
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Vortex dynamics : a window into the properties of type-II superconductors

Permalink
https://escholarship.org/uc/item/8n68x115

Author
Taylor, Benjamin Jeremy

Publication Date
2006
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8n68x115
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Vortex Dynamics:

A Window Into the Properties of Type-II Superconductors

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Physics

by

Benjamin Jeremy Taylor

Committee in charge:

Professor M. Brian Maple, Chair
Professor Daniel Arovas
Professor Dimitri N. Basov
Professor David R. Hendrickson
Professor Jan B. Talbot

2006



Copyright

Benjamin Jeremy Taylor, 2006

All rights reserved.



The dissertation of Benjamin Jeremy Taylor is approved,

and it is acceptable in quality

Chair

University of California, San Diego

2006

iii



To my wife Michelle, for all her love and support... and to McKenna Christine

our daughter, who will be arriving in September.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita, Publications, and Fields of Study . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A. Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1. BCS theory of superconductivity . . . . . . . . . . . . . . . . . . 3
B. Type I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1. The London equation . . . . . . . . . . . . . . . . . . . . . . . . 4
C. Type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Ginzburg-Landau theory . . . . . . . . . . . . . . . . . . . . . . 6
D. Vortex dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Experimental Apparatus and Measurement Methods . . . . . . . . . . . 12
A. The pulsed laser ablation deposition technique . . . . . . . . . . . . 12

1. Development of a unique laser ablation chamber for growth of
volatile inter-metallic films . . . . . . . . . . . . . . . . . . . . . 14

B. Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1. X-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2. Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3. Electrical resistivity & Electric field-current density measurements 18

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

III Quantum Fluctuations, Vortex Flux Line Dynamics, and the Vortex-
Solid to Vortex-Liquid Transition . . . . . . . . . . . . . . . . . . . . . 21
A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B. Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C. The quantum- thermal-fluctuation model of Blatter and Ivlev . . . . 28
D. Modification of the Blatter and Ivlev model . . . . . . . . . . . . . . 31
E. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



1. Y1−xPrxBa2Cu3O6.97 and YBa2Cu3O6.5 . . . . . . . . . . . . . . 36
2. The vortex glass melting lines of Sm1.85Ce0.15CuO4−y

and Bi2Sr2CaCu2O8 . . . . . . . . . . . . . . . . . . . . . . . . . 49
3. The vortex glass melting lines of MgB2 and α−MoxSi1−x . . . . . 49

F. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

IV Inhomogenous vortex matter in a high purity twinned YBa2Cu3O7−δ

single crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B. Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 68
D. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

V Vortex glass and Bragg glass phases in MgB2 . . . . . . . . . . . . . . . 89
A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B. Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 92
D. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VI Anomalous dynamic behavior of vortices amidst an emergent peak effect
in CeRu2 films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B. Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 118
D. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

1. Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2. Current results: relation to known peak effect anomalies . . . . . 147

E. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A The modified vortex glass model of Rydh, Rapp, and Andersson . . . . 156

B The Columb-gas model . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C Modified vortex glass scaling model: Magnetic field dependencies . . . . 160

D Critical behavior: suppression of the superfluid density . . . . . . . . . 163
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

vi



LIST OF FIGURES

II.1 Top view schematic of deposition chamber . . . . . . . . . . . . . 16
II.2 Side view schematic of deposition chamber . . . . . . . . . . . . . 17

III.1 Vortex glass melting line data: 1st modified melting line equation 37
III.2 Vortex glass melting line data: 2nd modified melting line equation 38
III.3 Comparison of various vortex glass melting line equations . . . . . 39
III.4 The exponent s obtained from vortex glass scaling of ρ(T ) . . . . 42
III.5 The quantum parameter, q(t) . . . . . . . . . . . . . . . . . . . . 44
III.6 Temperature dependence of the quantum tunneling length . . . . 46
III.7 Fraction of quantum- to thermal fluctuations . . . . . . . . . . . . 47
III.8 Vortex glass melting lines of Sm1.85Ce0.15CuO4−y & Bi2Sr2CaCu2O8 50
III.9 Vortex glass melting line of bulk MgB2 . . . . . . . . . . . . . . . 51
III.10 Vortex glass melting line of amorphous α−MoxSi1−x . . . . . . . 52

IV.1 Electical resistivity ρ(H,T ) of a twinned YBCO single crystal . . 69
IV.2 Electric field E vs transport current density J isotherms . . . . . 72
IV.3 Scaled E − J data . . . . . . . . . . . . . . . . . . . . . . . . . . 73
IV.4 Scaled resistivity data, (dln(ρ)/dT )−1 vs T . . . . . . . . . . . . . 75
IV.5 H(T )phase diagram of a high purity, twinned, YBa2Cu3O7−δ sin-

gle crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

V.1 Electric field E vs transport current density J isotherms for HIPed
MgB2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

V.2 Scaled E − J data . . . . . . . . . . . . . . . . . . . . . . . . . . 95
V.3 Zero-field vortex-glass coherence length . . . . . . . . . . . . . . . 98
V.4 Width of the critical region . . . . . . . . . . . . . . . . . . . . . 100
V.5 Critical current density, Jc, in the H − T phase diagram of MgB2 102
V.6 Iso-current density lines in the H − T plane . . . . . . . . . . . . 103
V.7 H − T phase diagram of HIPed MgB2 . . . . . . . . . . . . . . . 104
V.8 Scaling behavior of Jc at low magnetic fields . . . . . . . . . . . . 106

VI.1 SEM images of CeRu2 films “A” and “B” . . . . . . . . . . . . . 116
VI.2 X-ray data for films “A” and “B” . . . . . . . . . . . . . . . . . . 117
VI.3 χ ≡ 4πM/H, data for target sample and films . . . . . . . . . . . 120
VI.4 Zero field resistivity data, ρ(T ), for target sample and films “A”

and “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
VI.5 TAFF behavior of film “A” . . . . . . . . . . . . . . . . . . . . . 124
VI.6 ρ(T ), data for film “B” . . . . . . . . . . . . . . . . . . . . . . . . 125
VI.7 ρ(H), data for films “A” and “B” . . . . . . . . . . . . . . . . . . 127
VI.8 ρ(H), data for films “B” and “C” . . . . . . . . . . . . . . . . . 129
VI.9 Critical current density, Jc(H), data of films “A” and “B” . . . . 130
VI.10 Fp(H) and scaled Fp(H) data for films “A” and “B” . . . . . . . 132

vii



VI.11 Enhanced pinning force density of the large grain CeRu2 film “B” 133
VI.12 Comparison of M(H) and Jc(H) . . . . . . . . . . . . . . . . . . 135
VI.13 E − J and scaled E − J data . . . . . . . . . . . . . . . . . . . . 136
VI.14 Behavior of ρ(H) in the emerging peak effect region . . . . . . . 138
VI.15 Correlation of M(H), cB, and ∆` behavior with the peak effect . 139
VI.16 H − T phase diagram of CeRu2 films . . . . . . . . . . . . . . . 142
VI.17 The missing peak effect in CeRu2 single crystals . . . . . . . . . 146

B.1 Modified vortex glass scaling . . . . . . . . . . . . . . . . . . . . . 159
B.2 Coulomb-glass scaling . . . . . . . . . . . . . . . . . . . . . . . . 159

viii



LIST OF TABLES

III.1 Parameters obtained from fit to 1st modified melting line equation 56
III.2 Parameters obtained from fit to 2nd modified melting line equation 57

IV.1 Critical exponents, temperatures, and coherence lengths of a high
purity, twinned, YBa2Cu3O7−δ single crystal . . . . . . . . . . . 85

V.1 Values of scaling parameters for bulk MgB2 . . . . . . . . . . . . 108

VI.1 Values of scaling parameters for a large grain CeRu2 film . . . . . 152

ix



ACKNOWLEDGEMENTS

First, I would like to thank my advisor, M. Brian Maple, for supporting

me through the years, for his guidance, and for allowing me the freedom to pursue

the directions which the research presented within has taken me.

I would like to recognize the help of my coworkers Dan Scanderbeg and

Ryan Baumbauch who assisted with measurements at the National High Magnetic

Field Laboratory in Tallahassee, and Todd Sayles whose valiant efforts resulted in

the materials necessary for the body of work in Chapter VI. In particular, I wish to

acknowledge the work of Cassandra Rayt, who, as an undergraduate, among having

contributed in many ways to the work present here, has incredibly steady hands

and a knack for placing leads on microscopically small samples. Finally, amongst

my coworkers, I would like to express thanks to Jason Jeffries, Nick Butch, and

Neil Frederick for useful discussions and for providing ears to bounce ideas off of.

I wish to express my love for my parents who have always supported me

in many ways, and instilled within me the desire to always do my best, and for my

wife, whose love, patience, and support are deeply appreciated.

And finally I would like to thank an old roommate of mine, Jeffrey

Bakkus, who, when I was 18, asked me that burning question, ‘So, why aren’t

you going to college?’

A portion of the text and data of Chapter III appears as it will be sub-

mitted for publication in the articles, “Evolution of Vortex Dynamics Along the

Vortex-Lattice Melting Line,” B. J. Taylor and M. B. Maple; “Quantum Fluctua-

tions, Critical Dynamic Vortex Motion, and the Vortex Solid-Liquid Transition,”

B. J. Taylor, D. J. Scanderbeg, M. B. Maple, C. Kwon, and Q. X. Jia. The

dissertation author was the primary investigator and author of these articles.

A portion of the text and data of Chapter IV is a reprint of the material as

it appears in “Vortex-melting and vortex-glass transitions in a high purity twinned

YBa2Cu3O7−δ single crystal,” Phys. Rev. B 68, 054523 (2003), B. J. Taylor, S.

x



Li, M. B. Maple, and M. P. Maley. The dissertation author was the primary

investigator and author of this article.

A portion of the text and data of Chapter V is a reprint of the material as

it appears in “Vortex- and Bragg-glass phases in bulk MgB2,” Physica C 387, 131

(2003), M. B. Maple, B. J. Taylor, S. Li, N. A. Frederick, V. F. Nesterenko, and

S. S. Indrakanti; and “Mixed-state flux dynamics in bulk MgB2,” Physica C 382,

177 (2002), S. Li, B. J. Taylor, N. A. Frederick, M. B. Maple, V. F. Nesterenko,

and S. S. Indrakanti. The dissertation author was the secondary investigator and

author of these articles.

A portion of the text and data of Chapter VI appears as it will be pub-

lished in the article, “Anomalous critical dynamic behavior of vortices amidst a

nascent peak effect in granular CeRu2 films,” B. J. Taylor, R. E. Baumbach, T.

A. Sayles, and M. B. Maple. The dissertation author was the primary investigator

and author of this article.

xi



VITA

1992–1994 U.S. Navy

1999 Bachelor of Arts in Physics (with distinction),
California State University, San Diego

1999 Bachelor of Arts in Mathematics (with distinction),
California State University, San Diego

1999–2006 Research Assistant, University of California, San Diego
Advisor: Brian Maple

2000 Teaching Assistant, Department of Physics
University of California, San Diego

2006 Doctor of Philosophy
University of California, San Diego

PUBLICATIONS

B. J. Taylor and M. B. Maple, “Evolution of Vortex Dynamics Along the Vortex-
Lattice Melting Line,” Phys. Rev. B submitted (2006).

B. J. Taylor, R. E. Baumbach, T. A. Sayles, and M. B. Maple, “Critical Dynamic
Fluctuation Amidst a Nascent Peak Effect in Granular CeRu2 Films,” Phys. Rev.
B submitted (2006).

B. J. Taylor, D. J. Scanderbeg, M. B. Maple, C. Kwon, and Q. X. Jia, “Quan-
tum Fluctuations, Critical Dynamic Vortex Motion, and the Vortex Solid-Liquid
Transition,” Phys. Rev. B submitted (2006).

T. Katuwal, V. Sandu, C. C. Almasan, B. J. Taylor, and M. B. Maple, “High tem-
perature mixed state c-axis dissipation in low carrier density Y0.54Pr0.46Ba2Cu3O7δ,”
Phys. Rev. B 73, 144510 (2006).

S. Liang, R. Islam, David J. Smith, P. A. Bennett, J. R. O’Brien, and B. Taylor
“Magnetic iron silicide nanowires on Si 〈110〉,” Appl. Phys. Lett. 88, 113111
(2006).

M. B. Maple, N. A. Frederick, P.-C. Ho, W. M. Yuhasz, T. A. Sayles, N. P. Butch,
J. R. Jeffries, and B. J. Taylor, “Novel strongly correlated electron states in filled
skutterudite lanthanide osmium antimonides,” Physica B, 359, 830 (2005).

T. Katuwal, V. Sandu, C. C. Almasan, B. J. Taylor, and M. B. Maple, “Vortex
dissipation in Y1−xPrxBa2Cu3O6.97 superconductors above and below the zero-field
critical temperature,” Phys. Rev. B 72, 174501 (2005).

xii



W. M. Yuhasz, N. A. Frederick, P. -C. Ho, N. P. Butch, B. J. Taylor, T. A. Sayles,
M. B. Maple, J. B. Betts, A. H. Lacerda, P. Rogl, and G. Giester, “Heavy-fermion
behavior, crystalline electric field effects, and weak ferromagnetism in SmOs4Sb12,”
Phys. Rev. B 71, 104402 (2005).

V. F. Nesterenko, M. B. Maple, B. J. Taylor, and Y. B. Gu, “Modification of
Magnesium Diboride Properties Using Shock Loading and Hot Isostatic Pressing,”
AIP Conf. Proc. 706, 1114 (2004).

B. J. Taylor, S. Li, M. B. Maple, and M. P. Maley, “Vortex-melting and vortex-
glass transitions in a high purity twinned YBa2Cu3O7−δ single crystal,” Phys.
Rev. B 68, 054523 (2003).

M. B. Maple, B. J. Taylor, S. Li, N. A. Frederick, V. F. Nesterenko, and S. S.
Indrakanti “Vortex- and Bragg-glass phases in bulk MgB2,” Physica C, 387, 131
(2003).

M. B. Maple, B. J. Taylor, N. A. Frederick, S. Li, V. F. Nesterenko, S. S. Indrakanti
and M. P. Maley, “Critical scaling and flux dynamics in bulk MgB2 and high-purity
YBa2Cu3O7−δ single crystals,” Physica C, 382, 132 (2002).

S. Li, B. J. Taylor, N. A. Frederick, M. B. Maple, V. F. Nesterenko, and S. S.
Indrakanti “Mixed-state flux dynamics in bulk MgB2,” Physica C 382, 177 (2002).

E. D. Bauer, A. Slebarski, E. J. Freeman, N. A. Frederick, B. J. Taylor, C. Sirvent,
and M. B. Maple, “Strongly correlated electron behavior in ROs4Sb12 (R=Ce, Pr)
filled skutterudites,” Physica B, 312, 230 (2002).

FIELDS OF STUDY

Major Field: Physics
Studies in Superconductivity and Magnetism
M. Brian Maple, Bernd T. Matthias Professor of Physics,
University of California, San Diego

xiii



ABSTRACT OF THE DISSERTATION

Vortex Dynamics:

A Window Into the Properties of Type-II Superconductors

by

Benjamin Jeremy Taylor

Doctor of Philosophy in Physics

University of California, San Diego, 2006

Professor M. Brian Maple, Chair

The vortex solid - vortex liquid transition, i. e., the vortex lattice (vortex

glass) melting line, Hm(T ) (Hg(T )) is the most heavily studied phase boundary in

the H − T phase diagram of type-II superconductors. Debate has continued for

many decades as to the nature of the transition and of the vortices themselves. The

vortex glass melting transition has been investigated in the type-II superconduct-

ing compounds YBa2Cu3O7−δ, YBa2Cu3O6.5, Y1−xPrxBa2Cu3O6.97, MgB2, and

CeRu2. By performing measurements of magnetoresistivity, ρ(H,T ), voltage-

current V − I, and magnetization, M(H,T ), and by analyzing the behavior in

the region of the melting transition, physical properties of the host materials and

how these contribute to the nature of the melting transition have been revealed.
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I

Introduction

After nearly two decades since the discovery of high temperature super-

conductivity [1], the phase diagram of vortex matter in type-II superconductors

continues to be a source of debate. Certainly, the most experimentally and theo-

retically investigated feature of the phase diagram is the vortex lattice (or vortex

glass) melting line, Hm(T ) (Hg(T )), the boundary at which the vortex matter

undergoes a change from an immobile solid state to an electrically dissipative liq-

uid state. Achieving an understanding of the nature of this transition over the

entire range of magnetic field and temperature, within materials with disparate

normal state and superconducting properties, and with various types of disorder

is of the utmost importance if a truly universal picture of the vortex matter phase

diagram is to be developed. As new and theoretically predicted behavior is exper-

imentally observed and/ or confirmed, such as the Bragg-glass phase [2, 3, 4] and

non-hexagonal vortex lattice structures in superconductors with anisotropic band

structures or energy gaps [5, 6, 7], the fact that the superconductor is more than a

mere host for the vortex matter, and that vorticies are more than an engineering

obstacle for applications, has become more widely appreciated. While it has long

been recognized that the physical properties of the host have consequences for the

dynamical behavior of vortex flux lines and the order/disorder of the vortex-lattice,

it is becoming more apparent that the presence of the vorticies is the source of some

1
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of the physical changes of the superconductor [8]. A study of the behavior of the

vortex-matter can provide insight into the electronic and structural properties of

the host, beyond that of strictly disorder/impurity concerns.

The work presented in the following chapters consists of the study of vor-

tex dynamics in type-II superconductors, with the goal of gaining insight into key

properties of the material system. The intrinsic properties of the superconduct-

ing materials examined here are vastly different, yet by analyzing the dynamical

properties of vortices at the vortex-solid to vortex-liquid transition valuable infor-

mation has been gained in each case. The systems examined include the novel

low-temperature superconductor CeRu2 (Tc ∼ 6K), the two gap mid-temperature

superconductor MgB2 (Tc ∼ 40K), and the high-Tc cuprate superconductors

YBa2Cu3O7−δ, YBa2Cu3O6.5, and Y1−xPrxBa2Cu3O6.97 (Tc ∼ 20 K - 90 K).

I.A Superconductivity

Materials in a metallic state are characterized by having a high electrical

and thermal conductivity; they have a large number of electrons which are free to

move about. In simple models, the electrons within a metallic material are treated

as free, independent particles. The electrical and thermal properties are described

fairly well by models which treat the electrons as independent particles. In many

metallic elements and alloys, (and even in certain semiconductors under appropri-

ate conditions [9]), an electronically ordered state, the superconducting state, is

abruptly established at very low temperatures below a critical temperature, Tc.

Superconductivity, however, is not limited to low temperatures, as demonstrated

by the numerous cuprate based high-temperature superconductors, whose critical

temperatures, Tc, are an order of magnitude greater than most conventional su-

perconductors [10]. The defining characteristics of a superconductor are: (1) The

material is able to transport an electrical current without any measurable dissipa-

tion, (2) It behaves as a perfect diamagnet. A sample in thermal equilibrium and
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in the presence of an applied magnetic field with a strength below a characteristic

value, Hc, carries surface currents which flow in a manner that results in the can-

celing of the applied field strength internal to the sample. (3) The formation of an

energy gap, 2∆, centered about the Fermi energy, εF , associated with the pairing

energy of the superconducting electrons. The addition or subtraction of an electron

from the superconducting state requires an energy ε such that ε− εF > ∆. There

are situations where the formation of an energy gap is not a necessary condition

for superfluidity, but this is not usually the case [11].

I.A.1 BCS theory of superconductivity

The microscopic theory of superconductivity proposed by Bardeen,

Cooper, and Schrieffer in 1957 (BCS theory) [12] explains the phenomenon as

resulting from a net attraction between electrons, in spite of their repulsive elec-

trostatic interaction. In the case of conventional low temperature superconductors,

an attractive force is provided by a screening action produced by ionic motion, re-

ferred to as the electron-phonon interaction. In a simplified picture, an ion will

move towards the region of a passing electron, and subsequently the displaced ion

draws a second electron towards this new location and then will return back to-

wards its equilibrium position, allowing the second electron to pass. The result is

an effective attractive force, with an associated isotropic energy gap ∆, binding

the electrons together in correlated, dissipation free, motion. The spatial extent

of the paired electrons can be related to the energy gap by the equation,

ξ0 =
~vF

π∆
, (I.1)

where ξ0 is the Cooper pair coherence length, and vF is the Fermi velocity. The

electron-phonon mechanism has long since been verified in conventional supercon-

ductors through the observation of the isotope effect [13, 14], whereby a change of

the ionic mass, M, by substitution with an isotope results in a shift of the char-

acteristic frequency at which the ion oscillates and thus shifts the binding energy
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associated with the paired electron, leading to the result, Tc ∝ M−α. In conven-

tional superconductors the energy gap is isotropic, so that pairing is of the spin

singlet S = 0 type, with s-wave L = 0 symmetry. BCS theory however does not

require that phonons provide the pairing mechanism, and as such, other mecha-

nisms are possible which can lead to an anisotropic energy gap and non s-wave

paring. In the high-Tc cuprate superconductors (and other unconventional su-

perconductors) the pairing mechanism is thought by many to be due to magnetic

fluctuations, though this has been under investigation for many years and no con-

sensus has yet been reached. Experimental evidence strongly indicates that the

pairing mechanism in the cuprate superconductors is d-wave in nature [15].

I.B Type I

In superconductors which are referred to as type I, at temperatures below

the critical superconducting temperature Tc and below a critical field, Hc(T ), that

is increasing as the temperatures decreases, there is no penetration of the magnetic

field into the body of the material. This condition is known as the Meissner state.

When the sample geometry is ideal and the applied field exceeds the critical value,

the field penetrates the sample fully and superconductivity is completely destroyed.

However, in a sample with non ideal geometry, when the applied field is close to

the bulk critical field, the field will penetrate fully into macroscopic regions of the

superconductor, with adjacent regions remaining superconducting. This is referred

to as the intermediate state.

I.B.1 The London equation

F. London and H. London were the first to quantitatively examine the

fundamental fact that a metal in the superconducting state excludes a magnetic

field from its interior [16]. From consideration of the situation where an electric

field momentarily arises within a superconductor, resulting in the superconducting
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electrons, of density ns, being freely accelerated without dissipation with a current

density j = −evsns, and by use of Faradays law of induction,

∇× E = −1

c

∂B

∂t

the relation between the current density and magnetic field in a superconductor in

which no magnetic field is permitted in the interior is found to be,

∇× j =
−nse

2

mc
B. (I.2)

Eq. (I.2) together with the Maxwell equation, ∇×B = (4π/c)j gives the equations

∇2B =
4πnse

2

mc2
B

∇2j =
4πnse

2

mc2
j

which in turn predict that currents and magnetic fields in superconductors only

exist at the surface in a thin layer with thickness,

λL =

(
mc2

4πnse2

)1/2

,

and thus implies the Meissner effect along with the scenario of surface currents

screening out the applied field.

I.C Type II

In magnetic fields below a lower critical field, Hc1(T ), type II super-

conductors also expel an applied magnetic field in the same manner as a type I

superconductor. However, in fields H above Hc1(T ) and below an upper critical

field, Hc2(T ), the magnetic field is able to penetrate the sample without destroying

the superconductivity [17]. This is accomplished by means of a partial penetration

wherein the formation of supercurrent vortices, or vortex flux lines takes place, a

condition referred to as the mixed state. The cores of the vortices consist of normal

state electrons and the magnetic field is able to pass through these regions. This
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difference between type I and type II superconductors is explained by a fundamen-

tal property of superconducting materials. When an applied field penetrates into

the surface of the material, as described above, there is an energy associated with

the boundary separating the normal regions and the superconducting regions. In

type I superconductors this surface energy, σsn, is positive and the stable state is

the intermediate state. In type II superconductors σsn is negative and the energy

of the system is lowered by the formation of vortices [15].

The mixed state is further divided into two regions: Below a characteristic

field value, Hm(T ), the vortex ensemble is “frozen,” i. e. in a solid immoble state

in which, for applied currents not exceeding a critical value, the superconductor

retains the characteristic property of dissipation free current transport. At fields

above this value the vortex solid “melts” into a “liquid” phase where individual

vortex motion is possible and an applied current results in a measurable loss of

power. Depending upon the level of disorder within the superconductor, the solid

vortex state will either consist of a regular array of flux lines, the vortex lattice,

or, an irregular distribution of flux lines, referred to as a vortex glass.

I.C.1 Ginzburg-Landau theory

Ginzburg and Landau [18] put forth the idea that the superconducting

state should be described by a complex order parameter ψ(r) = |ψ|eiφ which

vanishes above Tc and whose magnitude, |ψ|, is a measure of the degree of super-

condcting order below Tc at a position r. In the context of BCS theory the order

parameter can be viewed as a single particle wave function describing the center

of mass of a Cooper pair. A fundamental aspect of the theory of Ginzburg and

Landau is that current flowing through the superconductor in the presence of a

magnetic field, described through the vector potential A(r), is given by the quan-

tum mechanical formula for a particle of charge -2e and mass 2m. The assumption

that Cooper pairs can flow, but will not accumulate or be lost from the system
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leads to the relation

j = −
[
2e2

mc
A +

e~
m
∇φ

]
|ψ|2 . (I.3)

Since currents can only flow near the surface of the superconductor Eq. (I.3) leads

to ∮
j · d` = 0

giving the fundamental result that a magnetic field penetrating a type-II super-

conductor will thread through the superconductor in quantized units of magnetic

flux,

|Φ| = nhc

2e
= nΦ0,

where Φ0 = hc/2e = 2.068 ×10−15 T m2 is the single flux quantum.

