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Rare genetic variants are abundant in humans and are expected to contribute to individual 

disease risk1–4. While genetic association studies have successfully identified common 

genetic variants associated with susceptibility, they are not practical for rare variants1,5. 

Efforts to distinguish pathogenic from benign rare variants have leveraged the genetic code 
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to identify deleterious protein coding alleles1,6,7, but no analogous code exists for non-

coding variants. Thus, ascertaining which rare variants have phenotypic effects remains a 

major challenge. Rare non-coding variants have been associated with extreme gene 

expression in single tissue studies8–11, but their effects across tissues are unknown. Here, 

through combined analyses of whole genomes and multi-tissue RNA-sequencing data from 

the Genotype-Tissue Expression (GTEx) Project V6 release12, we identify gene expression 

outliers, or individuals showing extreme expression levels for a particular gene, across 44 

human tissues. We find that 58% of underexpression and 28% of overexpression outliers 

have nearby conserved rare variants compared with 8% of non-outliers. Additionally, we 

developed RIVER, a statistical method including a Bayesian model that incorporates 

expression data to predict a regulatory role for rare variants with higher accuracy than 

models using genomic annotations alone. Overall, we demonstrate that rare variants 

contribute to large gene expression changes across tissues and provide an integrative method 

for variant interpretation for rare variants in individual genomes.

Our analysis focused on individuals with extremely high or low expression of a particular 

gene compared with the population, using the GTEx v6 release data, which includes RNA-

sequencing data for 449 individuals and 44 tissues. We refer to these individuals as gene 
expression outliers. The GTEx data afford the ability to identify both single-tissue and multi-
tissue expression outliers (Fig. 1a), with the latter defined by consistent extreme expression 

across many tissues (see Methods). To account for broad environmental and technical 

confounders, we removed hidden factors estimated by PEER13 from each tissue prior to 

outlier discovery (Extended Data Fig. 1 and 2, Supplementary Tables 1 and 2).

We identified a single-tissue expression outlier for ≥ 99% of expressed genes in each tissue 

and a multi-tissue outlier for 4,919 of 18,380 tested genes (27%). Each individual was a 

single-tissue outlier for a median of 83 genes per tissue compared with a median of 10 genes 

as a multi-tissue outlier. Single-tissue outliers discovered in one tissue replicated in other 

tissues at rates up to 33%, with higher rates among related tissues (Fig. 1b, Extended Data 

Fig. 3). The replication rate for multi-tissue outliers was much higher and increased with the 

number of tissues used for discovery (Fig. 1c).

We investigated the influence of rare genetic variation on extreme expression levels, 

focusing on the individuals of European ancestry with whole genome sequencing data 

(1,144 multi-tissue outliers). Multi-tissue outliers were strongly enriched for nearby rare 

variants. The enrichment was most pronounced for structural variants (SVs) as previously 

described14, and greater for short insertions and deletions (indels) than for single nucleotide 

variants (SNVs) (Fig 2a, Extended Data Fig. 4). As most rare variants are heterozygotes, 

expression outliers driven by rare variants in cis should exhibit allele-specific expression 

(ASE). Both single-tissue and multi-tissue outliers were significantly enriched for ASE 

compared with non-outliers (see Methods; two-sided Wilcoxon rank sum tests, each nominal 

P < 2.2 × 10−16; Fig. 2c). For underexpression outliers with exonic rare variants, the rare 

allele was generally underexpressed with respect to the common allele and conversely so for 

overexpression outliers, consistent with the rare variant causing the effect (two-sided 

Wilcoxon rank sum tests, each nominal P < 4.0 × 10−8; Extended Data Fig. 5a). The 
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enrichment for rare variants and ASE was stronger for multi-tissue outliers than for single-

tissue outliers (Fig. 2b,c, Extended Data Fig. 6a), especially at higher Z-score thresholds.

To characterize the properties of rare variants correlated with large changes in gene 

expression, we assessed the enrichment of different classes of variant types in outliers 

compared with non-outliers (Supplementary Table 3a). Outliers were enriched, in order of 

significance, for SVs, variants near splice sites, introducing frameshifts, at start or stop 

codons, near the transcription start site (TSS), and in conserved regions (Fig. 3a). Variants in 

coding regions contributed disproportionately to outlier expression; enrichments weakened 

for all variants types (SNVs, indels, and SVs) when excluding exonic regions (Extended 

Data Fig. 6b). Additionally, 90% of stop-gain and frameshift variants were predicted to 

trigger nonsense-mediated decay in outliers, suggesting a biological mechanism for these 

cases.

We also tested the relationship between outlier gene expression and functional annotations. 

Multi-tissue outliers were strongly enriched for variants in promoter or CpG-rich regions 

and had variants with higher conservation15–18 and CADD19 scores than non-outliers. We 

observed weaker enrichment in enhancers and transcription factor binding sites (Fig. 3b, 

Extended Data Fig. 7). Combining all classes of variation, other than non-conserved non-

coding rare variants (excluded as less likely candidates for causal effects), we observed that 

58% of underexpression and 28% of overexpression outliers had rare variants near the 

relevant gene, compared with 8% for non-outliers (Fig. 3c). Overexpression outliers were 

more common overall, potentially because detection of underexpression outliers for very low 

expression genes is inherently limited (Extended Data Fig. 5b). Overexpression outliers were 

also less enriched for functionally annotated rare variants (Extended Data Fig. 5c). Some 

variant classes had strong directionality concordant with their expected impact: duplications 

caused overexpression, while deletions, start and stop codon variants, and frameshifts 

coincided with underexpression (Fig. 3d). We also observed strong ASE for outliers carrying 

all classes except non-conserved variants (Fig. 3e).

We hypothesized that functional, large-effect rare variants have been under recent selective 

pressure. As expected, we found that rare promoter variants in outliers were significantly 

less frequent in the UK10K cohort of 3,781 individuals3 than those from non-outliers for the 

same genes (two-sided Wilcoxon rank sum test, P = 0.0060; Fig. 4a). Additionally, genes 

intolerant to loss-of-function and missense mutations were depleted of both multi-tissue 

outliers and multi-tissue eQTLs (Fisher’s exact test, all P < 2 × 10−15; Fig. 4b, Extended 

Data Fig. 8a). We observed a similar depletion in two curated disease gene lists—genes 

involved in heritable cardiovascular disease (Cardio) and genes in the ACMG guidelines for 

incidental findings20—but not in broader gene lists (Fig. 4c; Extended Data Fig. 8b,c). 

Genes with a multi-tissue outlier were more likely to have a multi-tissue eQTL (two-sided 

Wilcoxon rank sum test, P < 2.2 × 10−16; Extended Data Fig. 8d,e), suggesting influence of 

both rare and common regulatory variation for some genes. However, we found evidence 

that genes with outliers were more constrained than genes with multi-tissue eQTLs as they 

harbored less missense and loss-of-function variation (Tukey’s range test, missense Z-score 

P = 0.0070, probability of loss-of-function intolerance score P = 0.032; Fig. 4b, Extended 
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Data Fig. 8a). This suggests that outlier expression analysis can yield unique insight into 

constraint on gene regulation.

Next, we sought to prioritize rare variants in each individual genome by their predicted 

impact on regulation of gene expression. We developed RIVER (RNA-Informed Variant 

Effect on Regulation), a statistical method including a Bayesian model that jointly analyzes 

genome and transcriptome data from the same individual to estimate the probability that a 

variant has regulatory impact (https://bioconductor.org/packages/release/bioc/html/

RIVER.html, see Methods). RIVER uses a generative model that assumes that genomic 

annotations (Supplementary Table 3b) determine the prior probability that a variant is a 

functional regulatory variant, in terms of influence on gene expression, which in turn 

influences whether nearby genes are likely to display outlier levels of expression (Fig. 5a). 

