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Abstract—Variation in performance and power across man-
ufactured parts and their operating conditions is an accepted
reality in aggressive CMOS processes. This paper considers
challenges and opportunities in identifying this variation and
methods to combat or even use these variations for improved
computing systems. We introduce the notion of instruction-level
vulnerability (ILV) and concurrent instruction reuse (CIR) to
expose variation and its effects to the software stack for use in
architectural and runtime optimizations. Going further up on the
hardware-software stack, we also introduce the notion of task-
level vulnerability (TLV) as metadata to characterize dynamic
variations. In fact, TLV is a vertical abstraction that reflects
manifestation of circuit-level hardware variability in specific
software context for parallel execution model.

Keywords—Variability; timing errors; error recovery; SIMD;
processor clusters; OpenMP

I. INTRODUCTION

Although scaling of physical dimensions in semiconductor
circuits opens the way to billion-transistor dies, it also comes
with the side effects of ever-increasing parameter variations
[2]. Performance and power uncertainty caused by variability
in the manufactured parts is a major design challenge in
nanoscale CMOS technologies [1], [20]. Variations arise from
different physical sources: 1) static inherent process parame-
ter variations in channel length and threshold voltage varia-
tions due to random dopant fluctuations and sub-wavelength
lithography; 2) dynamic environmental variations in ambient
conditions such as temperature fluctuations and supply voltage
droops; and 3) device aging mechanisms induced by negative
bias temperature instability (NBTI), positive bias temperature
instability, electromigration, time dependent dielectric break-
down, gate oxide integrity, thermal cycling, and hot carrier
injection. Static process variations manifest themselves as die-
to-die (D2D) and within-die (WID) variations. D2D variations
affect all computing cores on a die equally, whereas WID
variations induce different characteristics for each computing
core (i.e., differ core-to-core characteristics). Other variations
that impact computing cores are dynamic in nature and depend
on the environment in which a core is used. Examples of
these types of variations include dynamic voltage droop, on-
die hot spots, and aging-induced performance degradation. The
variations are expected to be worse in future technologies [3].

Such parameter variations in device geometries in conjunc-
tion with undesirable fluctuations in operating condition might
prevent circuit from meeting timing and power constraints.
The most immediate manifestations of variability are in path
delay and power variations; for instance 13× variation in

the sleep power across ten instances of ARM Cortex M3
core and over a temperature range of 22–60◦C has been
observed [5]. Path delay variations cause violation of timing
specification resulting in circuit-level timing errors that can
result in a malfunction within the computing core. Hence,
IC designers commonly use conservative guardbands for the
operating frequency or voltage to ensure error-free operation
for the worst-case variations. These guardbands have been
steadily increasing, leading to a loss of operational efficiency
and increased costs due to overdesign [4]. An alternative
to overdesign is to make a design resilient to errors and
variations. Various resilient techniques have been proposed to
mitigate the variation-induced timing errors, including adaptive
management of guardbanding through ‘predict-and-prevent-
error’ mechanisms [47], [41], [38], [39], [8], [40], [9], [10],
‘detect-then-correct-error’ mechanisms [23], [24], [25], [26],
[28], [33], and ‘ignore-error’ mechanisms [6], [7], [45], [11].
A brief review of the main concepts and their embodiments
follows.

Predict-and-prevent mechanisms try to avoid timing errors
while reducing guardbands. Mintarno et al. propose a frame-
work with control policies to optimize dynamic control of self-
tuning parameters during lifetime of a digital system that saves
energy relative to traditional one-time worst-case guardbands
[8]. A notion of hierarchically focused guardbanding is pro-
posed to adaptively mitigate process, voltage, temperature vari-
ations and aging [38]. This is achieved by online utilization of a
predictive model that enables a focused adaptive guardbanding
in view of sensors, observation granularity, and reaction times.
The instruction program counter of an out-of-order pipeline is
used for an early prediction of an upcoming timing violation by
searching in a large predictor table [41]. Rahimi et al. [39] pro-
pose a compiler technique that periodically regenerates healthy
codes that reduces the aging-induced performance degradation
of general-purpose graphic processing units (GPGPUs). For
memories, various allocation technique reduces the effect of
aging by distributing the idleness across the memory space,
for instance sub-banks of a scratchpad memory [40], register
file of an embedded core [9], and large register files [10] of the
GPGPUs. The predictive techniques cannot eliminate the entire
guardbanding to work efficiently at the edge of failure specially
so with frequent timing errors in the voltage overscaling and
near-threshold regimes.

Detect-then-correct mechanisms typically employ in situ
or replica circuit sensors to detect the timing error in both
logic and memory. These mechanisms focused on measures to
mitigate variability through innovations in circuit-level designs.



For logic, in situ error-detection sequential (EDS) [23] and
Razor [25] circuit sensors have been employed to detect timing
errors, whereas an 8T SRAM memory array utilized tunable
replica bits [24]. A common strategy is to detect variability-
induced delays by sampling and comparing signals near the
clock edge to detect timing errors. Alternatively, less intrusive
on-chip monitors measure the timing margin available to a
block, for instance IBM 8-core POWER7 employs five low-
overhead critical path monitors (CPMs) per each core to
capture PVT variations. In a similar vein, Intel resilient 45nm
core places a tunable replica circuit (TRC) per pipeline stage
to monitor worst-case delays. To ensure recovery, the timing
errors are corrected by replaying the errant operation with a
larger guardband through various adaptation techniques. For
instance, Intel integer-scalar core [26] places EDS circuits in
the critical paths of the pipeline stages. Once a timing error
is detected during instruction execution, the core prevents the
errant instruction from corrupting the architectural state and
an error control unit (ECU) initially flushes the pipeline to
resolve any complex bypass register issues. To ensure scalable
error recovery, the ECU supports two separate techniques:
instruction replay at half frequency, and multiple-issue instruc-
tion replay at the same frequency. These techniques impose
energy overhead and latency penalty of up to 28 extra recovery
cycles per error for the resilient 7-stage integer pipeline [26].
Recently, OpenMP

Ignore-error methods ensure safety of error ignorance
through a set of rules for disciplined approximate [45] pro-
grams. These methods do not strive to achieve instruction
executions exactly as specified by the application programs.
Disciplined approximate programs can exhibit enhanced error
resilience at the application-level when multiple valid output
values are permitted. Conceptually, such programs have a
vector of ‘elastic outputs’, and if execution is not 100% numer-
ically correct, the program can still appear to execute correctly
from the users perspective. Programs with elastic outputs have
application-dependent fidelity metrics such as peak signal to
noise ratio (PSNR) associated with them to mathematically
characterize the quality of the computational result [7]. The
degradation of output quality for such applications (e.g., digital
signal processing [11], multimedia and compression [43]) is
acceptable if the fidelity metrics satisfy a certain threshold. An
error resilient system architecture (ERSA) [6] presents a robust
system that utilizes software optimizations and error-resilient
algorithms of probabilistic applications based on their classifi-
cation as recognition, mining and synthesis (RMS) applications
[12]. Rahimi et al. [44] provide OpenMP extensions (as custom
directives) for floating-point computations to specify parts of
a program that can be executed approximately.

