a successful project completion. Moreover, we assume that the reward is

equally shared among the members of the organization even if some members have

never joined the team. Although this may seem unfair, it often happens in projects.

For instance in a study group, all students receive a same grade even though only a

few of them worked on the assignment.

We study two leadership structures: teams with no leader (NL) and teams with

an internal leader (IL). In teams with no leader (NL), the team size is chosen by

the project members themselves in a decentralized fashion, i.e., members voluntarily

choose to join or not join the team. In contrast, in teams with an internal leader

(IL), the team size is determined by a project leader in a centralized fashion, i.e.,

the leader assigns members from the organization to the team. The leader herself is

an internal member of the organization and is therefore the only one free to decide

whether to join the team or not. As a benchmark, we study the first-best solution

(FB) in which the team size is set to maximize the total payoff of the organization.

We compare the NL and IL equilibrium team sizes when the team size is chosen only

once at the beginning of the project and when it is dynamically revised.

We show that there is always under-staffing in projects with no leader because

of free riding. In contrast, there can be under- or over-staffing in projects with an

internal leader. In particular, there can be over-staffing because the internal leader

does not internalize the team members’ cost of effort, and there can be under-staffing

because she has the incentive to free ride. Comparing the efficiency of the leadership

structures, we show that the NL structure generates a higher total surplus than the

IL structure when the project reward is in an intermediate range. When the project

reward is very large, all members join the team under both IL and NL structures and
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they both generate the same total surplus. When the project reward is smaller, but

still large, it would be optimal that all members join the team. However, there is

under-staffing in both IL and NL structure because of free-riding. The IL structure

generates higher total surplus than the NL structure because only the leader free rides

whereas all members are tempted to free ride in the NL structure. When the project

reward is small, both the IL and NL structures are inefficient for opposite causes; i.e.,

under-staffing in the NL structure and over-staffing in the IL structure. Since free-

riding under the NL structure is large with smaller rewards and over-staffing in the

IL structure is large with larger rewards, the IL structure dominates the NL structure

when the project reward is smaller than a threshold.

The chapter is organized as follows: We review the related literature in the next

section. We present our model for the FB solution and for the IL and NL team

structures in §2.3. We then characterize the team sizes under these structures and

compare their efficiencies in §2.4 under static and dynamic decision-making. We

present our conclusions in §2.5. All proofs are gathered in Appendix B (§4.2).

2.2 Literature Review

This chapter studies team size in collaborative knowledge-intensive projects (e.g.,

new product development). Therefore, it is related to the literatures on new product

development, moral hazard, and staffing.

New product development (NPD) projects are canonical examples of knowledge-

intensive projects (Ozkan et al. 2013). Loch and Terwiesch (1998) and Terwiesch

and Loch (2004) study new product development projects where uncertainty in the

project outcome results in rework. Similarly, we explicitly model project uncertainty

in this chaper. Most of the work on new product development focus on team coordi-
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nation, e.g., project overlap (Loch and Terwiech 1998), information sharing (Loch and

Terwiech 2005, Marschak and Radner 1972, Garicano 2000), and search and problem

solving (Mihm et al. 2010 and Sting, et al 2012, Kavadias and Sommer 2009 and

LiCalzi and Surucu 2012). While we abstractly model coordination costs, our focus is

on leadership structure similar to Dessein (2007), Sah and Stiglitz (1991) and Chris-

tensen and Knudsen (2010)). However, our perspective is different from theirs; i.e.,

they study the effect of leadership on decision making processes whereas we study

the effect of leadership on choosing the size of a project team.

We consider knowledge-intensive projects that involve multiple players working

toward a common output (Fuchs 1968, Karmarkar and Pitbladdo 1995), resulting

in a situation of double moral hazard (Holmström 1982, Bonatti and Horner 2011).

Unlike the literature on moral hazard which study compensation (Hutchison-Krupat

and Kavadias 2012) and incentive design (Mihm 2010, Bayiz and Corbett 2005, Wu

et al. 2013, and Georgiadis 2012), we assume members’ compensation and incentives

are determined exogenously. Instead, we model decentralized decision-making similar

to Sah and Stiglitz (1988) and Alonso et al. (2008) and study the effect of leadership

structure on team efficiency. More importantly, we focus on the allocation of decision

rights about the size of a project team. That is, size of a project team is our decision

variable, which those papers consider as exogenous.

Since our decision variable is the size of a project team, this chapter is also re-

lated to the staffing literature. Most of the literature on staffing decisions consider

either manufacturing processes (Van Mieghem 2003, Luss (1982)) or repetitive ser-

vice operations (Van Mieghem 2013, Pinker and Shumsky 2000). We complement

this literature by studying capacity planning of workforce for collaborative projects

with moral hazard. This also allows us to analyze the effect of project deadline and
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reward on staffing decisions.

2.3 Model

In this section, we introduce a dynamic model of a team project. We consider an

organization of n members undertaking a project with finite deadline T . Let N =

{1, . . . , n} denote the set of members in the organization. Counting time backwards,

we let T = {T, T − 1, . . . , 0} be the set of time periods until the deadline. Similar

to Bonatti and Horner (2011), we consider a binary-state project with xt ∈ {0, 1},

in which xt = 1 if the project is completed and xt = 0 otherwise. We assume that

the project starts in state 0 at time T . Time is discounted with a discount rate of

δ ≤ 1, making early project completion desirable. When the project is completed,

a common reward R is collected and evenly shared among all n members of the

organization, i.e., each individual receives R/n. Such contracts are commonly used

to motivate engineers in high technology, software, or biotechnology companies in the

form of stock options or cash bonuses; see e.g., Mihm (2010). Similarly co-authorship

of research papers and patents in research and development projects effectively act

as linear sharing rules. Such linear profit sharing rules turn out to be second-best

(Bhattacharyya and Lafontaine 1995) and have been widely studied in the moral

hazard literature and are often used in practice (Lambert 2001).

In any given period t, when the team size is k, the project is completed in that

period with probability p(k) and remains incomplete with probability 1 − p(k). Al-

though the transition probabilities may also be a function of time in practice (e.g.,

members may learn about the quality of the project or their joint work), we con-

sider memoryless probabilities for simplicity, resulting in a geometrically distributed

project duration. For instance, problem solving through trial and error could be the
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source of this geometric distribution; see also Kwon et al. (2010) for a discussion

of that assumption. We assume that the success probability p(k) is increasing in

the team size for k ≤ n with p(0) = 0, reflecting the notion that larger teams are

more effective (Hackman et al. 2000, Katzenback and Smith 1993). In addition, we

assume that p(k) is concave; that is, the success probabilities exhibit diminishing

marginal returns due to the necessity of reconciling diverse opinions and resolving

potential conflicts (Becker and Murphy 1992, Huberman and Loch 1996). In fact,

Hackman (1998) reports that “research evidence about team performance shows that

teams usually do less well– no better– than the sum of their members’ individual

contributions.”

We assume coordination costs of kc(k) + g(k), and allocate the former among the

set of active team members and the later among all members of the organization. That

is for each team member, there is an individual cost of effort c(k) with c(0) = 0. The

cost c(k) is assumed to be increasing convex in k, reflecting effort and collaboration

costs which involve communications and logistical costs in meeting, scheduling, and

traveling (Becker and Murphy 1992). Similarly, Brooks (1975) acknowledged that as

each member is added to the project team, the complexity of communications goes

up exponentially. In addition, there is a collective project cost g(k) (with g(0) = 0)

that is evenly shared among all n members of the organization, reflecting the loss of

productivity for the organization when the team size is k. For instance in the Cisco

ERP implementation project (Austin 2002), the IT group apparently “did nothing

else” other than implementing the ERP system that year. This suggests that other

projects must have been backlogged resulting in a loss for the whole organization. We

also assume that the project cost g(k) is an increasing convex function of k. Although

p(k) and g(k) could in principe be dependent on the leadership structure, we take

them here as identical for the sake of comparison.
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As a benchmark, we first consider the first-best (FB) solution, in which the team

size is chosen so as to maximize the total surplus. We denote by kFBt the FB team

size in period t, by V FB
t the project optimal total payoff-to-go in period t, and by

V FB
t (k) the project expected total payoff-to-go in period t when the team size is equal

to k. The dynamic programming formulation for the FB solution is as follows:

V FB
t = max

k≤n
V FB
t (k) ≡ −kc(k)− g(k) + δp(k)R + δ(1− p(k))V FB

t−1 (2.1)

with V FB
0 = 0.

We use the notation ∆h(i) = h(i + 1) − h(i) for any discrete function h(.). In

addition, we assume that −kc(k) − g(k) + δp(k)R ≥ 0 for k ∈ N to guarantee that

the project total payoff is positive in any period t and for any team size k. Since the

objective function in (2.1), V FB
t (k), is concave in k, kFBt can be obtained by solving

kFBt = min

{
i ∈ Z+

≤n | V FB
t−1 ≥ R− ∆[ic(i)] + ∆g(i)

δ∆p(i)

}
, (2.2)

in which Z+
≤n is the set of all positive integer values which are smaller than or equal

to n. Accordingly, kFBt = n if and only if V FB
t−1 ≤ R− ∆[(n−1)c(n−1)]+∆g(n−1)

δ∆p(n−1)
.

We next present the models of teams with and without an internal leader. We

then study in §2.4 the effect of leadership structure on team size and project success.

2.3.1 No-Leader (NL) Structure

In the NL structure, the team size is chosen by members themselves, in a decentralized

fashion, so as to maximize their individual payoffs. That is, members voluntarily

choose in each period whether to join the team or not. We model the NL structure

as a dynamic stochastic game with binary action set ai ∈ {Work,Not Work} for
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i ∈ N similar to Huberman and Loch (1996). We also focus on pure-strategy Markov

equilibria for simplicity. These equilibria are common in dynamic games; see, e.g.,

Adlakha et al. (2012) and Doraszelski and Satterthwaite (2010).

Although we focus only on team size, and real projects involve other types of de-

cisions, our NL structure is analogous to “self-managed performing units”(Hackman

1995, page 512), in which “members have responsibility not only for executing the

tasks but also for monitoring and manging their own performance. [...] Self-managing

units are common in managerial and professional work (e.g., a team of research as-

sistants who share responsibility for collecting a set of data.)”

We denote by kNLt the equilibrium NL team size in period t, by V NL
t,i Member i’s

equilibrium expected payoff-to-go in period t, and by V NL
t,i (k) Member i’s payoff-to-go

in period t when the team size is k, i ∈ N . All problem parameters are assumed to

be common knowledge to all members. However, they cannot verify or contract on

their actions; otherwise, they could contract on each others’ participation to the team

and attain the FB solution. The set St denote the set of team members, such that

|St| = kNLt . As a result, Member i’s equilibrium payoff-to-go can be obtained by

V NL
t,i =

 −c(k
NL
t )− g(kNLt )/n+ δp(kNLt )R/n+ δ(1− p(kNLt ))V NL

t−1,i if i ∈ St

−g(kNLt )/n+ δp(kNLt )R/n+ δ(1− p(kNLt ))V NL
t−1,i if i /∈ St,

(2.3)

with V NL
0,i = 0 for i ∈ N . We define V NL

t,i (k |Work) = −c(k)− g(k)/n+ δp(k)R/n+

δ(1− p(k))V NL
t−1,i and V NL

t,i (k | Not Work) = −g(k)/n+ δp(k)R/n+ δ(1− p(k))V NL
t−1,i.

The equilibrium team size kNLt satisfies the following equilibrium conditions:

V NL
t,i (kNLt |Work) ≥ V NL

t,i (kNLt − 1 | Not Work) for i ∈ St (2.4)

V NL
t,i (kNLt | Not Work) ≥ V NL

t,i (kNLt + 1 |Work) for i /∈ St, (2.5)
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That is, the members who joined the team prefer working over not working, whereas

the others prefer not working over working. We therefore obtain:

V NL
t−1,i ≤

R

n
− nc(kNLt ) + ∆g(kNLt − 1)

nδ∆p(kNLt − 1)
for i ∈ St, (2.6)

V NL
t−1,i ≥

R

n
− nc(kNLt + 1) + ∆g(kNLt )

nδ∆p(kNLt )
for i /∈ St. (2.7)

At the deadline, V NL
0,i = 0 for all i ∈ N by (2.3). As a result when t = 1, conditions

(2.6) and (2.7) are true for any set S1 of size kNL1 . Without loss of generality, we

assume that S1 = {1, 2, . . . , kNL1 }. We show by induction in Lemma B-1 in Appendix

B (§4.2) that without loss of generality, we can assume St = {1, 2, . . . , kNLt } for all

t ∈ T . We then show in Lemma B-2 and B-3 in Appendix B (§4.2) that kNLt is unique

and can be obtained by

kNLt = min

{
i ∈ Z+

≤n | V NL
t−1,i+1 ≥

R

n
− nc(i+ 1) + ∆g(i)

nδ∆p(i)

}
(2.8)

and kNLt = n if and only if V NL
t−1,n ≤ R

n
− nc(n)+∆g(n−1)

nδ∆p(n−1)
.

2.3.2 Internal Leader (IL) Structure

Under the IL structure, the team size is centrally chosen by an internal leader who

maximizes her own payoff (Dessein 2007 and Alonso et al. 2008). We assume that

the internal leader can unilaterally assign members to the team. Specifically, the

leader can verify the members’ effort, potentially at some monitoring cost, which

we assumed to be zero for simplicity (with a constant monitoring cost, all our results

remain the same albeit the IL structure is less attractive.) According to Stroebe et al.

(1996) “When group members were led to believe that their individual output could
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be monitored,” free-riding behaviour disappears. As a result, the internal leader is

the only one who can free-ride under the IL structure.

Although we only consider staffing decisions, the IL structure is analogous to

“manager-led performing units” (Hackman 1995, page 512), in which “members have

authority only for executing the tasks; managers monitor and manage performance

processes [. . .] In this view, managers manage, workers work, and the two functions

are kept distinct.” Similarly in “project education system” (Ruel et al, 2003), teachers

are not the formal providers of knowledge; they fulfil the role of the students’ coach

by supporting the students in their learning process. Students have to work actively

together in teams on cases and projects.

Under the IL structure, the internal leader assigns the members to the team to

maximize her individual payoff and, naturally, would be the last one to join the team,

consistent with Hackmann’s distinction between upper management and operational

work (Hackman 1995). We denote by kILt the IL team size, by V IL
t,n the internal leader’s

optimal expected payoff-to-go in period t, denoting the leader as the nth member,

and by V IL
t,n (k) the leader’s expected payoff-to-go in period t when the team size is k.

Given that the internal leader joins the team last, she incurs a cost of effort c(n) if

kILt = n and no cost of effort otherwise. The dynamic programming formulation for

the IL structure is as follows:

V IL
t,n = max

k≤n
−1{k = n}c(k)− g(k)

n
+ δp(k)

R

n
+ δ(1− p(k))V IL

t−1,n (2.9)

with V IL
0,n = 0. We obtain

kILt = min

{
i ∈ Z+

≤n−1 | V DL
t−1,n ≥

R

n
− ∆g(i)

nδ∆p(i)

}
. (2.10)
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and kILt = n if and only if V IL
t−1,n ≤ R

n
− nc(n)+∆g(n−1)

nδ∆p(n−1)
.

2.4 Team Size Characterization

In this section, we characterize and compare team sizes under the NL and IL structures

with respect to the FB solution. We present our results under static decision-making

(i.e., team size is chosen only once at the beginning of the project) in §2.4.1 and under

dynamic decision-making (i.e., team size is dynamically revised) in §2.4.2.

2.4.1 Static Staffing Decision

We consider a situation where the team size is chosen only once at the beginning of

the project and is not revised subsequently i.e., klt = klt−1 for l ∈ {FB,NL, IL, SL}.

To simplify the mathematical exposition, we here assume that T = 1. We characterize

the team sizes under NL and IL structures and compare them with respect to the

FB solution. Using (2.2), (2.8), and (2.10), the team sizes in the static model where

T = 1 can be expressed as:

kFB1 = min

{
i ∈ Z+

≤n |
∆ic(i) + ∆g(i)

δ∆p(i)
≥ R

}
, (2.11)

kNL1 = min

{
i ∈ Z+

≤n |
nc(i+ 1) + ∆g(i)

δ∆p(i)
≥ R

}
, (2.12)

kIL1 = min

{
i ∈ Z+

≤n−1 |
∆g(i)

δ∆p(i)
≥ R

}
(2.13)

such that kFB1 = n if and only if ∆c(n−1)+δ∆g(n−1)
δ∆p(n−1)

≤ R and kNL1 = kIL1 = n if and only

if nc(n)+δ∆g(n−1)
δ∆p(n−1)

≤ R.

We show that if the staffing decision is made only once, there is always under-
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Figure 2.1: Team sizes with a static staffing decision
The parameters are: n = 22, p(k) = (k/n)0.5, c(k) = 0.5k, g(k) = 2k1.5, and δ = 0.98.

staffing in the NL structure. However, there could be under- or over-staffing in the IL

structure depending on whether the project reward is large or not. The next lemma

characterizes equilibrium team sizes with respect to the project reward. Figure 2.1

illustrates the results. The horizontal axis denotes the project reward and the vertical

axis represents the team sizes under FB, NL, and IL structures.

Lemma 2.1. There exist thresholds R and R on the project reward such that

(i) If R > R, then kIL1 = kFB1 = kNL1 .

(ii) If R < R ≤ R, then kFB1 > kIL1 ≥ kNL1 .

(iii) If R ≤ R, then kIL1 ≥ kFB1 ≥ kNL1 .

There is always under-staffing in the NL structure because of free-riding (Holm-

ström 1982) or social loafing (Karau and Williams 1993). In addition, under-staffing

in the NL structure increases with the the size of the organization consistant with

Alchian and Demsetz (1972) or equivalently decreases with the project reward. Simi-

larly, Ringelmann (1913) discovered in a classical rope pulling experiment that when

more people pull a rope, the average force exerted by the group members declines.
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Figure 2.2: Team payoffs with a static staffing decision

Under the IL structure, there is under-staffing whenever the project reward is

small. When the project reward is smaller than R, the optimal team size is smaller

than the size of the organization (i.e., kFB1 < n). Similarly, the internal leader does not

assign all members to the project. However, since the leader does not internalize the

members’ individual cost of effort, she tends to assign more members to the project

than optimal. In fact, it often happens in new product development or software

development teams that the leader overstaffs the project by asking too many members

to attend unnecessary meetings or to work on simple tasks. When the project reward

is larger than R, it is optimal in the FB solution that everybody in the organization

joins the team. Similarly, the internal leader assigns all members to the project. The

internal leader herself may also participate in the team if the project reward is larger

than R, and she free rides otherwise.

We next compare the efficiency of the two structures. Figure 2.2 illustrates

the total surplus with respect to the project reward. The horizontal axis denotes

the team sizes, from k = 0 to n, and the vertical axis represents the total payoff

V FB
1 (k) = −kc(k) − δg(k) + δp(k)R. The next proposition shows that the IL struc-
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tures generates higher total surplus than the NL structure unless the project reward

lies in an intermediate range.

Proposition 2.1. There exist thresholds R, R and R̂ ≤ R such that

(i) If R > R, then
∑

i V
NL

1,i =
∑

i V
IL

1,i .

(ii) If R < R ≤ R, then
∑

i V
IL

1,i ≥
∑

i V
NL

1,i .

(iii) If R ≤ R, then
∑

i V
NL

1,i ≥
∑

i V
IL

1,i if and only if R ≥ R̂.

