
UCLA
UCLA Electronic Theses and Dissertations

Title
Communication Paradigms for Mobile Ad Hoc Networks

Permalink
https://escholarship.org/uc/item/8md1h50q

Author
Collins, Justin Scott

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8md1h50q
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Communication Paradigms for Mobile Ad Hoc

Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Justin Scott Collins

2014

c© Copyright by

Justin Scott Collins

2014

Abstract of the Dissertation

Communication Paradigms for Mobile Ad Hoc

Networks

by

Justin Scott Collins

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Rajive Bagrodia, Chair

Consumer implementations of mobile ad hoc networks (MANETs) are rapidly be-

coming possible due to the proliferation and ubiquity of smartphones, tablets, and

other portable computers. However, the combination of wireless communication,

device mobility, and the self-organizing nature of MANETs presents a challeng-

ing environment for developing distributed applications. Networking middleware

and libraries for MANET applications typically provide adaptations of traditional

distributed computing paradigms designed for wired networks. In this work we

quantitatively evaluate existing projects and their fundamental underlying com-

munication paradigms using real applications in realistic MANET environments.

We then propose and evaluate a new communication paradigm specifically de-

signed for MANETs.

ii

The dissertation of Justin Scott Collins is approved.

Mario Gerla

Stott Parker

Greg Pottie

Rajive Bagrodia, Committee Chair

University of California, Los Angeles

2014

iii

To my mom, without whom I wouldn’t be.

To my wife, without whom I couldn’t be.

iv

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Dissertation Organization . 5

2 Communication Paradigms for MANETs 6

2.1 Mobile Ad Hoc Network Characteristics 6

2.2 Requirements . 7

2.2.1 Disconnection Handling 7

2.2.2 Addressing and Discovery 8

2.2.3 Flexible Communication 8

2.3 Communication Paradigms . 9

2.3.1 Publish/Subscribe . 10

2.3.2 Remote Procedure Call . 11

2.3.3 Tuple Spaces . 13

2.3.4 Mobile Agents . 16

3 Analysis of Existing Paradigms . 18

3.1 Project-Based Comparison . 18

3.1.1 Project Overview . 18

3.1.2 Suitability for MANETs 23

3.1.3 Applications . 30

3.1.4 Experimental Results . 34

v

3.2 Paradigm-Based Comparison . 41

3.2.1 Suitability for MANETs 41

3.2.2 Paradigm Implementation 45

3.2.3 Experimental Results . 47

4 MELON Coordination Model . 67

4.1 Design Overview . 67

4.1.1 Disconnection Handling 67

4.1.2 Addressing and Discovery 69

4.1.3 Flexible Communication 69

4.1.4 MELON Features . 70

4.2 MELON Operations Overview . 70

4.2.1 Operation Details . 72

4.3 Message Store Model . 75

4.4 Message Ordering . 76

5 MELON Implementation . 78

5.1 Architecture . 78

5.2 MELON API . 78

5.3 Storage API . 79

5.4 Local Message Store . 80

5.5 Storage Server . 81

5.6 Networking . 81

5.7 Read Message Tracking . 82

5.7.1 Sparse Bit Set Performance 83

vi

5.8 Message Replication . 85

5.9 Garbage Collection . 87

6 Case Studies . 89

6.1 News Server/Reader . 89

6.2 Chat Application . 90

6.3 Job Queue . 92

6.4 Experiment Coordinator . 93

6.5 Shared Whiteboard . 96

6.5.1 Publish/Subscribe . 97

6.5.2 RPC . 98

6.5.3 Tuple Spaces . 99

6.5.4 MELON . 101

7 Evaluation of MELON . 102

7.1 Performance Analysis . 102

7.1.1 Operation Speed . 102

7.1.2 Communication Overhead 104

7.1.3 Message Latency . 105

7.1.4 Message Throughput . 107

7.1.5 Whiteboard Performance 109

7.2 MELON Suitability for MANET Applications 115

7.2.1 Disconnection Handling 115

7.2.2 Resource Addressing and Discovery 116

7.2.3 Flexible Communication 117

vii

8 Conclusions . 118

8.1 Future Work . 119

A Full Application Examples . 121

A.1 News Server & Reader Applications 121

A.2 Chat Application . 123

B MELON Prototype Implementation Details 126

B.1 Local Storage . 126

B.1.1 Messages . 127

B.1.2 Stored Messages . 127

B.2 Remote Storage Client . 128

B.3 Remote Storage Server . 129

B.4 MELON API . 129

References . 132

viii

List of Figures

3.1 Communication Overhead with Wired Links 35

3.2 Communication Overhead with Simulated Wireless Links 35

3.3 Group Communication with Wired Links 37

3.4 Group Communication with Simulated Wireless Links 37

3.5 Disconnection Recovery . 39

3.6 Simulated Mobility Scenario . 39

3.7 Client-Server Throughput with Mobility 40

3.8 Bytes per Message . 50

3.9 TCP Packets per Message . 51

3.10 Message Delivery - Single Hop . 55

3.11 Message Delivery - Multihop . 55

3.12 Message Delivery - Mobile . 56

3.13 Tuple Space Ideal Scenario . 57

3.14 Tuple Space Failure Scenario . 58

3.15 Round Trip Times . 59

3.16 Whiteboard Message Delivery (DSR) 61

3.17 Whiteboard Message Delivery (AODV) 62

3.18 Whiteboard Message Delay (DSR) 63

3.19 Whiteboard Message Delay (ADOV) 63

3.20 Whiteboard Routing Overhead - Single Hop 65

3.21 Whiteboard Routing Overhead - Multihop 65

3.22 Whiteboard Routing Overhead - Mobile 66

ix

5.1 Paradigm Architecture . 79

5.2 Sparse Bit Set Operation Speed 84

5.3 Sparse Bit Set Size . 84

6.1 Coordinator Architecture . 94

7.1 Read Speed . 103

7.2 Take Speed . 103

7.3 Message Overhead . 104

7.4 Message Latency - Static Scenario 106

7.5 Message Latency - Mobile Scenario 106

7.6 Message Throughput - Static Scenario 107

7.7 Message Throughput - Mobile Scenario 108

7.8 Host Out-of-Order Messages . 109

7.9 Message Latency . 110

7.10 Global Out-of-Order Messages . 111

7.11 Delivery Rates . 112

B.1 ZeroMQ Server Setup . 130

x

List of Tables

3.1 Projects Summary . 19

3.2 Message Sequence Overview . 49

4.1 Operations Summary . 71

4.2 MELON Operations . 73

4.3 Read from multiple processes . 74

5.1 Sparse bit set example . 83

6.1 Coordination Framework Messages 95

B.1 LocalStorage Methods . 127

xi

Acknowledgments

I would like to thank my advisor Rajive Bagrodia for his patience, guidance, and

belief that I would eventually complete this research.

Sincere thanks to my managers at AT&T Interactive and Twitter who were

gracious enough to pay me, mentor me, and allow me the flexibility to complete

my degree at the same time.

Many thanks to the many who inspired me to study computer science. Special

thanks to my uncle Michael Rudd who gave me his old TRS-80 Model 100 and

permanently changed my career path from hardware to software and has remained

a source of encouragement and academic advice. Thank you to David Joslin who

provided my first research experience and publication.

I am very grateful to have been a part of the Computer Science Graduate Stu-

dent Committee (CSGSC). I would especially like to thank the founding members

who were friendly enough to include me and made several years much more pleas-

ant.

I owe a surprising amount to Tom Murphy VII, who helped me become presi-

dent of my high school, motivated me to investigate programming languages, led

me to pursue a PhD, and inspired many of my projects. I hope to meet him some

day.

Finally, there is no way I would have made it this far without the advice and

love from my mom, nor the incredible patience, understanding, and love of my

wife. Thank you.

xii

Vita

2002–2005 Helpdesk Specialist, Seattle University Law School, Seattle,

Washington.

2005–2006 Systems Administrator, Klir Technologies, Seattle, Washing-

ton.

2006 B.S. (Computer Science), Seattle University.

2007–2010 Graduate Student Researcher, Computer Science Department,

UCLA.

2009 M.S. (Computer Science), UCLA.

2010-2012 Security Engineer, AT&T Interactive, Glendale, California.

2012–present Security Engineer, Twitter, Inc., San Francisco, California.

2013–present Technology and Security Advisor, Guide Financial, San Fran-

cisco, California.

Publications and Presentations

J. Collins and D. Joslin. “Improving genetic algorithm performance with intel-

ligent mappings from chromosomes to solutions.” In Proc. of the 8th Annual

Conference on Genetic and Evolutionary Computation (GECCO ’06) (Seattle,

Washington, USA, July 08 - 12, 2006).

xiii

D. Joslin and J. Collins. “Greedy transformation of evolutionary algorithm search

spaces for scheduling problems.” IEEE Congress on Evolutionary Computation,

2007 (CEC 2007).

Justin Collins and Rajive Bagrodia. “Programming in Mobile Ad Hoc Networks.”

In Proceedings of the Fourth International Wireless Internet Conference (WICON

2008).

Justin Collins and Rajive Bagrodia. “A Quantitative Comparison of Communica-

tion Paradigms for MANETs.” In Proc. of the 7th International ICST Conference

on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mo-

biQuitous 2010).

2013 Fukuoka Ruby Award: Outstanding Performance. Presented in Fukuoka,

Japan.

Justin Collins and Rajive Bagrodia. “MELON: A Persistent Message-Based Com-

munication Paradigm for MANETs.” In Proc. of the 10th International ICST

Conference on Mobile and Ubiquitous Systems: Computing, Networking and Ser-

vices (MobiQuitous 2013).

Justin Collins and Rajive Bagrodia. “MANET Application Development with

MELON.” In Proc. of the 13th International Conference on Ad-Hoc Networks

and Wireless (ADHOC-NOW 2014).

“Mobile Ad Hoc Networks are Coming, But We Aren’t Ready.” Midwest.IO 2014,

Kansas City, Missouri.

xiv

CHAPTER 1

Introduction

1.1 Motivation

Mobile ad hoc networks (MANET) comprised of small, mobile, wireless devices

present a new and challenging area for the development and deployment of applica-

tions. As consumer devices equipped with WiFi capabilities such as smartphones

become more widespread, the possibility of impromptu networks also increases.

Mobile applications are no longer limited to stand-alone or client-server programs,

but can interact and form useful networks directly with each other. Such networks

are ideal for situations in which there is no time to set up a fixed access point, or

when there is no fixed infrastructure available. Many new applications, particu-

larly in the consumer space, are being applied to MANET, including collaborative

software such as shared whiteboards, impromptu networks for communication and

entertainment, and peer-to-peer applications for file sharing. While typical exam-

ples of MANETs include military units or disaster recovery scenarios, MANETs

are also useful inside buildings where cellular reception might be unavailable,

where censorship blocks free speech, or even for instant networked gaming be-

tween nearby friends.

In mobile ad hoc networks (MANET), high nodal mobility causes frequent

topology and route changes, making it difficult to maintain network connections

between nodes. Many routes in the network span multiple wireless hops and may

experience dramatic and unexpected fluctuations in quality. The combination of

1

mobility and wireless communication creates highly dynamic network topologies in

which frequent, possibly permanent disconnections are commonplace, rather than

exceptional events. The dynamics of the network and the wireless channel requires

changes to the networking stack and alternative solutions at the application level.

While there has been a large amount of work focused on the network stack for

MANETs, especially routing, the application layer is not insulated from the chal-

lenges faced at the networking layers. Mobile applications face several challenges

when compared with programs intended for standard desktops: mobile devices are

generally constrained in many ways: the screen size, processor power, memory,

and battery power are often limited. Development platforms for mobile devices

typically provide basic libraries for application support such as menus and access

to data stored on the device. Networking, however, is generally limited to sockets,

TCP/IP, and HTTP. In particular, applications are expected to either be stand-

alone, like a calculator, or to only be using the network in a client-server manner,

such as accessing websites or email servers.

However, most laptop computers are already equipped with WiFi which can

operate in ad-hoc mode. Smartphones with WiFi are becoming ubiquitous. In

2013, surveys showed 91% of adults in the United States had cell phones, and

56% of those are smartphones [Smi13]. Among teens, 78% had a cell phone, of

which 37% are a smartphone [Ma13]. Add smartphones to the proliferation of

tablets and laptops and the ability for consumers to form mobile ad hoc networks

(MANETs) is quickly becoming possible. However, applications designed for these

networks remain in short supply.

One way to encourage creation of MANET applications is to simplify commu-

nication between devices. Given the challenges of distributed communication in

such volatile networks, MANET applications often implement an abstraction layer

for network communication. The majority of these abstraction layers are based

on traditional distributed computing paradigms which were not designed for un-

2

reliable, rapidly-changing wireless networks. We have examined these paradigms

and the performance of their implementation for MANETs and found them to

be unsuitable for general purpose communication needs of MANET applications.

Therefore, we have designed a new communication paradigm specifically to meet

the challenges of MANETs, rather than modify an existing paradigm which was

not originally intended for the MANET environment.

1.2 Contributions

The first contributions of this dissertation are two comparative studies of commu-

nication paradigms used in MANET applications. The first study is a survey of

existing libraries and languages used to support MANET applications. Included

in the survey is a quantitative comparison using a subset of the surveyed projects

to examine how well they perform in a realistic MANET environment. This was

the first such quantitative comparison of these projects in identical scenarios.

Once we had surveyed existing projects, it became clear the majority of projects

rely on three traditional distributed computing paradigms: publish/subscribe, re-

mote procedure calls, and tuple spaces. In the previous study, we compared per-

formance of projects, but the implementations were in different languages with

different levels of completeness and rigor. This made it difficult to conclude any-

thing regarding the underlying communication paradigms. To directly compare

the paradigms themselves and determine their suitability as the basis for MANET

applications, we implemented canonical versions of the paradigms with as much

shared code as possible. In the second contribution of this dissertation, we in-

vestigated the impact of wireless and mobility at the application layer for the

different paradigms via an emulated network stack, detailed wireless models, and

real applications.

After studying the traditional communication paradigms and their adaptations

3

to the MANET context, we designed a new paradigm, MELON, to specifically to

meet the challenges of distributed communication in MANETs. MELON provides

message persistence, reliable FIFO multicast, read-only messages, simple message

streaming, private messages, and efficient bulk operations. To operate well in the

distributed and unreliable MANET environment, the design of MELON avoids

any global state or locking and performs all operations on-demand. Thus, the

third contribution in this dissertation is the design of the MELON communication

language.

Our fourth contribution is a prototype implementation of MELON. In order

to evaluate the practicality of using MELON in MANET applications, we im-

plemented a prototype of MELON as well as implementing better versions of the

three traditional paradigms from above. Again, the four paradigms share as much

code as possible in order to eliminate performance differences caused by different

implementations. We then compared the performance of MELON with the three

traditional paradigms. Besides the quantitative comparison, we also implemented

several example applications using MELON to demonstrate its utility in a number

of scenarios.

Finally, while empirically evaluating all these paradigms, we created an ex-

periment coordination framework implemented using MELON itself, which is pre-

sented as a case study in Section 6.4. The framework is responsible for managing

the network emulator, running the applications under review, collecting output

from the applications, and collating the results. It also coordinates the emulator

and applications to start and stop at the same time, as well as communicating

experiment parameters to the applications. This experiment coordination frame-

work is the final contribution of this dissertation.

4

1.3 Dissertation Organization

The remainder of this dissertation is laid out as follows:

Chapter 2 reviews the challenges presented by MANETs and the fundamental

communication paradigms which have been applied to MANET applications. In

Chapter 3 we compare existing projects providing communication libraries for

MANETs as well as canonical implementations of the underlying communication

paradigms. We present both qualitative and quantitative analysis of the projects

and paradigms. Chapter 4 presents the design of MELON and its communication

model, then covers the prototype implementation of MELON in Chapter 5.

Several case studes are presented in Chapter 6 using MELON in applications,

including the experiment coordination framework used in our later evaluations.

Chapter 7 includes performance comparisons between MELON and traditional

communication paradigms and discusses the suitability of MELON as a basis

for MANET applications. Finally, our results and future work are presented in

Chapter 8. Full MELON application code for a news server/reader and a chat

room example may be found in Appendix A.

5

CHAPTER 2

Communication Paradigms for MANETs

This dissertation is mainly an investigation into patterns of communication used in

applications operating in a MANET environment. These communication patterns

largely fall into categories of communication paradigms - approaches to abstracting

the interactions between distributed nodes. In this chapter, we first examine the

characteristics of MANETs and the desired features of communication paradigms

in Section 2.1, then provide an overview of various paradigms in Section 2.3.

2.1 Mobile Ad Hoc Network Characteristics

Mobile ad hoc networks (MANETs) are composed of mobile nodes which may join

or leave the network at any point. These nodes are typically small and battery-

powered, such as smartphones, smart watches, PDAs, tablets, netbooks, or lap-

tops. MANETs are not limited to such small nodes, however. They can include

unmanned aerial vehicles (UAVs), passenger vehicles, buses, commercial trucks,

and any other kind of mobile device. Typically, though, MANETs are expected

to consist mostly of devices with limited battery, processing power, memory, and

storage.

Besides being mobile, the other main characteristic of MANETs is their com-

munication via an infrastructureless wireless network. In other words, nodes wire-

lessly communicate directly with each other or by using other nodes to relay mes-

sages. The networks are entirely self-organizing and, in the most general case, rely

6

on no access points, cellular towers, or any other type of fixed wireless receiver.

Mobility and wireless are at the root of all of the challenges MANET appli-

cations face. The network topology can change rapidly with nodes joining and

leaving at any time without warning, leading to lost information and broken net-

work routes. Wireless communication can be disrupted in many ways, including

competing broadcasts, physical obstacles, and nodal mobility.

2.2 Requirements

Based on the characteristics of MANETs, we have identified three key challenges

when creating applications to operate in MANETs.

2.2.1 Disconnection Handling

Due to the unreliability of wireless communication and the ability of nodes to

physically move, applications in MANETs can experience frequent disconnections.

Unlike traditional distributed computing, which typically views disconnections as

exceptional events and errors, applications in MANETs must be able to handle

disconnections as part of their normal operation.

In a MANET, nodes are highly mobile and disconnections occur frequently,

either due to channel condition variation or the mobility of destinations and in-

termediate nodes. Disconnections may be prolonged, brief, or intermittent and

applications must handle all three. Traditional networking treats disconnections

as failures, but a programming environment for MANETs needs to handle discon-

nections as a natural element of the environment.

Besides simply hiding disconnections, the decentralized nature of MANETs

causes difficulties for any operations which require global state, a global view of

the network, or long-term coordination among nodes. Communication paradigms

7

and their implementations must be able to operate in a distributed manner.

2.2.2 Addressing and Discovery

The lack of infrastructure in a MANET requires a decentralized method for find-

ing and addressing resources. Traditional approaches such as DNS cannot be

maintained in a MANET, so alternative means of discovering and addressing re-

sources must be provided. The spontaneous nature of MANETs also dictates that

discovery be dynamic, as the network topology cannot be known ahead of time

and may change rapidly.

Unlike a wired network with a fixed infrastructure, MANETs cannot depend

on centralized look up services like DNS to find peers. Since devices are constantly

joining and leaving the network and it is not possible to maintain IP addresses or

URLs to locate resources, applications must be able to locate them dynamically.

Addressing resources may be accomplished at different levels of abstraction.

Addresses relying on MAC or IP addresses would be too fragile in a MANET.

Instead, it is preferable to be able to refer to a resource by either a name or a

value describing its contents or function. This allows the resource to be addresses

independent of its actual location or even implementation. For example, an ap-

plication may wish to print a document, so it would send print job to a printer

resource. The actual printer which is used may vary over time and location, but

the application only requires that it be able to print the document.

2.2.3 Flexible Communication

Basic communication between devices in a wired network is generally accom-

plished in a one-to-one unicast manner. In a MANET, multicast communication

is also common due to the broadcast nature of wireless networking and band-

width limitations. Collaborative applications, networked games, and streaming

8

media also benefit from group communication. Providing flexible communication

is crucial to developing applications for MANETs.

Besides unicast and multicast communication, it is also desirable to support

private unicast communication between nodes, in the sense that nodes cannot

eavesdrop on or disrupt each other’s communication within the communication

paradigm. Many mobile applications provide private one-on-one communication,

such as instant messages, SMS, direct messages on social networks, email, and

other confidential communication.

A general purpose communication paradigm should provide easy access to all

kinds of communication patterns.

2.3 Communication Paradigms

Work in this area has mostly focused on adapting existing distributed computing

paradigms to the mobile ad hoc environment, as we will discuss in this section.

It is useful to describe communication paradigms in terms of temporal and ref-

erential coupling [TS02]. When a paradigm is temporally coupled, it requires the

sender and the receiver to both be present for a message to be sent. If it is tempo-

rally decoupled, a message can be stored at sending time and then delivered when

the receiver becomes available. Referential coupling indicates whether or not the

sender and receiver need to be directly aware of each other. A referentially cou-

pled system explicitly addresses receivers, while a referentially decoupled system

does not need to know with which nodes it is communicating (e.g. IP addresses),

it operates at a higher level of abstraction.