I.D Vortex dynamics

A number of forces act upon the moving vortex line in a type-II super-

conductor. Accounting accurately for their combined effects is a difficult task. The

most familiar vortex equation of motion balances the the Lorentz force, which is

exerted by an electric current density j flowing perpendicular to the flux line length

direction, ẑ, which produces a transverse motion of the vortex flux line vL, with

the Bardeen-Stephen friction force, caused by dissipative scattering in the vortex

core,

fL + fBS = Φ0j ∧ ẑ− η`vL = 0,

where Φ0 is the quantum of magnetic flux. The viscous drag coefficient η`, derived

by Bardeen and Stephen [19], is given by,

η` =
φ2

0σN

2πξ2
,

where σN is the normal state conductivity, and ξ = ξ0/(1 − T/Tc)
1/2 is the tem-

perature dependent Cooper pair correlation length. A moving vortex flux line,

with velocity vL, also experiences an additional force, ρsΦ0 [vL ∧ ẑ] that drives

it along the current direction, ĵ, where ρs is the superfluid current density. The
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modified Lorentz force is then given by fL = Φ0(ρŝj + j) ∧ ẑ. The vortex flux line

motion produces an electric field in the direction of the driving current density,

E = Φ0ẑ ∧ vL, resulting in a dissipation of power, P = (j ∧B)2 /η`, thus the su-

perconducting property of dissipation free current flow is destroyed. Fortunately

though, vortices interact with various defects in the host material, and are effec-

tively pinned by a force characteristic to the nature of the defects. So, while the

presence of defects will degrade superconductivity within the bulk material, a small

to moderate amount of disorder will actually improve the supercurrent carrying

capacity of the bulk materials in magnetic fields.

Within the solid phase of the vortex matter, there are two main vortex

pinning regimes: The single vortex pinning scenario at very low fields, and / or at

temperatures well below Tc, and the collective vortex bundle pinning regime, which

is realized over the majority of the solid phase, and, most importantly, occupies

the region of the H − T phase diagram along the vortex solid − vortex liquid

transition (except at extremely low fields), i. e. the boundary defined by the

vortex lattice melting line, Hm(T ), or the vortex glass melting line, Hg(T ) [15, 20].

The collective nature of the vortices leads to the either the first order melting of the

vortex lattice with a corresponding jump in magnetization and entropy [21, 22], or

a second order melting of the vortex glass phase [23, 24].

The dynamic properties of vortices in the region of the continuous vortex

glass melting transition is addressed in the theory of Fisher, Fisher, and Huse

[24]. First proposed by M. P. A. Fisher [23], the vortex glass theory describes

the emerging critical behavior of the vortex ensemble in the presence of random

point disorder in terms of a diverging correlation length scale, ξV G ∼ |T − Tg|−ν

and correlation time τV G ∼ ξz
V G, where Tg is the critical transition temperature,

and ν and z are the correlation length- and dynamical exponents, respectively.

Correlated disorder results in the Bose glass phase [25], also described in terms

of a diverging length scale, and time, ξBG and τBG ∼ ξz′
BG. The two models are

seen to be related though via renormalization group theory analysis [26], and from
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the scaling properties of the superfluid density [27]. This topic is given more

consideration in Chapter III. By measuring various transport properties in the

critical region, the values of the critical exponents can be determined. In the

context of various models, many physical properties of the host material can be

inferred from the values of the critical exponents.
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II

Experimental Apparatus and

Measurement Methods

II.A The pulsed laser ablation deposition technique

The use of a pulsed UV laser beam for vaporizing solid source material

has been established as a standard technique for film deposition of many materials.

Thin films are often grown to achieve properties or conditions unattainable in

bulk or single crystal form. Further motivation to fabricate materials as films

includes being able to explore phenomena of interest in controlled geometries not

otherwise possible. In Chapters III and VI experimental studies on expitaxial films

of Y1−xPrxBa2Cu3O6.97 and granular films of CeRu2, both grown by the pulsed

laser deposition method, are presented respectively. The Y1−xPrxBa2Cu3O6.97 films

were fabricated by Chuhee Kwon at the Los Alamos National Laboratory. The

films of CeRu2 were made by the author and coworkers in a specialized system

described in the following section. Here, the method of pulsed laser ablation is

briefly described. For a complete discussion of film growth in general and growth

by pulsed laser deposition (PLD) see refs. [1, 2, 3].

The basic process for growth of a film by PLD is as follows: A large mass

of target material is fashioned so that it has a flat surface, typically in the shape of

12
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a disc, and mounted on a rotating assembly. A crystalline substrate material with

a polished surface, upon which the film will be grown, is placed upon or adhered to

a heater block assembly. The two assemblies are inserted into a vacuum chamber

(see Figs. II.1 and II.2) in a geometry so that the target and substrate surfaces

are opposite of each other at a distance typically ranging from 2 - 10 cm. The

chamber is then pumped out to high vacuum pressures, and, depending on the

material to be deposited, is either baked out at high vacuum and backfilled to

a low pressure with an inert gas to achieve ultraclean atmospheric conditions, or

backfilled with a reactive gas which takes part in the chemical dynamics of the

growth process of the film. When the atmospheric conditions are suitable and

the temperature of the substrate set to a desired value, the laser beam can be

activated for ablation of the target material. The target is rotated to maintain a

fresh surface for ablation, preventing the formation of a pit and also preventing

superheating of a small region of the target. Both of these conditions can result in

preferential ablation of constituent elements of the target material, resulting in an

film with an undesired stoichiometry. The parameters to be varied or controlled

during the growth process include the incident laser energy density at the target

surface, the temperature of the substrate, the pressure and type of gas, and the

target to substrate distance.

The growth of intermetallic films requires a vacuum chamber system ca-

pable of being pumped down to pressures in the UHV range, p ∼ 10−8−10−10 torr.

The atmospheric conditions under which the films are grown must be non-reactive,

i. e. oxygen free. To achieve this condition the chamber as well as the heater block

assembly must be baked out during the pump down process. Heater strips on the

outside of the chamber heat the chamber walls to 100◦ C. The heater block is set

to 200◦ C. Care must be taken to avoid excessive heating of the pressure gauges as

this will damage them. A table top fan provides sufficient cooling for this purpose.

Typical bake out times of 18 - 36 hours are adequate to achieve a base pressure of

p ∼ 10−9 torr.
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Excimer lasers are capable of producing beams with wavelengths in the

UV spectrum, ranging from λ = 152 nm (F2) to λ = 351 nm (XeF). The laser used

in the system described below uses a KrF gas mix which outputs a wavelength

of λ = 248 nm. By focusing the beam with appropriate optics, it is possible to

obtain energy densities as high as 100 J/cm2 at the surface of the ablation target

material.

II.A.1 Development of a unique laser ablation chamber for growth of

volatile inter-metallic films

Intermetallic films are commonly grown by either evaporation or sputter-

ing methods. The method of pulsed laser deposition is much more difficult for this

class of materials. The combined properties of a target material which has a highly

reflective metallic surface, and, a compound consisting of highly reactive elemental

constituents, as well as constituents with vastly different vapor pressures, make the

growth of such films by PLD quite a challenge. However, growth of intermetal-

lic films by PLD has some advantages as well, including the ability to routinely

fabricate an array of custom targets for unique experimental investigations.

A UHV vacuum chamber system was constructed for the purpose of grow-

ing high quality film samples of CeRu2 as well as other various intermetallic com-

pounds. As stated above, materials which consist of highly reactive constituents

with significantly different vapor pressures are a challenge to produce. The main

obstacle is that the volatile element will disperse throughout the chamber dur-

ing the deposition process, covering all surfaces with a film. This is particularly

detrimental to the growth process because, as the ablation process continues, a

film deposits on the window through which the laser beam enters the chamber,

reducing the energy which reaches the target. As this process continues the laser

energy which passes through the window drops below that necessary for proper

ablation conditions, resulting in films with compositional variance throughout its

thickness. In addition to producing films which are not of high quality, the energy



15

degradation phenomenon makes exploration of the proper growth conditions for

new materials almost impossible, since laser energy density at the target surface

is an important variable in the growth process. Furthermore, the film deposited

on the window is heated by the laser resulting in rapid damage to the window

which reduces the ability of the window to pass the UV laser beam. The damaged

windows must be replaced, leading to prohibitive costs.

A unique technique was explored and developed which makes possible

the routine growth of volatile intermetallic films, overcoming this technical hurdle.

As shown in Fig. II.1, a barrier to the spread of the vaporized target material

to the laser window surface is provided by a pressurized canister. This canister

is actually an insert made of thin wall stainless steel foil, spot welded with ends

having openings just large enough to pass the laser beam profile. An additional

hole in the end closest to the deposition region is made in order to pass through

a stainless steel gas line into the canister. With the base pressure after bake

out at p ∼ 10−8 torr, prior to activating the laser, UHP argon gas is flowed into

the chamber via the pressurized canister, raising the pressure measured at the

opposite end of the chamber to p ∼ 10−5 torr. The gas is flowed during the entire

deposition time. The resulting pressure gradient effectively contains the vaporized

target material to the main chamber preventing any material from reaching the

laser window. The CeRu2 films discussed in Chapter VI were grown in this one-

of-a-kind chamber using the procedure described above.
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a b l a t io nt a r g e t p r e s su r iz e dc a n i s t e rg a si n l e t

h e a t e rb l o c k

Figure II.1: Schematic of a pulsed laser ablation ultra high vacuum deposition

chamber, designed for growth of volatile intermetallic films. The key component

of the system is the pressurized canister which prevents vaporized material from

reaching the laser window. The beam path, indicated by the dashed line, passes

through the pressurized canister to the target surface. Argon gas flows from the

canister region to the turbo pump shown in the following figure.
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g a sin le t
tu r bop u m p

g a teva l ve

Figure II.2: Side view of the pulsed laser ablation ultra high vacuum deposition

system. The mechanical pump, gas control panel, and electronics are not shown.
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II.B Measurements

II.B.1 X-rays

Standard theta-2theta x-ray diffraction measurements of target materials

and films were made using an industry standard Rigaku D/MAX B x-ray machine,

to verify the sample composition and film growth orientation. The peaks in the

resulting diffraction pattern were compared to the literature. Each peak was as-

sociated with an 〈h, k, l〉 number for a symmetry plane of the crystal or standard,

or with an impurity peak.

II.B.2 Magnetization

Measurements of dc magnetization as a function of field and temperature,

M(H,T ), were made in a commercial Quantum Design superconducting quantum

interference device (SQUID) magnetometer. Samples were mounted on or between

thin discs of teflon in a standard clear drinking straw, with the disc surfaces per-

pendicular to the field direction. Film samples were mounted with their surface

either parallel or perpendicular to the field direction.

II.B.3 Electrical resistivity & Electric field-current density measure-

ments

Electrical resistivity, ρ(H,T ), and electric field-current density, E − J ,

isotherms were measured in lab in a Quantum Design Physical Property Mea-

surement System in temperatures 1.8 K ≤ T ≤ 300 K and fields 0 T ≤ H ≤ 9 T.

Additional measurements made in high magnetic fields were performed at the Na-

tional High Magnetic Field Laboratory in Tallahassee, FL in a 32 tesla DC Bitter

resistive magnet, and in a 45 tesla hybrid magnet. Gold wire (1 or 2 mil) was

attached to single crystal and bulk samples with silver epoxy in the standard four-

wire configuration. Leads for films were attached by pressing gold wire into indium

pads which were bonded to gold pads on the film surface. Resisivity and E − J
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data were measured with a Keithly 2182 nanovoltmeter and Keithly 2182 current

source in all systems.
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III

Quantum Fluctuations, Vortex

Flux Line Dynamics, and the

Vortex-Solid to Vortex-Liquid

Transition

III.A Introduction

Since the discovery of the high-temperature layered cuprate supercon-

ductors, the physics of the mixed state of strongly type-II superconductors has

received considerable attention. A significant amount of effort has been devoted to

developing a consistent theory of the melting transition of the vortex lattice. As

there are many processes to be taken into consideration − thermal and quantum

fluctuations, pinning mechanisms, anisotropy, coupling of the vortex lattice to the

underlying electronic structure, and the critical dynamics of vortex motion as the

melting transition is approached − arriving at an expression that is relevant over

the entire vortex lattice melting line has proven elusive.

It is well understood that disorder within the superconductor is an im-

portant aspect of the physical picture under consideration. In a sufficiently clean
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superconductor, vortex lines will penetrate the sample in a regular array forming

a lattice. As the temperature of the sample is increased, eventually the vortex

lattice will undergo a first order melting transition, with a corresponding jump in

entropy and magnetization [1, 2]. The introduction of disorder or defects into a su-

perconducting sample creates regions to which the normal cores of the vortices are

attracted to, pinning the vortex to the site and producing a barrier to motion, thus

enhancing the ability of the sample to carry an electrical current without dissipa-

tion, and subsequently destroying the long range order of the vortex lattice. The

result is a variety of glassy vortex states [3]. The glassy phases can each be charac-

terized by an exponent µ, describing their dynamical response where, as an applied

current density goes to zero, the defect barriers impeding vortex motion diverge,

U(j → 0) ∼ Uc(jc/j)
µ, and the vortex velocity goes to zero as v ∝ exp[−U(j)/T ].

Alternatively, the effect of defect barriers on the dynamical properties of the vor-

tices can be described by via a critical exponent, s̃ characterizing the vanishing of

resistivity as the temperature approaches from above a critical value, Tg, so that

ρ(T ) ∼ (T − Tg)
s̃. The critical exponent s̃ is itself a product of the static critical

exponent, ν, and, depending on the kind of vortex glass, a factor composed of an

expression involving the dynamical exponent, z, the dimensionality of the system,

d, and an anisotropy exponent, ζ.

The introduction of random point disorder results in the “original” vortex

glass (VG) considered by Fisher, Fisher, and Huse [4, 5]. Correlated columnar

disorder, such as that introduced by ion bombardment, produces the Bose glass

(BG) state [6]. In the case of extremely weak point disorder the vortex lattice, while

distorted, is able to maintain short range order and is characterized by the absence

of lattice dislocations. The preservation of long range periodicity is sufficient so

that Bragg diffraction peaks are observed in scattering experiments, hence the

name, Bragg glass (BrG) [7]. The pinning environments within a vortex glass and

a Bose glass differ significantly in that point disorder encourages wandering of the

vortex through the sample to seek out pinning centers, but in contrast, columnar
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defects inhibit line wandering. Additionally, point disorder is isotropic with respect

to the direction of the vortex lines, but columnar disorder produces an anisotropic

environment within a few degrees of the alignment of the field to the columns, with

corresponding angular dependences.

In spite of the difference of dynamical properties within the region of the

melting transitions, the vortex glass and Bose glass are described by critical be-

havior with a very similar formalism, based upon the critical scaling properties of

the superfluid density, resulting only in differing expressions for the critical expo-

nents [5, 6, 8]. It has been shown that the vortex glass phase is recovered from

the Bose-glass phase as correlated disorder becomes irrelevant, either by strong

point disorder or the absence of correlated disorder [9]. The theoretical foundation

employed to describe the Bragg glass state arises from the weak disorder case of

the same Hamiltonian that was originally proposed to describe the vortex glass

state [7, 10]. While the Bragg glass is expected to undergo a first order melting

transition to a vortex liquid with increasing temperature, some experimental evi-

dence and theoretical models suggest that the vortex glass state lies in a narrow

region between the Bragg glass region and the melting line [11, 12]. Even though

these three solid vortex phases have distinct properties it should be apparent that

the dynamical properties of the vortices in the melting region of each kind of glass

are quite related. Henceforth, in this chapter, the term vortex glass shall be used

to encompass both the vortex- and Bose-glass ensembles, keeping in mind the dif-

ferent critical exponents. The Bragg-glass will be left as a separate case for now.

The abbreviations VG or BG are used to indicate a specific type of vortex glass.

Theoretical analysis of the problem of the melting transition is compli-

cated and a consistent theory describing a melting scenario is known for only a

few special cases, the pancake-vortex system, treated via a self-consistent stability

analysis [13], and a dislocation-mediated melting scenario in 2-dimensions [14] and

in 3-dimensions [15]. The latter case allows for a unified phase diagram which

includes all three vortex phases. However, this theory does not provide an explicit
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temperature dependent form of the vortex glass to vortex liquid transition.

Absent a consistent theory, a Lindemann type criterion has often been

employed. This criterion predicts a melting transition generally when the mean

squared amplitude of fluctuations of a lattice approaches a sizable fraction of the

lattice constant a0, 〈u2(Tm)〉 ≈ c2La
2
0, where cL ∼ 0.1 - 0.3 (a0 ≈ (Φ0/B)2 for a

vortex lattice). A Lindemann type analysis of the vortex flux line displacements,

leads to the classical thermal fluctuation result [16, 17],

Bm ≈ βm(c4L/Gi)Hc2(0)(1− t)2,

where Gi = [Tc/H
2
c (0)εξ3(0)]2/2 is the Ginzburg number, ξ(0) is the in-plane

superconducting coherence length, Hc(0), and Hc2(0) are the thermodynamic and

upper critical fields, and βm ≈ 2.5 [18].

The Lindemann criterion approach has resulted in many theoretical and

phenomenologically derived expressions which are expected to describe the shape

of the vortex lattice melting line, Hg(T ), over specific ranges of magnetic field

and temperature, and for various specific material conditions. For example, by

taking into account the dominant conditions for each of the three cases of an

electromagnetically coupled layered superconductor, a Josephson coupled layered

superconductor, and a continuous anisotropic superconductor, three separate ex-

pression are found to describe each scenario [10]. The first two cases describe the

mid-temperature / mid-field and high-temperature / low field regions of a weakly

coupled superconductor, respectively. The latter case describes the mid−high tem-

perature / mid− low field region of a well coupled (anisotropic) superconductor.

Each of the two cases then give way to a 2-d expression for the melting line at

low-temperatures / high-fields.

More recent (Lindemann criterion based) theoretical efforts have arrived

at quite different expressions for the vortex lattice (or glass) melting line, each

of which also break the melting line into two or three segments, to account for

dominant behavior in the various temperature-field regions [19, 20]. In addition to
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accounting for the effects of disorder on destroying the vortex solid phase, the only

source of vortex displacements considered in these models are thermal fluctuations.

Blatter and Ivlev have shown some time ago that quantum fluctuations

are also a relevant source of vortex line displacements, particularly in the high-Tc

superconductors [18, 21]. It should be understood that the vortex lattice melt-

ing line proposed by Blatter and Ivlev is not an interpolation formula between

quantum and classical limits. Instead, quantum fluctuations are accounted for by

going to a dynamical description where the relevant functional is the Euclidean ac-

tion. The resultant quantum problem is then a (d+1)-dimensional generalization

of the d-dimensional classical problem with the additional dimension describing

the dynamics of the system (in imaginary time). What the model proposed by

Blatter and Ivlev shows is that quantum fluctuations are present for all tempera-

tures, but are most relevant above a characteristic magnetic field. In the high-Tc

cuprates they find that this field is ∼ 2-3 tesla, and so quantum fluctuations must

be accounted for over the majority of the melting line.

In this chapter an experimental investigation of the vortex glass melting

lines, Hg(T ), of Y1−xPrxBa2Cu3O6.97 thin film samples (x = 0 - 0.4) and an ultra

high purity oxygen deficient YBa2Cu3O6.5 single crystal in magnetic fields up to

45 tesla is presented. These measurements have made it possible to examine the

evolution of vortex dynamics over a significantly greater portion of the melting

line heretofore explored of this important high-Tc superconducting system. The

complex problem of the vortex lattice melting transition is approached here starting

from the universal form of the vortex lattice melting line of Blatter and Ivlev [18,

21]. It is found here that the entire Hg(T ) lines of all samples can be described by a

modified form of their vortex lattice melting line expression. The key modification

involves the introduction of a single vortex line relaxation time of the form,

τ v
r = τ0

(
T

Tc

)s (
1− T

Tc

)−s

, (III.1)

which is evaluated along the melting line at T = Tg.



26

It is proposed below that the above expression for τr can be obtained

naturally from the scaling expression for the fluctuation conductivity [5, 22], and,

that the exponent s is the critical scaling exponent associated with the vanishing

of resistivity, ρ ∼ (T − Tg)
s at the critical temperature, Tg, where s is either that

found from the vortex glass model of Fisher, Fisher, and Huse [5], or the Bose

glass model of Nelson and Vinokur [6]. The value of s found by the fitting of

the melting line expression to the data is seen to be in very good agreement with

that found by a scaling of the resistivity data as described above. Any changes

in the critical behavior of the vortex lattice along the melting transition, i. e.,

a change of the value of the critical exponent, will be reflected in the expression

for the melting line describing each section with the different exponents. A vor-

tex lattice in a highly anisotropic material, such as the high-Tc cuprates, may

undergo a transition from a 3D to a 2D (or quasi 2D) like structure at a char-

acteristic temperature or field, when the interaction between vortex lines within

a Cu-O plane becomes comparable to the elastic strength of a single vortex line,

resulting in a decoupling of the pancake vortices [10]. We find that our new expres-

sion for the melting transition line describes the entire vortex glass melting lines

of Y1−xPrxBa2Cu3O6.97 (x = 0 - 0.4) thin film and YBa2Cu3O6.5 single crystal

samples as well as that of a Sm1.85Ce0.15CuO4−y film (0.1 ≤ T/Tc ≤ 1) [23], with

constant values of the critical exponent, indicating no change in the dimensional-

ity of the vortex lattice. However, the melting line (0.2 ≤ T/Tc ≤ 1) of the highly

anisotropic superconductor Bi2Sr2CaCu2O8, along which a well known 3D to 2D

transition occurs at H ≈ 1 kOe [24], exhibits a change in the critical exponent

from that of a 3D-XY like (∼ 3) to a 2D-XY like (∼ 6−8) value at this field.

The melting line expression arrived at below is also demonstrated to describe the

vortex glass melting lines of the non-cuprate compounds MgB2 and α−MoxSi1−x.

The terms vortex lattice and vortex glass are used here interchangeably,

mainly due to the different terminology used in [18, 21] and [5]; however, it is also

well known that in systems with sufficient random disorder, the first order vortex
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lattice melting transition is replaced by a second order vortex glass melting tran-

sition [5], similar to what occurs when the elasticity of the vortex lattice becomes

relevant [21, 25]. It should be noted though that the expression for the melting line

derived below is neither limited to a weak pinning regime, nor to the anisotropic

high-Tc cuprate materials.

III.B Experimental Details

Epitaxial thin film Y1−xPrxBa2Cu3O6.97 samples (x = 0 - 0.4) grown on

LaAlO3 substrates by pulsed laser ablation, as well as an ultra high purity oxygen

deficient YBa2Cu3O6.5 single crystal grown in a BaZrO3 crucible, were investi-

gated in magnetic fields up to 45 tesla. The Hg(T ) line was established from

electrical transport measurements with H ‖ c. For magnetic fields H ≤ 9 T re-

sistivity, ρ(H,T ), data were taken in lab with fixed field H, and temperature in

steps. High field ρ(H,T ) data were taken at the National High Magnetic Field

Laboratory (Tallahassee, Fl) in a 30 tesla resistive magnet, and the 45 tesla hy-

brid magnet. In these systems the temperature was held fixed and the field was

swept at 3 tesla/min, while continuously measuring ρ(H). The value of Tg (Hg)

was determined from the temperature (field) at which the resistance disappears in

accordance with the Fisher-Fisher-Huse (FFH) vortex glass scaling expression of

the resistivity as the melting transition is approached by decreasing T at constant

H [5], ρ ∼ (T − Tg)
ν(z+2−d) (or decreasing H at constant T , ρ ∼ (H −Hg)

ν(z+2−d)

[26]), where ν and z, are the correlation length- and dynamical exponents and

d is the dimensionality of the vortex lattice. The value of Tg (Hg) is the tem-

perature (field) at which the linear relation between [dlog(ρ)/ d(T,H)]−1 and

(T,H) that results from the FFH expression vanishes. The films were etched litho-

graphically to form resistance bridges with six terminals with sample dimensions

`× w × t = 0.50 cm × 0.010 cm × (1.2 - 2) × 10−5 cm. The YBa2Cu3O6.5 sin-

gle crystal dimensions are 0.21 cm× 0.076 cm × 7.6×10−4 cm. The current values
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used were I = 10 µA and 10 mA respectively, corresponding to a current densities

of J . 90 A/cm2 and J ≈ 2 A/cm2. The current density and electric field values

used here were well below the criteria of Jd ∼ 105 A/cm2 and E ∼ 10−1 V/cm for

films and Jd ∼ 102 A/cm2 and E ∼ 10−6 V/cm established by Charalambous et

al. [27].

III.C The quantum- thermal-fluctuation model of Blatter

and Ivlev

In their seminal work, Blatter and Ivlev [18, 21] included the contribu-

tion of quantum fluctuations to the statistical mechanics of the vortex ensemble

of a type II superconductor. The scope of the classical formalism based upon the

continuum elastic theory for the vortex lattice was extended to a dynamic for-

malism. Combining this new theoretical framework with the Lindemann criterion,

they establish a universal form of the melting line, Hm(T ) (≡ Hg(T )).

We begin by briefly restating the vortex lattice melting problem as ap-

proached by Blatter and Ivlev [18, 21]. In order to account for the contribution of

quantum fluctuations to the mean squared displacement, 〈u2〉, of the single vor-

tex line beyond the standard path integral formulation, a dynamical description

is needed. The relevant functional is the Euclidean action S[u], in Matsubara

representation,
S[u]

~
=

1

T

∑
n

{T [un] + F [un]}, (III.2)

with the dynamical term T [un] given by

T [un] =
1

2

∫
d3k

(2π)3
{[µ(ωn)ω2

n + η(ωn) |ωn|] |un(k)|2}.

and the elastic free energy of the system, F [u], is given by

F [u] =
1

2

∫
d3k

(2π)3
{c11(k) [K · u]2 + c66(k) [K⊥ · u]2

+ c44(k) [kzu]2},
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with c66 denoting the shear moduli and c11(k) and c44(k) the dispersive compression

and tilt moduli, u(k) is the Fourier transform of the classical displacement field

u(r), and [k = (K, kz),K⊥ = (ky,−kx)].