RIVER does not require a labeled set of functional/non-functional variants; rather it derives 

its power from identifying expression patterns that coincide with predictive genomic 

annotations.

We trained RIVER on the GTEx V6 cohort, and evaluated the model on held out pairs of 

individuals who shared the same rare variants. We then computed the RIVER score (the 

posterior probability of having a functional regulatory variant) for one individual, using both 

expression and genomic data, and assessed the accuracy with respect to the second 

individual’s held-out expression levels (see Methods). Incorporating expression data 

significantly improved prediction compared with a model that uses genomic annotations 

alone (AUCs 0.64 and 0.54, respectively, P = 3.5 × 10−4; Fig. 5b; Extended Data Fig. 9a,b), 

and RIVER learned, unsupervised, to prioritize variants supported by both genomic 

annotations and extreme expression levels across tissues (Fig. 5c, Extended Data Fig. 9c). 

ASE was also enriched among the top RIVER instances compared with the genomic 

annotation model (Extended Data Fig. 9d). Finally, even after accounting for the most 

informative genomic annotations or summary scores, personal expression data was highly 

informative of rare variant effects (average log odds ratio 2.76; Extended Data Fig. 9e,f).

RIVER can be used to predict regulatory effects on gene expression and aid in prioritization 

amongst disease associated variants. To investigate this potential, we evaluated 27 

pathogenic variants from ClinVar21 present in 21 GTEx donors (Fig. 5c, Extended Data Fig. 

10a). Overall, pathogenic variants had RIVER scores higher than background variants (two-

sided Wilcoxon rank sum test, P = 3.3 × 10−9; Extended Data Fig. 10b–d), and the six that 

were likely regulatory (those not annotated as missense or coding indel) scored in the 99.9th 

percentile. Evaluated in detail, several cases illustrated that rare disease-causing variants can 

have a regulatory impact evident from RNA-seq data, even from healthy individuals 

harboring those variants (where they are often heterozygous; Extended Data Fig. 10e,f). 

Note that RIVER trained on healthy cohorts such as GTEx can then be directly applied to 

new cohorts including disease samples.

To experimentally validate a subset of the variants identified through outlier analysis, we 

used CRISPR/Cas9 mediated genome editing22,23. In K562 cells, we tested six SNVs and 

matched controls in transcribed regions of genes with an outlier (see Methods; Extended 

Data Fig. 11a,b), and compared the allelic ratios between mRNA and genomic DNA 

Li et al. Page 4

Nature. Author manuscript; available in PMC 2018 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://bioconductor.org/packages/release/bioc/html/RIVER.html
https://bioconductor.org/packages/release/bioc/html/RIVER.html


(gDNA), an internal control. All variants tested were in underexpression outliers and were 

therefore expected to decrease expression. Two variants were excluded due to low cDNA 

and gDNA total reads counts. The four remaining SNVs in outliers all showed lower 

proportions of the alternate (installed) allele in the cDNA compared with gDNA, confirming 

that these variants decreased expression (Extended Data Fig. 11c).

In summary, by combining data across multiple tissues, we curated a set of gene expression 

outliers that replicated at higher rates and showed stronger rare variant enrichments than 

those from any single tissue. We found that rare structural variants, frameshift indels, coding 

variants, and variants near the transcription start site were most likely to have large effects 

on expression. However, our ability to characterize the genetic basis of multi-tissue outliers 

remains incomplete. Outliers without an underlying rare variant in our analysis may be due 

to variants in more distal regions or in annotations we did not consider, or may be 

attributable to residual technical or environmental effects.

Although genetic variant interpretation remains challenging, RIVER demonstrates the value 

of incorporating personal gene expression data to examine the influence of rare variants on 

expression that may be uncertain from sequence alone. Our results suggest a general 

approach that can be applied to studies that supplement genome sequencing with other 

molecular phenotypes, such as methylation24–26 and histone modification27,28. We anticipate 

that such integrative approaches will be essential for effective interpretation of genome-wide 

genetic variation on a personalized level.

Methods

Study population

All human subjects were deceased donors. Informed consent was obtained for all donors via 

next-of-kin consent to permit the collection and banking of de-identified tissue samples for 

scientific research. The research protocol was reviewed by Chesapeake Research Review 

Inc., Roswell Park Cancer Institute’s Office of Research Subject Protection, and the 

institutional review board of the University of Pennsylvania. We used the RNA-seq, allele-

specific expression, and whole genome sequencing (WGS) data from the v6 release of the 

GTEx project. The generation of these data is described in Supplementary Information 

sections 3 and 5 of the main GTEx Consortium publication12.

Correction for technical confounders

We restricted our expression analyses to the 449 individuals and 44 tissues for which sex and 

the top three genotype principal components (PCs), which capture major population 

stratification, were available. For each tissue, we log2-transformed all expression values 

(log2(RPKM + 2)). We then standardized the expression of each gene to prevent shrinkage 

of outlier expression values caused by quantile normalization. To remove unmeasured batch 

effects and other confounders, for each tissue separately, we estimated hidden factors using 

PEER13 on the transformed expression values. In each tissue, we defined expressed genes 

and corrected for the same number of PEER factors as in the GTEx eQTL analyses (see 

Supplementary Information sections 5.5 and 5.6 of the main GTEx Consortium 
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publication12). We regressed out the PEER factors, the top three genotype principal 

components, and sex (where appropriate) from the transformed expression data for each 

tissue using the following linear model:

Yg = μg1 + ∑
n = 1

N
αg, nPn + ∑

k = 1

3
βg, kGk + γgS + εg

where Yg is the transformed expression in the given gene g, μg is the mean expression level 

for the gene, Pn is the nth PEER factor, G1, G2, G3 are the top three genotype PCs, and S is 

the sex covariate. We assumed the residual vector εg follows the multivariate normal 

distribution εg ~ N(0, σ2I). Finally, we standardized the expression residuals εg for each 

gene, which yielded Z-scores.

To better understand the effect of PEER correction on the removal of technical and 

biological confounders, we compared the PEER factors in each tissue separately to pre-

collected sample and subject covariates. We considered the subset of covariates with >50 

observations in at least 31 tissues, where we first selected covariates with more than one 

unique entry in each tissue. For categorical covariates, we only considered categories with 

more than 20 observations. For each PEER factor and each covariate, we fit a linear model 

with the PEER factor as the response and the covariate as the predictor. From this model, we 

computed the proportion of that PEER factor’s variance explained by the covariate as the 

adjusted R2:

Adjusted R2 = R2 − (1 − R2) · p
n − p − 1

where p and n are the number of parameters and samples, respectively, and R2 =
SST − SSR

SST
. 

SST and SSR refer to the total and residual sums of squares, respectively.

To quantify the degree to which each covariate was captured by the combination of all PEER 

factors, genotype PCs, and sex (where appropriate) for each tissue, we considered the 

expression component regressed out from the uncorrected data:

Wg = Yg − εg

For each covariate, we then fit a linear model with Wg as the response and the covariate as 

the predictor. We assessed the proportion of the variance of Wg explained by each covariate 

by computing the adjusted R2 for the covariate across all genes. We used the formula above, 

but summed across all genes to compute SST and SSR.

To assess the impact of PEER correction on rare variant enrichment, we also tried removing 

either the top five PEER factors for each tissue or no PEER factors. We then performed 

multi-tissue outlier calling and tested the enrichment of rare and common variants in the two 
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partially corrected datasets (see Methods section “Enrichment of rare and common variants 

near outlier genes”).