Both temporal and referential decoupling are preferred in a MANET. If a

paradigm is temporally decoupled, it is more likely to be able to handle dis-

connections and changing network topologies. Referential decoupling is useful,

because it avoids the need for a centralized naming system and allows remote

9

resources to be addressed using application-level semantics, rather than having

to drop down to the network layer. This also allows resources to logically move

between physical hosts without changing the address used by the application.

A third type of coupling, synchronization, is mentioned in [Eug03]. If a

paradigm implements synchronization decoupling, then the message sender is not

blocked when sending a message, and a receiver does not block when waiting

for a message. In other words, sending and receiving of messages occurs outside

the main thread of the application. Typically this means sending a message re-

turns immediately and received messages are handled asynchronously in a callback

method.

2.3.1 Publish/Subscribe

The publish/subscribe paradigm divides processes into publishers and subscribers.

In topic-based publish/subscribe, publishers broadcast messages tagged with one

or more topics. Subscribers receive the messages by subscribing to one or more

topics and specifying a callback to receive the publications asynchronously and

separately from the main process thread. Publish/subscribe does not guarantee

any ordering of publications nor does it specify how to deliver messages if the

subscribers is not available at the time of publication. Publish/subscribe is tem-

porally, referentially, and synchronization decoupled. Messages may be sent and

received at any time, and it is possible to handle multiple incoming publications

concurrently.

Publish/subscribe is completely oriented towards group communication. The

only method of communication is publishing a message to a topic. There may

be zero or more subscribers to that topic, all of which will receive the message,

provided the subscribers are available. One-to-one communication can only be

achieved by coordination at the application layer. For example, two nodes may

10

agree to communicate via a topic which they assume no one else will use.

Topic-based publish/subscribe is the simplest variation for subscriptions. Sub-

scriptions may be based on hierarchical topics or tags, content of the messages,

type structures, and so on.

Typically, there is a system of fixed nodes which serve as brokers which man-

age subscriber lists and delivery of messages. However, the brokering system is

completely transparent to the application layer, which is only able to subscribe

to topics and publish messages. This maintains the referential decoupling that

publish/subscribe systems provide. Published messages may or may not be per-

sistent, depending on the implementation. In distributed publish/subscribe such

as MANETs, it is generally not expected that publishers would persist and deliver

messages at a later time via brokers [Eug03], although some implementations ex-

ist [CP06]. Managing an overlay network of brokers adds considerable complexity.

STEAM (Scalable Timed Events and Mobility) [MC02] is an example of an

event-based middleware which uses publish/subscribe for communication. REDS

(REconfigurable Dispatching System) is a framework for building publish/sub-

scribe systems in highly dynamic networks.

2.3.2 Remote Procedure Call

Remote procedure call (RPC) is a form of message passing in which remote proce-

dures or method invocations are syntactically similar or identical to local function

calls, but the code is actually executed on a remote machine. When the proce-

dure is called, arguments are copied to the remote machine, which executes the

requested method and sends the resulting value back to the local machine. RPC

is temporally coupled, since remote methods must be available at the time of the

call. However, RPC is referentially decoupled, since the application does not know

which node it is communicating with, only that it supports a given method.

11

A host can “export” an object to be accessed remotely. Remote hosts discover

these remote objects by name or type and then invoke methods defined on the

object. RPC is spatially coupled, since the remote object must be available in

order to invoke the method. Arguments may be passed to the remote method

and the return value of the method is returned to the local process. Since RPC

implies code execution, failures during the remote calls can be dangerous [TS02].

Group RPC invokes the same method with the same arguments on all matching

remote objects. In a MANET, group RPC must be performed asynchronously to

be practical: the call may return multiple values but the client cannot rely on all

remote hosts returning a value successfully. A timeout could be used instead, but

a short timeout would cause unnecessarily lost messages, while a long timeout

could cause long delays in the execution of the application.

RPC inherently supports one-to-one two-way communication. Arguments to a

method can be considered sending a message, and the return value of the method

can be thought of as sending a reply message. RPC can also support group

communication by invoking a given method on multiple remote hosts.

Many-to-Many Invocation (M2MI) [KB02] is an RPC implementation for MANETs

which avoids costly ad hoc routing and discovery by broadcasting messages. Mes-

sages are addressed by object type, so if a device hosts an object of the addressed

type, it will pass the message to that object.

The advantage of M2MI is simplicity. As messages are simply broadcast with-

out expectation of reply, there is no need to worry about return values or blocking

while waiting for confirmation. At the language level, there is no difference on

the sender’s side between a message which is actually received and one which is

not received by anyone. Though this provides simplicity, it also means more work

for the programmer. As there is no guarantee of message delivery, any function-

ality beyond simple unidirectional message passing must be implemented on top

of M2MI.

12

AmbientTalk [CMB07] is a complete object oriented language inspired in part

by M2MI’s message passing. AmbientTalk implements a higher level abstraction

of resource discovery and disconnection handling which is absent from M2MI, but

retains the idea of object handles and remote method invocations. All remote

events are handled asynchronously by AmbientTalk through the registration of

callbacks. A block of code may be registered to be invoked when discovering a

certain resource type. AmbientTalk also adds the ability to receive values from

method invocations on remote objects through the use of futures. By default, mes-

sages sent to remote objects are buffered until they can be sent. The programmer

can also choose to break the connection and recall buffered messages.

2.3.3 Tuple Spaces

Tuple spaces, introduced in the Linda [GC92] coordination language, operate on

a distributed shared memory space of typed, ordered tuples. Tuples are sent

using the out operation then retrieved by matching templates with rd, which

copies the tuple, or in, which atomically removes the tuple from the tuple space.

If multiple tuples match, one is chosen nondeterministically. Tuple spaces have

strict semantics for rd and in: if a matching tuple exists, it must be returned. rd

and in are blocking operations, but typically non-blocking versions are provided

called inp() and rdp() which return immediately even if there are no matching

tuples.

Tuple spaces are both temporally and referentially decoupled. Tuples may

be read any time after they have been written to the tuple space, provided they

have not been removed in the meantime. Where a tuple may physically reside

is completely unknown to the application; all communication is performed by

requesting a tuple matching a particular template. Tuple spaces easily support

group communication, since a single tuple may be read by any number of nodes.

One-to-one communication can be achieved by agreement on a particular tuple

13

field, although this does not guarantee unintended receivers will not read or even

remove the tuple.

An issue particular to tuple spaces is the “multiple read problem”: nondestruc-

tively retrieving all matching tuples requires repeated rd operations, which may

return any matching tuple [RW96]. One solution is to use a mutex tuple to gain

exclusive access to the tuple space, remove all matching tuples using in, replace

the tuples, and then release the mutex. However, this approach prevents concur-

rent access and is dangerous in MANETs where the node with the mutex may

disappear. Another solution uses a counter in each tuple. The application reads

tuple 1, then tuple 2, etc., in order. Not only does this introduce performance

issues (if a particular tuple is unavailable, for example, the application must wait

on it), but if multiple processes are producing tuples they must coordinate to

generate consistent counters, essentially requiring another global mutex.

Yet another option, proposed in [ER01], relies on being able to use transac-

tions over the tuple spaces. Instead of using rd, the application uses in inside a

transaction to retrieve all desired tuples, then cancels the transaction to replace

all of the tuples back into the tuple space. This causes the tuples to be unavail-

able during the transaction and requires support for transactions, which does not

seem common. A final option, proposed in [RW96], is to simply introduce a new

copy-collect operation which copies all matching tuples. We will find in Section

6.5 that even this is not sufficient for typical needs of an application.

Several projects have adapted tuple spaces to MANETs, including L2imbo

[Wad99], LIME [Mur06], TOTAM [Ga13], and EgoSpaces [JR06]. LIME (Linda in

mobile environment) is a well-established implementation of tuple spaces [GC92]

for mobile environments. Each device or agent has its own tuple space, which can

merge with remote tuple spaces when they come into range of each other. Tuples

can be read and written from specific locations, but can also be read or written

to the “federated” tuple space which includes the local tuple space and any tuple

14

spaces which are currently merged with it. However, the tuple will reside in a

particular tuple space, so when that device or agent moves away, the tuples in

that tuple space will move with it and be out of reach. LIME requires tuple spaces

joining or leaving the federation do so explicitly, which is clearly at odds with the

dynamicity of MANETs where disconnections may occur unexpectedly.

Besides the typical tuple space operations, LIME also provides reactions which

can be triggered when a matching tuple is added to the tuple space. Reactions al-

low asynchronous and push-based communication when tuple spaces are typically

synchronous and pull-based. The implementation of reactions registers hooks on

each remote host. When a new tuple is stored, the hooks are evaluated first to

see if any match the tuple. For those that do, the registering host is notified and

a copy of the tuple is transferred.

Note that all reactions must complete before any other actions may occur. This

includes a tuple space leaving the tuple space federation. As discussed in [Ca01b],

this requirement can lead to livelocks were a node is not “allowed” to leave the

federation due to mutually recursive reactions. LIME II [Aa09], Limone [Fa04],

and CoreLIME [Ca01a] are proposed to meet shortcomings in LIME.

MESHMdl [HHM07] is another tuple space implementation, but varies slightly

from the LIME model. In MESHMdl, there is a single tuple space shared between

all applications on a device. All communication between applications is performed

via this shared tuple space. Remote tuple spaces are not shared like in LIME,

but are accessible for reads and writes only: it is not possible to remove tuples

from a remote tuple space. MESHMdl supports mobile agents and recommends

using them if actions need to be performed on a remote tuple space. MESHMdl

also adds the idea of being able to automatically write, read, or block tuples from

other tuple spaces.

Tuples on the Air (TOTA) [MZ04] also implements a tuple space for MANETs,

but differs from LIME and MESHMdl. Rather than storing tuples on a particular

15

device, tuples in TOTA are propagated through the network according to rules

specified per tuple. As the tuples move through the network, they can acquire

context information about the network, such as how many hops they have traveled

from the source.

2.3.4 Mobile Agents

Software “agents” are software units which operate autonomously, reacting to

their environment or outside instructions to perform tasks. “Mobile agents” are

agents which may move from one system to another, including from one physical

host to another [Lan98].

Using mobile agents in MANETs allows programs to move code to the data,

rather than communicating the data to a running program. Code migrates to

where data or resources are located, executes at that location, and then can return

to its original location to report the results. This allows mobile devices, which

usually have little processing power, to offload computationally intensive work to

machines with more processing and power resources.

We include mobile agents here because our original investigation into projects

providing communication libraries for MANETs included SpatialViews [NKS05a],

a language extension to Java ME which allows programs to iterate over groups

of devices. The code inside the loop is executed on the initial device and then

migrates to the next, eventually making its way back to the initial node. This

allows for complex operations to be written easily, as the language has built-

in support for such things actions as reduction operations. The iteration itself

is generally done according to some physical layout, although it is possible to

iterate over all objects or to use logical locations instead. More information about

SpatialViews along with performance data is presented in Section 3.1.

However, while copying application code from host to host works for specific

16

work types, it is not an efficient method for general-purpose communication. Fig-

ures 3.1 and 3.2 show the high overhead incurred when using mobile agents. A ten

year retrospective publication from the authors of an influential paper on mobile

code [CPV97] notes the high complexity of using mobile agents and the narrow set

of scenarios in which they are advantageous [CPV07]. Therefore, after evaluating

them in Section 3.1 we drop mobile agents from consideration.

17

CHAPTER 3

Analysis of Existing Paradigms

3.1 Project-Based Comparison

The current projects for developing software in MANETs fall into three broad

categories: runtimes, languages, and middleware, which offer increasing levels of

abstraction for the developer. They can also be combined: a middleware solution

can be written in a language which uses one of the basic runtimes for mobile

devices. In many cases projects also provide additional resources for software

development such as debuggers and emulators for testing code. Table3.1 sum-

marizes the representative projects discussed in this section with respect to the

requirements in Section 2.2. Broader overviews focusing only on middleware for

MANETs can be found in [HAM06] and [SA14].

3.1.1 Project Overview

3.1.1.1 Runtimes

Runtimes in this context are virtual machines for languages which are specifically

intended for use on small, resource-constrained mobile devices. Runtimes are

useful because they provide good portability for applications and thereby simplify

some of the application development process.

Two common runtimes for mobile devices are Java ME [Micb] and the .NET

Compact Framework [Mica]. A third runtime, BREW [Qua], is a proprietary

18

Table 3.1: Projects Summary

Project Category Disconnection

Handling

Addressing and

Discovery

Communication

LIME Middleware Tuple removal Merged tuple

spaces

Tuple space

MESHMdl Middleware Tuple removal Tuple exchange Tuple space

TOTA Middleware Connectionless Tuple propaga-

tion

Tuple space

STEAM Middleware Connectionless Event content Publish/subscribe

SyD Middleware Object proxies Object type Message passing

M2MI Language Connectionless Object type Message passing

AmbientTalk Language Flexible refer-

ences

Object type Message passing

SpatialViews Language Connectionless Object type Code migration

.NET CF Runtime None URL Sockets

Java ME Runtime None URL Sockets

product from Qualcomm. These runtimes focus on using few resources and pro-

viding libraries for application development, especially user interfaces. They do

not provide much networking support beyond basic sockets and HTTP support.

While it is possible to use these runtimes as foundations for better abstractions,

they provide little on their own to support MANET applications and will not be

considered in the following comparisons.

3.1.1.2 Languages

A language in this dissertation refers to any language, language extension, or

library which provides new language constructs for programming in a MANET.

Languages often include their own runtime or are built on top of existing runtimes.

Libraries and language extensions are likely to be easier for developers to use if

they are already familiar with the base language.

19

M2MI [KB02], AmbientTalk [CMB07], and SpatialViews [NKS05b] are three

language-based projects intended for MANETs. Many-to-Many Invocation (M2MI)

avoids costly ad hoc routing and discovery by broadcasting messages. Messages

are addressed by object type, so if a device hosts an object of the addressed type,

it will pass the message to that object.

The advantage of M2MI is simplicity. As messages are simply broadcast with-

out expectation of reply, there is no need to worry about return values or blocking

while waiting for confirmation. At the language level, there is no difference on

the sender’s side between a message which is actually received and one which is

not received by anyone. Though this provides simplicity, it also means more work

for the programmer. As there is no guarantee of message delivery, any function-

ality beyond simple unidirectional message passing must be implemented on top

of M2MI.

AmbientTalk is a complete object oriented language inspired in part by M2MI’s

message passing. AmbientTalk implements a higher level abstraction of resource

discovery and disconnection handling which is absent from M2MI, but retains the

idea of object handles and remote method invocations. All remote events are

handled asynchronously by AmbientTalk through the registration of callbacks. A

block of code may be registered to be invoked when discovering a certain resource

type. AmbientTalk also adds the ability to receive values from method invocations

on remote objects through the use of futures. By default, messages sent to remote

objects are buffered until they can be sent. The programmer can also choose to

break the connection and recall buffered messages.

SpatialViews takes a completely different approach than M2MI and Ambi-

entTalk. SpatialViews is a language extension to Java ME which allows programs

to iterate over groups of devices. The code inside the loop is executed on the

initial device and then migrates to the next, eventually making its way back to

the initial node. This allows for complex operations to be written easily, as the

20

language has built-in support for such things actions as reduction operations. The

iteration itself is generally done according to some physical layout, although it is

possible to iterate over all objects or to use logical locations instead.

3.1.1.3 Middleware

Middleware is software which manages interaction and communication between

applications, as well as providing various services which may be used by appli-

cations. Middleware may also include supporting libraries which can be used by

applications.

LIME (Linda in mobile environment) [Mur06] is a well-established implemen-

tation of tuple spaces [GC92] for mobile environments. Each device or agent has

its own tuple space, which can merge with remote tuple spaces when they come

into range of each other. Tuples can be read and written from specific locations,

but can also be read or written to the “federated” tuple space which includes

the local tuple space and any tuple spaces which are currently merged with it.

However, the tuple will reside in a particular tuple space, so when that device or

agent moves away, the tuples in that tuple space will move with it and be out

of reach. LIME does not currently have an implementation intended for mobile

devices smaller than laptops, though there are variations of LIME intended for

sensors.

MESHMdl [HHM07] is another tuple space implementation, but varies slightly

from the LIME model. In MeshMdl, there is a single tuple space shared between all

applications on a device. All communication between applications is done through

this shared tuple space. Remote tuple spaces are not shared like in LIME, but

are accessible for reads and writes only: it is not possible to remove tuples from

a remote tuple space. MESHMdl supports mobile agents and recommends using

them if actions need to be performed on a remote tuple space. MESHMdl also

21

adds the idea of being able to automatically write, read, or block tuples from

other tuple spaces.

Tuples on the Air (TOTA) [MZ04] also implements a tuple space for MANETs,

but differs from LIME and MESHMdl. Rather than storing tuples on a particular

device, tuples in TOTA are propagated through the network according to rules

specified per tuple. As the tuples move through the network, they can acquire

context information about the network, such as how many hops they have traveled

from the source.

Haggle [SSH07] is a middleware for mobile networks which allows tagged data

to persist in a publicly searchable storage space. The Haggle middleware focuses

heavily on abstracting the network layers by implementing its own routing and

naming schemes, which allows a single name to map to several addresses such

as MAC addresses, phone numbers, or email. Haggle proposes folding in many

routing protocols, MAC protocols, and application protocols into the middleware

and dynamically selecting and combining them.

SyD (System on Mobile Devices) [Sus04] is a complete middleware solution

for MANETs. The middleware centers around the idea of object registries which

allows service registration and lookup. Methods can then be invoked on these

remote objects. Disconnection is handled by allowing objects to also provide

proxy objects. If an object is unavailable, the method invocation will be handled

by the proxy object, which can then perform an action specific to that service.

For example, the proxy may buffer the request and send it later, or send back a

cached or default response.

STEAM (Scalable Timed Events and Mobility) [MC02] is an event-driven mid-

dleware which uses a publish/subscribe [Eug03] mechanism for propagating events.

STEAM uses the concept of proximity groups for communication, limiting events

to the local geographic area. Events are propagated by subscribers only when the

subject and proximity match. Events are further filtered on the subscriber side

22

by content, which determines if an event is delivered to the local application.

3.1.2 Suitability for MANETs

3.1.2.1 Disconnection Handling

The main challenge in MANETs is handling disconnections, which may be inter-

mittent, prolonged, or permanent. For example, at a busy conference there may

be many mobile devices in contact with each other, but distance and physical ob-

stacles may cause intermittent disconnections. Routes may also break and reform

due to mobility or channel variations, possibly causing prolonged disconnections,

but connections are eventually regained. When the attendees all leave, it becomes

unlikely their devices will ever be in contact with each other again, making the

disconnection permanent. A programming environment for MANETs must be

able to handle all three kinds of disconnections.

One solution, used in LIME, MESHMdl, and TOTA, is to use tuple spaces

for communication. Tuple spaces exhibit both spatial and temporal decoupling,

meaning that messages being sent do not need to be addressed to a particular

recipient nor does the recipient need to be present when the message is sent.

Tuple spaces generally operate by reading, writing, and taking tuples to and from

a shared location. Rather than sending a message directly to a recipient, a tuple

is written to the tuple space and can be read or taken from the tuple space by

other clients. This allows the tuple space to withstand disconnections.

For example, a tuple may be written out to the tuple space and then retrieved

by a different client an arbitrary amount of time later. The client which retrieves

the tuple may not even be in existence when the tuple was written. However,

there is still a problem if the writer of the tuple disconnects before the tuple is

read by a receiver. For LIME and MESHMdl, where the tuple space is associated

with a particular devices, the tuple space is only available when the sender and the

23

receiver are able to communicate directly with each other. In TOTA, tuples are

disseminated throughout the network and can survive even if the original sender

disconnects.

A different approach, used by M2MI and STEAM, is to forgo connections

completely. Messages in M2MI are sent with no expectation of reply. In the

general case, messages are sent to a particular object type, to be processed by any

device hosting an object of that type. Messages are broadcast with no buffering

whether or not there is a receiver available. This provides even more decoupling

than tuple spaces, but tuple spaces have the advantage of having some feedback

about a tuple’s status. The sender can check if a tuple has been removed from the

tuple space or not. If it has, the sender can have some assurance the tuple was

received by someone, otherwise it will be available until removed by the original

sender or another client.

STEAM avoids connections by filtering events on the subscriber’s side. This

eliminates the need for publishers to keep track of subscribers and completely de-

couples the two. However, publish/subscribe in a MANET environment does not

provide any message reliability. Any message reliability or disconnection feedback

would need to be implemented on top of the publish/subscribe framework.

Code migration, the approach used by SpatialViews, does not maintain con-

nections, but can be affected by disconnections if the device currently executing

the mobile code fails or leaves the network before completion. Most of the devices

in the network will not be involved in executing code at any particular moment,

in which case their failure or disconnection from the network would not have an

effect. When it does have an effect, however, it may cause the entire iteration to

fail. This can be mitigated by using a form of parallel iteration over the devices.

Since the iteration order in SpatialViews is nondeterministic, it does not provide

message reliability.