In this paper, we focus on ‘detect-then-correct’ mechanism
as well as ‘error-ignorance’ method to show how a vertical
abstraction of circuit-level variations into higher levels can
enhances the the scope of these approaches, especially in
parallel computation contexts. The rest of the paper is orga-
nized as follows. Section II surveys prior work in the circuit-
level techniques and their limitations. Then, we describe how
an instruction-level memoization technique can response to
these deficiencies. It provides an important ability to reuse
computation and error ignorance for reducing the cost of
recovery from timing errors in a GPGPU context. In the next
sections, we describe several efforts that have tried to charac-

terize and use variability related information at higher levels.
Section III and Section IV introduce the notions of instruction-
level vulnerability (ILV) and task-level vulnerability (TLV) to
expose hardware variations and its effects to the software stack.
In fact, TLV is a vertical abstraction that reflects manifestation
of circuit-level hardware variability in specific software context
for efficient OpenMP parallel execution. Section V concludes
this paper.

II. CONCURRENT INSTRUCTION REUSE FOR TIMING

ERROR RECOVERY

The aforementioned circuit-level ‘detect-then-correct’
mechanisms impose energy overhead and latency penalty
for correcting the errant instruction. As energy becomes the
dominant design metric, aggressive voltage scaling [22] and
near-threshold operations [21] increase the rate of timing
errors and correspondingly the costs (in energy, performance)
of these recovery mechanisms. This cost is exacerbated in
floating-point (FP) single-instruction multiple-data (SIMD)
pipelined architectures where the pipeline dimensions are
expanded both vertically (with wider parallel lanes) and
horizontally (with deeper stages). The horizontally expanded
deeper pipelines induce higher pipeline latency and higher
cost of recovery through flushing and replaying the errant
instruction. The FP pipelines consume higher energy-per-
instruction than their integer counterparts and typically
have high latency for instance over 100 cycles [27] to
execute on a GPGPU. Effectively, these energy-hungry
high-latency pipelines are prone to inefficiencies under timing
errors. Similarly, in vertically expanded pipelines, there is a
significant performance drop in a 10-lane SIMD architecture
as single-stage-error probabilities increase [28]. In the lock-
step execution, any error within any of the lanes will cause a
global stall and force recovery of the entire SIMD pipeline.

Thus, in FP SIMD pipelines the error rate is multiplied
by the wider width while the number of recovery cycles
per error increases at least linearly with the pipeline length.
This makes the cost of recovery per single error quadratically
more expensive relative to scalar functional units. At the
same time, parallel execution in the GPGPU architectures –
described in Section II-A– provides an important ability to
reuse computation and reduce the cost of recovery from timing
errors. Accordingly, Rahimi et al. [13] exploit this opportunity
to make three main contributions. First, we propose a novel
spatial memoization technique to correct variation-induced
timing errors on the SIMD architectures for efficient recovery.
We observe that the entropy of data-level parallelism is low
due to high spatial locality of values. The spatial memo-
ization leverages this inherent value locality of applications
by memoizing the result of an error-free execution on an
instance of data. Then, it reuses this memoized result to
exactly (or approximately) correct any errant execution on
other instances of the same (or adjacent) data. Section II.B
describes this technique in detail. Second, we propose a SIMD
architecture consisting of a single strong lane and multiple
weak lanes (SSMW) to support memoization at the level of
instruction. The SS lane memoizes the output of an error-free
FP instruction; therefore, if any MW lane faces an error, it
reuses the output of SS lane instead of triggering recovery.
Section II.C details the design of the SSMW architecture.
Third, we demonstrate the effectiveness of our technique on
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Fig. 2. CIR of the FP with the corresponding PSNR for two kernels. (a) Sobel filter applying the value locality constraint of γ. (b) Gaussian filter value locality
constraint of γ. (c) Sobel and Gaussian filters with the three value locality constraints (α has no bitwise masking; thus, it does not generate any noise).

ror correction. With this approximation, the pair of instructions
with two different input operands will have the same output
and application can ignore error. As a result, the quality of the
output is degraded but is acceptable in multimedia applications
within the constraints of application-specific PSNR. For the
filter kernels, Fig. 2 shows the CIR rate and the corresponding
PSNR for various input pictures while using different value
locality constraints. As shown in Fig. 2(c), applying the value
locality constraint of α yields, on an average, a CIR rate
of 27%. This means that 27% of the executed instructions
on the whole SIMD can reuse the results of the executed
instructions on L0 for accurate error correction, without any
quality degradation. By relaxing the value locality criteria from
α toward γ, higher multiple data-parallel values fuse into a
single value, resulting in a higher CIR rate for approximate
error correction, for example up to 76% for Sobel. On average,
by applying γ, a CIR rate of 51% (32%) is achieved on Sobel
(Gaussian) with the acceptable PSNR of 29 dB (39 dB).

1) Concurrent Instruction Reuse for Error-Intolerant Ker-
nels: To generalize the CIR concept, we have extended
our analysis to the error-intolerant applications. In case of
error-intolerant applications that do not have such inherent
algorithmic tolerance, even a single bit error could result
in unacceptable program execution. In this class, we have
examined three applications: binomial option pricing, Haar
wavelet transform, and eigenvalues of a symmetric matrix.
To evaluate the scalability of CIR, the size of the input data
of these applications are also enlarged. Option pricing is an
important problem in financial engineering. Binomial option
pricing is implemented for European-style options, and its
input data are the number of samples to be calculated. Haar
wavelet computes wavelet analysis on a 1-D input signal. The

input data for Eigenvalues algorithm is a symmetric tridiagonal
matrix.