The summation over Matsubara frequencies will be cut off by either the

kinetic mass term µ(ωn)ω2
n or the intrinsic cutoff arising from the gap energy,

∆, where Ω is given by Ω = min[Ωµ,Ω∆]. The kinetic cutoff frequency is given

by Ωµ ≈ ~
√
η`/µ`τr where τr is the relaxation time associated with vortex line

displacements, and η` and µ` are the vortex viscosity and vortex mass per unit

length, respectively. The gap limited cutoff frequency is Ω∆ ≈ 2
~∆.

Various contributions to the vortex mass, µ`, are well known. These in-

clude the mass due to the kinetic energy of the core, µcore
` , and that arising from the

static electromagnetic energy of the vortex, µem
` first calculated by Suhl [28]. Addi-

tional contributions to the dynamic vortex mass have been shown to arise from the

inertia of quantum excitations of the quasiparticles within the vortex core having

longitudinal and transverse components with respect to the vortex velocity, µ
‖|e,h
`

and µ⊥e,h
` [29], and from a strain field arising from the torsional shear deforma-

tions of the crystal lattice induced by the moving vortex, µsf
` [30, 31, 32]. The

mass contribution which will dominate at high frequencies is the electromagnetic

mass, µem
` [21]. Blatter and Ivlev find Ωµ ∼ 10 Ω∆ using the assumption that the

value of τr is determined by the scattering rate of the quasiparticles in the normal

vortex core. However, we consider instead that there are two separate intrinsic

relaxation times for the quasiparticles within the vortex core [33, 34], τ core
r , and

for the vortex line displacements, τ v
r , with τ v

r � τ core
r as the melting transition is

approached [35], leading to the condition Ωµ < Ω∆.

It should be noted that two slightly different expressions are derived in [18]

and [21]. In their initial work [18], when calculating the mean squared displacement

amplitude, 〈u2〉, the term involving compressional modes is dropped. In the latter

work [21], this term is retained.
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For the first case, Blatter and Ivlev obtain

Hm(t) =
4Hc2(0)θ

2

(1 +
√

1 + 4Qθ)2
(III.3)

where θ is a reduced temperature given by θ = (πc2L/
√
Gi)(1− t), the parameter

Q = [Q̃u/(π
2
√
Gi)]Ωτr measures the relative strength of quantum to thermal fluc-

tuations, t ≡ T/Tc, Q̃u = e2

~
ρN

d
is the dimensionless quantum of resistance, cL is

the Lindemann number, Gi = [Tc/H
2
c (0)εξ3(0)]2/2 is the Ginzburg number, Ω is

a cutoff frequency, τr is the scattering relaxation time of the quasiparticles in the

vortex core given by the Drude formula ρ−1
N = σN = e2nτr/m (σN is the normal

state conductivity, n is the free charge-carrier density, and m the electron mass),

and here, d is the distance between the superconducting planes, and Ω is the cutoff

Matsubara frequency for Eq. (III.2).

For the latter case, they find,

Hm =
4Hc2(0)θ

2

(1 +
√

1 + 4Sθ/t)2
(III.4)

where Q is replaced by S/t, and now θ = c2L

√
βth

Gi

Tc

T
(1− t), S = q + c2L

√
βth

Gi
,

q = 2
√

βth

π3
Qu√
Gi

Ωτr, and βth ≈ 5.6.

Either expression above can be approximated by the power-law form

Hm ∼ (1− t)α over temperatures T ranging from Tc down to 0.6 Tc. By esti-

mating values for Q̃u and
√
Gi and leaving cL and Ωτr as fitting parameters in

[18], they find α ≈ 1.45, in close agreement with experimental values. As pointed

out by Blatter and Ivlev, the value of the approximate exponent α depends on the

quantum parameter Q and the reduced temperature θ. This readily explains the

experimentally observed increase of α as the temperature drops below T ∼ 0.6 Tc,

which has previously been considered as evidence for a dimensional crossover of

vortex fluctuations from 3D to 2D [36].
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III.D Modification of the Blatter and Ivlev model

Instead of using approximate constant values for the factors that go into

the quantum parameters Q or q, the appropriate exact temperature and field de-

pendences are included. Since it is not known a priori whether the appropriate

cutoff frequency is Ωµ or Ω∆ for all type-II superconductors, both are considered

here. The differing expressions found below provide a means of experimentally

determining the relevant cutoff mechanism by comparing to independent scaling

results, as explained in the next section. The analytical procedure in this section

is valid for either of the original expressions of Blatter and Ivlev. Results for both

expressions are given below for comparison in Figs. III.1 and III.2 and Tables III.1

and III.2.

Starting with the expression for the kinetic cutoff frequency, using the

Bardeen-Stephen expression for the viscous drag coefficient [37],

η` ≈
Φ2

0σN

2πξ2
, (III.5)

using the electromagnetic contribution of the vortex mass [28],

µem
` =

1

4µ0

ξ2H2
c

c2

(
λ

λd

)2

(III.6)

with Hc = Φ0

2
√

2πλξ
, and including the temperature dependence of ξ = ξ0/(1− t)

1
2 ,

we then have

Ωµ ≈
√

η`

µem
` τ v

r

=
4cλd

ξ0

√
πµ0σN

τ v
r

(1− t)
1
2 , (III.7)

where λd is a shielding length, which is a few times that of (kF )−1.

If instead the frequency cutoff in Eq. (III.2) is due to the gap limitation,

then we will have

Ω∆ ≈
2∆0

~
(1− t)

1
2 (III.8)

Blatter and Ivlev heuristically argue that the relaxation time, τr, of the

vortices is determined by the normal state conductivity based upon the condition

that the vortex velocity has to be consistent with the quasiparticle motion inside
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the vortex core, thus τr = m
ne2σ [21]. We however consider that, since the vor-

tex motion under consideration is due to quantum or thermal fluctuations, the

properties of the fluctuation conductivity will determine the vortex motion. In

an isotropic system the zero field ac fluctuation conductivity in the critical region

scales as [5, 22],

σf (ω) ∼ ξz+2−dS(ωξz),

as T → Tc where ξ ∼ |Tc − T |−ν . Then with τ v
r ∼ σf , in the limit ω → 0, and

the expression for the zero field fluctuation conductivity to be evaluated along the

melting line (T = Tg), we arrive at

τ v
r ∼ ξz+2−d ∼

(
T

Tc

)s (
1− T

Tc

)−s

, (III.9)

in agreement with Eq. (III.1), where now the exponent is identified as

s ≡ ν(z + 2− d).

The ansatz of the vortex glass theory of Fisher, Fisher, and Huse [5] is

that the zero field critical point is actually a multicritical point so that the vortex

glass melting line is actually a line of critical points. The generalization of the

zero field transition to the in-field transition leads to the scaling expression for the

vanishing of the dc resistivity as T → T+
g ,

ρ(T ) = 1/σ(T ) ∼ 1/ξz+2−d
V G ∼ (T − Tg)

ν(z+2−d)

Thus, it can be seen that the critical exponent which characterizes the vanishing

of the resistivity as the melting transition of the vortex ensemble is approached

from temperatures/fields above the transition also characterizes the shape of the

melting line in the H − T plane.

If correlated columnar disorder is relevant, then the critical dynamics

of the vortex ensemble is described by the Bose glass model where the diverging

length scale is the wandering length of a localized vortex line transverse to the field

direction, `(T ) ∼ (TBG − T )ν′ , and the relaxation time of a fluctuation diverges as

τ ∼ ` z′

⊥ , where ν ′ and z′ are new critical exponents [6]. The vortex dynamics in
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the melting region described by this model leads to a power law scaling of the dc

resistivity, ρ(T ), with the same form as that found by the FFH vortex glass model

with the exponent s→ s′, where s′ is defined in accordance with the updated Bose

glass scaling relations for the resistivity [8],

ρ⊥ = `d+ζ−3−zρ̃⊥±(H⊥`
d−2)

ρ|| = `d−ζ−1−zρ̃
||
±(H⊥`

d−2),

where ζ is an anisotropy exponent, with ζ = 1 for unscreened long-range inter-

actions and ζ = 2 for correlated disorder. In the case when H is parallel to the

columnar defects, the relevant resistivity is ρ⊥, so then s′ ≡ ν ′(z′ +3− ζ−d), with

ζ = 2.

Whether the correct form for the critical exponent is the vortex glass

exponent, s, or the Bose glass, s′, can readily be determined by the angular de-

pendence of the scaling of the resistivity at the melting transition, where, if the

vortex ensemble is a Bose glass [38],

ρ⊥(t, θ) = |t|ν′⊥(z′−2)f±(θ/|t|ν′⊥)

ρ||(t, θ) = |t|ν′⊥z′g±(θ/|t|ν′⊥)

and by the well known cusp in the phase boundary TBG(H⊥) where the perpen-

dicular field Hc
⊥(T ) at the Bose glass to vortex liquid transition varies as [8, 38],

Hc
⊥ ∼ ±(TBG(0)− T )ν′ .

The Bose glass phase will eventually give way to the vortex glass phase as the field

increases past the matching field, (the field at which the number of vortex lines

is equal to the number of columnar defects,) so that the majority of the vortex

lines are far away from the correlated disorder and their dynamical properties are

dominated by point defects. The change in vortex dynamics along the melting

transition will be reflected in the shape of the melting line, Hg(T ), through a
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change of the value of the critical exponent and of the quantum parameter Q or

q. For simplicity we use below the vortex glass exponent, s, but it should be

understood that s→ s′ in the case of a Bose glass.

Combining Eq. (III.7) with Eq. (III.9), and with all expressions to be

evaluated at the melting temperature T = Tg ≡ Tm, we obtain the full expression

for the kinetic cutoff frequency,

Ωµ =
4cλd

ξ0

√
πµ0σN

τ0

(
T

Tc

)−s/2 (
1− T

Tc

)(1+s)/2

(III.10)

Next we use the expression for the dimensionless quantum of resistance

given in ref. [3],

Q̃u =
e2

~
ρN

εξ
, (III.11)

and the field dependent expression of the Ginzburg number [10],

Gi(Hg) ≈ (Gi)
1
3

(
Hg

Hc2(0)

) 2
3

. (III.12)

Combining Eqns. (III.8) or (III.10), (III.9), (III.11), and (III.12), and including

the temperature dependence of ξ = ξ0/(1− t)
1
2 in the kinetic cutoff frequency Ωµ,

and in the expression for the dimensionless quantum of resistance, we arrive at the

final expressions for the value of the quantum parameters, Q[µ,∆], and q[µ,∆], at the

melting line Hg(T ),

Q[µ,∆] =
Q̃0Ω0τ0

π2
√
Gi(Hg)

ts̃(1− t)1−s̃ (III.13)

q[µ,∆] =
2
√
βth

π3

Q̃0Ω0τ0√
Gi(Hg)

ts̃(1− t)1−s̃ (III.14)

with

Ω0[µ,∆] =

[
Ωµ0 ≡

4cλd

ξ0

√
πµ0σN

τ0
,Ω∆0 ≡

2∆0

~

]
,

Q̃0 ≡ e2

~
ρN

εξ0
, s̃[µ,∆] = [s/2, s], and t ≡ T/Tc = Tg/Tc.
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Combining Eq. (III.3) with Eq. (III.13), we have

Hg(Q, t) =
4Hc2(0)

(πc2L)2

Gi(Hg)
(1− t)2(

1 +
√

1 + 4(Q̃0Ω0τ0)
c2L

πGi(Hg)
ts̃(1− t)2−s̃

)2 , (III.15)

Combining Eq. (III.4) with Eq. (III.14), gives

Hg(q, t) =
4Hc2(0)

βthc4L
Gi(Hg)

(t−1 − 1)2(
1 +

√
1 + 4

(
2Q̃0Ω0τ0

pi3
ts̃(1− t)1−s̃ + c2L

)
c2Lβth

Gi(Hg)
t−1(t−1 − 1)

)2 .

(III.16)

It should be noted that the expression used for the field dependent

Ginzburg number in Eq. (III.12) is arrived at from a melting line that fol-

lows the power-law form Hm ∼ Hc2(0)√
Gi

(1− t)
3
2 , and so is strictly valid only for

T & 0.6 Tc. In general, for a portion of the melting line that can be approximated

by Hm ∼ Hc2(0)√
Gi

(1− t)α, the field dependent Ginzburg number will be given by,

Gi(Hg) ≈ (Gi)
1
2α

(
Hg

Hc2(0)

) 1
α

. (III.17)

When performing a fit of Eq. (III.16) to melting line data, a temperature

dependent expression for the Ginzburg number, Gi(Tg), is needed. This is obtained

from the field dependent Ginzburg number by evaluating Eq. (III.17) at each

known field, Hg(T ), and inverting as a function of temperature.

Also, it should be recognized that at finite frequencies dispersive effects

lead to, [21, 39]

η(ω) ≈ Φ0ρs
ω0τ

core
r (1− iωτ core

r )

(1− iωτ core
r )2 + (ω0τ core

r )2 , (III.18)

with ρs = 2e |ψ|2 the superfluid density. Note that for large frequencies (ωτr � 1)

and with ρs ∼ (1− t), this leads to the same temperature dependence of Ω found

in Eq. (III.7). Alternately, [21, 40] starting from Eq. (III.18) with the condition

ωτr � 1, ω0τr � 1, and using ρs = −en, ωo = ωc = eB/m, with B ≈ Hc2,

η`(ω) ≈ Φ2
0

2πξ2

e2nτ core
r

m
(III.19)
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which is identical to the Bardeen-Stephen result, Eq. (III.5).

An important result, addressed in more detail in Appendices A and B, is

that in the large Q or q limit, the modified form of both expressions, Eq. (III.15)

and Eq. (III.16) reduce to the form of the expression found empirically by

Lundqvist et al. [41], Hg = H0[(1− T/Tc)/(T/Tc)]
α, with α = s̃. This expression

was found to fit smoothly to the entire range of data examined there (H ≤ 12 T ),

but, as seen in Fig. III.3, fails to fit the larger range of data shown here. The

modified vortex glass model of Rydh, Rapp, and Andersson [42, 43], which is

based upon the vortex glass melting line equation of Lundqvist et al., as well as

the Coulomb-gas scaling model [44], are shown to be special cases of the model

considered here.

III.E Discussion

The melting line data, Hg(T ), of the Y1−xPrxBa2Cu3O6.97 films and

YBa2Cu3O6.5 single crystal obtained in this study, as well as that of a film of

Sm1.85Ce0.15CuO4−y [23], a Bi2Sr2CaCu2O8 single crystal [24], a bulk MgB2 sam-

ple [45], and an amorphous α−MoxSi1−x film [46, 47], were fitted by Eqs. (III.15)

and (III.16). We discuss in detail below the results for the fits to the data for the

Y1−xPrxBa2Cu3O6.97 films and YBa2Cu3O6.5 single crystals, shown in Figs. III.1

and III.2. Values of the parameters obtained from the fits corresponding to

Figs. III.1 and III.2 are given in Tables III.1 and III.2 respectively. Results for

the remaining samples are commented on in sections III.E.2 and III.E.3.

III.E.1 Y1−xPrxBa2Cu3O6.97 and YBa2Cu3O6.5

The quantum parameters Q and q

Equations (III.15) and (III.16) can be seen to provide equally good de-

scriptions of the experimental data for all the samples. With the experimental

value Q0 = 0.34 ± 0.15 obtained from Eq. (III.15), we solve for the value of Ω0τ
v
r0
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Figure III.1: Vortex glass melting line Hg(T ) vs T data for

Y1−xPrxBa2Cu3O6.97 films (1kOe < H < 450 kOe) and a YBa2Cu3O6.5 single

crystal (100 Oe < H < 450 kOe) with fits of the modified melting line equation

(III.15) shown in linear (a) and semi-log (b) plots to emphasize the quality of the

fits over the entire H − T range.
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Figure III.2: (a) Fit of Eq. (III.16) to vortex glass melting line, Hg(T ), data of

Y1−xPrxBa2Cu3O6.97 (x = 0 - 0.4) and YBa2Cu3O6.5. (b) Same data as in (a)

shown in a semi-log plot to emphasize the quality of the fit to the low field region.
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Figure III.3: Comparison of the quality of the fits to the entire vortex melting line

data of the YBa2Cu3O6.5 single crystal by the expressions of Blatter and Ivlev [18]

(A), Lundqvist et al. [41] (B), and that obtained here (C) (Eq. (III.15)) shown in

linear (a) and semi-log (b) plots, demonstrating that only Eq. (III.15) adequately

describes the data over the entire H − T range. Also shown is the the empirically

observed expression Hm ∼ (1− t)α, for T & 0.6 Tc [36] (D).
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for the YBa2Cu3O7−δ film. Using ξ0 = 13 Å, ε = 1/8 [10], ρN ≈ 0.2 µΩm;

we obtain Ω0τ
v
r0 ≈ 1.1. If we use the second modified melting line equation,

Eq. (III.16), then we get an equally good fit, indistinguishable from Eq. (III.15)

with similar values of s̃ and cL, with q0 ∼ 1/2 - 1/10 × Q0 (Table I.2). The re-

sult, q < Q, can be understood by recalling that Q (and q) is a measure of

the ratio of the quantum to thermal contributions to vortex line displacements.

The inclusion of the additional thermal contribution of the compressional modes

in the modified form of the second melting line equation of Blatter and Ivlev [21],

leads to a relative increase of the contribution of thermal displacements over that

of quantum displacements, so naturally, q < Q. The non-monotonic variation of

Q0 with respect to Pr doping and reduced oxygen content (see Table III.1) results

from the dependence upon many physical properties of these systems, including

the magnetic field penetration depth λ, the superconducting coherence length ξ,

the critical temperature Tc, anisotropy of the system, and the strength and type

of disorder. The value of the quantum of resistance Q̃u(0) of each system is given

in Table III.1, and is seen to exhibit a similar trend, particularly with respect to

the values for the YBa2Cu3O7−δ and YBa2Cu3O6.5 samples. The values of s

found here are notably different for the clean YBa2Cu3O7−δ and the disordered

Y1−xPrxBa2Cu3O6.97 and YBa2Cu3O6.5 systems, and are presumably due the dy-

namical response of the vortices being dependent upon more than just the extent

of disorder.

Enhancement of the vortex line mass

Using the values of ε = 1/γ, ρN , and q0 in Table III.2, with λd ≈ k−1
F

(kF ∼ 0.2 Å−1 [21]) and Gi(0) ≈ 10−2 we can then calculate values for Ω0 and τ0

using Eq. (III.14) and Eq. (III.10). We find Ωµ ∼ 103 Ω∆ for x = 0.1−0.4 and

y = 6.5, and Ωµ ∼ 104 Ω∆ for x = 0. This would imply that the correct expression

for the quantum parameter is q∆, and thus s̃ = s. However, as shown by the

example in Fig. III.4 for YBa2Cu3O6.5, the critical exponent, s ≡ ν(z − 1),
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obtained from scaling of the resistivity data, ρ(T ), agrees well with the value of

s̃ found from the fit to the melting line data by using Ωµ (Eq. (III.10)) in

Eq. (III.16) for all of the melting lines, i. e. s̃ = s/2. This leads to an apparent

contradiction, since the condition Ω = min[Ωµ,Ω∆] means we expect Ω to be given

by Eq. (III.8).

This contradiction can be resolved if the effective vortex line mass is

larger than the individual line mass, µem
` used in Eqs. (III.7) and (III.10). From

Eq. (III.14) we can solve for τ0 in terms of the experimentally determined fit

parameters, giving,

τ0 =

(
q0

Q̃0

)2
π6

4βth

µem
`

η`

. (III.20)

Then, substituting Eq. (III.20) into Eq. (III.7) and assuming an effective mass

µem
` ∗ = αµem

` , we solve for the enhancement factor necessary to satisfy Ωµ = Ω∆,

α =
η`

µem
`

Q̃0

q0

2
√
βth

π3

1

Ω∆

. (III.21)

This gives α ∼ 104 for the YBa2Cu3O7−δ film and α ∼ 103 for the remaining

samples.

The friction encountered by a vortex line mass due to dissipation and

quantum vortex tunneling has been considered by Blatter et al. [48]. The dy-

namic vortex friction produces an enhanced and dispersive vortex effective mass,

µ∗` = µ`(1 + η`/|ω|µ`), where ω is an inverse quantum tunneling time, η` is the

total viscosity per unit length, and µ` is the total vortex mass per unit length. In

the dissipative limit, the quantum tunneling time is found to be [48],

t =
η`L

2
c

εoµ`

,

where εo = [Φ0/4πλ]2, is the basic energy scale of the vortex line energy,

ε` = εoln(λ/ξ), and Lc is the collective pinning length. Since all contributions to

the vortex mass are expected to be enhanced by the same factor, and µ` & µcore,

the effective electromagnetic vortex mass is,

µ∗em ≈ µem

(
1 +

η2
` L

2
c

εoµcore

)
. (III.22)



42

0

20

40

60

25 30

ρ (
µΩ

cm
)

T(K)

0

5

10

15

20

25

10 15 20 25 30 35 40 45

[d(
 lo
g( ρ

))/d
T)]

-1

T(K)

H = 5.0 T
Tg = 24.72 K
ν(z-1) = 2.1

ρ ~ (T - Tg)
ν(z-1)

YBa2Cu3O6.5 
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A lower limit of the value of the collective pinning length, Lc, can be set by the vor-

tex lattice constant, a∆ ≈ (Φ0/B)1/2. For B ∼ 100 T, a∆ ≈ 45 Å. With a carrier

density n ≈ 2.5× 1021cm−3, this gives µcore = (2/π3)mkF ≈ 2.5× 10−22 kg/m.

Using λ ≈ 1400− 2900 Å [49], then εo ≈ (0.3− 1)× 10−12 J/m. Using the values

of ρN and ξ given in Table III.2, η`(0) ≈ 2× (10−6 − 10−5) Ns/m2. Finally then,

the lower limit of the effective electromagnetic vortex mass is found to be,

µ∗em ∼ (105 − 106)µem, a considerable increase. Substituting the effective mass

value back into Eq. (III.14), and solving again for Ω0 and τ0 for each sample, we

find Ωµ∗ ∼ (10−1 − 10−2)Ωµ. It is seen then, that dissipation from quantum tunnel-

ing produces an enhancement of the vortex mass sufficient to result in Ωµ∗ < Ω∆,

removing the apparent contradiction of the exponent values described above.

Evolution of quantum fluctuations along the vortex glass melting line

The values of the quantum parameter as a function of temperature, q(t),

for each of the samples are shown in Fig. III.5. The results here are in contrast

to what might be expected, in that the value of q(t) increases with temperature,

becoming very large as T → Tc. This can be understood physically from the

contribution of various intrinsic properties: First, the line tension ε` ∝ λ−2 vanishes

as (1 − t). So, while the effect of quantum fluctuations are significant at low

temperatures, the quantum tunneling of a segment of the vortex flux line, in this

case a pancake vortex, becomes easier as the flux line becomes more flexible with

increasing temperature. Additionally we would expect quantum tunneling to be

easier at lower fields (higher temperatures) with the increased distance between the

flux lines. Secondly, with the dynamic behavior of the vortices along the melting

line set by the relaxation time, τ v
r , which follows from the scaling properties of

the fluctuation conductivity, the superfluid density plays a significant role in the

problem of the melting transition.

Experimental evidence, at least in the case of YBa2Cu3O6.95, indicates

that the field dependence penetration depth, λab, in magnetic fields up to 6 tesla,
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seem to indicate that λab(H = Hc2) ≈ 2λab(H = 0) at T = 0 [50, 51]. Addition-

ally, Amin et al. [52], studied the consequences of the nonlinear, nonlocal, and

nonanalytic nature of the effect of the anisotropic superconducting gap on

the effective penetration depth, and find, that contrary to the common belief, the

effective penetration depth is not a linear function of the magnetic field, a result

that is in agreement with the experimental data of ref. [50]. From the temperature

and field dependence of the penetration depth, λ, it can be seen that the superfluid

density in the region of the vortex solid melting line is larger at high fields than at

low fields. This adds to the impedance of the tunneling process, since this means

moving a core of normal electrons through a more dense superfluid. It is predicted

that the melting line will terminate prior to reaching Hc2 when it gives way to

what is referred to as a quantum vortex liquid state (QVL) [3, 18, 21, 53]. Ex-

perimental evidence for the QVL state was found in a-MoxSi1−x amorphous films

at fields above H ≈ 0.9 Bc2(0) [46, 47], so it is quite possible that the melting

line terminates well before any strong field suppression effects of the superfluid

density are relevant. Lastly, as can be seen in Fig. III.6, and discussed below, the

distance over which quantum fluctuations displace the vortex is of the order of the

size of the vortex core. At low fields, as the melting line approaches the critical

temperature, Tc, the size of the vortex cores at the melting transition increases

as (1− T/Tc)
−1/2, thus the distance over which a quantum fluctuation displaces a

vortex line segment grows.