Single-tissue and multi-tissue outlier discovery

Single-tissue and multi-tissue outlier calling was restricted to autosomal lincRNA and 

protein coding genes. For each tissue, an individual was called a single-tissue outlier for a 

particular gene if that individual had the largest absolute Z-score and the absolute value was 

at least two. For each gene, the individual with the most extreme median Z-score taken 

across tissues was identified as a multi-tissue outlier for that gene provided the absolute 

median Z-score was at least two. Therefore, each gene had at most one single-tissue outlier 

per tissue and one multi-tissue outlier. Under this definition an individual could be an outlier 

for multiple genes. In addition, we only tested for multi-tissue outliers among individuals 

with expression measurements for the gene in at least five tissues. To reduce cases where 

non-genetic factors may cause widespread extreme expression, we removed eight 

individuals that were multi-tissue outliers for 50 or more genes from all downstream 

analyses, including before single-tissue outlier discovery. Removing these individuals with 

extreme expression across many genes improved our rare variant enrichments, but the 

precise threshold mattered less (Extended Data Fig. 2g). We chose the threshold of 50 to 

strike a balance between removing extreme individuals while not excluding a large 

proportion of our cohort.

Replication of expression outliers

We calculated the proportion of single-tissue outliers discovered in one tissue that had |Z-

score| ≥ 2 with the same direction of effect for the same gene in the replication tissue. Since 

certain groups of tissues were sampled in a specific subset of individuals, we evaluated the 

extent to which replication was influenced by the size and the overlap of the discovery and 

replication sets. We repeated the replication analysis with the discovery and replication in 

exactly 70 overlapping individuals for each pair of tissues with enough samples and 

compared the replication patterns to those obtained by using all individuals. To estimate the 

extent to which individual overlap biased replication estimates, for each pair of tissues with 

sufficient samples, we defined three disjoint groups of individuals: 70 individuals with data 

for both tissues, 69 distinct individuals with data in the first tissue, and 69 distinct 

individuals with data in the second tissue. We discovered outliers in the first tissue using the 

shared set of individuals then tested for replication using the same individuals in the second 

tissue. Then, for each gene, we added the identified outlier to the distinct set of individuals 

and tested the replication again in the second tissue. We repeated the process running the 

discovery in the second tissue and the replication in the first one. We compared the 

replication rates when using the same or different individuals for the discovery and 

replication.

We assessed the confidence of our multi-tissue outliers using cross-validation. We separated 

the tissue expression data randomly into two groups: a discovery set of 34 tissues and a 

replication set of 10 tissues. For t = 10, 15, 20, 25, and 30, we randomly sampled t tissues 

from the discovery set and performed outlier calling as described above. Due to incomplete 

tissue sampling, the number of tissues supporting each outlier is at least five but less than t. 
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We computed the replication rate as the proportion of outliers in the discovery set with |

median Z-score| ≥ 1 or 2 in the replication set. We set no restriction on the number of tissues 

required for testing in the replication set. To calculate the expected replication rate, we 

randomly selected individuals in the discovery set with at least five tissues that expressed the 

gene and computed the replication rate. We repeated this process 10 times for each discovery 

set size.

Quality control of genotypes and rare variant definition

We restricted our rare variant analyses to individuals of European descent, as they 

constituted the largest homogenous population within our dataset. We considered only 

autosomal variants that passed all filters in the VCF (those marked as PASS in the Filter 

column). Minor allele frequencies (MAF) within the GTEx data were calculated from the 

123 individuals of European ancestry with whole genome sequencing data (average 

coverage 30×). The MAF was the minimum of the reference and the alternate allele 

frequency where the allele frequencies of all alternate alleles were summed together. Rare 

variants were defined as having MAF ≤ 0.01 in GTEx, and for SNVs and indels we also 

required MAF ≤ 0.01 in the European population of the 1000 Genomes Project Phase 3 

data30. To ensure that population structure among the individuals of European descent was 

unlikely to confound our results, we verified that the allele frequency distribution of rare 

variants included in our analysis (within 10 kb of a protein coding or lincRNA gene, see 

below) was similar for the five European populations in the 1000 Genomes project 

(Extended Data Fig. 4d).

Enrichment of rare and common variants near outlier genes

We assessed the enrichment of rare SNVs, indels, and SVs near outlier genes. Proximity was 

defined as within 10 kb of the TSS for most analyses. For Fig. 3 and Extended Data Figs. 5, 

7 and 8, we included all variants within 10 kb of the gene, including the gene body, to also 

capture coding variants. In Fig. 3 and Extended Data Fig. 5 and 8, we extended the window 

to 200 kb for enhancers and SVs. For each gene with an outlier, we chose the remaining set 

of individuals tested for outliers at the same gene as non-outlier controls. We only 

considered genes that had both an outlier and at least one control. We stratified variants of 

each class into four minor allele frequency bins (0–1%, 1–5%, 5–10%, 10–25%) to compare 

the relative enrichments of rare and common variants. We also assessed the enrichment of 

SNVs at different Z-score cutoffs. Enrichment was defined as the ratio of the proportion of 

outliers with a variant whose frequency lies within the range to the corresponding proportion 

for non-outliers. This enrichment measure is equivalent to the relative risk of having a 

nearby rare variant given outlier status. We used the asymptotic distribution of the log 

relative risk to obtain 95% Wald confidence intervals. Within our set of European 

individuals, we observed some individuals with minor admixture that had relatively more 

rare variants than the rest (Extended Data Fig. 1b). We confirmed that inclusion of these 

admixed individuals did not substantially affect our results (Extended Data Fig. 1c). We also 

calculated rare variant enrichments when restricting to variants outside protein-coding and 

lincRNA exons in Gencode v19 annotation (extending internal exons by 5 bp to capture 

canonical splice regions).
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To measure the informativeness of variant annotations, we used logistic regression to model 

outlier status as a function of the feature of interest, which yielded log odds ratios with 95% 

Wald confidence intervals. Note that for the feature enrichment analysis in Fig. 3b and 

Extended Data Fig. 7, we required that outliers and their gene-matched non-outlier controls 

have at least one rare variant near the gene. We standardized all features, including binary 

features, to facilitate comparison between features of different scale. We also calculated the 

proportion of overexpression outliers, underexpression outliers and non-outliers with a rare 

variant near the gene (within 10 kb for SNVs and indels and 200 kb for SVs). To each outlier 

instance, we assigned at most one of the 12 rare variant classes we considered 

(Supplementary Table 3a). If an outlier had rare variants from multiple classes near the 

relevant genes, we selected the class that was most significantly enriched among outliers.

Annotation of variants

We obtained SV anntoations from Chiang et al.14 and computed features for rare SNVs and 

indels using three primary data sources: Epigenomics Roadmap31, CADD v1.219, and VEP 

v8032. Promoter and enhancer annotation tracks were obtained from the Epigenomics 

Roadmap Project (http://www.broadinstitute.org/~meuleman/reg2map/

HoneyBadger2_release/). We mapped 28 unique tissues in the GTEx Project to 19 tissue 

groups in the Roadmap Project. Using these annotations, for each individual, we assessed 

whether each SNV or indel overlapped a promoter or enhancer region in at least one of the 

19 Roadmap tissue groups. Features including conservation15–18, transcription factor 

binding, and deleteriousness were extracted from the full annotation tracks of the CADD 

v1.2 release (downloaded 15/05/2015; http://cadd.gs.washington.edu/download). Finally, we 

obtained protein-coding and transcription-related annotations from VEP. This information 

was provided in the GTEx v6 VCF file. Stop-gain and frameshift variants annotated as high-

confidence loss-of-function variants by LOFTEE were assumed to trigger nonsense-

mediated decay. We generated gene-level features described in Supplementary Table 3.