These applications require 100% numerical correctness;
thus, only the tight value locality constraint of α can be used.
It enables the instructions of Li to reuse the output of the
instruction of L0 while maintaining the full precision. The bars
in Fig. 3 show the FP instruction count of these applications
as a function of the input size, and the CIR of each instruction
type is also shown. The FP instructions of binomial option
pricing display high CIR rates: 60% for addition, 32% for
multiplication, 26% for multiplication and addition, and 61%
for the rest of FP instructions. By increasing the number of
sampling input from 5000 to 9000, the number of executed
FP instructions is almost doubled, whereas the rate of CIR is
constant, confirming its scalability across various input sizes.
For eigenvalues with an input matrix size of 100 × 100, a CIR
rate of 91% for the total FP instructions is observed. Expanding
the size of the input matrix by a factor of ∼6700× increases
the FP instructions count by a factor of ∼4200× and further
increases the CIR to 94%. The Haar wavelet transform also
reveal a high CIR of 36% for the total FP instructions across
various sizes of the input signal.

These high rates of CIR, across various application-specific
requirements on the computational accuracy, confirms that
the data-level parallelism exposed on the SIMD lanes is a
promising observation point to exploit the inherent value
locality inside the parallelized programs.



 

Fig. 3. FP instruction count and their CIR for three error-intolerant kernels
(constraint of α thus no bitwise masking) with various input sizes.
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Fig. 4. FP SSMW execution unit.

C. Single-Strong-Lane-Multiple-Weak-Lane (SSMW) Architec-
ture

As aforementioned, the cost of recovery per single timing
error on a FP SIMD architecture is very expensive. Pawlowski
et al. [33], [28] propose to decouple the SIMD lanes through
private queues that prevent error events in any single lane from
stalling all other lanes, thus enabling each lane to recover errors
independently. The decoupling queues cause slip between
lanes, which requires additional architectural mechanisms to
ensure correct execution. Therefore, the lanes are required
to resynchronize when a microbarrier (e.g., load, store) is
reached, therefore incurring performance penalty [28]. This
penalty limits their utility to low error rate circumstances.

In response to this deficiency, we exploit the inherent value
locality; therefore, the SIMD is designed to maintain the lock-
step integrity in the face of timing error, i.e., an SSMW
architecture, which is a resilient SIMD architecture. The key
idea, for satisfying both resiliency and lock-step execution
goals, is to always guarantee error-free execution of a lane
(SS). Then, the rest of the lanes (MW) can reuse its output in
the case of timing errors. In other words, SSMW provides an
architectural support to leverage CIR for correcting the timing
errors of MW lanes. Note that, to achieve this goal, SSMW
superposes resilient circuit techniques on top of the baseline
SIMD architecture without changing the flow of execution.

SSMW employs two major resilient techniques. First, it
guarantees the error-free execution of the SS lane in the pres-
ence of the worst-case PVT variations using voltage overdesign
(VO). On the other hand, the MW lanes employ EDS circuits
to detect any timing error and propagate an error bit toward the
pipeline stages. Second, SSMW also employs a CIR detector
module for every PE of the MW lanes, as shown in Fig. 4.
This module checks the value locality constraint, and if it is
satisfied, the module forwards the output result of the PE in
the SS lane to the output of the corresponding PE in the weak
lane. The output result of the SS lane is broadcast via a network
across MW lanes.

The CIR detector module is a programmable combinational
logic working on parallel with the first stage of the PE
execution; since every PE executes one instruction per cycle,
the module is thus shared across all FP functional units of
the PE. To check the value locality constraint at the level of
instruction, the module compares bit by bit the two operands
of its own PE with the two operands of the PE on the SS lane.
All the CIR detector modules share a masking vector to ignore
the differences of the operands in the less significant N bits
of the fraction part. The masking vector is a memory-mapped
32-bit register that is set by various application demands on
the computation accuracy. If the two sets of the operations,
considering commutativity, meet the value locality constraint,
the module sets a reuse bit, which will traverse alongside the
corresponding instruction through the stages of the PE. At the
last stage of the execution, the PE takes three actions based
on the {reuse bit, error bit}. In the case of no timing error,
i.e., {1/0, 0}, the PE sends out its own computed result to the
WRITE stage. If a timing error occurred for the instruction
during any of the stages, but it has a value locality with the
instruction on the SS lane, i.e., {1, 1}, the PE sends out the
computed result of the SS lane and avoids the propagation of
the error bit to the next stage. Finally, in the case of an error



and lack of the value locality, i.e., {0, 1}, the PE triggers the
recovery mechanism.

D. Effectiveness of SSMW Architecture

Our methodology is developed upon the AMD Evergreen
GPGPUs but can be applied to other SIMD architectures as
well. Multi2Sim [46], which is a cycle-accurate CPU–GPU
simulation framework, is modified to collect the statistics
for computing CIR. The Naive binaries of AMD APP SDK
v2.5 [42] kernels are run on the simulator, and the input
values for the kernels are generated by the default OpenCL
host program. We analyzed the effectiveness of the SSMW
architecture in the presence of timing errors on the TSMC 45-
nm application-specific IC flow. The fetch and decode stages
display low criticality [47]. To keep the focus on the processor
architecture, we assume that the memory components are
resilient, for example by utilizing the tunable replica bits
[24].We have partially implemented the FP execution stage
of the PE, consisting of three frequently exercised functional
units: ADD, MUL, and SQRT. On Evergreen GPGPUs, every
functional ALU has latency of four cycles and throughput of
one instruction per cycle [49]. Therefore, the VHDL code of
the three FP functional units are generated and optimized using
FloPoCo [48] – an arithmetic FP core generator. To achieve
balanced pipelines with latency of four cycles, the SQRT
utilizes a fifth-degree polynomial approximation to decrease
its delay.

