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Abstract

Finding connected components is one of the most widely used operations on a graph. Optimal serial algorithms for the problem
have been known for half a century, and many competing parallel algorithms have been proposed over the last several decades
under various different models of parallel computation. This paper presents a class of parallel connected-component algorithms
designed using linear-algebraic primitives. These algorithms are based on a PRAM algorithm by Shiloach and Vishkin and can
be designed using standard GraphBLAS operations. We demonstrate two algorithms of this class, one named LACC for Linear
Algebraic Connected Components, and the other named FastSV which can be regarded as LACC’s simplification. With the support
of the highly-scalable Combinatorial BLAS library, LACC and FastSV outperform the previous state-of-the-art algorithm by a
factor of up to 12x for small to medium scale graphs. For large graphs with more than 50B edges, LACC and FastSV scale to 4K
nodes (262K cores) of a Cray XC40 supercomputer and outperform previous algorithms by a significant margin. This remarkable
performance is accomplished by (1) exploiting sparsity that was not present in the original PRAM algorithm formulation, (2)
using high-performance primitives of Combinatorial BLAS, and (3) identifying hot spots and optimizing them away by exploiting
algorithmic insights.

1. Introduction

Given an undirected graph G = (V, E) on the set of vertices
V and the set of edges E, a connected component (CC) is a sub-
graph in which every vertex is connected to all other vertices
in the subgraph by paths and no vertex in the subgraph is con-
nected to any other vertex outside of the subgraph. Finding all
connected components in a graph is a well studied problem in
graph theory with applications in bioinformatics [1] and scien-
tific computing [2, 3].

Parallel algorithms for finding connected components also
have a long history, with several ingenious techniques applied
to the problem. One of the most well-known parallel algorithms
is due to Shiloach and Vishkin [4], where they introduced the
hooking procedure. The algorithm also uses pointer jumping, a
fundamental technique in PRAM (parallel random-access ma-
chine) algorithms, for shortcutting. Awerbuch and Shiloach [5]
later simplified and improved on this algorithm. Despite the fact
that PRAM model is a poor fit for analyzing distributed memory
algorithms, we will show in this paper that the Shiloach-Vishkin
(SV) and Awerbuch-Shiloach (AS) algorithms admit a very effi-
cient parallelization using proper computational primitives and
sparse data structures.

Decomposing the graph into its connected components is
often the first step in large-scale graph analytics where the goal
is to create manageable independent subproblems. Therefore, it
is important that connected component finding algorithms can
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run on distributed memory, even if the subsequent steps of the
analysis need not. Several applications of distributed-memory
connected component labeling have recently emerged in the
field of genomics. The metagenome assembly algorithms repre-
sent their partially assembled data as a graph [6, 7]. Each com-
ponent of this graph can be processed independently. Given that
the scale of the metagenomic data that needs to be assembled
is already on the order of several TBs, and is on track to grow
exponentially, distributed connected component algorithms are
of growing importance.

Another application comes from large scale biological net-
work clustering. The popular Markov clustering algorithm
(MCL) [1] iteratively performs a series of sparse matrix ma-
nipulations to identify the clustering structure in a network. Af-
ter the iterations converge, the clusters are extracted by find-
ing the connected components on the symmetrized version of
the final converged matrix, i.e., in an undirected graph repre-
sented by the converged matrix. We have recently developed
the distributed-memory parallel MCL (HipMCL) [8] algorithm
that can cluster protein similarity networks with hundreds of
billions of edges using thousands of nodes on modern super-
computers. Since computing connected components is an im-
portant step in HipMCL, a parallel connected component algo-
rithm that can scale to thousands of nodes is imperative.

In this paper, we present two parallel algorithms based on
the SV and AS algorithms. These algorithms are specially de-
signed by mapping different operations to the GraphBLAS [9]
primitives, which are standardized linear-algebraic functions
that can be used to implement graph algorithms. The linear-
algebraic algorithm which is derived from the AS algorithm
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is named as LACC for linear algebraic connected compo-
nents. The second algorithm is a simplification of the SV al-
gorithm and is named as FastSV due to its improved conver-
gence in practice. FastSV can also be considered a simplifica-
tion of LACC. While the initial reasons behind choosing the SV
and AS algorithms were simplicity, performance guarantees,
and expressibility using linear algebraic primitives, we found
that they are never slower than the state-of-the-art distributed-
memory algorithm ParConnect [10], and they often outperform
ParConnect by several folds.

LACC and FastSV algorithms are published as conference
papers [11, 12]. This journal paper extends those algorithms
by providing a unified framework for CC algorithms in lin-
ear algebra. Designing CC algorithms using a standard set
of linear-algebraic operations gives a crucial benefit. After an
algorithm is mapped to GraphBLAS primitives, we can rely
on any library providing high-performance implementations of
those primitives. In this paper we use the Combinatorial BLAS
(CombBLAS) library [13], a well-known framework for im-
plementing graph algorithms in the language of linear alge-
bra. Different from the original SV and AS algorithms, our
implementations fully exploit vector sparsity and avoids pro-
cessing on inactive vertices. We perform several additional op-
timizations to eliminate performance hot spots and provide a
detailed breakdown of our parallel performance, both in terms
of theoretical communication complexity and in experimental
results. These algorithmic insights and optimizations result in
a distributed algorithm that scales to 4K nodes (262K cores)
of a Cray XC40 supercomputer and outperforms previous algo-
rithms by a significant margin. We also implemented our al-
gorithm using SuiteSparse:GraphBLAS [14], a multi-threaded
implementation of the GraphBLAS standard. The performance
of the shared-memory implementations is comparable to state-
of-the-art CC algorithms designed for share-memory platforms.

Distributed-memory LACC and FastSV codes are publicly
available as part of the CombBLAS library1. Shared-memory
GraphBLAS implementations are also committed to the LA-
Graph Library [15]2. This paper is an extension of a conference
paper [11] published in IPDPS 2019.

2. Background

2.1. Notations
This paper only considers an undirected and unweighted

graph G = (V, E) with n vertices and m edges. Given a vertex
v, N(v) is the set of vertices adjacent to v. A tree is an undi-
rected graph where any two vertices are connected by exactly
one path. A directed rooted tree is a tree in which a vertex is
designated as the root and all vertices are oriented toward the
root. The level l(v) of a vertex v in a tree is 1 plus the number
of edges between v and the root. The level of the root is 1. A
tree is called a star if every vertex is a child of the root (the root

1https://bitbucket.org/berkeleylab/combinatorial-blas-2.0/
2https://github.com/GraphBLAS/LAGraph

is a child of itself). A vertex is called a star vertex is it belongs
to a star.

2.2. GraphBLAS
The duality between sparse matrices and graphs has a long

and fruitful history [16, 17]. Several independent systems
have emerged that use matrix algebra to perform graph oper-
ations [13, 18, 19]. Recently, the GraphBLAS forum defined
a standard set of linear-algebraic operations for implementing
graph algorithms, leading to the GraphBLAS C API [20]. In
this paper, we will use the functions from the GraphBLAS API
to describe our algorithms. That being said, our algorithms run
on distributed memory while currently no distributed-memory
library faithfully implements the GraphBLAS API. The most
recent version of the API (1.2.0) is actually silent on distributed-
memory parallelism and data distribution. Consequently, while
our descriptions follow the API, our implementation will be
based on CombBLAS functions [13], which are either seman-
tically equivalent in functionality to their GraphBLAS counter-
parts or can be composed to match GraphBLAS functionality.

2.3. Related work
Finding connected components of an undirected graph is

one of the most well-studied problems in the PRAM (parallel
random-access memory) model. A significant portion of these
algorithms assume the CRCW (concurrent-read concurrent-
write model). The Awerbuch-Shiloach (AS) algorithm is a sim-
plification of the Shiloach-Vishkin (SV) algorithm [4]. The fun-
damental data structure in both AS and SV algorithms is a for-
est of rooted trees. While AS only keeps the information of the
current forest, SV additionally keeps track of the forest in the
previous iteration of the algorithm as well as the last time each
parent received a new child. The convergence criterion for AS
is to check whether each tree is a star whereas SV needs to see
whether the last iteration provided any updates to the forest.