A third approach, implemented in AmbientTalk, relies on event handling and

24

futures. Event handlers can be registered for various events, such as discovery

of a service or disconnection of a remote object. Figure 3.1 illustrates the use of

two of these callbacks to discover a printer service. Once a printer is discovered, a

document is sent to be printed and a status message is returned. If a remote object

is discovered and later moves out of range, AmbientTalk can call the disconnection

code. By default, messages sent to a disconnected remote object will be buffered

until it is possible to send them. This provides a solution for intermittent and

even prolonged disconnections. If a remote object is disconnected for too long,

the programmer can recall all buffered messages and close the connection.

Listing 3.1: Printer Discovery in AmbientTalk

def pr in t (doc) {

when : P r in t e r d i s cove r ed : { | p r i n t e r |

when : (p r in t e r<−pr in t (doc)) becomes : { | r e s |

system . p r i n t l n (” Status : ” + r e s) ;

} ;

} ;

} ;

AmbientTalk also offers AmbientReferences [CDM06], which are related to

the M2MI model of object handles. AmbientReferences have a specified flexibility

which determines how disconnections are handled. Sturdy is the default model of

using buffered messages which will be delivered upon reconnection. Elastic refer-

ences wait a specified amount of time before severing the connection and rebinding

to another object of the same type. Fragile references will break immediately upon

disconnection and rebind to another object as quickly as possible.

The approach used by SyD is to offer the ability for the application designer

to specify how to handle disconnections. In SyD, it is possible to provide proxy

objects which will be called when the actual remote object is unavailable. These

objects can then handle the invocation in an object-specific manner, such as buffer-

25

ing or returning a default value.

3.1.2.2 Addressing and Discovery

Unlike a wired network with a fixed infrastructure, MANETs cannot depend on

centralized look up services like DNS to find peers. Since devices are constantly

joining and leaving the network and it is not possible to maintain IP addresses or

URLs to locate resources, applications must be able to locate them dynamically.

The tuple space implementations of LIME, MESHMdl, and TOTA automat-

ically discover neighboring tuple spaces. LIME will merge tuple spaces with the

same name, while MESHMdl does not merge tuple spaces, but uses special tuples

to provide a method of addressing a remote tuple space. Tuple spaces can be used

for service discovery by writing out tuples which describe available services, or by

writing out tuples intended for a specific service, which will read the tuples when

it is available.

Addressing is not necessary in general in tuple spaces, as it can be assumed

a given service and a client will have pre-agreed upon tuple template to use for

communication. For example, a ubiquitous application used by a museum might

have “information points” with information specific to a location. The information

point does not need to even be aware of clients, nor do clients need to know any

identifying information about the information point, as they will simply read

available tuples from the information point’s tuple space.

Object types for discovery and addressing is used by M2MI, AmbientTalk, and

SpatialViews. This is based on the assumption that objects with the same name

will implement the same services. M2MI and AmbientTalk use this with object

handles which refer to a specific object type. When methods are invoked on a given

handle, the remote object will correspond to the type of the object handle. M2MI,

however, does not provide a method for discovery beyond manually sending out

26

messages periodically and waiting for replies. AmbientTalk offers event handlers

to be automatically called when objects of a specific type are discovered. These

can be called exactly once or each time one is discovered.

SpatialViews uses object types along with spacial properties to define a “view”

of the network. Once a view is created containing a given object type, Spa-

tialViews provides a method of iterating over the available nodes within that

view. The code within the iterator is executed locally on the remote devices.

After the code is run, the device locates another nearby node hosting an object

of the correct type and the code migrates there. Within the iteration, the code

can synchronously invoke methods on the local service through an object handle.

In Figure 3.2, a simple SpatialView is created to broadcast a message in a chat

application. The code within the visiteach block (line 4) is executed locally.

Therefore, unlike the AmbientTalk printer example, c.receive(...) is a local

method call, not a remote call.

Listing 3.2: Simple Messaging in SpatialViews

s p a t i a l v i e w v = ChatService ;

v i s i t e a c h c : v {

c . r e c e i v e (sender , message) ;

}

SyD also uses objects to invoke remote services, but it requires that these

objects register themselves with neighboring devices, as well as locally.

The publish/subscribe model used by STEAM relies on subscribers knowing

ahead of time what subscriptions are interesting to them. The publishers do

not need to explicitly know who is subscribed, as messages are simply broadcast.

However, it is possible to periodically send out messages describing available sub-

scriptions.

27

3.1.2.3 Flexible Communication

Basic communication between devices in a network is generally accomplished in a

one-to-one unicast manner. However, in a MANET, group communication is also

common, due to the broadcast nature of wireless networking and the limitations

of bandwidth. Collaborative applications, networked games, and streaming me-

dia also benefit from group communication. Having both one-to-one and group

communication available in the programming environment is necessary, though it

may be possible to implement one with the other.

Tuple spaces lend themselves naturally to group communication. Tuples are

written to shared storage space, which is globally accessible. Since tuples can be

read without being removed from the tuple space, tuples are inherently one-to-

many. One-to-one communication is not as directly supported by tuple space.

However, tuples can be sent to a specific recipient by setting one of the fields in

the tuple to an agreed-upon address. The specified recipient can look for tuples

addressed to itself and take them from the tuple space.LIME, MESHMdl, and

TOTA support this type of communication.

M2MI and AmbientTalk support object references which can refer to all objects

of a type, a selected subset of those objects, or a particular object. These handles

directly correspond to broadcast, multicast, and unicast. Since AmbientTalk ex-

pects return values from messages, it is possible to receive multiple replies when

sending a multicast or broadcast message, resulting in event handlers running

multiple times or the return value being set more than once.

Communication in SpatialViews is done through code and variable migration.

This makes it very simple to perform complex group operations such as reductions

over several devices, but it makes one-to-one communication difficult. Figure 3.3

shows how it is necessary to set a variable to ensure a document is only printed

by a single printer. There is also no method to provide reliable message delivery,

28

other than iterating until a prearranged flag is set.

Listing 3.3: Printer Discovery in SpatialViews

Container r e s u l t = new Container () ;

s p a t i a l v i e w v = Pr in t e r ;

v i s i t e a c h p : v {

i f (r e s u l t . isEmpty ()) {

St r ing r e s u l t = p . p r i n t (document) ;

i f (r e s u l t == ” s u c c e s s ”)

r e s u l t . addElement (p . getName ()) ;

}

}

Similarly, publish/subscribe naturally supports group communication, but at-

tempting to send a message to a particular recipient is not directly supported by

the middleware. Publish/subscribe is intended to be used in situations with a

single sender and multiple receivers and does not adapt well to sending a message

to a single receiver. To do so would require the sender and receiver using a pre-

defined addressing, similar to setting an agreed-upon tuple value in tuple spaces.

Successful message delivery in the publish/subscribe is less likely than in a tuple

space, since messages are not persistent in the way that tuples are.

Listing 3.4: LIME: Print Job Reaction

LimeTupleSpace l t s =

new LimeTupleSpace () ;

l t s . setShared (true) ;

ITuple p r i n t j o b =

new Tuple () . addFormal (PrintJob . class) ;

UbiquitousReact ion ur =

new UbiquitousReact ion (pr int job ,

th i s , Reaction .ONCEPERTUPLE) ;

l t s . addWeakReaction (new Reaction [] {ur }) ;

29

3.1.3 Applications

To better understand the effect of using different programming approaches when

developing applications, two separate applications were written using AmbientTalk,

LIME, and SpatialViews. These projects were selected because they represent

very different approaches and had publicly available implementations. For each

application, we discuss issues with disconnections, discovery, and communication.

3.1.3.1 Printer Discovery

The printer discovery application illustrates how the different projects can be used

to approach the problem of resource discovery in a changing network. The client

needs to locate a device offering a printer service. Next it sends the print job to

a printer it has found, then waits for a reply. The printer processes the job and

sends back a success or failure message.

Disconnection can occur at different points in this process. The printer may go

out of range after the client has discovered it, but before the job is sent, or it may go

out of range after the job is sent, but before the result is returned. In AmbientTalk,

the default way of handling both cases is to wait until the printer can be contacted

again and then resume the connection. The print job or result message will be

buffered until the connection can be made again and then the message will be

delivered. This works well in the case where there is only transient disconnection,

but if a client has permanently left the area of the printer the application may

wait forever unless the programmer explicitly uses a timeout.

In SpatialViews, the only way to communicate between nodes is to visit them

in the course of an iteration over all nodes which offer a given service. With

the SpatialViews implementation of printer discovery, disconnection after discov-

ery and before sending back the success message are essentially the same. The

iteration will never complete and the originating node will eventually timeout.

30

One of the strengths of tuple spaces is temporal decoupling. The sender and

receiver do not both need to be present at the same time for a message to be sent.

The LIME version of printer discovery does not face the disconnection issues

above, partially because a print job remains in the tuple space until a result tuple

is received. A printer which reads the print job and then goes out of range does

not affect the operation. If the client is not in range when the result tuple is sent,

but reconnects later, the result tuple will still be available for it to read. Even if

the client permanently leaves an area, a different printer can pick up the print job

instead. The downside of this approach is that multiple printers may process the

same job, wasting resources.

In this example, addressing and discovery are needed to find a printer service

and also to send the result message. AmbientTalk and SpatialViews handle ad-

dressing with interface types. The printer offers a service with a typed interface

and the client is able to find nearby services of a given type. Discovery is also built

into both AmbientTalk and SpatialViews. In AmbientTalk, a callback function

is set up to be called when the printer service is discovered, as shown previously

in Figure 3.1. SpatialViews uses the idea of an iterator which loops over objects

of a certain type nearby. In this respect, AmbientTalk is more reactive, while

SpatialViews is proactive. The disadvantage to the SpatialViews approach is the

service must be available at the time of the iteration, otherwise it will complete

without a result. It will then be up to the programmer to retry the iteration until

it is successful.

Discovery in LIME merely requires the registration of reactions to tuple tem-

plates. Addressing the printer is not necessary, but the result message contains a

print job identifier so the client knows which job it represents.

Printer discovery does not really involve group communication, but there is

one-to-one communication in the sending of the print job and the result message.

In AmbientTalk, an object handle to the remote printer service is created when

31

the the printer is found. The print job is then sent by invoking a method on the

handle and waiting for a return value. On the printer side, it only needs to return

a value, it does not require any knowledge of the client.

For SpatialViews, care must be taken to make sure the print job only goes to

a single printer. Since the only method of communication is to visit every printer

available, it is necessary to set a flag in a shared variable indicating the print job

was already successfully printed and subsequent printers do not need to address

it, as seen in Figure 3.3. Again, the printer does not need to know anything about

the client.

In LIME, all communication is also inherently group communication, so the

result tuple needs to be explicitly addressed to the client using a some sort of

identification. The client will be waiting for a tuple with that specific ID.

3.1.3.2 Chat

The second example is a chat application. Clients can send out public or private

messages. Public messages are delivered to all other chat clients nearby, while

private messages are directed to a specific recipient. As in most chat applications,

there is no history and clients do not expect to receive messages sent earlier

or when disconnected. Disconnection can occur at any time while clients are

exchanging messages.

Disconnection has less effect in this application than with printer discovery,

as the clients do not depend on the delivery of messages to continue operating.

However, the AmbientTalk implementation does buffer both public and private

messages and delivers them when the client reconnects, as this is built into the

language. LIME also handles disconnection well in this case, since there is no

need to guarantee message delivery.

SpatialViews suffers from the same issue in the printer discovery example: if

32

the code migrates to a section of the network which then becomes disconnected

from the rest of the network, or the current node goes down, the iteration just

stops. Since each message is a separate iteration, it will not affect the overall

operation of the application.

Addressing is handled similarly to the printer discovery example, except the

user needs to know the names of other users when sending private messages. The

AmbientTalk version notifies the user when other clients come into range and

adds their name and object handle to a list. Figure 3.5 shows the implementation

of the methods for sending out messages. Public messages are sent out to an

AmbientReference, defined in line 1, which only needs to know the interface name

and implicitly tracks individual clients.

Listing 3.5: Chat in SpatialViews

def a l l := ambient : Chatter

w i thCard ina l i ty : omni

w i t h E l a s t i c i t y : f r a g i l e ;

def sendAl l (message) {

a l l <−send (message , name) ;

} ;

def send (buddy , message) {

def b := b u d d y l i s t . get (buddy) ;

b<−s e nd p r i v a t e (message , name) ;

} ;

SpatialViews, like in the printer discovery application, iterates over all nodes

with the chat interface, delivering the message to each as it visits. This is shown in

Figure 3.5. For private messages, it still must iterate in the same manner, but the

recipient is encoded in the message. Unfortunately, this means private messages

still require visiting every node, possibly without even reaching the recipient in

33

the case of disconnection. Likewise, LIME must rely on encoding the recipient

in the message tuple and assuming no one but the intended client will read the

message.

Group communication is natural for public messages and one-to-one commu-

nication for private messages. All three projects handle group communication

well. AmbientTalk has omni-handles which refer to all interfaces of a given type

and will broadcast the message to all nearby clients. The only communication in

SpatialViews and LIME are essentially group communication, so for one-to-one

communication, SpatialViews and LIME require the programmer to implement

an addressing scheme on top of the group communication. The client side of the

application needs to pick out private messages intended for it and ignore the rest.

3.1.4 Experimental Results

This section compares the performance of AmbientTalk, LIME, and SpatialViews

in a regular wired LAN and in a MANET context using EXata.

The wired LAN environment provides a nearly ideal network in which the cost

of communication is very low, there is little contention for the communication

channel, all nodes are connected directly to each other, and collisions are minimal.

By minimizing these factors, it is possible to focus the experiment results on the

overhead of the programming environments. In these experiments, all nodes were

directed connected to a 100Mb/s switch, providing essentially an independent,

one hop channel for each pair of nodes

The results using EXata more accurately reflect the MANET environment.

For these experiments, all communication was performed through EXata, which

emulated an 802.11b ad hoc wireless network with an available bandwidth of

11Mb/s.

34

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160 180 200

C
a

rr
ie

d
 L

o
a
d

 (
P

a
c
k
e
ts

/s
)

Offered Load (Messages/s)

AmbientTalk
LIME

SpatialViews

Figure 3.1: Communication Overhead with Wired Links

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
a

rr
ie

d
 L

o
a
d
 (

P
a

c
k
e
ts

/s
)

Offered Load (Messages/s)

AmbientTalk
LIME

SpatialViews

Figure 3.2: Communication Overhead with Simulated Wireless Links

35

3.1.4.1 Communication Overhead

AmbientTalk, LIME, and SpatialViews use very different messaging systems. This

experiment demonstrates the overhead for each using a client-server setup as the

simplest base case. Messages are sent out from the sever to the client at an

increasing rate. The number of IP packets generated by doing so include control

and discovery packets. Each node is within wireless range of the others so all

communication is performed over single hop routes. Figure 3.2 and Figure 3.1

show the results from wired LAN and QualNet, respectively.

AmbientTalk has the lowest overhead, as it is simply performing a method

call on a remote object and there is no return value. LIME requires some com-

munication to alert merged tuple spaces of the messages’ presence and then more

communication to actually transfer the tuple. SpatialViews shows the highest

amount of overhead, which is expected since it is migrating code and data to

communicate a simple message.

Although the results were similar in the wired LAN and EXata, the perfor-

mance of SpatialViews was considerably slower, peaking at 20 msgs/s, while in

the wired LAN it was possible to reach 117 msgs/s. This is due to contention for

the wireless channel. It is also worth considering that LIME and AmbientTalk

use asynchronous messages while SpatialViews uses a blocking synchronous mes-

sage send. This allows LIME and AmbientTalk to take advantage of system level

buffers, while SpatialViews cannot.

3.1.4.2 Group Communication

In this experiment we consider the common situation where one node needs to

request information from the rest of the network and then collect the results,

with increasing numbers of receivers. The application sends out a message then

measures the time elapsed for responses. For SpatialViews, this involves visiting

36

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v
e
ra

g
e

 R
o
u

n
d

tr
ip

 D
e

la
y
 (

m
s
)

Receivers

AmbientTalk
LIME

SpatialViews

Figure 3.3: Group Communication with Wired Links

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v
e
ra

g
e
 R

o
u
n
d
tr

ip
 D

e
la

y
 (

m
s
)

Number of Receivers

AmbientTalk
LIME

SpatialViews

Figure 3.4: Group Communication with Simulated Wireless Links

37

each node and that node then visiting the sending node. The AmbientTalk version

uses an omnihandle, as in the chat application, to broadcast the handle of the

sender and then the receivers use the handle to send a return message. For LIME,

each message is sent as a tuple, to which the receivers send a response tuple.

Again, the network is set up so that no node is farther than one hop from any

other node. Figures 3.4 and 3.3 show the results.

In the wired LAN, LIME shows the least variation as the number of receivers

increases. This is because the sender writes out a single tuple and each receiver

can respond independently and in parallel. SpatialViews slows down considerably

as the number of receivers increases, since SpatialViews visits each receiver in

turn and waits on a response before continuing. The delay for AmbientTalk is

the highest but does not increase quite as quickly as SpatialViews. Although

AmbientTalk uses a single send at the application level, messages to individual

receivers are sent serially, causing the delay for the last receiver to be higher than

the first.

When run using EXata, the effect of using the wireless channel is seen again.

The delay with AmbientTalk and LIME increases, but not as dramatically as

SpatialViews, which reaches a delay of about 1 second with 5 receivers, while

a single receiver averages 134 ms. As in the previous experiment, the traffic

generated by SpatialViews quickly creates conflicts in the wireless channel, causing

retransmission and delay at the MAC layer.

3.1.4.3 Mobility and Disconnection

In order to isolate and examine disconnection recovery, a simpler experiment in a

wired LAN was performed, still using the same client-server application. In this

case, a 5 second disconnection was caused by turning the network interface off and

then turning it back on. Each project reacted similarly, as shown in Figure 3.5

38

 0
 10
 20
 30
 40
 50
 60
 70

 0 5 10 15 20 25 30

AmbientTalk

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

R
e
c
e

iv
e

d
 T

h
ro

u
g
h

p
u

t
(m

s
g

s
/s

)

Lime

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20 25 30

Time (seconds)

SpatialViews

Figure 3.5: Disconnection Recovery

Figure 3.6: Simulated Mobility Scenario

39

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100

Lime

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70 80 90 100

R
e

c
e
iv

e
d
 T

h
ro

u
g

h
p

u
t

(m
s
g
s
/s

)

AmbientTalk

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

Time (seconds)

SpatialViews

Figure 3.7: Client-Server Throughput with Mobility

though LIME showed the fastest recovery time. Interestingly, SpatialViews ex-

hibited delivery of buffered messages. As SpatialViews does not buffer messages

itself, this buffering was the result of the operating system attempting to locate

the remote node.

Using EXata, it was possible to evaluate the projects in a mobile environment

which provided disconnections, routing changes, and multi-hop communication.

For this experiment, the network layout and mobility pattern shown in Figure 3.6

was used. Node 1 user the same client-server application as in the first experiment

and is attempting to send messages to Node 4. The distance between the two nodes

forces a multi-hop route through the intermediate nodes. Node 1 moves from left

to right at a constant rate during a time period of 100 seconds. This experiment

again measures message delivery rate. Results are shown in Figure 3.7.

The large spikes for the AmbientTalk and LIME results indicate the delivery

of buffered messages. For AmbientTalk, the sender did not begin until the receiver

40

was discovered, while LIME began sending messages immediately. The flat part

of the graphs indicates when Node 1 was in between Node 3 and Node 5 and was

outside the range of both. SpatialViews did not perform well in this experiment

because it lacks the sophisticated disconnection handling and message buffering

of the other two experiments. Also, the code migration was difficult, more time

consuming, and more susceptible to disconnections. As in the previous experi-

ments, this demonstrates the difference between experiments using a wired LAN

compared to a simulated wireless network.

3.2 Paradigm-Based Comparison

3.2.1 Suitability for MANETs

3.2.1.1 Disconnection Handling

In the unreliable MANET environment, disconnections frequently occur during

the exchange of messages. Since disconnections can be prolonged, the networking

layers will assume the connection is entirely lost and cease retrying. By having a

message persist in some way, a paradigm can overcome these disconnections and

deliver the message at a later time.

Publish/subscribe allows message publication without any consideration for

the state of the subscribers. Publish/subscribe itself does not specify how “missed”

publications should be handled. A publish/subscribe system can utilize “brokers”

which manage subscriptions and facilitate delivery of publications. Brokers can

then serve as message buffers and provide more reliable message delivery in the face

of disconnections. In distributed publish/subscribe systems, however, the brokers

must be self-organizing, and in MANET this is complicated by how quickly the

network can change. It is common for distributed publish/subscribe systems not

to provide message persistence. If a subscriber is not available at the time of

41

publication, the message will not be received.

Since RPC requires a connection for communication, disconnections typically

cause RPC to block a process entirely until a remote node hosting an appropri-

ate method is available. Messages themselves only exist briefly during the RPC

transaction. Messages cannot be sent if a connection cannot be made to a remote

host.

In tuple spaces and MELON, message persistence is inherent in the paradigms.

In both paradigms, exchange of messages is achieved by storing the messages in

a shared storage space. Any amount of time may elapse between the storage of a

message and its retrieval. This allows reliable communication even in the face of

prolonged disconnections and is the reason we have chosen it for MELON.