The front-end flow with multiple VTH cells has been per-
formed using Synopsys Design Compiler with the topographi-
cal features, whereas Synopsys IC Compiler has been used for
the back-end flow. The design has been optimized for timing,
for the signoff frequency of 1 GHz at (SS/0.81V/125◦C), and
for power using high VTH cells. Next, the voltage–temperature
scaling feature of Synopsys PrimeTime is employed to analyze
the delay variations under voltage droop. Finally, the variation-
induced delay is back annotated to the post-layout simulation,
which is coupled with Multi2Sim. To quantify the timing error,
we consider two global voltage droop scenarios, i.e., 3% and
6%, across all 16 lanes during the entire execution of the
kernels.

We consider five architectures for comparison: i) the lane
decoupling queues architecture [28] without VO; ii-iii) the
SIMD baseline architecture with 10% (or 6%) VO across
all 16 lanes; iv-v) the SSMW architecture in which the SS
lane, the CIR detector modules, and the broadcast network
are guardbanded by 10% (or 6%) VO to guarantee error-free
operations. Once SSMW cannot exploit CIR for an error event
recovery, it relies on the single-cycle recovery mechanism
presented in [33], [28].

Fig. 5 shows the energy efficiency of the FP execution
stage during Gaussian filter execution for a wide range of error
rates. At a low error rate, SSMW (10% VO) achieves up to
18% higher GFLOPS per watt compared with the baseline
(10% VO). The energy efficiency gain of the decoupling
queues disappears at an error rate of 12% and higher, whereas
SSMW surpasses both architectures up to an error rate of
60%; SSMW achieves up to 16% higher GFLOPS per watt
compared with the decoupling queues. Increasing the error rate
beyond 60% removes the energy efficiency gain of SSMW.
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The CIR of Gaussian cannot afford to efficiently correct all
errant instructions at this high error rate; thus, SSMW incurs
the recovery cycles frequently.

Fig. 6 shows the effectiveness of SSMW, i.e., the per-
centage of the corrected errant instructions by CIR for all
kernels when encountering 6% and 3% voltage droops during
the execution. The applications set α for the accurate error
correction and γ for the approximate error correction. On
average, for all kernels, SSMW avoids the recovery for 62%
of the errant instructions, confirming the effective utilization
of the value locality.

Fig. 7 shows the total energy comparison of the ker-
nels while experiencing 6% voltage droops.On average,
SSMW(10% VO) reduces 8% of the total energy compared
with its baseline counterpart. The CIR detector modules in-
crease the delay of the baseline architectures up to 4.9% due
to the SS-lane broadcast network and impose a maximum of
5.7% total power overhead. In comparison with decoupling
queues, SSMW (10% VO) has on average 12% lower energy
consumption. The SSMW (6% VO) has also 1% lower energy
compared with the baseline with 6% VO, optimistically as-
suming that the baseline does not incur any timing error while
operating at the edge of failure with 6% voltage droops.

In summary, the proposed SSMW architecture enables a
spatial memoization technique that seeks to reduce error recov-
ery costs by reuse of concurrent instructions while maintaining
a lock-step execution of the SIMD architecture. The proposed
memoization technique exploits the value locality in data-
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parallel applications that is explicitly exposed to the parallel
lanes. Error-tolerant and error-intolerant applications exhibit up
to 76% and 94% CIR rate for the approximate and accurate
error corrections, respectively. On an average, the proposed
SSMW eliminates the cost of recovery for 62% of the voltage-
droop-affected instructions and reduces 12% of the total energy
compared with recent work. Further, the spatial memoization
can be utilized to spontaneously apply clock gating for MW
lanes.

III. INSTRUCTION-LEVEL VULNERABILITY

In this section, we describe the notion of instruction-level
vulnerability (ILV) [47] to expose variation and its effects to
the software stack. To compute ILV, we quantify the effect of
a full range of operating conditions on the performance of a
32-bit, RISC, integer-scalar LEON-3 [35] processor compliant
with the SPARC V8 architecture. Specifically, we used a tem-
perature range of -40◦C–125◦C, and a voltage range of 0.72V–
1.1V. These operating condition (hence dynamic) variations
cause the critical path delay to increase by a factor of 6.1×
when the operating condition is varied from the one corner to
the other.

We evaluate the critical paths of each pipeline stage for
a given cycle time, while changing the operating conditions.
Fig. 8 shows the number of failed paths with a negative slack
for each parallel pipeline stages across three corners. The cycle
time is set at 0.85ns (17FO4), and voltage varies from 0.72V
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Fig. 10. The proportion of failed paths to non-failed paths versus clock
scaling and across three base corners.

to 0.88V, and then to 1.10V at a constant temperature of
125◦C. As shown in Fig 8, most of the failed paths lie in
the execute and memory stages in all three operating voltages.
On the other hand, each of the fetch, decode, and register
access stages contains less than 40K failed paths. Furthermore,
there is a relatively small fluctuation in their number of critical
paths across voltage variations for these stages. Quantitatively,
the memory stage at operating voltage of 0.72V has 1.3×,
1.8×, 3.8× more critical paths in comparison to the execute,
write back, and decode stages, respectively. Memory stage at
operating voltage of 1.10V also faces 1.4×, 1.9× more critical
paths when the voltage drops to 0.88V, 0.72V, respectively.

To analyze the effect of temperature fluctuation, variation in
the number of the failed paths for each parallel pipeline stage
is shown in Fig. 9. The cycle time is set at 0.85ns (17FO4), and
temperature is varying from -40◦C to 0◦C, and then to 125◦C
at a constant voltage of 1.1V. As shown in Fig. 9, there is no
failed path in the fetch stage when the temperature is varied,
and only a small number of failed paths are found in the write
back stage at the highest temperature. But the downside is
that many paths fail within the execute and memory stages,
like Fig. 8 Consequently, the execute and memory parts of
the processor are not only very sensitive to voltage and
temperature variations, but also exhibit a large number of
critical paths in comparison to the rest of processor. Similarly,
we would anticipate that the instructions that significantly
exercise the execute and memory stages are likely to be more
vulnerable to voltage and temperature variations.