Randomization is also a fundamental technique applied to
the connected components problem. The random-mate (RM)
algorithm, due to Reif [21], flips an unbiased coin for each ver-
tex to determine whether it is a parent or a child. Each child
then finds a parent among its neighbors. The stars are con-
tracted to supervertices in the next iteration as in AS and SV
algorithms. All three algorithms described so far (RM, AS, and
SV) are work inefficient in the sense that their processor-time
product is asymptotically higher than the runtime complexity of
the best serial algorithm.

A similar randomization technique allowed Gazit to dis-
cover a work-efficient CRCW PRAM algorithm for the con-
nected components problem [22]. His algorithm runs with
O(m) optimal work and O(log(n)) span. More algorithms fol-
lowed achieving the same work-span bound but improving the
state-of-the-art by working with more restrictive models such
as EREW (exclusive-read exclusive-write) [23], solving more
general problems such as minimum spanning forest [24] whose
output can be used to infer connectivity, and providing first im-
plementations [25].

The literature on distributed-memory connected compo-
nent algorithms and their complexity analyses, is significantly
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Algorithm 1 The skeleton of the AS algorithm. Inputs: an
undirected graph G(V, E). Output: The parent vector f

1: procedure Awerbuch-Shiloach(G(V, E))
2: for every vertex v in V do . Initialize
3: f [v]← v
4: repeat
5: . Step1: Conditional star hooking
6: for every edge {u, v} in E do in parallel
7: if u belongs to a star and f [u] > f [v] then
8: f [ f [u]]← f [v]
9: . Step2: Unconditional star hooking

10: for every edge {u, v} in E do in parallel
11: if u belongs to a star and f [u] , f [v] then
12: f [ f [u]]← f [v]
13: . Step3: Shortcutting
14: for every vertex v in V do in parallel
15: gf [v]← f [ f [v]]
16: for every vertex v in V do in parallel
17: if v does not belongs to a star then
18: f [v]← gf [v]]
19: until f remains unchanged
20: return f

sparser than the case for PRAM algorithms. The state-of-the-
art prior to our work is the ParConnect algorithm [10], which is
based on both the SV algorithm and parallel breadth-first search
(BFS). Slota et al. [26] developed a distributed memory Mul-
tistep method that combines parallel BFS and label propaga-
tion technique. There have also been implementations of con-
nected component algorithms in PGAS (partitioned global ad-
dress space) languages [27] in distributed memory. Viral Shah’s
PhD thesis [28] presents a data-parallel implementation of the
AS algorithm that runs on Matlab*P, a distributed variant of
Matlab that is now defunct. Shah’s implementation uses vastly
different primitives than our own and solely relies on manipu-
lating dense vectors, hence is limited in scalability.

Kiveras et al. [29] proposed the Two-Phase algorithm for
MapReduce systems. Such algorithms tend to perform poorly
in tightly-couple parallel systems our work targets compared to
the loosely-coupled architectures that are optimized for cloud
workloads. There is also recent work on parallel graph con-
nectivity within the theory community, using various different
models of computation [30, 31]. These last two algorithms are
not implemented and its is not clear if such complex algorithms
can be competitive in practice on real distributed-memory par-
allel systems.

3. Variants of the Shiloach-Vishkin (SV) algorithm

At first, we discuss the general framework of the SV algo-
rithms. Based on this framework, we discuss two algorithmic
variants that will be designed using linear algebra.

The SV algorithm and its variants maintain a forest (a col-
lection of directed rooted trees), where each tree represents
a connected component at the current stage of the algorithm.
To represent trees, the algorithm maintains a parent vector f ,

Algorithm 2 Finding vertices in stars. Inputs: a graph G(V, E)
and the parent vector f . Output: The star vector.

1: procedure Starcheck(G(V, E), f )
2: for every vertex v in V do in parallel . Initialize
3: star[v]← true
4: gf [v]← f [ f [v]]
5: . Exclude every vertex v with l(v) > 2 and its grandparent
6: for every vertex v in V do in parallel
7: if f [v] , gf [v] then
8: star[v]← false
9: star[gf [v]]← false

10: . In nonstar trees, exclude vertices at level 2
11: for every vertex v in V do in parallel
12: star[v]← star[ f [v]]
13: return star

where f [v] stores the parent of a vertex v. All vertices in a
tree belong to the same component, and at termination of the
algorithm, all vertices in a connected component belong to the
same tree. Each tree has a designated root (a vertex having a
self-loop) that serves as the representative vertex for the corre-
sponding component.

The algorithm begins with n single-vertex trees and iter-
atively merges trees until no such merging is possible. This
merging is performed by a process called tree hooking, where
the root of a tree becomes a child of a vertex in another tree.
Between two subsequent iterations, the algorithm reduces the
height of trees by a process called shortcutting, where a vertex
becomes a child of its grandparent.

The original Shiloach-Vishkin algorithm and its successor
the Awerbuch-Shiloach algorithm used a conditional hooking
step as well as an unconditional hooking step in every iteration.
Conditional hooking of a root u is allowed only when u’s id is
larger than the vertex which u is hooked into. Unconditional
hooking can hook any trees that remained unchanged in the
preceding conditional hooking. With this general framework,
the SV algorithm is guaranteed to finish in O(log n) iterations,
where each iteration performs O(m) parallel work.

3.1. The Awerbuch-Shiloach (AS) algorithm

Awerbuch and Shiloach simplified the SV algorithm by al-
lowing only stars to be hooked on to other trees [5]. Similar to
the SV algorithm, the AS algorithm also needs both conditional
and unconditional star hooking and shortcutting operations. To
track vertices in stars, the algorithm maintains a Boolean vec-
tor star. For every vertex v, star[v] is true if v is a star vertex,
star[v] is false otherwise.

Description of the algorithm. Algorithm 1 describes the
main components of the AS algorithm. Initially, every vertex
is its own parent, creating n single-vertex stars (lines 2-3 of
Algorithm 1). In every iteration, the algorithm performs three
operations: (a) conditional hooking, (b) unconditional hooking
and (c) shortcutting. In the conditional hooking (lines 6-8), ev-
ery edge {u, v} is scanned to see if (a) u is in a star and (b) the
parent of u is greater than the parent of v. If these conditions
are satisfied, f [u] is hooked to f [v] by making f[v] the parent
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Figure 1: An illustrative example of the AS algorithm. Edges are shown in solid black edges. A dashed arrowhead connects a child with its parent. (a) An undirected
and unweighted graph. (b) Initially, every vertex forms a singleton tree. (c) After conditional hooking. Here, we only show edges connecting vertices from different
trees. (d) Identifying vertices in stars (see Figure 2 for details). (e) After unconditional hooking: the star rooted at vertex 1 is hooked onto the left tree rooted at
vertex 0. (f) After shortcutting, all vertices belong to stars. The algorithm returns with a connected component.
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Figure 2: Finding star vertices. Star and nonstar vertices are shown with unfilled and filled circles, respectively. A dashed arrowhead connects a child with its parent.
(a) Initially, every vertex is assumed to be a star vertex. (b) Every vertex v with l(v) > 2 and its grandparent are marked as nonstar vertices. (c) In a nonstar tree,
vertices at level 2 are marked as nonstar vertices.

of f[u]. The remaining stars then get a chance to hook uncondi-
tionally (lines 10-12). In the shortcutting step, the grandparent
of all vertices are identified and stored in the gf vector (lines
14-15). The gf vector is then used to update parents of all ver-
tices (lines 16-18). Figure 1 shows the execution of different
steps of the AS algorithm.