Allele-specific expression (ASE)

We only considered sites with at least 30 total reads and at least five reads supporting each 

of the reference and alternate alleles. To minimize the effect of mapping bias, we filtered out 

sites that showed mapping bias in simulations33, that were in low mappability regions (ftp://

hgdownload.cse.ucsc.edu/gbdb/hg19/bbi/wgEncodeCrgMapabilityAlign50mer.bw), or that 

were rare variants or within 1 kb of a rare variant in the given individual (the variants were 

extracted from the GTEx exome sequencing data described in section 4 of the main GTEx 

consortium publication12). The first two filters were provided in the GTEx ASE data release. 

The third filter was applied to eliminate potential mapping artifacts that mimic genetic 

effects from rare variants. We measured ASE at each testable site as the absolute deviation 

of the reference allele ratio from 0.5. For each gene, all testable sites in all tissues were 

included. We compared ASE in single-tissue and multi-tissue outliers at different Z-score 

thresholds to non-outliers using two-sided Wilcoxon rank sum tests. To obtain a matched 

background, we only included a gene in the comparison when ASE data existed for both the 

outlier individual and at least one non-outlier. In the case of single-tissue outliers, we also 

required the tissue to match between the outlier and the non-outlier. All individuals that were 
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neither multi-tissue outliers for the given gene nor single-tissue outliers for the gene in the 

corresponding tissue were included as non-outliers.

In cases where outliers had rare coding variants in the gene, if the rare variants were causing 

the extreme expression in cis, we expected to see ASE at the rare variant matching the 

direction of the effect. For underexpression outliers, we expected the (rare) minor allele to be 

underexpressed compared with the major allele. For overexpression outliers, we expected 

the minor allele to be overexpressed. To test this, we used the same filters as above, but 

looked exclusively at rare variants (instead of excluding them). We measured ASE as the 

minor allele ratio: the number of reads supporting the minor allele over the total number of 

reads.

We also used ASE to evaluated performance of both the genomic annotation model and 

RIVER (see below) by testing the association between allelic imbalance and model 

predictions using Fisher's Exact Test. Here, we defined allelic imbalance as the top 10% of 

the median absolute deviation, across tissues, of the reference allele ratio from 0.5.

Allele frequency measurements in UK10K

UK10K3 VCF files of whole genome cohorts were downloaded from https://www.ebi.ac.uk. 

We merged the Avon Longitudinal Study of Parents and Children (ALSPAC) 

EGAS00001000090 and the Department of Twin Research and Genetic Epidemiology 

(TWINSUK) EGAS00001000108 datasets for a total of 3,781 individuals. We counted the 

occurrence of all rare GTEx SNVs in Epigenomics Roadmap-annotated promoter regions 

among the UK10K samples. GTEx variants absent from the UK10K cohorts were assigned a 

count of 0.

Definition of multi-tissue eGenes

We defined multi-tissue eGenes using two approaches. For the tissue-by-tissue approach, we 

obtained lists of significant eGenes (q-value ≤ 0.05) for each of the 44 tissues from the 

GTEx v6p release. The second approach used cis-eQTLs with shared effects across tissues 

estimated by the RE2 model of the Meta-Tissue software34, as described in the main 

consortium manuscript12. We chose for each gene the variant with the lowest nominal P-

value from the RE2 model. We then determined the number of tissues in which this variant-

gene pair showed a cis-eQTL effect (m-value ≥ 0.934). For each of the 18,380 genes tested 

for multi-tissue outliers, we calculated the number of tissues in which the gene appeared as a 

significant eGene (tissue-by-tissue approach) or had a shared eQTL effect (Meta-Tissue 

approach). To show that the enrichment of outlier genes as multi-tissue eGenes was not 

confounded by gene expression level, using the Meta-Tissue results, we stratified genes 

tested for multi-tissue outliers into RPKM deciles and repeated the comparison between 

genes with and without a multi-tissue outlier. When comparing the enrichment for eGenes 

among constrained and disease gene lists, we classified the top n Meta-Tissue eGenes 

(ranked by nominal P-value from the RE2 model) as multi-tissue eGenes and considered the 

remaining genes as background. We selected n to match the umber of multi-tissue outliers in 

the comparison.
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Evolutionary constraint of genes with multi-tissue outliers

We obtained gene-level estimates of evolutionary constraint from the Exome Aggregation 

Consortium35 (http://exac.broadinstitute.org/, ExAC release 0.3). We intersected the 17,351 

autosomal lincRNA and protein coding genes with constraint data from ExAC with the 

18,380 genes tested for multi-tissue outliers from GTEx, yielding 14,379 genes for further 

analysis (3,897 and 10,482 genes with and without a multi-tissue outlier, respectively). We 

examined three functional constraint scores from the ExAC database: synonymous Z-score, 

missense Z-score, and probability of loss-of-function intolerance (pLI). Synonymous- and 

missense-intolerant genes were defined as those with corresponding Z-scores above the 90th 

percentile. We defined loss-of-function intolerant genes as those with a pLI score above 0.9, 

following the guidelines provided by the ExAC consortium. We calculated odds ratios and 

95% confidence intervals for the enrichment of genes with multi-tissue outliers in these lists 

using Fisher’s exact test. We repeated this analysis for three other gene sets: 19,182 multi-

tissue eGenes from GTEx v6p defined using Meta-Tissue, 9,480 reported GWAS genes from 

the NHGRI-EBI catalog36 (http://www.ebi.ac.uk/gwas accessed 30/11/2015), and 3,576 

OMIM genes (http://omim.org/ accessed 26/5/2016).

We tested for a difference in the mean constraint for genes with multi-tissue outliers and 

genes with multi-tissue eQTLs using ANOVA. For each constraint score in ExAC, we 

treated the score for each gene as the response and the status of the gene as having a multi-

tissue outlier and/or a multi-tissue eQTL as a categorical predictor with four classes. After 

fitting the model, we performed Tukey’s range test to determine whether there was a 

significant difference in the mean constraint between genes with a multi-tissue outlier but no 

multi-tissue eQTL and genes with a multi-tissue eQTL but no multi-tissue outlier.

Overlap of genes with multi-tissue outliers and disease genes

We examined the enrichment of genes with multi-tissue outliers in eight disease gene lists: 

the GWAS catalog and OMIM (described above) as well as ClinVar (6,279 genes; http://

www.ncbi.nlm.nih.gov/clinvar/), OrphaNet (3,451 genes; http://www.orpha.net/), ACMG20 

(58 genes; http://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/), Developmental Disorders 

Genotype-Phenotype37 (DDG2P; 1693 genes; http://www.ebi.ac.uk/gene2phenotype/), and 

two curated gene lists of 86 cardiovascular disease genes and 55 cancer genes (described 

below). We computed odds ratios and 95% confidence intervals using Fisher’s exact test to 

compare each disease gene list to the genes with multi-tissue outliers and repeated the 

comparison for genes with multi-tissue eQTLs.

Heritable cancer predisposition and heritable cardiovascular disease gene lists were curated 

by local experts in clinical and laboratory-based genetics in the two respective areas 

(Stanford Medicine Clinical Genomics Service, Stanford Cancer Center's Cancer Genetics 

Clinic, and Stanford Center for Inherited Cardiovascular Disease). Genes were included if 

both the clinical and laboratory-based teams agreed there was sufficient published evidence 

to support using variants in these genes in clinical decision making.