Let us now examine the situation of all paths through the
processor under different operating condition and frequency.
The Y-axis of Fig. 10 shows the proportion of failed paths
(paths with negative slack) to non-failed paths (paths with
positive slack) for three base characterization corners: the best-
case corner (1.10V, 0◦C), the typical-case corner (1.0V, 25◦C),
and the worst-case corner (0.9V, 125◦C). We observe that
this proportion of failed paths suddenly drops below a certain
threshold while the clock is finely scaled with a resolution of
0.01ns. For instance, the proportion falls below 0.5 with only
0.06ns clock scaling in the best-case corner; in the other words,
the number of non-failed paths is twice as many as those which



fail. Alternatively, the number of non-failed paths is doubled
when the cycle time is increased for 0.3ns in the worst-case
corner. These provide an opportunity for an error-free running
of some instructions that will not activate those failed paths.

From the previous analysis, we get the intuition that
instructions will have different levels of vulnerability to vari-
ations depending on the way they exercise the non-uniform
critical paths across the various pipeline stages. To capture
this phenomenon, we define the concept of instruction-level
vulnerability to dynamic variations. The classification of in-
structions is a valuable information to avoid the timing errors,
and the processor can adapt itself accordingly by acquiring the
knowledge about which class of instructions is running.

A. Instruction-level Classification

To quantify the ILVi to voltage and temperature variations
for each instructioni, we compute the probability of failure of
instructioni using a set of Monte Carlo gate-level simulations
with back-annotated delays. The ILVi defines as the total
number of violated cycles over the total simulated cycles for
the instructioni. If any of the stages have one or more violated
flip-flop at a cyclej , we consider that stage as a violated stage at
cyclej , since there is at least one activated path for instructioni
at cyclej which is slow enough to miss the setup time of a flip-
flop. Intuitively, if instructioni runs without any violated path,
ILVi is 0; on the other hand, ILVi is 1 if instructioni faces at
least one violated path in any stage, in every cycle. We finely
change the clock cycle to observe the paths failure for every
exercised instruction, and then consequently evaluate its ILV.
Our results indicate that the instructions exhibit a very wide
range of delay under different operating conditions ranges from
0.76ns to 4.16ns.

More precisely, the ILV values evidence that the integer
instructions are partitioned into three main classes: i) the
logical and arithmetic instructions, ii) the memory instructions,
and iii) the multiply and divide instructions. The first class
shows an abrupt behavior when the clock cycle is slightly
varied. Its ILV switches from 1 to 0 with a slight increase
in the cycle time (0.02ns) for every corner, mainly because
the path distribution of the exercised part by this class is
such that most of the paths have the same length, then we
have a all-or-nothing effect, which implies that either all
instructions within this class fail or all make it. The second
class, the memory operations, needs much more relaxed cycle
time to be able to survive across conditions. For instance,
only 0.02ns more guardbanding on the cycle time of the
first class instruction can guarantee the error-free execution
of the memory instructions while they are experiencing a full
range temperature fluctuation. The third class is the multiply
and divide instructions which need higher guardbanding in
comparison to the first class instruction, ranges from 0.02ns
at (1.1V, -40◦C) to 0.30ns at (0.72V, 125◦C). Since this
class highly exercises the execution unit, it has a higher ILV
in comparison with the rest of classes in the same clock
cycle, for every corner. Moreover, 64%–82% (depends on the
corner) of the failed paths in the execution stage lie in the
hardware multiplier and divider. Earlier we have shown that
the execution and memory units are not only vulnerable to the
temperature and dynamic variations, but also cover most of the
failed paths of the processor.

Based on these results, all instruction classes act similarly
across the wide range of operating conditions: as the cycle
time increases gradually, the ILV becomes 0, firstly for the first
class, then for the second class, and finally for the third class.
Therefore, software stack can benefit from this characterized
information toward reducing the cost of resiliency by acquiring
the knowledge about which class of instructions is/will be
running.

IV. TASK-LEVEL VULNERABILITY

Going further up on the hardware-software stack, several
efforts have tried to characterize and use variability related
information for better management. We have earlier defined the
notions of ILV that characterizes individual instructions as the
most fine-grained abstraction of the processors functionality.
Focusing on a stream of instructions, recent work [14], [15]
determine sequences of instructions that have a significant im-
pact on the timing error rate. Therefore, code transformations
have been introduced for improving their timing speculation.
Raising further the level of abstraction, a notion of task-level
vulnerability (TLV) [16] is defined. In this section, we describe
TLV, as an extension to the OpenMP v3.0 tasking program-
ming model, that dynamically characterizes vulnerability of
tasks. Here, the runtime system reduces the cost of recovery by
matching different characteristics of each variability-affected
core to various levels of vulnerability of tasks.

A. OpenMP Tasking and TLV

The OpenMP specification v3.0 introduces a task-centric
model of execution. The new task directive is used to dy-
namically generate units of parallel work that can be executed
by every thread in a parallel team. When an executing thread
encounters the task construct, it prepares a task descriptor
consisting of the code to be executed, plus a data environment
inherited from the enclosing structured block. The tasking
programming model is considered as a convenient abstraction
for application development in shared memory multi-cores
[29]. Thus we integrate TLV metadata as an extension to the
OpenMP tasks. A task directive outlines an execution unit
which runs a sequence of instructions. The OpenMP directives
allow the programmer to statically identify several task types
in the program. Every task directive syntactically delimits
a unique stream of instructions. While at runtime the same
stream may be dynamically instantiated several times (e.g., a
task directive nested within a loop), from the point of view of
our characterization it uniquely identifies a single task type.
As a direct consequence, there are as many types of tasks in
a program as there are task directives in its code.

ILV indicates that the classes of instructions have different
levels of vulnerability to variations depending on the way
they exercise the non-uniform critical paths across the various
pipeline stages. We note that complex high-performance cores
such as IBM POWER6 also confirm that vulnerability is not
uniform across the instructions set [18]. We extend the notion
of ILV to a more coarse-grained task-level metric, TLV. The
vulnerability of a task type varies based on the class of
instructions that it will execute. TLV is also a per-core metric
since the amount of variation affecting different classes of
instructions changes from one core to another. Therefore, each
dynamic task (dynamic instance of a task type), can potentially
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face a different density of the errant instructions imposed by
both software context and hardware variations.