Algorithm 2 and Figure 2 describe how star vertices are
identified based on the parent vector. Initially, every vertex v
is assumed to be a star vertex by setting star[v] to true (line 3
of Algorithm 2). The algorithm marks vertices as nonstars if
any of the following three conditions is satisfied:

• v’s parent and grandparent are not the same vertex. In
this case, l(v) > 2 as shown in Figure 2(b)

• If v is a nonstar vertex, then its grandparent is also a non-
star vertex (Figure 2(b) and and line 9 of Algorithm 2)

• If v’s parent is a nonstar, then v is also a nonstar vertex
(Figure 2(c) and lines 11-12 of Algorithm 2)

The AS algorithm terminates when every tree becomes a
star and the parent vector f is not updated in the latest itera-

tion. The algorithm terminates in O(log n) iterations. Hence,
the algorithm runs in O(log n) time using m + n processors in
the PRAM model.

3.2. A simplified SV algorithm with fast convergence

While the AS algorithm is simpler than the original SV al-
gorithm, it still needs to identify stars before every hooking op-
eration. This star finding step can incur significant performance
overhead, especially when the algorithm is run in distributed
memory systems. Here, we discuss a variant of the SV algo-
rithm that is simpler and faster than the AS algorithm in prac-
tice.

Notice that if we remove unconditional hooking from SV,
the algorithm is still correct, but it no longer guarantees the
O(log n) iterations in the worst case. Nevertheless, practi-
cal parallel algorithms often remove the unconditional hook-
ing [32, 33] because it needs to keep track of unchanged trees
(also known as stagnant trees), which is expensive, especially
in distributed memory. In a recent paper, we developed an algo-
rithm called FastSV [12] that has only one hooking phase fol-
lowed by shortcutting in every iteration. In the hooking phase,

4



Algorithm 3 The skeleton of the FastSV algorithm. Input: a
graph G(V, E). Output: The parent vector f

1: procedure FastSV(G(V, E))
2: for every vertex u ∈ V do in parallel . Initialize
3: f [u], gf [u]← v
4: repeat
5: . Step 1: Hooking phase
6: for every edge {u, v} in E do in parallel
7: if gf [u] > gf [v] then
8: f [ f [u]]← gf [v]
9: f [u]← gf [v]

10: . Step 2: Shortcutting
11: for every vertex u in V do in parallel
12: if f [u] > gf [u] then
13: f [u]← gf [u]
14: . Step 3: Calculate grandparent
15: for every vertex u in V do in parallel
16: gf [u]← f [ f [u]]
17: until gf remains unchanged
18: return f

FastSV explores any opportunities to hook a subtree onto an-
other tree if a “suitable” edge between them can be found. Hav-
ing this simplified constraint, FastSV not only avoids the cycle
in the tree updating, but also makes it possible to employ more
powerful hooking strategies while retaining the low computa-
tion cost. The shortcutting is the same as the AS algorithm,
which shortens the distance of each vertex to the root.

Description of the algorithm. Algorithm 3 describes the
complete FastSV algorithm3. The initialization is the same as
the AS algorithm which creates n single-vertex trees, and the
grandparent of each vertex is also initialized and stored in the
vector gf . In each iteration, the algorithm performs three oper-
ations: (a) stochastic hooking, (b) aggressive hooking and (c)
shortcutting. Due to the similarity of the first two operations,
they are combined into a single step called the hooking phase
(line 6-9). In this phase, we compare the grandparent of u and v
for every edge {u, v} in E. If the condition gf [u] > gf [v] is sat-
isfied, we hook both f [u] and u onto gf [v], v’s grandparent in
the previous iteration. Here, hooking f [u] to gf [v] corresponds
to the stochastic hooking and hooking u to gf [v] corresponds to
the aggressive hooking. Then, in the shortcutting step (line 11-
13), every vertex u modifies its pointer to gf [u] if gf [u] > f [u]
is satisfied. In the end of each iteration, the grandparents of
all vertices are recalculated and stored in the gf vector (lines
15-16), and the algorithm’s termination is based on the stabi-
lization of the gf vector instead of f , which is also correct and
is proved to be a better termination condition in practice [12].

4. The AS and FastSV algorithms using linear algebra

In this section, we design the AS and FastSV algorithms
using the GraphBLAS API [9]. We used GraphBLAS API to

3Algorithm 3 is presented in a prior work [12]. It is described here for
completeness and readability

describe our algorithms because the API is more expressive,
well-thought-of, and future proof. Below we give an informal
description of GraphBLAS functions used in our algorithms.
Formal descriptions can be found in the API document [34].

The function GrB Vector nvals retrieves the number of
stored elements (tuples) in a vector. GrB Vector extractTuples
extracts the indices and values associated with nonzero entries
of a vector. In all other GraphBLAS functions we use, the first
parameter is the output, the second parameter is the mask that
determines to which elements of the output should the result
of the computation be written into, and the third parameter de-
termines the accumulation mode. We will refrain from using
an accumulator and instead be performing an assignment in all
cases; hence our third parameter is always GrB NULL.

• The function GrB mxv multiplies a matrix with a vector on
a semiring, outputting another vector. The GraphBLAS API
does not provide specialized function names for sparse vs.
dense vectors and matrices, but instead allows the implemen-
tation to internally call different subroutines based on input
sparsity. In our use case, matrices are always sparse whereas
vectors start out dense and get sparse rapidly. GrB mxv op-
erates on a user defined semiring object GrB Semiring. We
refer to a semiring by listing its scalar operations, such as the
(multiply, add) semiring. Our algorithm uses the (Select2nd,
min) semiring with the GrB mxv function where Select2nd
returns its second input and min returns the minimum of its
two inputs.

• The vector variant of GrB extract extracts a sub-vector from a
larger vector. The larger vector from which we are extracting
elements from is the fourth parameter. The fifth parameter
is a pointer to the set of indices to be extracted, which also
determines the size of the output vector.

• The vector variant of the GrB assign function that assigns
the entries of a GraphBLAS vector (u) to another, potentially
larger, vector w. The vector whose entries we are assigning
to is the fourth parameter u. The fifth parameter is a pointer
to the set of indices of the output w to be assigned.

• The vector variant of GrB eWiseMult performs element-wise
(general) multiplication on the intersection of elements of
two vectors. The multiplication operation is provided as a
GrB Semiring object in the fourth parameter and the input
vectors are passed in the fifth and sixth parameters.

We will refrain from making a general complexity analysis
of these operations as the particular instantiations have different
complexity bounds. Instead, we will analyze their complexities
as they are used in our particular algorithms.

4.1. LACC: The AS algorithm using linear algebra

At first, we design the AS algorithm (Algorithm 1 and 2) us-
ing linear algebra. As mentioned in the Introduction, the linear-
algebraic design of the AS algorithm is called LACC, follow-
ing the naming used in the conference paper which this journal

5



Algorithm 4 Conditional hooking of stars. Inputs: an adja-
cency matrix A, the parent vector f , the star-membership vector
star. Output: Updated f . (NULL is denoted by ∅)

1: procedure CondHook(A, f , star)
2: Sel2ndMin← a (select2nd, min) semiring
3: . Step1: fn[i] stores the parent (with the minimum id) of a

neighbor of vertex i. Next, fn[i] is replaced by min{ fn[i], f [i]}
4: GrB mxv ( fn, star, ∅, Sel2ndMin, A, f , ∅)
5: GrB eWiseMult ( fn, ∅, ∅, GrB MIN T, fn, f , ∅);
6: . Step2: Parents of hooks (hooks are nonzero indices in fn)
7: GrB eWiseMult ( fh, ∅, ∅, GrB SECOND T, fn, f , ∅)
8: . Step3: Hook stars on neighboring trees ( f [ fh] = fn).
9: GrB Vector nvals(&nhooks, fn)

10: GrB Vector extractTuples (index, value, nhooks, fh)
11: GrB extract ( fn, ∅, ∅, fn, index, nhooks, ∅) . Dense
12: GrB assign ( f , ∅, ∅, fn, value, nhooks, ∅)

paper is based upon. Here, we describe various operations of
LACC using the GraphBLAS API.