It sometimes believed that leaderless organizations perform poorly. For instance,

a senior executive of BMG international stated that “If you don’t have a dictator,

you won’t be successful. Show me a company run by democracy, and I’ll show you

a loser. There’s always got to be one chief and plenty of Indians.” (Weber and Hill

1994, page 12) Contrary to this belief, Proposition 2.1 part (c) shows that, as far as

staffing decisions are concerned, the NL structure could dominate the IL structure

when project reward lies in an intermediate range.

2.4.2 Dynamic Staffing Decision

In many projects, staffing decisions may be revised dynamically. For instance in

the IBM OS/360 project (Hackman 2002), the project ran behind schedule and the

management added staff to the team to make up time. As another example, the

Jaguar project at Teradyne Corporation (Gino and Pisano 2006), the senior manage-

ment kept adding software engineers to the project as they were getting closer to the

deadline. Similarly in the last three months of the Cisco Viking project (Shao and

Lee 2009), all the workers from the engineering organization were working full time

to meet the deadline for the product delivery. Consistent with these evidences, we

show that the optimal and equilibrium team sizes increase over time under the FB
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Figure 2.3: The NL team size over time
The parameters are: T = 11, c(k) = 1.69, R = 2500, n = 15, g(k) = 5k1.2, p(k) = k0.8

n0.8 ,
δ = 0.8.

solution and IL structure, because the chance of ultimate success becomes smaller as

the deadline becomes closer. It is therefore optimal to have more members join the

team to increase the success rate.

Lemma 2.2. (i) kFBt and kILt are non-increasing in t. (ii) If δ = 1, kNLt is non-

increasing in t.

When members are infinitely patient, the equilibrium team size under the NL

structure is also increasing over time. However when members are impatient (δ < 1),

the equilibrium NL team size may oscillate. Figure 2.3 illustrates the equilibrium team

sizes over time. The reason of this non-monotone behavior is the following. With the

FB and IL structures, the total payoff-to-go (under the FB solution) and the leader’s

payoff-to-go (under the IL structure) are decreasing over time. Accordingly as time

goes by, there are greater incentives to put in more effort because the fall-back option,

if the current period effort fails, becomes less attractive. By contrast under the NL

structure, the members’ payoff may not evolve dynamically. This is because members

are competing against each other from period to period. To see this, suppose that
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Figure 2.4: Equilibrium team sizes and total payoffs with a dynamic staffing decision
The parameters are: T = 11, c(k) = 2k2, R = 500, n = 15, g(k) = 5k, p(k) =
(k/n)0.9, δ = 1.

a large pool of members decide to join the team when there remains t − 1 periods

until the deadline. Anticipating this burst of work in period t − 1, fewer members

would then decide to join the team when there remains t periods until the deadline.

Similarly, anticipating that few members join the team in period t, more members

would then choose to join the team when there are t+1 periods left to deadline. This

oscillatory pattern is reminiscent of the performance oscillation reported by Mihm et

al. (2003) although it translates into staffing decisions here.

Figure 2.4 (Left) illustrates the optimal team sizes under the FB solution and

the equilibrium team sizes under the NL and IL structures. Similar to static staffing

decisions (Lemma 2.1), there is always under-staffing in the NL structure, but there

could be under- or over-staffing in the IL structure. In particular, there is under-

staffing when there is limited time left to the deadline and over-staffing when the

project is far from the deadline. Differentiating between reward and the fall back

option, this is in fact analogues to Lemma 2.1. That is when t = 1, the fall back option

is fixed at zero, whereas here, reward remains fixed at R and fall back option changes
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over time. In particular as the deadline becomes closer, the fall back option becomes

smaller and therefore the marginal gain through success incraeses. Accordingly, the

early periods of the project can be interpreted as having a small reward and the late

periods can be interpreted as having a large reward.

Figure 2.4 (Right) illustrates the corresponding total payoffs obtained under the

FB, NL, and IL structures. We observe that these payoffs may cross each other

several times as time elapses. That is, the NL structure dominates the IL structure

in intermediate periods and the reverse holds when the project is either far from the

deadline or very close to deadline. Similar to the above discussion, the change in the

remaining time to deadline can be interpreted as the change in the project reward.

Therefore, the intermediate periods can be interpreted as having an intermediate

reward (neither small nor large.) In that case, our observation in Figure 2.4 (right)

is consistent with our findings in Proposition 2.1. To compare the staffing decisions

and payoffs under the NL and IL structures to the FB solution over time, we next

consider two special cases: (i) linear costs and probabilities with infinitely patient

members and (ii) stationary staffing decisions, i.e., as T →∞.

Linear Costs and Probabilities.

As is common in the literature (e.g., Marx and Matthews 2000, Bonatti and Horner

2011 and Weinschenk 2011), we assume that the probability of success and project

costs are all linear functions of the team size; i.e., p(k) = pk, g(k) = gk, and c(k) = c.

We also assume that δ = 1. Similar to the static staffing decision, we show that there

is always under-staffing in the NL structure. However under the IL structure, there

is over-staffing in the early periods (far from deadline) and under-staffing in the late

periods (close to deadline). The leader assigns more workers to the project early on,
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Figure 2.5: Dynamic team size with linear costs and probabilities
The parameters are: T = 25, c(k) = 0.5k, R = 19000, n = 15, g(k) = k, p(k) = 0.06k,
δ = 1.

so that she herself does not work in the late periods. The results are presented in

Lemma 2.3 and illustrated in Figure 2.5.

Lemma 2.3. Suppose p(k) = pk, g(k) = gk, c(k) = c, and δ = 1. There exist time

thresholds t and t, such that

(i) If t ≤ t, then kFBt = kILt = kNLt .

(ii) If t < t < t, then kFBt > kILt ≥ kNLt .

(iii) If t ≥ t, then kILt ≥ kFBt = kNLt .

Comparing the efficiency of the NL and IL structures, we show that the IL struc-

ture dominates the NL structure in all periods. Although the internal leader makes

suboptimal decisions early on by potentially over-staffing the project, she generates

a higher total surplus than if the team was decentralized because she makes better

decisions later on.

Proposition 2.2. Suppose p(k) = pk, g(k) = gk, c(k) = c, and δ = 1. Then,∑n
i=1 V

IL
t,i ≥

∑n
i=1 V

NL
t,i .
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Although Proposition 2.2 shows that it is beneficial to appoint an internal team

leader when efforts are additive, efforts are often non-additive in Practice (Brooks

1975) and this result may not hold in general ( see e.g., Figure 2.4 Right).

Stationary Staffing Decision.

We denote by kl∞ the stationary team size under structure l ∈ {FB,NL, IL}. We

show in Lemma B-6 in Appendix B (§4.2) that the stationary equilibrium team sizes

are unique provided that the NL equilibrium team size converges, which by Lemma

2.2 is guaranteed when δ = 1. The next lemma shows that the IL stationary team

size is the largest and the NL stationary team size is the smallest. That is, when

there in no deadline for the project, there is always under-staffing in the NL structure

and over-staffing in the IL structure.

Lemma 2.4. Suppose that kNLt converges when T →∞. Then, there exists thresholds

r and r such that

(i) If R > r, then kIL∞ = kFB∞ = kNL∞ .

(ii) If r < R ≤ r, then kFB∞ > kIL∞ ≥ kNL∞ .

(iii) If R ≤ r, then kIL∞ ≥ kFB∞ ≥ kNL∞ .

We next compare the efficiency of the NL and IL structures. Similar to the static

staffing decision, we show that when there is no deadline for the project, the IL

structure generates higher surplus than the NL structure unless the project reward

lies in an intermediate range.

Proposition 2.3. Suppose that kNLt converges when T →∞. There exist thresholds

r, r, and r̂ such that

(i) If R > r, then
∑

i V
IL
∞,i =

∑
i V

NL
∞,i .
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(ii) If r < R ≤ r, then
∑

i V
IL
∞,i ≥

∑
i V

NL
∞,i .

(iii) If R ≤ r, then
∑

i V
NL
∞,i ≥

∑
i V

IL
∞,i if and only if R ≥ R̂∞.

Overall Proposition 2.3 supports our findings in Proposition 2.1. That is, we show

that under two extreme cases, namely (i) very tight deadline (t = 1) and (ii) very

loose deadline (t =∞), the NL structure dominates the IL structure when the project

reward lies in an intermediate range, because the over-staffing in the IL becomes larger

than the under-staffing in the NL structure.

2.5 Conclusions

In knowledge-intensive projects, the choice of team size is a crucial decision for the

project success, because it should balance effectiveness and efficiency. In this chapter,

we study the effect of leadership structure on the choice of team size. We consider

two types of leadership structures: teams with an internal leader (IL) and teams with

no leader (NL). We show that there is always under-staffing in the NL structures

because of free-riding. In contrast, there could be under- or over-staffing in the IL

structure. The under-staffing is because the internal leader is tempted to free ride and

the over-staffing is because the leader does not internalize the member’s individual

cost of effort.

Comparing the efficiency of the IL and NL structures, we show that projects with

an internal leader are more efficient when the project reward is either very small or

very large, because free-riding is controlled. However, the IL structure becomes less

attractive when the project reward is in an intermediate range. In that case, the

project over-staffing may be too costly (e.g., take time away from other projects)

and voluntary participation of the members is more efficient. Therefore, top-down
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staffing decisions perform better in projects with very small or vary large rewards and

decentralized staffing decisions work better in projects with an intermediate reward.

This model can be extended in different directions. For example, what happens if

the members receive nonequal shares of reward? What if the members are asymmetric

in terms of cost and skills? Or, what if the project has multiple phases? Investigating

these questions would be worthwhile given the ubiquity of team work in today’s

business processes.
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Chapter 3

Learning in Collaborative Work

Processes

3.1 Introduction

Knowledge-intensive projects such as research and development often involve collab-

oration between different parties. The ultimate success of such projects therefore

depends on effectiveness of collaboration. However at the outset, it may be chal-

lenging to predict how effective two parties may be at collaborating, especially if they

have not worked together before. Accordingly, some projects start with an exploration

phase (Thompson 2013). For instance in research projects, two co-authors who have

never worked together on previous projects may spend the early phases of a project

to learn how they can complement each other by combining knowledge and expertise.

As another example of industrial research, Cisco Systems Incorporation learned about

Foxconn Technology Group over the exploration phase of a Viking project (Shao and

Lee 2009). This learning process encouraged Cisco to work jointly with Foxconn that
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resulted in completing a successful project. The senior management of the product

operations said “over the assessment period, we noted the high executive level com-

mitments, excellent team, and a demonstration of processes and technical capability.

Foxconn proved they were committed and ready to take on this challenge.”

Exploring collaboration effectiveness raises many questions. For instance, what is

the effect of learning on future collaborative work dynamics? Does learning induce

collaboration in early phases of the project? When is it favorable to explore working

with a new collaborator? What is the effect of deadline and prior beliefs on work

dynamics?

To answer these questions, we consider two parties who work jointly on a knowledge-

intensive project. While they are certain about their own capabilities, they only have

a prior probabilistic belief about the effectiveness of their joint work. Similar to

Chapter 1, we consider a project for which the scope has already been defined. How-

ever, the parties still need to decide about the choice of components to be executed.

Each component addition moves the project to a higher state. Because low-hanging

fruits tend to be executed first, the final reward from the project is assumed to be in-

creasing concave in its completion state. Consistent with the collaborative, iterative,

and stochastic nature of knowledge-intensive processes (Kieliszewski et al. 2010), we

model the collaborative work process as a finite-horizon stochastic program. That

is, the state of the project evolves according to a Markov chain and the transition

probabilities depend on whether the parties work individually or jointly. If they work

jointly on the project, the success rate also depends on the effectiveness of their col-

laboration, about which they learn gradually in a Bayesian process. Moreover, there

is a cost associated with their effort.

We show that if the parties’ expected prior belief about their collaboration effec-
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tiveness is neither too high nor too low, it is optimal for them to work jointly in early

periods of the project to learn about the effectiveness of their work. If they don’t

succeed while collaborating for certain number of periods, it is optimal for them to

switch to individual work and never revert back to collaboration. When the parties’

expected prior belief is low, it is optimal for them to work individually in early periods

and to collaborate when few periods remain before the deadline, because collabora-

tion is costly and not very efficient. However, it is also optimal for the parties to

postpone their collaboration when their expected prior belief is high. In that case,

it is very likely that they will finish the project if they collaborate; therefore, it is

optimal for them to postpone their collaboration and give themselves a chance to

make progress at smaller costs. In such cases, learning may not be beneficial for the

parties, because they do not have enough time to adjust their future working modes

based on their updated beliefs.

The chapter is organized as follows. We review the related literature in the next

section and present the model in §3.3. We characterize the optimal work dynamics

in §3.4. We present our conclusions in §3.5. All proofs are gathered in Appendix C

(§4.3).

3.2 Literature Review

This chapter studies learning in collaborative projects and therefore it is related to

two strands of research: experimentation in teams and new product development.

This chapter is related to Bonnati and Horner (2011) since they also study learn-

ing in collaborative teams. While their focus is on learning about the quality and

duration of the project, ours is on learning about the effectiveness of parties’ joint

work. In particular, we study the impact of collaboration effectiveness on project
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success as emphasized by Thompson (2013). Bonnati and Horner (2011) find that

collaboration increases as the parties get closer to the project deadline. However, we

show that parties’s collaboration depends on their updated belief, i.e., if the parties’

collaboration fails for many periods, they would rather do the work individually even

if the deadline is close.

There is a growing literature in economics on experimentation in teams. For

instance, Keller et al. (2005) and Klein and Rady (2008) study a two-armed bandit

problem in research teams where there is no learning. Bolton and Harris (1999)

also study a two-armed bandit problem but in a situation where an agent can learn

from the current experimentation of other agents. They show that learning derives

encouragement in a team. Similar to Bonnati and Horner (2011), these papers also

study exploration about the project outcome. Although our focus is on learning about

the effectiveness of collaboration and not project outcome, we also show that learning

increases collaboration in the early phases of a project.

This chapter is also related to the literature on new product development (NPD)

projects since they are canonical examples of knowledge-intensive projects (Ozkan et

al. 2013). Building on previous work by Thomke (1998), Thomke (2003), and Loch

et al. (2001), Erat and Kavadias (2008) study learning in sequential product design.

They propose an optimal policy for deciding about future design tests based on the

result of pervious tests. Instead of characterizing design tests, we characterize the

optimal work structure, i.e., collaboration versus individual working as a function

of the current state of a project. We therefore complement the NPD literature by

studying the effect of learning on collaborative work dynamics.
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3.3 Model

In this section, we introduce a model of dynamic learning in collaborative processes.

We consider two parties engaged in a multi-state, multi-period project with finite

deadline T . Let T = {0, 1, . . . , T} be the set of time periods and xt ∈ {0, . . . , S} be

the set of project states. The parties start the project at state 0. Once the project

is stopped in state xt, a common reward R(xt) is collected. The reward R(xt) is

assumed to be increasing concave, therefore making it optimal to stop the project

beyond a certain state. Time is discounted with a discount rate δ ≤ 1, making early

project completion desirable.

In each period, the parties choose among three working modes: collaboration

(Duo), individual working (Solo), and stopping the project (Finish). In any period

t, the problem state is three dimensional and consists of the project state (x), the num-

ber of failures from collaboration (m), and the number of successes from collaboration

(n). The evolution of the state (x,m, n) is assumed to follow a stochastic process. In

any time t if the parties collaborate and succeed, the state (x,m, n) evolves to state

(x + 1,m, n + 1) with probability f(m,n) or it evolves to state (x,m + 1, n) with

probability 1− f(m,n). However, if only one party works Solo, the state evolves to

state (x+ 1,m, n) with probability ps or it remains at state (x,m, n) with probability

1− ps as depicted in Figure 3.1.

The parties start with a prior on the probability of success if they collaborate (pd),

which follows a Beta distribution with parameters (a, b). Using Bayesian updating,

the updated probability of success through collaboration after m unsuccessful trials

and n successful trials can be estimated by f(m,n) = a+n
a+b+m+n

. We also assume that

the prior probability pd is larger than the known success probability of their individual

work ps (i.e., pd = f(0, 0) ≥ ps). Effort is costly and depends on the working modes.
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Figure 3.1: State dynamics under collaboration (left) and individual work (right)

We denote the costs of working Duo and Solo by cd and cs, respectively and assume

that 2cd ≥ cs. Our assumptions on success rates and costs (i.e., pd ≥ ps and 2cd ≥

cs) capture the trade offs between Duo and Solo working modes. Without these

assumptions, one working mode (Duo or Solo) dominates the other one. In particular,

Duo is more efficient and effective than Solo if 2cd ≤ cs and pd ≥ ps, and the reverse

holds true if 2cd ≥ cs and pd ≤ ps.

We next present our model of dynamic learning in collaborative projects. The

notation Et(x,m, n) denotes the optimal working mode in period t and state (x,m, n),

i.e., Et(x,m, n) ∈ {Duo, Solo, F inish}. We denote by Vt(x,m, n) the discounted total

payoff in period t and state (x,m, n). The finite horizon DP formulation is as follows:

Vt(x,m, n) = max {Vt(x,m, n | Duo), Vt(x,m, n | Solo), Vt(x,m, n | Finish)}

VT (m) = 0, (3.1)

in which

Vt(x,m, n | Duo) = −2cd + δ[f(m,n)Vt+1(x+ 1,m, n+ 1)

+ (1− f(m,n))Vt+1(x,m+ 1, n)],

Vt(x,m, n | Solo) = −cs + δ [psVt+1(x+ 1,m, n) + (1− ps)Vt+1(x,m, n)] ,
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Vt(x,m, n | Finish) = R(x).

3.4 Optimal Policy

In this section, we characterize the optimal work dynamics under two special cases: (i)

projects with two periods and multiple states and (ii) projects with multiple periods

and two states.

3.4.1 Two Periods and Multiple States

We consider a project that consists of two periods, i.e., T = {0, 1} with the deadline

T = 2. By (3.1), we have

V0(x,m, n) = max{−2cd + δ [f(m,n)V1(x+ 1,m, n+ 1) + (1− f(m,n))V1(x,m+ 1, n)] ,

−cs + δ [psV1(x+ 1,m, n) + (1− ps)V1(x+ 1,m, n)] , R(x)}, (3.2)

V1(x,m, n) = max{−2cd + δ [f(m,n)R(x+ 1) + (1− f(m,n))R(x)] ,

−cs + δ [psR(x+ 1) + (1− ps)R(x)] , R(x)} (3.3)

V2(x,m, n) = R(x). (3.4)

We first characterize the work dynamics in period t = 1. To simplify the notation,

we define the following quantities:

θfs(x)
.
=

(1− δ)R(x) + cs
δps

, θfd(x,m, n)
.
=

(1− δ)R(x) + 2cd
δf(m,n)

, θsd(m,n)
.
=

−cs + 2cd
δ(f(m,n)− ps)

.

The thresholds θkl allow for a pairwise comparison of policies k and l, for any k ∈
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Figure 3.2: Duo-Solo state-threshold as a function of f(m,n)
The solid line is obtained by f(n,m) = 2cd−cs

δ[R(x+1)−R(x)]
+ps for R(x) = 200

√
x, ps = 0.6,

δ = 0.95, cd = 5, cs = 3

{f, s} and l ∈ {s, d}. Specifically,

E1(x,m, n) = Finish ⇔ R(x+ 1)−R(x) ≤ min {θfs(x), θfd(x,m, n)}

E1(x,m, n) = Solo ⇔ θfs(x) ≤ R(x+ 1)−R(x) ≤ θsd(m,n)

E1(x,m, n) = Duo ⇔ R(x+ 1)−R(x) ≥ max {θfd(x,m, n), θsd(m,n)} .

Accordingly, when the project marginal return (R(x+1)−R(x)) is large, the optimal

policy is either Duo or Solo and when the project marginal return is small, it is either

Duo or Finish.