While the identification of task types can be done statically
(i.e., at compile time), their characterization has to be done
online due to two reasons. First, dynamic instances of the same
task type may exercise the processor pipeline in a non-identical
manner due to data-dependent control flow that executes
different classes of instructions. Second, the characterization
must reflect the variability-affected characteristic of every core
(not known a priori) on every task type. Therefore, we define
the notion of TLV as a metric to characterize vulnerability of
each task type per each core, in the following:

TLV(i,j) =

∑
EI

∑
I

| ∀corei, ∀taskj (1)

where ΣEI is the number of errant instructions during ex-
ecution of taskj on corei, that are reported by the circuit
sensors and need to be replayed for correct execution; ΣI is
the total number of executed instructions. Intuitively, if all the
instructions run without any timing error, TLV is 0; on the
other hand, TLV is 1 if every instruction causes at least one
timing error. The lower TLV, the lower the number of errant
instructions, the lower the cost of recovery, and thus the higher
the instruction per cycle.

B. Intra-corner and Inter-corner TLV

We examine intra-corner TLV for a corei that runs a
synthetic benchmark consisting of six distinct types of tasks.
Each task is composed of a loop that executes a different
class of instructions illustrated in Fig. 11. The corei works
in the typical operating condition, i.e., the room temperature
of 25◦C and voltage supply of 1.1V. This operating corner
is fixed, thus there will be no environmental variation during
task execution. The TLV characterization for each task type
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Fig. 14. VDD-Hopping in the variability-affected cluster (left); Number of
errant instructions during the synthetic bench (right).

is shown in Fig. 11. As shown, TLV of each type of tasks
is different even within the fixed operating condition in the
corei. For instance, TLV of task type1 (TLV(i,1)) is 9× higher
than the TLV(i,6) indicating a considerable variation across
the type of tasks. Furthermore, within same type of task, TLV
can also be affected by the data-dependent control-flow that
can cause execution of different classes of instructions. This
TLV variation across task types indicates the need of online
monitoring for every task types.

We also examine the TLV across different operating con-
ditions. Specifically, we analyze the effects of a full range
of dynamic variations, a temperature range of 20◦C–140◦C,
and a voltage range of 0.88V–1.1V. As shown in Fig. 12, the
average TLV of the six types of tasks is an increasing function
of temperature. With a fixed voltage of 1.1V, by increasing
the temperature the delay of critical paths is increased, thus
more instructions will face the timing error which causes TLV
to increase up to 0.096 at 140◦C. In contrast, decreasing the
voltage from the nominal point of 1.1V increases TLV. In
lower voltages, the delay of critical paths highly increases, thus
imposing a high rate of the errant instructions. For example,
a dynamic voltage variation of 0.2V (∆V=1.1V-0.9V) causes
a TLV of 0.507, which implies that more than half of the
total executed instructions within tasks failed due to the timing
errors of the voltage variation. Fig. 11 illustrates TLV values
across different types of task in the typical operating corner and
Fig. 12 highlights that TLV of tasks is further magnified across
various corners of operating conditions, thus TLV should be
characterized for every different operating condition.

C. Variation-tolerant Tightly-coupled Processor Clusters

In this subsection, we describe the architectural details
of a variation-tolerant processing cluster shown in Fig. 13
that supports TLV characterization. The cluster is inspired by



tightly-coupled clusters in STMicroelectronics P2012 [19] as
the essential component of a many-core fabric. In our imple-
mentation, each cluster consists of sixteen 32-bit in-order RISC
cores, an L1 software-managed tightly coupled data memory
(TCDM) and a low-latency logarithmic interconnection [32].
The TCDM is configured as a shared, multi-ported, multi-
banked scratchpad memory that is directly connected to the
logarithmic interconnection. The number of TCDM ports is
equal to the number of banks to enable concurrent access
to different memory locations. Note that one bank of the
TCDM provides test-and-set read operations, which we use
to implement basic synchronization primitives (for example,
locks). The logarithmic interconnection is composed of mesh-
of-trees networks to support single cycle communication be-
tween processors and memories. When a read/write request is
brought to the memory interface, the data is available on the
negative edge of the same clock cycle, leading to two clock
cycles latency for a conflict-free TCDM access.

The cluster is equipped with two core-level resiliency
techniques. First, each core relies on the circuit sensors to
detect any timing error due to dynamic delay variation. To
recover the errant instruction without changing the clock fre-
quency, the core employs the multiple-issue instruction replay
mechanism [26] in its recovery unit; seven replica instructions
followed by a valid instruction. Second, the cluster supports
a per-core VDD-hopping technique for tuning the voltage of
each core individually to compensate the impact of static
process variation. The core-level VDD-hopping is employed in
a variability-affected tightly-coupled cluster [17]. The VDD-
hopping improves the clock speed of the slow cores, thus
enabling all components of the variability-affected cluster to
work at same frequency (with memories at a 180◦ phase
shift). This technique avoids the inter-core synchronization that
would significantly increase L1 TCDM latency.

To observe the effect of static process variation on the
frequency of individual cores within the cluster, [17] analyzed
how critical paths of each core are affected due to WID and
D2D process parameters variation. The maximum frequency
distribution of every core is shown in Fig. 14 (left), in which
each cores maximum frequency varies significantly due to the
process variation. As a result, six cores (C0, C2, C4, C10,
C13, C14) cannot meet the design time target frequency of
850 MHz. To compensate this core-to-core frequency variation,
the VDD-hopping technique measures the delay variation of
each core and then applies the appropriate voltage accordingly
(higher voltage for slow cores). The technique utilizes three
discrete voltage modes (VDD-high, VDD-medium, VDD-low),
consequently, the cluster mitigates the core-to-core variations,
and all cores can work with the design time target frequency.
More details of VDD-hopping and process variation analysis
on the cluster is provided in [17].

In VDD-hopping, cores in various voltage islands display
different characteristics. Fig. 14 (right) shows that the number
of errant instructions significantly varies across cores cooper-
ating together within a single cluster for executing available
tasks. For instance, C0 faces 7.3K errant instructions, whereas
C1 has more than 428K errant instructions during the synthetic
benchmark execution. As shown in Fig. 12, a core with lower
voltage has higher TLV (higher ΣEI), and will impose higher
extra cycles to correct those errant instructions. Thus a task

scheduler that is aware of the individual core characteristics
and tasks is better able to match them to reduce the overall
penalty for correcting the errant instructions.