Conditional hooking. Algorithm 4 describes the condi-
tional hooking operation designed using the GraphBLAS API.
For each star vertex v, we identify a neighbor with the mini-
mum parent id. This operation is performed using GrB mxv in
line 4 of Algorithm 4 where we multiply the adjacency matrix
A by the parent vector f on the (Select2nd, min) semiring. We
only keep star vertices by using the star vector as a mask. The
output of GrB mxv is stored in fn, where fn[v] stores the min-
imum parent among all parents of N(v) such that v belongs to
a star. If the parent f [v] of vertex v is smaller than fn[v], we
store f [v] in fn[v] in line 5. Nonzero indices in fn[v] are called
hooks. Next, we identify parents fh of hooks in line 7 by using
the GrB eWiseMult function that simply copies parents from
f based on nonzero indices in fn. Here, fh contains roots be-
cause only a root can be a parent within a star. In the final step
(lines 9-12), we hook fh to fn by using the GrB assign func-
tion. In order to perform this hooking, we update parts of the
parent vector f by using nonzero values from fh as indices and
nonzero values from fn as values.

Unconditional hooking. Algorithm 5 describes uncondi-
tional hooking. As we will show in Lemma 2, unconditional
hooking only allows a star to get hooked onto a nonstar. Hence,
in line 4, we extract parents fns of nonstar vertices (GrB SCMP
denotes structural complement of the mask), which is then used
with GrB mxv in line 5. Here, we break ties using the (Se-
lect2nd, min) semiring, but we could have used other semiring
addition operations instead of “min”. The rest of Algorithm 5
is similar to Algorithm 4.

Shortcut. Algorithm 6 describes the shortcutting operation
using two GraphBLAS primitives. At first, we use GrB extract
to obtain the grandparents gf of vertices. Next, we assign gf to
the parent vector using GrB assign.

Starcheck. Algorithm 7 identifies star vertices. At first, we
initialize all vertices as stars (line 2). Next, we identify the sub-
set of vertices h whose parents and grandparents are different
(lines 4-5) using a Boolean mask vector hbool. Nonzero in-
dices and values in h represent vertices and their grandparents,

Algorithm 5 Unconditional star hooking. Inputs: an adjacency
matrix A, the parent vector f , the star-membership vector star.
Output: Updated f . (NULL is denoted by ∅)

1: procedure UncondHook(A, f , star)
2: Sel2ndMin← a (select2nd, min) semiring
3: . Step1: For a star vertex, find a neighbor in a nonstar. fn[i]

stores the parent (with the minimum id) of a neighbor of i
4: GrB extract( fns, star, ∅, f , GrB ALL, 0, GrB SCMP)
5: GrB mxv ( fn, star, ∅, Sel2ndMin, A, fns, ∅)
6: . Step 2 and 3 are similar to Algorithm 4

Algorithm 6 The shortcut operation. Input: the parent vector
f . Output: Updated f .

1: procedure Shortcut( f )
2: . find grandparents (gf ← f [ f ])
3: GrB Vector extractTuples(idx, value, &n, f ) . n = |V |
4: GrB extract (gf , ∅, ∅, f , value, n, ∅)
5: GrB assign ( f , ∅, ∅, gf , GrB ALL, 0, ∅) . f ← gf

respectively. In lines 7-10, we mark these vertices and their
grandparents as nonstars. Finally, we mark a vertex nonstar if
its parent is also a nonstar (lines 12-14).

4.2. Efficient use of sparsity in LACC

As shown in Algorithm 1, every iteration of the original AS
algorithm explores all vertices in the graph. Hence, conditional
and unconditional hooking explore all edges, and shortcut and
starcheck explore all entries in parent and star vectors. If we
directly translate the AS algorithm to linear algebra, all of our
operations will use dense vectors, which is unnecessary if some
vertices remain “inactive” in an iteration. A key contribution
of this paper is to identify inactive vertices and sparsify vectors
whenever possible so that we can eliminate unnecessary work
performed by the algorithm. We now discuss ways to exploit
sparsity in different steps of the algorithm.

Tracking converged components. A connected compo-
nent is said to be converged if no new vertex is added to it in
subsequent iterations. We can keep track of converged compo-
nents using the following lemma.

Lemma 1. Except in the first iteration, all remaining stars after
unconditional hooking are converged components.

Proof. Consider a star S after the unconditional hooking in the
ith iteration where i > 1. In order to hook S in any subsequent
iteration, there must be an edge {u, v} such that u ∈ S and v < S .
Let v belong to a tree T at the beginning of the ith iteration. If T
is a star, then the edge {u, v} can be used to hook S onto T or T
onto S depending on the labels of their roots. If T is a nonstar,
the edge {u, v} can be used to hook S onto T in unconditional
hooking. In any of these cases, S will not be a star at the end
of the ith iteration because hooking of a star on another tree
always yields a nonstar. Hence, {u, v} does not exist and S is a
converged component.

In our algorithm, we keep track of vertices in converged
components and do not process these vertices in subsequent
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Algorithm 7 Updating star memberships. Inputs: the parent
vector f , the star vector star. Output: Updated star vector.

1: procedure Starcheck( f , star)
2: GrB assign (star, ∅, ∅, true, GrB ALL, 0, ∅) . initialize
3: . vertices whose parents and grandparents are different. See

Algorithm 6 for the code for computing grandparents gf
4: GrB eWiseMult(hbool, ∅, ∅, GrB NE T, f , gf , ∅)
5: GrB extract(h, hbool, ∅, gf , GrB ALL, 0, ∅)
6: . mark these vertices and their grandparents as nonstars
7: GrB Vector nvals(&nnz, h)
8: GrB Vector extractTuples(index, value, nnz, h)
9: GrB assign (star, ∅, ∅, false, index, nnz, ∅)

10: GrB assign (star, ∅, ∅, false, value, nnz, ∅)
11: . star[v]← star[ f [v]]
12: GrB Vector extractTuples(idx, value, &n, f ) . n = |V |
13: GrB extract (starf , ∅, ∅, star, value, n, ∅)
14: GrB assign (star, ∅, GrB MIN T, starf , GrB All, 0, ∅)

Table 1: The scope of using sparse vectors at different steps of LACC (does not
apply to the first iteration).

Operation Operate on the subset of vertices in

Conditional hooking Nonstars after unconditional hooking
in the previous iteration

Unconditional hooking Nonstars after conditional hooking
Shortcut Nonstars after unconditional hooking
Starcheck Nonstars after unconditional hooking

iterations. Hence Lemma 1 impacts all four steps of LACC.
Since Lemma 1 does not apply to iteration 1, it has no influence
in the first two iterations of LACC. Furthermore, a graph with a
few components is not benefited significantly as most vertices
will be active in almost every iteration.

Lemma 2. Unconditional hooking does not hook a star on an-
other star [5, Theorem 2(a)].

Consequently, we can further sparsify unconditional hook-
ing as was described in Algorithm 5. Even though uncondi-
tional hooking can hook a star onto another star in the first iter-
ation, we prevent it by removing conditionally hooked vertices
from consideration in unconditional hooking.

According to Lemma 1, only nonstar vertices after uncon-
ditional hooking will remain active in subsequent iterations.
Hence, only these vertices are processed in the shortcut and
starcheck operations. Table 1 summarizes the subset of vertices
used in different steps of our algorithm.