An important aspect of the physical picture that needs to be kept in mind,

is that disorder promotes quantum fluctuations, as can be seen by the expressions

for Q̃ ∝ ρN and Ωµ ∝ √
ρN , so that q[µ,∆] ∝ [

√
ρN , ρN ]. This is understood

by the fact that the vortices need somewhere to tunnel to, so then, up to a certain

level of disorder the value of q should increase as random disorder increases,

and then decrease as the increasing disorder begins to shorten the distance over

which a vortex segment tunnels. This effect can be seen in Fig. III.5

where, the clean YBa2Cu3O7−δ film has a much lower value of q(t) than
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48

the doped Y1−xPrxBa2Cu3O6.97 and oxygen deficient YBa2Cu3O6.5 samples, and,

also from the result where the x = 0.1 sample has a notably larger value of q(t)

than the other samples. This same behavior can be also be seen in Fig. III.6

where the distance over which quantum fluctuations displace the vortex core is

found shown as the square root of the quantum contribution to the mean squared

displacement field, 〈u2〉q versus the reduced temperature t, where [21],

〈
u2

〉
q
≈ 4

π2
QΩτrξ

2.

The quantum tunneling length is shortest in the clean YBa2Cu3O7−δ film, longest

in the x = 0.1 film, and close to, or less than, the tunneling length of the x = 0.1

sample in the remaining films. The apparent non-monotonic dependence of the

quantum tunneling length on x for the x = 0.1 - 0.4 films is likely attributable

to the error of ∼ 15% of the values shown. For comparison, the range of the size

of the vortex cores, d ∼ 2ξ, over all the samples is indicated by the range of the

shaded region. With the exception of the YBa2Cu3O7−δ sample, it is observed

that, over most of the temperature range, the quantum fluctuations smear the

core over a distance that is comparable to the size of the core, a result that is in

agreement with the observation of Blatter and Ivlev for YBa2Cu3O7−δ where they

used a constant value of q and the zero temperature value of the coherence length

ξ0 [18, 21].

The fraction of the quantum contribution to the displacement of the

vortex line to the total displacement necessary for melting of the vortex lattice,√
〈u2〉q/cLa0, where the critical displacement is defined by the Lindemann crite-

rion, 〈u2〉 ≈ c2
La2

0, is shown in Fig. III.7. The contribution of quantum fluctuations

to the melting of the vortex lattice is found to be a significant to dominant part

of the melting process.
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III.E.2 The vortex glass melting lines of Sm1.85Ce0.15CuO4−y

and Bi2Sr2CaCu2O8

Equation (III.15) was used to analyze melting line data from a thin film

of Sm1.85Ce0.15CuO4−y [23] (Fig. III.8a), and a Bi2Sr2CaCu2O8 single crystal [24]

(Fig. III.8b). The data for the Sm1.85Ce0.15CuO4−y sample are described well

by Eq. (III.15) over the entire range of field/temperatures examined. Interest-

ingly, while it is observed that the exponent s has a value similar to that found

for the Y1−xPrxBa2Cu3O6.97 and YBa2Cu3O6.5 samples, the value of the Linde-

mann number, cL ≈ 0.17 for Sm1.85Ce0.15CuO4−y is nearly half of that found for

the Y1−xPrxBa2Cu3O6.97 and YBa2Cu3O6.5 samples, and the value of Q0 ≈ 19 is

greater than all of the above, even that of the highly point disordered YBa2Cu3O6.5,

Q0 ≈ 17. The relatively low value of cL suggests that the vortex lattice in

Sm1.85Ce0.15CuO4−y is much less stable in the presence of fluctuations than that

in the Y1−xPrxBa2Cu3O6.97 and YBa2Cu3O6.5 systems. This may be due to effects

from interactions of the vortex lines with the moments of the Sm ions, however

this idea is speculative at this point and beyond the scope of this study.

Unlike the preceding examples, the Bi2Sr2CaCu2O8 data, can be fit by

Eq. (III.15) in two segments, with a corresponding change in the critical exponent

s. This is interpreted readily as evidence for a 3D-2D vortex glass transition in this

highly anisotropic compound at H2D ≈ 1 kOe, in agreement with the conclusions

of many different studies [11, 24, 54, 55, 56]. However, a change in the dynamical

vortex behavior due to a crossover to a fundamentally different pinning regime will

also result in a change of the critical exponent s ≡ ν(z+ 2− d) due to a change of

the dynamical exponent z or possibly the anisotropy exponent ζ.

III.E.3 The vortex glass melting lines of MgB2 and α−MoxSi1−x

To further demonstrate that the melting line equation developed here is

not limited to just high-Tc compounds, Eq. (III.16) has been fit to vortex glass

melting line data of two very different compounds, MgB2 and α−MoxSi1−x.
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shows the same data on a semi-log plot. (b) Fit of Eq. (III.15) to Hg(T ) of
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melting line expression of Schilling et al. [24] (C) for comparison.
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ρ(T ) ∼ (T − Tg)
ν(z−1). The value of the critical exponent s ≈ 4.0, obtained from

the fit of Eq. (III.16) to the melting line data, is a factor of two greater than that

found from scaling of the resisitivity data, ν(z−1) ≈ 2.1. Data taken from ref [45].
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semi-log plot. Data taken from ref [46]. Okuma et al., find ν ∼ 1 and z ∼ 5.4 for all

fields H . 5T from scaling of the dc resistivity by the form ρ(T ) ∼ (T/Tg − 1)ν(z−1).

At fields above 5 T, Okuma et al. find evidence from scaling analysis of the ac

resistivity, ρac, of a quantum liquid vortex state. Thus the melting line terminates

prior to connecting to the upper critical field line Hc2(T ).
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The vortex glass melting line, Hg(T ), of a bulk sample of MgB2, was

determined by a scaling of the dc resistive transition in accordance with the vortex

glass theory of FFH, ρ(T ) ∼ (T − Tg)
ν(z−1) [45]. The fit of Eq. (III.16) to the

data is shown in Fig. III.9. The exponent s = 4.0 obtained from the fit to the

melting line data was obtained assuming that the limiting frequency Ω = Ωµ, i. e.,

s̃ = s/2, as in the case for the high-Tc samples considered above. However, the

exponent sV G ≡ ν(z − 1) ≈ 2.1 found from the scaling of the resistivity data, is

approximately equal to half of the exponent s found from the fit of the melting line

equation. This indicates that the energy gap, ∆, provides the scale of the energy

cutoff which limits the dynamical properties of the vortices, and therefore, the

correct expression for the quantum parameter q in this case is q∆ (Eq. (III.14)).

The vortex glass transition has been shown directly to exist in amorphous

films of the low temperature superconductor a-MoxSi1−x down to T ∼ 0.04 Tc by

measurements of the dc and ac complex resistivities in constant fields [46, 47].

The transition was identified by the scaling relation of the dc resistivity stated

above, and from the ac resistivity which, in agreement with FFH theory, follows

a power- law frequency dependence ρac ∝ f (z−1)/z and the phase has a frequency-

independent value φg = (π/2)(z − 1)/z. The fit of Eq. (III.16) to the a-MoxSi1−x

data is shown in Fig. III.10. In this case the exponent obtained from the melting

line fit, s ≈ 4.5 agrees well with the exponent ν(z−1) ≈ 4.4 found by vortex glass

scaling of the resistivity.

III.F Summary

The vortex glass melting lines, Hg(T ), of epitaxial thin film samples of

Y1−xPrxBa2Cu3O6.97 (x = 0 - 0.4) grown on LaAlO3 substrates by pulsed laser

ablation, as well as an ultra high purity oxygen deficient YBa2Cu3O6.5 single

crystal grown in a BaZrO3 crucible, were measured in magnetic fields up to 45

tesla. Analysis of the evolution of vortex dynamic properties along the melting
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lines of each system was carried out in the context of a modified melting line

expression based upon the quantum- thermal-fluctuation model of Blatter and

Ivlev [21]. We have also provided further evidence that the equation provides

truly a universal description of the melting line in type-II superconductors, by

fitting to vortex glass melting line data from a wide spectrum of superconducting

systems; the electron-doped Sm1.85Ce0.15CuO4−y system, the highly anisotropic

Bi2Sr2CaCu2O8 compound, and the non-cuprate non-High-Tc systems, MgB2 and

α−MoxSi1−x.

The melting line equation developed here provides an experimental means

for determining the physical mechanism responsible for the energy scale which

limits vortex motion at high frequencies. By determining the exponent s from

vortex (or Bose) glass scaling analysis of the resistive transitions and comparing

the to the exponent s̃ obtained from the fit to the melting line data of Eq. (III.16)

the appropriate cutoff frequency, Ωµ or Ω∆ can be determined.

It is found that the effective vortex mass is enhanced significantly by

quantum fluctuations in the Y1−xPrxBa2Cu3O6.97 and YBa2Cu3O6.5 samples stud-

ied here, leading to a value of the kinetic cutoff frequency Ωµ � Ω∆. By examining

the values of the quantum parameter as a function of temperature, q(t), it is shown

that quantum fluctuations play an important role in the physics of the vortex-solid

to vortex-liquid transition. The value of q(t) is found to increase significantly with

temperature, becoming very large as T → Tc. This is explained primarily due

to the increase of the size of the vortex cores as the melting line approaches the

critical temperature, Tc; the distance over which quantum fluctuations displace

a segment of the vortex flux line. The vanishing line tension ε` ∝ λ−2 ∼ (1− t)

and reduced superfluid density high-temperature/low-field region also likely con-

tribute to quantum tunneling effects. The quantum tunneling length is found to

be shortest in the relatively clean YBa2Cu3O7−δ film, particularly at low temper-

atures. The tunneling distance is longest in the x = 0.1 film, and similar to or

less than that of the x = 0.1 sample for the remaining films. This is understood
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by the physical result that, up to a point, disorder actually promotes quantum

fluctuations.

The idea that the intrinsic single vortex relaxation time, τr, changes as a

function of temperature along the melting line is akin to the idea that the pinning

potential changes along the melting line, an idea which Rydh et al. [42], used to

modify the vortex glass theory of FFH. This modification of the FFH theory was

motivated by a prior empirical scaling form of the vortex melting line by Lundqvist

et al. [41], who referred to the model of Blatter and Ivlev [21] as possible theoretical

support for their melting line expression. In the large Q limit, the expression for

the melting line found here, reduces to that found by Lundqvist et al., so, from the

prior work of Lundqvist et al. and Rydh et al. it can be seen that there does indeed

appear to be a relation between the thermal- and quantum-fluctuation Lindemann

criterion based model of Blatter and Ivlev and the critical dynamic vortex glass

model of FFH, and, by extension, the Bose glass model.

The exceptionally good agreement between the experimentally deter-

mined vortex lattice melting lines and the fits to the data by the melting line

expression proposed here, and the agreement of the exponent s found from the

above analysis with the exponent ν(z = 2− d), found from scaling of the resistiv-

ity in the critical region of the vortex glass melting transition, supports the idea

that dynamical properties of a vortex glass and of a single vortex line at the melt-

ing transition have the same physical origin; arising from the scaling properties

of the fluctuation conductivity. By incorporating this essential idea into the work

of Blatter and Ivlev [18, 21], a form of the melting line is arrived at which uni-

fies the quantum/thermal nature of vortex fluctuations with the critical dynamic

properties of vortices in the region of the melting line transition, providing a more

complete picture of the physics involved.
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Table III.1: Values of the Lindemann number cL, critical exponent

s ≡ ν(z + 2− d), the quantum parameter Q0 ≡ Q̃0Ω0τ0 using Eq. (III.15), and

the quantum of resistance Q̃u(0) ≡ Q̃0 for the data in Fig. III.1.

x cL s Q0 Q̃0

0 0.31 3.33 0.34 0.32
0.1 0.28 1.90 11.5 10.1
0.2 0.29 2.07 12.8 16.2
0.3 0.30 2.10 9.8 15.1
0.4 0.27 2.22 9.6 18.0

y=6.5
0 0.28 2.21 16.9 37.6
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Table III.2: Values of the Lindemann number cL, critical exponent s ≡ ν(z+2−d),

the quantum parameter q0 ≡ Q̃0Ω0τ0 using Eq. (III.16) for the data in Fig. III.2.

The error values are ∆cL ∼ 0.02, for all cL, and ≈ 15 % for all values of s and

q0. The values of the anisotropy parameter, γ for Y1−xPrxBa2Cu3O6.97 are from

ref. [49] and YBa2Cu3O6.5 given in ref. [57]. The values of ξ are derived from the

value of Hc2(0) obtained from the fits to the data.

x cL s q0 γ ρN(µΩm) ξ(Å)
0 0.34 4.6 0.7 7.4 0.2 13
0.1 0.31 1.6 4.1 8.4 8.4 17
0.2 0.29 1.8 1.3 14.3 9.3 20
0.3 0.30 2.0 1.5 16.4 9.8 26
0.4 0.31 1.8 0.8 20.8 10.3 29

y=6.5
0 0.28 2.0 0.8 65 2.2 22



58

A portion of the text and data of this chapter appears as it will be pub-

lished in the articles, “Evolution of Vortex Dynamics Along the Vortex-Lattice

Melting Line,” B. J. Taylor and M. B. Maple; “Quantum Fluctuations, Critical

Dynamic Vortex Motion, and the Vortex Solid-Liquid Transition,” B. J. Taylor,

D. J. Scanderbeg, M. B. Maple, C. Kwon, and Q. X. Jia. The dissertation author

was the primary investigator and author of these articles.
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IV

Inhomogenous vortex matter in a

high purity twinned

YBa2Cu3O7−δ single crystal

IV.A Introduction

The vortex lattice in weakly-disordered single crystals of high tempera-

ture superconductors (HTSC) is one of the classical systems for phase transition

studies. It has been investigated extensively by means of magnetization, electrical

resistivity, and specific heat measurements [1]. The generic magnetic field ver-

sus temperature, H(T ), phase diagrams of high-Tc cuprate superconductors such

as YBa2Cu3O7−δ and Bi2Sr2CaCu2O4−δ, continue to be investigated and updated

with results from new experiments. In the case of YBa2Cu3O7−δ single crystals, the

evolution of the melting transition in the H − T plane, H(T ), was first examined

by Safar et al. up to 16 tesla with electrical resistivity measurements [2]. It was

shown that there is a well-defined upper critical point Hu
cr(T ) which terminates the

first order vortex lattice melting line at high field, above which the vortex-solid to

vortex-liquid phase transition becomes continuous. It is now widely accepted that

the melting line in clean YBa2Cu3O7−δ single crystals consists of a (relatively) low
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field section characterized by first order vortex lattice melting, and a high field

section characterized by second order vortex glass melting, with an intervening

critical point.

The evolution of the melting transition line and the critical point have

been further examined by the introduction of artificially induced disorder. These

studies indicate that there exist not just one, but two critical points: an upper

critical point Hu
cr(T ) at high H and a lower critical point H`

cr(T ) at low H, both of

which are sensitive to microstructural disorder in the single crystals investigated

[3]. The position of Hu
cr(T ) was shown to be dependent upon columnar disorder.

For example, no upper critical point was found in high purity, fully oxygenated

(δ = 0) YBCO single crystal up to a field of 30 tesla, presumably due to the

absence of oxygen vacancies [4]. Proton irradiation induced point disorder caused

Hu
cr(T ) to decrease towards the intermediate field range, while columnar defects

produced by heavy ion irradiation moved Hu
cr(T ) to higher fields. The lower critical

point, H`
cr(T ), was moved to higher fields with proton irradiation; while heavy ion

irradiation resulted in a lower critical point at higher field, which separates a low

field Bose-glass (BG) state to high field vortex lattice state [3, 5].

The temperature dependence of electrical resistivity in YBa2Cu3O7−δ sin-

gle crystals frequently shows a sharp kink or step at which the resistance rapidly

drops to zero. This feature was shown to be hysteretic indicating a first order

transition [6]. This conclusion is also confirmed by anisotropic specific heat mea-

surements which showed a finite jump in specific heat at the melting point [7].

However, at temperatures just below the melting step, the sample resistance often

vanishes with a small trailing tail [4], an indication that the sample is not in the

true superconducting state with zero dissipation immediately below the melting

temperature TM. Additionally, while the trailing resistive tail usually becomes

more prominent as point or line disorder is created artificially, the kink in ρ(T )

continues to be used to define a melting transition temperature [3]. In such a

case, the superconducting transition is not adequately described only by a first
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order melting transition. Measurements and a scaling analysis of E(J) isotherms

and measurements of the electrical resistivity ρ(T ) are needed to achieve a more

complete picture of the phase transition dynamics.

Experimental evidence of the existence of a vortex-glass transition in

weakly-disordered YBCO single crystals is well established [8, 9, 10, 11]. Univer-

sal scaling of E(J) data on twinned YBCO single crystals was demonstrated by

Yeh et al., yielding universal static and dynamic exponents ν ∼ 2
3

and z ∼ 3,

and indicating a second-order vortex-liquid to vortex-solid transition [8]. Besides

conventional electrical transport measurements, other novel methods were also

employed to study the E(J) characteristics in YBCO single crystals, such as a

contactless technique with subpicovolt voltage resolution, and have also provided

strong evidence for a vortex-glass transition [9]. In addition, in single crystals that

showed a first order melting transition, E(J) data demonstrated Bose-glass scaling

at magnetic fields below the lower critical point [5].

The recent development of BaZrO3 crucibles and the subsequent growth

of high purity YBCO single crystals using these crucibles have brought significant

improvement in experimental results related to the flux lattice melting transition

and the phase diagram of YBa2Cu3O7−δ. Chemical analysis has shown a signifi-

cant reduction in the level of impurities in YBCO single crystals grown in BaZrO3

crucibles, compared to those grown previously in yttria-stabilized zirconia or alu-

mina crucibles [12]. As a result, first order melting can be seen resistively even

in heavily twinned YBCO single crystals [13], which was not possible previously.

With this large reduction in the level of impurity disorder, the question can be

asked whether the vortex-glass transition still exists in these very “clean” single

crystals.

A study of the evolution of the vortex-solid to vortex-liquid transition in

a high purity twinned YBCO single crystal sample that shows clear evidence of

a first order melting transition is presented here. The melting transition was in-

vestigated via electrical transport, ρ(H,T ), and E(J) isotherm measurements and
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their scaling behavior in magnetic fields H up to 90 kOe. These samples are com-

parable in quality to those studied by Roulin et.al by means of adiabatic specific

heat measurements that provided conclusive evidence of a first-order vortex-lattice

melting line for various oxygen concentrations [4]. The vortex lattice melting line

in this report is clearly established from electrical resistivity ρ(T,H) measurements

for H ≥ 8 kOe. We address the question of whether or not a vortex-glass melt-

ing transition exists below the vortex-lattice melting temperature. Electric field

vs current density E(J) data over a field range that includes the entire first or-

der melting transition provides clear evidence of a transition below the melting

temperature to a true superconducting state with non-linear E−J behavior (E ∼

exp[−(jc/j)
µ]). It is seen that the transition from a high temperature vortex liquid

to a low temperature vortex-glass takes place through multiple dynamic regimes.

The intermediate phase has been referred in earlier work as a “vortex slush” or

plastic vortex flow regime [14, 15]. Analysis of the data in the context of the crit-

ical scaling model indicates the vortex matter in the single crystal is dynamically

inhomogeneous, and that the nature of the inhomogeneity evolves with temper-

ature. Scaling of the resistivity data points to the existence of two independent

vortex-glass critical regions, with distinct critical exponents ν(z− 1), separated in

temperature by a vortex-lattice melting transition. This scenario is further sup-

ported by the observation of scaling of the E − J data wherein the upper and

lower universal scaling branches do not scale in a consistent manner; i.e., with

the vortex-glass melting temperature Tg and the dynamic critical exponent z held

fixed, a variation of the static exponent will improve the collapse of the data on one

branch at the expense of the other. It is found that the dynamic scaling exponent

z is non-universal for low H fields, and the static scaling exponent ν is unusually

low. The extent to which the scaling exponents can be considered reliable in light

of the apparent inhomogeneity and crossover between critical scaling regimes is

addressed. The data are seen to support a scenario where the nature of the inho-

mogeneity is such that the intermediate phase involves a transition (in increasing
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temperature) from a state where initially vortex lines in the twin boundaries are

pinned and those within the bulk undergo driven plastic vortex flow, to a state

where the vortex lines in and near the twin boundaries undergo driven disordered

motion and those within the bulk move as an ordered lattice.

IV.B Experimental Details

BaZrO3 powder was prepared from high purity BaCO3(99.95%) and ZrO2

(99.95%) starting materials. The powder was reacted and sintered at 1200 ◦C

three times with ball milling in between, followed by wet-milling for 24 hours

to achieve grain size less than 1 micron. The BaZrO3 crucibles were formed by

cold isostatic pressing at 30 kpsi pressure, and sintered at 1700 ◦C for 24 - 48

hours. A self-flux method was used for the single crystal growth of YBCO with

the atomic composition Y : Ba : Cu = 1 : 18 : 42. A flux-pouring technique which

produces large single crystals, as described by Erb et al., [16] was used. The as-

grown single crystals are twinned, with a clean surface and typical dimensions of

∼ 1 mm × 1 mm × 0.05 mm. Twin boundaries are oriented at 45◦ to the edges of

the well formed rectangular crystals. The as-grown single crystals were annealed

in 1 bar flowing oxygen at 420 ◦C for 10 days and quenched (420 ◦C to 30 ◦C in

30 min) to optimize the oxygen content. The uncut sample used in this study had

dimensions of ` × w × t = 0.80 mm × 0.35 mm × 0.056 mm, with voltage lead

distance d = 0.22 mm. Average distance between twin boundaries is ≈ 1−3 µm,

as seen under a microscope. Three major aligned twinned regions ≈ 0.2 mm

× 0.1 mm in size (oriented at 45◦ to the crystal edges) extend over the entire crystal.

The above annealing conditions and magnetically determined critical temperature

Tc(mag) = 92.3 K for this crystal are consistent with a value of oxygen content

7−δ = 6.96 ± 0.01 [17, 18]. For electrical transport measurements, 0.002 inch

diameter gold wires were attached to the single crystals using H20E silver epoxy.

The samples with contacts were annealed in flowing oxygen at 200 ◦C for 2 hours



67

to reduce the contact resistance to less than 1 Ω. The resistive superconducting

critical temperature at H = 0 occurs at Tc = 93.5 K with a 0.3 K transition width.

Measurements of the temperature and magnetic field dependence of re-

sistivity ρ(T,H) and the electric field vs current density isotherms E(J) were

performed on the single crystals using a standard four-wire technique. The crystal

twin defects were oriented at 45◦ to the current flow. For any given value, the

dc current was applied in alternating directions in order to avoid contact heating

and to subtract offset voltage due to thermal emfs; this results in a high voltage

resolution of a few nanovolts. Voltage data were taken with a Keithley 220 current

source and a Keithley 2182 nanovoltmeter (set at 1 PLC sample rate, equivalent

to a 60 Hz signal aperture). The voltage was measured 1 second after the current

was applied to ensure any vortex flow had reached the steady state. Confirmation

of a steady state vortex flow was established by observation of a voltage signal rise

time of approximately 200−400 msec for measurements in the temperature range

associated with the critical region of each applied magnetic field H. This observed

voltage rise time is definitely associated with a delay of vortex flow in response to

the applied dc current as the current source rise time is less than 6 msec. Addi-

tionally no such rise time was observed for measurements at temperatures outside

the critical region. For all measurements, a dc magnetic field ranging from 0 to

90 kOe was applied parallel to the c-axis of the single crystals. The dc electrical

resistivity ρ(T ) was measured by first cooling the sample in zero field to the lowest

temperature. Data were collected on warming, with a temperature ramp rate of 0.1

K/min. A typical current value used in the ρ(T ) measurements was 500 µA, equiv-

alent to a current density J ∼ 2.5 A/cm2. For E(J) measurements, the sample

was initially cooled to the lowest temperature in zero field, the magnetic field was

applied, and E(J) isotherms were then measured in successive increasing temper-

ature increments [19]. The temperature stability during the E(J) measurements

was better than 0.01 K.
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IV.C Results and Discussion

Shown in Fig. IV.1(a) is electrical resistivity ρ vs temperature T data for a

twinned YBCO single crystal sample in various magnetic fields H between 0 and 90

kOe, applied along the c-axis of the crystal. The ρ(T ) curves broaden rapidly with

increasing magnetic field. A kink feature in the ρ(T ) data develops in magnetic

fields H ≥ 8 kOe, at a characteristic temperature TM, where ρ abruptly drops to

zero. This feature is generally attributed to a first order melting transition from

a high temperature flux line liquid to a low temperature ordered flux line lattice

[4]. As shown in Fig. IV.1(a), the kink feature becomes sharper with increasing

magnetic field until 90 kOe, at which it begins to smooth out.

The temperature derivative of the electrical resistivity, dρ/dT vs T for

various values of H, derived from the ρ(T ) data in Fig. IV.1(a) are shown in

Fig. IV.1(b). The melting temperature TM can be clearly determined from the

temperature of the peak in the dρ(T )/dT vs T . The width of the peak in the dρ/dT

vs T plots remains narrow (∼ 0.5 K) in fields between 10 and 80 kOe, only starting

to broaden at H = 90 kOe, suggesting the approach of an upper limit at which the

vortex lattice melting transition vanishes [4]. Displayed in the inset of Fig. IV.1(b)

are plots of dρ(T )/dT vs T at low H ranging from 2 to 8 kOe. The sharp peak

associated with the melting transition is no longer observable below H = 8 kOe.

This is consistent with previous reports of a lower critical point on the melting

line, below which the discontinuous melting transition is replaced by a continuous

melting transition. This has been shown via electrical resistivity data for proton

irradiated untwinned single crystal YBCO samples grown conventionally in gold

crucibles [3], as well as for twinned single crystals grown in BaZrO3 crucibles for

various oxygen concentrations by adiabatic specific heat measurements [4]. The

latter samples were grown in the same manner as those reported in this study.