Not surprisingly, collaboration is more desirable when its success rate is high. In

particular, the parties prefer to work Duo rather than Solo if and only if R(x+ 1)−

R(x) > −cs+2cd
δ(f(m,n)−ps)

which is equivalent to f(m,n) ≥ 2cd−cs
δ(R(x+1)−R(x))

+ ps. Therefore,

the state threshold between Solo and Duo increases as f(m,n) increases. Figure 3.2

illustrates the threshold between Duo and Solo.

In Figure 3.3, we numerically compare the optimal policy in period t = 1 (right)

and in period t = 0 (left) to analyze the effect of learning. We present the work
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Figure 3.3: Optimal policy in a two-period and multi-stage project
The parameters are: R(x) = 700

√
x, ps = 0.5, δ = 0.96, cd = 7, cs = 14, a = 7, b = 5.
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dynamics as a function of f(m,n) and x. We observe that in both periods when

f(m,n) is small, it is optimal for the parties to work Solo if the state is low and

Finish if the state is high. As f(m,n) increases, the Solo region shrinks and it is

optimal for the parties to work Duo if the state is low and to Finish if the state is

high.

As shown in Figure 3.3, the Duo region in period t = 0 is larger than in period

t = 1 while its Solo and Finish regions are smaller than in t = 1. The parties explore

the effectiveness of their joint work in the early period; if their collaboration fails,

f(m,n) decreases and the parties may decide to continue collaborating (e.g., x0 = 3

and f(m,n) = 0.474), work individually (e.g., x0 = 3 and f(m,n) = 0.467), or even

stop the project (e.g., x0 = 5 and f(m,n) = 0.5) in the next period. However if they

succeed, f(m,n) increases and they either decide to stop the project (e.g., x0 = 5

and f(m,n) = 0.529) or continue collaborating (e.g., x0 = 4 and f(m,n) = 0.533)

in the next period. The intuition is as follows: when collaboration is effective in

period t = 0, the belief about the collaboration success rate increases and therefore

it is optimal to continue collaborating unless the state is high, in which case it is

optimal to stop the project. If collaboration fails, the belief about the collaboration

success rate decreases. If the belief is very low, it may be optimal to work Solo or

stop the project. However, the belief might be high enough to still collaborate one

more period.

Hence, learning induces early collaboration. Consequently, the project stopping

state might be time-dependent; that is, it might be optimal for the parties to work

jointly on the project in state (x,m, n) and period t = 0, but to stop the project in

state (x,m+ 1, n) and period t = 1. However, this situation does not occur when the

optimal policy is Solo in period t = 0. In particular, we show in Proposition 3.1 that
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Figure 3.4: State dynamics in a two-stage project under collaboration (left) and
individual work (right)

when it is optimal for the parties to stop the project in state (x,m, n) and period

t = 1, it is not optimal for them to work Solo in state (x,m, n) and period t = 0.

Proposition 3.1. Suppose E1(x,m, n) = Finish. Then E0(x,m, n) 6= Solo.

In summary, we observe that learning induces early collaboration and results in

a time-dependent Finish threshold. These results are in contrast to our findings in

Chapter 1, in which there is no learning. We show in Chapter 1 that in a situation

without learning, the optimal Finish threshold is time-independent and it is optimal

for the parties to collaborate either close to deadline or close to the Finish threshold

(see Proposition 1.1).

3.4.2 Multiple Periods and Two States

In this section, we consider a project that consists of two states (xt = 0 and xt = 1)

similar to Bonatti and Horner (2011). The project starts at state 0 and it is completed

if it reaches state 1, at which point a common reward R is collected and shared. If

the project is not completed by the deadline, there is no reward to collect.

Given that the project is completed in state x = 1, the Finish working mode

is beside the point. In particular, if the parties decide to stop the project in state

x = 0, the project will never get started and there is no need for further analysis.
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Therefore, we consider a dynamic formulation with two working modes: Duo and

Solo. Accordingly, the state variables can be simplified from (x,m, n) to a single state

variable m. Since the parties collect their reward (R) when the project reaches state

x = 1, we have n ∈ {0, 1} and Vt(1,m, 1) = R. We also define Vt(m) ≡ Vt(0,m, 0) for

simplicity of exposition. We therefore have f(m) = a
a+b+m

. Figure 3.4 illustrates the

corresponding state dynamics. Consequently, the DP recursion (3.1) simplifies to:

Vt(m) = max{−2cd + δf(m)R + δ(1− f(m))Vt+1(m+ 1),

−cs + δpsR + δ(1− ps)Vt+1(m+ 1)} (3.5)

VT (m) = 0.

Accordingly, Solo working mode is preferred over Duo if and only if

δ(1− ps)Vt+1(m)− δ(1− f(m))Vt+1(m+ 1) ≥ −2cd + cs − δpsR + δf(m)R (3.6)

For simplicity of exposition, we defineHt(m) = δ(1−ps)Vt+1(m)−δ(1−f(m))Vt+1(m+

1)− δf(m)R. Similar to (3.6), Et(m) = Solo if and only if Ht(m) ≥ −2cd+ cs− δpsR.

We first characterize the optimal policy in period T −1. Using (3.6), we have that

ET−1(m) = Solo if and only if

−2cd + cs − δpsR + δf(m)R ≤ 0⇔ f(m) ≤ 2cd − cs + δpsR

δR
. (3.7)

By definition, f(m) is decreasing in m and therefore if VT−1(m) = Solo , then

VT−1(m + 1) = Solo. Let us define the threshold ms above which Solo is an op-
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timal policy in time T − 1:

ms = min

{
m ∈ Z+ | f(m) ≤ 2cd − cs + δpsR

δR
:= θsd

}
. (3.8)

In the next proposition, we generalize the above result for any period t ≤ T − 1.

We show that it is optimal for the parties to work Solo if their number of failures

exceeds the threshold ms. This phase of individual working is absorptive; that is, it

is optimal for the the parties to continue working Solo above the threshold ms and

to not revert back to Duo until they reach the deadline.

Proposition 3.2. If m ≥ ms, Et(m) = Solo for all t.

Next, we characterize the optimal policy region for states m < ms. We first define

state thresholds m̂ and md as follows:

m̂ = min

{
m < ms | f(m+ 1) ≤ (1− δ)R + δpsR + 2cd

δR

}
, (3.9)

md = max

{
m | f(m) ≥ −2cd + (1− δ)[cs − δpsR] + 2cdδ(1− ps)

δ(δR− cs −R)

}
. (3.10)

The characterization of the work dynamics depends on whether m̂ and md are zero or

not. We say the expected belief about collaboration success rate is low if m̂ = md = 0,

is neither low nor high if m̂ = 0 and md > 0, and is high if m̂ > 0.

We first characterize the work dynamics when m̂ = 0. In that case, the prior

belief about collaboration success rate is low and it is therefore optimal to explore

the effectiveness of collaboration in the early phases of the project. We show that the

optimal policy is to work Duo when either the number of failures from collaboration

(m) is lower than a threshold or when there is limited time left until the deadline. To

this end, we define the following thresholds: (i) time threshold ts(m) (with ts(ms) =
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Figure 3.5: Optimal policy for the case where m̂ = 0
Left figure: T = 10, R = 350, δ = 1, cs = 5, cd = 4.5, ps = 0.45, a = 3.5, b = 1.
Right figure: T = 10, R = 2000, δ = 1, cs = 8, cd = 4.5, ps = 0.45, a = 5, b = 1.
State thresholds: ms = 4, md = 0 (left) and ms = 6, md = 1 (right).

T − 1), which denotes the maximum time period in which Solo is optimal after m

failures; (ii) state threshold ms(t) (with ms(T − 1) = ms − 1), which denotes the

maximum number of failures for which the optimal policy is Duo in period t.

ts(m) = max {t | Ht(m) ≥ −2cd + cs − δpsR} (3.11)

ms(t) = max{m ∈ Z+ | Ht(m) ≤ −2cd + cs − δpsR}. (3.12)

The next proposition presents the characterization of the optimal work dynamics for

m < ms when m̂ = 0.

Proposition 3.3. Suppose m̂ = 0. The following statements hold true:

(a) For md < m ≤ ms, Et(m) = Solo for t ≤ ts(m), Et(m) = Duo for m < ms(t),

threshold ts(m) is increasing in m, and threshold ms(t) is strictly increasing in t.

(b) For m ≤ md, Et(m) = Duo for all t < T .

Figure 3.5 illustrates the optimal policy for the case where m̂ = 0 characterized

in Proposition 3.3. The horizontal axis denotes time, from the project start (t = 0)
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to the deadline (t = T ), and the vertical axis represents the number of failures from

collaboration until time t (mt). The feasible region lies below the 45-degree line

because number of failures m increases by at most one unit each period. Figure 3.5

(left) illustrates the case with md = 0 and Figure 3.5 (right) illustrates the case with

md > 0.

When md = 0 (Figure 3.5 left), early collaboration is not optimal and the parties

should only work Duo when few periods remain before the deadline. This happens

when the expected prior belief about the collaboration success rate is lower than a

threshold; that is, when pd = f(0) ≤ [−2cd+(1−δ)[cs−δpsR]+2cdδ(1−ps)]/[δ(δR−

cs−R)]. In that case, Duo work is not very effective in comparison to Solo work. As

a result, the parties should work Solo to save on the cost of collaboration and they

may work Duo only if the deadline is very close. We show in Proposition 3.3 that

ms(t) is strictly increasing in t and therefore this Duo phase close to the deadline is

absorptive.

When md > 0 (Figure 3.5 right), it is optimal for the parties to work Duo early

on to learn about the effectiveness of their joint work. If collaboration fails md times,

it is optimal for them to work Solo. However, they may revert back to Duo working

a few periods before the deadline. Since ms(t) is strictly increasing in t, when the

parties revert back to Duo a few periods before the deadline, it is optimal for them

to continue working Duo until the deadline is reached.

We next study the optimal policy for the case where m̂ > 0. We show in Propo-

sition 3.3 that when m̂ = 0, the parties should work Duo when m ≤ ms(t) and work

Solo when m > ms(t) in any period t. Therefore, when m̂ = 0, the optimal policy

only changes once in each period. However when m̂ > 0, the optimal policy is less

structured. In particular, in any period t < T , it might be optimal for the the parties
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Figure 3.6: Optimal policy for the case where m̂ > 0
The parameters are: T = 20, R = 25, δ = 1, cs = 0.2, cd = 0.8, ps = 0.2, a = 5,
b = 0.1.

to switch from Duo to Solo more than once.

Figure 3.6 illustrates the work dynamics for the case where m̂ > 0 (i.e., f(m) ≥
(1−δ)R+δpsR+2cd

δR
for m < m̂). In that case, we observe that it is optimal for the parties

to work Duo close to the deadline. However unlike when m̂ = 0, the threshold ts(m)

may not be increasing. In particular, ts(m) is decreasing when m is small and it

becomes increasing as m gets larger. The intuition is as follows: the optimal policy

is Solo when m is large; i.e., the parties have low estimate for f(m). However, the

optimal policy can also be Solo when m is very small. In that case, the parties

know that they will do Duo in the next period if they cannot make progress in the

current period. Because their estimate of f(m) is very high (it is very likely that they

will finish the project if they collaborate), it may be optimal for the parties to give

themselves a chance to make progress at smaller cost, by working Solo, so as to avoid

paying the high cost of collaboration.
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3.5 Conclusions

In this chapter, we studied how learning affects collaborative work dynamics between

parties that are engaged in a knowledge-intensive project. We show that learning

induces early collaboration when the parties’ expected prior belief about the effec-

tiveness of their joint work is neither too high nor too low. Not surprisingly, when

the parties expected prior belief is low, there is no incentive for them to collaborate.

When the parties’ expected prior belief is high, they know that it is very likely that

they will complete the project if they collaborate. Therefore, it may be optimal for

them to first work individually at smaller cost and collaborate when there are a few

periods left until the deadline. When the parties’ expected prior belief is in an inter-

mediate range, it is optimal for them to collaborate in early phases of the project to

explore the effectiveness of their joint work. If their collaboration fails for a certain

number of periods, it is then optimal for them to do the work individually. We there-

fore conclude that learning can be favorable when the parties’ expected prior belief

is in an intermediate range, in which case early collaboration allows the parties to

adjust their future decisions accordingly.

This model can be extended in several directions. For example, what causes the

non-monotonic collaboration dynamics in Figure 3.6? How can we reduce the three-

dimensional state (x,m, n) to two-dimensional state (x, f(m,n))? When is early

collaboration desirable is a multi-period, multi-stage project? What would be the

dynamics of collaboration if the parties have the option to wait or delay the project?

What if the parties can make their decisions in a decentralized way, resulting in a

situation of double moral hazard? What is the effect of contracting on learning in

collaborative projects? Investigating these questions would be worthwhile given the

ubiquity of team work in today’s business processes.
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Chapter 4

Appendix

4.1 Appendix A : Proofs for Chapter 1

4.1.1 FB Solution

Preliminaries

We first define the following thresholds:

θFBfs (x)
.
=

(1− δ)R(x) + cvs
δps

, θFBfd (x)
.
=

(1− δ)R(x) + 2cd
δpd

, θFBsd
.
=
−cvs + 2cd
δ(pd − ps)

. (A1-1)

The thresholds θFBkl (x) allow for a pairwise comparison of policies k and l, for any

k ∈ {f, s}, l ∈ {d, s}, k 6= l. Specifically, policy k is preferred over policy l in period

T − 1 if and only if R(x + 1) − R(x) ≤ θFBkl (x). It turns out that for any state x,

either θFBfs (x) ≤ θFBfd (x) ≤ θFBsd or θFBsd ≤ θFBfd (x) ≤ θFBfs (x). Let

xFBθ := min
{
x ∈ Z+ | θFBfd (x) ≥ θFBsd

}
(A1-2)
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= min

{
x ∈ Z+ | R(x) ≥ 2cdps − cvspd

(1− δ) (pd − ps)

}
.

By the definition of xFBθ , we have that,

θFBfs (x) < θFBfd (x) < θFBsd if x < xFBθ and θFBfs (x) ≥ θFBfd (x) ≥ θFBsd if x ≥ xFBθ .(A1-3)

We also define

xFBf := min
{
x ∈ Z+ | ∆R(x) ≤ min

{
θFBfs (x), θFBfd (x)

}}
. (A1-4)

For each state x < min{xFBθ , xFBf }, let us define τ(x) := max{t ∈ T | ∆Vt+1(x) ≤

θFBsd } if there exists a t such that ∆Vt+1(x) ≤ θFBsd ; otherwise, τ(x) := x − 1. We

define

xFBϕ := max{x < min{xFBθ , xFBf } | τ(x) > τ(x− 1)}, (A1-5)

such that τ(x) is nondecreasing for all x, xFBϕ ≤ x < min{xFBθ , xFBf }.

Finally, we denote, for any t, the highest state smaller than xFBϕ where EFBt (x) =

Duo, as

xFBd,t := min
{

max
{
x ∈ Z+ | Vt+1(x+ 1)− Vt+1(x) ≥ θFBsd

}
, xFBϕ

}
. (A1-6)

Proofs

Lemma A1-1. For any x, Vt(x) is nonincreasing in t.

Proof. We prove the lemma by induction on t. When t = T − 1, VT (x) = R(x) ≤
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VT−1(x) by (1). Fix t < T − 1 and suppose that Vt+1(x) ≤ Vt(x), ∀x. Then,

Vt(x) = max {R(x),−2cd + δEd [Vt+1(x+ ξ)] ,−cvs + δEs [Vt+1(x+ ξ)]}

≤ max {R(x),−2cd + δEd [Vt(x+ ξ)] ,−cvs + δEs [Vt(x+ ξ)]} = Vt−1(x).�

Lemma A1-2. EFBt (x) = Finish for all t if and only if x ≥ xFBf .

Proof. The proof uses Lemma A1-1 in the e-companion. Using (1.1) and (A1-1),

we obtain EFBT−1(x) = Finish ⇔ ∆R(x) ≤ min
{
θFBfs (x), θFBfd (x)

}
. Because ∆R(x) is

decreasing and both θFBfs (x) and θFBfd (x) are increasing, EFBT−1(x) = Finish if x ≥ xFBf

and EFBT−1(x) 6= Finish if x < xFBf by (A1-4).

We next show by induction on t that if EFBT−1(x) = Finish, then EFBt (x + k) =

Finish ∀k ≥ 0 and t ≤ T − 1. Fix x ≥ xFBf . When t = T − 1, EFBT−1(x+ k) = Finish

∀k ≥ 0. For any t < T − 1, suppose that EFBt+1(x + k) = Finish ∀k ≥ 0. Applying

the conditions Vt+1(x) = R(x) and Vt+1(x + 1) = R(x + 1) to (1.1) shows that

Vt(x) = VT−1(x) = R(x), i.e., EFBt (x) = Finish, completing the induction step.

We next show the converse: if EFBt (x) = Finish for some t, then EFBT−1(x) =

Finish. By Lemma A1-1 and (1.1), we have R(x) = Vt(x) ≥ VT−1(x) ≥ R(x);

therefore, VT−1(x) = R(x).�

Lemma A1-3. If xFBθ < xFBf , EFBt (x) = Duo for all xFBθ ≤ x < xFBf and all t.

Proof. The proof uses Lemma A1-1 in the e-companion. Because xFBf − 1 ≥ xFBθ ,

θFBsd ≤ θFBfd (xFBf − 1) ≤ θFBfs (xFBf − 1) by (A1-3). Therefore for any x ≤ xFBf ,

∆R(x) ≥ ∆R(xFBf − 1) ≥ min{θFBfd (xFBf − 1), θFBfs (xFBf − 1)} ≥ θFBsd given that R(x)
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is nondecreasing concave in x and by (A1-4). As a result, EFBT−1(x) = Duo for all

x < xFBf by (1.2) and (A1-1).

Fix x, xFBθ ≤ x ≤ xFBf . Suppose that EFBt+1(x) = Duo, i.e., Vt+1(x) = −2cd +

δEd [Vt+2(x+ ξ)]. By (1.1), Vt+1(x+1) ≥ R(x+1) and by Lemma A1-1, Vt+1(x+1) ≥

Vt+2(x + 1). Hence, Vt+1(x + 1) ≥ (1 − δ)R(x + 1) + δVt+2(x + 1), and ∆Vt+1(x) ≥

(1 − δ)R(x + 1) + δVt+2(x + 1) + 2cd − δEd [Vt+2(x+ ξ)] = (1 − δ)R(x + 1) + δ(1 −

pd)∆Vt+2(x) + 2cd. Because EFBt+1(x) = Duo, ∆Vt+2(x) ≥ θFBsd by (1.2) and (A1-1).

Similarly, because EFBT−1(x) = Duo, ∆VT (x) = ∆R(x) ≥ θFBsd . Combining these results

yields the following lower bound: ∆Vt+1(x) ≥ (1− δ)R(x+ 1) + δ(1− pd)θFBsd + 2cd ≥

(1 − δ)R(x) + (1 − δpd)θ
FB
sd + 2cd. Finally, because x ≥ xFBθ , θFBfd (x) ≥ θFBsd by

(A1-3), i.e., (1 − δ)R(x) + 2cd ≥ δpdθ
FB
sd . As a result, ∆Vt+1(x) ≥ θFBsd . By (1.2),

EFBt (x) = Duo.�

Lemma A1-4. If EFBt+1(x+ 1) = EFBt+1(x) = Solo, then EFBt (x) = Solo.