3.2.1.2 Addressing and Discovery

All of the paradigms discussed here provide indirect addressing of resources sep-

arated from the physical machines. Publish/subscribe uses topics or content to

deliver message to subscribers, RPC uses class and method names, and tuple

spaces and MELON retrieve messages by matching content to templates. While

all three traditional paradigms originally relied on centralized services (brokers

from publish/subscribe, service directories for RPC, and a centralized database

for tuple spaces), simple distributed versions may be implemented by having each

node act as part of a distributed service.

3.2.1.3 Flexible Communication

A general purpose communication paradigm for MANET applications should have

the flexibility to support both unicast and multicast communication.

Publications in publish/subscribe are inherently multicast, since any number

of nodes can subscribe. Unicast communication is much less comfortable in pub-

42

lish/subscribe, as it involves negotiating which topics should be used to identify

which nodes. Publish/subscribe also does not provide any mechanism for ensuring

or even acknowledging message delivery to any given subscriber, especially since

publishers and subscribers are intended to be unaware of each other.

Since RPC mimics local method calls, it is natural that RPC is best suited for

unicast communication, in which the message is the argument to the method and

the return value is the response from the remote host. Assuming multicast RPC

functions in the same manner, then a multicast RPC invocation would expect

multiple return values, one from each remote host. In a MANET, it is likely

not every remote host would reliably return a response, further complicating the

semantics. A typical RPC invocation would block waiting for a response, but it is

not practical to wait for all responses to a multicast RPC invocation when some

responses may never be received. The use of futures or asynchronous callbacks

can improve the situation, but causes semantics to differ even more from unicast

RPC.

Tuple spaces are naturally multicast, since any number of nodes may read a

given tuple. Unicast communication can be achieved by using a field in the tuple

as the recipient’s address. The recipient then performs in operations on tuples

with their address in order to receive the tuples.

Networked applications also commonly require private, unicast communica-

tion. For example: SMS services, direct messaging in social networks, or com-

munication of sensitive data. For our purposes, private communication is the

exchange of messages between two parties which cannot be disrupted or eaves-

dropped upon by a third party from within the context of the paradigm itself. In

other words, concerns such as encrypting data or sniffing network traffic would be

outside the paradigm context.

RPC is unicast by default and there is no method in the paradigm for eaves-

dropping or disrupting RPC between two nodes. However, RPC has a different

43

complication: remote hosts are generally identified by their exposed methods and

there is no mechanism for attaching identity to the hosts. RPC will connect to

any remote method with the expected API. So while private communication is

the default in RPC, there is an addressing issue which makes it complicated to

communicate with a specific recipient.

Communication in publish/subscribe is public and multicast by nature. Any

subscriber can subscribe to any set of publications, making it simple to eavesdrop

on communications. Bidirectional communication is also difficult in publish/-

subscribe, since there is no information attached to a publication indicating the

identity of the publisher. This is by design, but it complicates situations in which

two hosts need to dialog.

In tuple spaces, tuples are public and available to any recipient. Not only can

any node read any communications without detection, any node can also disrupt

communications by removing tuples intended for a specific recipient.

3.2.1.4 Multiple Read Problem

The multiple read problem [RW96] is specific to tuple spaces: in a situation where

the tuple space contains many tuples of interest, how do multiple readers read all

relevant tuples? In tuple spaces, the non-destructive rd operation returns a copy of

a matching tuple, but it may return the same tuple any number of times since the

tuple is chosen nondeterministically between all matching tuples. In many tuple

space implementations, this occurs because the tuples are stored sequentially and

so the first matching tuple is always the same [Da12].

One solution is to use a single tuple as a mutex, lock the tuple space, remove

all matching tuples with in, then replace them in the tuple space. However, this

ruins any concurrency the tuple space could have had with multiple readers.

Another solution is to provide a bulk rd operation to return all matching

44

tuples. However, once a “snapshot” of the tuple space has been taken with a bulk

rd, new matching tuples may be introduced. A second bulk rd would return both

the old (already seen) tuples and the new tuples. A similar suggestion from [ER01]

is to remove all matching tuples inside a transaction, then abort the transaction

in order to actually leave the tuple space unmodified. Unfortunately, this again

leaves the problem of separating new tuples from previously-read tuples.

3.2.2 Paradigm Implementation

3.2.2.1 Publish/Subscribe

As stated in Section 2.3.1, it is not reasonable to expect any nodes to be reliable

enough to serve as message brokers. Therefore, our publish/subscribe implemen-

tation assumes each node can serve as its own broker, which is not uncommon

in MANET publish/subscribe systems [Den09, Cer08]. Subscription requests are

broadcast to all available nodes, which maintain lists of subscribers corresponding

to a particular topic. For simplicity, topics are specified as simple strings in a

flat address space. When an application publishes a message, it sends a copy of

the message to all subscribers to the specified message topic. As is common in

distributed publish/subscribe systems [Eug03], published messages are not persis-

tent.

3.2.2.2 RPC

Our RPC implementation uses a simple reflection-based mechanism for invoking

methods on remote objects. An application may enable remote availability for any

Java object. Remote nodes can then search for an object by its class. When found,

the application is given a handle to that object which the application can use to

call a generic invoke() method with the desired method name and parameters.

The RPC library handles communication with the remote object and returns

45

the resulting value from the method. This implementation avoids requiring any

method stubs or compile-time knowledge of remote objects or method names.

The library provides both synchronous and asynchronous remote invocations.

Synchronous invocations will block until a remote object of the expected type is

found and a return value is received. Asynchronous calls register a callback to

handle the return value when it arrives.

Our implementation also supports group communication. Group invocations

attempt to invoke a given method on all known remote objects of the specified

class. This must be done asynchronously, since multiple return values must be

handled and it is not possible to know how many hosts will respond. The registered

callback will be invoked each time a return value is received.

3.2.2.3 Tuple Space

Our tuple space implementation is largely modeled on LIME [Mur06] and uses

the same local tuple space library called LighTS [Bal07]. This library provides

storage of local tuples and matching of templates against the local tuple space.

This allowed us to implement the communication features separately.

While the tuples are logically located in a shared tuple space, they are actu-

ally stored locally. For example, an out() operation does not actually involve any

communication (unless there are existing requests for the output tuple). Opera-

tions on the tuple space, however, operate across the entire shared tuple space.

When a rd() or in() is requested, a search is first performed on the local tuple

space. If the request can not be completed locally, a request is sent to all known

remote tuple spaces. The remote nodes then return a message indicating how

many matching tuples they contain. The requesting node then chooses from the

nodes with existing matches and requests the matching tuple itself.

Requests which do not match any tuples are handled differently depending on

46

whether the request is blocking or non-blocking. If a blocking request cannot be

fulfilled, the request is stored and a reply will be sent if any future tuples match

the request. A non-blocking request, on the other hand, will immediately return

a message indicating zero matches.

In our implementation, blocking requests will block the requesting application

until the request can be filled. If no matching tuples exist at the time of the

original request, the request will be periodically repeated until it is met. Non-

blocking requests require a callback to be registered, which will be called when a

matching tuple is received.

We also provide a reaction mechanism [Mur06]. An application may register

a tuple template and a callback. The callback will be invoked when a matching

tuple is added to the tuple space. This is equivalent to either periodically using

a non-blocking request or making a blocking request in a separate thread, but is

provided as a convenience.

An application may also perform group requests. These are always asyn-

chronous, due to the possibility of multiple matching tuples, but can still be

considered blocking or non-blocking. A non-blocking group request will not be

saved on remote nodes to be served later, while a blocking request will be.

3.2.3 Experimental Results

In the following sections, we present measurements of message delay and message

delivery reliability for unicast and group communication, as well as for a non-

trivial whiteboard application. We also examine the message overhead and the

influence of routing algorithms. These experiments demonstrate the impact of the

wireless network and mobility at the application level.

We compared application-level metrics using unicast and group communication

in three network scenarios which are used throughout the experiments: a single

47

hop, static network; a multi-hop, static network; and a fully mobile network.

Each node in the emulated network is equipped with an 802.11b wireless interface.

The two-ray model is used for path loss. Based on preliminary results, we used

DSR [JM96] as the routing protocol for the static scenarios and AODV [PR99]

for the mobile scenario.

The mobile scenario uses random waypoint mobility with a pause time of

30s and maximum speed of 1 meter/second, representing pedestrians carrying

handheld devices. The nodes move within a 1500m x 1500m indoor space where

transmission range is limited to 50m. To avoid network segmentation, the scenario

ensures there are always possible routes between any two nodes by having four

fixed nodes. However, the remainder of the nodes are highly mobile and routes

between nodes change frequently. .The mobility pattern in each experiment is

identical.

The emulation environment is provided by EXata [Net08], a network emula-

tor which allows actual applications to run on an emulated wireless network in

real time. EXata provides a high fidelity emulation of the entire network stack

and detailed simulation of the wireless channel. This provides the realistic envi-

ronment required for accurate assessment of the paradigms while also facilitating

repeatability and fairness [TMB01,VB04]. Rather than comparing the utility and

performance of the paradigms theoretically, the emulation approach allows them

to be evaluated within actual applications. This more closely reflects their even-

tual purpose: the development of applications which will execute on a MANET.

The first application used for these experiments is a simple client-server appli-

cation which can send messages between hosts. This provides a baseline for the

performance results and allows us to easily test performance with varying message

sizes and frequency. The second application is a shared whiteboard. Collaborative

applications are often cited as use cases for MANETs and the shared whiteboard

is a common example [Lie09, Bad08, Leg05, SL04]. This provides a non-trivial,

48

Table 3.2: Message Sequence Overview

Paradigm Sender Receiver Size (bytes) Overhead (bytes)

Publish/Subscribe

Subscribe 175

Publish 1182

Total 1357 357

RPC

Search 146

Search Reply 187

Invoke 1238

Return Value 152

Total 1571 571

Tuple Space

Search 608

Search Reply 133

Tuple Request 588

Tuple Reply 1586

Total 2915 1915

realistic test case for each of the three communication paradigms.

Each application has three functionally equivalent implementations, one for

each of the communication paradigms.

3.2.3.1 Unicast Communication

Message Overhead

Application Overhead The first step of our experimental evaluation of

these three paradigms is discovering the basic cost of communication. Table 3.2

49

1 10 100 1000 10000 100000

Message Size (bytes)

0

2000

4000

6000

8000

10000

12000

14000

16000

A
v
e
ra

g
e
 O

v
e
rh

e
a
d
 (

b
y
te

s)

Publish/Subscribe
RPC
Tuple Space

Figure 3.8: Bytes per Message

provides an overview of the sequence of messages involved when using each of

the communication paradigms in the simple case of a single sender and a single

receiver sending a 1KB payload. The total size includes the 1KB payload. Pub-

lish/subscribe requires only two messages to be sent: one to subscribe to a topic

and one to publish. Since publish/subscribe only needs to add a string indicating

a topic, there is very little overhead added to the original message.

RPC first sends out a query to find the desired remote object. Once found,

it sends a second message to invoke the method and transfer any arguments.

The final message in the sequence is the return value from the method, which is

dependent on the size of the return value.

Tuple spaces require the same number of messages as RPC, but the overhead

is 2.3 times higher. Except for the search reply messages, all messages include a

tuple object, making them larger than the simple messages exchanged in RPC.

50

1 10 100 1000 10000 100000

Message Size (bytes)

0

100

200

300

400

500

600

TC
P
 P

a
ck

e
ts

 S
e
n
t

Publish/Subscribe
RPC
Tuple Space

Figure 3.9: TCP Packets per Message

Network Overhead While Table 3.2 indicated the overhead added at the

application layer, Figure 3.8 shows the average amount of TCP traffic which is

sent over the network for a single message, calculated as bytes sent - message

size. These results use the single hop static scenario and are averaged from 50

messages.

The results are fairly constant until the packet size is exceeded. There is some

increase at 10KB, and a dramatic increase at 100KB. Figure 3.9 shows the same

data in terms of TCP packets and indicates the cause of the sharp increase in

traffic at 100KB is the result of packet fragmentation.

Despite having large message sizes, tuple spaces have much lower overhead in

terms of TCP traffic. This difference arises from a side issue related to TCP send

window sizes. For tuple spaces, where the receiver initiates the connection, the

TCP send window size grows to accommodate larger packet sizes. With RPC

and publish/subscribe, the send window size remains constant, causing the large

messages to be split into many more packets. For RPC and publish/subscribe,

51

the sender initiates the TCP session, while in tuple spaces it is the receiver (of

the tuple) which initiates the TCP session.

Message Reliability How reliably a communication paradigm handles mes-

sage delivery has a direct impact on the application layer. The more reliable the

communication paradigm, the less responsible the application is for handling lost

messages. We measured reliability in terms of message delivery. In the single hop

scenario, all paradigms achieved 100% delivery and figures 3.12 and 3.12 indicate

nearly perfect message delivery for all the paradigms in the unicast scenario. Pub-

lish/subscribe performed the worst and still only lost 4 messages. However, this

is not unexpected, since publish/subscribe sends out publications immediately,

whether or not any subscribers are present.

Message Delay Message delay is another important application-level metric,

as it determines how quickly information is transferred and the freshness of the

application’s information. Figures 3.15(a), 3.15(c), and 3.15(e) show delay in

terms of round trip times for each paradigm in a single hop scenario. The majority

of the messages in each paradigm are under the 200ms mark, with just a few

wayward messages taking longer. Even for tuple spaces, 80% of the messages take

less than 400ms to complete their round trip. However, some messages take much

longer, up to 8s. For tuple spaces, this is partially due to the complexity and

overhead of the messages required to perform the round trip message delivery.

However, the time delay for tuple spaces in the single hop scenario is also

related to the pull (rather than push) nature of the paradigm. A tuple is time-

stamped when it is output, but the tuple is not actually sent to the receiver until

the receiver requests it. The same situation happens on the return trip, when the

tuple must be pulled back to the original sender. Any delays in this process cause

the round trip time to increase.

52

On the other hand, publish/subscribe messages are sent out almost immedi-

ately after being timestamped. Nearly all the delay is caused by the network itself.

RPC has more potential for delays since it must find the remote method before

invoking it. However, the return message can reuse the existing TCP connection,

which appears to provide an advantage over tuple spaces.

The multi-hop scenario introduces more message latency, as seen in Figures

3.15(b), 3.15(d), and 3.15(f). Again, most messages complete the round trip

very quickly (<300ms), but the maximum times for publish/subscribe and RPC

increased from 383ms and 110ms to 1537ms and 902ms, respectively. Not only

does it take longer due to the packets needing to traverse multiple hops, there

is also delay introduced by the time to find routes. In the single hop scenario,

routes are set up at the beginning of the scenario and there is virtually zero routing

activity after that. On the other hand, the multi-hop scenario performs routing

updates throughout the run time of the scenario.

The mobile scenario introduces even greater delays. Routes are changing fre-

quently and may be several hops long. While the publish/subscribe and RPC

results are clustered around 100ms and remain under 500ms, the tuple space val-

ues are considerably higher with a median at 256ms and a high of nearly 20s. This

is again due to the pull nature of tuple spaces and the overhead seen in Section

3.2.3.1.

3.2.3.2 Group Communication

Group or multicast communication is a useful but more complex part of MANETs,

where information and resources are often disseminated in a peer-to-peer manner.

Group communication differs significantly from unicast communication. Given

the mobile characteristics and decentralized nature of MANETs, a group’s mem-

bership may be in constant flux, so it is unlikely a sender has perfect knowledge

53

of the members of the group. The time difference between replies from members

of the group may vary greatly, and the initiating node cannot know how many

replies to expect.

We have investigated how well each paradigm handled group communication

by again evaluating message delay and message delivery reliability, but with mul-

tiple receivers.

Round Trip Application The method for achieving group communication is

slightly different for each paradigm. In publish/subscribe, there are two topics:

one for outgoing messages and one for incoming messages. The sending node

publishes a message containing a timestamp to the outgoing topic. When an

outgoing message is received, the receiving node republishes the message to the

incoming topic. The round trip time is then calculated when the sending node

receives the incoming copy of the original message.

In RPC, a group method call is asynchronously invoked with a timestamp as

the parameter. A group invocation will attempt to invoke all available copies of

the remote method and register a callback to handle the return values. In this

case, that callback will receive the original timestamp and calculate the round

trip time from it.

Since tuple spaces only support pull operations, the situation is inverted. Re-

ceivers request an outgoing tuple, which will contain a timestamp. The sender

outputs a proper tuple with a timestamp, which is then sent to the requesting re-

ceivers. The sender then requests a reply tuple and registers a callback to handle

the tuple when it arrives. Upon receiving the tuple with a timestamp, the receiver

will output a reply tuple containing the same timestamp. This tuple will be sent

back to the original sender, which can then compute the round trip time. This is

illustrated in Figure 3.14.

54

Figure 3.10: Message Delivery - Single Hop

Unicast Multicast Receivers

Figure 3.11: Message Delivery - Multihop

55

Figure 3.12: Message Delivery - Mobile

Message Reliability With this application, message reliability refers to mes-

sages which make the circuit from the sender to the receiver and back to the

sender. This is useful, for example, in situations where a sink node aggregates

information from other nodes.

Figures 3.11 and 3.12 show the percentage of messages successfully completing

the round trip. The single hop scenario is not shown, as all paradigms achieved >

99% reliability in that scenario. In the multi-hop scenario, there are more losses

even without mobility, but there is no significant trend as the number of receivers

increases.

RPC has a slight advantage with this metric, as it will wait until at least one

receiver is available. Publish/subscribe and tuple space will send out messages

whether or not any receivers are available at the time. However, none of the

communication paradigms will retry a message which is lost in transit. A message

lost anywhere in the circuit causes the entire attempt to be reported as a failure.

For example, if RPC is able to connect to a remote method and invoke it, but

never receives a return message, it will not attempt to invoke the method again.

Since these results require a message to complete the round trip circuit, there are

56

Sender Receiver

1. Request outgoing tuple

4. Save reply request
5. Receive outgoing tuple
6. Output reply tuple
7. Satisfy reply request

2. Output outgoing tuple
3. Request all reply tuples
5. Satisfy request

8. Receive reply tuple

Ideal Scenario

Sender Receiver

1. Request outgoing tuple
[Receiver moves out of range]
[Receiver unavailable]
[Receiver unavailable]
[Receiver moves back into range]
5. Repeat request
7. Receive outgoing tuple
8. Output reply tuple

2. Output outgoing tuple
3. Request all reply tuples
4. Satisfy request

6. Satisfy request

Reply Failure Scenario Figure 3.13: Tuple Space Ideal Scenario

multiple opportunities for message delivery to fail.

This contributes to tuple spaces showing the lowest delivery ratio (93%) in

the multi-hop scenario and a low delivery ratio (72.6%) in the mobile scenario.

While tuple spaces can easily handle the delivery of the outgoing tuple, it is more

difficult to guarantee the return of the reply tuple. If a node is not available to

receive the request broadcast for a reply tuple, then the reply will never be sent

even if the original outgoing tuple is received.

Figure 3.14 illustrates why this is the case. The interaction in the ideal scenario

assumes the sender and receiver are present for the entire interaction. In the

second scenario, however, the receiver moves away from the sender after sending

the initial request for an outgoing tuple. In step 3, the sender sends the reply

request, but it cannot be delivered. When the receiver returns, it repeats its

request for an outgoing tuple, because it is a blocking request which has not yet

been satisfied. The sender satisfies the request, but the reply is never sent since

the receiver never receives the reply request.

The solution to this situation would be to repeat the request for the reply

tuples. However, the reply request is a group request. Retries are problematic for

group requests, because it is unclear when a group request has been completely

57

Sender Receiver

1. Request outgoing tuple

4. Save reply request
5. Receive outgoing tuple
6. Output reply tuple
7. Satisfy reply request

2. Output outgoing tuple
3. Request all reply tuples
5. Satisfy request

8. Receive reply tuple

Ideal Scenario

Sender Receiver

1. Request outgoing tuple
[Receiver moves out of range]
[Receiver unavailable]
[Receiver unavailable]
[Receiver moves back into range]
5. Repeat request
7. Receive outgoing tuple
8. Output reply tuple

2. Output outgoing tuple
3. Request all reply tuples
4. Satisfy request

6. Satisfy request

Reply Failure Scenario

Figure 3.14: Tuple Space Failure Scenario

satisfied. While a normal rd() or in() operation is satisfied by a single tuple, there

is no upper bound on how many tuples may be available to satisfy a group request,

so the requester cannot know when to cease retrying. The LIME [Mur06] project

defines a group request as non-blocking and only operating on the current state

of the tuple space. This solution would fail in both exchanges shown in Figure

3.14, as the reply request may be received before the original request is satisfied.

Therefore, we compromised by using blocking group requests, but without retries.

Message Delay We again consider round trip time for each of the paradigms,

but this time with an increasing number of receivers. Figures 3.15(a) - 3.15(i)

show the results for each paradigm and scenario.

For the single hop and multi-hop scenarios, where there is no mobility, the

majority of the round trip times are fairly fast. The bottom 75% of the messages

have very similar results, while the top 25% varies much more. This indicates

that an application can expect most messages to be delivered quickly or not at

all, but about a quarter of the messages may arrive up to minutes later.