For each of the eight disease gene lists above and for genes with multi-tissue outliers or 

multi-tissue eQTLs, we computed the number of variants (SNVs and indels within 10 kb and 
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SVs within 200 kb of the gene, including the gene body) at each gene in the 123 individuals 

of European ancestry with WGS data. For each gene list and for each MAF bin (0–1%, 1–

5%, 5–10%, 10–25%), we compared the mean number of variants near genes in the list to 

the mean number near all other annotated autosomal protein coding and lincRNA genes 

using a two-sided t-test.

RIVER integrative model for predicting regulatory effects of rare variants

RIVER (RNA-Informed Variant Effect on Regulation) is a hierarchical Bayesian model that 

predicts the regulatory effects of rare variants by integrating gene expression with genomic 

annotations. The RIVER model consists of three layers: a set of nodes G = G1 … GP in the 

topmost layer representing P observed genomic annotations over all rare variants near a 

particular gene, a latent binary variable FR in the middle layer representing the unobserved 

functional regulatory status of the rare variants, and one binary node E in the final layer 

representing expression outlier status of the nearby gene. We model each conditional 

probability distribution as follows:

FR|G Bernoulli(ψ), ψ = logit−1(β′G)

E |FR Categorical(θFR)

βi 𝒩 0, 1
λ

θFR Beta(C, C)

with parameters β and θ and hyper-parameters λ and C.

Because FR is unobserved, the RIVER log-likelihood objective over instances n = 1, …, N 

∑n = 1
N log ∑FRn = 0

1 P(En, Gn, FRn | β, θ) is non-convex. We therefore optimize model 

parameters via Expectation-Maximization38 (EM) as follows:

In the E-step, we compute the posterior probabilities (ωn
(i)) of the latent variables FRn given 

current parameters and observed data. For example, at the ith iteration, the posterior 

probability of FRn = 1 for the nth instance is

ω1n
(i) = P(FRn = 1|Gn, β(i), En, θ(i)) =

P(FRn = 1|Gn, β(i))P(En |FRn = 1, θ(i))

∑FRn = 0
1 P(FRn |Gn, β(i)) · P(En |FRn, θ(i))
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ω0n
(i) = 1 − ω1n

(i) .

In the M-step, at the ith iteration, given the current estimates ω(i), the parameters (β(i + 1)*) 

are estimated as

argmax
β(i + 1)

∑n = 1
N ∑FRn = 0

1 log  p(FRn |Gn, β(i + 1)) · ωFR, n
(i) − λ

2‖β(i + 1)‖2,

where λ is an L2 penalty hyper-parameter derived from the Gaussian prior on β.

The parameters θ get updated as:

θst
(i + 1) = ∑

n = 1

N
I(En = t) · ωs, n

(i) + C,

where I is an indicator operator, t is the binary value of expression En, s is the possible 

binary values of FRn, and C is a pseudo count derived from the Beta prior on θ. The E and 

M steps are applied iteratively until convergence.

RIVER application to the GTEx cohort

As input, RIVER requires a set of genomic features G and a set of corresponding expression 

outlier observations E, each over instances of individual and gene pairs. Using the variant 

annotations described above, we generated site-level genomic features for the 116 European 

individuals with GTEx WGS data that had fewer than 50 multi-tissue outliers. We then 

collapsed these features for all rare SNVs within 10 kb of each TSS to generate gene-level 

features described in Supplementary Table 3b. This produced a matrix of genomic features 

G of size (116 individuals × 1,736 genes) × (112 genomic features), where we standardized 

features before use. For the values E, we defined any individual with |median Z-score| ≥ 1.5 

as an outlier if expression was observed in at least five tissues; the remaining individuals 

were labeled as non-outliers for the gene. We used this more lenient threshold in order to 

obtain a sufficiently large set of outliers for robust training and testing. In total, we extracted 

48,575 instances where an individual had at least one rare variant within 10 kb of the TSS of 

a gene.

To train and evaluate RIVER on the GTEx cohort, we used the 3,766 instances of individual 

and gene pairs where two individuals had the same rare SNVs near a particular gene. We 

held out those instances and trained RIVER parameters with the remaining instances. 

RIVER requires two hyper-parameters λ and C. To select λ, we first applied an L2-

regularized multivariate logistic regression with features G and response variable E, 

selecting lambda with the minimum squared error via 10-fold cross-validation (we selected 

λ = 0.01). We selected C = 50, informed simply by the total number of training instances 

available, as validation data was not available for extensive cross-validation. Initial 

parameters for EM were set to θ = (P(E = 0 | FR = 0), P(E = 1 | FR = 0), P(E = 0 | FR = 1), 
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P(E = 1 | FR = 1)) = (0.99, 0.01, 0.3, 0.7) and β from the multivariate logistic regression 

above, although different initializations did not significantly change the final parameters 

(Extended Data Fig. 9b).

The 3,766 held out pairs of instances were used to create a labeled evaluation set. For one of 

the two individuals from each pair, we estimated the posterior probability of a functional 

rare variant P(FR | G, E, β, θ). The outlier status of the second individual, whose data was 

not observed either during training or prediction, was then treated as a “label” of the true 

status of functional effect FR. Using this labeled set, we compared the RIVER score to the 

posterior P(FR | G, β) estimated from the plain L2-regualrized multivariate logistic 

regression model with genomic annotations alone. We produced ROCs and computed AUCs 

for both models, testing for significant differences using DeLong’s method29. This measure 

relied on outlier status reflecting the consequences of rare variants. Indeed, pairs of 

individuals who shared rare variants tended to have highly similar outlier status even after 

regressing out effects of common variants (Kendall’s tau rank correlation, P < 2.2 × 10−16). 

We repeated this evaluation, varying the median Z-score threshold used to define outliers, 

and we also compared RIVER to individual features that were strongly enriched among 

outliers as well as PolyPhen39 and SIFT40.

Supervised model integrating expression and genomic annotation

To assess the information gained by incorporating gene expression data in the prediction of 

functional rare variants, we applied a simplified supervised approach to a limited dataset. We 

used the instances where two individuals had the same rare SNVs to create a labeled training 

set where the outlier status of the second individual was used as the response variable. We 

then trained a logistic regression model with just two features: 1) the outlier status of the 

first individual and 2) a single genomic feature value such as CADD or DANN. We 

estimated parameters from the entire set of rare-variant-matched pairs using logistic 

regression to determine the log odds ratio and corresponding P-value of expression status as 

a predictor. While this approach was not amenable to training a full predictive model over all 

genomic annotations jointly given the limited number of instances, it provided a consistent 

estimate of the log odds ratio of outlier status. We tested five genomic predictors: CADD19, 

DANN41, transcription factor binding site annotations, PhyloP scores15, and one aggregated 

feature: the posterior probability from a multivariate logistic regression model learned with 

all genomic annotations.

RIVER assessment of pathogenic ClinVar variants

We downloaded variants from the ClinVar database21 (accessed 04/05/2015) and searched 

any of these disease variants within the set of rare variants segregating in the GTEx cohort. 

Any disease variant reported as pathogenic, likely pathogenic, or a risk factor for disease 

was considered pathogenic. We further categorized the pathogenic variants as likely 

regulatory if they were annotated as splice-site variants, synonymous, or nonsense, whereas 

missense variants were considered unlikely to have a regulatory effect. To explore RIVER 

scores for those pathogenic variants, all instances were used for training RIVER. We then 

computed a posterior probability P(FR | G, E, β, θ) for each instance coinciding with a 

pathogenic ClinVar variant.
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Stability of estimated parameters with different parameter initializations

We tried several different initialization parameters for β and θ to explore how this affected 

the estimated parameters. We initialized a noisy β by adding K% Gaussian noise compared 

to the mean of β with fixed θ (for K = 10, 20, 50 100, 200, 400, 800). For θ, we fixed P(E = 

1 | FR = 0) and P(E = 0 | FR = 0) as 0.01 and 0.99, respectively, and initialized (P(E = 1 | FR 
= 1), P(E = 0 | FR = 1)) as (0.1, 0.9), (0.4, 0.6), and (0.45, 0.55) instead of (0.3, 0.7) with β 
fixed. For each parameter initialization, we computed Spearman rank correlations between 

parameters from RIVER using the original initialization and the alternative initializations. 