4.3. The FastSV algorithm using linear algebra

Algorithm 8 describes the complete FastSV algorithm us-
ing the GraphBLAS API. We maintain both the parent vector
f and the grandparent vector gf in each iteration. The hooking
phase is similar to LACC’s conditional hooking phase, which
uses GrB mxv to identify for each u the with the minimum
gf [v] among all the edges {u, v} in E. The matrix multiplication
A · f is parameterized with the same (Select2nd, min) semir-
ing, and the output is stored in fn. Then, the stochastic hooking

Algorithm 8 The linear algebra FastSV algorithm. Input: an
adjacency matrix A and the parent vector f . Output: Updated
f . (NULL is denoted by ∅)

1: procedure FastSV(A, f )
2: GrB Matrix nrows (&n,A)
3: GrB Vector dup (& gf , f ) . initial grandparent
4: GrB Vector dup (& dup, gf ) . duplication of gf
5: GrB Vector extractTuples (index, value,&n, f )
6: Sel2ndMin← a (select2nd, Min) semiring
7: repeat
8: . Step 1: Hooking phase
9: GrB mxv (fn, ∅,GrB MIN T, sel2ndMin,A, gf , ∅)

10: GrB assign ( f , ∅,GrB MIN T, fn, value, n, ∅)
11: GrB eWiseMult ( f , ∅, ∅,GrB MIN T, f , fn, ∅)
12: . Step 2: Shortcutting
13: GrB eWiseMult ( f , ∅, ∅,GrB MIN T, f , gf , ∅)
14: . Step 3: Calculate grandparents
15: GrB Vector extractTuples (index, value,&n, f )
16: GrB extract (gf , ∅, ∅, f , value, n, ∅)
17: . Step 4: Check termination
18: GrB eWiseMult (diff , ∅, ∅,GxB ISNE T, dup, gf , ∅)
19: GrB reduce (&sum, ∅,Add, diff , ∅)
20: GrB assign (dup, ∅, ∅, gf ,GrB ALL, 0, ∅))
21: until sum = 0

f [ f [u]] ← fn[u] is implemented by the GrB assign function
in line 10, which assigns the entries of fn into the specified
locations of vector f , and the indices value is extracted from
the vector f in either line 5 before the first iteration or line
15 from the previous iteration. Next, the aggressive hooking
f [u] ← fn[u] is implemented by an element-wise multiplica-
tion f ← min( f , fn) in line 11, and the shortcutting operation
f ← min( f , gf ) is implemented in the same way in line 13. We
recalculate the grandparent vector gf [u] ← f [ f [u]] in line 15-
16, and in the end of each iteration, we calculate the number
of modified entries in gf in line 18 - 19 to check whether the
algorithm has converged or not. A copy of gf is stored in the
vector dup for determining the termination in the next iteration.

5. Parallel implementations of LACC and FastSV

In the previous section, we described two connected compo-
nent algorithms LACC and FastSV using linear algebraic oper-
ations. Given libraries with parallel implementations of those
linear algebraic operations, we can easily implement LACC
and FastSV. In this section, we describe the implementations of
LACC and FastSV using a shared-memory and a distributed-
memory parallel library. We primarily focus on distributed-
memory implementation and discuss detailed computation and
communication complexity.

5.1. Parallel LACC and FastSV for shared memory platforms
Currently, the SuiteSparse:GraphBLAS library4 provides

a full implementation of the GraphBLAS C API with

4http://faculty.cse.tamu.edu/davis/GraphBLAS.html
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the OpenMP parallelism. Therefore, algorithms described
in Section 4 can be directly implemented in the SuiteS-
parse:GraphBLAS library. In the earlier conference version of
this work, we implemented LACC and FastSV using SuiteS-
parse:GraphBLAS just to test the correctness of the presented
algorithms with respect to the GraphBLAS API. In this paper,
we show detailed shared-memory performance of LACC and
FastSV’s SuiteSparse:GraphBLAS implementation in Section
6.3. Our SuiteSparse:GraphBLAS implementation is commit-
ted to the LAGraph Library.

5.2. Parallel LACC and FastSV for distributed-memory plat-
forms

We use the CombBLAS library [13] to implement LACC
and FastSV for distributed-memory platforms. Since Comb-
BLAS does not directly support the masking operations, we
use element-wise filtering after performing an operation when
masking is needed.

CombBLAS distributes its sparse matrices on a 2D pr × pc

processor grid. Processor P(i, j) stores the submatrix Ai j of di-
mensions (m/pr) × (n/pc) in its local memory. CombBLAS
uses the doubly compressed sparse columns (DCSC) format to
store its local submatrices for scalability, and uses a vector of
{index, value} pairs for storing sparse vectors. Vectors are also
distributed on the same 2D processor grid in a way that en-
sures that processor boundaries aligned for vector and matrix
elements during multiplication.

5.3. Parallel complexity of linear-algebraic operations used in
LACC and FastSV

We explain the parallel complexity of LACC and FastSV
with respect to the GraphBLAS operations which LACC and
FastSV depend upon. Here, we measure communication by the
number of words moved (W) and the number of messages sent
(S ). The cost of communicating a length m message is α + βm
where α is the latency and β is the inverse bandwidth, both de-
fined relative to the cost of a single arithmetic operation. Hence,
an algorithm that performs F arithmetic operations, sends S
messages, and moves W words takes T = F + βW + αS time.

Our GrB mxv internally maps to either a sparse-matrix
dense-vector multiplication (SpMV) for the few early iter-
ations when most vertices are active or to a sparse-matrix
sparse-vector multiplication (SpMSpV) for subsequent itera-
tions. Given the 2D distribution CombBLAS employs, both
functions require two steps of communication: first within
column processor groups, and second within row processor
groups. The first stage of communication is a gather operation
to collect the missing pieces of the vector elements needed for
the local multiplication and the second one is a reduce-scatter
operation to redistribute the result to the final vector. Both
stages can be implemented to take advantage of vector spar-
sity. In fact, there is exciting research on the sparse reduction
problem [35, 36]. We found that a simple allgather is the most
performant for both SpMV and SpMSpV for the first stage in
our case. For the reduce-scatter phase, SpMV uses a simple re-
duction within a loop (i.e. one for each processor in the row

group) whereas SpMSpV uses an irregular all-to-all operation
followed by a local merge.

Assuming a square processor grid pc=pr=
√

p and a load
balanced matrix with m nonzeros, one SpMV iteration costs

TSpMV = O
(m

p
+ β

n
√

p
( √p − 1
√

p
+ lg

√
p
)

+ α
(√

p + lg
√

p
))

using standard MPI implementations [37].
For the SpMSpV case, let the density of input vector be f

and the unreduced output vector be g. While f is always less
than or equal to 1, this is not necessarily the case for g because
the number of nonzeros in the unreduced vector can be larger
than n. If that is the case, we resort to a dense reduce-scatter
operation similar to the one employed by SpMV. Hence, when
we write g, we mean min(g, 1). Assuming that the nonzeros in
vectors are i.i.d. distributed, the cost of SpMSpV is

TSpMSpV = O
(m f

p
+ β

n f + ng
√

p
( √p − 1
√

p
)

+ α
(√

p + lg
√

p
))
.

Vector variants of GrB extract and GrB assign are fairly
general functions that can be exploited to perform very differ-
ent computations. That being said, our use of them are suffi-
ciently constrained that we can perform a reasonably tight anal-
ysis. The cost of GrB extract primarily depends on the num-
bers of nonzeros in the output vector w. In contrast, the cost of
GrB assign primarily depends on the numbers of nonzeros in
the input vector u. They both use the irregular all-to-all primi-
tive for communication. With similar load balance assumptions
as before, which can be theoretically achieved using a cyclic
vector distribution, the cost of GrB assign is:

Tassign = O
(nnz(u)

p
+ β

nnz(u)
p

+ α(p − 1)
)
.

The cost of GrB extract is identical except that nnz(u) is
replaced by nnz(w). Remember that nnz(u), nnz(w) ≤ n.

In practice, we achieve high performance in all-to-all oper-
ations by employing other optimizations to CombBLAS’ block
distributed vectors, described in Section 5.4, instead of using a
cyclic distribution.

Despite our sparsity aware analysis of individual primitives,
we could not prove bounds on aggregate sparsity across all it-
erations. We can, however, still provide an overall complex-
ity assuming the worst case nnz(u), nnz(w) = n and f , g = 1.
Given that there are a constant number of calls to GraphBLAS
primitives in each iteration and the algorithm converges in lg(n)
iterations, LACC’s sparsity-agnostic parallel cost is:

TLACC = O
(m lg(n)

p
+ β

n lg(n) lg(
√

p)
√

p
+ α(p − 1) lg(n)

)
.