The median delay does increase as receivers are added, especially in the mobile

scenario. In the static scenario, the median delay publish/subscribe increased

58

Unicast Multicast Receivers

(a) Publish/Subscribe - Single Hop

Unicast Multicast Receivers

(b) Publish/Subscribe - Multi-hop

Unicast Multicast Receivers

(c) RPC - Single Hop

Unicast Multicast Receivers

(d) RPC - Multi-hop

Unicast Multicast Receivers

(e) Tuple Space - Single Hop

Unicast Multicast Receivers

(f) Tuple Space - Multi-hop

Unicast Multicast Receivers

(g) Publish/Subscribe - Mobile

Unicast Multicast Receivers

(h) RPC - Mobile

Unicast Multicast Receivers

(i) Tuple Space - Mobile

Figure 3.15: Round Trip Times

59

121ms from two receivers to six receivers. RPC increased 147ms, and tuple spaces

increased 140ms. For the mobile scenario, the median times for publish/subscribe

increased 255ms, RPC increased 237ms, and tuple spaces increased by 2035ms.

The maximum delay values varied much less predictably. For tuple spaces, the

static scenarios have unusually long delays with two and three receivers. In the

static scenarios, the first three receivers are located in close proximity. One node

would dominate the channel for several seconds before relinquishing it. Once

again, this shows how influential the wireless channel is on the performance and

behavior of applications in MANETs.

The median and maximum tuple space results are much longer than the other

two paradigms. The median delay for tuple spaces ranges from twice as much as

publish/subscribe in the single hop scenario up to 6 times as high in the mobile

scenario. For publish/subscribe and RPC, the majority of delays can only be

caused by the network, since they do not attempt to retransmit messages. Tuple

spaces, on the other hand, can have very large delays due to the paradigm itself.

Note that steps 1 and 2 in Figure 3.14 can be reversed: the outgoing tuple can be

timestamped before it is even requested by the receiver.

If a receiver is “behind” it may spend time receiving older tuples before the

newest tuple is requested. This causes the round trip times to increase while only

improving one-way message delivery. While it does improve one-way message

delivery, it does not improve the round trip message delivery ratio, due to the

reasons discussed in Section 3.2.3.2.

3.2.3.3 Shared Whiteboard Application

When testing the whiteboard application, we considered the metrics which a user

might care about at the application level: how reliably and quickly users receive

updates. This models a classroom or presentation setting where the instructor or

60

Single Hop Multihop Mobile
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M
e
ss

a
g
e
 D

e
liv

e
ry

 R
a
ti

o

Publish/subscribe
RPC
Tuple Space

Figure 3.16: Whiteboard Message Delivery (DSR)

presenter is the only one writing on the shared whiteboard, but the contents of the

whiteboard are shared out to the class or audience. As in the group communication

experiments, in each scenario Node 1 is the sender, with the other nodes marked

with triangles as the receivers. In the results below, a single user is updating the

whiteboard and the updates are propagated to 6 receivers. We used traffic traces

from Coccinella1to ensure our implementation accurately represented a typical

whiteboard application. For these experiments, 250 whiteboard update messages

of varying sizes were sent out over a 10 minute period at varying intervals.

Furthermore, we tested the whiteboard application under the two different

routing protocols we have been using, AODV and DSR. This is not meant to be

an exhaustive comparison of the routing protocols themselves, but is intended

to show how the choice in routing protocols might affect the performance of the

communication models in a nontrivial application.

Message Reliability Unlike the previous results, these represent one-way com-

munication from the whiteboard user to the receivers. Message reliability deter-

mines how accurately the receivers’ views reflect the state of the shared white-

1http://thecoccinella.org/

61

Figure 3.17: Whiteboard Message Delivery (AODV)

board.

Figures 3.16 and 3.17 show the percentage of whiteboard messages delivered

for DSR and AODV, respectively. As before, the results are nearly 100% for

all paradigms and both protocols in the single hop network. AODV performs

poorly on the multi-hop scenario, while DSR achieves nearly 100% delivery for all

paradigms. On the other hand, DSR performs much worse in the mobile scenario,

with the delivery ratio for RPC only reaching 25%.

The reliability of tuple spaces is considerably better in these experiments than

in the round trip scenario, with 100% delivery in all but the AODV multi-hop

scenario. The difference between these results and Section 3.2.3.2 is the lack

of a return message. Each receiver is responsible for requesting the whiteboard

updates, so the blocking request will be retried until the tuples are received. The

only exception is the multi-hop scenario with AODV, in which all three paradigms

perform much worse. Since all three paradigms are affected equally, these results

must be directly due to the behavior of AODV in this scenario. Investigation of

this phenomenon is outside the scope of this dissertation.

While the choice of routing protocol can have a significant effect on the paradigm

performance, it appears to affect each paradigm in the same manner. In other

words, neither routing protocol improves the performance of one paradigm while

62

Single Hop Multihop Mobile
0

1000

2000

3000

4000

5000

6000

7000

8000

M
e
d
ia

n
 D

e
la

y
 (

m
s)

Publish/Subscribe
RPC
Tuple Space

Figure 3.18: Whiteboard Message Delay (DSR)

Single Hop Multihop Mobile
0

1000

2000

3000

4000

5000

6000

7000

8000

M
e
d

ia
n
 D

e
la

y
 (

m
s)

Publish/Subscribe
RPC
Tuple Space

Figure 3.19: Whiteboard Message Delay (ADOV)

causing a different paradigm to perform worse.

Message Delay Message delay is measured as the time from when a whiteboard

update is sent by the application until it is delivered to the receiver’s whiteboard.

Update delays are very noticeable in a shared whiteboard application, so the delay

time should be minimized.

Figure 3.18 shows the results when using DSR and Figure 3.19 shows the

AODV results. Not unexpectedly, tuple spaces have the highest median latencies

of 8,486ms with AODV and 3,357ms with DSR. For publish/subscribe and RPC,

63

the median delay remained under 400ms. As noted previously, there is an obvious

direct relationship between reliability and the message delay time. If a message

cannot be delivered immediately, the communication paradigm can either drop

the message or retry later. Dropping the message decreases reliability, but the

median message delay will be low. However, attempting to deliver the message

later increases both reliability and message delay.

With DSR, tuple spaces report a nearly 100% delivery ratio in every scenario,

yet the delay times are <400ms in the static scenarios. In contrast, AODV causes

long delays for tuple spaces in both the multi-hop and mobile scenarios. Since

tuple spaces will repeatedly attempt to deliver messages, retries are expected to

contribute to the majority of the delays. This is supported by the long delay times

experienced by tuple spaces with AODV in the multi-hop scenario. However, in

the mobile scenario tuple spaces achieve 100% delivery with AODV and DSR, but

the median delay with DSR is less than half as with AODV.

From the mobile reliability results, we can infer that DSR does not maintain

viable routes, because the results of publish/subscribe and RPC are poor. How-

ever, the delay results suggest DSR is faster than AODV at finding new routes as

they become available.

3.2.3.4 Routing Overhead

Above, we investigated application and transport layer overhead for each paradigm.

In this section, we look at the routing overhead incurred for each paradigm when

used in the whiteboard application. Ideally, the amount of routing overhead should

be as small as possible in order to conserve bandwidth.

Figures 3.20, 3.21, and 3.22 show the number of routing packets generated in

each scenario. For the single hop and multihop scenarios, DSR has much lower

overhead. Once mobility is introduced, however, the routing packets from DSR

64

Pub/Sub RPC Tuple Space
0

200

400

600

800

1000
R

o
u
ti

n
g

 P
a
ck

e
ts

AODV
DSR

Figure 3.20: Whiteboard Routing Overhead - Single Hop

Pub/Sub RPC Tuple Space
0

500

1000

1500

2000

2500

R
o
u
ti

n
g

 P
a
ck

e
ts

AODV
DSR

Figure 3.21: Whiteboard Routing Overhead - Multihop

65

Pub/Sub RPC Tuple Space
0

10000

20000

30000

40000

50000

R
o
u
ti

n
g

 P
a
ck

e
ts

AODV
DSR

Figure 3.22: Whiteboard Routing Overhead - Mobile

dwarf the number used by AODV. This appears to correspond to the low message

delivery in Figure 3.16, although the message delay remains low for the messages

which are actually delivered.

From these results, no clear correlation can be drawn between the paradigms

and the amount of routing overhead. It varies according to both the network

scenario and which routing protocol is used.

66

CHAPTER 4

MELON Coordination Model

MELON1 is a practical approach for distributed communication in MANET ap-

plications that provides persistent messages, reliable FIFO-ordered multicast, ef-

ficient bulk retrieval, and simple message streaming. MELON is intended to be

a general purpose MANET communication paradigm, as opposed to focusing on

a specific use case such as context-aware applications, pervasive computing, or

sensor networks.

4.1 Design Overview

MELON is a pull-based communication model in which applications asynchronously

exchange messages through a shared message store. The messages are either

stored as read-only or take-only. Read-only messages can only be copied from the

message store, not removed, while take-only messages may only be retrieved by

removal from the message store. Messages are retrieved by matching them against

templates. MELON also provides bulk operations to read or take all matching

messages at once.

4.1.1 Disconnection Handling

The main difficulty of communication in MANETs is the frequent disconnections

caused by the unreliable wireless channel and the very dynamic network topology

1Message Exchange Language Over the Network

67

where nodes may join, leave, and move at any time. As noted in Section 3.2.1.1,

message persistence is a useful approach to hiding disconnections from the appli-

cation. Instead of requiring a reliable connection to the receiver, messages may be

delivered whenever the receiver is available. Disconnections that occur between

the sending and receiving of a message are hidden from the application.

In order to provide message persistence, the design of MELON is centered

around a distributed shared message store. By communicating through a shared

message store, the concept of a connection between hosts is eliminated and thus

disconnections are no longer an issue at the application layer. A host suddenly

leaving the network does not disrupt an application and applications do not need

to handle a communication operation returning an error or failing due to inter-

mittent network connectivity or physical wireless interference. The application

is effectively insulated from these issues by the nature of the paradigm and the

semantics of the operations.

Besides hiding intermittent network issues, message persistence also provides

temporal decoupling between hosts, since messages can still be delivered even

after prolonged disconnections. MELON is a pull-based paradigm in which the

receivers request messages from the message store and senders merely deposit the

messages.

Due to the dynamic network topology of MANETs, maintaining any type

of logical or overlay network structure becomes challenging, so MELON does

not rely on a particular network structure. Discovery of available messages is

performed dynamically for each operation. While this does increase the amount

of communication required for each operation, it removes the need for global state

and allows the network to change at any time.

68

4.1.2 Addressing and Discovery

Since MANETs are self-organized and infrastructureless, it is not feasible to rely

on centralized sources of information such as resource directories. Additionally, it

is advantageous to avoid tying data to physical locations, but rather to address

resources by their content or other labels instead of IP or MAC addresses. This

allows resources to migrate and for multiple hosts to service a request instead of

being associated with just one.

MELON provides spatial decoupling (where the sender and receiver need not

be aware of each other) by matching messages based on content, rather than by a

host address or location. The messages themselves may physically reside on any

host in the network. The sender of a message is not aware of the receivers’ iden-

tities nor even how many receivers might read a message. This frees applications

from tracking remote addresses or contacting a directory service to find remote

resources.

4.1.3 Flexible Communication

The shared wireless communication medium in MANETs is well-suited to group

or multicast communications. MELON supports multicast communication by

allowing any number of receivers to read the same message. MELON also provides

bulk receives, which allow applications to efficiently receive multiple messages from

multiple hosts in a single operation.

Applications often require point-to-point or unicast communication as well.

While unicast communication can be accomplished through by storing regular

messages in MELON, this communication can easily be disrupted by a process

removing a message intended for a different receiver. Additionally, it is possible

to eavesdrop on messages unnoticed by reading a message and not removing it.

For applications such as instant messaging, it is important to have private unicast

69

communication. In MELON, messages may be directed to a specific receiver when

stored to ensure the messages are only taken by the intended recipient.

4.1.4 MELON Features

MELON also includes features uncommon to shared message stores to further

simplify application development in MANETs. First, messages are returned in

first-in first-out order per host. When a host receives a message request, it returns

the oldest matching message in its local storage. In applications where a single

host generates the majority of the messages, this eliminates the need to order

messages on the receiver side.

Secondly, MELON provides operations to only read messages which were not

previously read by the same process. This enables an application to read all

matching messages currently in the message store, then read only newly-added

messages in subsequent operations. It also prevents an application from read-

ing the same message twice. This approach avoids the “multiple read” problem

demonstrated by tuple spaces and discussed in Section 3.2.1.4.

Lastly, MELON differentiates between messages which are meant to persist

and be read by many receivers versus messages intended to be removed from the

message store. For example, messages in a news feed would have many readers,

but the messages themselves should not be removed. On the other hand, a job

queue expects each job to be removed by exactly one worker. MELON provides

operations to support both of these scenarios.

4.2 MELON Operations Overview

Messages can be copied to the shared message store via a store or write operation.

A store operation allows the message to later be removed from the storage space.

Messages saved with a write operation cannot be explicitly removed from the

70

Table 4.1: Operations Summary

Add

single message

Retrieve

single message

Retrieve

many messages

Nondestructive

retrieval

write read read all

Destructive

retrieval

store take take all

storage space, only copied.

Messages added via store may be retrieved by a take operation using a mes-

sage template which specifies the content of the message to be returned. A take

operation will remove a message with matching content from the message store

and return it to the requesting process. take operations are atomic: a message

may only ever be returned by a single take operation.

A read operation will also return a message matching a given template, but

does not remove the original message from the shared storage. Any number of

processes may read the same message. However, repeated applications of a read

operation in the same process will never return the same message. Only messages

stored with write can be returned by a read operation.

The basic take and read operations return a single message per invocation.

To facilitate the exchange of multiple messages, MELON includes the bulk oper-

ations take all and read all. The bulk versions operate the same as the basic

operations, except all available matching messages will be returned instead of a

single message. For read all, only messages which were not previously returned

by a read or read all in the same process will be returned.

By default take, take all, read, and read all will block the process until

a matching message is available. MELON also provides non-blocking versions

71

of these operations. The non-blocking operations will return a null value if no

matching messages can be found.

When a message is saved with a store operation, it may optionally be directed

to a specific receiver. In a directed message, the identity of a receiver is included in

the message as the addressee. Only the addressee may access a directed message

through a take.

Due to the limited resources of most devices in a mobile network, storage space

in MELON is explicitly bounded. Any message may be garbage collected prior to

being removed by a take if capacity is reached.

4.2.1 Operation Details

Processes in MELON communicate by storing messages to a distributed shared

message store and retrieving the messages based on templates. FOr simplicity,

we assume messages consist of an ordered list of typed values and optionally an

addressee. However, nothing in the paradigm itself limits how messages might be

constructed (e.g., they could be an unordered tuple with named values instead).

A message template is similar to a message, except it may contain both values

and types. For example, a message containing [1, "hello"] could be matched

by a template containing [1, String] or [Integer, "hello"] or [Integer,

String]. A type will also match any subtypes.

Each operation is implemented as a separate function call. store and write

operations have null return values and return as soon as the saved message is

available in the message store. take and read operations block by default until a

matching message is returned, but may be set to non-blocking on a per-call basis.

The store operation takes a message as an argument and optionally an address.

When called, store saves a copy of the message in the message store. Messages

saved with store may only be retrieved with a take or take all operation. If an

72

Operation Return Type

store(message, [address]) null

write(message) null

take(template, [block = true]) message or null

read(template, [block = true]) message or null

take all(template, [block = true]) array

read all(template, [block = true]) array

Table 4.2: MELON Operations

address is provided, then only the host with a matching identity can remove the

message. Since storage space is bounded, messages may be automatically garbage

collected from the storage space prior to explicit removal by a take or take all

operation.

The write operation also stores a single message in the message store, but

the message may only be copied from the storage space with a read operation,

never explicitly removed. Messages written with the write operation may be

automatically garbage collected.

A take operation requires a message template as the first argument and an

optional boolean for the second argument.

The message template is matched against available messages in the message

store which were added with a store operation. If a matching message is found,

it will be removed from the message store and returned.

The block argument, which defaults to true if no argument is given, controls

behavior of the operation if no matching message is available. If block is true, the

operation will wait until a matching message is available, then return it. If block

is false, the operation will return a null value.

Once a message has been returned by a take operation, it is removed from the

73

Table 4.3: Read from multiple processes

Process A Process B Process C

write([1, "hello"]) m = read([Integer, String]) m = read([Integer, String])

message store and may not be returned by a subsequent operation in any process.

The read operation accepts the same arguments as take. A read operation

will only return messages stored with a write operation which have not already

been read by the current process.

If a message matching the given message template is available, it will be copied

and returned, but not removed from the message store. Once a message has been

returned to a process, the message is considered to have been read by that process

and will not be returned by any subsequent read or read all operations in the same

process.

When a matching unread message is not available, behavior of read depends

on the block argument. If the argument is true or unspecified, the operation will

block until a matching message is available, then return that message. If the

argument is false, the operation will return a null value.

A message may be read by any number of processes, but each process may

only read each messages at most once.

Table 4.3 illustrates one process writing a single message containing the integer

1 and the string "hello". Processes B and C each perform a read operation with

the template [Integer, String] which matches the message stored by process

A. Since read does not modify the storage space, the value of m for both process

B and C will be a copy of the message [1, "hello"] from Process A.

The take all operation performs a bulk take on the given message template.

The return value of take all is an array of matching messages. As with take,

messages returned by a take all are removed from the shared storage and may not

74

be returned by any subsequent operation in any process. A take all operation will

not return a directed message unless the addressee matches the current process.

Only messages stored by a store operation will be returned by take all.

When there are no matching messages and the value of block is true or unspec-

ified, the operation will block until at least one matching message is available and

then return an array of available messages. If block is false, take all will return

an empty array.

read all performs a bulk read on the given message template and returns

an array of matched messages. read all only returns messages which have not

been previously returned in the same process by a read or read all. A read all

operation will only return messages written by a write operation.

When there are no matching messages and the value of block is true or un-

specified, the operation will block until at least one matching message is available

and return an array of available messages. If block is false read all will return an

empty array.

4.3 Message Store Model

MELON’s operates through a semi-persistent shared message store. The mes-

sage store must match message templates to actual messages, provide concurrent

access for multiple clients, manage returning messages in per-host FIFO order,

implement basic access control as required by MELON operations, and of course

be reasonably fast.

MELON’s message store is only semi -persistent because it does not attempt

to reliably retain all stored messages, and because the MELON paradigm explic-

itly acknowledges space limitations on mobile devices and will perform garbage

collection of messages if necessary to store newer messages. Given the turbulent

nature of MANETs, it is not practical for the message store to reliably retain

75

all messages. Nodes will unexpectedly disconnect from the network, taking with

them any hosted messages. If some global data structure were used for the mes-

sage store, nodes moving from one network to another would need to explicitly

disconnect from one shared message store, then explicitly join the next. This is

not a practical constraint with the fluid and unpredictable nature of MANETs.

From the perspective of an application, the message store is a single entity and

it is not necessary or possible for an application to determine where a message

physically resides. But in reality the message store is distributed across hosts,

with each host being responsible for the messages stored by applications running

locally on that host. MELON’s message store is designed so each host may operate

independently and without coordination between hosts. The only necessary com-

munication originates from an application requesting a message to each remote

host. Some coordination may be added for more advanced features (in particular,

message replication in Section 5.8), but is not necessary to support MELON’s

operations.

4.4 Message Ordering

The order in which messages are received in a communication paradigm can have

a large effect on an application. In tuple spaces, for example, messages may be

retrieved in any order and when multiple tuples match a template the choice

of which tuple to return is explicitly nondeterministic. This puts a burden on

the application to maintain desired ordering. In other paradigms, ordering is

essentially undefined.

It would be ideal to have messages delivered in the order in which they are

sent, but managing this is very difficult in a MANET where the network and

hosts are unreliable and communication is expensive. Providing total-ordering

or causal-ordering is still difficult for the same reasons: a message is not guar-

76

anteed to ever be delivered. It may be lost in transit and the sender may leave

or fail before retransmission. For pull-based paradigms such as tuple spaces and

MELON, ordering is difficult to define since different messages may be requested

by different receivers.

However, it is still very useful to have some ordering for message delivery.

Video streaming from a single host needs to be displayed in order on the receivers.

Order may be enforced by the receiver via a buffer, but if messages are too far

out of order the buffering time would become unacceptable. In general, we noted

there are cases in which messages from a single source should be ordered, but have

no need to be ordered relative to messages from other sources.

To provide some useful ordering with minimal overhead, messages retrieved

from MELON’s message store are returned in per-process FIFO ordering as de-

scribed in [TS02]. Messages sent by the same host are received in the order sent.

This does not provide a global ordering, but still relieves applications of some

responsibility. One example where this was convenient was logging output from

experiments as described in Section 6.4. The coordinator reads messages output

from all hosts and records them in file per host. The messages are written in order

automatically for each host without the application needing any logic to manage

the ordering. The message store is responsible for enforcing this ordering and a

simple approach to implementing this functionality is described in 5.4.