Proof. Because EFBt+1(x) = EFBt+1(x + 1) = Solo, ∆Vt+2(x) ≤ θFBsd and ∆Vt+2(x + 1) ≤

θFBsd by (1.2) and (A1-1). Moreover, ∆Vt+1(x) = −cvs + δEs [Vt+2(x+ 1 + ξ)] + cvs −

δEs [Vt+2(x+ ξ)] = δps∆Vt+2(x + 1) + δ(1 − ps)∆Vt+2(x). As a result, ∆Vt+1(x) ≤

δpsθ
FB
sd + δ(1− ps)θFBsd ≤ θFBsd , and EFBt (x) = Solo by (1.2) and (A1-1).�

Lemma A1-5. If EFBt+1(x+ 1) = Finish and EFBt+1(x) = Solo, then EFBt (x) = Solo.

Proof. The proof uses Lemma A1-1 in the e-companion and Lemma A1-2 in this

appendix. When EFBt+1(x+1) = Finish, Vt+1(x+1) = Vt+2(x+1) = R(x+1) by Lemma

A1-2. By Lemma A1-1, Vt+1(x) ≥ Vt+2(x). Moreover, because EFBt+1(x) = Solo,

∆Vt+2(x) ≤ θFBsd by (1.2) and (A1-1). Hence, ∆Vt+1(x) = R(x + 1) − Vt+1(x) ≤

R(x+ 1)− Vt+2(x) = ∆Vt+2(x) ≤ θFBsd , and EFBt (x) = Solo by (1.2).�
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Lemma A1-6. Fix t̂, t̃ and x̂, with t̂ < t̃ < T − 1. Suppose that EFBt (x) = Duo for

all t ≥ t̂, x̂ < x < xFBf , EFBt (x̂) = Solo for all t̂ ≤ t ≤ t̃ and EFBt (x̂) = Duo for all

t > t̃. Then, for all t ≥ t̂ and all x ≥ x̂, Vt(x) has increasing differences in (x, t),

i.e., ∆Vt(x) ≤ ∆Vt+1(x).

Proof. The proof uses Lemmas A1-1 and A1-2 in Appendix 4.1.1. Fix (x, t) such that

t ≥ t̂ and x > x̂. By Lemma A1-2, EFBt (x) = Finish for all x ≥ xFBf . Because

EFBt (x) = Duo for all t ≥ t̂, x̂ < x < xFBf , we thus need to consider three cases: (i)

EFBt (x + 1) = EFBt (x) = Finish, (ii) EFBt (x + 1) = Finish and EFBt (x) = Duo, and

(iii) EFBt (x+ 1) = EFBt (x) = Duo. We prove the results by induction on t. Consider

first period T − 1.

(i)-(ii) ∆VT−1(x) = R(x+ 1)− VT−1(x) = VT (x+ 1)− VT−1(x) ≤ ∆VT (x) by Lemmas

A1-1 and A1-2.

(iii) By concavity ofR(x), ∆VT−1(x) = −2cd+δEd [R(x+ 1 + ξ)]+2cd−δEd [R(x+ ξ)] =

δpd∆R(x + 1) + δ(1 − pd)∆R(x) ≤ δpd∆R(x) + δ(1 − pd)∆R(x) = δ∆R(x) ≤

∆VT (x).

Inductively applying the same argument as in period T − 1, shows that ∆Vt(x) ≤

∆Vt+1(x), completing the induction step.

Consider next (x, t) such that x = x̂ and t̃ ≥ t ≥ t̂. To initialize the proof, we

first consider time t̃. Using (1) we obtain: ∆Vt̃(x̂) ≤ Vt̃(x̂ + 1) − Vt̃(x̂ | Duo) =

δpd∆Vt̃+1(x̂+ 1) + δ(1− pd)Vt̃+1(x̂) ≤ ∆Vt̃+1(x̂).

Consider next any time t, t̂ ≤ t < t̃. Because EFBt (x̂) = EFBt+1(x̂) = Solo and

EFBt (x̂ + 1) = EFBt+1(x̂ + 1) = Duo, ∆Vt(x̂) = cvs − 2cd + δpd∆Vt+1(x̂ + 1) + δ(1 −

ps)∆Vt+1(x̂) ≤ cvs − 2cd + δpd∆Vt+2(x̂+ 1) + δ(1− ps)∆Vt+2(x̂) = ∆Vt+1(x̂), in which

the inequality follows by the induction hypothesis. This completes the induction
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step.�

Lemma A1-7. For all xFBϕ ≤ x < min{xFBθ , xFBf }, there exists a time threshold τ(x),

nonincreasing in x, such that EFBt (x) = Duo for all T > t > τ(x) and EFBt (x) = Solo

for all x ≤ t ≤ τ(x).

Proof. The proof uses Lemmas A1-2, A1-3, A1-4, and A1-5 and Lemma A1-6 in

this appendix. Suppose first that xFBθ > xFBf − 1. When x = xFBf − 1, we have

EFBT−1(x) = Solo for all xFBϕ ≤ x < xFBf by (1.2) and (A1-3); that is, τ(x) = T − 1 for

all xFBϕ ≤ x < xFBf . Then, EFBt (xFBf − 1) = Solo for all t ≤ T − 1 by Lemma A1-5

and EFBt (x) = Solo for all t and all xFBϕ ≤ x < xFBf by Lemma A1-4.

Suppose next that xFBθ ≤ xFBf − 1. Fix x̂, xFBϕ ≤ x̂ < xFBθ , and consider first

t̂ > τ(x̂ + 1). Suppose that EFBt (x̂) = Solo for all t̂ ≤ t ≤ τ(x̂); we will show that

EFB
t̂−1

(x̂) = Solo.

Because t̂ > τ(x̂ + 1) and τ(x) is nonincreasing when x ≥ xFBϕ , t̂ > τ(x) for

all x̂ + 1 ≤ x ≤ xFBθ . By Lemma A1-2, EFBt (x) 6= Finish; therefore, by (1.2) and

(A1-1), EFBt (x) = Duo for all t ≥ t̂ and x̂ < x < xFBθ . Moreover, by Lemma A1-3,

EFBt (x) = Duo for all t and all xFBθ ≤ x < xFBf . Thus, EFBt (x) = Duo for all t ≥ t̂

and x̂ < x < xFBf . Also, by definition of τ(x̂), EFBt (x̂) = Duo for all t > τ(x̂). Hence,

by Lemma A1-6, Vt(x) has increasing differences in (x, t) for all x ≥ x̂ and t ≥ t̂; in

particular, ∆Vt̂(x̂) ≤ ∆Vt̂+1(x̂). Because EFB
t̂

(x̂) = Solo, ∆Vt̂+1(x̂) ≤ θFBsd by (1.2);

therefore, ∆Vt̂(x̂) ≤ θFBsd . This implies that EFB
t̂−1

(x̂) = Solo by (1.2). As a result, for

any xFBϕ ≤ x < xFBθ , EFBt (x) = Solo for all τ(x+ 1) ≤ t ≤ τ(x).

Consider next t̂ ≤ τ(x̂ + 1) − 1. The proof proceeds by induction. Fix x̂ and

suppose that EFBt (x̂ + 1) = Solo for all t ≤ τ(x̂ + 1) and EFBt (x̂ + 1) = Duo for all

t > τ(x̂ + 1). By the previous argument, EFBt (x̂) = Solo for all τ(x̂ + 1) ≤ t ≤ τ(x̂).

Applying Lemma A1-4 yields that EFBt (x̂) = Solo for all t ≤ τ(x̂+ 1)− 1.�
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Lemma A1-8. For any t, xFBd,t , defined in (A1-6), is nondecreasing in t, i.e., xFBd,t ≤

xFBd,t+1.

Proof. The proof uses Lemmas A1-2, A1-3, A1-4, A1-5, and A1-7 in Appendix 4.1.1.

By definition, EFBt (x) 6= Duo for all xFBd,t < x ≤ xFBϕ ; hence, by Lemma A1-2,

EFBt (x) = Solo for all xFBd,t < x ≤ xFBϕ . Suppose for contradiction that xFBd,t > xFBd,t+1

for some t. Then, there must exist some x, xFBd,t ≥ x > xFBd,t+1, such that EFBt (x) = Duo

and EFBt+1(x) = Solo. If either EFBt+1(x+ 1) = Solo or EFBt+1(x+ 1) = Finish, we should

then have had EFBt (x) = Solo by Lemmas A1-4 and A1-5, a contradiction. Hence, we

must have EFBt+1(x+1) = Duo, which can only happen when x+1 = xFBd,t +1 = xFBϕ +1.

Moreover, given that EFBt+1(x) = Solo, x < xFBf by Lemma A1-2 and x < xFBθ by

Lemma A1-3. By Lemma A1-7, we should then have had EFBt (x) = Solo given that

EFBt+1(x) = Solo, a contradiction.�

Proof of Proposition 1.1.

(i) This is shown in Lemma A1-2 in this appendix.

(ii.a) The proof uses Lemmas A1-2, A1-4, A1-5, and A1-7 in this appendix. Given

that ∆R(xFBf −1) ≤ 2cd−cvs
δ(pd−ps)

= θFBsd , EFBT−1(xFBf −1) = Solo by (1.2). By Lemmas A1-2

and A1-5, EFBt (xFBf − 1) = Solo for all t < T . Because τ(x) is nondecreasing when

xFBϕ ≤ x < xFBf by (A1-3), τ(x) ≥ τ(x + 1) = T − 1, i.e., τ(x) = T − 1. Therefore,

EFBT−1(x) = Solo for all xFBϕ ≤ x < xFBf by Lemma A1-7. As a result by Lemma A1-4,

EFBt (x) = Solo for all xFBϕ ≤ x < xFBf and t < T .

(ii.b) The proof uses Lemma A1-8 in this appendix. Let xFBd,t be defined as in

(A1-6). By (ii.a), xFBd,t < xFBϕ . Because xFBd,t is nondecreasing in t by Lemma A1-8,

(1.2) implies that if EFBt (x) = Duo then EFBt+1(x) = Duo; hence, EFBt (x) = Duo for all

t > τ(x) and EFBt (x) 6= Duo, or equivalently EFBt (x) = Solo by (1.2), for all t ≤ τ(x).

We show next that τ(x) is nondecreasing; i.e., for 0 < x ≤ xFBϕ , if EFBt (x) = Duo
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then EFBt (x− 1) = Duo. To do so, we show by induction that ∆Vt(x− 1) ≥ ∆Vt(x)

for all x ≤ xFBd,t , and that EFBt (x) = Duo for all x ≤ xFBd,t . When t = T , Vt(x) is

concave because VT (x) = R(x), which is concave by assumption.

Fix t and suppose that ∆Vt+2(x − 1) ≥ ∆Vt+2(x), ∀0 < x ≤ xFBd,t+2. Because

xFBd,t+1 ≤ xFBd,t+2 by Lemma A1-8, ∆Vt+2(x) ≥ ∆Vt+2(xFBd,t+1) for all x ≤ xFBd,t+1. More-

over, by (A1-6), ∆Vt+2(xFBd,t+1) ≥ θFBsd . As a result, ∆Vt+2(x) ≥ θFBsd for all x ≤ xFBd,t+1,

which, by (1.2), implies that EFBt+1(x) = Duo for all x ≤ xFBd,t+1.

For any x, 0 < x ≤ xFBd,t , suppose that EFBt (x) = Duo. By Lemma A1-8, x ≤ xFBd,t+1

and therefore by the above, EFBt+1(x) = EFBt+1(x − 1) = Duo. We next show that

∆Vt+1(x − 1) ≥ ∆Vt+1(x) in the following three cases: (i) EFBt+1(x + 1) = Solo, (ii)

EFBt+1(x+ 1) = Finish, and (iii) EFBt+1(x+ 1) = Duo.

(i) When EFBt+1(x + 1) = Solo, EFBt+1(x) = EFBt+1(x − 1) = Duo, using the induction

hypothesis, given that x ≤ xFBd,t ≤ xFBd,t+2, Equation (2), and the identity −cvs +

2cd = δ(pd−ps)θFBsd by (A1-1), we obtain: ∆Vt+1(x−1)−∆Vt+1(x) = −2cd+cvs+

δ(2pd−1)∆Vt+2(x)+δ(1−pd)∆Vt+2(x−1)−δps∆Vt+2(x+1) ≥ −2cd+c
v
s+δ(2pd−

1 + 1− pd)∆Vt+2(x)− δps∆Vt+2(x+ 1) ≥ −δ(pd − ps)θFBsd + δ(pd − ps)θFBsd = 0.

(ii) When EFBt+1(x+ 1) = Finish, EFBt+1(x) = EFBt+1(x− 1) = Duo, using the induction

hypothesis, given that x ≤ xFBd,t ≤ xFBd,t+2, Equation (2), the inequality θFBsd >

θFBfd (x + 1) obtained from (A1-3), and given that x ≤ xFBd,t < xFBϕ < xFBθ , we

obtain: ∆Vt+1(x−1)−∆Vt+1(x) = −2cd−(1−δ)R(x+1)+δ(2pd−1)[R(x+1)−

Vt+2(x)]+δ(1−pd)∆Vt+2(x−1) ≥ −2cd−(1−δ)R(x+1)+δpd[R(x+1)−Vt+2(x)] ≥

−δpdθFBsd + δpdθ
FB
sd = 0.

(iii) When EFBt+1(x + 1) = EFBt+1(x) = EFBt+1(x− 1) = Duo, we must have that x + 1 ≤

xFBd,t+2. Suppose, for contradiction, that x + 1 > xFBd,t+2. Because x ≤ xFBd,t ≤

xFBd,t+1 ≤ xFBd,t+2 by Lemma A1-8, we must have that x = xFBd,t+1 and therefore
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x = xFBϕ by definition of xFBd,t+1 given that ∆Vt+2(x + 1) ≥ θFBsd by (2). Since

by assumption ∆R(xFBf − 1) ≤ 2cd−cvs
δ(pd−ps)

, we have EFBT−1(xFBf − 1) = Solo and

therefore τ(xFBϕ ) = T − 1. We then should have that EFBt (x) = Solo, a contra-

diction. Hence, x+1 ≤ xFBd,t+2, and one can apply twice the induction hypothesis

to obtain: ∆Vt+1(x − 1) − ∆Vt+1(x) = δpd [∆Vt+2(x)−∆Vt+2(x+ 1)] + δ(1 −

pd) [∆Vt+2(x− 1)−∆Vt+2(x)] ≥ 0.

As a result, ∆Vt+1(x − 1) ≥ ∆Vt+1(x) for all x ≤ xFBd,t . Therefore if EFBt (x) = Duo,

i.e., ∆Vt+1(x) ≥ θFBsd by (2), then ∆Vt+1(x− 1) ≥ θFBsd , i.e., EFBt (x− 1) = Duo.

(iii.a) This is shown in Lemma A1-3 in this appendix.

(iii.b) This is shown in Lemma A1-7 in this appendix.

(iii.c) The proof proceeds by induction on t. Because ∆R(xFBf − 1) > θFBsd ,

EFBT−1(xFBf − 1) = Duo by (1.2). Because ∆R(x) ≥ ∆R(xFBf − 1) > θFBsd , EFBT−1(x) =

Duo for all 1 ≤ x < xFBf . Hence, ∆VT−1(x) is nonincreasing in x for all 1 ≤ x <

xFBf − 1 because ∆VT−1(x) = δpd∆R(x + 1) + δ(1− pd)∆R(x) ≤ δpd∆R(x) + δ(1−

pd)∆R(x − 1) = ∆VT−1(x − 1). Therefore, if EFBT−2(xFBd,T−2) = Duo, ∆VT−1(x) ≥

∆VT−1(xFBd,T−2) ≥ θFBsd , and thus EFBT−2(x) = Duo for all x < xFBd,T−2.

Fix t < T − 1 and x = xFBd,t . As an induction hypothesis, suppose that EFBτ (ξ) =

Duo for all ξ ≤ xFBd,τ and τ > t, and ∆Vt(ξ) is nonincreasing in ξ for all τ > t and

ξ < xFBd,τ . If EFBt (xFBd,t ) = Duo, then for all x < xFBd,t , ∆Vt(x) ≥ ∆Vt(x
FB
d,t ) ≥ θFBsd and

therefore EFBt (x) = Duo. To complete the induction step, we show that ∆Vt(x) is

nonincreasing in x for all x < xFBd,t . Because ∆Vt+1(ξ) is nonincreasing in ξ for all

ξ < xFBd,t+1 and because xFBd,t < xFBd,t+1, we obtain for any x < xFBd,t , ∆Vt(x) = Vt(x+ 1 |

Duo) − Vt(x | Duo) = δpd∆Vt+1(x + 1) + δ(1 − pd)∆Vt+1(x) ≤ δpd∆Vt+1(x) + δ(1 −

pd)∆Vt+1(x − 1) = Vt(x | Duo) − Vt(x − 1 | Duo) = ∆Vt(x − 1), completing the

induction step.�
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4.1.2 RS Contract

Preliminaries

We first define the following thresholds for i ∈ {c, v}:

θRSsid :=
cd

δαi(pd − ps)

θRSfsi(x) :=
cis

δαips
+

(1− δ)R(x)

δps

θRSfdi(x) :=
cd

δαipd
+

(1− δ)R(x)

δpd

The thresholds θRSkl (x) allow for a pairwise comparison of equilibrium outcomes k and

l, for any k ∈ {f, si}, l ∈ {d, si}, k 6= l. Specifically in period T − 1, player i prefers

Solo−i over Duo if and only if ∆R(x) ≤ θRSsid (x); she prefers Finish over Soloi if

and only if ∆R(x) ≤ θRSfsi(x); and she prefers Finish over Duo (in case of multiple

equilibria, as an equilibrium selection rule) if and only if ∆R(x) ≤ θRSfdi(x). We define

xRSd := max
{
x ∈ Z+ | ∆R(x) ≥ max

{
θRSscd, θ

RS
svd

}}
, (A2-1)

xRSf,T−1 := min
{
x ∈ Z+ | ∆R(x) ≤ min

{
θRSfsc(x), θRSfsv(x)

}}
. (A2-2)

We also define xRSf such that xRSf = xRSf,T−1 when xRSd < xRSf,T−1 and xRSf :=

min
{

min
{
x ∈ Z+ | ∆R(x) ≤ θRSfdc(x)

}
, xRSd + 1

}
otherwise. Finally, we define

xRSf = max{xRSf,T−1, x
RS
f }. (A2-3)

84



Proofs

Lemma A2-1. Suppose that, for all t ≥ t̂ and x̂ ≤ x < xRSf , ERSt (x) = Soloi. Then,

V i
t (x) ≥ V i

t+1(x) and V −it (x) ≥ V −it+1(x) for all t ≥ t̂ and x̂ ≤ x < xRSf .

Proof. The proof proceeds by induction. Consider period T − 1. In state x, x̂ ≤

x < xRSf , because ERST−1(x) = Soloi, V i
T−1(x) = V i

T−1(x | Soloi) ≥ V i
T−1(x | Finish) =

V i
T (x). This implies R(x) ≤ −cis/αi+δpsR(x+1)+δ(1−ps)R(x) < δpsR(x+1)+δ(1−

ps)R(x). Multiplying both sides of the inequality by α−i yields V −iT−1(x) = V −iT−1(x |

Soloi) ≥ V −iT−1(x | Finish) = V −iT (x).

Consider now any period t, t̂ ≤ t < T − 1, and suppose that V i
t+1(x) ≥ V i

t+2(x) for

x ≥ x̂. Then, V i
t (x) = V i

t (x | Soloi) = −cis+δEs[V i
t+1(x+ξ)] ≥ −cis+δEs[V i

t+2(x+ξ)] =

V i
t+1(x | Soloi) = V i

t+1(x). Similarly, suppose that V −it+1(x) ≥ V −it+2(x) for x ≥ x̂. Then,

V −it (x) = V −it (x | Soloi) = δEs[V −it+1(x + ξ)] ≥ δEs[V −it+2(x + ξ)] = V −it+1(x | Soloi) =

V −it+1(x), completing the induction step.�

Proof of Proposition 1.2. (i) The proof proceeds by induction. In period T−1,

Finish is an equilibrium in state x if x ≥ xRSf,T−1 (see (A2-2)). When xRSd ≥ xRSf,T−1,

both Duo and Finish are equilibria in period T − 1 and states xRSf,T−1 ≤ x < xRSd . By

our equilibrium selection rule, ERST−1(x) = Finish for all x ≥ xRSf . Therefore by the

definition of xRSf , ERST−1(x) = Finish for all x ≥ xRSf .