Each iteration of FastSV (Algorithm 8) has the same asymp-
totic complexity as LACC. In practice, an iteration of FastSV
can run faster because of its simplicity. For example, FastSV
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Figure 3: Number of requests received by every process when accessing grand-
parents. We show iteration 1 and 7 when running LACC with 16 processes.
Only even numbered processes are labeled on the x-axis. Lower ranked pro-
cesses receive more requests than higher ranked process in all iterations. Later
iterations are more imbalanced than earlier iterations.

needs one SpMV operation, where as LACC needs two Sp-
MVs. However, FastSV can take O(n) iterations in the worst
case. Hence, FastSV’s parallel cost is:

TFastSV = O
(mn

p
+ β

n2 lg(
√

p)
√

p
+ α(p − 1)n

)
.

Because of our aggressive hooking strategies, FastSV needed
approximately the same number of iterations as needed by
LACC in all problems we experimented in this paper. Con-
sequently, FastSV runs faster than LACC in practice despite its
higher asymptotic complexity.

5.4. Load balancing and communication efficiency
In CombBLAS, we randomly permute the rows and

columns of the adjacency matrix, resulting in load-balanced
distribution of the matrix and associated dense vectors. Hence,
GrB mxv is a load-balanced operation both in terms of com-
putation and communication. However, GrB assign and
GrB extract can be highly imbalanced when a vector is in-
dexed by parents. For example, Figure 3 shows the number
of requests received by every process when extracting grand-
parents using GrB extract in two different iterations of LACC.
This imbalance is caused primarily by the conditional hooking
(via the (select2nd, min) semiring), where parents have smaller
ids than their children. Since CombBLAS employs a block
distribution of vectors, lower-ranked processes receive more
data than higher-ranked processes in all-to-all communication,
which may result in poor performance. Many of these received
requests need to access the same data at the recipient process,
incurring redundant data access and communication.

To alleviate this problem with highly skewed all-to-all com-
munication, we broadcast entries from few low-ranked pro-
cesses and then remove those processes from all-to-all collec-
tive operations. If a processor receives h times more requests
than the total number of elements it has, it broadcasts its lo-
cal part of a vector rather than participating in an all-to-all col-
lective call. Here, h is a system-dependent tunable parameter.
If more than one process broadcasts data in an iteration, we
use nonblocking MPI Ibcast so that they can proceed indepen-
dently.

We also used two more optimizations to make all-to-all
communication more efficient. First, when data is highly imbal-
anced as shown in Figure 3, we noticed that all-to-all operations

Table 2: Overview of evaluation platforms. 2Memory bandwidth is measured
using the STREAM copy benchmark per node.

Cori Edison
(Intel KNL) (Intel Ivy Bridge)

Core
Clock (GHz) 1.4 2.4

L1 Cache (KB) 32 32
L2 Cache (KB) 1024 256

DP GFlop/s/core 44 19.2
Node Arch.

Sockets/node 1 2
Cores per socket 68 12
STREAM BW2 102 GB/s 104 GB/s

Memory per node 96 GB 64 GB
Prog. Environment

Compiler gcc 7.3.0 gcc 7.3.0
Optimization -O2 -O2

in Cray’s MPI library at NERSC are not scaling beyond 1024
MPI ranks. A possible reason could be the use of the pairwise-
exchange algorithm that has α(p − 1) latency cost [37]. Hence,
we replace all MPI Alltoallv calls with a hypercube-based im-
plementation by Sundar et al. [38], which has α log(p) latency
cost. Second, in iteration 7 of Figure 3, processes 7-15 have no
data to communicate. In that case (after P0 broadcasts its data),
we use a sparse variant of all-to-all implementation [38], where
only P1-P5 exchange data. All of these optimizations made our
implementations of GrB assign and GrB extract highly scal-
able as seen in Figure 9.

6. Results

6.1. Evaluation platforms

Shared-memory platform. We evaluate the shared-
memory performance of LACC, FastSV, and other CC algo-
rithms on an Amazon AWS r5.8xlarge instance with Intel Xeon
Platinum 8000 CPU (3.1GHz, 249G memory). We use up to 16
threads in our shared-memory experiments.

Distributed-memory platform. Distributed-memory ex-
periments were conducted on NERSC Edison and Cori KNL
supercomputers as described in Table 2. Even though the Edi-
son supercomputer is not longer in service, we keep results
from Edison to keep this paper consistent with the preceding
conference paper [11]. Our distributed-memory implementa-
tions uses OpenMP for multithreaded execution within an MPI
process. In our experiments, we only used square process
grids because rectangular grids are not supported in Comb-
BLAS [13]. When p cores are allocated for an experiment,
we create a

√
p/t ×

√
p/t process grid where t is the number

of threads per process. All of our experiments used 16 and 6
threads per MPI process on Cori and Edison, respectively. In
our hybrid OpenMP-MPI implementation, all MPI processes
perform local computation followed by synchronized commu-
nication rounds. Only one thread in every process makes MPI
calls in the communication rounds.
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Table 3: Test problems used to evaluate parallel connected component algorithms. We report directed edges because the symmetric adjacency matrices are stored in
LACC. We cite the sources from where we obtained the graphs.

Graph Vertices Directed edges Components Description

archaea 1.64M 204.79M 59,794 archaea protein-similarity network [8]
queen 4147 4.15M 329.50M 1 3D structural problem [39]
eukarya 3.23M 359.74M 164,156 eukarya protein-similarity network [8]
uk-2002 18.48M 529.44M 1,990 2002 web crawl of .uk domain [39]
M3 531M 1.047B 7.6M Soil metagenomic data [10]
twitter7 41.65M 2.405B 1 twitter follower network [39]
sk-2005 50.64M 3.639B 45 2005 web crawl of .sk domain [39]
MOLIERE 2016 30.22M 6.677B 4,457 automatic biomedical hypothesis generation system [39]
Metaclust50 282.2M 42.79B 15.98M similarities of proteins in Metaclust50 [8]
iso m100 68.48M 67.16B 1.35M similarities of proteins in IMG isolate genomes [8]

6.2. Test problems
Table 3 describes ten test problems used in our experi-

ments. These graphs contain a wide range of connected compo-
nents and cover a broad spectrum of applications. The protein-
similarity networks are generated from the IMG database at the
Joint Genome Institute and are publicly available as part of the
HipMCL software [8].

6.3. Shared-memory performance
The shared-memory implementations of LACC and FastSV

can be directly obtained from SuiteSparse:GraphBLAS, a
multi-threaded implementation of the GraphBLAS standard.
We compare them with a popular shared-memory graph pro-
cessing framework Ligra [40], which implements the propa-
gation algorithm using parallel breadth-first search (BFS). We
chose not to compare with other hand-tuned connected compo-
nent codes because our objective is to show that linear-algebraic
CC algorithms are competitive to popular graph processing
frameworks such as Ligra. As mentioned before, our shared-
memory experiments are conducted on an Intel Xeon Platinum
8000 CPU with up to 16 threads.