77

CHAPTER 5

MELON Implementation

This chapter describes a prototype implementation of MELON we developed in

order to validate our design and obtain empirical performance data.1

5.1 Architecture

The architecture of our MELON implementation illustrated in Figure 5.1 is di-

vided into five parts. The MELON API is the only interface exposed to the

application and provides the six operations described above. The MELON API

interacts with the distributed message storage through the storage API, which

provides the same interface for both local and remote storage. The storage server

proves a network interface to a local storage space and accepts connections made

through the remote storage stub.

5.2 MELON API

The MELON API as provided to the application is very simple. It only provides

the six MELON operations, plus the ability to manually specify remote hosts. The

API implementation does very little except interact with either local or remote

storage. Both local and remote storage offer the same API, so they can be accessed

uniformly.

1Current source code for the prototype is available at
https://github.com/presidentbeef/melon

78

MELON APIMELON API
Remote StorageRemote Storage

ClientClient

Storage APIStorage API

Local StorageLocal Storage Storage ServerStorage Server

NetworkNetwork

Figure 5.1: Paradigm Architecture

The prototype library tracks the local storage, remote servers, and read mes-

sages. write and store operate on the local storage only. read and take make

no distinction between local and remote storage but simply iterate through the

list of stores and invoke operations on them until the operation is satisfied. Each

operation accesses the stores in a random order to spread the load and also provide

a variety of sources.

5.3 Storage API

The storage API is an interface between the MELON API and either local or

remote storage. In practice, however, the MELON API calls methods on the local

storage directly. The API offers exactly the same six operations as MELON.

Remote storage is accessed through the remote storage client which implements

the same API as local storage, except without write/store since those are only

performed locally. Each remote host is represented with its own remote storage

client. Internally, the remote storage clients manage connections with the remote

storage servers.

79

5.4 Local Message Store

While applications view the message store as a single entity, it is actually the

federation of local message stores hosted by each node running MELON. Each

message in the network is by default stored on exactly one node, which is the

node on which the application is running which performed the store or write

operation. In other words, storing a message is a local operation. This allows

MELON to provide atomicity for message removal with take and to ensure per-

host FIFO ordering when returning matched messages.

Local storage is implemented simply as two dynamic arrays, one for write/read

messages and the other for store/take messages. For atomic updates, the write/read

array uses a readers/writer lock2 to allow multiple read operations to access the

array in parallel, but locks the array for write operations. The store/take array

does not permit concurrent operations, since both store and take modify the

store. The two arrays may be accessed and modified independently.

Implementation of store/write is simple: exclusive access is obtained for the

appropriate array and the message is appended to the end.

For take, the lock is obtained for the store/take array and the message store

starts at the oldest message and linearly scans until a matching message is found.

When a matching message is found, the message is removed from the array and

the elements shift appropriately to fill the gap.

When performing a read, a readers lock for the write/read array is obtained.

The message store starts at the oldest message and linearly searches the array for

a matching message. If a message is matched, it must also be checked to not

exist in the provided read message set (see Section 5.7 below). If it is in the read

message set, the search continues. Otherwise, the matching unread message is

returned.

2Source code is available at https://github.com/presidentbeef/rwlock

80

In the architecture described here, the local message store is unaware of the

location of the requesting or storing client, although it is assumed store/write

operations are local. The storage server provides an API for remote applications

to connect to and query the local storage.

5.5 Storage Server

Each local storage is accompanied by a storage server which allows remote hosts

to connect and query the local storage. The storage server handles incoming

connections, converts queries into calls to the local storage, and converts messages

from local storage into responses back to the remote hosts. Each storage server

can handle multiple concurrent requests.

5.6 Networking

Network communication is handled using ZeroMQ [Hin13], a high performance,

high level networking library. For the prototype, the network communication was

intentionally kept simple. For example, a read request queries remote hosts in a

random order and stops when a matching result is returned. For bulk operations,

the prototype implementation also queries remote hosts in random order, but

continues fetching results until all hosts have either returned a response or a

timeout is reached.

While it is possible to improve upon this approach using multicast, it would

greatly complicate the implementation by requiring the client to handle multi-

ple asynchronous responses, choose between them, request the actual matching

message, and then handle failure scenarios if the matching message cannot be re-

turned. Our approach was to trade off potential performance gains for simplicity.

81

5.7 Read Message Tracking

When a messages is stored, it is given a unique identifier [P, M], where P is

a globally unique integer identifier for the storing process, and M is an integer

identifier for the stored message. Each process maintains an integer ID which is

incremented for each store. Messages stored from the same process with sequential

store or write operations will have consecutive M values and share the same P

value.

In order to prevent read from returning a message more than once in the

same process, each process maintains a sparse bit set for each process from which

a message has been read. The identifier [P, M] is condensed into a single unique

integer Q using the “elegant pairing function” [Szu06] shown in Equation 5.1.

Since the values of Q will be consecutive integers for all consecutive values of

M < P , it is helpful to set P to be higher than the number of expected messages.

The value Q is then stored in a sparse bit set with a hash table using integer keys

and bit field values.

f(M,P) =

M2 + M + P : M ≥ P

P 2 + M : M < P
(5.1)

The index i in the sparse bit set indicates the range stored in the bit set. If w

is the number of bits for each bit set, then each bit field can store up to w values

of n, where w× i ≤ n < w× (i+ 1). A message with ID n will be stored in index

n/w by setting the bit at n mod w in the bit field to 1.

If the index value is of size l bits and the bit field contains w bits, then the

cost for storing a single value is l + w. For storing a set of consecutive values of

length m, the cost is bm×l
w
c+ m bits. In other words, the total cost is one bit per

message, plus the cost of one index per w messages.

Consecutive messages (from any starting value) are the best-case scenario for

82

Table 5.1: Sparse bit set example

Index Bit Field

0 01100001

4 00010000

15 10100100

sparse bit sets. In the worst case, the message IDs differ by at least w, causing

each message to incur a l+w cost for storage and a total cost of m× (l+w) bits.

Determining if a message [P, M] is in the set is accomplished by first computing

Q. If there is no key at index Q/w, the message has not been read. Otherwise,

retrieve the bit field b at index M/w. If b ∧ 2M mod w 6= 0 then the message has

been read, otherwise the message is unread.

5.7.1 Sparse Bit Set Performance

For matching read-only messages, the read message data structure will need to

be fast and small. In this section we are using a sparse bit set implementation

developed for MELON3 based on Ruby hashes and using 64-bit integers. Testing

is performed using Ruby 2.1.2.

In Figure 5.2 we compare the speed of the sparse bit set implementation to the

standard Ruby hash table implementation. The times reported for each operation

are per 1 million records. The sparse bit set outperforms the hash table for each

experiment except adding random numbers to the set. For the sparse bit set,

adding an integer involves creating and storing two values: the index and the

bit field. For the random values, this occurs more frequently. For sequential

integers, the cost of creating the index and bit field is amortized over several

stores (essentially the number of bits in the bit field).

3Source available at https://github.com/presidentbeef/dumb-numb-set

83

Add Random Add Ordered Add Shuffled Lookup
0

0.2

0.4

0.6

0.8

1

Ti
m

e
 (

se
co

n
d
s)

Hash Table
Sparse Bit Set

Figure 5.2: Sparse Bit Set Operation Speed

1 10 100 1000 10000 100000

Read Messages

1

10

100

1000

10000

100000

1000000

10000000

B
it

 S
e
t

S
iz

e
 (

b
y
te

s)

Sparse Bit Set
Hash Table

Figure 5.3: Sparse Bit Set Size

84

Figure 5.3 shows the increase in the size of the bit set as the number of read

messages increases. This is the actual serialized size of the data structure as it

is sent over the network. After about 1,000 messages, the size grows linearly and

averages 1.6 bits per message. At 1 million records, the data structure is about

192 KB. However, this is about 96% smaller than the standard Ruby hash table.

Without pruning, the read message data structure will grow unbounded. There

are some potential solutions to this. One solution would be to track read messages

per host. When requesting a read-only message from a given host, only the read

messages from that host are sent. Unfortunately, this ties applications to hosts

and assumes messages will only be on the host which output them. This would

prevent message replication as discussed in Section 5.8.

Since read messages may be garbage collected, hosts may provide feedback

about which messages have been garbage collected. These messages may then

also be garbage collected from the read data structure, essentially pruning it.

This could be returned as optional data when a request for read-only messages is

made, thereby avoiding any extra communication.

5.8 Message Replication

Distributing copies of messages to multiple hosts can increase message availability

when a host is temporarily unavailable, under heavy load, or even in the face of

network partitioning. Additionally, it can improve performance if messages can

be fetched from a nearer host or from multiple hosts in parallel. While not a

requirement of the MELON paradigm, message replication may be implemented

as an additional feature of MELON without adding any new operations although

it does add complexity.

Take-only messages are generally not eligible for replication since their removal

must be atomic. Coordinating removals for all replicated copies is not only im-

85

practical, it is impossible if a node containing a replicated message leaves the

network. Read-only messages, however, are expected to be read many times and

cannot be explicitly removed, making them a candidate for replication.

FIFO order (per host) must be maintained no matter which host may actually

return the messages. When each host manages its own stored messages, ordering

is easily accomplished. When messages are distributed and multiple copies of the

same message are available from different hosts the problem is more challenging.

However, each host is still aware of the order in which the messages should be

returned.

Instead of sending a request for matching messages, a process requests a list of

message IDs which would have fulfilled the request, in order. Each host responds

with a list of matching message IDs, but only for messages output by that host.

The requesting process can then request messages by ID rather than message

templates. Any host may return the actual messages, either the original message

or replicas. Since the requesting process will be aware of the correct ordering,

it can ensure the FIFO ordering is maintained when returning messages to the

application.

This approach still requires the original host to be available when the first

request is sent, and it is limited to fetching messages which have already been

output at the time of the request. As such, it is best fitted to bulk retrieval

(bulk read) of messages.

One other type of message may be replicated. Take-only messages which are

addressed to a specific receiver may also be safely replicated since they may only

be removed by that receiver. The receiver can track which directed messages it

has already taken and simply discard duplicates. Replicating messages which will

only be needed once seems wasteful, though, except in the case where delivery of

private messages is critical.

86

In any scenario, replicated messages would need to be kept in a separate storage

from regularly output messages. Replicated messages would only be returned to

requests by message ID or for directed take-only messages. A background process

would be needed to replicate the messages out to different hosts. A mechanism

would also be needed to determine when to replicate the messages, and when

to garbage collect replicas. Overall, message replication requires a considerable

amount of added complexity and overhead to MELON.

5.9 Garbage Collection

The MELON model explicitly acknowledges memory and storage are especially

limited on mobile devices. For simplicity, in this section we consider this to be

an absolute limit on the number of messages to be stored at any time. This is

inexact in relation to the actually memory used since messages may vary in size.

Since MELON persists messages and read-only messages cannot be removed by

applications, it would not be difficult for an application to exhaust available space

on a device. This is an issue for any paradigm which persists its messages but

most proposals do not address it. When there is no more space to store a message,

a communication paradigm implementation may crash, raise an exception, simply

drop the message, or perform garbage collection to remove existing messages and

free space for new ones.

To offset its otherwise permanent storage of read-only messages, MELON im-

plementations should have a mechanism to remove old messages. MELON’s re-

quirements for garbage collection straddle memory management garbage collection

and cache eviction. In memory management, any references to a value in memory

will require it to be kept, but MELON messages do not have direct references and

we cannot know which messages may be needed in the future. This is similar to

maintaining a cache, in which the same limitation of knowledge applies. Unlike

87

a cache, there are generally no other copies of the message available to fall back

upon. Once evicted from the MELON store, the message is lost.

First-in first-out (FIFO) and least-recently used (LRU) are basic strategies

for choosing which messages to replace in storage. For MANET applications,

there is often a few messages which are expected to be available for extended

periods of time - for example, messages containing identity of nodes or other

static data. This suggests simply discarding the oldest messages might not be the

best approach. When evicting by LRU, it is necessary to track the last access

time for each message. When deciding which messages to remove, the LRU policy

drops the messages with the oldest access time. This is probably a good fit for

MELON, but there are also more sophisticated variants on LRU which may be

useful. Determining what replacement strategy is best for MELON is a topic for

future work.

Besides determining which messages should be removed from storage, it is

also necessary to have a policy for when to perform garbage collection. Unlike

memory garbage collection, MELON garbage collection is not expected to have

a significant impact on performance. MELON garbage collection does require

locking the store to actually remove the messages, but the determination of which

messages to remove may be performed without locking since it does not need to

be exact. One approach is to only perform garbage collection when the message

limit is actually reached, then to remove either a single message or a percentage

of messages. Removing more messages reduces frequency of garbage collection,

but increases the time spent removing messages each time.

Since MELON messages need to be stored in FIFO order, garbage collection

does require some form of compacting to ensure new messages may be added at

the end of the queue.

Fitting the best garbage collection strategy to MELON remains as future

work.

88

CHAPTER 6

Case Studies

This chapter presents the implementation of several applications in MELON. The

code examples are written using the Ruby implementation of MELON in order to

demonstrate concrete usage of MELON operations.

6.1 News Server/Reader

In this section, we consider news servers which produce news reports, each with a

category and a headline. News readers use a client which fetches all news headlines

from a given category.

Listing 6.1: News Server

class NewsServer

def i n i t i a l i z e

@melon = Melon . new

end

def r epor t (category , head l ine)

@melon . wr i t e ([category , head l ine])

end

end

A class implementing the news server is shown in Listing 6.1. To ensure all

interested parties can read the news, the server uses write to disallow a reader

from removing a news item and preventing other readers from reading it. When a

89

news item is reported, the server simply writes a message containing the category

and headline.

Multiple news servers may be producing news reports at the same time.

Listing 6.2: News Reader

class NewsReader

def i n i t i a l i z e

@melon = Melon . new

end

def f e t c h (category)

@melon . r e a d a l l ([category , S t r ing])

end

end

The news reader is just as simple, as shown in Figure 6.2. The fetch method

will fetch all reports in the given category. Repeated calls to fetch will only

return news reports which have not already been read. The method will block if

no new reports are available.

6.2 Chat Application

Basic chat applications are a common example of networked communications.

Participants broadcast messages tagged with their name, which are received by

all participants.

Listing 6.3: Chat Application

class Chat

def i n i t i a l i z e name

@name = name

@melon = Melon . new

end

90

def chat (message)

@melon . wr i t e ([@name , message])

end

def read messages

@melon . r e a d a l l ([Str ing , S t r ing])

end

def s t a r t

monitor

loop do

pr in t ”? ”

message = ge t s . s t r i p

chat message unless message . empty?

end

end

def monitor

Thread . new do

loop { pr in t mes sage s (read messages) }

end

end

def pr in t mes sage s (messages)

messages . each do | name , message |

puts ”\n<#{name}> #{message}” unless name == @name

end

end

end

The class in Listing 6.3 implements a simple command-line chat client. When

the start method is called, the client starts a new thread which reads and shows

any messages sent by other chatters. Note the print messages method filters out

91

messages sent by the current chatter (this assumes everyone has a unique name).

This is because the read messages method will pull in all unread messages, even

those sent by the current client. A more sophisticated message matching system

would be able to provide negative template values (i.e., ”match any string which

does not match this pattern”), but for our prototype this is not possible.

In the main thread, the client requests messages from the current chatter and

sends them using the chat method. The chat method then simply wraps the

message in an array with the chatter’s name as the first value, then sends the

message using write, since we want the message to be available for many chatters

to read.

As usual, messages from a single chatter will always be received in the order

the messages were sent, but no order is imposed across all chatters.

6.3 Job Queue

In a job queue, tasks are added to a shared queue. Workers remove tasks from

the queue and execute them. Naturally, access to the queue should be atomic to

maintain consistency and a job should only be executed by a single worker.

Listing 6.4: Job Producer

class Producer

def i n i t i a l i z e

@melon = Melon . new

end

def add job (job)

@melon . s t o r e ([job])

end

end

92

The job producer in Listing 6.4 does very little, just saves the jobs in the

MELON shared storage using store. Jobs are assumed to be a subclass of a

Job class with an execute method to be called by the workers. Any number of

producers may add jobs to the queue.

Listing 6.5: Worker

class Worker

def i n i t i a l i z e

@melon = Melon . new

end

def f e t c h j o b

@melon . take ([Job]) [0]

end

def work

loop do

f e t c h j o b . execute

end

end

end

Workers retrieve jobs using take and invoke the execute method on them. If

no jobs are available, the worker will block. Since MELON’s take operation is

atomic, there is no danger of a job being run by more than a single worker. If

there is only a single job producer, the jobs will be executed in first-in, first-out

order as enforced by MELON semantics.

6.4 Experiment Coordinator

This case study examines an application developed and used to generate the ex-

perimental results in Chapter 7. To ease the process of repeatedly setting up

93

Coordinator Network
Emulator
Network
Emulator

Client ApplicationApplication Client ApplicationApplication

Figure 6.1: Coordinator Architecture

experiments, we developed an experiment coordination framework written with

MELON. The framework handles running real applications on multiple hosts,

executing the network emulator, and gathering results into a single location.

The architecture of the framework is illustrated in Figure 6.1. For simplicity,

the coordinator resides on the same host as the network emulator. The coor-

dinator sends out commands to clients which reside on each host. The clients

are responsible for executing programs on their local host and sending resulting

output back to the central coordinator.

When running the coordinator, the number of clients and their IP addresses is

known. This simplifies operations but also allows an experiment to be run with a

specific number of nodes. It is also possible to set two different commands to be

run on different types of nodes. For example, one node can be a “source” and run

one command, while the other nodes are “sinks” and run a separate command.

Table 6.1 lists an overview of the MELON commands used to communicate

between the coordinator process and the client processes. The order of communi-

cations are not always strict. For example, it does not matter if the coordinator

first sends the commands and then the clients wait, or if the clients wait first.

94

Table 6.1: Coordination Framework Messages

Coordinator Clients Description

read([type, String]) Await command

write([“client”, client command]) Send client command

write([“server”, server commnad]) Send server command

take([“confirm”, ip]) Wait confirmations

store([“confirm”, ip]) Store confirmation

read([“go”]) Await go signal

write([“go”]) Send go signal

take([“done”, ip]) Wait for clients to finish

store([“result”, ip, output]) Store results

store([“done”, ip]) Store done signal

read([“finished”]) Await finished signal

take all([“result”, String, String]) Gather results

write([“finished”]) Send finished signal

In practice, these operations will be concurrent. Coordination between processes

is achieved by blocking on messages containing signals (“confirm”, “go”, “done”,

etc.)

When starting, the coordinator writes a message for each command type

(called “server” and “client” for convenience). Then it performs a take oper-

ation for a confirmation message from each client IP address. Each client reads

the relevant command, starts the command, waits for the application to initialize,

then uses store to send a confirmation message with its IP address.

When the coordinator has taken a confirmation from each host, it starts the

network emulator, then writes a “go” message. Upon reading the “go” message,

each client signals the application to begin. The coordinator then blocks waiting

on “done” messages from each client.

As the application runs, the client reads the output line by line and stores

each line using store, labeled with the client’s IP address. When the application

95

finishes, the client stores a “done” signal. When the coordinator has taken a

“done” message from each client, it collects the results and then sends a “stop”

message. The clients then stop the applications and the framework is ready to

start the next experiment.

Unlike the other examples in this chapter, this application was developed to

fill an actual need, as opposed to being strictly a demonstration of how to use

MELON. We have used all of MELON’s operations except read all in this appli-

cation. Read-only operations were used to broadcast messages from the coordina-

tor to the clients, while store/take operations were used to send messages back

to the coordinator. The default blocking behavior for read/take were useful to

coordinate actions.

In our usage of the experiment coordination framework, the output from the

applications were stored and organized by the coordinator into separate files by

client. Since MELON retrieves messages in order per host, no ordering information

needs to be included in the output messages. The coordinator merely writes the

messages out to the proper file (by client IP address, which is included in the

message) in the order it received them.

6.5 Shared Whiteboard

This section presents the implementation of a shared whiteboard not only using

MELON, but also publish/subscribe, RPC, and tuple spaces in order to compare

their features and performance. The performance results are presented in Section

7.1.5.

A shared whiteboard is a digital document which may be edited and viewed

by multiple users concurrently and is commonly proposed as an example of an

application well-suited to MANETs [Ra13] [RK13]. Shared whiteboards are dis-

tributed, real-time, and interactive, which presents some interesting character-

96

istics. Since many participants may be updating the whiteboard, ordering of

changes is very important to maintain a consistent document. It is also impor-

tant that changes be propagated quickly so that each user is working with the

latest document.

Each version shares common code related to the actual whiteboard itself, which

is implemented in the Whiteboard class. Changes to the shared whiteboard are

encapsulated in a Figure object. Each version implements an add local figure

method which is called when the user modifies the shared whiteboard. The

MELON and tuple space versions also implement an add remote figures method

which is used to retrieve updates from remote nodes.

6.5.1 Publish/Subscribe

The publish/subscribe whiteboard in Listing 6.6 sets up a subscription to the

“whiteboard” topic and a callback to add remotely published figures to the white-

board. This allows the whiteboard to receive updates at any time in a separate

thread, which is precisely what would be desired. To output a new figure, the

whiteboard simply publishes the figure to the “whiteboard” topic.