The electrical resistivity ρ(T ) of the YBCO single crystals grown in

BaZrO3 crucibles clearly demonstrates the significance of sample quality in the
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Figure IV.1: (a) Electrical resistivity ρ of the twinned YBCO single crystal as a

function of temperature T and applied magnetic field H. The melting of the flux

line lattice is indicated by the sudden vertical drop of the electrical resistivity. (b)

The delta function-like peak in the temperature derivative of electrical resistivity,

dρ/dT , was used to determine the melting transition temperature TM. This peak

becomes non-distinguishable at fields lower than 8 kOe as shown in the inset.
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electrical transport studies of phase transitions in the vortex ensemble. Even with

the presence of twin boundaries, the step feature associated with the flux line lat-

tice melting is still clearly observable in the field range between 8 kOe and 90 kOe.

The melting transition has been previously observed via electrical resistivity in

twinned YBCO single crystals which were grown with the same method used here

in BaZrO3 crucibles [13]. The melting transition was only reported previously via

resistivity measurements in conventionally grown detwinned YBCO single crystals

[3, 5]. Based on our results, we can determine the lower critical point, H`
cr(T ), for

our single crystal to be about 8 kOe.

Measurements of electric field vs current density E(J) isotherms were

performed on the same YBCO single crystal sample at constant applied magnetic

field H. Two representative sets of E(J) isotherms taken at H = 1 kOe and

H = 90 kOe are presented in Fig. IV.2 on a log-log scale plot. The data obtained

for this sample are comparable to those obtained by Worthington et al., particularly

for fields H ≥ 8 kOe, who reported E−J behavior (shown as resistivity vs. current

density, ρ vs. J) of single crystal YBa2Cu3O7 samples with enhanced disorder,

grown with a conventional molten flux method [14]. The data of Worthington et

al. have been widely regarded as evidence for the existence of both vortex-melting

and vortex-glass transitions, separated in temperature. The significant feature

in the ρ− J data (plotted on a log-log scale) is an intermediate temperature and

low current density region where the isotherms display linear behavior. This region

separates the upper vortex-lattice melting temperature TM from the data displaying

definite downward exponential curvature, beginning at a temperature Tg. This was

interpreted as evidence for an intermediate vortex matter phase bounded by the

first-order phase transition temperature TM and the second-order phase transition

temperature Tg.

The data in Fig. IV.2(b) (H = 90 kOe) (and for all data withH ≥ 8 kOe)

are remarkably similar to those reported by Worthington et al. for H = 30 kOe -

70 kOe. The intermediate linear (on a log-log plot) E − J regime in the low field
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E − J data in Fig. IV.2(a) is not as readily apparent as at high fields, yet is

weakly retained as demonstrated by the ‘S’ shaped isotherms, T = 91.8− 92.0 K.

The data in low field are more consistent with the gradual evolution from the high

temperature normal state to the superconducting state via a second order vortex-

glass melting phase transition, consistent with the vortex-glass theory (VG) of

Fisher, Fisher, and Huse [20]. The negative downward curvature in the E(J)

isotherms at lower T is consistent with the behavior of a frozen vortex glass state.

Even though there is an intermediate linear region in the single crystal

E(J) isotherm data (Fig. IV.2), the scaling ansatz of the Fisher-Fisher-Huse (FFH)

vortex-glass transition theorem was applied to the data for all fields H. The FFH

scaling functions are (E/J)|T − Tg|ν(d−2−z) and (J/T )|T − Tg|(1−d)ν , where ν and

z are the static and dynamic scaling exponents and d is the dimensionality of

the system [20]. The glass transition temperature Tg was first determined from

the critical isotherm with the single power law E ∼ J (z+1)/d−1. This curve was

identified by plotting the power of the E(J) curves, dlnE/dlnJ vs J and choosing

the curve with a dlnE/dlnJ value that is constant (independent of J) [19]. For

H = 1 kOe, the best curve thus identified (d = 3) gives Tg = 91.7 ± 0.1 K and

z ∼ 10.0 ± 3. The method used here for determining the error for z is based

on the preceding dlnE/dlnJ plot. A range of values for (z+1)/2 was established

about the isotherm displaying the constant power law exponent. This range was

chosen so that it does not include data from adjacent isotherms. The error for ν

follows by observing the best scaling of the data with respect to ν by holding the

previously determined values of Tg and z fixed, and noting the range of values of

ν over which a deviation from this is small. As the value of ν is varied, the slopes

of the overlapping portions of the adjacent (in temperature) scaled isotherm data

change with respect to the slope of a given scaled isotherm. A mismatch of slope

is readily seen as the value of ν is varied away from the above determined value

by more than a small range. This range determines the error reported for ν.
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Figure IV.2: Electric field versus current density, E(J), isotherms of the YBCO

single crystal for (a)H = 1 kOe and (b)H = 90 kOe, plotted on a log-log scale.

The characteristic differences between E(J) isotherm sets at high field and low

field are consistent with the existence of a lower critical point, that separates the

first order melting transition at high field and continuous transition at low field.
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H = 1 kOe and (b) H = 90 kOe. The open circles correspond to the E(J) data

which exhibits the intermediate linear behavior.
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The scaling functions corresponding to the E(J) data at H = 1 kOe and

H = 90 kOe are shown in Fig. IV.3 (a) and (b). To scale the E(J) data for

a given field H, the exponent ν was varied while fixing Tg and z to obtain the

best collapse possible. Then, the values of Tg and z were varied slightly and in a

correlated manner to further improve the scaling within the bounds of the error

from the determination of Tg. The static exponent ν remains constant (ν ∼ 0.37)

for all fields. On the other hand, the dynamic exponent z is larger (z ∼ 5 − 10)

below the lower critical point H`
cr(T ) of the melting line, but drops to z ∼ 2.64

for all H ≥ H`
cr(T ). The error of ν and z for H ≥ 20 kOe were estimated to

be 0.05 and 0.1, respectively. The error in z increases rapidly for lower H fields

(∆z ∼ 2-3), while the error in ν remains the same.

The electrical resistivity in the critical region (T ≥ Tg) takes the scal-

ing form ρ ∼ |T − Tg|ν(z−d+2) [8]. The value of ν(z − 1) is obtained by plotting

d(lnρ)/dT vs. T , as shown Fig. IV.4. The data over which a linear fit is ap-

plied is shown in open circles. Two important features are seen for each field

H shown. The first is the location (or lack thereof) of a vortex-lattice melting

temperature TM, seen as a kink in the region over which a linear fit is applied.

For H = 6 kOe, no kink is present, consistent with H < H`
cr(T ) where only a

vortex-glass melting transition takes place and there is no vortex-lattice melting

temperature. At H = 8 kOe and 70 kOe, the kink is easily seen as indicated by the

arrow locating TM. By H = 90 kOe, the kink has mostly disappeared, indicating

the approach of H to Hu
cr(T ). The second feature noted is the location of the

upper temperature of the critical region denoted T u
g . This temperature lies above

the vortex-lattice melting temperature for all fields for which first order melting

is observed. This would seem to suggest, in this case, that the vortex matter in

the single crystal is inhomogeneous , with the result that the vortex-lattice melting

and vortex-glass melting transitions are independent phenomena. If instead, the

entire vortex-matter ensemble within the sample were to undergo (upon warming)

a vortex - glass melting transition followed by a vortex - lattice melting
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Figure IV.4: [dln(ρ)/dT ]−1 vs T for various fields H. The linear fit is applied to

the data displayed as open circles (figures a, c, d), for which Tg is determined by

the y-axis intercept and ν(z − 1) is the reciprocal of the slope. Additional fits

to the data for temperatures T < TM (open squares) and T > TM (open circles)

separately are shown in figure b, with the different values of ν(z − 1) indicated

(the value of ν(z − 1) = 1.19 is from the linear fit to all open circles, squares, and

triangles).
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transition into the liquid state, the critical fluctuations of the second-order vortex-

glass state must cease at a temperature T u
g below the vortex-lattice melting tem-

perature TM so that the lattice may form and then melt, a rather unphysical

scenario and contradictory to the observation of resistive critical scaling behavior

at temperatures above TM. A closer examination of the scaled resitivity data (to be

commented on in detail below) indicates that there are actually two vortex-glass

regimes with different critical behavior separated in temperature by the vortex-

lattice melting phenomenon at TM . This is in contrast to the “vortex slush” sce-

nario in which the intervening state between Tg and TM is a sluggish vortex-liquid

[14].

At this point, the difficulties of obtaining a reasonable scaling of the E−J

and ρ(T ) data, the validity of applying the FFH theorem, and the critical exponent

values and errors must be addressed. As noted above, an intermediate linear E−J

regime separates the low and high temperature isotherms, interrupting the smooth

evolution characteristic of a second order vortex-glass melting phase transition.

This is observed definitively at high fields H ≥ 8 kOe and to a much weaker

extent at low fields. However, for all H fields, the data display a temperature

below which E(J) exhibits a response characteristic of a true superconducting

state, E ∼ exp[−(jc/j)
µ]. In attempting to scale the E − J data it was noticed

that the upper and lower scaled curves did not scale in a mutually consistent

manner. That is, the improvement of the quality of the scaling of the T < Tg data

came at the expense of the T > Tg data and vice versa. The quality of scaling

was determined by the low temperature data only, since the data with T > Tg

are approaching TM, and it was not clear what influence the proximity of the first

order phase transition would have on the E − J scaling analysis. As can be easily

seen in Fig. IV.3, the intermediate linear data of the high H field E − J data,

denoted as open circles, do not lie on the either of the two universal scaling curves.

As stated above, evidence for two entirely different vortex-glass regimes

is obtained from the scaled resistivity data. A closer examination of the portion
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of the plot of [dln(ρ)/dT ]−1 vs T over which the linear fit shown is applied (open

circles) reveals a significant detail, namely, the slope of the plot is steeper at

temperatures T < TM than it is at temperatures T > TM, indicating directly

different values of the critical exponents ν(z − 1). This is most easily seen in

Fig. IV.4(b) where additional lines are fit to the upper and lower temperature

portions with the corresponding values of ν(z − 1) indicated. If the linear fit

shown in Fig. IV.4 (b),(c), and (d) to [dln(ρ)/dT ]−1 vs T , is only applied to data

for which T < TM, the values obtained for ν(z − 1) increase significantly for the

intermediate fields 8 kOe ≤ H ≤ 70 kOe, from ∼ 0.64 − 1.2 to ∼ 1.5 − 3.0.

This disagrees with the results from E − J scaling where ν(z − 1) ∼ 0.62 − 1.6.

However, the intermediate H field values of ν(z − 1) from the above T < TM

constrained linear fit are in close agreement with the low field (H ≤ 6 kOe) values

of ν(z − 1) ∼ 3.0 − 3.3 obtained from fitting to [dln(ρ)/dT ]−1 vs T for which

there is no melting temperature constraint. This would seem to indicate that the

single vortex-glass regime observed at low fields (H ≤ 6 kOe) is the same as that

observed at intermediate fields (8 kOe ≤ H ≤ 70 kOe) at temperatures T < TM.

At intermediate fields and temperatures T > TM, ν(z − 1) ∼ 0.7 − 1.7 in close

agreement with the values obtained from E−J scaling. Consequently, the vortex-

glass regime at intermediate fields and at temperatures T > TM likely originates

from entirely different vortex-glass dynamics. At H = 90 kOe the restriction of

fitting the data only to T < TM changes the value of ν(z − 1) negligibly, again

supporting the conclusion of nearing the upper critical point Hu
cr(T ).

Past the lower critical point H`
cr(T ), on the vortex lattice melting line,

YBCO has been shown to exhibit Bose-glass scaling behavior at low fields in heavily

twinned samples [21]. Assuming a Bose-glass for low fields (d=4), the E − J

data are scaled as (E/J)|T − Tg|ν(2−z) and (J/T )|T − Tg|(−3ν), resulting in critical

exponent values of ν ∼ 0.29 and z ≥ 8.9. This disagrees significantly with the

reported values of ν ≈ 1.0 z ≈ 6 [21], leading to the conclusion that Bose-glass

scaling is not likely the case here. The existence of a Bose-glass transition cannot
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be ruled out though, since it appears there may be two separate second-order

transitions, with different critical temperatures Tg and critical exponents z and ν,

complicating definitive E − J scaling results. This will be commented on further

below. The considerable difference between the values of the critical exponents

found here (ν ≈ 0.37, z ≈ 2.64) and those typically reported (ν ≈ 2
3
− 2, z ≈ 3− 6)

[8, 22] raises the question as to the accuracy of the former. However, it has been

shown that the critical correlation length exponent ν must satisfy ν ≥ 2/d for

systems where disorder is irrelevant to the critical behavior [23]. The value of

ν ≈ 0.37 < 2/3 obtained here may be the result of the “cleanness” of the BaZrO3

grown YBa2Cu3O7−δ single crystals, in the context of the criterion of Harris [24].

Harris argues that wherein if ν < 2/d for a uniform system, then the critical

behavior of the corresponding disordered system must be different.

Even though the accuracy of the scaling exponent values is questionable,

the data do definitely demonstrate a scaling of the quality that is typically reported.

A scenario investigated by Crabtree et al. is considered as a likely model to explain

the results obtained here [25]. Crabtree et al. produced numerical simulations of a

driven vortex system in a clean twinned YBCO ‘sample’, a scenario applicable to

the sample examined in this work. The twin boundaries were modelled at 45◦ to

the driving Lorentz force (and thus to the applied current) as was the case in our

resistivity ρ(T ) and E − J measurements. The results of low, intermediate, and

high current regimes are outlined below, and are illustrated in the lower portion

of Fig. IV.5.

Low Current: Vortices in the twin boundary are stationary. The twin

boundaries are impenetrable, and highly correlated plastic motion occurs in the

bulk. Motion within the bulk is determined by the twin boundaries. The twin

boundary is seen by the vortices as an extended object.

Intermediate Current: Vortices in the twin boundary move under the

Lorentz force of an applied current. The vortices may cross the twin boundary at

weak spots. Vortices move primarily parallel to the boundary and internal to it.
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Vortex motion within the bulk is elastic and the direction is determined primarily

by the Lorentz force. The twin boundary is no longer an extended object but a

line of random pinning wells, and motion within and near to the twin boundary is

random.

High current: Motion is elastic everywhere, and the twin boundaries

become nearly irrelevant to the motion of the driven vortices.

In the resistivity measurements, the current is low (kept within the vor-

tex glass scaling regime) and the temperature is swept with the applied field H

held fixed. At low temperatures, the vortex matter in the bulk is plastic and will

exhibit critical behavior [26] as the temperature increases from the true super-

conducting state through a vortex-glass melting temperature Tg. The size of the

correlated vortex regions is bounded by the bulk area between the interleaving

twin boundaries and the usual interlayer interactions. As T increases further, the

vortex matter and sample then effectively enter the intermediate current scenario.

The vortices within and in close proximity to the twin boundaries are now moving

in a disordered manner, and will also exhibit critical behavior. The vortices in the

clean bulk are uniformly driven and form a lattice which melts [15] at the criti-

cal temperature TM > Tg, becoming a liquid, with perhaps a portion joining the

glassy ensemble. The glassy regions are now elongated objects localized around

the twins, with two characteristic coherence lengths ξ⊥ and ξ‖ (with respect to the

twin boundary) with the correlation fluctuations (presumably) primarily in the

parallel direction. This scenario then implies that there are in fact two different

vortex-glass states, the latter coexisting with, and bounding regions of a vortex-

lattice. This may explain the difficulty of obtaining a readily correlated scaling of

the upper and lower branches of the E(J) isotherms via the FFH anzatz. Such a

scenario is also compatible with the observation that restricting the linear fit to

the data satisfying T < TM in the plots of [dln(ρ)/dT ]−1 vs T resulted in values of

ν(z−1) in the intermediate fields 8 kOe ≤ H ≤ 70 kOe that agree with the ν(z−1)

values below 6 kOe instead of those obtained from E(J) scaling. It appears then,
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from the resistivity data (plotted as [dln(ρ)/dT ]−1 vs T ) that there are in fact

two critical regions, above and below TM with differing critical exponent ν(z − 1).

The two glassy states could conceivably have differing critical exponents due to

the different geometrical constraints outlined above, and must have different char-

acteristic vortex-glass melting temperatures Tg.

This suggested scenario would not contradict the observation of a vortex-

lattice melting via adiabatic specific heat measurements on samples comparable

to that examined here [4]. The cleanness of the sample would not require that

the vortices within the bulk be driven by a current to form an ordered lattice.

It is anticipated that de-twinning the sample would remove all vortex-glass like

behavior below the melting transition.

Most experimental results for clean high-Tc single crystal samples indi-

cate the connection of the vortex-lattice melting and vortex-glass melting lines

at a critical point at high field. This has been the most widely accepted H(T )

phase diagram for YBCO single crystals, including the above mentioned high-

purity samples of Roulin et al. grown in BaZrO3 crucibles. However, the trailing

tail at temperatures below TM in the resistivity ρ(T ) data, the separation of the

isotherm associated with the melting temperature from those seen to exhibit a true

superconducting response (E ∼ exp[−(jc/j)
µ]) in the E−J data (for H ≥ 8 kOe)

and, to a lesser extent, the critical scaling results of the E − J data, all point

to a scenario where a vortex-glass melting line exists at a temperature below the

vortex-lattice melting line at fields ranging from the upper critical point Hu
cr(T )

past the lower critical point H`
cr(T ).

The magnetic field H versus temperature T phase diagram of the twinned

YBCO single crystal is shown in Fig. IV.5. The vortex-lattice melting line HM(T )

was determined from the peak in the temperature derivative of the electrical re-

sistivity dρ/dT vs T . Below the lower critical point H`
cr(T ) = 5 kOe, the peak in

dρ/dT vs T is no longer distinguishable from the main superconducting transition.

The vortex-glass melting line Hg(T ) is determined from the vortex-glass (VG)
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scaling of the E(J) isotherms, which lies at a slightly lower temperature below the

vortex-lattice melting line HM(T ). The intermediate region is seen to narrow at

high field H, suggesting an eventual connection at the critical point Hu
cr(T ) where

the vortex-lattice melting gives way to an entangled vortex-glass melting transi-

tion [5]. If this is indeed the case, it would not contradict, but instead supplement,

previously established phase diagrams, which are widely accepted. Also shown are

the upper (long dash) and lower (short dash) boundaries of the critical region.

The upper boundary is readily established by the value of T u
g for each field H.

The lower boundary, which is usually established as Tg−T u
g , is instead determined

by the range of temperature of the isotherms on the lower branch of the scaled

E(J) data. This is done since the critical behavior at temperatures T < TM is

interrupted by the crossover of vortex regimes, and the temperature establishing

the boundary can not be obtained by the usual criterion of the extent of the linear

fit to the scaled resistivity data. Voltage data resolution and heating due to high

applied currents limits the range of observable isotherms. Thus the low tempera-

ture boundary of the critical region shown should be considered an upper limit in

temperature.

In the case of clean single crystals, the weak-pinning limit is most relevant,

and the vortex-lattice order extends over large regions which are characterized by

the Larkin−Ovchinnikov length, Lp [27]. Vortex glass scaling occurs only when

the VG correlation length ξV G exceeds Lp. Thus, estimation of the VG correlation

length ξV G gives an upper limit of the Larkin−Ovchinnikov length Lp, which is the

size of the ordered flux-line lattice regions. ξV G can be estimated using the analysis

of Xenikos et. al [28]. The temperature of the upper limit of the critical region,

T u
g , can be used to determine a vortex correlation length ξ*, which represents the

shortest length, above Tg, over which the motion of the vortex segments is still

correlated. Yeh et al. applied a similar analysis to the E(J) data of twinned con-

ventionally grown YBCO samples, and reported the value of the zero temperature

correlation length ξV G(T = 0) ≡ ξ0V G of the vortex glass ensemble [8]. The field
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dependence of ξ0V G(H) for 10 kOe < H < 70 kOe increased exponentially from

∼ 400 Å to ∼ 800 Å. The low field behavior of ξ0V G(H) is different than in high

fields. ξ0V G(H) increases rapidly from ∼ 200 Å to the initial high field value of

∼ 400 Å.

The same analysis was applied here to examine how these quantities

evolve with applied field H. The zero temperature vortex-glass correlation length

ξ0V G was calculated from the preceding scaling of E and J for each applied field

H. The values of ∆ξ0V G reported here have been obtained by a series of vari-

ations of the parameters Tg , z and ν. These values are considered reasonable

as an estimate of the error. The analysis did not yield the exponential behav-

ior as a function of field as seen by Yeh et al. Instead, we see ξ0V G decreases

from ∼ 2200 Å for H ≤ 10 kOe to ξ0V G ∼ 2000 Å for H > 30 kOe. With

ξ* = ξ0V G/(1− Tg/T
u
g )ν , ∆ξ* = ∆ξ0V G/(1− Tg/T

u
g )ν [1, 20], this yields a coher-

ence length (Fig. IV.5 inset) at the critical region boundary that appears to de-

crease exponentially as ξ* ∼ exp(5.5/H)
1
3 , or as a power law with ξ* ∼ H1/4. (These

fits are intended to illustrate the trend of ξ* decreasing with field and are not nec-

essarily indicative of any physical model.) As pointed out by Chayes et al. [23],

in systems with intermediate phases or first-order transitions, it is possible that a

finite-volume event such as that associated with an intrinsic correlation length ξ

is undefinable or yields a “correlation length” unrelated to the intrinsic ξ.

The existence of a vortex-glass state is well established by the data re-

ported herein. However, a certain amount of caution should be taken as to the

values arrived at for the critical exponents ν and z, and correlation length ξ. The

trends with field and temperature, though, should be considered reliable. The

values obtained for the critical exponents and vortex-glass correlation length are

summarized in Table IV.1.
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IV.D Summary

In summary, electrical transport properties of high purity YBa2Cu3O7−δ

single crystals grown in BaZrO3 crucibles have been studied. The melting of the

flux line lattice is clearly demonstrated by the kink feature in the electrical resis-

tivity ρ(T ). The characteristics of the E(J) isotherms revealed a more complex

picture of the vortex liquid to vortex solid phase transition. The experimental

data provides evidence for the co-existence of a first order vortex-lattice melting

transition and a continuous vortex-glass melting transition at a lower temperature

in high purity twinned YBa2Cu3O7−δ single crystal samples grown in BaZrO3 cru-

cibles. The correlation of temperature T and magnetic field H dependence of the

electrical resistivity ρ and electric field versus current density E vs J isotherms,

is consistent with a two-step phase transition from the normal to the supercon-

ducting state. Analysis of the data strongly indicates the vortex matter in the

single crystal is inhomogeneous. This scenario is supported by the observation of

a vortex-lattice melting at a temperature separating two vortex-glass states with

different critical exponents ν(z − 1). In light of independently performed numer-

ical simulations [Crabtree et al., Physical Review B 61, 1446 (2000)], the data

support a scenario where the intermediate phase crosses over from a state where

vortex lines in the twin boundaries are pinned and those within the bulk undergo

driven plastic vortex flow, to a state where the vortex lines in and near the twin

boundaries undergo driven disordered motion and those within the bulk move as

an ordered lattice.
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Table IV.1: Parameters determined from E(J) and ρ(T ) for BaZrO3 grown

YBa2Cu3O7−δ single crystals including the vortex-glass melting temperature Tg

and the static and dynamic critical scaling exponents ν and z, the resistivity crit-

ical exponent, s ≡ ν(z − 1), and the vortex-glass coherence length at the critical

region boundary, ξ*.

H(kOe) TM Tg|E(J)(K) ν|E(J) z|E(J) Tg|ρ(K) s|ρ s|E(J) ξ*(Å) ∆ξ*(Å)
1.0 – 91.7 0.36 10.0 – – 3.2 – –
2.0 – – – – 91.4 3.29 – – –
3.0 – – – – 91.0 3.27 – – –
4.0 – – – – 90.9 3.14 – – –
5.0 – 90.6 0.36 6.25 90.6 2.97 1.9 11359 604
6.0 – – – – 90.4 3.02 – – –
8.0 90.7 89.8 0.36 5.50 90.1 1.19 1.6 10832 570
10.0 90.3 89.4 0.36 4.87 89.5 1.24 1.4 9493 471
30.0 86.8 86.2 0.38 2.64 86.0 0.67 0.62 6521 432
50.0 83.7 83.3 0.38 2.64 83.3 0.64 0.62 6960 375
70.0 81.0 80.7 0.38 2.64 80.7 0.67 0.62 6803 363
90.0 78.2 78.0 0.38 2.64 78.0 0.77 0.62 6234 317



86

A portion of the text and data of this chapter is a reprint of the material as

it appears in “Vortex-melting and vortex-glass transitions in a high purity twinned

YBa2Cu3O7−δ single crystal,” Phys. Rev. B 68, 054523 (2003), B. J. Taylor, S.

Li, M. B. Maple, and M. P. Maley. The dissertation author was the primary

investigator and author of this article.
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V

Vortex glass and Bragg glass

phases in MgB2

V.A Introduction

The binary compound MgB2 holds a unique place among superconducting

materials. With a critical temperature of Tc ≈ 40 K, this places it as an intermedi-

ary between the existing high-field superconductors used in modern applications,

Nb-Ti (Tc = 9 K) and Nb3Sn (Tc = 18 K), and the high-temperature cuprate super-

conductors YBa2Cu3O7−δ (Tc ∼ 90 K) and Bi2Sr2CaCu2O8 (Tc ∼ 90 K). Further-

more, the unusual superconducting properties of MgB2 come from the fact that it

is a two-gap superconductor. The energy gaps are associated with distinct discon-

nected portions of the Fermi surface [1, 2, 3, 4], with the larger gap, ∆σ ≈ 7 meV,

arising from the in-plane σ antibonding pxy orbitals of B, and the smaller gap,

∆π ≈ 2 meV, comprised of the out-of-plane π bonding and antibonding pz orbitals

of B [5]. MgB2 has superior mechanical properties compared to high temperature

superconducting cuprates due to its much simpler crystal structure. The grain

boundaries, which remain the major obstacle impeding the application of high-Tc

materials, do not appear to be a limiting factor on the critical current density of

MgB2 [6]. Since its discovery in 2001 [7], the considerable quantity of research
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devoted to MgB2 has produced a rapidly developing picture of the material in its

normal and superconducting states. An important issue in the development of

MgB2 for use in technological applications is the critical current density, which is

directly related to the nature of vortex pinning and vortex dynamics in the sys-

tem. In addition to the industrial usefulness of such knowledge, a study of the

physics of the vortex matter states of MgB2 over the magnetic field − temperature

(H − T ) phase diagram provides further insight into the fundamental properties

of this unique type-II superconductor.