Figure 4 shows the shared-memory performance of LACC
and FastSV implemented using SuiteSparse:GraphBLAS and
Ligra’s CC implementation. Here, we only experimented with
the first eight graphs from Table 3 because the last two graphs
did not fit on the memory of our single node server. LACC
and FastSV are originally designed for reducing the commu-
nication cost on distributed-memory, but their shared-memory
implementations are also competitive with Ligra. Especially,
the simplicity of FastSV makes it efficient on multithreaded en-
vironments. For six out of eight graphs in Figure 4 , FastSV’s
runtime is within 17% of Ligra’s CC implementation. This re-
sults indicates that SuiteSparse:GraphBLAS has scalable im-
plementations of linear algebraic operations that we used in
our algorithms. However, for some problems like the very
sparse M3 graph, FastSV can be much slower than Ligra. M3
is an extremely sparse graph and it is possible that SuiteS-
parse:GraphBLAS is not well optimized for these type of very
sparse graphs (especially if we use SpMV in every iteration of
the SV algorithm). By contrast, Ligra’s implementation care-
fully handles the BFS’s frontier so that it does not span the

1 2 4 8 16

1

2

4

8

16

32
archaea

1 2 4 8 16

2

4

8

16

32

64
Queen_4147

1 2 4 8 16

2

4

8

16

32

64
eukarya

1 2 4 8 16
2

4

8

16

32

64

128
uk-2002

1 2 4 8 16
4

8

16

32

64

128

256
twitter7

1 2 4 8 16
8

16
32
64

128
256
512

1024
sk-2005

1 2 4 8 16
16
32
64

128
256
512

1024
2048

M3

1 2 4 8 16
8

16

32

64

128

256

512
MOLIERE_2016

Ti
m

e 
in

 se
co

nd
s (

lo
g 

sc
al

e)

Number of cores (log scale)

---LACC FastSV Ligra

Figure 4: Scalability of LACC, FastSV and Ligra with regarding to the number
of threads on eight small datasets using 16 threads.

whole vertex set in every iteration. Another reason for Ligra’s
superior performance on very sparse graph might be due to its
direction optimization. The GrB mxv function within SuiteS-
parse:GraphBLAS does not automatically implement this fea-
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Table 4: Comparison of the runtime of CombBLAS and LAGraph (developed
on top of SuiteSparse:GraphBLAS) using 16 threads (in seconds).

Graph LACC FastSV
LAGraph CombBLAS LAGraph CombBLAS

archaea 1.66 2.18 0.89 1.30
Queen 4147 2.88 5.43 1.45 2.84

eukarya 3.32 4.93 1.44 2.47
uk-2002 11.61 21.41 4.02 6.17
twitter7 20.53 49.75 8.42 14.91
sk-2005 46.83 120.50 17.40 24.87

M3 483.30 449.14 229.13 339.53

ture that would switch search direction depending on the spar-
sity of input and output vectors. This feature, however, is imple-
mented in GraphBLAST [41] and we expect it to be available
soon in other GraphBLAS-inspired libraries.

LACC is approximately 2× to 3× slower than FastSV and
Ligra. This is primarily due to LACC’s use of two SpMV oper-
ations (that is the GrB mxv function) needed in the conditional
and unconditional hooking (as opposed to one SpMV needed
by FastSV). Note that for most graphs, SpMV is the most ex-
pensive operation, since it needs to traverse all edges of the
graph. Therefore, each iteration of LACC is about 2× slower
than a FastSV iteration that uses SpMV only once in its stochas-
tic hooking.

Figure 4 demonstrates that all three shared-memory imple-
mentations scale almost linearly up to 16 threads. On aver-
age, LACC, FastSV and Ligra achieves 11.4×, 12.3×, 15.09×
speedup on 16 threads with respect to their sequential runtimes.
Overall, we highlight the fact that connected component algo-
rithms implemented using linear-algebraic operations can at-
tain high performance on shared memory platforms. This per-
formance is comparable to the state-of-the-art shared-memory
platforms. However, true benefits of linear-algebraic operations
can be realized in the distributed-memory systems, as we will
demonstrate in the next few sections.

6.4. Single node performance of LACC and FastSV when im-
plemented using SuiteSparse:GraphBLAS and CombBLAS

Even though CombBLAS is designed for distributed-
memory platforms, it can also attain good performance on a
single node. Since we implemented LACC and FastSV us-
ing both SuiteSparse:GraphBLAS and CombBLAS, we com-
pare their performance on a single node with multicore pro-
cessors. For this experiment, we used the same configura-
tion used in the experiments in Section 6.3.For CombBLAS,
we always use a 4 × 4 process grid with each process having
one thread during the computation. Table 4 presents the run-
time of LACC and FastSV implemented in CombBLAS and
SuiteSparse:GraphBLAS using 16 threads. We only show re-
sults for graphs that fit in the memory of a node. On all the
seven graphs, we observe that CombBLAS is on average 1.78×
and 1.62× slower than GraphBLAS for LACC and FastSV, re-
spectively. This slowdown of CombBLAS is possibly due its
distributed-memory overheads such as MPI communication and

buffer copies. Therefore, we observe that CombBLAS itself is
an efficient linear algebraic library on shared-memory, and the
extra overhead is worth paying to obtain the extraordinary scal-
ability and high-performance on large supercomputers.

6.5. Performance of LACC and FastSV in distributed-memory

As mentioned before, we implemented distributed mem-
ory LACC and FastSV using the CombBLAS library. Here,
we compare the performance of distributed LACC and FastSV
with ParConnect [10], the state-of-the art algorithm prior to our
work. Similar to our algorithms, ParConnect also depends
on CombBLAS; hence, both of them require a square process
grid. Since ParConnect does not use multithreading, we place
one MPI process per core in ParConnect experiments.

Figure 5 shows the performance of LACC and ParCon-
nect with the smaller eight test problems on Edison (we did
not show FastSV on Edison because Edison went out of ser-
vice when FastSV was developed). Both LACC and ParCon-
nect scale well up to 6144 cores (256 nodes), but LACC runs
faster than ParConnect on all concurrencies. On 256 nodes,
LACC is 5.1× faster than ParConnect on average (min 1.2×,
max 12.6×). LACC is expected to perform better when a graph
has many connected components because, for these graphs, we
have better opportunities to employ sparse operations. Conse-
quently, LACC performs the best for archaea and eukarya. For
M3, LACC performs comparably to ParConnect, which will be
explained in detail in Section 6.7.

The relative performance of LACC and ParConnect on Cori
KNL is similar to Edison as can be seen in Figure 6. We ad-
ditionally show the strong scaling of FastSV, which is gener-
ally faster than both LACC and ParConnect. As with Edison,
LACC outperforms ParConnect on all core counts on Cori for
all graphs except M3, for which the performance is compara-
ble. FastSV is faster than LACC because of the former using
only one SpMV operation per iteration. However, we also ob-
verse that LACC scales slightly better than FastSV. For exam-
ple, in Figure 6, the gap between LACC and FastSV decreases
as we increase cores for eukarya and twitter7. Better scala-
bility of LACC is due to its use of sparse operations which in
turn reduce the communication on high concurrency. Generally,
all three connected component algorithms ran faster on Edison
than Cori given the same number of nodes. This behavior is
common for sparse graph manipulations where few faster cores
(e.g., Intel Ivy Bridge on Edison) are more beneficial than more
slower cores (e.g., KNL on Cori) [42].

6.6. Performance of CC algorithms for bigger graphs

In the previous section, we presented results for smaller
graphs, each of which can be stored in less than 150GB mem-
ory (ignoring MPI overheads). It is often possible to store
these graphs on a shared-memory server and compute connect
components using an efficient shared-memory algorithm [33].
However, the last two graphs in Table 3 need more than 1TB
memory, requiring distributed-memory processing. We show
the performance of LACC, FastSV and ParConenct for these
big graphs in Figure 7. We observed that LACC and FastSV
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continue scaling to 4096 nodes (262,144 cores) on Cori and
computes connected components in these large networks in less
than 16 seconds. By contrast, ParConnect does not scale be-
yond 16,384 cores for these two graphs. One reason of Par-
Connect not performing well on high core counts could be
its reliance on flat MPI. On 262,144 cores, ParConnect cre-
ates 262,144 MPI processes and needs more than two hours
to find connected components. Once again, we observe that
LACC scales slightly better than FastSV on high concurrency.
The remarkable ability of LACC and FastSV to process graphs
with tens of billions of edges on hundreds of thousands cores
makes it well suited for large-scale applications such as high-
performance Markov clustering [8]. We will discuss this in
more detail in Section 6.8.