Listing 6.6: Publish/Subscribe Whiteboard

r e q u i r e ”ps”

r e q u i r e ” whiteboard ”

class PSWhiteboard < Whiteboard

def i n i t i a l i z e

@ps = PS . new

@ps . s ub s c r i b e (” whiteboard ”) do | f i g u r e |

a d d f i g u r e (f i g u r e)

end

end

97

def a d d l o c a l f i g u r e (f i g u r e)

@ps . pub l i sh (” whiteboard ” , f i g u r e)

end

end

Listing 6.7: RPC Whiteboard

r e q u i r e ” rpc ”

r e q u i r e ” whiteboard ”

class RPCWhiteboard < Whiteboard

def i n i t i a l i z e

@rpc = RPC. new

@rpc . export (s e l f)

end

def a d d l o c a l f i g u r e (f i g u r e)

wbs = @rpc . f i n d a l l (”RPCWhiteboard”)

wbs . a d d f i g u r e (f i g u r e)

end

end

6.5.2 RPC

A shared whiteboard implementation using RPC is shown in Listing 6.7. When

the whiteboard is initialized, it exports itself as a remote object. Remotes hosts

can then remotely invoke add figure. Like publish/subscribe, this allows the

whiteboard to accept remote figures asynchronously from the main process thread

and is a natural feature of RPC. Distribution of remote figures is performed by

first finding all remote instances of RPCWhiteboard, then invoking the add figure

method (defined on the parent class) directly, passing in the new figure as an

argument. Since group RPC is asynchronous, it is possible that a call might

98

complete before a prior call.

6.5.3 Tuple Spaces

Listing 6.9 shows the tuple space version, which is very similar to MELON. To

send an update, it outputs a tuple containing just the new figure. Unlike MELON,

a misbehaving or misconfigured client could remove the messages from the tu-

ple space, disrupting the shared whiteboard communication. Retrieval of remote

messages uses a bulk rd operation to read all messages containing a figure. To

continuously retrieve messages asynchronously, this method can be called inside

a loop in a separate thread. Once a group of figures is retrieved, each individual

figure is added to the local whiteboard.

As discussed in Section 2.3.3, copy-collect may be used to solve the “multiple

read problem”. We have implemented this as the bulk rd operation. However,

this does not solve what might be termed the “multiple multiple read problem”:

since our tuple space is not static, reading all matching tuples once is not suffi-

cient. We need to be able to perform multiple bulk rds to add all figures the

whiteboard. Without a priori knowledge of remote hosts in the system, the only

option which allows concurrent access to the tuple space is to read all matching

tuples. Naturally, this becomes considerably expensive as the number of tuples

grows large.

Listing 6.8: MELON Whiteboard

r e q u i r e ”melon”

r e q u i r e ” whiteboard ”

class MelonWhiteboard < Whiteboard

def i n i t i a l i z e

@melon = Melon . new

end

99

def a d d l o c a l f i g u r e (f i g u r e)

@melon . wr i t e ([Figure])

end

def add r emote f i gu r e s

f i g u r e s = @melon . r e a d a l l ([Figure])

f i g u r e s . each do | f i g u r e |

a d d f i g u r e (f i g u r e [0])

end

end

end

Listing 6.9: Tuple Space Whiteboard

r e q u i r e ” tup l e space ”

r e q u i r e ” whiteboard ”

class TSWhiteboard < Whiteboard

def i n i t i a l i z e

@ts = Tuplespace . new

end

def a d d l o c a l f i g u r e (f i g u r e)

@ts . out ([Figure])

end

def add r emote f i gu r e s

f i g u r e s = @ts . bu lk rd ([Figure])

f i g u r e s . each do | f i g u r e |

a d d f i g u r e (f i g u r e [0])

end

end

end

100

6.5.4 MELON

The MELON whiteboard in Listing 6.8 writes out each figure in a tuple containing

just the new figure. It uses the write operation since every remote node needs

to be able to read the figures. To retrieve remote figures, MELON uses read all

to nondestructively read all messages containing a Figure. Like tuple spaces,

the add remote figures method should be called in a separate thread to provide

asynchronous updates. Unlike tuple spaces, MELON’s read all operation only

retrieves unread messages, eliminating the “multiple multiple read” problem.

MELON directly provides three features which are helpful to the whiteboard

application: persistent messages, reading only unread messages, and returning

messages in a per-host ordering. Message persistence is crucial in MANET appli-

cations, where communication with remote nodes is often disrupted and delayed.

For a shared whiteboard, every message must be delivered to keep the document

synchronized between users. By managing read versus unread messages, MELON

easily allows the whiteboard to efficiently fetch only newly-added figures. Finally,

MELON guarantees the updates from each host will be retrieved in the order that

host initiated them. While this does not provide a global ordering, it does ensure

updates from a single host will be in order.

101

CHAPTER 7

Evaluation of MELON

7.1 Performance Analysis

7.1.1 Operation Speed

To establish a baseline for performance, we measured the time for the write, read,

store, and take operations directly on a local message storage and compared the

results to the LighTS [Bal07] local tuple space implementation used by LIME. In

these experiments, all messages are first stored, then either read or removed from

the local storage. No network communication is involved.

When comparing read and rd, we simulate the MELON’s feature of only

returning unread messages by using a sequential integer ID in the tuples and

performing a rd operation for each ID. If we did not do this, LighTS would return

the same tuple for each rd operation.

In both LighTS and MELON, messages are stored in what is essentially an

array. Since we are not removing messages, each operation must linearly search

the array taking O(nm) time, where n is the length of the message or tuple and

m is the number of stored messages or tuples. Naturally, operations returning

messages near the beginning of the array are faster, while the slowest operation

returns the last message in the array. In our experiments, this cost did not become

apparent until searching 100,000 messages. The average time per operation from

10,000 to 100,000 increased 9̃x for LighTS and 1̃0x for MELON, with total read

time taking just under a minute. It is unsurprising MELON is slightly slower,

102

10 100 1000 10000 100000

Stored Messages

0

10

20

30
O

p
e
ra

ti
o
n
 T

im
e
 (

m
s)

MELON - read
MELON - write
Tuple Space - rd
Tuple Space - out

Figure 7.1: Read Speed

10 100 1000 10000 100000

Stored Messages

0

2

4

6

8

10

O
p
e
ra

ti
o
n
 T

im
e
 (

m
s) MELON - take

MELON - store
Tuple Space - in
Tuple Space - out

Figure 7.2: Take Speed

103

Publish/
Subscribe

RPC MELON
take

MELON
read

Tuple Space
in

Tuple Space
rd

0

200

400

600

800

1000

O
v
e
rh

e
a
d
 (

b
y
te

s)

Figure 7.3: Message Overhead

since it must also check that a message is not in the “read” list before returning

it.

On the other hand, removing messages is naturally quite fast, since the match-

ing message is always the first message in the store. All take/in operations require

less than 8ms to execute on average. MELON is slightly faster here due to dif-

ferences in how removal is implemented, although average speed per operation

converges as the number of operations performed increases.

Storing messages is faster than removing them for both implementations. In

LighTS there is slightly more constant overhead for adding new tuples, so out

operations are a little slower than write and store in MELON. However, in

reality both implementations are plenty fast for typical applications, since storing

a message takes less than 10ms on average, and usually less than 4ms.

Overall, MELON performs roughly the same or better than LighTS when

performing serial operations.

7.1.2 Communication Overhead

For any communication library or framework, the message size added by use of the

library is an important factor in determining its usefulness. In these experiments,

we measure the number of bytes actually sent over the network, divide by the

104

number of messages sent (in this case, 1000) and subtract the 1KB application

payload. This leaves us with the overhead introduced by the paradigm. We com-

pare the overhead of MELON to canonical implementations of publish/subscribe,

RPC, and tuple spaces in Figure 7.3.

Publish/subscribe and RPC have very low overhead and provide a good base-

line. In the case of publish/subscribe, the only added information to a publication

is the topic. Periodic subscription messages are small and infrequent compared to

the number of messages sent. For RPC, there is one initial exchange to find the

remote object, then later messages only need the object and method names plus

the payload itself.

As in the operation speed experiments, we use the LighTS tuple space imple-

mentation. The serialized versions of tuples and tuple templates are very large

and must be sent for each request. If a simpler data structure were used, overhead

would be expected to be similar to MELON’s overhead for take.

For MELON, take and read requests must send a message template, so the

size of the request is dependent on how many values the template contains. For

read operations, each request must also send information on previously read mes-

sages as described in Section 5.7, which increases as the number of read messages

increases.

7.1.3 Message Latency

Figures 7.4 and 7.5 show the average latency between a client’s request for a

message and the receipt of a matching message. The error lines indicate the

standard deviation. In these experiments, a single host writes out 1,000 messages

with a 1KB payload, and the other hosts concurrently read the messages. Tuple

spaces and MELON used the rd/read operations to retrieve the messages one at a

time, rather than the bulk retrieval with rdg or read all. Since publish/subscribe

105

1 2 3 4 5

Receivers

0

100

200

300

400

500

600
La

te
n
cy

 (
m

s)
MELON
Publish/Subscribe
RPC
Tuple Space

Figure 7.4: Message Latency - Static Scenario

1 2 3 4 5

Receivers

0

100

200

300

400

La
te

n
cy

 (
m

s)

MELON
Publish/Subscribe
RPC
Tuple Space

Figure 7.5: Message Latency - Mobile Scenario

106

1 2 3 4 5

Receivers

0

5

10

15

20

25

30

R
e
ce

iv
e
 T

h
ro

u
g

h
p

u
t

(m
sg

s/
se

c) MELON
Publish/Subscribe
RPC
Tuple Space

Figure 7.6: Message Throughput - Static Scenario

does not involve a “request” beyond the initial operation, latency was measured

as the time elapsed between receiving sequentially numbered publications.

MELON does show higher average latency rates in the static scenario, al-

though for three or more receivers the standard deviation is lower than the other

paradigms. In the more realistic mobile scenario, however, MELON latency is

about the same or slightly lower than tuple spaces. Comparing the static and mo-

bile scenarios also demonstrates one of the issues in wireless networks: the mobile

scenario allows distinct routes to form between hosts with less interference, while

the static scenario has many collisions causing more communication delays even

though the distance between devices is smaller.

7.1.4 Message Throughput

Throughput in these experiments was measured on the receiver side in terms of

messages delivered per second. As in the other experiments, 1,000 messages with

107

1 2 3 4 5

Receivers

0

10

20

30

40

50

60

R
e
ce

iv
e
 T

h
ro

u
g

h
p

u
t

(m
sg

s/
se

c) MELON
Publish/Subscribe
RPC
Tuple Space

Figure 7.7: Message Throughput - Mobile Scenario

a 1kb payload are output by one host, while the other hosts read the messages

one at a time. Figures 7.6 and 7.7 show the average throughput as the number of

receivers increases.

Publish/subscribe dominates in these experiments since it is the only push-

based paradigm, allowing the sender to publish messages at a high rate without

requests or acknowledgments from the receivers. Also, subscribers may receive

multiple publications concurrently which increases throughput capacity.

Despite having higher average latency than the other paradigms, MELON

demonstrates good throughput in both the static and mobile scenarios. However,

throughput for all paradigms drops off dramatically as more receivers are added.

Also, all paradigms performed better in the mobile scenario than in the static

scenario. This is likely due to two factors: devices were not forced to be more

than one hop apart, and the large number of devices allows distinct routes between

devices and decreases wireless broadcast collisions.

108

1 10 20 30

Packet Loss (%)

0

5

10

15

20

25

M
e
ss

a
g

e
s

MELON
Publish/Subscribe
RPC
Tuple Spaces

Figure 7.8: Host Out-of-Order Messages

7.1.5 Whiteboard Performance

For each implementation, we measured the number of messages lost, the number

of messages received out of order, and the message latency. For out-of-order

messages, we divided it into two metrics: host out-of-order and global out-of-

order. Host out-of-order messages are messages from a single host which are not

received in the order sent. Global out-of-order messages are those received before

their preceding message. For example, if node A receives a message m1 from node

B, then sends m2. If node C receives m2 prior to m1, m2 will be considered out

of order.

In our experiments, messages from a single host were generally delivered in

the order they were sent as shown in Figure 7.8. For MELON and tuple spaces,

no messages were delivered out of order. However, it should be noted that for

109

1 10 20 30

Packet Loss (%)

0

1000

2000

3000

4000

5000

6000

La
te

n
cy

 (
m

s)

0

10000

20000

30000

40000

50000

60000

La
te

n
cy

 (
Tu

p
le

 S
p

a
ce

)MELON
Publish/Subscribe
RPC
Tuple Spaces

Figure 7.9: Message Latency

110

1 10 20 30

Packet Loss (%)

0

200

400

600

800

1000

1200

1400

M
e
ss

a
g

e
s

MELON Publish/Subscribe
RPC Tuple Spaces

Figure 7.10: Global Out-of-Order Messages

111

1 10 20 30

Packet Loss (%)

0

20

40

60

80

100

D
e
liv

e
ry

 R
a
ti

o
 (

%
)

MELON Publish/Subscribe
RPC Tuple Spaces

Figure 7.11: Delivery Rates

112

tuple spaces this is an accident of the implementation, whereas in MELON it is

guaranteed. In LighTS, tuples are sequentially stored locally in an array in the

order they are output, then returned in that same order when they are matched.

Tuple spaces in general do not return matched messages in any particular order.

In this application, RPC is used in an asynchronous manner since it is pro-

viding group communication. If one call is delayed, it is possible a subsequent

call will complete before a prior one, which explains why RPC delivers a small

number of messages out of order. Publish/subscribe is fully asynchronous and

incoming publications can even be processed concurrently. However, even in the

worst case publish/subscribe delivers 97.8% of the messages from a host in the

order they were sent. Unfortunately, like tuple spaces this is just the result of

a single implementation and the RPC and publish/subscribe paradigms make no

promises about the ordering of messages.

Unlike per-host ordering, many messages were delivered out of order from a

global perspective as can be seen in Figure 7.10. This is entirely expected, since

none of the paradigms provide a global ordering. Enforcing a global ordering in

an unreliable network is not feasible, since nodes may become unavailable at any-

time while continuing to output messages. However, the global ordering remains

important for a shared whiteboard.

Our results show publish/subscribe performs the best for this metric. Indeed,

ordering is largely dependent on deliveries completing quickly before later mes-

sages overtake them. As shown in Figure 7.9, publish/subscribe is an extremely

quick method for delivering messages, so it excels in ordering as well. Conversely,

tuple spaces fare the worst, delivering 67% of messages out of order. Again,

because tuple spaces provide no way of controlling which matches messages are

returned or in what order, the whiteboard implementation must transfer large

amounts of tuples in order to nondestructively read all matching messages. This

is extremely slow, as reflected in Figure 7.9.

113

MELON and RPC perform about the same for global ordering, although

MELON is more affected when the network conditions worsen. This is likely

due to MELON’s reliable message delivery (Figure 7.11), since some messages

may be delayed significantly by broken network routes or network partitioning.

In contrast, losing messages can improve ordering since a message not delivered

cannot be out of order. Of the paradigms compared, MELON is the only one to

demonstrate 100% message delivery. Tuple spaces would also be expected to be

reliable, but again in this application it is required to deliver large amounts of

messages. Given that the median latency for tuple spaces reached a full minute,

the experiment completed before some messages arrived.

While we have seen publish/subscribe have low delivery ratios in the past

[CB10], here it performs well in the lossy environment due to its quick delivery

rates, but still dropped 1.4% of messages when the network connectivity was good.

RPC performs predictably, slowing losing more messages as the network degrades.

Again, we are using group RPC, which means the application is not aware of how

many receivers may be available and therefore does not retry to complete calls

if a host cannot be reached for a period of time. Fully synchronous RPC would

block the process until the message is delivered. However, that would also delay

deliveries considerably which is not acceptable for a whiteboard application.

Median time between sending and receiving a message is reported in Figure 7.9.

Since tuple spaces are so much slower, the results are aligned with the right-hand

y-axis which is an order of magnitude higher. Publish/subscribe was extremely

quick, which is expected since it requires no message confirmations nor active

discovery of remote hosts. RPC was also quite fast until it was slowed down along

with the other paradigms by the 30% packet loss.

Logically, delivery rates and latency are directly related. With reliable de-

livery some messages may be very late, increasing overall latency. On the other

hand, dropped messages do not count towards the latency metric, so a lossy com-

114

munication paradigm can appear to be very fast. MELON errs on the side of

reliability, and therefore is a bit slower as the network becomes less reliable and

more delivery attempts are required. There is an additional trade-off that pull-

based paradigms like MELON and tuple spaces must make, which is the frequency

of the pull attempts. Publish/subscribe and RPC may send as soon as a message

is ready, but MELON and tuple spaces must continually poll to receive messages.

Faster polling results in faster message delivery, but higher overall network usage,

collisions and resource monopolization.

7.2 MELON Suitability for MANET Applications

In the previous chapters, we have noted three important features which we believe

should be provided by a general purpose communication paradigm for applications

operating in a mobile ad-hoc network: disconnection handling, resource address-

ing and discovery, and flexible communication. This section examines how well

MELON implements these features.

7.2.1 Disconnection Handling

MELON does not have a concept of connections exposed to the application layer.

Applications are not affected by disrupted or lost connections, because MELON

effectively hides these disconnections in its operations. Since MELON provides

spatial decoupling, not only does the application not maintain connections to

specific hosts, it is completely unaware of the location of any resources to begin

with.

Besides intermittent disconnections which may disrupt communications but

from which applications can quickly recover, prolonged disconnections where a

node is unreachable for some time (but eventually returns) are also common. The

message persistence in MELON provides temporal decoupling between nodes, so

115

that a process on one node may output a message which may be read at any later

time, possibly much later. This approach adapts well to the MANET environment,

where the network topology may be constantly changing. It allows messages to be

received opportunistically instead of only having a chance of receiving the message

at the time of sending.

Finally, it is possible to provide some message replication in MELON as dis-

cussed in Section 5.8 in order to deal with permanent disconnections between

nodes. Message replication allows messages to potentially cross network parti-

tions by copying messages to nodes which may then travel to parts of the network

unreachable by the original sender. It also increases availability of messages and

can improve performance if a cached message is available at a node closer than

the original sender.

7.2.2 Resource Addressing and Discovery

Resources in MELON are messages, which may be read or retrieved by matching

their content with message templates. It is never necessary or even possible to

know where messages physically reside, nor any type of identifier (e.g., an IP

address) for the host. In MANETs, this is an important feature because it allows

resources to be independent of physical location.

In some traditional distributed systems, there is a centralized directory or

index of resources. In MANETs, any type of centralized system is difficult to

maintain, since the nodes may leave the network at any point and without any

warning. A decentralized index is possible, but quickly becomes challenging since

information needs to be migrated as nodes join and leave, and it is difficult to have

a decentralized index in small networks, such as communication between just two

nodes.

Instead of relying on an index or directory, MELON searches for messages

116

entirely on-demand. When a message is requested, each available remote node

is queried until the request can be fulfilled. This allows MELON to be entirely

distributed and avoids the complexity of maintaining a decentralized index or

overlay network.

7.2.3 Flexible Communication

To be of use in a wide range of applications, a communication paradigm needs to

provide a number of communication patterns. At a minimum, both multicast and

unicast communications should be straightforward.

MELON’s write/read operations provide “enforced” multicast communica-

tion, in the sense that not only can any number of processes read the messages, but

the messages also remain available for reading until garbage collected. Messages

exchanged via store/take are similarly available to any process, but only one

process may ultimately receive the message. This could be considered something

like anycast. MELON also makes a provision for private unicast communication.

When a message is sent with a store operation, it may also be addressed to a

specific receiver. This receiver is the only process which may take the message.

MELON also supports receiving messages in bulk, which is a more efficient

method for transferring many messages in a single operation. Because MELON

only retrieves each message once, it can safely be used to gather all matching

messages in bulk without requiring the shared message store to be static.

In all its operations, MELON enforces ordering at the host level. In other

words, messages from a single host are received in the order they were sent. While

this does not impose an ordering across hosts, it is still very useful in instances

where messages are streamed or when messages are aggregated per host.

117

CHAPTER 8

Conclusions

In this dissertation, we have presented an investigation into communication paradigms

for applications operating in mobile ad hoc networks. Starting with an qualita-

tive survey of existing projects to support communication MANETs, we then

compared performance of representative projects using real applications in an

emulated MANET environment. We showed the wireless and mobile environ-

ment is dramatically different from a static wired network and communication

libraries must be adapted to the MANET environment. We determined discon-

nection handling, resource addressing and discovery, and flexible communication

to be important issues to address for MANET communication libraries.

We found most projects were based on traditional distributed computing paradigms,

but it was not possible to assert any conclusions regarding the underlying paradigms,

since the project implementations compared used different languages and were of

varying quality. In order to study the paradigms’ performance in a quantitative

manner, we implemented our own versions of three commonly-used paradigms

(publish/subscribe, RPC, and tuple spaces) with as much shared code as possi-

ble. This allowed us to fairly compare the paradigms using real applications.