Suppose that ERSt+1(x) = Finish for all x ≥ xRSf . Then, for any i ∈ {c, v} and x ≥

xRSf , V i
t (x | E) = V i

T−1(x | E) for any equilibrium E ∈ {Duo, Soloc, Solov, F inish},

completing the induction step.

(ii) The proof proceeds by induction. Given that xRSd < xRSf,T−1, xRSf = xRSf,T−1 and

therefore xRSf = xRSf,T−1 by (A2-3).

By (A2-2), ∆R(xRSf −1) > min
{
θRSfsc(x

RS
f − 1), θRSfsv(xRSf − 1)

}
. Given that R(x) is
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increasing concave, for all x < xRSf , ∆R(x) ≥ ∆R(xRSf −1) > θRSfsi(x
RS
f −1) ≥ θRSfsi(x),

i.e., V i
T−1(x | Soloi) > αiR(x). Therefore, ERST−1(x) 6= Finish for all x < xRSf .

Moreover, V i
T−1(x | Solo−i) > V i

T−1(x | Soloi) > αiR(x) and V i
T−1(x | Duo) >

αiR(x) since ∆R(x) > ∆R(xRSf − 1) > cd/[δmin{αc, αv}pd] + (1 − δ)R(x)/[δpd] =

max{θRSfdc(x), θRSfdv(x)}. Thus, V i
T−1(x) > αiR(x), for all x < xRSf .

Fix t < T − 1 and consider state x < xRSf . Suppose that V i
t+1(x | Soloi) > αiR(x)

and V i
t+1(x | Duo) > αiR(x). Similar to above, V i

t+1(x | Solo−i) > V i
t+1(x | Soloi).

Therefore, V i
t+1(x) > αiR(x). By induction on the above states, V i

t+1(x + 1) >

αiR(x + 1). As a result, V i
t (x | Soloi) = −cis + δpsV

i
t+1(x + 1) + δ(1 − ps)V i

t+1(x) ≥

−cis + δpsα
iR(x + 1) + δ(1 − ps)α

iR(x) = V i
T−1(x | Soloi) > αiR(x). Similarly,

V i
t (x | Duo) ≥ V i

T−1(x | Duo) > αiR(x). This completes the induction step.

(iii) The proof uses Lemma A2-1 in this appendix. We only need to show that

Solov is an equilibrium since in case of multiple equilibria, Solov is selected as the

client always prefers Solov over Soloc. We prove the result by induction. Given that

xRSd < xRSf,T−1 and αc ≤ αv, θRSfsv(x) < θRSscd by (A2-1) and (A2-3). Also, xRSd < xRSf,T−1

implies xRSf = xRSf,T−1 and therefore xRSf = xRSf,T−1 by (A2-3). As a result, ERST−1(x) =

Solov for all xRSd ≤ x < xRSf .

Fix x and suppose that ERSt′ (x) = Solov for all t′ ≥ t ; we show that ERSt (x) =

Solov. By Lemma A2-1 and because ERSt+1(x) = Solov, V v
t (x | Solov) ≥ V v

t+1(x |

Solov) ≥ V v
t+1(x | Finish) = V v

t (x | Finish).

Also, it can be shown that V c
t (x | Solov) ≥ V c

t (x | Duo), i.e., ∆V c
t+1(x) ≤ αcθRSscd.

under the two possible cases of (i) ERSt+1(x + 1) = Solov (using a similar argument to

the proof of Lemma A1-4) and (ii) ERSt+1(x + 1) = Finish (since V c
t+1(x) ≥ αcR(x)

by Lemma A2-1 and αc∆R(x) ≤ αcθRSscd). Because V c
t (x | Solov) ≥ V c

t (x | Duo)

and V v
t (x | Solov) ≥ V v

t (x | Finish), ERSt (x) = Solov for all t ≤ T − 1 and all
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xRSd ≤ x < xRSf .

(iv) The proof proceeds by induction on t. First consider the case in which xRSd <

xRSf,T−1. By part (ii), ERSt (x) 6= Finish for all t < T and x < xRSf = xRSf,T−1. Therefore,

it is enough to show ∆V i
t (x) ≥ θRSsd := αiθRSsid for i ∈ {c, v}, t < T , and x ≤ xRSd,t .

Consider period T − 1. By (A2-1), ERST−1(xRSd ) = Duo since xRSd < xRSf,T−1. There-

fore, ERST−1(x) = Duo for all x ≤ xRSd,T−1 = min{xRSd , xRSf −1} = min{xRSd , xRSf,T−1−1} =

xRSd , because ∆R(x) ≥ ∆R(xRSd ) > θFBsid . Moreover, ∆V i
T−1(x) is nonincreasing in x

for all x ≤ xRSd,T−1 as in the proof of Proposition 1.1 (iii.c). Similar to that proof, it

can be shown that ∆V i
t (x) is nonincreasing in x for all t and x < xRSd,t .

Next, consider the case in which xRSd ≥ xRSf,T−1. By (A2-3), xRSd,T−1 = min{xRSd , xRSf −

1} = xRSf − 1. Similar to the above, one can show that ∆V i
t (x) ≥ θRSsd for t < T − 1

and x ≤ xRSd,t . Hence, Duo is an equilibrium. Potentially, Finish is also an equi-

librium and we then need to show that Duo will be selected by the client. We

show this result by induction on t. Since xRSd ≥ xRSf,T−1, ERST−1(xRSf − 1) = Duo,

i.e., ∆R(xRSf − 1) ≥ θRSfdc(x
RS
f − 1). Given that R(x) is nondecreasing concave,

∆R(x) ≥ ∆R(xRSf − 1) > θRSfdc(x
RS
f − 1) ≥ θRSfdc(x), i.e., V c

T−1(x | Duo) > αcR(x),

and therefore ERST−1(x) 6= Finish for all x < xRSf . Fix t < T − 1 and suppose that

ERSt (ξ) = Duo and that V c
t (ξ | Duo) > αcR(x) for all ξ ≤ xRSd,τ and τ > t. We

obtain V c
t (x | Duo) = −cd + δEd[V c

t+1(x + ξ)] ≥ V i
T−1(x | Duo) > αcR(x), i.e.,

ERSt (x) 6= Finish, completing the induction step.�
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4.1.3 FF Contract

Preliminaries

We first define the following thresholds:

θFFsd :=
cd

δ(pd − ps)
, θFFfsc (x) :=

ccs + (1− δ) [R(x)− b]
δps

, θFFfd (x) :=
(1− δ) [R(x)− b]

δpd
.

(A3-1)

The thresholds θFFkl (x) allow for a pairwise comparison of policies k and l, for any

k ∈ {s, f}, l ∈ {sc, d}, k 6= l. Specifically in period T − 1, the client prefers Solov

over Duo if and only if ∆R(x) ≤ θFFsd ; she prefers Finish over Soloc if and only if

∆R(x) ≤ θFFfsc (x); and she prefers Finish over Duo (in case of multiple equilibria,

as an equilibrium selection rule) if and only if ∆R(x) ≤ θFFfd (x). It turns out that

θFFfd (x) ≥ θFFsd implies that θFFfsc (x) ≥ θFFfd (x). Accordingly, let us define

xFFθ := min
{
x ∈ Z+ | θFFfd (x) ≥ θFFsd

}
, (A3-2)

such that θFFfsc (x) ≥ θFFfd (x) ≥ θFFsd for all x ≥ xFFθ , given that R(x) is increasing.

We also define

xFFf := min
{
x ∈ Z+ | ∆R(x) ≤ θFFfsc (x)

}
. (A3-3)

Proofs

Lemma A3-1. For all t and all x, V v
t (x | Solov) < V v

t (x | Finish), i.e., EFFt (x) 6=

Solov.

Proof. Because V v
t (x) ≤ maxt maxx g

v
t (x) = b for all t, V v

t (x | Solov) = −cvs +

δEd
[
V v
t+1(x+ ξ)

]
≤ −cvs + δb < b = V v

t (x | Finish); hence, EFFt (x) 6= Solov for all t
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and all x.�

Lemma A3-2. For any t ∈ T , EFFt (x) = Finish ∀x ≥ xFFf .

Proof. The proof proceeds by induction on t and uses Lemma A3-1 in this appendix.

Fix period T − 1 and state x ≥ xFFf . By the definition of xFFf , V c
T−1(x | Soloc) <

V c
T−1(x | Finish) and by Lemma A3-1, V v

t (x | Solov) < V v
t (x | Finish). Therefore,

Finish is an equilibrium outcome. Also, Duo is not an equilibrium outcome, because

V v
T−1(x | Duo) = −cd + δpdb + δ(1 − pd)b < δpsb + δ(1 − ps)b = V v

t (x | Soloc). As

result, EFFT−1(x) = Finish for x ≥ xFFf .

Fix t < T − 1. Suppose that EFFt+1(x) = Finish for ∀x ≥ xFFf . Then for any

i ∈ {c, v} and x ≥ xFFf , V i
t (x | E) = V i

T−1(x | E) for E ∈ {Duo, Soloc, Solov, F inish}.

As a result, EFFt (x) = EFFT−1(x) = Finish.�

Lemma A3-3. For all x < xFFf , EFFT−1(x) = Soloc.

Proof. By Lemma A3-1 in this appendix, EFFT−1(x) 6= Solov. Moreover for any x <

xFFf , ∆R(x) ≥ ∆R(xFFf − 1) > θFFfsc (xFFf − 1) ≥ θFFfsc (x), i.e., V c
T−1(x | Soloc) >

V c
T−1(x | Finish). Finally, V v

T−1(x | Duo) < V c
T−1(x | Soloc) since −cd + δb < δb.�

Lemma A3-4. For any x < xFFf , if EFFt+1(x + 1) = EFFt+1(x) = Soloc, then EFFt (x) =

Soloc.

Proof. By Lemma A3-1 in this appendix, EFFt (x) = Soloc if (i) V v
t (x | Soloc) >

V v
t (x | Duo), i.e., ∆V v

t+1(x) < θFFsd , and (ii) V c
t (x | Soloc) > V c

t (x | Finish), i.e.,

−ccs + δEd
[
V c
t+1(x+ ξ)

]
> R(x)− b.

(i) When EFFt+1(x+ 1) = EFFt+1(x) = Soloc, ∆V v
t+2(x+ 1) ≤ θFFsd and ∆V v

t+2(x) ≤ θFFsd .

As a result, ∆V v
t+1(x) < θFFsd similar to the proof of Lemma A1-4.
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(ii) When EFFt+1(x + 1) = EFFt+1(x) = Soloc, V c
t+1(x + 1 | Soloc) ≥ R(x + 1) − b and

V c
t+1(x | Soloc) ≥ R(x)− b. Moreover given that x < xFFf , EFFT−1(x) = Soloc. We

obtain −ccs+δEd
[
V c
t+1(x+ ξ)

]
≥ −ccs+δps [R(x+ 1)− b]+δ(1−ps) [R(x)− b] =

V c
T−1(x | Soloc) > R(x)− b.�

Lemma A3-5. Fix x̂. Suppose that, for all x̂ ≤ x < xFFf , there exists a time period

τ(x) such that EFFt (x) = Soloc for t ≥ τ(x) and EFFt (x) = Duo for t < τ(x). Then

for all x ≥ x̂, V c
t (x) is decreasing in t.

Proof. The proof uses Lemmas A3-2 and A3-3 in Appendix 4.1.3. By Lemma A3-2,

V c
t (x) = V c

t+1(x) = R(x)− b when x ≥ xFFf . Suppose next that x < xFFf . The proof

proceeds by induction on t. In period T −1 and state x < xFFf , V c
T−1(x) > R(x)−b =

V c
T (x) because EFFT−1(x) = Soloc by Lemma A3-3. Fix t and suppose that V c

t (x) >

V c
t+1(x). If t > τ(x), V c

t−1(x) = −ccs+δEs[V c
t (x+ξ)] > −ccs+δEs[V c

t+1(x+ξ)] = V c
t (x).

If t = τ(x), V c
t−1(x) = V c

t−1(x | Duo) ≥ V c
t−1(x | Solov) given that EFFt−1(x) = Duo;

moreover, V c
t−1(x | Solov) > V c

t−1(x | Soloc) because ccs > 0; as a result, V c
t−1(x) >

V c
t−1(x | Soloc) = −ccs + δEs[V c

t (x + ξ)] > −ccs + δEs[V c
t+1(x + ξ)] = V c

t (x). Finally, if

t < τ(x), V c
t−1(x) = −cd+δEd[V c

t (x+ξ)] > −cd+δEd[V c
t+1(x+ξ)] = V c

t (x), completing

the induction step.�

Lemma A3-6. Fix a period t̂ and a state x̂ < xFFf . Suppose that, for all x̂ ≤ x <

xFFf , there exists a time period τ(x) such that EFFt (x) = Soloc for t ≥ τ(x) and

EFFt (x) = Duo for t < τ(x). Then, V c
t̂

(x̂ | Soloc) > V c
t̂

(x̂ | Finish).

Proof. By Lemma A3-5 in this appendix, V c
t̂+1

(x̂+1) > V c
T (x̂+1) and V c

t̂+1
(x̂) > V c

T (x̂).

Hence, V c
t̂

(x̂ | Soloc) = −ccs + δ[psV
c
t̂+1

(x̂ + 1) + (1− ps)V c
t̂+1

(x̂)] > −ccs + δ[psV
c
T (x̂ +
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1) + (1 − ps)V
c
T (x̂)] = V c

T−1(x̂ | Soloc) > R(x̂) − b, in which the last inequality is

because EFFT−1(x̂) 6= Finish when x̂ < xFFf .�

Lemma A3-7. Suppose xFFf < xFFθ and R(xFFf ) ≥ 2b. Then, EFFt (x) = Soloc for all

t and x < xFFf .

Proof. The proof uses Lemmas A3-1, A3-3, A3-4, and A3-6 in this appendix. By

Lemma A3-1, EFFt (x) 6= Solov, hence it suffices to show that there exists an equilib-

rium Soloc. We prove the result by induction on t. Consider first state xFFf − 1. By

Lemma A3-3, EFFT−1(xFFf −1) = Soloc. Fix t < T−1 and suppose that EFFt+1(xFFf −1) =

Soloc, i.e., ∆V v
t+2(xFFf − 1) < θFFsd . Applying the induction hypothesis, we show

that ∆V v
t+1(xFFf − 1) < θFFsd , i.e., V v

t (xFFf − 1 | Duo) < V v
t (xFFf − 1 | Soloc).

Given that xFFf < xFFθ , θFFfd (xFFf ) < θFFsd . We then have: ∆V v
t+1(xFFf − 1) =

b − δpsV v
t+2(xFFf ) − δ(1 − ps)V v

t+2(xFFf − 1) = (1 − δ)b + δ(1 − ps)∆V v
t+2(xFFf − 1) ≤

(1 − δ)(R(xFFf ) − b) + δ(1 − ps)θ
FF
sd = δpdθ

FF
fd (xFFf ) − cd + δ(1 − ps)θ

FF
sd < δ(1 −

ps + pd)θ
FF
sd − cd = δθFFsd + cd − cd < θFFsd , in which the first inequality holds by the

assumption that R(xFFf ) ≥ 2b. Therefore, V v
t (xFFf − 1 | Duo) < V v

t (xFFf − 1 | Soloc).

Also by Lemma A3-6, V c
t (xFFf − 1 | Soloc) > V c

t (xFFf − 1 | Finish). As a result,

EFFt (xFFf − 1) = Soloc.

Given that EFFt (xFFf − 1) = Soloc for all t and EFFT−1(x) = Soloc for all x < xFFf by

Lemma A3-3, EFFt (x) = Soloc for all states x < xFFf − 1 and all period t by Lemma

A3-4.�

Lemma A3-8. Fix state x̂ < xFFf and period t̂. Suppose that there exists a pure-

strategy equilibrium with act(x) = W in every period t̂ ≤ t < T and every state

x̂ ≤ x < xFFf . Then, for all x̂ ≤ x < xFFf and all t ≥ t̂, V v
t (x) is increasing in t.

Proof. The proof uses Lemmas A3-2 and A3-3 in Appendix 4.1.3. We prove the
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result by induction. Consider first state xFFf − 1. By Lemma A3-3, EFFT−1(xFFf −

1) = Soloc. Hence, V v
T−1(xFFf − 1) = δb < b = V v

T (xFFf − 1). Fix t and sup-

pose that V v
t+1(xFFf − 1) < V v

t+2(xFFf − 1). By Lemma A3-2, V v
t (xFFf ) = b for

all t. Hence, similar to the proof of Lemma A1-5, we obtain that V v
t (xFFf − 1) =

max
{
−cd + δpdb+ δ(1− pd)V v

t+1(xFFf − 1), δpsb+ δ(1− ps)V v
t+1(xFFf − 1)

}
< V v

t+1(xFFf −

1), completing the induction step.

Consider next any state x < xFFf − 1 and suppose that the result holds for x+ 1,

i.e., V v
t (x + 1) < V v

t+1(x + 1) for all t. Because EFFT−1(x) = Soloc by Lemma A3-3,

V v
T−1(x) = δb < b = V v

T (x). Fix t and suppose that V v
t+1(x) < V v

t+2(x). Applying

the induction hypothesis and following the same argument as above establish that

V v
t (x) < V v

t+1(x). This completes the induction step.�

Lemma A3-9. Suppose that R(xFFf ) ≥ 2b. Fix period t̂ and state x̂ < xFFf . Suppose

that, for all x̂ ≤ x < xFFf , there exists a time period τ(x) ≤ T − 1, nondecreasing in

x, such that EFFt (x) = Soloc for t ≥ τ(x) and EFFt (x) = Duo for t < τ(x). Then,

∆V c
t̂

(x̂) > ∆V v
t̂

(x̂).

Proof. We prove the result by induction. Consider first state xFFf − 1. In period

T , ∆V c
T (xFFf − 1) = R(xFFf ) − R(xFFf − 1) ≥ 0 = ∆V v

T−1(xFFf − 1). Fix t and

suppose that ∆V c
t+1(xFFf − 1) ≥ ∆V v

t+1(xFFf − 1). Then, for t ≥ τ(xFFf − 1) − 1,

we have ∆V c
t (xFFf − 1) = (1 − δ)[R(xFFf ) − b] + ccs + δ(1 − ps)∆V

c
t+1(xFFf − 1) ≥

(1−δ)b+δ(1−ps)∆V v
t+1(xFFf −1) = ∆V v

t (xFFf −1) using the induction hypothesis and

the fact that R(xFFf ) ≥ 2b. Similarly, for t < τ(xFFf −1)−1, we have ∆V c
t (xFFf −1) =

(1−δ)[R(xFFf )−b]+cd+δ(1−pd)∆V c
t+1(xFFf −1) ≥ (1−δ)b+δ(1−pd)∆V v

t+1(xFFf −1) =

∆V v
t (xFFf − 1).

Consider next any state x < xFFf − 1 and suppose that ∆V c
t (x+ 1) ≥ ∆V v

t (x+ 1)

for all t. In period T , ∆V c
T (x) = ∆R(x) ≥ 0 = ∆V v

T−1(x). Fix t < T and suppose
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that ∆V c
t+1(x) ≥ ∆V v

t+1(x). Given that τ(x) is assumed to be nondecreasing, we

consider the following three cases: (i) EFFt (§) = EFFt (§ +∞) = Soloc, (ii) EFFt (§) =

EFFt (§+∞) = Duo, and (iii) EFFt (§) = Soloc and EFFt (§+∞) = Duo.