We also investigated how many instances within top 10% of posterior probabilities from 

RIVER under the original settings were replicated in the top 10% of posterior probabilities 

under the alternative initializations (Replication accuracy in Extended Data Fig. 9b).

Validation of large-effect rare variants via CRISPR/Cas9 genome editing

To select rare, coding SNVs for validation by CRISPR/Cas9 editing, we first restricted to the 

(gene, individual, variant) tuples identified in multi-tissue outliers without a rare SV or a 

rare indel within 200 kb or 10 kb of the gene, respectively. We considered the 116 rare SNVs 

with a coding consequence for the corresponding gene as annotated by VEP32; coding 

annotations included stop gained, stop lost, splice acceptor variant, splice donor variant, start 

lost, missense variant, splice region variant, stop retained variant, synonymous variant, 

coding sequence variant, and 5’/3’ UTR variant. Using RNA-seq data from ENCODE, we 

further restricted our variant list to the 59 SNVs occurring in genes with an average FPKM 

of at least 10 in K562 cells (ENCODE experiment IDs ENCSR000AEL and 

ENCSR000AEN)42. Finally, we filtered for rare, coding SNVs in (gene, individual) pairs 

with |median Z-score| > 4 and a RIVER score above the 99.5th percentile. These filters 

yielded a final set of 13 rare SNVs from which we chose the six exonic SNVs for testing.

As controls, we selected SNVs present within the same cDNA amplicon region as the 

corresponding outlier SNV (see details on targeted sequencing below). We first searched for 

coding SNVs present within these regions in the GTEx cohort that did not occur in the 

outlier individual. If no SNV could be found satisfying these criteria, we expanded our 

search for SNVs using the ExAC database (ExAC release 0.3)35. If multiple possible control 

variants existed for an outlier SNV, we ranked the controls by CADD score19 and prioritized 

synonymous variants.

Sequences of single-guide RNAs (sgRNAs) used in the study are listed in Extended Data 

Fig. 11b. For each variant, a sgRNA and two donor oligonucleotides (with the reference and 

alternative alleles) were designed such that the PAM was located as close to the variant as 

possible. The donors were 99 bp long centered on the variant being installed. The variants 

were installed into K562 cells as previously described22,23. The K562 cells were those 

generated previously23 and were regularly tested for mycoplasma infection. sgRNAs were 

expressed in the pGH020 (Addgene plasmid #85405) expression vector. For each donor 

oligonucleotide, K562 cells constitutively expressing a Cas9-BFP protein fusion were 

electroporated with 3 µg of sgRNA plasmid DNA and 1 µL of 100 µM donor oligonucleotide 

using the T-016 program on a Lonza Nucleofector 2b. After electroporation, cells were 

allowed to recover for 5 days. Cells electroporated with the reference and alternative allele 
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donor oligonucleotides were mixed in a 1:1 ratio and grown together for 3 more days to 

control for differences in culturing conditions. We included cells electroporated with the 

reference allele to ensure that any changes in expression we observed were not due to the 

editing process itself. Since the editing efficiency is not 100% and varies between loci, we 

expect fewer than half the cells to carry the alternative allele and for this proportion to vary 

by locus. One to two million cells were collected for RNA and genomic DNA extraction.

Genomic DNA was extracted using the QiaAmp DNA mini kit (Qiagen). Total RNA was 

extracted using QiaShredder and RNeasy Mini kit (Qiagen). Six µg of RNA was converted 

into cDNA using AMV reverse transcriptase (Promega). cDNA was purified and 

concentrated with the PCR Purification Kit (Qiagen). PCR primers were designed to 

generate 300–400 bp amplicons including the variant in either the genomic DNA or cDNA 

locus. For both genomic DNA and cDNA samples, 400 ng of DNA was amplified in 

triplicate (technical replicates) using Phusion High-Fidelty polymerase (Fisher) and the 

amplicon was purified on a 1% TAE agarose gel. The amplicons were then prepared for 

sequencing using the Nextera XT kit (Illumina) and sequenced together on a NextSeq 500.

Reads were trimmed with cutadapt43 (version 1.13) and aligned using bwa44 (version 0.7.12-

r1039) allowing no mismatches (bwa aln –n 0), which excluded any reads with indels 

created during editing. We used custom reference sequences, one each for the reference and 

alternate alleles of the targeted cDNA and gDNA amplicon regions. Allele counts at the 

target locus were computed for each sample using samtools pileup as implemented in the R 

package Rsamtools45 (version 1.22.0). Only reads with a minimum mapping quality of 20 

were considered. Two of the tested loci amplified poorly in preparation for sequencing, and 

they had extremely low mapping rates and total read counts over the target locus (median 

read count across replicates < 400 compared to 281,000 and 397,000 for gDNA and cDNA, 

respectively, for the remaining loci). As such, we removed these two loci from further 

analysis. Finally, to assess the effect of each variant on expression, we tested for a significant 

difference between the cDNA and gDNA alternate allele proportions with a two-sided t-test. 

We corrected for multiple testing using the Bonferroni procedure.

Code availability

RIVER is available at https://bioconductor.org/packages/release/bioc/html/RIVER.html. 

Additionally, the code for running analyses and producing the figures throughout this 

manuscript is available separately (https://github.com/joed3/GTExV6PRareVariation).

Data availability

The GTEx v6 release genotype and allele-specific expression data are available from dbGaP 

(study accession phs000424.v6.p1; http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000424.v6.p1). Expression data from the v6p release and eQTL 

results are available from the GTEx portal (http://gtexportal.org).

Li et al. Page 16

Nature. Author manuscript; available in PMC 2018 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://bioconductor.org/packages/release/bioc/html/RIVER.html
https://github.com/joed3/GTExV6PRareVariation
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v6.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v6.p1
http://gtexportal.org


Extended Data

Extended Data Figure 1. PEER correction
(a) Adjusted R2 between top 15 PEER factors and top 20 sample (left) and subject (right) 

covariates in an example tissue, skeletal muscle. Covariates were ranked by the average 

adjusted R2 across all PEER factors and hierarchically clustered. The corresponding data for 

all tissues are provided in Supplementary Tables 1 and 2. (b) Adjusted R2 between the total 

expression component removed by PEER in each tissue and top 20 sample (left) and subject 

(right) covariates. The covariates were ranked by the average adjusted R2 across all tissues, 

and both axes were hierarchically clustered. White denotes missing values, and tissues are 

colored as in Fig. 1. PEER factors captured slightly different covariates across tissues, with a 

noticeable difference between the brain and other tissues. (c) Rare variant enrichments as in 

Fig. 2a for different levels of PEER correction. The fully corrected data show substantially 

stronger rare variant enrichments than the two partially corrected datasets.
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Extended Data Figure 2. Distribution of the number of genes with a multi-tissue outlier
(a) Distribution of the number of genes for which each individual was a multi-tissue outlier. 

Each individual was an outlier for a median of 10 genes. Individuals with 50 or more outliers 

are colored in grey and were excluded from downstream analyses. (b–f) Distribution of the 

number of genes for which individuals, stratified by common covariates, were multi-tissue 

outliers. For race and sex, we compared the distributions using an unsigned Wilcoxon rank 

sum test, while we used Spearman’s ρ to test for association with the remaining covariates. 