After empirically investigating the traditional paradigms, we found message

persistence and connectionless operations to be especially beneficial for MANET

applications. RPC relies too heavily on synchronous communication between

hosts and is not well-suited for group communication with an unknown set of

participants or unreliable remote hosts, although it does provide reliable unicast

118

communication. Publish/subscribe is fast and light, but does not provide reliable

delivery or convenient unicast communication. Implementing a system of brokers

to provide persistence and manage subscriptions is complex in a MANET. Tuple

spaces, not even originally designed for distributed systems, do provide message

persistence and flexible communication, but are hampered by strict semantics and

lack of support for message streams. None of the three paradigms provided private

unicast communication, a common requirement for modern mobile applications.

While adapting existing research and solutions to new problem domains is a

valid first step, it became clear in this research that traditional distributed com-

puting paradigms, were not designed for nor suited to the challenges of MANETs.

Therefore, we proposed a new communication model for MANETs called MELON.

MELON provides message persistence, basic access controls, on-demand opera-

tions, bulk message retrieval, FIFO message ordering, and support for simple

message streaming. We believe MELON is well-suited to supporting MELON

applications while offering a simple and easily implemented set of operations.

We have examined several case studies using MELON to implement applica-

tions and found it well-suited to provide convenient and efficient communication

for MANET applications. To evaluate MELON, we again implemented the tradi-

tional paradigms in order to share a common codebase with MELON and provide

a fair comparison. As part of the evaluation, we implemented an experiment

coordination framework implemented using MELON itself. In our experiments,

the prototype implementation of MELON performed well in comparison to the

existing paradigms, suggesting it is a viable approach to MANET communication.

8.1 Future Work

This dissertation presents only the initial design of a MANET communication

paradigm. Although the prototype implementation performed well, it is imple-

119

mented naively. In particular, it does not attempt to leverage multicast com-

munication, which may improve performance. Very little investigation has been

performed in determining appropriate policies for message replication and garbage

collection.

Security is a growing concern, especially for wireless communication. In this

dissertation, we defined private communication as that which cannot be accessed

by unauthorized nodes from within the communication paradigm. However, this

ignores the reality of how easily it is to eavesdrop on wireless communication.

Naturally encrypted connections are desired, but verifying identity of nodes in a

decentralized network is a challenge. Relatedly, while MELON includes a proposal

for “directed messages” which can only be read by their addressee, we have not

provided any mechanism for assigning and verifying identities.

As mobile devices become more accessible and open, we hope to see MELON

adapted to work on consumer mobile devices such as smartphones to enable the

development of more decentralized applications working together in mobile ad hoc

networks.

120

APPENDIX A

Full Application Examples

The following sections provide a demonstration of working code using the current

MELON library implementation in JRuby.

A.1 News Server & Reader Applications

Listing A.1: News Reader

r e q u i r e ”melon”

I n i t i a l i z e MELON

melon = Melon . with zmq

I n i t i a l i z e p o t e n t i a l t o p i c s

t o p i c s = [” P o l i t i c s ” , ” Sports ” , ” Bus iness ” , ”Technology” , ” Local ”]

i = 0

loop do

Choose a t o p i c

t o p i c = t o p i c s . sample

Generate head l i ne f o r t o p i c

message = [top ic , ”#{t o p i c } news item #{ i+=1}”]

Write message

melon . wr i t e message

121

Pause f o r a few seconds

s l e e p rand (5)

end

Listing A.2: News Reader

r e q u i r e ”melon”

unless ARGV[2]

abort ” news reader . rb ADDRESS PORT TOPIC”

end

address = ARGV[0]

port = ARGV[1]

t o p i c = ARGV[2]

I n i t i a l i z e MELON

melon = Melon . with zmq

Add address o f a news s e r v e r

melon . add remote port , address

Set the temp la te to r e t r i e v e a head l i ne f o r the

given t o p i c

template = [top ic , S t r ing]

Read a l l r e l e v an t messages as they become a v a i l a b l e

loop do

puts melon . r e a d a l l template

end

122

A.2 Chat Application

This example splits the implementation of a chat application into a library which

provides most of the functionality and a small script to set up the environment

for the user.

Listing A.3: Chat Library

Encapsu late chat communication

class Chat

def i n i t i a l i z e name

@name = name

@melon = Melon . with zmq

end

def add remote port

@melon . add remote port

end

Write out a chat message

def chat message

@melon . wr i t e [@name , message]

end

Get a l l unseen messages

def read messages

@melon . r e a d a l l [Str ing , S t r ing]

end

Print out a l l messages excep t our own

def pr in t mes sage s messages

messages . each do | name , message |

unless name == @name

puts ”\n<#{name}> #{message}”

end

123

end

end

Read and show messages in a separa t e thread

def monitor

Thread . new do

loop do

pr in t mes sage s read messages

end

end

end

Main loop f o r c ha t t i n g

def s t a r t

monitor

Send chat messages from user

loop do

pr in t ”? ”

message = ge t s . s t r i p

unless message . empty?

chat message

end

end

end

end

The chat client in Listing A.4 is a simple script to set up a chat client that

talks to other local chat clients. This makes it simple to try on a single machine.

Listing A.4: Local Chat Client

r e q u i r e ”melon”

r e q u i r e ” chat ”

124

Get user ’ s name

pr in t ”Name : ”

name = get s . s t r i p

I n i t i a l i z e chat l i b r a r y

chat = Chat . new name

Add proce s s e s running on the same machine but d i f f e r e n t por t s

loop do

pr in t ”Remote port : ”

chat . add remote ge t s . s t r i p . t o i

p r i n t ”Add another (y/n)? ”

break unless ge t s . downcase . s t a r t w i t h ? ”y”

end

Sta r t c ha t t i n g

chat . s t a r t

125

APPENDIX B

MELON Prototype Implementation Details

This appendix describes the prototype implementation of MELON in more detail.

B.1 Local Storage

Each application manages its own local storage, implemented as the LocalStorage

class. Each instance of LocalStorage consists of two dynamic arrays: one for

read-only messages and one for take-only messages. The class provides methods

for storing, retrieving, and reading messages from these arrays.

When a new message is added to the store a new StoredMessage object is

created. The local storage generates a incremental ID for the new StoredMessage.

Once it obtains an exclusive lock for the appropriate array, the message is added

to the end of the array.

Retrieving a take-only message involves scanning the take-only array for a

matching message. If one is found, the scan stops. The matching message is

deleted from the array and the message is returned. If not matching message is

found, the method returns nil. When scanning, the mutex associated with the

take-only array is locked.

Finding a read-only message is a little more involved because the local stor-

age must avoid returning any messages which have already been read. As it

scans, it only attempts matching messages which are not included in the provided

read messages data structure. Unlike the take-only removal, many reads may

126

Table B.1: LocalStorage Methods

Method Input Output Description

store message Stores a take-only message

write message Stores a read-only message

find and take template message Removes matching take-only

message

take all template messages Removes all matching take-only

messages

find unread template, read messages message Returns matching read-only

message

find all unread template, read messages messages Returns all matching read-only

messages

occur at the same time. For this reason, a readers/writers lock is used for access-

ing the read-only array. This allows multiple readers but only a single writer to

access the array.

Bulk operations are essentially the same, except all matching messages are

returned instead of just the first matching.

B.1.1 Messages

In the prototype, messages are arrays which may contain any assortment of values.

Templates are also arrays, but if a value is a class it will be matched against the

class of the value in the message. Please note MELON may be implemented with

any message scheme that allows for matching based on some kind of templates,

this was just a simple approach used in the prototype implementation.

B.1.2 Stored Messages

When a message is stored, it is saved in a StoredMessage which holds an ID and

a copy of the message. This prevents issues if the message is modified after being

127

stored.

The StoredMessage class implements a simple message matching algorithm.

First, if the message is not the same length as the template, clearly they do not

match. Otherwise, the template and the message are compared value by value. If

the template value is a class, the message value is checked to see if it is an object

of the same class or a subclass. Otherwise, the values are compared via equality.

The matching aborts on the first mismatch.

StoredMessage also implements the mapping of process ID and message ID

to a single integer as described in Equation 5.1, resulting in the identifier used for

tracking the message in the read message data structures.

B.2 Remote Storage Client

All network communication in the prototype is implemented using ZeroMQ.

Each remote storage client, implemented in the RemoteStorage class, is as-

sociated with a particular remote node specified by an IP address and port.

RemoteStorage offers exactly the same retrieval API as local storage, so the

MELON API implementation may treat local storage and remote storage in the

same manner.

When a method is called on a RemoteStorage, it serializes the method name,

template, and read messages (if a read-only action) and sends them to the remote

node. If the remote node is unavailable, the communication times out and the

method returns nil. Choosing a timeout value presents a trade-off. Lower values

allow operations to return faster if the remote node is unavailable, but then the

communication is less reliable. Higher values are slower, but may provide greater

opportunities for connections. In our implementation we allowed 1.5 seconds for

sending to the remote node and 5 seconds for receiving the reply.

128

When a response is received, it is deserialized and returned to the caller.

B.3 Remote Storage Server

The storage server as implemented in the StorageServer class, is the most com-

plicated piece of the prototype because it must manage multiple concurrent con-

nections. To do so, it manages a thread pool of workers to accept connections. As

remote nodes connect, the connections are handed to the workers over an inter-

process connection using ZeroMQ. The worker then deserializes the message and

calls the appropriate method on the local storage. Assuming the message is valid,

the result from the local storage is again serialized and returned to the remote

node.

In the implementation, the server provides a ZeroMQ “ROUTER” socket to

which the remote nodes connect using a “REQ” socket. Internally, the server

provides a “DEALER” socket which each of the workers connects to via a “REP”

sockets. Then the sever connects the “ROUTER” socket to the “DEALER” via

a queue. This allows multiple incoming requests to be handed off to the workers.

Figure B.1 shows the relationship between the different components.

B.4 MELON API

The application developer only every needs to interact with the MELON API. The

implementation of the API maintains a set of servers (local and remote storage)

and the set of read messages. The API provides the six MELON operations and

a method to add remote servers. The prototype implementation does not provide

a mechanism for discovering remote nodes, so these must be added manually.

For store/write, the API saves the message directly to the local storage.

For the retrieval operations, the API iterates over the storage servers (local

129

REQ

ROUTER
tcp://address:port

Queue

DEALER
inproc://workers

REP

Worker
REP

Worker

REP

Worker

Remote Client

Storage Server

Figure B.1: ZeroMQ Server Setup

130

and remote) in a random order for each call, invoking the operation on each in

turn. When retrieving a single message, the iteration aborts when a matching

message is returned. In bulk operations, connections to all servers are attempted

and the results returned in one array. If an operation is blocking and no messages

are found, there is a brief delay (currently 1 second) then the iteration resumes. If

the operation is non-blocking, the servers are only iterated through once. Again,

for the prototype implementation remote servers are contacted one at a time, not

multicasted.

131

References

[Aa09] H. Artail and et al. “The design and implementation of an ad hoc
network of mobile devices using the LIME II tuple-space framework.”
Wireless Comm., IEEE, 16(3):52–59, 2009.

[Bad08] Nadjib Badache. “A distributed mutual exclusion algorithm over multi-
routing protocol for mobile ad hoc networks.” IJPEDS, 23(3):197–218,
2008.

[Bal07] Davide Balzarotti et al. “The LighTS tuple space framework and its
customization for context-aware applications.” Web Intelli. and Agent
Sys., 5(2):215–231, 2007.

[Ca01a] Bogdan Carbunar and et al. “CoreLime:: A Coordination Model for
Mobile Agents.” Electronic Notes in Theoretical Computer Science,
54:17–34, 2001.

[Ca01b] Bogdan Carbunar and et al. “Lime revisited.” In Mobile Agents, pp.
54–69. Springer, 2001.

[CB10] Justin Collins and Rajive Bagrodia. “A Quantitative Comparison of
Communication Paradigms for MANETs.” In 7th Intl ICST Conf on
Mobile and Ubiquitous Systems (Mobiquitous), 2010.

[CDM06] Tom Van Cutsem, Jessie Dedecker, Stijn Mostinckx, Elisa Gonzalez,
Theo D’Hondt, Theo D’Hondt, and Wolfgang De Meuter. “Ambient
references: addressing objects in mobile networks.” In OOPSLA ’06:
Companion to the 21st ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pp. 986–997, New
York, NY, USA, 2006. ACM.

[Cer08] Matteo Ceriotti et al. “Data sharing vs. message passing: synergy or
incompatibility?: an implementation-driven case study.” In SAC ’08:
Proc. of the ACM Symp. on Applied Computing, pp. 100–107, 2008.

[CMB07] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. “AmbientTalk: Object-oriented
Event-driven Programming in Mobile Ad hoc Networks.” In SCCC
’07: Proceedings of the XXVI Intern. Conf. of the Chilean Society of
Comp. Sci., pp. 3–12, Washington, DC, USA, 2007. IEEE Computer
Society.

[CP06] Gianpaolo Cugola and Gian Pietro Picco. “REDS: a reconfigurable
dispatching system.” In Proc. of the 6th international workshop on
Software engineering and middleware, pp. 9–16. ACM, 2006.

132

[CPV97] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. “Design-
ing distributed applications with mobile code paradigms.” In Proceed-
ings of the 19th international conference on Software engineering, pp.
22–32. ACM, 1997.

[CPV07] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. “Is code
still moving around? Looking back at a decade of code mobility.” In
Companion to the proceedings of the 29th International Conference on
Software Engineering, pp. 9–20. IEEE Computer Society, 2007.

[Da12] Suddhasil De and et al. “A new tuple space structure for tuple space
based mobile middleware platforms.” In India Conference (INDICON),
2012 Annual IEEE, pp. 705–710. IEEE, 2012.

[Den09] Mieso K. Denko et al. “Enhanced cross-layer based middleware for
mobile ad hoc networks.” J. Netw. Comput. Appl., 32(2):490–499,
2009.

[ER01] Keith Edwards and Tom Rodden. Jini example by example. Prentice
Hall PTR, 2001.

[Eug03] Patrick Th. Eugster et al. “The many faces of publish/subscribe.”
ACM Comput. Surv., 35(2):114–131, 2003.

[Fa04] Chien-Liang Fok and et al. “A lightweight coordination middleware
for mobile computing.” In Coordination Models and Languages, pp.
135–151. Springer, 2004.

[Ga13] Boix Gonzalez and et. al. “Programming mobile context-aware appli-
cations with TOTAM.” Journal of Systems and Software, 2013.

[GC92] David Gelernter and Nicholas Carriero. “Coordination languages and
their significance.” Commun. ACM, 35(2):97–107, 1992.

[HAM06] S. Hadim, J. Al-Jaroodi, and N. Mohamed. “Middleware issues and
approaches for mobile ad hoc networks.” Consumer Communications
and Networking Conference, 2006. CCNC 2006. 3rd IEEE, 1:431–436,
8-10 Jan. 2006.

[HHM07] Klaus Herrmann, Klaus Herrmann, Gero Mühl, Gero Mühl, Michael A.
Jaeger, and Michael A. Jaeger. “MESHMdl event spaces - A coordina-
tion middleware for self-organizing applications in ad hoc networks.”
Pervasive Mob. Comput., 3(4):467–487, 2007.

[Hin13] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly,
2013.

133

[JM96] David B. Johnson and David A. Maltz. “Dynamic Source Routing
in Ad Hoc Wireless Networks.” In Mobile Computing, pp. 153–181.
Springer US, 1996.

[JR06] Christine Julien and G-C Roman. “Egospaces: Facilitating rapid de-
velopment of context-aware mobile applications.” IEEE Trans on Soft.
Eng., 32(5):281–298, 2006.

[KB02] Alan Kaminsky and Hans-Peter Bischof. “Many-to-Many Invocation:
a new object oriented paradigm for ad hoc collaborative systems.” In
OOPSLA ’02: 17th Conf. on Object-Oriented Programming, Systems,
Langs, and Apps., 2002.

[Lan98] DannyB. Lange. “Mobile objects and mobile agents: The future of dis-
tributed computing?” In Eric Jul, editor, ECOOP98 Object-Oriented
Programming, volume 1445 of Lecture Notes in Computer Science, pp.
1–12. Springer Berlin Heidelberg, 1998.

[Leg05] Simone Leggio et al. “Session initiation protocol deployment in ad-
hoc networks: a decentralized approach.” In 2nd Intl. Workshop on
Wireless Ad-hoc Networks (IWWAN), 2005.

[Lie09] Yao-Nan Lien et al. “A MANET Based Emergency Communication
and Information System for Catastrophic Natural Disasters.” In ICD-
CSW ’09: Proc. of the 29th IEEE Intl. Conf. on Distributed Computing
Systems Workshops, pp. 412–417, 2009.

[Ma13] Mary Madden and et. al. Teens and Technology 2013. Pew Internet &
American Life Project, March 2013.

[MC02] René Meier and Vinny Cahill. “STEAM: Event-Based Middleware for
Wireless Ad Hoc Network.” In ICDCSW ’02: Proc. of the 22nd Intern.
Conf. on Distributed Computing Systems, pp. 639–644, 2002.

[Mica] Microsoft. http://msdn.microsoft.com/en-us/netframework/.

[Micb] Sun Microsystems. http://java.sun.com/javame/.

[Mur06] Amy L. Murphy et al. “Lime: A Coordination Middleware Supporting
Mobility of Hosts and Agents.” ACM Trans. on Software Engin. and
Methodology, July 2006.

[MZ04] M. Mamei and F. Zambonelli. “Programming pervasive and mobile
computing applications with the TOTA middleware.” Perv. Comp. and
Comm., 2004. PerCom 2004. Proceedings of the Second IEEE Annual
Conference on, pp. 263–273, 14-17 March 2004.

134

[Net08] Scalable Networks. “Exata: An Exact Digital Network Replica for
Testing, Training and Operations of Network-centric Systems.” Tech-
nical brief, 2008.

[NKS05a] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. “Program-
ming ad-hoc networks of mobile and resource-constrained devices.”
SIGPLAN Not., 40(6):249–260, 2005.

[NKS05b] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. “Program-
ming ad-hoc networks of mobile and resource-constrained devices.”
SIGPLAN Not., 40(6):249–260, 2005.

[PR99] Charles E. Perkins and Elizabeth M. Royer. “Ad-hoc On-Demand
Distance Vector Routing.” In WMCSA ’99: Proc. of the 2nd IEEE
Workshop on Mobile Computer Systems and Applications, p. 90, 1999.

[Qua] Qualcomm. http://brew.qualcomm.com/brew/.

[Ra13] Carlos Rodŕıguez-Domı́nguez and et. al. “Designing a Communication
Platform for Ubiquitous Systems: The Case Study of a Mobile Foren-
sic Workspace.” In New Trends in Interaction, Virtual Reality and
Modeling, pp. 97–111. Springer, 2013.

[RK13] DN Rewadkar and Smita Karve. “Spontaneous Wireless Ad Hoc Net-
working: A Review.” International Journal, 3(11), 2013.

[RW96] Antony Rowstron and Alan Wood. “Solving the Linda multiple
rd problem.” In Coordination Languages and Models, pp. 357–367.
Springer, 1996.

[SA14] Eduardo da Silva and Luiz Carlos P Albini. “Middleware proposals for
mobile ad hoc networks.” Journal of Network and Computer Applica-
tions, 43:103–120, 2014.

[SL04] Mee Young Sung and Jong Hyuk Lee. “Desirable Mobile Networking
Method for Formulating an Efficient Mobile Conferencing Application.”
In Embedded and Ubiquitous Computing, 2004.

[Smi13] Aaron Smith. Smartphone Ownership - 2013 Update. Pew Internet &
American Life Project, June 2013.

[SSH07] Jing Su, James Scott, Pan Hui, Jon Crowcroft, Eyal De Lara,
Christophe Diot, Ashvin Goel, Meng How Lim, and Eben Upton. Hag-
gle: Seamless networking for mobile applications. Springer, 2007.

[Sus04] et.al. Sushil K. Prasad, Vijay Madisetti. “SyD: a middleware testbed
for collaborative applications over small heterogeneous devices and

135

data stores.” In Middleware ’04: Proceedings of the 5th ACM/I-
FIP/USENIX international conference on Middleware, pp. 352–371,
New York, NY, USA, 2004. Springer-Verlag New York, Inc.

[Szu06] Matthew Szudzik. “An elegant pairing function.” In Wolfram Science
Conference, 2006.

[TMB01] M. Takai, J. Martin, and R. Bagrodia. “Effects of wireless physical
layer modeling in mobile ad hoc networks.” In MobiHoc ’01: Proc. of
the 2nd ACM Intl. Symp. on Mobile Ad Hoc Networking & Computing,
2001.

[TS02] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems,
pp. 700–701. Prentice Hall, 2002.

[VB04] M. Varshney and R. Bagrodia. “Detailed models for sensor network
simulations and their impact on network performance.” In MSWiM
’04: Proc. of 7th ACM Intl. Symp. on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems, 2004.

[Wad99] Stephen Paul Wade. An investigation into the use of the tuple space
paradigm in mobile computing environments. PhD thesis, Citeseer,
1999.

136