D. Decentralized TLV Characterization

To reduce the cost of recovery, TLV metadata guides the
runtime scheduler. Since TLV depends on the type of task, we
consider individual TLV characterization for every task type.
As we already explained, TLV metadata is defined for a given
core because different cores can display different variability
characteristics. Therefore, each core needs to be characterized
during online execution of a task. This results in TLV as a two-
dimensional lookup table across tasks and cores. This lookup
table is physically distributed across all the 32 banks of TCDM,
thus it can be written/read with a two-cycle latency in case
of conflict-free communication. Since TLV metadata is 32-
bit, and every application will have a bounded number of N
supported task types, the cluster needs to allocate a maximum
of N×4×C Bytes for the lookup table, where C is the number
of cores in the cluster.

Algorithm 1 Pseudo-code to perform TLV characterization

while (HAVE TASKS) do
task desc t task = EXTRACT TASK ()
if (task) then

float old mdata = tlv read task metadata (core id)
⊲ %Reset counter for this core %

tlv reset task metadata (core id)
⊲ %Execute task %

task.task fn (task.task data)
⊲ %Task is executed. Fetch TLV ... %

float mdata = tlv read task metadata (core id);
⊲ %Update metadata in table %

tlv table write (task.task type id, core id,
(mdata+old mdata)/2);

end if
end while

The online characterization mechanism is distributed
among all the cores in the cluster, thus enables fully par-
allel task-level monitoring and characterization. The cluster
employs the circuit sensors and the error recovery unit of
every core to perform characterization. To quantify TLV, the
core collects the statistics of ΣEI and ΣI for Equation 1
through available counters. For instance, [26] does include
a counter for the errant instructions ΣEI to change the
frequency when the number of errors is above a certain
threshold. Two function calls for profiling TLV of current task
are inserted in the runtime library, right before and after actual
execution (see Algorithmr̃efalgo:characterization), and then the
lookup table is updated with the new value. The former
(tlv reset task metadata) restarts the counters, and the latter
two (tlv read task metadata and tlv table write) transfers the
characterized TLV metadata at the end of task execution to the
lookup table for future inspection.

E. Variation-tolerant OpenMP Tasking Scheduler

The lookup table for the characterized TLV metadata acts
as a software-accessible monitor that provides information to
the runtime systems to guide task scheduling. We propose
a reactive variation-tolerant scheduler that we call task-level



errant instruction management (TEIM). The OpenMP imple-
mentation that we consider [30] leverages a centralized task
queue, where all the threads involved in parallel computation
actively push and pop job descriptors. Typically, to avoid
redundant computation, only a single thread from a parallel
team executes the code within the task directive (pushing its
task descriptor in the queue). The rest of the threads remain
idle in wait for work to do. Whenever a thread is idle it tries
to extract a task from the queue, thus tasks are scheduled to
threads on a first-come, first-served basis [30].

Our TEIM technique enhances the above baseline scheduler
with additional conditional checks. It utilizes TLV metadata to
determine whether the querying thread is well suited to run
the task on the head of the queue. The overall goal is a guided
scheduling of tasks to cores, which reduces the number of
errant instructions so that the replay logic is exercised less
frequently. In other words, the scheduler tries to match the
variability-affected characteristics of the cores with the level of
vulnerability of tasks, thus reducing unnecessary recovery cy-
cles. At each scheduling point, an idle corei runs the scheduler.
Then, the scheduler checks two conditions to decide whether
the core should execute a taskj in the head of queue, or should
skip it and lets other favoured cores execute it later. First,
the scheduler reads the TLV metadata entry corresponding
to the combination of taskj and corei. If TLV(i,j) is greater
than a predefined target threshold (TLV THR), there is no
match between the characteristics of corei and taskj (execution
of taskj on corei may cause at least TLV THR×ΣI errant
instructions, see Equation 1), so the scheduling attempt fails.
Taskj remains in the queue, ready to be reconsidered for
scheduling at the next attempt (thus, the rest of cores can
potentially execute it). Second, to avoid starvation, each core
can skip tasks for a maximum number of ESCAPE THR
times. Beyond this threshold the core has to execute at least
one task, independent of its TLV value. These thresholds can
be tuned during a profiling phase as described in detailed in
[16]. The TEIM algorithm is shown in the following.

Algorithm 2 TEIM algorithm in the variation-tolerant sched-
uler

⊲ %Read metadata table%
TLV metadata = tlv table read (taskj , corei)
if (TLV metadata ≥ TLV THR AND escape cnt [corei] ≤
ESCAPE THR) then

escape cnt [corei] ++
escape(taskj)

else
schedule to corei (taskj)
escape cnt [corei] = 0

end if

Thus far, we assumed that TLV characterization informa-
tion is available for the scheduler to take decisions. When the
program starts there is no such information for any task type.
If no information is available in the lookup table for mapping
of a particular task type on a particular core, a TLV of 0
will be returned, so the scheduler simply assigns the task to
the requesting core, and enables online characterization. Once
a task type is characterized, this information could be used
for all the successive instances of the same type and thus the
online characterization could be stopped. However, we rather
keep the characterization active at every scheduling event and

TABLE I. ARCHITECTURAL PARAMETERS OF CLUSTER.

ARM v6 core 16 TCDM banks 16

I size 16KB per core TCDM latency 2 cycles

I line 4 words TCDM size 256KB

Latency hit 1 cycle L3 latency > 60 cycles

Latency miss > 59 cycles L3 size 256MB
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Fig. 15. Overhead of the variation-tolerant scheduler.

average the new characterized TLV value with the already
TLV metadata available in the lookup table. This results in
a better characterization for tasks that exhibit data-dependent
control flow. Moreover, it also incorporates recent effects of
dynamic variations on cores, including temperature fluctuation.
Therefore, the scheduler uses the latest metadata generated
from monitoring recent changes in both hardware and software.
For each task scheduling point, the scheduler overhead for such
decision-making is highly amortized over task execution.

F. Effectiveness of TEIM

We demonstrate our approach on a SystemC-based virtual
platform [31] modeling the tightly-coupled cluster described
in Section IV-C. Table I summarizes its parameters.