(i) ∆V c
t (x) = δps∆V

c
t+1(x + 1) + δ(1 − ps)∆V

c
t+1(x) ≥ δps∆V

v
t+1(x + 1) + δ(1 −

ps)∆V
v
t+1(x) = ∆V v

t (x).

(ii) ∆V c
t (x) = δpd∆V

c
t+1(x + 1) + δ(1 − pd)∆V

c
t+1(x) ≥ δpd∆V

v
t+1(x + 1) + δ(1 −

pd)∆V
v
t+1(x) = ∆V v

t (x).

(iii) ∆V c
t (x) = −cd+cs+δpd∆V

c
t+1(x+1)+δ(1−ps)∆V c

t+1(x) ≥ −cd+δpd∆V
v
t+1(x+

1) + δ(1− ps)∆V v
t+1(x) = ∆V v

t (x).

Hence, ∆V c
t (x) ≥ ∆V v

t (x), completing the induction step.�

Lemma A3-10. Suppose that xFFf ≥ xFFθ and R(xFFf ) ≥ 2b. There exists a time

threshold τ(xFFf − 1) such that EFFt (xFFf − 1) = Duo for all t < τ(xFFf − 1) and

EFFt (xFFf − 1) = Soloc for all t ≥ τ(xFFf − 1).

Proof. The proof uses Lemmas A3-1, A3-2, A3-3, A3-6, A3-8, and A3-9 in Appendix

4.1.3. Let τ(xFFf − 1) := max{t|∆V v
t (xFFf − 1) ≥ θFFsd }.

We first show by induction that EFFt (xFFf − 1) = Soloc for all t ≥ τ(xFFf − 1). In

period T−1, ET−1(xFFf −1) = Soloc by Lemma A3-3. Fix t ≥ τ(xFFf −1) and suppose

that Et+1(xFFf − 1) = Soloc. By Lemma A3-6, V c
t (xFFf − 1 | Soloc) > V c

t (xFFf − 1 |

Finish). Moreover, V v
t (xFFf − 1 | Solov) < V v

t (xFFf − 1 | Finish) by Lemma A3-1.

Furthermore, V v
t (xFFf − 1 | Soloc) > V v

t (xFFf − 1 | Duo) when t ≥ τ(xFFf − 1) by

(A3-1). Hence, EFFt (xFFf − 1) = Soloc.

We next show by induction that EFFt (xFFf − 1) = Duo for all t < τ(xFFf − 1).

Consider first period τ(xFFf − 1)− 1. By definition, ∆V v
τ (xFFf − 1) ≥ θFFsd . Moreover,
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∆V c
τ (xFFf − 1) ≥ θFFsd because ∆V c

τ (xFFf − 1) ≥ ∆V v
τ (xFFf − 1) by Lemma A3-9.

Hence, V v
τ−1(xFFf − 1 | Soloc) ≤ V v

τ−1(xFFf − 1 | Duo) and V c
τ−1(xFFf − 1 | Solov) ≤

V c
τ−1(xFFf − 1 | Duo). Furthermore, V c

τ−1(xFFf − 1 | Soloc) > V c
τ−1(xFFf − 1 | Finish)

by Lemma A3-6. Hence, EFFτ−1(xFFf − 1) = Duo.

Next, fix t < τ(xFFf −1) and suppose that Et+1(xFFf −1) = Duo. From Lemmas A3-

1 and A3-6, EFFt (xFFf −1) 6= Finish and EFFt (xFFf −1) 6= Solov; hence, act(x
FF
f −1) =

W . Accordingly, using Table 1.2, EFFt (xFFf − 1) = Duo if (i) V v
t (xFFf − 1 | Duo) >

V v
t (xFFf − 1 | Soloc) and (ii) V c

t (xFFf − 1 | Duo) > V c
t (xFFf − 1 | Solov).

(i) Because EFFt+1(xFFf − 1) = Duo, V v
t+1(xFFf − 1 | Duo) ≥ V v

t+1(xFFf − 1 | Soloc),

or equivalently, using Lemma A3-2, b − V v
t+2(xFFf − 1) ≥ θFFsd . By Lemma

A3-8, V v
t+1(xFFf − 1) < V v

t+2(xFFf − 1) since act(x
FF
f − 1) = W . As a result,

b− V v
t+1(xFFf − 1) > θFFsd , i.e., V v

t (xFFf − 1 | Duo) > V v
t (xFFf − 1 | Soloc).

(ii) By Lemma A3-9, ∆V c
t (xFFf −1) > ∆V v

t (xFFf −1) ≥ θFFsd . Therefore, V c
t (xFFf −1 |

Duo) > V c
t (xFFf − 1 | Solov).�

Lemma A3-11. Fix state x̂ and period t̂. Suppose that for all x̂ ≤ x < xFFf ,

EFFt (x) = Soloc for all t ≥ τ(x) and EFFt (x) = Duo for all t̂ ≤ t < τ(x); moreover,

suppose that τ(x) is nondecreasing. Then, ∆V v
t (x) > ∆V v

t+1(x) for all t̂ ≤ t ≤ τ(x).

Proof. The proof uses Lemmas A3-2 and A3-4 in Appendix 4.1.3 and Lemma A3-8 in

this e-companion and proceeds by induction. To initialize the induction, consider state

xFFf − 1 and assume that xFFf − 1 > x̂. By Lemma A3-2, V v
t (xFFf ) = V v

t−1(xFFf ) = b.

Moreover, given that act(x
FF
f − 1) = W in every equilibrium, Lemma A3-8 yields

V v
t−1(xFFf − 1) < V v

t (xFFf − 1). Hence, ∆V v
t−1(xFFf − 1) > ∆V v

t (xFFf − 1).
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Fix x < xFFf − 1. Consider first period τ(x). Because EFFτ(x)(x) = Soloc, V v
τ(x)(x |

Duo) ≤ V v
τ(x)(x | Soloc), i.e., ∆V v

τ(x)+1(x) ≤ θFFsd . On the other hand, because

EFFτ(x)−1(x) = Duo, V v
τ(x)−1(x | Duo) > V v

τ(x)−1(x | Soloc), i.e., ∆V v
τ(x)(x) > θFFsd .

Hence, ∆V v
τ(x)(x) > ∆V v

τ(x)+1(x).

Consider any particular period t < τ(x) and suppose that ∆V v
t+1(x + 1) >

∆V v
t+2(x+ 1). Because t < τ(x) ≤ τ(x+ 1), EFFt (x) = EFFt (x+ 1) = Duo. Moreover,

EFFt+1(x + 1) 6= Soloc, for otherwise we would have had EFFt+1(x) = Soloc given that

τ(x) ≤ τ(x+ 1) and therefore EFFt (x) = Soloc by Lemma A3-4, a contradiction. Ap-

plying the induction hypothesis, we obtain: ∆V v
t (x) = Vt(x+1 | Duo)−Vt(x | Duo) =

δpd∆V
v
t+1(x+1)+δ(1−pd)∆V v

t+1(x) > δpd∆V
v
t+2(x+1)+δ(1−pd)∆V v

t+2(x) = V v
t+1(x+

1 | Duo)−V v
t+1(x | Duo). Given that EFFt+1(x+1) = Duo and that either EFFt+1(x) = Duo

or EFFt+1(x) = Soloc, V v
t+1(x) ≥ V v

t+1(x | Duo) and V v
t+1(x + 1) = V v

t+1(x + 1 | Duo).

Therefore, V v
t+1(x + 1 | Duo) − V v

t+1(x | Duo) ≥ ∆V v
t+1(x), completing the induction

step. �

Lemma A3-12. Suppose that xFFf ≥ xFFθ and R(xFFf ) ≥ 2b. For all x < xFFf , there

exists a time period τ(x), increasing in x, such that EFFt (x) = Soloc for t ≥ τ(x) and

EFFt (x) = Duo for t < τ(x).

Proof. The proof uses Lemmas A3-1, A3-3, A3-4, A3-6, A3-9, A3-10, and A3-11 in

this appendix and proceeds by induction on x. When x = xFFf − 1, the result holds

by Lemma A3-10.

Consider now any state x < xFFf − 1 and suppose that the result holds for state

x+ 1. Because EFFT−1(x) = Soloc by Lemma A3-3 and because EFFt (x+ 1) = Soloc for

all t ≥ τ(x + 1), we obtain that EFFt (x) = Soloc for all t ≥ τ(x + 1) − 1 by Lemma

A3-4.

Let τ(x) := max{t|∆V v
t (x) ≥ θFFsd }. Because EFFt (x) = Soloc for all t ≥ τ(x +
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1) − 1, we have τ(x) ≥ τ(x + 1) − 1. Consider period τ(x) − 1. By definition,

∆V v
τ (x) ≥ θFFsd . Moreover, ∆V c

τ (x) ≥ θFFsd because ∆V c
τ (x) ≥ ∆V v

τ (x) by Lemma

A3-9. Hence, V v
τ−1(x | Soloc) ≤ V v

τ−1(x | Duo) and V c
τ−1(x | Solov) ≤ V c

τ−1(x | Duo).

Furthermore, V c
τ−1(x | Soloc) > V c

τ−1(x | Finish) by Lemma A3-6. As a result,

EFFτ−1(x) = Duo.

Consider next any period t < τ(x) − 1 and suppose that EFFt+1(x) = Duo, and

therefore, given that t < τ(x+1), that EFFt+1(x+1) = Duo. By Lemma A3-1, EFFt (x) 6=

Solov and by Lemma A3-6, EFFt (x) 6= Finish. Accordingly, if EFFt (x) = Duo, we

must have that (i) V v
t (x | Duo) > V v

t (x | Soloc), and (ii) V c
t (x | Duo) > V c

t (x | Solov).

(i) Because EFFt+1(x) = Duo, V v
t+1(x | Duo) ≥ V v

t+1(x | Soloc), which is equivalent to

∆V v
t+2(x) ≥ θFFsd . By Lemma A3-11, ∆V v

t+1(x) > ∆V v
t+2(x). Hence, ∆V v

t+1(x) >

θFFsd .

(ii) Using Lemma A3-9, ∆V c
t+1(x) ≥ ∆V v

t+1(x) > θFFsd . This shows that V c
t (x |

Duo) > V c
t (x | Solov).�

Proof of Proposition 1.3. (i) By Lemma A3-2 in this appendix, EFFt (x) =

Finish ∀x ≥ xFFf and for any t ∈ T . By Lemmas A3-7 and A3-12, EFFt (x) 6= Finish

∀x < xFFf and for any t ∈ T .

(ii) This is shown in Lemma A3-7 in this appendix.

(iii) This is shown in Lemma A3-12 in this appendix.�
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4.1.4 TM Contract

Preliminaries

We first define the following thresholds:

θTMfsc (x) :=
ccs + f + (1− δ)R(x)

δps
, θTMsd :=

cd
δ(pd − ps)

. (A4-1)

The thresholds θTMkl (x) allow for a pairwise comparison of policies k and l, for any

k ∈ {s, f}, l ∈ {sc, d}, k 6= l. Specifically in period T − 1, the client prefers Finish

over Soloc if and only if ∆R(x) ≤ θTMfsc ; she prefers Solov over Duo if and only if

∆R(x) ≤ θTMsd .

We also define

xTMf := min

{
x ∈ Z+ | ∆R(x) ≤ f + (1− δ)R(x)

δps

}
, (A4-2)

xTMsc := max
{
x ∈ Z+ | ∆R(x) ≥ θTMfsc (x)

}
, (A4-3)

xTMsv := min
{
x ∈ Z+ | ∆R(x) ≤ θTMsd

}
. (A4-4)

Proofs

Lemma A4-1. If f = cvs, ETMt (x) = Finish for all x ≥ xTMf and t < T .

Proof. The proof proceeds by induction on t. Because V v
T−1(x | Duo) = f − cd < f =

V v
T−1(x | Soloc), ETMT−1(x) 6= Duo. In addition, V v

T−1(x | Solov) = f−cvs = 0 = V v
T−1(x |

Finish). Also, given that x ≥ xTMf , ∆R(x) ≤ f+(1−δ)R(x)
δps

< θTMfsc (x) and therefore

ETMT−1(x) 6= Soloc. Hence, Finish is always an equilibrium and Solov is also potentially

an equilibrium. In case of multiple equilibria, V c
T−1(x | Solov) ≤ V c

T−1(x | Finish)

because ∆R(x) ≤ f+(1−δ)R(x)
δps

; therefore ETMT−1(x) = Finish for all x ≥ xTMf .
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Fix t < T − 1 and suppose that ETMt+1 (x) = Finish for all x ≥ xTMf . Then, for any

i ∈ {c, v} and x ≥ xTMf , V i
t (x | E) = V i

T−1(x | E) for E ∈ {Duo, Soloc, Solov, F inish}.

As a result, ETMt (x) = ETMT−1(x) = Finish.�

Lemma A4-2. Suppose f ≥ cd. If f = cvs, then ETMt (x) 6= Finish for all t and all

x < xFFf .

Proof. The proof proceeds by induction on t. In period T − 1, V v
T−1(x | Solov) =

f − cvs = 0 = V v
T−1(x | Finish) and V c

T−1(x | Solov) > V c
T−1(x | Finish) for all

x < xTMf by (A4-2). Therefore, ETMT−1(x) 6= Finish for all x < xFFf . Also, V v
T−1(x) ≥ 0

because V v
T−1(x | Solov) = f − cvs = 0, V v

T−1(x | Soloc) = f > 0, and V v
T−1(x | Duo) =

f − cd ≥ 0.

Fix t < T and suppose V c
τ (x | Solov) > V c

τ (x | Finish) for all x < xTMf and

τ > t, and V v
τ (x) ≥ 0 for all x and τ > t. We then have that V c

t (x | Solov) =

−f + δEs[V c
t+1(x+ ξ)] ≥ −f + δEs[V c

T−1(x+ ξ)] > V c
T−1(x | Finish) = V c

t (x | Finish).

Moreover, V v
t (x) ≥ 0 because V v

t (x | Solov) = f − cvs + δEs[V v
t+1(x + ξ)] ≥ 0, V v

t (x |

Soloc) = f+δEs[V v
t+1(x+ξ)] > 0, and V v

t (x | Duo) = f−cd+δEd[V v
t+1(x+ξ)] ≥ 0. As

a result, the vendor either prefers Solov over Finish, or if she is indifferent between

the two, the client prefers Solov over Finish, i.e., ETMt (x) 6= Finish.�

Lemma A4-3. Fix state x̂. Suppose that f = cvs and for all x̂ ≤ x < xTMf , ETMt (x) =

Solov. Then for all x ≥ x̂, V c
t (x) is decreasing in t.

Proof. By Lemma A4-1 in this appendix, V c
t (x) = V c

t+1(x) = R(x) when x ≥ xFFf .

Suppose next that x < xFFf . In period T − 1 and state x < xFFf , V c
T−1(x) > R(x) =

V c
T (x) by (A4-2). Fix t and suppose that V c

t+1(x) > V c
t+2(x). Then, V c

t (x) = −f +

δEs[V c
t+1(x+ξ)] > −f+δEs[V c

t+2(x+ξ)] = V c
t+1(x), completing the induction step.�
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Lemma A4-4. Suppose xTMsv < xTMf and f = cvs. Then, ETMt (xTMf − 1) = Solov for

all t < T .

Proof. The proof uses Lemmas A4-1 and A4-3 in this appendix, and proceeds by

induction on t. Because V v
T−1(xTMf − 1 | Duo) = f − cd < f = V v

T−1(xTMf − 1 | Soloc),

ETMT−1(xTMf − 1) 6= Duo. As in the proof of Lemma A4-2, V v
T−1(xTMf − 1 | Solov) =

V v
T−1(xTMf − 1 | Finish). Because xTMsv < xTMf ,

f+(1−δ)R(xTM
f −1)

δps
< ∆R(xTMf − 1) ≤

θTMsd , i.e., V c
T−1(xTMf − 1 | Solov) > V c

T−1(xTMf − 1 | Finish) and V c
T−1(xTMf − 1 |

Solov) > V c
T−1(xTMf − 1 | Duo). As a result, ETMT−1(xTMf − 1) 6= Finish and Solov is

an equilibrium in period T − 1 and state xTMf − 1. Because V c
T−1(xTMf − 1 | Solov) >

V c
T−1(xTMf − 1 | Soloc), ETMT−1(xTMf − 1) = Solov by our equilibrium selection rule.

Fix t < T and suppose ETMτ (xTMf − 1) = Solov for all τ > t. Applying the

induction hypothesis shows that V v
t (xTMf − 1 | Duo) < V v

t (xTMf − 1 | Soloc) and

V v
t (xTMf − 1 | Solov) = V v

t (xTMf − 1 | Finish). Also, V c
t (xTMf − 1 | Solov) >

V c
t (xTMf − 1 | Duo) using a similar argument to the proof of Lemma A1-5, and

V c
t (xTMf − 1 | Solov) > V c

t (xTMf − 1 | Finish) given that V c
t+1(x) is decreasing in t by

Lemma A4-3. This completes the induction step.�

Lemma A4-5. If f = cvs, ETMt (x) = Solov for all xTMsv ≤ x < xTMf and t < T .

Proof. The proof uses Lemma A4-4 in this appendix and proceeds by induction on t.

By Lemma A4-4, ETMt (xTMf − 1) = Solov for all t < T . Using a similar argument to

the proof of Lemma A4-4, we obtain that ETMT−1(x) = Solov for all xTMsv ≤ x < xTMf .

Fix t < T and suppose that ETMτ (x) = ETMτ (x+ 1) = Solov for all τ > t. We then

have V v
t+1(x + 1) = V v

t+1(x) = 0. Similar to period T − 1, V v
t (x | Solov) = V v

t (x |

Finish) and V v
t (x | Duo) < V v

t (x | Soloc). We thus need to show that V c
t (x | Solov) >

V c
t (x | Duo), i.e., ∆V c

t+1(x + 1) < θTMsd , and V c
t (x | Solov) > V c

t (x | Finish). By the
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induction hypothesis, ∆V c
t+2(x) < θTMsd and ∆V c

t+2(x+1) < θTMsd . Thus with the same

argument as in Lemma A1-4, we find that ∆V c
t+1(x + 1) < θTMsd . Moreover, we have

V c
t+1(x | Solov) > V c

t+1(x | Finish) and V c
t+1(x + 1 | Solov) > V c

t+1(x + 1 | Finish),

which imply V c
t (x | Solov) = −f + δEs[V c

t (x + ξ)] > −f + δEs[R(x + ξ)] = V c
T−1(x |

Solov) > V c
T−1(x | Finish) = V c

t (x | Finish). This completes the induction step.�

Lemma A4-6. Suppose f ≥ cd. If f > cvs, then V v
t (x | Solov) > V v

t (x | Finish) = 0

for all t and all x.

Proof. Similar to the proof of Lemma A4-2 in this appendix with strict inequalities.

�

Lemma A4-7. Suppose that f > cvs. Then, ETMt (x) = Solov for all t and all x ≥

xTMsv .

Proof. The proof uses Lemma A4-6 in this appendix is similar to the proof of Lemma

A4-5 with strict inequalities.�

Proof of Proposition 1.4. (i.a) By Lemma A4-1 in this appendix, ETMt (x) =

Finish for all x ≥ xTMf , and by Lemma A4-2 in the e-companion, ETMt (x) 6= Finish

for all x < xTMf .

(i.b) This is shown in Lemma A4-5 in this appendix.

(ii.a) This is shown in Lemma A4-7 in this appendix.