6.7. Understanding the performance of LACC
We now explore different features of LACC and describe

why it achieves good performance for most of the test graphs5.
(a) Number of active vertices (vector sparsity). When

fewer vertices remain active in an iteration, LACC performs
less work and communicate less data. Hence, identifying and
eliminating converged forests boost the performance of LACC
significantly. In our GraphBLAS-style implementation, this
translates into sparser vectors, which impacts the performance
of GrB mxv, GrB assign, and GrB extract. However, LACC
can take advantage of the vector sparsity only if the input graph

5Here, we only discuss detail performance of LACC since this paper is an
extension of the LACC paper [11]. Detailed performance of FastSV can be
found in [12].
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has a large number of connected components. To demonstrate
this, Figure 8 plots the percentage of vertices in converged com-
ponents for five graphs with the highest number of components.
We observe that a significant fraction of vertices becomes inac-
tive after few iterations. Hence, LACC is expected to perform
better (both sequential and parallel cases) for these graphs. Fig-
ure 5 and Figure 7 confirm this expectation except for M3. For
M3, LACC needs 11 iterations, eight of which have less than
5% converged vertices. Hence, LACC can not take advantage
of vector sparsity in most of the iterations, which can partially
explains the observed performance of LACC on the M3 graph.
For a connected graph, LACC can not take advantage of vector
sparsity at all.

(b) Sparsity of the input graph. The sparsity of the
input graph also impacts the performance and scalability of
LACC. When a dense vector is used, the computational cost
of GrB mxv is O(m), while all other operations take O(n)
time. Since GrB assign and GrB extract may communicate
O(n) data, the computation to communication ratio of LACC
is O(m/n). For very sparse graphs similar to M3, communi-
cation starts to dominate the overall runtime, affecting the per-
formance of our GraphBLAS kernels. High graph sparsity and

lack of vector sparsity in most iterations play roles in the per-
formance of LACC on the M3 graph. By contrast, queen 4147
(with average degree of 82) is denser than M3. Consequently,
LACC performs much better on queen 4147 despite it having a
single component.

(c) Scalability of different parts of LACC. Figure 9 shows
the performance breakdown of LACC for three representative
graphs, where all four parts of LACC scale well on Edison and
Cori. For smaller graphs like eukarya, LACC stops scaling after
64 nodes (1,536 cores) because of the relatively high commu-
nication overhead on high concurrency. We also observe that
conditional hooking is usually more expensive than uncondi-
tional hooking because the latter can utilize additional vector
sparsity as shown in Lemma 2. Finally, our adaptive communi-
cation scheme discussed in Section 5.4 makes the shortcut and
starcheck operations highly scalable.

6.8. Performance of LACC when used in Markov clustering

As discussed in the introduction, finding connected com-
ponents is an important step in the popular Markov cluster-
ing algorithm. LACC is already incorporated with HipMCL
where LACC can be 3288× faster (on 1024 nodes of Edison)
than the shared-memory parallel connected component algo-
rithm used in the original MCL software [1]. HipMCL is an
ongoing project with an aim to scale to upcoming exascale sys-
tems and cluster more than 50B proteins in the IMG database
(https://img.jgi.doe.gov/). A massively-parallel LACC boosts
HipMCL’s performance and helps us cluster massive biological
networks with billions of vertices and trillions of edges.

7. Opportunities and limitations of linear-algebraic CC al-
gorithms

The primary advantage of linear-algebraic CC algorithms
like LACC and FastSV is their reliance on off-the-shelf func-
tions from high-performance libraries like CombBLAS and
SuiteSparse:GraphBLAS. As a result, we were able to imple-
ment LACC and FastSV rapidly after designing them in the
language of linear algebra. This paper demonstrated the effec-
tiveness of our approach where LACC and FastSV scaled to
hundreds of thousands of cores with the support of the highly-
optimized CombBLAS library.

Even though LACC and FastSV achieve remarkable scala-
bility, it is certainly possible to develop highly optimized hand-
tuned codes that run faster than LACC and FastSV. Notably,
customized CC algorithms perform well on shared-memory
platforms using improved data locality and sampling tech-
niques. For example, a recent algorithm called Afforest [33]
used sampling to develop a shared-memory parallel CC algo-
rithm. The implementation of Afforest in the GAP bench-
mark [43] runs up to 5× faster than the shared-memory FastSV
code implemented on top of SuiteSparse:GraphBLAS. Sim-
ilarly, the iSpan algorithm [44] uses various asynchronous
schemes and direction-optimized BFS to find connected com-
ponents quickly and can run faster than our algorithms on mul-
ticore processors. Recently, Dhulipala et al. [45] developed a
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Figure 9: Performance breakdown of LACC for three representative graphs.

class of shared-memory parallel graph algorithms that achieve
state-of-the-art performance on multicore servers with large
memory. Their CC algorithm is based on a prior work [25]
where they compared with Ligra’s direction-optimized CC im-
plementation. Since FastSV can be up to 2× slower than
Ligra’s CC implementation (see Fig. 4), it can be at most
4× slower than the CC algorithm reported by Dhulipala et
al. [45]. Overall, it is expected that customized shared-memory
codes [33, 44, 45] would perform better than our algorithms
based on general-purpose linear algebra libraries.

LACC and FastSV achieve the state-of-the-art performance
in distributed memory. This performance is achieved by us-
ing highly-optimized distributed primitives available in Comb-
BLAS. However, on a single shared-memory platform, LACC
and FastSV implemented on CombBLAS are up to 2× slower
than their implementations on SuiteSparse:GraphBLAS (see
Table 4). This slowdown is observed due to the overheads in
CombBLAS which is optimized for distributed-memory plat-
forms. Highly-scalable algorithms like LACC and FastSV are
especially valuable when the graph does not fit in the memory
of a single node or when the graph is already distributed as part
of another application such as HipMCL [8].

It is generally hard to relate the performance of a distributed
algorithm to the input graph characteristics. In our experiments,
we observed various performance gains with different graphs.
Generally, LACC and FastSV perform better for graphs with
a large number of connected components. For example, on a
low-diameter graph with a single connected component, a BFS-
based algorithm is expected to perform better than LACC and
FastSV. In a graph with many connected components, LACC
avoids already-found connected components in subsequent it-
erations by using sparse vectors. This approach is only useful
when a sizable fraction of connected components is found in
early iterations (see Fig. 8). However, it is often not possible to
predict the number of components or the rate of component dis-
coveries in advance from some summary statistics of the graph.
Hence, we did not find a clear correlation between the perfor-
mance of LACC and FastSV and the input graphs.

8. Conclusions

We present two distributed-memory connected component
algorithms LACC and FastSV that are implemented using

sparse linear algebra and are based on the Shiloach-Vishkin
algorithm. Both algorithms achieve unprecedented scalability
to 4K nodes (262K cores) of a Cray XC40 supercomputer and
outperforms previous state-of-the-art by a significant margin.
There are three key reasons for the observed performance: (1)
our algorithms rely on linear algebraic kernels that are highly
optimized for distributed memory graph analysis, (2) whenever
possible, our algorithms employ sparse vectors in the hooking,
shortcutting and star finding steps, eliminating redundant com-
putation and communication, and (3) our algorithms detect im-
balanced collective communication patterns inherent in the CC
algorithm and remove them with customized all-to-all opera-
tions.

Extreme scalability achieved by linear-algebraic connected
component algorithms such as LACC and FastSV can boost the
performance of many large-scale applications. Metagenome as-
sembly and protein clustering are two such applications that
compute connected components in graphs with hundreds of bil-
lions or even trillions of edges on hundreds of thousands of
cores.

The use of sparsity (Lemma 1 and 2 in Section 4) is a prop-
erty of the Awerbuch-Shiloach algorithm and can be applied
to any Awerbuch-Shiloach implementation. The customized
communications are related to the way CombBLAS distributes
sparse matrices and vectors. As future work, we plan to im-
prove our vector operations so that they can avoid communica-
tion hot spots and work better on very sparse graphs similar to
the M3 graph in Table 3. Using cyclic distributions of vectors,
instead of the current block distribution used in CombBLAS, is
one possible approach to distribute load more evenly and make
LACC even more scalable.

In terms of reducing the number of actual operations per-
formed, we plan to utilize the automatic direction optimization
feature of GraphBLAST [41] in order to be competitive with
Ligra on very sparse graphs as well. Porting our code to Graph-
BLAST will also enable LACC to seamlessly run on GPUs.
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