In type-II superconductors with sufficient disorder, the superconducting

region below the upper critical field Hc2(T) is further divided by a vortex-glass

transition line Hg(T ), which separates the dissipative vortex-liquid (VL) phase

at higher temperatures, and the truly superconducting vortex-glass (VG) phase

with a finite critical current density at lower temperatures [8]. Vortex dynamics

in a high quality bulk MgB2 sample was investigated via measurements of electric

field vs current density isotherms, E(J), over a range of applied magnetic field.

Analysis of the E(J) data was performed within the context of the critical scaling

model of a vortex glass [9, 10, 11]. In this chapter, analysis of E(J) isotherms, the

critical current density, Jc, and its gradient ∇Jc, and further calculations based

upon the vortex glass critical scaling model are presented. This work provided

the first evidence for the existence of the Bragg glass vortex phase along the low

field portion (H . 8 kOe) of the vortex glass melting line in this compound.

The interpretation of the data as an indication of the Bragg glass state was later

confirmed by independent reports from other groups based on magnetization mea-

surements on MgB2 single crystals [12, 13, 14]. Neutron scattering measurements

have since revealed that the vortex lattice undergoes a structural realignment at

a magnetic field value 5 kOe < H < 9 kOe, which is attributed to the suppression

of the smaller superconducting gap, ∆π [15].
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V.B Experimental Details

High quality MgB2 bulk samples were produced from commercial MgB2

powder (Alfa Aesar) by means of dense material cooling under pressure (DMCUP),

a technique based on hot isostatic pressing (HIPing). Initial characterization of the

HIPed samples by scanning electron microscopy (SEM) was unable to distinguish

grain boundaries, possibly as a result of the rapid cooling of the molten material

under pressure [16]. The HIPed MgB2 displayed superior superconducting proper-

ties as well, including a very high critical current density Jc, and a relatively low

rate of decrease of Jc with increasing magnetic field [17]. The values of Jc obtained

for the HIPed material are about an order of magnitude larger than those achieved

on dense Fe clad MgB2 wires prepared by the powder in tube technique [18].

The superconducting transition temperature Tc was 38.5 K with a transi-

tion width ∆Tc of 0.75 K, determined from electrical resistivity ρ(T ) measurements.

Here, Tc is defined as the temperature of the 50% value and ∆Tc as the difference

in temperatures of the 10% and 90% values of the ρ(T ) superconducting transition

curve. Magnetization measurements were made with a commercial Quantum De-

sign SQUID magnetometer. Magnetization M vs applied field H hysteresis loops

were taken at temperatures between 10 and 38 K and in applied fields between

0 and 50 kOe. Electrical transport measurements were made using the standard

four-probe technique in a commercial Quantum Design Physical Property Mea-

surement System with a maximum field of 90 kOe. The dc current was applied

using a Keithley K220 current source, and the sample voltage was measured with a

Keithley K2182 nanovoltmeter. To study E(J) characteristics, a thin rectangular

strip was polished to have final dimensions of ∼ 2.8 × 1.2 × 0.12 mm. For the

measurements of the E(J) isotherms, the sample was first cooled to the lowest

temperature in zero field, the magnetic field was applied, and the E(J) isotherms

were taken in increasing temperature increments [19]. The temperature drift in

the E(J) measurements was less than 0.01 K.
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V.C Results and Discussion

Two sets of E(J) isotherms for the HIPed MgB2 are shown in Fig. V.1,

on a log E vs log J plot. As shown in Fig. V.1(a), from top to bottom with

decreasing T and steps of ∆T = 0.05 K, the E(J) isotherms at H = 2 kOe con-

sist of three distinguishable regimes: ohmic behavior at the highest temperatures,

ohmic (at small J) to power law dependence (at large J) at intermediate temper-

atures, and exponential dependence with a negative downward curvature at the

lowest temperatures. This is consistent with results on MgB2 thin films [20] and

high-Tc cuprate superconductors [11]. The E(J) isotherms at H = 90 kOe which

range from 15.0 K to 19.8 K with 0.4 K increments (Fig. V.1(b), exhibit similar

characteristics compared to the low field data, except that the critical region is

noticeably larger. The negative curvature of E(J) at low temperature is a clear

indication of the sample being in a true superconducting state (vortex-glass), while

the ohmic E(J) curve suggests a vortex-liquid state with dissipation upon applica-

tion of transport current. The E(J) isotherm with a single power law dependence

over the whole current range separates these two phases; this isotherm temperature

identifies the vortex-glass transition temperature Tg [9, 10].

E(J) isotherm sets shown in Fig. V.1 were scaled using the ansatz of

the Fisher-Fisher-Huse (FFH) vortex-glass transition model [8]. The FFH scaling

functions of the electric field and current density are (E/J)/|1− T/Tg|−ν(z−1) and

(J/T )|1− T/Tg|−2ν , where ν and z are the static and dynamic scaling exponents,

respectively. If the melting of the solid vortex ensemble is that of a vortex glass,

then, all isotherms will collapse onto two universal curves corresponding to critical

behavior of the vortex-liquid phase above Tg and the vortex-glass phase below Tg.

The glass transition temperature Tg was first determined from the critical isotherm

which conforms to a power law E ∼ J (z+1)/2. This curve was identified by plotting

the power of the E(J) curves, dlnE/dlnJ vs J , and choosing the curve with a

dlnE/dlnJ value that is constant in J [19]. For H = 2 kOe, the best curve thus
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and (b) H = 90 kOe, from T = 15.0 K (bottom) to T = 19.8 K (top), in 0.4 K
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identified gives the glass temperature Tg = 36.64 ± 0.02 K and dynamic exponent

z ∼ 3.1 ± 0.1. The small uncertainty in the values of Tg and z is due to the

discrete temperature increments in the E(J) isotherm sets collected.

The Tg and z values obtained through the procedure described above are

used to start the scaling of E(J) isotherm sets. The scaling functions corresponding

to E(J) data at H = 2 kOe and H = 90 kOe are shown in Fig. V.2. To scale a

particular set of E(J) data, the static exponent ν was varied with Tg and z fixed to

obtain the best collapse possible. Then, the values of Tg and z were varied slightly

and in a correlated manner to further improve the scaling. This variation is justified

due to the small error in the determination of Tg and z. As listed in Table IV.1,

the scaling process yields ν ∼ 0.9 consistently in the field range from 8 kOe to 90

kOe, while giving a smaller value of ν ∼ 0.6 below 8 kOe. The z values were ∼ 3.1

for 2 kOe ≤ H ≤ 10 kOe and jump to ∼ 3.4 at H > 10 kOe. The error margins

in the ν and z values were estimated to be 0.05 and 0.1, respectively. The method

used here for determining the error for z is based on the aforementioned dlnE/dlnJ

plot. A range of values for (z+1)/2 was established about the isotherm displaying

the constant power law exponent. This range was chosen so that it encompasses no

data from adjacent isotherms. The error for ν follows by observing the best scaling

of the data and noting the window over which a deviation from this is small. As a

consistency check, ν(z − 1) values were also determined from ρ(T ) data and agree

well with those obtained from E(J) scaling. The current used in the ρ(T ) scaling

method was in the range of 2 mA to 10 mA so as to remain in the scaling regime.

These values are summarized in Table IV.1.

The values of the critical exponents of HIPed MgB2 at low fields are close

to the exponents of ν ∼ 2
3

and z ∼ 3.0 reported by Yeh et al., for lightly twinned,

proton irradiated YBa2Cu3O7−δ single crystals [11], but quite different from the

values of ν ∼ 1 and z ∼ 4.5 reported for MgB2 thin films [20]. At high fields,

ν ∼ 0.9 is closer to that of MgB2 thin films (ν ∼ 1.0), but z ∼ 3.4 is still much

smaller in comparison to z ∼ 4.5 for MgB2 thin films. These differences are thought
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to reflect a weak point defect dominated microstructure of the HIPed MgB2 sam-

ples as a result of the DMCUP process, in contrast to MgB2 thin films pre-

pared by pulsed laser deposition, which would be plagued by thin film topolog-

ical defects, i.e., dislocations, faults, etc. The comparison to the results for the

YBa2Cu3O7−δ films is made so as to emphasize the dominance of point defects and

the resulting exponents obtained experimentally. Magnetization measurements

[21, 22, 23], on untwinned YBCO single crystals, both with and without elec-

tron irradiation, have revealed a Bragg-glass state over a large region of the phase

diagram. The boundary of this region includes the vortex-glass to vortex-liquid

transition in the range of H and T consistent with that examined by Yeh et.al. The

different values of the critical exponents for low and high fields obtained from the

above scaling analysis indicate that the dynamics of vortices in these two regions

along the melting transition are different. This then points to two different vortex

solid phases with boundaries along the vortex-solid to vortex-liquid transition.

The zero temperature vortex-glass correlation length ξ(T = 0) ≡ ξ0 can

be calculated from the preceding scaling of E and J for each applied field H. Fol-

lowing the assumption, Ẽ ≈ Ẽ0 (J̃/J̃T )(z−1)/2 for T ≈ Tg [11], the current density,

J̃T , is directly obtained from the scaled Ẽ − J̃ isotherm for T ≈ Tg (Ẽ[T ≈ Tg] vs

J̃ [T ≈ Tg]). J̃T is the scaled crossover current density separating the current and

temperature dominated vortex depinning regimes. Ẽ0 is a temperature indepen-

dent constant obtained in the limit (J̃/J̃T )(z−1)/2 → 0, as indicated in Fig. V.2(b).

J̃T can be calculated from any of the scaled pairs (Ẽi , J̃i) on the T ≈ Tg line.

Using the relation J̃T ≈ kB/(Φ0ξ
2
0) in the critical region [11] (see Fig. V.2(b)), a

value for ξ0(H) can be found. As seen in Fig. V.2, some of the data points deviate

from a smooth line fit. In order to obtain the best rms value of ξ0(H), some of the

scaled data points (Ẽi, J̃i) were removed from the T ≈ Tg line under the following

criteria. A power law curve is fitted to the data (satisfying Ẽ ≈ Ẽ0 (J̃/J̃T )(z−1)/2).

The data points were selectively removed from the data set until the fit agreed well

with the value for z obtained earlier (via dlnE/dlnJ vs J and the subsequent
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scaling of the E−J isotherms) and the regression of the fit was the best possible. J̃T

was calculated separately for each remaining scaled pair. ξ0(H) was then calculated

for each J̃T , making use of the above stated relation. An rms value of ξ0(H) was

arrived at from the above calculations. Two different methods were used to obtain

the error ∆ξ0 for each of the ξ0(H) values. The first treatment follows standard

statistical analysis of error. The values of ∆ξ0 obtained by this method were found

to vary by amounts ranging from 0.6 Å to 150 Å for the set of fields examined. The

dominating terms of the error ∆JT are those of ∆Ei and ∆Ji, the size of which

is primarily dependent on how close the isotherm temperature data are to the

determined value of Tg. As T → Tg, these values become very large. It was found

that the size of the error can be manipulated by nearly two orders of magnitude by

simply adjusting Tg by a few hundredths of a degree kelvin away from the scaled

isotherm temperature. This change of Tg is within the margin of error ∆Tg and is

therefore allowable. This method provides an unsatisfactory determination of ∆ξ0.

The values of ∆ξ0 reported here have been obtained by a series of variations of

the parameters Tg, z and ν. The critical current density J̃T was again calculated

as above with each parameter independently evaluated at Tg ± ∆Tg, etc. The

correlation length was calculated from each series of JT values, and then the set

of ξ0 values was used to obtain an rms value of ξ0(H) and the standard deviation

∆ξ0(H). These values are considered more reliable as an estimate of the error.

The calculated values of ξ0 for each of the fields examined are shown

in Fig. V.3. The values of ξ0 are fairly constant at ∼ 340 Å for fields below

8 kOe. At this field the size of ξ0 suddenly decreases to a much smaller value.

For 8 kOe ≤ H ≤ 90 kOe, ξ0 increases exponentially with H from ∼ 100 Å to

∼ 800 Å. This apparent discontinuity in ξ0 at H ≈ 8 kOe is accompanied by the

discontinuous jump of the value of the static scaling exponent ν from 0.6 to 0.9.

These results imply that translational order of the vortex-lattice is significantly

reduced upon crossing over from low to high field regimes. Such behavior
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is consistent with a order-disorder transition from a Bragg-glass state for

H < 8 kOe to a vortex-glass at higher fields H & 8 kOe. Bragg-glass theory

predicts a rapid increase of topological defects when disorder or the applied field

reaches a threshold, resulting in the aforementioned transition [24]. Long range

order is rapidly destroyed upon crossing this threshold, resulting in the sudden

decrease in the value of ξ0 at H ≈ 8 kOe.

Further evidence supporting a Bragg-glass scenario in MgB2 is found in

observation of the size of the critical region ∆Tvg, shown in Fig. V.4. The ex-

tent of the critical region is determined from the critical scaling relation of the

resistivity, ρ(T ) ∼ (T-Tg)
ν(z−1) (ref. [8]) by plotting 1/[d(lnρ)/dT vs T . The

region ∆Tvg is the temperature interval over which the plot is linear, intercept-

ing the T axis at Tg with slope [ν(z-1)]−1. On the basis of its relatively small

value, the full width of the critical scaling region 2∆Tvg appears to be weakly

first order with 2∆Tvg ≈ 0.4 K for H ≤ 8 kOe. The full width remains constant

at 2∆Tvg ≈ 0.4 K for 2 kOe ≤ H ≤ 8 kOe, then increases to 2∆Tvg ≈ 0.7 K at

H = 10 kOe from which it increases logarithmically for higher fields to a value of

4.4 K for H = 90 kOe.

It is of interest to compare the above results to work by Kim et al., [25]

which preceded this study, in which a bulk polycrystalline sample of MgB2 prepared

at high pressure and temperature was analyzed via E − J scaling. Two main

differences in sample preparation between their work and that presented herein

are the pressures used and the order of application of heat and pressure. Their

sample was prepared via sintering at 950◦ C after application of 3 GPa pressure.

SEM pictures revealed resolvable grains of ∼ 5-10 µm in length. Our sample was

formed by first heating to 850◦C, applying 200 MPa pressure, then raising the

temperature to 1000◦C, followed by cooling below 200◦ C before removal of the

pressure. SEM pictures were unable to resolve grain boundaries at the µm scale in

the sample used in this study. Kim et al. determined the critical exponents to be

universal with z = 2.33 and ν = 0.5, which disagrees with the results found here.
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Their phase diagram, then, includes only a vortex glass phase. A possible explana-

tion for this discrepancy may be related to the much higher grain connectivity of

our samples, causing them to behave more like single crystal specimens. However,

it is notable that they reported that E − J scaling was poor below H = 1 T, the

same region we have interpreted as being in the Bragg-glass state.

The Bean critical state model was applied to magnetization M(H,T )

data determining the critical current density Jc(H,T ) of the MgB2 sample. The

results are shown in Fig. V.5. Constant current lines are shown projected onto

the low field - high temperature region of the H − T phase diagram in Fig. V.6.

The irreversibility line Hirr(T ) is defined by the locus of points in the H−T plane

where ∆M = 0 since Jc is proportional to ∆M in the Bean model. Hirr(T ) is also

expected to coincide with the vortex glass line Tg(H) which demarcates the onset

of vortex pinning and a finite critical current. It should be stressed at this point

that magnetization measurements have a resolution limit which often results in a

disagreement of Hirr(T ) with Tg(H) with the former lying at lower temperature.

This leads to the treatment here of Hirr(T ) as a boundary where the critical cur-

rent drops below a measurable noise window upon crossing to higher temperature.

However, Jc remains finite (but small) up to the vortex glass line Tg(H). With

this in mind the H − T phase diagram is shown in Fig. V.7 with Hirr(T ) denoted

as Jc ∼ 0. The line of finite measurable Jc approaches Tg(H) and the associated

critical region gradually from higher field (lower temperature) but then abruptly

crosses into the critical scaling region at H ≈ 7 kOe, T ≈ 34.6 K, after which it

coincides with Tg(H). This region where measurable Jc extends to Tg(H) displays

a short tail in Jc (Fig. V.8). The larger current end of this tail coincides with the

lower boundary of the Tg(H) critical scaling region. Jc in the critical region is ob-

served to follow a power law behavior Jc ∼ |H −Hg|n with n ≈ 1.0 - 1.3. Making

use of the scaling form of Jc ∼ |H −Hg|2ν gives ν ≈ 0.5 - 0.65. These values of

ν are consistent with those determined from E(J) scaling for H . 8 kOe.

The sections of the critical scaling region separated by where measurable Jc
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Figure V.5: Three dimensional plots of the critical current density vs magnetic

field H and temperature T . (a) Jc(H,T ) over the full range of H and T values

studied. The solid line indicates where Jc ∼ 0.
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to Hirr(T ). Inset: Enlargement of low field - high temperature region indicating

possible location of the tri-critical point (Htri, Ttri) corresponding to the H − T

coordinate on the Tg(H) line separating the low field and high field regions where

Jc is finite and immeasurable, respectively.
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crosses are also distinguished by a change from a weakly first order width (∼ 0.4 K)

to one which grows logarithmically to ∼ 4.4 K (Fig. V.4), extending the critical

region boundary (Tg ≤ T ≤ Tc) out towards the normal state boundary Hc2.

The mean field Hc2(T) curve was extracted from ρ(T,H) data, and the magnetic

irreversibility line Hirr(T) was determined from magnetization vs field M(H) hys-

teresis loops. The vortex-glass transition line Hg(T) was obtained from scaling of

the E(J) isotherms as described above.

By considering all of the above results together, the analysis is consistent

with the existence of a well ordered Bragg glass state at low fields along the melting

line transition which gives way to a disordered vortex glass state at higher fields. It

follows then that a tri-critical point exists along the melting line transition with a

field value of Htri . 8 kOe. At least two other groups reached the same conclusion

in later studies with more direct methods on single crystal samples of MgB2. Both

groups reported a peak effect which they interpreted as the boundary between the

Bragg-glass and vortex-glass phases. The peak effect was observed via magnetic

induction measurements by Pissas et al., [12] and torque magnetometry by Puzniak

et al. [13, 14]. The existence of a tri-critical point on the vortex-glass to vortex-

liquid line atH ≈ 7 kOe, has been verified by neutron scattering experiments which

reveal a change of the vortex lattice alignment with the underlying crystalline

lattice as the smaller superconducting gap, ∆π, is suppressed at a field between

5 kOe to 9 kOe [15]. Even though the study presented in this chapter is not

conclusive on its own, the independent confirmation of the conclusions reached

here demonstrates well that useful information about the host material can be

extracted from a careful analysis of vortex critical dynamic behavior.
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V.D Summary

In summary, the vortex-glass transition and critical current density char-

acteristics of HIPed MgB2 bulk specimens have been studied via electrical transport

and magnetization measurements. The critical region is found to be qualitatively

separated into low and high field regimes by Jc characteristics and by the size

of the critical scaling regions. At low fields, H ≤ 7 kOe, Jc is measurable via

magnetization into the weakly first order critical region. For H ≥ 7 kOe, Jc is

not detectable (although certainly finite) in the critical region which is definitely

second order. E(J) scaling results in critical exponents ν and z which are different

in low and high fields, changing from ∼ (0.6, 3.1) to ∼ (0.9, 3.4) between 6 kOe

and 8 kOe, indicating a change of vortex dynamics along the melting transition

line. The values of the scaling exponents are supported by additional scaling of

ρ(T ) and Jc. The experimental data and subsequent analysis of the vortex critical

dynamic behavior presented here provided the first evidence for the possibility of a

Bragg glass phase in a bulk MgB2 sample. This conclusion has since been verified

by magnetization measurements and neutron scattering experiments.
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Table V.1: Parameters determined from scaling analysis of E(J) and ρ(T ) for

HIPed MgB2 including the vortex-glass melting temperature Tg, the static and

dynamic critical scaling exponents ν and z, and the resistivity critical exponent,

s ≡ ν(z − 1).

H(kOe) Tg|E(J)(K) ν|E(J) z|E(J) Tg|ρ(K) s|ρ s|E(J) ξ0(Å) ∆ξ0(Å)
2.0 36.64 0.6 3.1 36.6 1.3 1.26 373 91.0
4.0 35.75 0.6 3.1 35.7 1.2 1.26 336 45
6.0 35.00 0.65 3.1 34.9 1.4 1.36 332 37
8.0 34.30 0.9 3.1 34.2 2.0 1.89 91.4 13.6
10.0 33.70 0.9 3.1 33.5 2.0 1.89 111 20.7
30.0 28.60 0.9 3.4 28.5 2.1 2.16 176 17.9
50.0 24.25 0.9 3.4 24.1 2.1 2.16 316 35.0
70.0 20.25 0.9 3.4 19.6 2.1 2.16 464 48.7
90.0 16.60 0.9 3.4 16.0 2.2 2.16 782 59.0
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A portion of the text and data of this chapter is a reprint of the material

as it appears in “Vortex- and Bragg-glass phases in bulk MgB2,” Physica C 387,

131 (2003), M. B. Maple, B. J. Taylor, S. Li, N. A. Frederick, V. F. Nesterenko, and

S. S. Indrakanti; and “Mixed-state flux dynamics in bulk MgB2,” Physica C 382,

177 (2002), S. Li, B. J. Taylor, N. A. Frederick, M. B. Maple, V. F. Nesterenko,

and S. S. Indrakanti. The dissertation author was the secondary investigator and

author of these articles.
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VI

Anomalous dynamic behavior of

vortices amidst an emergent peak

effect in CeRu2 films

VI.A Introduction

The exotic superconducting compound CeRu2, discovered in 1958 by

Matthias et al., [1] is a well known and heavily studied material. The past decade

has seen intense renewed interest in this material due to it having some basic sim-

ilarities to both high-Tc cuprate and heavy-fermion superconductors, and also due

to the observation of the so called “peak effect,” an anomalous mixed state behav-

ior wherein the vortex ensemble undergoes a transition to a considerably stronger

pinning configuration resulting in a large increase of the critical current density

within in a region near to the upper critical field, Hc2(T ). Various mechanisms have

been proposed for the origin of the peak effect in CeRu2. One possibility that has

been revisited is the inhomogeneous generalized Fulde-Ferrel-Larkin-Ovchinnikov

(GFFLO) superconducting state [2, 3] which has a spatially modulated order pa-

rameter along the magnetic field direction [4]. Despite the extensive number of

studies devoted to understanding the nature of the peak, and the large volume of

112
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evidence against the FFLO state, debate still persists as to whether or not it exists

in CeRu2, and is thus responsible for the peak effect in this compound. A more

conventional explanation of the peak effect involves the collective bundle pinning

scenario with a high density of weak pinning cites leading to a dynamical two-step

depinning process [5]. The focus of other studies has been on the role of the few

strong point defects and the possibility of unconventional pinning forces arising as

a result of the renormalized electronic state due to valence fluctuations [6].

A number of studies strongly suggest that the structural properties of

the crystal play a significant, perhaps essential, role in the mechanism of the peak

effect.

(i) Ultrasound measurements have shown a substantial softening (∼ 50 %)

of the shear modulus of CeRu2 from room temperature down to ∼ 20 K with a

small upturn down to ∼ 6 K without a structural phase transition taking place,

pointing to the persistence of strong structural fluctuations [7]. At T = Tc ∼ 6 K

in zero field, further softening is observed by an anomalous downward kink in the

shear moduli, which is suppressed to lower temperatures by application of a mag-

netic field. Upon closer examination of the region of the kink, further anomalous

hysteretic field/temperature behavior of the shear modulus was seen [8]. It is ob-

served here that this latter behavior is correlated with various hysteretic properties

of the peak effect, including hysteresis in magnetization, M(H), for minor mag-

netic field loops [9], and distinct regions of the magnetizationM(H) loop exhibiting

differing relaxation rates [10].

(ii) It has been observed that the peak effect can be destroyed in single

crystal samples by a rapid cooling of the sample from room temperature down to

∼ 6 K [10]. This is consistent with the peak effect being tied to the softening of

the atomic lattice moduli. By rapidly cooling the sample, it is work hardened,

removing the necessary softness of the crystal for the peak effect.

(iii) Magnetostriction measurements, ∆`(H), in the peak effect region

revealed an anomalous increase in the length of the crystal along the direction of
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the applied magnetic field [4]. This behavior was also seen to be hysteretic as a

function of field, and is readily seen to be associated with the peak effect. Even if

the conclusion that the unusual field dependent behavior of the magnetostriction

is evidence for the FFLO state is not correct, the correlation between ∆`(H) and

the peak effect remains.