Only age (Spearman’s ρ = 0.10, P = 0.033) and ischemic time (Spearman’s ρ = 0.18, P = 

0.00022) were nominally associated with the number of outlier genes per individual. The 

association with age fails to achieve significance after correcting for multiple testing using 

the Bonferroni method. Note that in (b) we only tested for a significant difference in the 

distribution of the number of outlier genes between White and Black individuals because 

there were too few individuals in the other groups. (g) Enrichments as shown in Fig. 2a 

either including all individuals, or excluding individuals that are outliers for 50 (matches 

Fig. 2a) or 30 genes.
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Extended Data Figure 3. Single-tissue outlier replication
(a) Correlation between the replication proportions (see Methods) obtained from all samples 

and from a subset of 70 overlapping individuals per tissue pair (Pearson’s correlation, P < 

2.2 × 10−16). When restricting to 70 individuals, the replication rates decreased more for 

discovery tissues with larger sample sizes in the full data set, indicating that replication rates 

were underestimated for tissues with small sample sizes. (b) Correlation between replication 

in the 70 individuals used for discovery and replication assessed in a set of 70 individuals 

that included the outlier individual and 69 individuals excluded from the discovery set 
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(Pearson’s correlation, P < 2.2 × 10−16). Replication was higher when computed in the 

discovery individuals rather than in a distinct set of individuals. (c) Single-tissue outlier 

replication using all individuals, as in Fig. 1b, but data are only shown for pairs with at least 

70 overlapping individuals. Tissue pairs with insufficient overlap are in grey. (d) For each 

pair of tissues with sufficient samples, outlier discovery and replication using 70 individuals 

sampled in both tissues. The replication values decreased compared with replication 

performed in all individuals (c), particularly for tissues with large sample sizes in the 

complete dataset. However, the pattern of replication, with more similar tissues having 

higher replication rates, is maintained. (e) For each tissue, the proportion of (individual, 

gene) outlier pairs where the individual was also a multi-tissue outlier for the gene. This 

proportion was positively correlated with the tissue sample size (P = 1.4 × 10−10). Points are 

colored by tissue following the convention in Fig. 1.
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Extended Data Figure 4. Number of rare variants per individual and population structure
(a) The distribution of the number of rare variants of each type for individuals of European 

descent (reported as white). Certain individuals harbored many more rare variants than the 

population median (vertical black line). (b) Principal component analysis of all individuals. 

Individuals are plotted according to their first two genotype principal components (PCs) and 

colored by their reported ancestry. White individuals with whole genome sequencing data, 

included in (a), are colored in a lighter shade of blue and those with 60,000 or more rare 

variants are circled in black. The individuals with an excess of rare variants likely had 

African or Asian admixture. (c) Enrichments as in Fig. 2a and excluding individuals with 
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>60,000 rare variants (circled in (b)), which did not substantially affect the enrichment 

patterns. (d) European population allele frequency distributions in the 1000 Genomes project 

of rare SNVs and indels analyzed. The rare variants included in our analysis were 

constrained to have MAF ≤ 0.01 in the 1000 Genomes European super population, but they 

were also relatively rare in each of the individual European populations.

Extended Data Figure 5. Comparison of overexpression and underexpression outliers
(a) Allele-specific expression (ASE) at rare exonic variants. ASE is shown as the ratio of the 

number of reads supporting the minor allele to the total number of reads at the site. If the 

rare variant is driving the extreme expression, we expect this ratio to be below 0.5 for 

underexpression outliers and above 0.5 for overexpression outliers. Rare coding variants 

were enriched for ASE in the direction of the extreme expression effect (two-sided Wilcoxon 

rank sum tests, each nominal P < 4.0 × 10−8). (b) Expression level distribution of all genes 

and genes with overexpression or underexpression outliers. Expression is shown as the log2 

of the median (RPKM + 2), where the median was first taken across individuals in each 

tissue then across expressed tissues for each gene. For genes with low expression, even an 

RPKM of 0 may not yield a Z-score ≤ −2. Indeed, underexpression outliers were depleted 
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among lowly expressed genes whereas the opposite was true of overexpression outliers (two-

sided Wilcoxon rank sum test comparing to all genes, P < 2.2 × 10−16 for both 

overexpression and underexpression). (c) Feature enrichments (as in Fig. 3b) shown 

separately for over and underexpression outliers.

Extended Data Figure 6. Extended rare variant enrichments
(a) For each tissue, rare SNV enrichment in single-tissue outliers compared with non-

outliers at the same genes for increasing Z-score thresholds. Enrichments calculated as in 
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Fig. 2. The rare variant enrichments varied between tissues though the overall pattern 

mirrored that of multi-tissue outliers when combining all the tissues (Fig. 2b). The high 

variance in the enrichments underscores the noise in single-tissue outlier discovery. (b) As in 

Fig. 2a, enrichment for SNVs, indels, and SVs in outliers compared with the same genes in 

non-outliers either including all rare variants or only those outside protein-coding or 

lincRNA exons in Gencode v19 annotation. The enrichment of rare variants was weaker, but 

still significant, for all variant types when excluding exonic regions.
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Extended Data Figure 7. Enrichment of an extended list of functional genomic annotations
Log odds ratios and 95% Wald confidence intervals from logistic regression models of 

outlier status as a function of each genomic feature. Features were calculated among rare 

SNVs within 10 kb of the gene. When more than one feature corresponded to the same 

genomic annotation (e.g., the number or the presence of rare variants in a splice region; 

Supplementary Table 3b), the feature with the highest enrichment is shown. Lighter shading 

indicates a non-significant log odds ratio (nominal P > 0.05).

Extended Data Figure 8. Evolutionary constraint and regulatory control of multi-tissue outlier 
genes
(a) Odds ratio of being intolerant to synonymous and missense variants for genes with multi-

tissue eQTLs (eGenes), genes with multi-tissue outliers, OMIM, and GWAS genes (see 

Methods). As expected, GWAS and OMIM genes showed no enrichment or depletion for 

synonymous variation intolerant genes. Genes with multi-tissue outliers and eGenes showed 

slight depletion for these genes. Genes with multi-tissue outliers and eGenes were strongly 

depleted for missense variation intolerant genes compared with OMIM and GWAS genes. 

(b) Comparison of the depletion of disease genes among genes with a multi-tissue outlier 
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and eGenes. Similar to Fig. 4c, bars represent 95% confidence intervals from Fisher’s exact 

test. (c) For each of ten gene lists, the difference in the mean number of variants near genes 

in the list compared with the mean for all other annotated genes. Results are stratified by 

minor allele frequency, and bars indicate the 95% confidence interval for the difference from 

a two-sided t-test. Disease genes harbored more variants than control genes in general, and 

the difference was particularly striking for rare variants. This suggests that the depletion of 

outliers and eQTLs for certain groups of disease genes is due to less rare variation near these 

genes. Instead, we hypothesize that the variation around these genes in our healthy cohort is 

less likely to have large regulatory effects. (d) Distribution of the number of tissues with an 

eQTL for genes with and without outliers. Genes with multi-tissue outliers had eQTLs in 

more tissues than genes without, which suggests that they are more susceptible to shared 

regulatory control. This result held for both multi-tissue eQTL definitions (see Methods; 

Meta-Tissue: 23 vs 3 tissues, Wilcoxon rank sum test P < 2.2 × 10−16; tissue-by-tissue: 7 vs 