To emulate variations on the virtual platform, we have
integrated variations models at the level of individual instruc-
tions using the ILV characterization methodology presented
in Section III. Integration of ILV models for every core
enables online assessment of presence or absence of errant
instructions at the certain amount of dynamic voltage and
temperature variations. We re-characterized ILV models of
an in-order RISC LEON-3 core for 45-nm. This choice is
because of availability of an advanced open-source RISC core
that provides full back-end details for variation analysis. First,
we synthesized the VHDL code of LEON-3 with the 45-nm
TSMC technology library, general-purpose process. The front-
end flow with normal VTH cells has been performed using
Synopsys DesignCompiler, while Synopsys IC Compiler has
been used for the back-end where the core is optimized for
performance.

To observe the effects of a full range of dynamic voltage
and temperature variations, we analyze the delay variability
on the individual instructions, leveraging voltage-temperature
scaling features of Synopsys PrimeTime for the composite
current source approach of modeling cell behavior. Finally,
delay variability is annotated to the gate-level simulations for
creating ILV models. To utilize ILV models on the virtual
platform, each core maps ARM v6 instructions to the corre-
sponding ILV models in an instruction-by-instruction fashion
during execution of tasks. Therefore, every core will face the
errant instructions during tasks execution on the variability-
affected cluster described in Section IV-C.

Our OpenMP implementation for the target cluster is based
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on [31]. To evaluate the effectiveness of the variation-tolerant
technique, seven widely used computational kernel from the
image processing domain are parallelized using OpenMP task-
ing. To quantify improvement of our technique, we have used
normalized IPC of the cluster as a metric which divides the
IPC of the cluster when using TEIM scheduler by the IPC of
the cluster when using the baseline scheduler. First, we have
quantified the overhead of TEIM technique on a variation-
immune cluster (none of cores is affected by variations).
Fig. 15 shows the normalized IPC of the variation-immune
cluster for the benchmarks. On average, the normalized IPC
of the cluster (the effective instructions) is slightly decreased
by 0.998×. This tiny overhead is imposed by reading the
TLV lookup table, and checking the conditions mentioned in
Algorithm 2. During executions, the TLV lookup table only
occupies 104–448 Bytes depending upon the number of task
types. The number of dynamic tasks for each benchmark is
illustrated on top of the bars in Fig. 15.

The variation-tolerant scheduler imposes negligible IPC
degradation in the variation-immune cluster, while it outper-
forms the baseline scheduler in the variability-affected clusters
and effectively amortizes the cost of TCPC. Fig. ?? shows the
normalized IPC improvement of the variability-affected cluster
(shown in Fig. 13). As shown, the normalized IPC is increased
for all benchmarks, e.g., at 10◦C, IPC of bsort is increased by a
factor of 1.51× (1.17× on average for all benchmarks). TEIM
technique decreases the number of cycles per cluster for each
type of tasks, because cores incur fewer errant instructions
and spend lower cycles for recovery. Thus, the effective IPC
is increased (compared to the baseline scheduler, the cluster
spends fewer cycles for the same amount of work). Moreover,
this saving is consistent across a wide range of temperature
variations with a slight decrease due to the slower critical
paths. At temperature of 100◦C (∆T=90◦C), TEIM achieves

1.15× IPC improvement, on average, thanks to the online TLV
metadata characterization which reflects the latest variations,
thus enables the scheduler to react accordingly. On average,
each task is escaped 2.1 times because of no matching core.
Overall, it shows that the tasks are postponed for a short
latency in the queue, thus the performance penalty is avoided
in the synchronization of tasks on a barrier.

Fig.17 shows the normalized IPC improvement of the clus-
ter, when dedicating different number of cores for execution
of tasks. On average, at 10◦C, TEIM achieves 1.17×, 1.11×,
1.11×, and 1.07× IPC improvement when using only 16, 12,
8, and 4 cores, respectively. It shows effectiveness of TEIM in
presence of various hardware resources, and variation scenario.
TEIM achieves higher normalized IPC across higher number
of cores (where there are higher variations and more voltage
islands – see Fig. 13). TEIM is also effective with a 4-core
scenario (C0–C3) in which the available two voltage islands
are proactively utilized.

In summary, we propose a method for vertical abstraction
of circuit-level variations into a high-level parallel software
execution (OpenMP v3.0 tasking). Our method characterizes
and mitigates variations at the level of tasks, identified by the
programmer through annotations. The vulnerability of tasks is
characterized by TLV metadata during introspective execution
on individual cores. A variation-tolerant runtime scheduler
(TEIM) is proposed to utilize characterized TLV metadata.
TEIM matches different characteristics of each variability-
affected core to various levels of vulnerability of tasks. There-
fore, it enhances normalized IPC (compared to the baseline
scheduler [30]) of a 16-core variability-affected cluster up to
1.51×. On average, it achieves 1.15×–1.17× normalized IPC
improvement for a wide range of temperature fluctuation.

V. CONCLUSION

Manufacturing and environmental variability lead to timing
errors in computing systems that are typically corrected by
error detection and correction mechanisms at the circuit-level.
The cost and speed of recovery can be improved by exposing
variability in higher levels. This paper describes approaches
that enhance the scope of ‘detect-then-correct’ mechanism
especially in the parallel execution context:

1) ILV, or instruction-level vulnerability, quantifies the
effect of voltage and temperature variations on the
performance of an in-order processor at the level of
individual instructions. In fact, ILV data partitions
instructions into various classes with different vul-
nerabilities.

2) Moving to data-level parallel SIMD architecture, a
concurrent instruction reuse (CIR) technique is pro-
posed to avoid the costly recovery in close proximity.
It leverages the inherent value locality of applications
by memoizing the result of an error-free instruction
on an instance of data. Then, it reuses this memo-
ized result to exactly (or approximately) correct any
errant instruction on other instances of the same (or
adjacent) data.

3) Finally, we present a variation-tolerant tasking tech-
nique for tightly-coupled shared memory processor
clusters that relies upon modeling advance across



the hardware/software interface. This is implemented
as an extension to the OpenMP v3.0 tasking pro-
gramming model. Our method characterizes and mit-
igates variations at the level of tasks. The vulner-
ability of tasks is characterized by TLV metadata
during introspective execution on individual cores.
A variation-tolerant runtime scheduler is proposed
to utilize characterized TLV metadata that matches
different characteristics of each variability-affected
core to various levels of vulnerability of tasks.

An ongoing work is focused on utilizing the spatial memoiza-
tion to spontaneously apply clock gating for MW lanes. We
will further explore variability-aware workload distribution and
related programming models for multi-cluster architectures.
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