A common characteristic of the peak effect observed in various systems is

that it only occurs in pure materials that contain extremely weak pinning forces,

and as such is only observed in high quality single crystals. Films of CeRu2 have

been successfully grown in this study, with pinning force densities weaker than

that seen in some single crystals. In a effort to further understand the peak ef-

fect mechanism in CeRu2 we have grown thick film samples and have investigated

their peak effect properties via electrical transport, ρ(H,T ), critical current den-

sity, Jc(H,T ), and magnetization, M(H,T ), measurements. Previous efforts by

Groten et al. [11], to make CeRu2 films resulted in samples with pinning force

densities so strong that the region of peak effect, where enhanced pinning takes

place, was effectively buried beneath the strong defect pinning. The films in the

study presented here fall into a small grain (dmax ∼ 2µm) or large grain (island)

(dmax ∼ 10µm) category, and exhibit significantly different transport properties

which are thought to give insight as to the nature of the peak effect mechanism.

The films exhibit residual resistivities comparable to moderate quality single crys-

tals, and yet exhibit pinning force densities, Fp(H,T ), less than that found in high

quality single crystals, and as such are expected to exhibit peak effect behavior.

Remarkably though, the peak effect is missing in these samples from both trans-

port, ρ(H,T ), and magnetization, M(H), measurements. This is not due to strong

disorder pinning overriding the peak effect region, as seen in the previous study of

CeRu2 films [11]. In this chapter, experimental evidence indicating a suppression

of the superfluid density, ρs, in the region of the peak effect is presented. The

maximum of the suppression of ρs is seen to be centered at the maximum of the

magnetization hysteresis loop. The observation of a suppression of the superfluid
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density is consistent with results from µSR measurements of the magnetic pen-

etration depth, λ [12, 13], wherein an anomalous increase of λ was found in the

peak effect region, and as such indicates a corresponding increase of normal state

electrons, quasiparticles, outside the vortex cores. These results are consistent

with the existence of a nodal vortex state, i.e., the FFLO state. However, an

alternate possibility, which has a more conventional explanation for the increase

of quasiparticles related to the well known structural fluctuations is considered.

Furthermore, it is observed that the critical behavior of the vortices may also play

an important role in the peak effect mechanism through an enhancement of the

coupling of the vortices to the underlying fluctuating atomic/electronic host.

VI.B Experimental Details

Thick films of CeRu2 were synthesized by pulsed laser deposition (PLD)

using a Lambda Physik KrF laser with a wavelength of 248 nm. A polycrystalline

CeRu2 boule was prepared for use as an ablation target by arc-melting a stoichio-

metric mixture of Ce and Ru under an inert Ar atmosphere near 1 atm based on

the procedure described by Dilley et al., [5]. During the process, extra Ce was

added to compensate for the Ce loss that occurs during arc-melting. The boule

was then cut using a diamond wheel saw and was subsequently polished to yield a

smooth surface. The resulting target had a 1.5 cm diameter surface and a thickness

of 0.5 cm. Ablation took place in a clean background of ∼ 1 × 10−5 torr UHP Ar

after initially pumping down to a base pressure of ∼ 5 × 10−10 torr. Films ranging

in thickness from 1000 Å − 4.5 µm were grown on r-plane cuts of sapphire (Al2O3)

(films ”A” and “B,”) and on c-plane cuts of Lanthanum Aluminate (LaAlO3) (film

“C”). The thickness of samples presented in this study are 4 µm (film “A”) and

4.5 µm (films “B” and “C”), with planar dimensions of ∼ 1 × 2 cm2. The target

to substrate distance was 3.2 cm, and the estimated energy density of the beam

on the target was ∼ 5 J/cm2 for film “A” and ∼ 20 J/cm2 for “B” and “C”. Films
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Figure VI.1: SEM image of CeRu2 films “A” (SG) (top) and “B” (LG) (bottom)

grown on Al2O3 substrates (r-plane cut). The films were grown under identical

conditions (see text) with the exception of the laser ablation energy density. The

energy densities were ∼ 5 J/cm2 and ∼ 20 J/cm2 for the small and large grain

films respectively. Both films are well into the clean limit with mean paths within

the grains ` ∼ 1000− 2000 Å.
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Figure VI.2: X-ray data for the small grain film, “A” (top panel), and the large
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the increase of count number. The primary crystalline alignment is along the 〈111〉

direction. Other orientations are also present along with minor Ce-Ru impurity

phases.



118

were found to grow best at 400 ◦C. Growth was followed by an in situ anneal at

760 ◦C for 30 minutes.

MagnetizationM(T ) andM(H) data were taken using a Quantum Design

Magnetic Property Measurement System (MPMS) in fields up to 5.0 T and for tem-

peratures from 1.8 K up to 10 K. For magnetotransport measurements, gold leads

were attached with silver epoxy to gold pads sputtered on the films, with the re-

sulting contact resistance < 1 Ω. Standard four-wire DC resistance measurements

were performed using a Keithley 220 current source, a Keithley 2182 nanovolt-

meter, and a Quantum Design Physical Property Measurement System (PPMS)

from temperatures 1.8 K to 300 K and in fields up to 9.0 T. Electrical resistivity,

ρ(H,T ) measurements were made in a static manner, that is, at incremental values

of the magnetic field (temperature) for a given fixed temperature (field). Unless

otherwise stated, all resistivity data were taken by preparing the sample in a zero

field cooled (ZFC) initial state. Then, for ρ(T ) data, a field was applied, followed by

incremental increases of temperature to a maximum a few degrees above Tc, then

lowered by the same increments. Following the ZFC to a fixed temperature, ρ(H)

data were taken in incremental increasing field steps to a maximum of 7 − 9 tesla,

then lowered by the same increments. A sample was also cut from the target ma-

terial for comparison of magnetization and electrical transport properties. It was

polished to have sample dimensions `× w × t = 0.245 cm × 0.111 cm × 33 µm.

The thickness is ∼ 8 times that of the films. The magnetic field for all of the above

measurements was applied perpendicular to the film surface and to the largest

target sample surface.

VI.C Experimental Results

Films grown on LaAlO3 substrates were found to have very high pinning

force densities which overwhelmed the peak effect region. These films were grown

at the same time as those on Al2O3 substrates. The main results examined in this
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study are the low pinning force density films grown on Al2O3 substrates. Results

from a film grown on LaAlO3 are also shown to demonstrate that the unusually

low pinning force density is intrinsic to the Al2O3 grown films. The SEM data

(Fig. VI.1) show that the surface of the films and the regions between the islands

are granular with grain diameters (along the a−b plane of the substrate) ranging

in size from d ∼ 0.5− 2 µm for film “A” and d ∼ 1− 5 µm for film “B”. The mor-

phology of the the small grain (SG) film “A” is primarily granular with some island

type growth. In the large grain (LG) film “B,” the predominant structures are is-

lands of diameter d ≈ 10µm which appear to be partially in direct contact with

each other, with smaller grains in the open regions between and on the surface.

X-ray diffraction data shown in (Fig. VI.2), demonstrate that the films are poly-

crystalline and the island growth is primarily aligned along the 〈111〉 direction.

Some minor impurity phases of Ce-Ru intermetallics are also seen. The higher

intensities of the X-ray diffraction data for film “B” over that of “A” is readily

attributable to the larger average grain size of the film.

The superconducting magnetic transitions, χ ≡ 4πM(T )/H, of the target

sample and the two films are shown in Fig. VI.3. The value of the onset criti-

cal temperature, T onset
c , is 6.2 K and 5.7 K, with 10% − 90% transition widths,

∆Tc ≈ 0.64 K and 0.45 K for the target and films, respectively. The target sam-

ple exhibits a full Meissner effect, within experimental error, demonstrating the

quality of the target material. The insets to Fig. VI.3 show χ ≡ 4πM/H data of

the films. The magnetization data in inset (a) was adjusted by accounting for an

effective enhancement of the superconducting volume due to the coating of the

edges of the substrate with CeRu2. The effect of the substrate edges being coated

with CeRu2 is to shield the magnetic field over a greater volume than just that of

the film dimensions. The edge coating is not uniform and does not extend over the

entire thickness of the substrate. While it is difficult to estimate to what extent the

edge coating affects the magnetization measurement, the thickness of the effective
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volume, t = tfilm + (x%)tsubstrate is found by assuming a full Meissner effect and

solving for the additional thickness needed after accounting for a demagnetization

factor [14].

Resistivity data from the two films and from a sample taken from the PLD

target material are shown in Fig. VI.4. The resistivities, ρ(T ), of all three samples

are qualitatively similar. However, film “B” shows signs of substrate-film interface

strain as a result of mismatched thermal expansion rates. This is naturally of more

importance in the large grain (LG) crystalline film, since the sizes of the grains of

the LG film are equal to or greater than the film thickness resulting in the majority

of the grains being connected to the substrate surface. The largest grains of the

small grain (SG) film are approximately equal to or less than the film thickness.

The critical temperature, defined as the midpoint of the resistive transition, is Tc =

6.1 K for the target sample, and Tc = 6.0 K for both of the films, with ∆Tc defined

as the 10% − 90% resistivity values, ∆Tc ≈ 0.2 K and 0.3 K for the target and

films respectively. The residual resistivities are ρ0 ≈ 15 µΩcm and ρ0 ≈ 30 µΩcm,

for the target sample and the films (inset Fig. VI.4). The residual resistivity of

film “B” is estimated to be approximately a factor of two less than that shown

without the effect of the substrate strain.

The electronic mean free path, `, in the films was estimated by com-

parison of the residual resistivities of the films to that of a single crystal whose

mean free path was determined by de Haas-van Alphen measurements [15] where

ρ0 = 0.6 µΩcm, ξ0 = 79 Å, the residual resistivity ratio is 270, and the mean free

path is ` ≈ 2000 Å- 2400 Å, depending upon the field−crystal orientation.

From the relation ρn` =
[

2
3
N(0)vF e

2
]−1

we have `film = `bulk
ρn(bulk)

ρn(film)
. This

gives `film ≈ 58 Å. From the relation `film/`bulk = RRRfilm/RRRbulk [5], where

RRR is the residual resistivity ratio ρ(300K)/ρ0, we find `film ≈ 35 Å. Either

estimate gives ` < ξ0 implying that the films are in the dirty regime, which is in

conflict with the conclusion reached from the pinning force density measurements

described below, where the pinning of vortices in the films is found to be similar
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to that found in high quality single crystals. This contradiction can be resolved

by recognizing that it is likely that the connections between the grains and/or

islands are considerably more resistive than the crystal material due to the high

resistivity of the junctions between grains. If instead, we make use of a property

of very clean superconductors wherein the introduction of a small amount of point

disorder, the upper critical field, Hc2(0), will be enhanced as a result of the decrease

of the superconducting coherence length ξ with minimal effect upon the critical

temperature, Tc [16], we arrive at the relation

`film = `bulk

(
ξfilm(0)

ξbulk(0)

)2

.

This gives `film ≈ 1800 Å for the small grain film and `film ≈ 1600 Å for the large

grain film. It seems most likely that the crystalline grains of the films have a defect

density and corresponding mean free path comparable to single crystals. If this is

true, then the grains of the SG film, with diameters of d ∼ 0.1 − 2 µm have few

if any defects. The grains of the LG film, with diameters of d ∼ 0.5− 10 µm have

only a small number of defects.

The primary source of impedance to vortex motion in the SG films is the

surface barrier of the grains and defects within any amorphous material between

the grains. Further evidence for a very low density of defects within the SG sample

is found from low current resistivity, ρ(T ), and V − I data. The natural log of the

resistivity versus inverse temperature, ln(ρ(T )) vs. 1/T , at various magnetic fields,

is plotted in Fig. VI.5. The data conform to a thermally assisted flux flow (TAFF)

type behavior over the linear portions as plotted, corresponding to a resistivity

that is described by ρ(T ) = ρ0exp[−U/kBT ] [8].

In contrast, the large grain film exhibits resistivity, ρ(T ), behavior sug-

gestive of first order melting of a vortex-lattice. In Fig. VI.6 and the inset, the

sharpness of the resistive superconducting transition in various magnetic fields is

seen in both ρ(T ) and d(ρ(T ))/dT , with transition widths of ∆T ∼ 0.2 K for all

fields. However, no measurable hysteresis in temperature could be observed, so
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Figure VI.5: Natural log of the resitivity vs. inverse temperature, lnρ(T ) vs 1/T ,

data from film “A”. The data demonstrate that the vortex ensemble is in a TAFF

regime in this film.
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Figure VI.6: Resistivity, ρ(T ), data for film “B”. Note that the peak effect like

behavior seen in the ρ(H) data is not observable here. The sharpness of the

dρ(T )/dT data for film “B” indicates that the melting transition is, or is very

nearly, a first order vortex lattice melting transition. Transition widths do not

broaden measurably with field, with ∆T ≈ 0.2 K for all fields.
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the transition may just be a very clean vortex glass [17, 18, 19], or Bragg glass [20]

transition.

While the peak effect is completely absent in ρ(T ) data for both films,

the behavior of ρ(H) data is significantly different, and seemingly contradictory.

In Fig. VI.7, ρ(H) data for both films are shown in a semi-log plot to reveal the

low resistivity features. The difference between the behavior of the two samples is

highlighted in the inset which shows ρ(H) data from both at T = 4.5 K normalized

to the residual resistivity values of ρ0 and to the onset field, Honset, of the transition.

A finite resistivity value is observed down to the lower field value of the peak

effect region in both samples. The behavior of the resistivity at field values below

Honset, where the peak effect in ρ(H) ought to be seen, can be understood as the

result of the extremely weak pinning in these samples, with the higher resistivity

contribution from vortex dissipation arising in the cleaner small grain sample. In

the inset, note the kink in the data at H/Honset ≈ 0.7 for the small grain sample,

and the sharp drop in the data at H/Honset ≈ 0.8 for the large grain sample. These

features are very close to where the resistance would vanish or reach a minimum,

if the peak effect were observed [21].

It appears then, from the above results, and also from pinning force calcu-

lations presented below, that while the weak pinning condition is definitely satisfied

in both samples, this is not a sufficient condition for the peak effect, and thus the

peak effect mechanism is frustrated or absent. Furthermore, keeping in mind that

all measurements start from the ZFC condition, the complete absence of a resis-

tive signal below the transition in temperature, ρ(T ), and the contrasting finite

value below the transition in field , ρ(H), points to an obvious difference of the

evolution of the dynamical state of the vortices upon approaching the transition

by increasing either temperature or magnetic field. This difference is further high-

lighted by the result that the upper critical field lines, determined by using the

field/temperature value at a resistivity value of ρ = 0.1 µΩcm, Hc2(T )[ρ(H)] and

Hc2(T )[ρ(T )] do not agree, and, are separated by a distance larger than can
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Figure VI.7: Resistivity, ρ(H), data for films “A” and “B”. The inset shows data

from both samples at T = 4.5 K, normalized to ρ0 and to the field value of the

onset of the transition, for comparison of behavior in the region where the peak

effect is usually observed. See the text for further discussion.
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be attributed to any experimental error. It is suggested here that the difference

in vortex dynamics for the resistive transition in temperature, ρ(T ), and in field,

ρ(H), as well as the discrepancy between Hc2(T )[ρ(H)] and Hc2(T )[ρ(T )] can be

attributed to differences in the structural response of the atomic lattice with re-

spect to field and temperature. That is, the dynamic behavior of the vortices are

responding to changes within their environment, i. e., changes of the electronic

band configuration due to thermal or field driven structural deformation and/or

fluctuations. Further explanation of this suggestion is given in the Discussion

section below.

Finally, a comparison is made between the behavior of ρ(H) in the large

grain film, “B”, and of a similar large grain film grown at the same time, “C”,

on a LaAlO3 substrate in Fig. VI.8. The samples have a similar morphology, (see

Fig. VI.1 right panel,) with slightly larger island diameters on the LaAlO3 grown

film, and presumably have the same in-grain point defect density. Remarkably

though, in contrast to film “B”, there is no detectable resistive signal in film “C”

in the peak effect region. As seen below, the pinning force density of the LaAlO3

grown sample far exceeds either of the Al2O3 grown films throughout all regions

of the phase diagram. With the only difference between the samples being the

substrate upon which they were grown, there are two possible explanations for

the dramatic difference of pinning characteristics. (i) La ions could conceivably

have diffused from the substrate into the the interface region of the CeRu2 film.

However, it is unlikely that this would have any impact on the pinning properties

since the regions of the film away from the interface would not be contaminated,

and it has been shown that La doping produces no increase in the pinning potential

[22]. (ii) substrate-film strain is seen to affect the resistivity ρ(T ) of the sample as

it is cooled down, (as mentioned above for Al2O3 grown sample “B”,) and at low

temperatures the strain is the greatest. While the strain distribution throughout

the film it is not quantifiable at this time, what is known is that the thermal

expansion coefficient values of the substrates are considerably different;
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attributed to strain in the films. See the text for details.
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the large grain film “B”. The low field Jc values of the two samples are comparable,

however, an increase of Jc in the large grain film over that of the small grain film

at fields corresponding to the peak effect region is seen.
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7.50 × 10−6 K−1 for Al2O3 and 9.2×10−6 K−1 for LaAlO3, corresponding approx-

imately to a 20% higher in plane strain on the single crystal islands. How this

strain changes the ρ(H) peak effect behavior is given further attention to in the

discussion section below.

The behavior of the critical current density, Jc(H,T ), and pinning force

density, Fp(H,T ), obtained from V−I measurements, of the small and large grain

Al2O3 grown films, is examined next. The critical current densities, Jc(H), at

fixed temperatures, of both samples is shown in Fig. VI.9. The value of Jc(H) was

determined by the value of the current at a fixed voltage value of 1×10−7 V, for

each V−I curve. The value of the critical current density in both samples at low

fields are nearly equal. In the field regions where the peak effect is expected to

occur, a definite increase of the critical current density of the large grain sample

over that of the small grain sample is seen.

The low field values of Jc, and subsequently Fp, in both films are of

the same order of, or less than, that found in high quality single crystals [9, 23].

The pinning force density, defined as Fp(H) = Jc(H)×H, of both samples, at

temperatures ranging from 2 − 5 K plotted vs field scaled to the upper critical

field, H/Hc2, is shown in the top panel of Fig. VI.10. The emergence of the

peak effect in the large grain sample, already evident from the behavior of the

critical current density, is readily seen here. In the lower panel of Fig. VI.10, the

scaled pinning force, κ1Fp/Hc2, as derived by Tenya et al. [9], is plotted, where

κ1 = Hc2/
√

2Hc is the Ginzburg-Landau parameter. The values of κ1(T ) used here

to scale Fp are those found by Tenya et al. [9]. If the pinning mechanism at each

temperature value is the same over the entire field range, then Fp(H) will scale

onto a single universal curve. The low field−low temperature region of the data

of the small grain sample does in fact scale onto a single curve, as does the high

field−low temperature region of the data of the large grain sample. It also appears

that the low field−low temperature data of the large grain sample might also scale

to the same line as the small grain sample, though the data in this region
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Figure VI.10: Fp(H) and scaled Fp(H) data for films “A” and “B” demonstrating

the different behavior in and outside of the peak effect region. Note the emergence

of the PE in the dirtier film, “B,” similar to that seen in single crystals.[23] A direct

comparison of pinning force values of the films to single crystals is complicated by

the additional pinning due to grain boundaries in the films.
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is too limited for a definite observation. These results highlight the different nature

of the pinning mechanisms in the conventional and peak effect regions, a result

noted for single crystals [23], and a point that will be returned to in the discussion

section below. The difference between the pinning force density, ∆Fp, of the small

and large grain samples is shown in Fig. VI.11 to further emphasize that the peak

effect mechanism is absent in the small grain sample, and that the increase seen

in the large grain sample is in fact attributable to the emergence of the peak effect

mechanism.

In Fig. VI.12 magnetization data from the target sample is compared to

that of the large grain film. The peak effect is seen in the target sample and com-

pares to typical results for polycrystalline samples [21]. The magnetization data

for the film show that the pinning force density remains finite up to a field value

near to the edge of the peak effect region, then collapses to zero. This behavior is

observed for all M(H) data at temperatures 5.5 K ≤ T ≤ 6.1 K. The value of the

critical current density, Jc(H), determined via transport measurements, on both

films and the difference, ∆Jc(H), are plotted for comparison. The increase of Jc

in the large grain film is seen to be correlated with the peak effect region. Also,

indicated by the shaded area, is the region over which the superfluid density is

suppressed. This is inferred from scaling of the E − J data discussed below. The

important features to be noticed are (i) that the low field boundary of this critical

region coincides with the sudden drop in the pinning force density indicated by

M(H) data, (ii) the critical field, Hρ, coincides with the maximum of the peak

effect, and (iii) the upper field boundary coincides with the maximum of the pin-

ning force density peak, Hp2, inferred from ∆Fp(H) data, just prior to the collapse

of the peak effect region.

Electric field vs. current density, E − J , data is show in the inset of

Fig. VI.13 from film “B”, and in the main panel the highlighted portions of the

same data after they have been scaled. A modified scaling form based on the model

of Fisher, Fisher, and Huse [19], has been used, where now the vortex glass
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Figure VI.12: Normalized magnetization data, M(H), at T = 3.0 K, for the target

sample and the large grain film “B”. Notice that the peak effect is observable in the

polycrystalline target sample, with a region of low to zero critical current density,

Jc = 0, between the conventional and peak effect regions. The pinning force density

of the film remains finite well into the region where it disappears for the target

sample, and then rapidly collapses over a small field range at a value just below the

peak effect region. Also shown are the critical current densities of the small grain

(“A”) and large grain films (“B” and “C”) as determined from V−I measurements.

Note that the critical current density in film “C,” grown on an LaAlO3 substrate, is

much greater than films “A” and “B,” grown on Al2O3 substrates. The difference

of the critical current density values of “A” and “B,” ∆Jc(H), is plotted as well,

emphasizing that the increase of the critical current density, Jc(H), in the large

grain sample is attributable to the peak effect. The shaded area corresponds to a

region of suppressed superfluid density as evidenced by critical dynamic-like vortex

behavior with the critical field value, Hg, corresponding to the maximum of the

peak effect loop. See the text for further explanation.
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Fig. VI.12.
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correlation length diverges with field as ξg ∝ |H −Hg|−ν , and E and J scale as

E∗ ≡ (E/J)ξz+2−d
g and J∗ ≡ (J/H)ξd−1

g . In Appendix C an argument for this

form is developed, and shown generally that this field dependent scaling of E − J

data provides an equivalent description of vortex glass critical dynamic behavior

as that of the established temperature dependent scaling form.

It should be emphasized, however, that the results from using the modi-

fied scaling analysis do not correspond to a vortex-glass melting transition, i. e., a

vanishing linear resistivity of the form ρ(T ) ∼ |T − Tg|−ν or ρ(H) ∼ |H −Hg|−ν .

Thus, the notation Hρ is used instead of Hg to indicate the critical field about

which the data conform to the modified scaling relation of FFH. Recall the above

results for ρ(T ) where there is no measurable resistivity below the initial, nearly

first order, transition. Also, as seen in Fig. VI.14, the field value Hρ lies in the

middle of the ρ(H) tail and corresponds to the lower field peak, Hp1, of the double

peak structure seen in ∆Fp in Fig. VI.11, and, the field value of the second peak in

∆Fp corresponds to the usually observed maximum of the anomalous increase of

the pinning force density just prior to Hc2. Based upon the theoretical arguments

developed in Appendices C and D, we suggest that the scaling behavior of the

E − J data in CeRu2 is evidence of a region of a fluctuating suppression of the

superfluid density, ρs centered at Hρ, which coincides with the field value of the

maximum of the peak effect magnetization curve, that the fluctuation region as

defined by the field values over which E − J scales is the peak effect region, and

most importantly that this Hρ(T ) line coincides with at least three other important

phenomena known for some time to be associated with the peak effect (Fig. VI.15).
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VI.D Discussion

Before discussing further the results from the data presented above, im-

portant results from other studies are reviewed briefly below.

VI.D.1 Review

The softness of CeRu2 and the band structure model.

Elastic moduli of high quality CeRu2 single crystals were measured by an

ultrasonic method from T = 300 K - 2 K by Suzuki et al. [7], and Yoshizawa et al.

[8]. The results of Suzuki et al., revealed a huge lattice softening in both transverse

(cT ) elastic moduli, (c11 - c12)/2 and c44, of 55% and 12%, respectively, over this

temperature range, without a structural phase transition. An additional anomaly

consisting of a kink at T = Tc in both transverse moduli was also found. The

bulk modulus, cB, however, behaves conventionally, increasing with a decrease of

temperature and saturating at low temperature. The shear modulus anomalies and

the normal behavior of the bulk modulus are suggestive of structural fluctuations

coupling to to the symmetry breaking strain. Based on band structure calculations

[24] which reproduce the experimentally determined Fermi surface [25], Suzuki et

al., showed that the unusual elastic behavior can be accounted for by a narrow

degenerate band with a high density of states just above EF which splits in response

to the shear strain.

The measurements of cT = 1
2
(c11−c12)(H) in field by Yoshizawa et al., re-

vealed even more remarkable anomalous behavior that could be directly correlated

with the peak effect. As shown in Fig. VI.15, the kink in cT at T = Tc, is sup-

pressed to lower temperatures by a magnetic field, and the field at which this kink

occurs corresponds to the upper field of the peak effect region. Additionally, there

is an anomalous increase of the value of cT (H) in the peak effect region which is

hysteretic in a manner that correlates with the hysteresis of the peak effect, and lies

along the same line as the Hρ line determined from the scaling of E − J data, as
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shown in Fig (VI.16).

Relaxation of peak effect region

Time dependent magnetization measurements of CeRu2 in the mixed

state by Ho et al. [10], clearly show a relaxation of the magnetization in the

peak effect region. It was observed that the relaxation rate of the magnetization

is not uniform over the field loop. Relaxation of the magnetization was seen to

occur at a much faster rate in the last quadrant of the loop. This behavior can

readily be correlated with the hysteretic features of the magnetization loop and

of the transverse elastic moduli cT . Furthermore, it was found that after a rapid

cooling of the sample from room temperature to the superconducting state in zero

field, the peak effect was no longer observable. Subsequently, warming the sample

back up and cooling at a slow rate resulted in the restoration of the peak effect.