(ii.b) This is shown in Lemma A4-6 in this appendix.

(iii) The proof uses Lemmas A4-2 and A4-6 in the e-companion and proceeds by

induction. In period T − 1, V c
T−1(x | Duo) > V c

T−1(x | Solov), i.e., ∆R(x) > θTMsd

for all x < min{xTMsv , xTMsc } by (A4-4) and therefore ETMT−1(x) 6= Solov. Also by

Lemmas A4-2 and A4-6, ETMT−1(x) 6= Finish for all x < min{xTMsv , xTMsc }. In addition,
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V c
T−1(x | Soloc) > V c

T−1(x | Finish) for all x < min{xTMsv , xTMsc } by (A4-3). Finally,

V v
T−1(x | Soloc) = f > f − cd = V v

T−1(x | Duo). As a result, ETMT−1(x) = Soloc for all

x < min{xTMsv , xTMsc }. Moreover, V c
T−1(x) is concave for all x < xTMsv , because R(x) is

concave.

Fix t < T and suppose ETMτ (x) = Soloc and V c
τ (x) is concave for all x ≤ xTMsc,τ and

τ > t. Fix x < xTMsc . Using the concavity of V c
t+1(x) and the fact that ETMt (xTMsc,t ) =

Soloc, ∆V c
t+1(x) ≥ ∆V c

t+1(xTMsc,t ) ≥ θFFsd . This implies that V c
t (x | Duo) > V c

t (x |

Solov). In addition, V v
t (x | Soloc) = f + δEs[V c

t+1(x + ξ)] = f +
∑t−1

s=1 δ
s−tf > f −

cd +
∑t−1

s=1 δ
s−tf = V v

t (x | Duo). Also by Lemmas A4-2 and A4-6, ETMt (x) 6= Finish

for all x < min{xTMsv , xTMsc }. Finally, by the induction hypothesis, V c
t (x | Soloc) =

f − ccs + δEs[V c
t+1(x + ξ)] ≥ f − ccs + δEs[R(x + ξ)] = V c

T−1(x | Soloc) > V c
T−1(x |

Finish) = V c
t (x | Finish). Therefore, ETMt (x) = Soloc. In addition, V c

t (x) is concave

in x for all x ≤ xTMsc,t because V c
t+1(x) is concave for all x ≤ xTMsc,t+1. This completes

the induction step.�
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4.2 Appendix B : Proofs for Chapter 2

Lemma B-1. Conditions (2.6) and (2.7) hold true for St = {1, 2, . . . , kNLt } for all

t ∈ T and V NL
t,i are increasing in i ∈ N .

Proof. When t = 1, V NL
t−1,i = 0 for all i ∈ N and therefore conditions (2.6) and

(2.7) hold true for any S1 with |S1| = kNL1 . Without loss of generality, we consider

S1 = {1, 2, . . . , kNL1 }. Accordingly, V NL
1,i = −c(kNL1 ) + δp(kNL1 )R/n − δg(kNL1 )/n for

i ≤ kNL1 and V NL
1,i = δp(kNL1 )R/n− δg(kNL1 )/n for i > kNL1 by (2.3). Therefore,

V NL
1,1 = V NL

1,2 = . . . = V NL
1,kNL

1
< V NL

1,kNL
1 +1 = V NL

1,kNL
1 +2 = . . . = V NL

1,n .

Hence, V NL
1,i is increasing in i. Suppose St−1 = {1, 2, . . . , kNLt−1} and V NL

t−1,i is in-

creasing in i. According to (2.6) and (2.7), the members with smaller payoff in period

t − 1 will join the team in period t. We consider two cases: (a) kNLt ≤ kNLt−1 or (b)

kNLt > kNLt−1.

(a) SNLt = {1, 2, . . . , kNLt } ⊆ SNLt−1.

(b) Suppose SNLt−1 ⊆ SNLt . Since V NL
t−1,i is increasing in i, we should have St−St−1 =

{kNLt−1 + 1, . . . , kNLt }; that is, St = {1, 2, . . . , kNLt }.

Hence, V NL
t,i = −c(kNLt ) + δp(kNLt )R/n − δg(kNLt )/n + δ(1 − p(kNLt ))V NL

t−1,i for

i ≤ kNLt and V NL
t,i = δp(kNLt )R/n − δg(kNLt )/n + δ(1 − p(kNLt ))V NL

t−1,i for i > kNLt .

Given that V NL
t−1,i is increasing in i, we obtain

V NL
t,1 ≤ V NL

t,2 ≤ . . . ≤ V NL
t,kNL

t
< V NL

t,kNL
t +1 ≤ V NL

t,kNL
t +2 ≤ . . . ≤ V NL

t,n .

This completes the induction step.�

Lemma B-2. Suppose St = {1, 2, . . . , kNLt } is an equilibrium that satisfies (2.4) and
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(2.5). Then, kNLt is obtained by (2.8).

Proof. The proof uses Lemma B-1. When St = {1, 2, . . . , kNLt }, the equilibrium

conditions (2.4) and (2.5) can be rewritten as

δ∆p(kNLt − 1)

[
R

n
− V NL

t−1,i

]
≥ c(kNLt ) + δ∆g(kNLt − 1)

1

n
for i ≤ kNLt (B-1)

δ∆p(kNLt )

[
R

n
− V NL

t−1,i

]
≤ c(kNLt + 1) + δ∆g(kNLt )

1

n
for i > kNLt . (B-2)

Taking i = kNLt , we obtain

δ∆p(kNLt − 1)

[
R

n
− V NL

t−1,kNL
t

]
≥ c(kNLt ) + δ∆g(kNLt − 1) 1

n

δ∆p(kNLt )

[
R

n
− V NL

t−1,kNL
t +1

]
≤ c(kNLt + 1) + δ∆g(kNLt ) 1

n
.

By Lemma B-1, V NL
t−1,i is increasing in i. In addition, p(i) is concave, g(i) is convex,

and c(i) is increasing. Therefore, if δ∆p(i − 1)
[
R
n
− V NL

t+1,i

]
≥ c(i) + δ∆g(i − 1) 1

n
for

i = kNLt , it should also be true for all i ≤ kNLt . On the other hand, if δ∆p(i −

1)
[
R
n
− V NL

t+1,i

]
≤ c(i) + δ∆g(i − 1) 1

n
for i = kNLt + 1, it should also be true for all

i > kNLt . Therefore, equilibrium conditions (B-1) and (B-2) imply

δ∆p(i− 1)

[
R

n
− V NL

t+1,i

]
≥ c(i) + δ∆g(i− 1)

1

n
for i ≤ kNLt (B-3)

δ∆p(i− 1)

[
R

n
− V NL

t+1,i

]
≤ c(i) + δ∆g(i− 1)

1

n
for i > kNLt . (B-4)

The left-hand sides of (B-3) and (B-4) are decreasing in i and the right-hand sides

are increasing in i. As a result, kNLt is unique in any period t.
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Rewriting (B-3) and (B-4), we obtain

V NL
t+1,i ≤

R

n
− nc(i) + δ∆g(i− 1)

nδ∆p(i− 1)
for i ≤ kNLt (B-5)

V NL
t+1,i ≥

R

n
− nc(i) + δ∆g(i− 1)

nδ∆p(i− 1)
for i > kNLt . (B-6)

Thus using Lemma B-1, we can obtain kNLt by using (2.8).�

Lemma B-3. Suppose that kNLt is obtained by (2.8). Then St = {1, 2, . . . , kNLt } is

an equilibrium that satisfies (2.4) and (2.5).

Proof. The proof uses Lemmas B-1 and proceeds by induction. Because V NL
0,i = 0 for

all i, (2.8) yields, kNL1 = min
{
i | R

n
− nc(i+1)+δ∆g(i)

nδ∆p(i)
≤ 0
}

. This implies

−c(kNL1 ) + δp(kNL1 )
R

n
− g(kNL1 )

n
≥ δp(kNL1 − 1)

R

n
− g(kNL1 − 1)

n
for i ≤ kNL1

−c(kNL1 + 1) + δp(kNL1 + 1)
R

n
− g(kNL1 + 1)

n
≤ δp(kNL1 )

R

n
− g(kNL1 )

n
for i > kNL1 .

consistent with (2.4) and (2.5). We also have that V NL
1,i is increasing in i by Lemma

B-1.

Next, suppose kNLt obtained by (2.8) is an equilibrium team size and V NL
t,i is

increasing in i for all t < t′. Then kNLt′ = min
{
i | V NL

t′−1,i+1 ≥ R
n
− nc(i+1)+δ∆g(i)

nδ∆p(i)

}
implies V NL

t′−1,kNL
t′ +1

≥ R
n
− nc(kNL

t′ +1)+δ∆g(kNL
t′ )

nδ∆p(kNL
t′ )

and V NL
t′−1,i ≤ R

n
− nc(kNL

t′ )+δ∆g(kNL
t′ −1)

nδ∆p(kNL
t′ −1)

for

all i ≤ kNLt′ . Given that V NL
t′−1,i is increasing in i, we have

V NL
t′−1,i ≥

R

n
− nc(kNLt′ + 1) + δ∆g(kNLt′ )

nδ∆p(kNLt′ )
for i > kNLt′

V NL
t′−1,i ≤

R

n
− nc(kNLt′ ) + δ∆g(kNLt′ − 1)

nδ∆p(kNLt′ − 1)
for i ≤ kNLt′ .
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which are consistent with (2.4) and (2.5). This completes the induction step.�

Proof of Lemma 2.1. (i) By (2.12) and (2.13), kNL1 = kIL1 = n if and only if

R ≥ nc(n)+δ∆g(n−1)
δ∆p(n−1)

. We therefore define R = min{R | R ≥ nc(n)+δ∆g(n−1)
δ∆p(n−1)

}, which is

unique given that c(k) and g(k) are convex, and p(k) is concave in k.

We next show that for R > R, kFB1 = n. By (2.11), kFB1 = n if and only if R ≥
∆(n−1)c(n−1)+δ∆g(n−1)

δ∆p(n−1)
. We therefore define R = min{R | R ≥ ∆(n−1)c(n−1)+δ∆g(n−1)

δ∆p(n−1)
}.

Given that (n)c(n) > ∆(n− 1)c(n− 1), R ≥ R. As a result, kFB1 = n for R > R.

(ii) For R < R ≤ R, kFB1 = n. However, kNL1 < n and kIL1 < n. In addition, we

have that R ≥ ∆(n−1)c(n−1)+δ∆g(n−1)
δ∆p(n−1)

≥ ∆g(n−1)
∆p(n−1)

. Therefore by (2.13), kIL1 = n − 1 ≥

kNL1 .

(iii) For R ≤ R, kFB1 < n, kNL1 < n, and kIL1 < n. In addition, since nc(i + 1) ≥

∆ic(i) ≥ 0, we have kIL1 ≥ kFB1 ≥ kNL1 by (2.11), (2.12), and (2.13).�

Proof of Proposition 2.1. (i) When R > R, kFB1 = kIL1 = kNL1 by Lemma 2.1.

Therefore
∑

i V
IL

1,i =
∑

i V
NL

1,i = V FB
1 .

(ii) When R < R ≤ R, kFB1 > kIL1 ≥ kNL1 by Lemma 2.1. Therefore
∑

i V
IL

1,i ≥∑
i V

NL
1,i .

(iii) When R ≤ R, kIL1 ≥ kFB1 ≥ kNL1 by Lemma 2.1. Please see Figure 2.2 (left).

By (2.12) and (2.13), kNL1 and kIL1 are both increasing in R. In addition, V FB
1 (k) and

kFB1 are also increasing in R by (2.1) and (2.11).

We denote by V FB
1 (k,R) the FB payoff to-go when team size is k and project re-

ward is R. By (2.1), (2.3), and (2.9),
∑n

i=1 V
NL

1,i (k,R) =
∑n

i=1 V
IL

1,i (k,R) = V FB
1 (k,R)

for any team size k and reward R. Suppose that R increases to R+m ≤ R. We have

kNL1 (R+m) ≥ kNL1 (R) and kIL1 (R+m) ≥ kIL1 (R). Since kNL1 ≤ kFB1 for R ≤ R, having

kNL1 (R +m) > kNL1 (R) implies V FB
1 (kNL1 (R +m), R +m)− V FB

1 (kNL1 (R), R +m) ≥

0. However since kIL1 ≥ kFB1 for R ≤ R, having kIL1 (R + m) > kIL1 (R) implies
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V FB
1 (kIL1 (R + m), R + m) − V FB

1 (kIL1 (R), R + m) ≤ 0. As a result, there exists a

threshold R̂ above which
∑

i V
NL

1,i = V FB
1 (kNL1 ) ≥ V FB

1 (kIL1 ) =
∑

i V
IL

1,i .�

Lemma B-4. V FB
t , V IL

t,n are increasing in t.

Proof. The proof proceeds by induction. We first show the result for V FB
t . We have

V FB
1 ≥ V FB

0 = 0. Suppose V FB
t−1 ≥ V FB

t−2 . By (2.1),

V FB
t = max

k≤n
−kc(k)− g(k) + δp(k)R + δ(1− p(k))V FB

t−1

≥ max
k≤n
−kc(k)− g(k) + δp(k)R + δ(1− p(k))V FB

t−2 = V FB
t−1 .

Next, we show the result for V IL
t,n . We have V IL

1,n ≥ V IL
0,n = 0. Suppose V IL

t−1,n ≥

V IL
t−2,n. By (2.9),

V IL
t,n = max

k≤n
−1{k = n}c(k)− g(k)/n+ δp(k)R/n+ δ(1− p(k))V IL

t−1,n

≥ max
k≤n
−1{k = n}c(k)− g(k)/n− g(k)/n+ δp(k)R/n+ δ(1− p(k))V IL

t−2,n

= V IL
t−1,n.�

Lemma B-5. V NL
1,i is nonnegative for all i ∈ N .

Proof. Because V NL
0,i = 0 for all i ∈ N , V NL

1,i = −c(kNL1 )− g(kNL1 )/n+ p(kNL1 )R/n for

i ≤ kNL1 and V NL
1,i = −g(kNL1 )/n + p(kNL1 )R/n for i > kNL1 . By (2.4), kNL1 members

join the team if−c(kNL1 )−g(kNL1 )/n+δp(kNL1 )R/n ≥ −g(kNL1 −1)/n+δp(kNL1 −1)R/n.

Similar to (B-3), we have that −c(i)−g(i)/n+δp(i)R/n ≥ −g(i−1)/n+δp(i−1)R/n
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for i ≤ kNL1 . We therefore obtain the following:

−c(kNL1 )− g(kNL1 )/n+ δp(kNL1 )R/n ≥ −g(kNL1 − 1)/n+ δp(kNL1 − 1)R/n

≥ c(kNL1 − 1)− g(kNL1 − 2)/n+ δp(kNL1 − 2)R/n

≥ . . . ≥
kNL
1 −1∑
i=0

c(i)− g(0)/n+ δp(0)R/n ≥ 0.

As a result, V NL
1,i = −c(kNL1 )− g(kNL1 )/n+ δp(kNL1 )R/n ≥ 0 for i ≤ kNL1 and V NL

1,i =

−g(kNL1 )/n+ δp(kNL1 )R/n ≥ 0 for i > kNL1 .�

Proof of Lemma 2.2. (i) We show in Lemma B-4 that V FB
t and V SL

t,1 are

increasing in t. Therefore, kFBt and kILt are non increasing in t (i.e., the team sizes

increase as the project is getting closer to deadline) by (2.2) and (2.10) respectively.

(ii) The proof uses Lemmas B-3 and B-5. We have V NL
1,i ≥ V NL

0,i = 0 by Lemma

B-5 and therefore kNL2 ≤ kNL1 by (2.8). We also have that V NL
1,1 = V NL

1,i for i ≤ kNL1 .

Fix t = t′. Suppose V NL
t−1,i ≥ V NL

t−2,i for all i ≤ kNLt−1 and kNLt ≤ kNLt−1 for all t ≥ t′. By

definition in (2.3), V NL
t′,i = −c(kNLt′ )− g(kNLt′ )/n+ p(kNLt′ )

[
R/n− V NL

t′−1,i

]
+ V NL

t′−1,i for

i ≤ kNLt′ . Therefore, V NL
t′,i ≥ V NL

t′−1,i for i ≤ kNLt′ if and only if −c(kNLt′ )− g(kNLt′ )/n +

p(kNLt′ )
(
R/n− V NL

t′−1,i

)
≥ 0.

Rewriting (B-5) from Lemma B-3, we obtain the following for i ≤ kNLt′

−c(i)− g(i)

n
+ p(i)

[
R

n
− V NL

t′−1,i

]
≥ −g(i− 1)

n
+ p(i− 1)

[
R

n
− V NL

t′−1,i

]
(B-7)

Using (B-7) recursively, for i ≤ kNLt′ we have

−c(kNLt′ )− g(kNLt′ )

n
+ p(kNLt′ )

(
R

n
− V NL

t′−1,i

)
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≥ p(kNLt′ − 1)(
R

n
− V NL

t′−1,i)−
g(kNLt′ − 1)

n

≥ c(kNLt′ − 1)− g(kNLt′ − 2)

n
+ p(kNLt′ − 2)(

R

n
− V NL

t′+1,i)

≥ . . . ≥
kNL
t′ −1∑
i=0

c(i) + p(0)(
R

n
− V NL

t′+1,i)− g(0) ≥ 0,

and therefore, V NL
t′,i ≥ V NL

t′−1,i, which implies kNLt′+1 ≤ kNLt′ by (2.8).�

Proof of Lemma 2.3. (i) By (2.8) and (2.10), kNLt = kILt = n if and only if

V S
t−1,n ≤ R

n
− cn+g

np
for S ∈ {NL, IL}. By Lemma 2.2, kNLt and kILt are non-increasing

in t. Therefore, if kSt = n, then kSt′ = n for all t′ < t, S ∈ {NL, IL}. In addition,

V NL
t,i = V IL

t,n = (1− (1− pn)T−t−1)p−c−g
np

, i ∈ N . We therefore define, t as follows:

t = max{t ∈ Z+ | (1− pn)T−t−1 ≥ 1− pR− cn− g
p− c− g

},

such that kNLt = kILt = n if and only if t ≤ t.

By (2.2), kFBt = n if and only if V FB
t+1 ≤ R − c+g

p
. By Lemma 2.2, kFBt is non-

increasing in t. Therefore, if kFBt = n, then kFBt′ = n for all t′ < t. In addition,

V FB
t = (1− (1− pn)T−t−1)p−c−g

p
. We therefore define, t as follows:

t = min{t ∈ Z+ | (1− pn)T−t−1 ≥ 1− pR− c− g
p− c− g

},

such that kFBt = n if t ≤ t and kFBt = 0 if t > t. Because t ≤ t, kFBt = kNLt = kILt = n

for all t ≤ t.

(ii) For t < t < t, kNLt = 0 and kFBt = n. However by (2.10), kILt = n − 1

if R
n
− cn+g

np
< V IL

t−1,n ≤ R
n
− g

np
and kILt = 0 if V IL

t−1,n > R
n
− g

np
. As a result,

kFBt > kILt ≥ kNLt for t < t < t.
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(iii) For t ≥ t, kFBt = kNLt = 0. However by (2.10), kILt = n − 1 if R
n
− cn+g

np
<

V IL
t−1,n ≤ R

n
− g

np
and kILt = 0 if V IL

t−1,n >
R
n
− g

np
. As a result, kILt ≥ kFBt = kNLt for

t ≥ t. �

Proof of Proposition 2.2.