3 tissues, P < 2.2 × 10−16). (e) This eGene enrichment was robust across different mean 

expression levels across tissues (two-sided Wilcoxon rank sum tests, Bonferroni-adjusted P 
< 1 × 10−11).
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Extended Data Figure 9. River performance
(a) Comparison between the predictive power of RIVER and that of the genomic annotation 

model, as in Fig. 5a, across different Z-score thresholds for outlier calling. Increasing the Z-

score threshold improved AUC values, but reduced the number of outlier examples, which 

led to noisy ROCs. (b) Stability analysis of estimated parameters with different parameter 

initializations (see Methods). (c) Correlations, using Kendall’s tau, between the fraction of 

tissues with |Z-score| ≥ 2 and the test probabilities from the genomic annotation model (left) 

and RIVER (right). We calculated test posterior probabilities using 10-fold cross validation 
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and only considered individual and gene pairs with a fraction of tissues with |Z-score| ≥ 2 

that was significantly different from 0.05 (one-sided binomial exact test, Benjamini-

Hochberg adjusted P < 0.05). (d) P-values from a one-sided Fisher’s exact test measuring the 

association between allelic imbalance (see Methods) and the posterior probability of a 

functional rare variant according to the genomic annotation model and RIVER. The 

posterior probabilities from RIVER were more strongly associated with allelic imbalance 

across all four thresholds tested. (e) Assessment of the advantage of incorporating gene 

expression with genomic annotations for predicting outlier status using simplified supervised 

models (see Methods). All models showed consistent improvement of the log odds ratio of 

outlier status when incorporating expression. (f) Performance of models with 12 individual 

genomic features compared with the genomic annotation model and RIVER. Some models 

with single genomic features provided slightly better AUCs compared with the genomic 

annotation model, but they were not statistically different. On the other hand, RIVER 

predicted the effects of rare variants significantly better than each of the models with a 

single feature.
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Extended Data Figure 10. Evaluation of known pathogenic variants using RIVER
(a) 27 GTEx rare SNVs reported as disease variants in ClinVar. Relative frequency of (b) the 

|median Z-score|, (c) posterior probabilities from the genomic annotation model, and (d) 

posterior probabilities from RIVER for all individual and gene pairs (grey) and 27 pairs with 

pathogenic variants from ClinVar (orange). P-values were computed using a two-sided 

Wilcoxon rank sum test. We note that rare indels and SVs were not found nearby the genes 

in the individuals carrying these pathogenic variants. (e and f) Z-score and RPKM 

distributions for (e) SBDS and (f) GAMT were compared with the values for four 
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individuals carrying regulatory pathogenic variation (red asterisks and triangles). The 

median Z-score and RPKM values across tissues are shown at the top of each plot (black 

circle). Tissues are colored as in Fig. 1 and sorted in decreasing order of the difference 

between the average Z-score of individuals with a regulatory pathogenic variant and the 

median Z-score for the tissue. Three individuals carrying a total of two unique rare variants 

are shown for SBDS. Both variants are associated with the recessive Shwachman-Diamond 

syndrome, which causes systemic symptoms including pancreatic, neurological, and 

hematologic abnormalities46 and can disrupt fibroblast function47. The individuals, being 

heterozygous for these variants, lacked the disease phenotype. Nonetheless, we saw extreme 

underexpression of SBDS across almost all tissues in these individuals, including brain 

tissues, fibroblasts, and pancreas. One individual had a rare variant for GAMT associated 

with cerebral creatine deficiency syndrome 2, shown to cause neurological deficiencies and 

also lead to low body fat48. The individual had the most extreme underexpression in 

(subcutaneous) adipose.

Extended Data Figure 11. Validation of large-effect rare variants via CRISPR/Cas9 genome 
editing
(a) SNVs in outliers and controls assayed for expression effects using CRISPR/Cas9 genome 

editing. For common SNVs in controls (MAF >1% in the GTEx cohort), the range of 

median Z-scores and RIVER scores are given for all individuals harboring the minor allele. 

Missing values indicate that the variant was absent from our cohort. (b) Single-guide RNAs 

(sgRNAs) for four SNVs found in outliers and four control SNVs in the same genes. (c) 

Alternate (installed) gDNA and cDNA allele proportions for four rare, coding SNVs in 
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outliers (left) and four matched control SNVs (right). Each gDNA and cDNA sample was 

sequenced in triplicate (technical replicates). Asterisks denote the Bonferroni-adjusted 

significance level from a two-sided t-test of the difference between the gDNA and cDNA 

alternate allele proportions: P < 0.05 (.), P < 0.01 (*), and P < 0.001 (**). Though one 

control SNV showed a significant difference in the alternate allele proportion between 

cDNA and gDNA, it displayed an increase rather than a decrease in expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene expression outliers and sharing between tissues
(a) A multi-tissue outlier. The individual has extreme expression values for the gene 

AKR1C4 in multiple tissues (red arrows) and the most extreme median expression value 

across tissues. (b) Outlier expression sharing between tissues, as measured by the proportion 

of single-tissue outliers that have |Z-score| ≥ 2 with the same effect direction for the 

corresponding genes in each replication tissue. Tissues are hierarchically clustered by gene 

expression. (c) Estimated replication rate of multi-tissue outliers in a constant held-out set of 

tissues for different sets of discovery tissues.
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Figure 2. Enrichment of rare variants and ASE in outliers
(a) Enrichment of SNVs, indels, and SVs within 10 kb of the TSS among outliers. For each 

frequency stratum, we calculated enrichment as the relative risk of having a nearby rare 

variant given the outlier status (see Methods). Bars indicate 95% Wald confidence intervals. 

(b) Rare SNV enrichments at increasing Z-score thresholds. Text labels indicate the number 

of outliers at each threshold. (c) ASE, measured as the magnitude of the difference between 

the reference-allele ratio and the null expectation of 0.5. The non-outlier category is defined 

in the Methods.
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Figure 3. Stratification of multi-tissue outliers by rare variant classes
We considered rare variants in the gene body and within 10 kb of the gene (200 kb for SVs 

and enhancers). (a) Enrichment of disjoint variant classes among outliers calculated as log 

odds ratio with 95% Wald confidence intervals. (b) Enrichment of functional annotations for 

rare SNVs. (c) Proportion of genes with an outlier potentially explained by each rare variant 

class. (d) Distribution of median Z-scores for each variant class. (e) For each variant class, 

distribution of ASE (see Methods) averaged across tissues. Grey lines mark the median 

values among non-outliers.
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Figure 4. Evolutionary constraint of genes with multi-tissue outliers
(a) Distributions of UK10K minor allele frequencies for promoter SNVs in outlier and non-

outlier individuals at genes with multi-tissue outliers. (b) Odds ratio of being intolerant to 

loss-of-function variants for genes with multi-tissue outliers, genes with shared eQTLs 

(eGenes), genes reported in the GWAS catalog, and OMIM genes. (c) Odds ratio of a gene 

having a multi-tissue outlier for each of eight sets of genes involved in complex traits or 

diseases. In (b) and (c) bars represent 95% confidence intervals (Fisher’s exact test).

Li et al. Page 42

Nature. Author manuscript; available in PMC 2018 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Performance of RIVER for prioritizing functional regulatory variants
(a) RIVER probabilistic graphical model (see Methods). (b) Predictive power of RIVER 

compared with an L2-regularized logistic regression model using only genomic annotations. 

Accuracy was assessed using held-out individuals sharing the same rare SNVs as observed 

individuals (AUCs compared with DeLong’s approach29). (c) Distribution of RIVER scores 

(shades of blue) as a function of expression and genomic annotation scores. The 

distributions of variant categories across expression and genomic annotation scores are 

shown as histograms aligned opposite the corresponding axes.
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