The rapid cooling scenario freezes the crystal into a stable, hardened state. This

strongly supports the idea that the structural properties of CeRu2 are a key driving

mechanism of the peak effect.

Anomalous magnetostriction behavior

Tachiki et al. [4], reported magnetostriction measurements of CeRu2 in

the peak effect region. They found an anomalous expansion of the atomic lattice

in this region that is hysteretic in field. As shown in Fig. VI.15 distinct features of

the magnetostriction behavior also correlate with the features of the peak effect.

These results have also been considered as evidence for the FFLO state.

While one usually thinks of the pinning force as acting on the vortices, as

pointed out by Schlesser et al., an equally large distortion force is transferred to the

body of the material.[26] Under normal circumstances the structural integrity of the

atomic lattice is such that distortions are a negligible effect. However, as discussed

above, due to the weak shear modes at low temperatures, CeRu2 is particularly

susceptible to strain forces. There are two stress forces due to the magnetic field
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and is attributed to the different effects that increasing temperature or magnetic

field have on the vortex dynamics. The Hρ(T ) line, inferred from scaling of E − J

data coincides with the Ta↑ line determined from the shear modulus structural

anomaly shown in Fig. VI.15. The lines Tc, Ta↑, and Ta↓ from Yoshizawa et al., [8]

are scaled in temperature and field to adjust for the different Tc(0) and Hc2(0)

values of their crystal and of the film. The shaded region indicates the region of

scaling of the E − J data corresponding to a suppression of the superfluid density

with the minimum density along the Hρ line.
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to be taken into consideration. (i) that caused by the flux density gradient profile:

inward for ascending and outward for descending fields, as described by the critical

state model, resulting in dilation or contraction of the crystal along the applied

field direction. (ii) the line tension of a vortex flux tube which attempts to restore

the flux tube to a straight, (unkinked,) structure. Within the standard London

and Ginzburg-Landau theories, there is no coupling between the vortex lattice

and the crystal. A full microscopic theory of the mixed state, using a nonlocal

London model [27], contains this coupling via the nonlocal relation between the

current density and the vector potential, Jα(r) =
∫

Qαβ(r− r′)Aβ(r′)d3r′, where

the kernel Q is dependent upon the Fermi surface, pairing symmetry, and field

orientation [28, 29]. Then, if the flux line induced stress is dominant, this would

lead to a scenario where, upon entering the peak effect region from the lower field

region where the vortex ensemble is a vortex liquid (or in a low pinning state in

some cases), a pinning mechanism of a different origin than that in the conventional

irreversible region results in an enhanced coupling of the vortices to lattice defects.

The restoring force of the vortex line tension results in a contraction (dilation) in

the direction perpendicular (parallel) to the field.

Anomalous increase of the penetration depth

Magnetic penetration depths, λ, in the mixed state of CeRu2, measured

by muon spin rotation [12, 13], have been seen to undergo an anomalous increase

in the peak effect region. An increase was observed from λ ' 2000 Å at T = 2 K in

the field region below the peak effect region, to λ ' 3000 Å within the peak effect

region, indicating a significant fractional increase of the normal state electrons,

i.e., quasiparticles, outside of the vortex cores. The maximum of the increase of λ

corresponds to the maximum of the peak effect loop. With the penetration depth

λ ∝ ρ
−1/2
s , and the superfluid density given by [13],

ρs ∝ 1−Nenv(H)/Nenv(Hc2), (VI.1)
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where Nenv(H) is the quasiparticle density of states outside of the vortex cores,

the above increase of λ corresponds to a reduction of the superfluid density by

approximately 50%. This enhancement of the normal state carrier has been shown

to be consistent with the generalized FFLO state, where the nodal vortex state

results in an increase of the normal state volume of the sample. Below a different

explanation is proposed as to the origin of the increase of the normal state elec-

trons that is consistent with the experimental results concerning the atomic lattice

moduli, cT and the anomalous magnetostriction behavior discussed above.

The martensitic transformation

CeRu2 belongs to the C15 cubic Laves phase class of compounds, a struc-

tural cousin of the A15 compounds. A structural phase transition known as a

martensitic transformation, where the lattice undergoes a spontaneous distortion

from a cubic to a tetragonal symmetry, is known to occur in superconducting A15

and C15 (Laves phase) compounds [30]. An important characteristic of this class

of materials is that a lattice instability will occur at low temperatures if the Fermi

energy is close to the bottom of narrow degenerate sub-bands with a high density

of states. Near the bottom of these sub-bands the density of states are expected

to diverge as ∼ (ε− ε(0)
m )−1/2, where ε

(0)
m is the mth sub-band [31]. At temperatures

below the transition, TM , the electrical conductivity increases significantly due to

the splitting of the degenerate sub-bands resulting in an excessively high density of

states N(εF ) [31, 32]. Another well know property is that this transition is easily

frustrated by disorder [33].

As mentioned above, CeRu2 at low temperatures, is close to, but does

not undergo, a structural phase transition. The issue of the martensitic transition

is raised here for three reasons; (i) this transition is known to occur in the C15

class of compounds to which CeRu2 belongs, (ii) because of the similarity of the

electronic band structure arrived at by Suzuki et al. [7], and that described above,

and (iii) an increase of normal state conduction electrons, such as that caused by
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a martensitic transformation, in the superconducting mixed state would suppress

the superfluid density, leading to a softening of the vortex lattice shear modes;

providing the mechanism of the peak effect.

An argument against CeRu2 being near a martensitic transformation is

that the martensitic transition temperature, TM , is suppressed to lower tempera-

tures by the application of a magnetic field at a much slower rate than the critical

temperature Tc [31, 33], where the shift in temperature is given by

∆TM(H) = −0.18TM(0)[µBH/εF (0, 0)]2 (VI.2)

and εF (0, 0) is the Fermi energy at T = 0 in the cubic phase. Since, in the

case of CeRu2, at zero field we would have Tc & TM , then with the application of a

magnetic field Tc would lie below TM , removing the presumed source of suppression

of ρs.

While it may be possible that CeRu2 is very close to a martensitic tran-

sition that is being frustrated in an unusual manner, this does not need to be the

case. What matters is that the degenerate, high density of states band structure

of CeRu2 described by Suzuki et al. [7], will be split in the same manner by the

structural fluctuations of the lattice and by the application of a magnetic field.

The missing peak effect in ultraclean CeRu2 single crystals

Shown in Fig. VI.17 are the pinning force densities of single crystals of

CeRu2 with varying levels of disorder, determined by electrical resistivtiy mea-

surements, as originally published by Hedo et al. [23]. These include a superclean

sample with a residual resistance ratio (RRR) of 270, a very clean (RRR = 240),

and dirty (RRR = 13) crystal. Remarkably, the pinning force density disappears

in the peak effect region in the superclean crystal. A similar result was seen by

Tenya et al. [34], where they observe that the peak effect from M(H) becomes

weaker with increasing RRR. It appears then that disorder is actually a necessary

ingredient for the peak effect mechanism, a point that will be returned to below.
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Figure VI.17: Figure from Hedo et al., [23]. Pinning forces in single crystals of

CeRu2. The pinning force was determined by current dependent resistivity mea-

surements for the samples with RRR = 12 and RRR = 240, shown by open circles

and squares, respectively. Solid circles are obtained from I-V data in fields. Data

obtained from magnetization measurements for the RRR = 270 and RRR = 13

samples are shown as dotted and solid lines. Note that for fields below the peak

effect region, the pinning force density increases with decreasing disorder, but, in

the region of the peak effect the pinning force density disappears for the superclean

RRR = 270 sample.
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VI.D.2 Current results: relation to known peak effect anomalies

The question naturally arises as to why the peak effect is completely

absent in the small grain film, and only emergent in the large grain film, if they are

of such high quality with respect to lattice defects within the grains. An argument

is developed below for what this result, along with the evidence for suppression of

the superfluid density from the scaling analysis of the E−J data, contributes to

the picture of the peak effect mechanism in CeRu2.

The evidence from the studies reviewed above strongly point to a coupled

structural-electronic origin of the peak effect. The simple explanation for the

results of this study is that the grains of the films are under differing average levels

of strain. The small grains of film “A” have a higher level of surface tension,

and smaller available internal volume able to undergo the intrinsic atomic lattice

deformation process. The large grains of film “C”, grown on the LaAlO3 substrate,

are well attached to the substrate and experiences a larger interface strain than film

“B”, grown on an Al2O3 substrate. Film “B”, under the least external and surface

strain, exhibits a nascent peak effect because it is able to deform just enough

to begin the structure driven splitting of the degenerate electronic sub-band and

shifting of energy levels.

While this explanation of the “missing” peak effect in our films is consis-

tent, there remains the matter of the “missing” peak effect observed in ultraclean

CeRu2 single crystals [9, 23], mentioned above. Since the crystals in the above

studies are relatively large and of the same size, then the size/strain effect postu-

lated for the grains can not be relevant here. Thus, disorder to a certain extent

plays a role in enhancing or aiding the peak effect process. We consider two possi-

ble reasons for this. (i) As happens with the martensitic transformation discussed

above, the structural deformation process is likely readily frustrated by defects.

The deformation of the atomic lattice is tied to the electronic properties, i.e., the

band splitting effects. If the deformation is unimpeded and the splitting of the

bands continues beyond a critical level, then N(εF ) will be excessively large and
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the superfluid density will never recover enough stiffness to allow the vortex lattice

to acquire a sufficiently strong shear modulus, thus the enhancement of the ability

of the vortices to acquire a higher pinning configuration will be lost to the over

weakening of the rigidity of the vortex lattice. (ii) The coupling of the vortices to

the lattice plays an important role in driving or sustaining the peak effect mech-

anism. (a) The absence of defects removes the defect-vortex line coupling strain

from the deformation dynamics. A nearly perfect vortex lattice, with its motion

unimpeded will be easily displaced by the Lorentz force of an applied current, re-

sulting in transport behavior of the TAFF kind, as observed in the small grain

film whose grain dimensions are of the same length scale as the mean free path.

(b) The collective critical nature of the vortices indicated by the scaling of the

E−J data may provide an enhancement of the vortex line tension via the corre-

lated dynamical manner in which vortex motion takes place, beyond that of the

single line picture.

While the point in (i) above sufficiently explains the single crystal picture,

and it is not invalidated by the results from the films, it can not be the case here

if, as presumed, the strained state of the films prevents the initiation of the peak

effect mechanism. Thus, the latter idea is further explored here, particularly the

collective nature of the vortices in the peak effect region.

If, as suggested by the scaling properties of the E − J data in the large

grain sample, the vortex ensemble is in a critical dynamical state akin to a vortex

glass critical region, then a correlation length scale, ξvg, associated with the dy-

namical behavior plays a relevant physical role. Using the scaled E − J data from

the large grain sample, the coherence length of the vortex glass at the boundary of

the peak effect region is calculated [19, 35]. The values are given in Table VI.1. It

is seen that the coherence length, ξvg is effectively cutoff by the grain size dimen-

sions in the small grain film prior to, or just inside the peak effect region, and will

be cutoff at some point in the peak effect region prior to the critical field line Hρ.

While these results are certainly not conclusive, they suggest that the granular
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regions must reach a critical size to support the critical dynamic vortex behavior,

which in turn, plays a supporting role in the structural deformation process of the

atomic lattice. The enhancement of vortex line-atomic lattice coupling in the peak

effect region may not require the somewhat exotic scenario suggested above, but

it is apparent that a sufficient amount of disorder must be present for the vortices

to be able to couple to, and exert strain upon, the atomic lattice. What should

be understood from the scaling of the E − J data, is that the dynamic properties

of the vortices are changing in response to a change in their environment, and

as such, the Hρ(T ) line does not necessarily constitute a vortex phase transition

boundary.

Finally, we are left then with the following scenario summary: The peak

effect occurs because of enhanced pinning of the vortices. The enhanced pinning

is a result of the vortices being able to rearrange into a stronger (more tangled)

pinning configuration. This is made possible by a weakening of the shear moduli

of the vortex lattice. The weakening of the vortex lattice shear moduli is a result

of a reduction of the superfluid density, c66 ∝ ρs, etc. The suppression of the

superfluid density comes from an increase of the normal state electrons, quasipar-

ticles, outside of the vortex core. The increase of quasiparticles has two possible

(and not mutually exclusive) sources. (i) The GFFLO state described above. (ii)

A frustrated martensitic like scenario which is consistent with both the observed

lattice softening in CeRu2 and the doubly degenerate band model of Suzuki et al.

[7].

The latter scenario is the interpretation we favor. Many previous argu-

ments against the GFFLO state persist. Additionally, the difference in the upper

critical field lines, Hc2(T ), determined by resitivity data as a function of field or

temperature, Hc2(T )[ρ(H)] or Hc2(T )[ρ(T )], reveals an asymmetry of the vortex

dynamical state with respect to approaching the upper critical field in temperature

or magnetic field. This asymmetry is not accounted for by the (G)FFLO model,

but can be attributed to a field−temperature asymmetry of the strain moduli. The
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anomalous increase of the normal state electron density in the peak effect region

can be explained naturally by a band structure that is known to exist. The lattice

deformation-electronic band splitting phenomenon may be frustrated or aided by

magnetostriction effects. If this is the case, this could possibly be investigated by

measurements of the superfluid density in single crystals with a variation of the

angular dependence of the applied field, or by measurements under uniaxial and/or

hydrostatic pressure.

VI.E Summary

The first study of the peak effect in CeRu2 films grown by the pulsed

laser ablation method is reported here. The films exhibit residual resistivities and

low field pinning force densities comparable to single crystals, yet the peak effect

is not readily observable in electrical resitivity, ρ(H,T ), or magnetization, M(H),

measurements. The pinning force density, determined by transport measurements,

in the peak effect region is nearly zero in the small grain film, and is seen to

be emerging with a much lower than usual strength in the large grain size film.

Magnetization, M(H), measurements indicate a zero pinning force density in both

samples in the peak effect region. In the region of the emerging peak effect, the

large grain film exhibits electrical transport behavior reminiscent of the dynamical

behavior of a vortex glass. In this same region, transport measurements of the

small grain size film are found to be consistent with a thermally assisted flux

flow (TAFF) scenario. The vortex-glass like behavior associated with the peak

effect in the large grain film is considered to be evidence of fluctuations of the

superfluid density, ρs. Evidence is seen for an important role of the softening of the

atomic lattice moduli, from previous ultrasound, magnetostriction, and magnetic

relaxation studies [4, 7, 8, 10], and for the coupling of the vortex lattice to the

atomic lattice. The critical behavior of vortices in the large grain film, inferred

from scaled E−J data, can be correlated with both the anomalous field dependence
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of the shear moduli and the magnetostriction. This study strongly suggests the

origin of the peak effect in CeRu2 has a conventional explanation, originating with

the unusual structural properties and the degenerate band structure near the Fermi

level.
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Table VI.1: Values of the critical temperature, Tg, and field, Hg for the large grain

film. Also listed are values for the zero temperature vortex glass correlation length

ξvg
0 , the values of ξvg and the lattice constant a∆ at the lower field of the peak

effect region, ξvg
− and a−∆, respectively, and the ratio of the temperature at which

the correlation length will exceed the grain size to the temperature at the critical

line, Hg(T ), for the small and large grain films.

T(K) Hg(T) ξvg
0 (Å) ∆ξvg

0 (Å) ξvg
− (Å) a−∆(Å) tsg tlg

2.0 5.25 180 65 1160 271 0.75 0.94
2.5 4.52 320 105 2300 309 0.61 0.91
3.0 3.62 1100 240 9240 346 0.05 0.78
3.5 2.72 1580 370 27800 489 − 0.56
4.0 1.72 1670 460 41900 631 − 0.43
4.5 0.87 1900 690 87610 892 − 0.08
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A portion of the text and data of this chapter appears as it will be pub-

lished in the article, “Anomalous critical dynamic behavior of vortices amidst a

nascent peak effect in granular CeRu2 films,” B. J. Taylor, R. E. Baumbach, T.

A. Sayles, and M. B. Maple. The dissertation author was the primary investigator

and author of this article.
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Appendix A

The modified vortex glass scaling model of Rydh, Rapp,

and Andersson

Recently Rydh, Rapp, and Andersson (RRA)[1, 2] developed a modified

Vortex-glass (MVG) model based on the original model of Fisher, Fisher, and Huse

(FFH) [3], and the empirically observed equation for the vortex glass melting line

by Lundqvist et al. [4], where,

Bm ≈ 1.85Φ0

(γd)2
[(1− t)/t]α , (A.1)

with d the interlayer spacing, and α ≈ 1. RRA arrive at a scaling law for the

vanishing of the resistivity as the critical temperature Tg is approached, such that

resistivity data taken in various constant magnetic fields will collapse onto a single

curve when it is plotted as

[
ρ(T )

ρN

]
vs.

T (Tc − Tg)

Tg (Tc − T )
− 1. (A.2)

Additionally, Lundqvist et al., used the expression of the vortex lattice

melting line arrived at by Blatter and Ivlev to lend support for the melting line

equation. It is easily seen that Eq. (A.1) can be recovered as a high Q or q limiting

case of Eqs. (III.15) and (III.16) where α = s̃.
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Appendix B

The Columb-gas model

The scaling laws from the Coulomb-gas (CG) scaling model [5] are nearly

equivalent to those found from the modified vortex-glass thermal depinning model

of Rydh, Rapp, and Andersson [1, 2]. This can be seen simply by examining

the scaling functions of the resistivity in the two cases. In the CG model the

resistivity data, ρ(T ), is predicted to scale such that for all applied magnetic fields

in the relevant regime, the data will collapse onto a single curve when plotted as,

ln

[
ρ(T )

ρN

]
vs.

T (Tc − Tg)

Tg (Tc − T )
. (B.1)

RRA note that their scaling law is very similar to the CG scaling relation,

and surmise that there is a likely connection between the generalized Coulomb-gas

model and their modified Vortex-glass model. The situation is thus: If resistivity

data will scale according to the CG model it will also scale according to the MVG

model, and vice versa. This equivalence is shown in Fig. (B.1) where generic

resistivity data for two different magnetic fields that follows the MVG relation,

ρ(T,B) = ρN

∣∣∣∣T (Tc − Tg)

Tg (Tc − T )
− 1

∣∣∣∣s (B.2)

is plotted according to both scaling relations.
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However, it is possible to distinguish between the two cases. If, as is

shown in Fig. (B.2), we plot generic resistivity data which follow the CG relation

for resistivity instead,

ln

[
ρ(T,B)

ρN

]
= −A/

(
T (Tc − Tg)

Tg (Tc − T )
− 1

)0.5

, (B.3)

the data can again be seen to collapse in either case, however the data fail to

exhibit the predicted power law behavior in the MVG scaling plot. Thus, it is

quite obvious, from a formalistic and phenomenological examination, that the CG

model is a special case or subset of the MVG model, which is itself a special case

(the large q limit) of Eq. (III.16).



159

1

2

0 10 20 30 40 50 60

ln[ρ/ρN] Tg = 40 K
ln[ρ/ρN] Tg = 50 K

ln[
ρ /ρ

N]

T(Tc - Tg)/Tg(Tc-T)

Coulomb-Gas Scaling

0

10

20

30

40 50 60 70 80

ρ/ρN : Tg = 40 K
ρ/ρN : Tg = 50 K

ρ (
a.u

.) ρ(T) = ρ
N

T(Tc - Tg)
Tg(Tc - T)

s
- 1

T (K) 0

0.1

1

10

100

0 0.1 1 10 100

ρ/ρN : ρN = 10, Tg = 40 K
ρ/ρN : ρN = 20, Tg = 50 K

ρ /ρN  

T(Tc - Tg)/Tg(Tc-T) - 1 

Modified Vortex-glass Scaling

Figure B.1: Generic resistivity data that follow the modified Vortex-glass relation

ρ(T,B) = ρN
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Tg(Tc−T )
− 1

∣∣∣s, plotted according to the CG (left panel) and MVG

(right panel) scaling laws. Notice the linear (on a log-log plot) behavior of the

data in the MVG plot, a key indicator of vortex-glass behavior.
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MVG (right panel) scaling laws. Notice the lack of linear (on a log-log plot) be-

havior of the data in the MVG plot, indicating that vortex-glass behavior is not

the case here.



Appendix C

Modified vortex glass scaling model: Magnetic field

dependencies

The current−voltage characteristics of a vortex ensemble that undergoes

a vortex-glass melting transition in a fixed magnetic field, H, is such that, as

the temperature approaches the transition temperature Tg, E−J data will scale

according to the form arrived at from the ansatz of (FFH) [3, 6]. The dissipative

electric field with a dc current density J will scale as

E ≈ Jξd−2−z
g E±(Jφ0ξ

d−1/cT ) (C.1)

from which the scaled electric field and current densities are then given by

E∗ ≡ (E/J)ξz+2−d
g ,

and

J∗ ≡ (J/T )ξd−1
g .

ξg is the vortex glass coherence length which, in the critical region, vanishes linearly

with temperature such that ξg ∝ |T − Tg|−ν . The exponents ν and z are referred

to as the static and dynamical critical exponents, and d is the dimensionality of

the vortex system.

Starting from the form of the coherence length given by Brandt [7],

ξg(H,T ) = ξg(H)|1− T/Tg|−ν , we naturally expect a divergence of the correla-

tion length scale ξg(H,T ) regardless of whether the melting line is approached
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in field or in temperature. The assumption that ξg(H) should take the form

ξg(H) ∝ |1−H/Hg|−ν is supported by both experimental observation and related

theoretical models. Electrical transport data exhibit a linear dependence with re-

spect to field, H, over a range beginning at a critical field Hg when plotted as

[d[ln ρ]/dH]−1 vs H. This field dependence is analogous to the linear temperature

dependence of ρ(T ) data plotted as [d[ln ρ]/dT ]−1 vs T over a temperature range

beginning at the critical temperature Tg and extending up to a temperature Tu
g

corresponding to the upper limit of the critical region. Theoretical support for this

form can be found both in the work of Gingras and Huse [8], and Fisher [9]. In

the former, is it observed, within the context of the random field X-Y model with

topological defects, that the correlation length ξ diverges as ξ ∼ (H −Hc)
−ν as a

transition from a topologically ordered phase to a disordered phase is approached.

Fisher considered the scenario when the field-tuned superconductor-insulator tran-

sition from the vortex- to electron-glass phase is approached as the magnetic field

increases in the T → 0 limit. The assumption was also made that as one nears the

critical field of the transition, Bc, a diverging correlation length is expected such

that ξB ∼ (B −Bc)
−ν .

Next, we return to the derivation for the original expression for the scal-

ing form of the current density arrived at by F-F-H [3], J∗ ≡ (J/T )ξd−1
g . This

expression is found by the argument that the characteristic current density within

the scaling regime will be that which is large enough to change the statistics of

the phase of the order parameter and that of the vortex-line fluctuations. In an

isotropic system, the variation in the phase will be ∼ 2π within a correlation vol-

ume so then |∇φ| ∼ 1/ξ. With the coupling of an external current to a phase

gradient via

δFJ = −
∫
φ0

c
J · ∇φ, (C.2)

then, within a correlation volume ξD, δFJ will be of the order of kBT , and thus of

similar magnitude to the spontaneous fluctuations when J ∼ (cT )/φ0ξ
d−1 (where
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c is a constant). However, from the perspective of approaching the critical region

by an increase in field at a fixed temperature, the increase of the free energy of the

superfluid density is proportional to the number of flux lines within the superfluid,

which is proportional to the applied magnetic field H. Then, within the same

correlation volume ξD, we will have δFJ ∼ H and comparable in magnitude to the

spontaneous fluctuations when J ∼ (cH)/φ0ξ
d−1 (where c is a different constant

than above). Hence, it follows, that as the critical region is approached in theH−T

phase diagram along the field axis we expect similar scaling properties as those

established by F-F-H, with now E and J scaling as E∗ ≡ (E/J)|H −Hg|−ν(z+2−d)

and J∗ ≡ (J/H)|H −Hg|−ν(d−1).



Appendix D

Critical behavior: suppression of the superfluid density

Here we show that the scaling forms of E∗ − J∗ as given by FFH [3] or

those derived in Appendix C, give information about the the superfluid density ρs

in the critical region.

For simplicity, we work with the scaling forms given by FFH [3]. From

the form of the complex conductivity at low frequency and T < Tc,

σ(ω) ≈ ρs/(−iω + ε) (D.1)

and, using the scaling properties in the critical region where the relaxation time

scales as τ ∼ ξz [3], the superfluid density scales as ρs ∼ ξ2−d [3, 10], with ξ ∼ |T − Tc|,

the scaling relation of the frequency dependent conductivity is then

σ(ω) ≈ ξz+2−dS±(ωξz). (D.2)

When T → T+
c , the dc conductivity, σ(0), diverges as τρs ∼ ξz+2−d.

The FFH anzatz generalizes the zero field scaling properties of the super-

conducting transition to the vortex glass melting transition, where the melting line

is considered to be a line of critical points so that Tc ⇒ Tg, and ξV G ∼ |T − Tg|.

Then, from the E−J scaling forms where

E∗ ≡ E

J
|T − Tg|−ν(z+2−d) (D.3)

and

J∗ ≡ J

T
|T − Tg|−2ν (D.4)
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with J = σE and σ/τ ∼ ρs,

1

E∗ |T − Tg|ν(2−d)
=

σ

|T − Tg|−νz ∼ ρs. (D.5)

So then the divergent E∗ → ∞ behavior at T = Tg corresponds to σ ∼ ρs → 0,

i.e. a suppression of the superfluid density at a critical temperature/field.
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