By Proposition 2.3, kNLt = kILt = n for all t ≤ t and therefore
∑n

i=1 V
IL
t,i =∑n

i=1 V
NL
t,i for all t ≤ t by (2.3) and (2.9). In addition, kNLt = 0 for t > t; therefore∑n

i=1 V
NL
t,i =

∑n
i=1 V

NL
t,i for t > t by (2.3). We fix t = t + 1 and consider two cases:

(a) kILt+1 = 0 and (b) kILt+1 = n− 1.

(a) By Proposition 2.2, kILt+1 = 0 implies kILt = 0 for t > t; therefore
∑n

i=1 V
IL
t,i =∑n

i=1 V
IL
t,i =

∑n
i=1 V

NL
t,i for t > t.

(b) By assumption, −c− g + pR ≥ 0 and therefore we have

n∑
i=1

V IL
t+1,i = (n− 1)(−c− g + pR) + (1− p(n− 1))

n∑
i=1

V IL
t,i

≥
n∑
i=1

V IL
t,i =

n∑
i=1

V NL
t,i =

n∑
i=1

V NL
t+1,i.

Fix t > t and suppose
∑n

i=1 V
IL
t,i ≥

∑n
i=1 V

IL
t−1,i. Then using the same argument as

when t = t+ 1, we obtain
∑n

i=1 V
IL
t−1,i ≥

∑n
i=1 V

NL
t,i .�

Lemma B-6. kFB∞ and kIL∞ are unique.

Proof. We first show the results for the FB solution. By definition, V FB
t = V FB

t−1 =

V FB
∞ and therefore the FB optimal payoff in period t satisfies the following:

V FB
∞ = −kFB∞ c(kFB∞ )− g(kFB∞ ) + δp(kFB∞ )R + δ(1− p(kFB∞ ))V FB

∞

Hence, V FB
∞ =

−kFB∞ c(kFB∞ )− g(kFB∞ ) + δp(kFB∞ )R

1− δ + δp(kFB∞ )
.
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We define V (i) = δp(i)R−G(i)
1−δ+δp(i) , in which G(i) = ic(i) + g(i), and show that it has a

unique optimum. For the sake of exposition, we assume that p(i), g(i), and c(i) are

twice-differentiable. We have

V ′(i) =
(δp′(i)R−G′(i))(1− δ)−G′(i)δp(i) + δG(i)p′(i)

(1− δ + δp(i))2

Let us define f(i) = (δp′(i)R−G′(i))(1− δ)−G′(i)δp(i) + δG(i)p′(i). Let k be a

solution of f(i) = 0. We next show that f(i) is decreasing in i.

f ′(i) = (δp′′(i)R−G′′(i))(1− δ)− δG′′(i)p(i) + δp′′(i)G(i) ≤ 0,

given that p(i) is concave and G(i) is convex. Hence, V (i) is pseudo-concave and

therefore kFB∞ is unique and is obtained by

kFB∞ = min

{
i ∈ Z+

i≤n |
∆[ic(i)h(i)] + ∆[g(i)h(i)]

δ∆[p(i)h(i)]
≥ R

}
, (B-8)

in which h(i) = 1/(1− δ + δp(i)).

The proof for the IL structure follows the same, except that for the IL structure

GIL(i) = g(i) and V IL(i) = V (i)/n. The IL team size is obtained by

kIL∞ = min

{
i ∈ Z+

i≤n |
∆[g(i)h(i)]

δ∆[p(i)h(i)]
≥ R

}
. (B-9)

in which h(i) = 1/(1− δ + δp(i)).�

Proof of Lemma 2.4. The proof uses Lemma B-6. With the similar approach as

in Lemma B-6, we obtain V NL
∞,i = [−c(kNL∞ )−g(kNL∞ )/n+δp(kNL∞ )R/n]/[1−δ+δp(k)]

for i ≤ kNL∞ and V NL
∞,i = [−g(kNL∞ )/n+ δp(kNL∞ )R/n]/[1− δ+ δp(k)] for i > kNL∞ . As a
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result considering G(i) = −nc(i)− g(i), kNL∞ can be obtained by the following when

it converges:

kNL∞ = min

{
i ∈ Z+

i≤n |
nc(i+ 1)h(i+ 1) + ∆[g(i)h(i)]

δ∆[p(i)h(i)]
≥ R

}
, (B-10)

in which h(i) = 1/(1− δ + δp(i)).

(i) The proof follows similar to the proof of Lemma 2.1 part (a) with R∞ =

min{R | R ≥ nc(n)h(n)+δ∆[g(n−1)h(n−1)]
δ∆[p(n−1)h(n−1)]

}.

(ii) The proof follows similar to the proof of Lemma 2.1 part (b) with R∞ =

min{R | R ≥ ∆[(n−1)c(n−1)h(n−1)]+δ∆[g(n−1)h(n−1)]
δ∆[p(n−1)h(n−1)]

}.

(iii) For R ≤ R∞, kFB∞ < n, kNL∞ < n, and kIL∞ < n. Comparing the stationary

team sizes in (B-8), (B-10), and (B-9), one can see that kIL∞ ≥ kFB∞ , because the left

hand side of the inequality in (B-9) is smaller than in (B-8). Similarly, kFB∞ ≥ kNL∞ ,

because the left hand side of the inequalities in (B-8) is smaller than in (B-10).�

Proof of Proposition 2.3. The proof uses Lemma 2.4.

(i) When R > R∞, kFB∞ = kIL∞ = kNL∞ by Lemma 2.4. Therefore
∑

i V
IL
∞,i =∑

i V
NL
∞,i = V FB

∞ .

(ii) When R∞ < R ≤ R∞, kFB∞ > kIL∞ ≥ kNL∞ by Lemma 2.1. Therefore
∑

i V
IL
∞,i ≥∑

i V
NL
∞,i .

(iii)When R ≤ R∞, kIL∞ ≥ kFB∞ ≥ kNL∞ by Lemma 2.4. According to (B-10) and

(B-9), kNL∞ and kIL∞ are increasing in R. Similarly, kFB∞ and V FB
∞ (k) are increasing

in R. By Lemma 2.4, kIL∞ ≥ kFB∞ ≥ kNL∞ . Therefore with the similar approach as in

Proposition 2.1 part (c), one can show that there exists a unique threshold R̂∞ above

which the NL structure generates a higher total surplus than the IL structure.�
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4.3 Appendix C : Proofs for Chapter 3

Lemma C-1. Vt(x,m, n) is decreasing in t.

Proof. The proof proceeds by induction. In period T−1, we have that VT−1(x,m, n) ≥

R(x) = VT (x,m, n). Suppose next that Vt+1(x,m, n) ≥ Vt+2(x,m, n) for all states

(x,m, n). Then,

Vt(x,m, n) = Max{−cs + δ [psVt+1(x+ 1,m, n) + (1− ps)Vt+1(x,m, n)] , R(x),

−2cd + δ[f(m,n)Vt+1(x+ 1,m, n+ 1) + (1− f(m,n))Vt+1(x,m+ 1, n)]}

≥ Max{−cs + δ[psVt+2(x+ 1,m, n) + (1− ps)Vt+2(x,m, n)], R(x),

−2cd + δ[f(m,n)Vt+2(x+ 1,m, n+ 1) + (1− f(m,n))Vt+2(x,m+ 1, n)]}

= Vt+1(x,m, n).

This completes the induction step.�

Lemma C-2. If Et(x,m, n) = Finish, then Et+1(x,m, n) = Finish.

Proof. The proof uses Lemma C-1. Given that Et(x,m, n) = Finish, we have R(x) ≤

Vt+1(x,m, n) ≤ Vt(x,m, n) = R(x) and therefore Vt+1(x,m, n) = R(x).�

Proof of Proposition 3.1. We have E1(x,m, n) = Finish if and only if R(x +

1) − R(x) ≤ min{θfs(x), θfd(x,m, n)}. Given that R(x) is concave and θfs(x) and

θfd(x,m, n) are increasing in x. We have E1(x,m, n) = Finish implies E1(x +

1,m, n) = Finish. Therefore, we should have V2(x + 1,m, n)− V2(x,m, n) = R(x +

1) − R(x) ≤ min{θfs(x), θfd(x,m, n)}. Similarly, V1(x + 1,m, n) − V1(x,m, n) =

R(x+ 1)−R(x) ≤ min{θfs(x), θfd(x,m, n)} that implies E0(x,m, n) 6= Solo.�
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Lemma C-3. Vt(m) is decreasing in m.

Proof. We prove the lemma by induction on t. By definition, we have that f(m) >

f(m + 1). When t = T − 1, VT−1(m) = max {−2cd + δf(m)R,−cs + δpsR} ≥

max {−2cd + δf(m+ 1)R,−cs + δpsR} = VT−1(m + 1). Fix t < T − 1 and sup-

pose that Vt+1(m + 1) ≤ Vt+1(m) for all m. Then, Vt(m + 1 | Solo) = −cs + δpsR +

δ(1− ps)Vt+1(m+ 1) ≤ −cs + δpsR+ δ(1− ps)Vt+1(m) = Vt(m | Solo). We next need

to show that Vt(m+ 1 | Duo) ≤ Vt(m | Duo). We have

f(m)R + (1− f(m))Vt+1(m+ 1) ≥ f(m)R + (1− f(m))Vt+1(m+ 2)

> f(m+ 1)R + (1− f(m+ 1))Vt+1(m+ 2),

in which the second inequality is true by the fact that R ≥ Vt(m) for all t and m.

As a result, Vt(m+1 | Duo) = −2cd+δ [f(m+ 1)R + (1− f(m+ 1))Vt+1(m+ 2)] ≤

−2cd + δ [f(m)R + (1− f(m))Vt+1(m+ 1)] = Vt(m | Duo). This completes the in-

duction step.�

Proof of Proposition 3.2. The proof uses Lemma C-3. We have that VT−1(m) =

Solo for all m ≥ ms and therefore f(m) ≤ 2cd−cs+δpsR
δR

for all m ≥ ms. We show that

Vt(m | Duo) < Vt(m | Solo) for all t and m ≥ ms as follows:

Vt(m | Duo) = −2cd + δf(m)R + δ(1− f(m))Vt+1(m+ 1)

≤ −2cd + δ
2cd − cs + δpsR

δR
[R− Vt+1(m+ 1)] + δVt+1(m+ 1)

< −cs + δpsR + δ(1− ps)Vt+1(m) = Vt(m | Solo),

in which the first inequality holds because R−Vt+1(m+1) ≥ 0 and f(m) ≤ 2cd−cs+δpsR
δR

.
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And, the last inequality holds by Lemma C-3.�

Lemma C-4. For t ≤ ts(m), if Et+1(m) = Et+1(m+ 1) = Solo, then Et(m) = Solo.

Proof. The proof proceeds by induction. We show that when Et+1(m) = Et+1(m+1) =

Solo, Ht(m) ≥ Ht+1(m). We first show the result in state ms − 1. We have that

Ets(ms−1)+1(ms− 1) = Duo and Ets(ms−1)(ms− 1) = Solo which imply Hts(ms−1)(ms−

1) ≥ −2cd + cs − δpsR ≥ Hts(ms−1)+1(ms − 1).

Next we consider any time t < ts(ms − 1). By Proposition 3.2, we have that

Et(ms) = Solo. Suppose by induction that Et+1(ms − 1) = Solo and Ht+1(ms −

1) ≥ Ht+2(ms − 1). We show that Ht(ms − 1) ≥ Ht+1(ms − 1) under two cases (i)

Et+2(ms − 1) = Solo and (ii) Et+2(ms − 1) = Duo.

(i) Suppose Et+2(ms − 1) = Solo. We have

Ht(ms − 1) = δ(f(ms − 1)− ps) [−cs + δpsR]− δf(ms − 1)R

+ δ(1− ps) [Ht+1(ms − 1) + δf(ms − 1)R]

≥ δ(f(ms − 1)− ps) [−cs + δpsR]− δf(ms − 1)R

+ δ(1− ps) [Ht+2(ms − 1) + δf(ms − 1)R] = Ht+1(ms − 1)

(ii) Suppose Et+2(ms−1) = Duo. We have Vt+1(ms−1 | Solo) > Vt+1(ms−1 | Duo)

because Et+1(ms − 1) = Solo. Hence, Ht(ms − 1) ≥ δ(1 − ps)Vt+1(ms − 1 |

Duo) − δ(1 − f(ms − 1))Vt+1(ms) − δf(ms − 1)R = δ(1 − ps)[−2cd + δf(ms −

1)R]− δ(1− f(ms − 1))[−cs + δpsR]− δf(ms − 1)R = Ht+1(ms − 1).

Therefore, Et(ms − 1) = Solo for t < ts(ms − 1).
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Next, we extend the proof for any m and t ≤ ts(m). Similar to state ms − 1, for

any state m and period ts(m) we have that Ets(m)+1(m) = Duo and Ets(m)(m) = Solo

which imply Hts(m)(m) ≥ −2cd + cs − δpsR + 2cd ≥ Hts(m)+1(m) for all m.

Suppose Ht+1(m) ≥ Ht+2(m). We show that Ht(m) ≥ Ht+1(m). We may have

Et+2(m + 1) = Solo or Et+2(m + 1) = Duo. However, in both cases we have that

Vt+2(m + 1 | Solo) ≤ Vt+2(m + 1). Similar to ms − 1, we show the result under two

cases: (i) Et+2(m) = Solo and (ii) Et+2(m) = Duo.

(i) Suppose Et+2(m) = Solo. We have Ht(m) ≥ δ(f(m)− ps)[−cs + δpsR] + δ(1−

ps)[Ht+1(m)+δf(m)R]−δf(m)R ≥ Ht+1(m), in which the last inequality holds

because Vt+2(m+ 1 | Solo) ≤ Vt+2(m+ 1).

(ii) Suppose Et+2(m) = Duo. We have Ht(m) ≥ δ(1 − ps)Vt+1(m | Duo) − δ(1 −

f(m))Vt+1(m + 1) − δf(m)R = δ(1 − ps)Vt+2(m) − δ(1 − f(m))Vt+2(m + 1 |

Solo)−δf(m)R ≥ Ht+1(m), in which the last inequality holds because Vt+2(m+

1 | Solo) ≤ Vt+2(m+ 1).�

Lemma C-5. Suppose m̂ = 0. For m < ms(t + 1), if Et(m + 1) = Duo, then

Et(m) = Duo.

Proof. Similar to (3.6), Et(m) = Duo if and only if Ht(m) ≤ −2cd + cs − δpsR.

We show the results by induction on time and state. We show that if Et(m + 1) =

Et+1(m+ 1) = Et+1(m) = Duo, then Ht(m) ≤ Ht(m+ 1) and therefore Et(m) = Duo.

To initialize the induction, we show that the result holds in period T − 1 and also in

state ms(t) − 1. By definition, VT (m) = 0 for all m and since f(m) is decreasing in

m, we have that HT−1(m) = −δf(m)R ≤ −δf(m + 1)R = HT−1(m + 1). In state
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ms(t)− 1, by definition, we have that Et(ms(t)− 1) = Duo and Et(ms(t)) = Solo and

therefore Ht(ms(t)− 1) ≤ −2cd + cs − δpsR ≤ Ht(ms(t)) for all t.

Next, suppose Ht(m+ 1) ≤ Ht(m+ 2). To complete the induction proof, we show

the result under two possible cases: (i) Et+1(m+2) = Duo and (ii) Et+1(m+2) = Solo.

(i) We have that Et+1(m) = Et+1(m+ 1) = Et+1(m+ 2) = Duo and therefore

Ht(m) = δ(1− f(m))Ht+1(m+ 1) + δ(1− ps) [−2cd + δf(m)R]

− δ(1− f(m)) [−2cd]− δf(m)R

≤ δ(1− f(m)) (Ht+1(m+ 2) + δf(m+ 2)R) + 2cdδps − δ2f(m+ 2)R

+ δf(m) [δR(1− ps)− 2cd + δf(m+ 2)R−R]

Because f(m) is decreasing in m and that Ht+1(m + 2) + δf(m + 2)R = δ(1−

ps)Vt+1(m)− δ(1− f(m))Vt+1(m+ 1) ≥ 0, we have δ(1− f(m))[Ht+1(m+ 2) +

δf(m+ 2)R] ≤ δ(1− f(m+ 1))[Ht+1(m+ 2) + δf(m+ 2)R]. In addition, since

m̂ = 0, δR(1 − ps) − 2cd + δf(m + 2)R − R ≤ 0 and therefore δf(m)[δR(1 −

ps)− 2cd + δf(m+ 2)R−R] < f(m+ 1)[δR(1− ps)− 2cd + δf(m+ 2)R−R].

As a result, Ht(m) ≤ Ht(m+ 1).

(ii) Suppose Et+1(m+ 2) = Solo. Similar to (i), we obtain

Ht(m) ≤ δ(1− ps) (−2cd + δf(m)R + δ(1− f(m))Vt+2(m+ 1))

− δ(1− f(m)) (−cs + δpsR + δ(1− ps)Vt+2(m+ 1))− δf(m)R

≤ δ(1− ps)(−2cd) + δf(m+ 1) [δR− cs −R] + δcs − δ2psR = Ht(m+ 1),
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in which the first inequality holds because Vt+1(m + 1 | Duo) > Vt+1(m + 1 |

Solo) ≥ 0 and the second inequality holds because that f(m) is decreasing in

m and δR− cs −R < 0.�

Proof of Proposition 3.3. The proof uses Lemmas C-4 and C-5.

(i) We show in Lemma C-4 that Et+1(m) = Et+1(m + 1) = Solo implies Et(m) =

Solo for t < ts(m). In addition, we show in Lemma C-5 that Et(m) = Duo for

m ≤ ms(t). These two results imply that ts(m) is increasing in m and ms(t) is

increasing in t. We next show that for m > md, ms(t) is strictly increasing in

t. Suppose Et+1(m + 1) = Solo and Et+1(m) = Duo. Then by (3.10), Ht(m) =

δ(1−f(m))[−2cd+δf(m)R]−δ(1−f(m))[−cs+δpsR]−δf(m)R ≥ −2cd+cs−δpsR.

In particular, rewriting the inequality in (3.10), we obtain δ(1−ps)[−2cd+δf(m)R]−

δ(1− f(m))[−cs + δpsR]− δf(m)R ≥ 2cd + cs − δpsR for all m > md.

(ii) By definition of ts(m), we have that Et(md+1) = Duo for all t > ts(md+1). In

addition by Lemma C-4, Et(md+1) = Solo for all t ≤ ts(md+1). Therefore by Lemma

C-5, Et(m) = Duo for m ≤ md and t > ts(md + 1). We next show Et(m) = Duo for

m ≤ md and t ≤ ts(md + 1).

We first show that when Et+1(m) = Et+1(m + 1) = Duo, then Et(m) = Duo for

m ≤ md. Since Et+1(m + 1) = Duo, we have that Vt+1(m + 1) > Vt+1(m + 1 | Solo).

Hence by (3.10), Ht(m) ≤ δ(1−ps)[−2cd+δf(m)R+δ(1−f(m))Vt+2(m+1)]−δ(1−

f(m))[−cs + δpsR + δ(1− ps)Vt+2(m+ 1)]− δf(m)R ≤ −2cd + cs − δpsR.

We next consider Ets(md+1)(md) = Duo and Ets(md+1)(md + 1) = Solo. By (3.10),

we obtain Hts(md+1)−1(md) = δ(1 − f(md))[−2cd + δf(md)R] − δ(1 − f(md))[−cs +

δpsR]− δf(md)R ≤ −2cd + cs − δpsR.

By Lemma C-4, Et(md + 1) = Solo for all t ≤ ts(md). Therefore similar to
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Hts(md+1)−1(md), one can show that Ht(md) = Hts(md+1)(md) ≤ −2cd + cs − δpsR for

all t < ts(md + 1). As a result, Et(md) = Duo for all t < ts(md + 1). As a result,

Et(m) = Duo for all m ≤ md and t < T .�
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