
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Addressing applied fisheries ecology questions across species, fishery, and global scales.

Permalink
https://escholarship.org/uc/item/8qb7t0sp

Author
Blincow, Kayla Mackenzie

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8qb7t0sp
https://escholarship.org
http://www.cdlib.org/


 

 

UNIVERSITY OF CALIFORNIA SAN DIEGO 

  

Addressing applied fisheries ecology questions across species, fishery, and global scales. 

 

A dissertation submitted in partial satisfaction of the requirements for the degree  

Doctor of Philosophy 

in 

Marine Biology 

by 

Kayla Mackenzie Blincow 

 

Committee in charge: 

Professor Brice X. Semmens, Chair 

Professor Jeff Bowman 

Professor Phillip Hastings 

Professor Carolyn Kurle 

Professor Ed Parnell 

 

 

 

2021 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Kayla Mackenzie Blincow, 2021 

All rights reserved.



iii 

 

 

The dissertation of Kayla Mackenzie Blincow is approved, and it is acceptable in quality and form 

for publication on microfilm and electronically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of California San Diego 

2021 

 

 

 

 



iv 

 

DEDICATION 

 

To the Blincows—Mike, Jeanie, Kelsey, and Kam. 

Everything I am and everything I achieve is because of you. 

 

  



v 

 

EPIGRAPH 

 

maggie and milly and molly and may  
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For whatever we lose(like a you or a me) 

it’s always ourselves we find in the sea 

 

 

e.e. cummings 

  



vi 

 

TABLE OF CONTENTS 

 

Dissertation Approval Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 

Dedication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv 

Epigraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  viii 

List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   xi 

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   xii 

Vita. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   xvi 

Abstract of the Dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii 

Chapter 1 Giant Appetites: Exploring the trophic ecology of the kelp forest’s largest 

predator, the Giant Sea Bass (Stereolepis gigas). . . . . . . . . . . . . . . . . . . . . . . . . .  1 

 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3 

 1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5 

 1.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

 1.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

 

Chapter 2 Investigating the spatial ecology of Giant Sea Bass (Stereolepis gigas) using 

acoustic telemetry in the La Jolla kelp forest. . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

 2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48 

 2.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

 3.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

 

Chapter 3 The effect of sea surface temperature on the structure and connectivity of species 

landings interaction networks in a multispecies recreational fishery. . . . . . . . . . 74 

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 



vii 

 

 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80  

 3.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   87 

 3.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   91 

 

Chapter 4 Reconciling differences in management and sustainability of seafood 

consumption and production globally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   103 

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 

 4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

 4.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

 

 

  



viii 

 

LIST OF FIGURES 

Figure 1.1: Map depicting the sampling locations (triangles) for Giant Sea Bass fin clips. . . . .   7 

 

Figure 1.2: δ13C- δ15N biplot for all bulk stable isotope samples. The size of the points denotes 

the total length of the fish the sample is derived from. . . . . . . . . . . . . . . . . . . . . . . .  15 

 

Figure 1.3: Bayesian estimates of the linear relationships between the bulk isotope results and 

total length. Note that the y axis displays the scaled bulk isotope values, which have a 

mean of 0 and standard deviation of 1. The black lines denote the mean posterior 

hyperparameter estimates for the slope and intercept. . . . . . . . . . . . . . . . . . . . . . . . . 16 

 

Figure 1.4: Mixing model results showing the relative proportion of different primary producers 

in Giant Sea Bass diets as a function of total length. . . . . . . . . . . . . . . . . . . . . . . . . . 18 

 

Figure 1.5: Results of the SIBER analysis. a) Bulk stable isotope biplot with standard ellipse 

areas (SEAc) for each age class shown by the solid ellipses, and ellipses 

encompassing 95% of the data shown by the dotted lines. b) Bayesian estimates of the 

SEAc where the black dot represents the mode and the boxes. . . . . . . . . . . . . . . . . . 18 

 

Figure 1.6: Compound specific stable isotope analysis of amino acids (CSIA-AA) results. a) The 

δ15N values for the AAs we tested. Glutamic acid and alanine are trophic AAs which 

enrich with trophic level increases, while glycine and phenylalanine are source AAs 

which do not enrich with increasing trophic levels. . . . . . . . . . . . . . . . . . . . . . . . . .  19 

 

Figure 1.7: Relative proportion of prey from all stomach content observations (direct and 

anecdotal) associated with different habitat types. . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

 

Figure 1.8: Species accumulation curve associated with prey observations from stomach 

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

 

Figure 2.1: Map of the study area. The larger map depicts the broader regional receiver coverage 

that we checked for detections of our tagged fish. The inset map shows receivers in 

the La Jolla region. The dark blue polygons depict the bounds of the marine protected 

areas overlapping the La Jolla array, the Matlahuayl State Marine Reserve. . . . . . .  49  

 

Figure 2.2: Range testing results. The colored lines depict model estimates of probability of 

detection with distance for each receiver, and colored points depict the binary 

detections of those receivers (1 for pings detected on both the VR100 and the range 

tested receiver or 0 for pings only detected on the VR100). . . . . . . . . . . . . . . . . . .   54 

 

Figure 2.3: Summary of detection data for the five tagged fish used in our analysis. The first 

panel shows the detections within the La Jolla array across time. The other panels 

show the mean detections per day at each receiver in the La Jolla array for each fish 

(specified in the upper left corner). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

 



ix 

 

Figure 2.4: Number of detections each hour for Tag Number 56711 in the La Jolla array (purple 

points) and at the Del Mar Receiver (green points). The black line shows the moving 

average of the hourly detections across 12 hours. The fluctuations shown in this plot 

suggest that the fish is active despite the increased frequency of detection. . . . . . . . 57 

 

Figure 2.5: Plots of monthly daily detection counts inside (a) and outside (b) MPAs along with 

the monthly probability of non-zero movement rates. The color of the points in panel 

a and b denote the tag number, and the overlaid violin plots show the distribution of 

the daily detection count for each month. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

 

Figure 3.1: Visualization of the conceptual framework of our analysis. Landings time series from 

a fishery are the result of a combination of interacting factors which influence how 

CPFV captains choose to target different species. These factors can be environmental, 

social, or regulatory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 

 

Figure 3.2: Landings time series (1983 – 2017) for each species group: RF = Rockfish spp., KB 

= Kelp Bass, SB = Barred Sand Bass, BO = Pacific Bonito, YT = Yellowtail, TU = 

Tuna spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

 

Figure 3.3: SST time series (1983 – 2017) standardized to depict monthly anomalies. Light gray 

lines depict the daily SST monthly anomalies. The solid black line depicts the three 

month rolling mean of the daily SST monthly anomalies. The dashed horizontal lines 

depict one standard deviation above and below the mean. . . . . . . . . . . . . . . . . . . . .  88 

 

Figure 3.4: Species landings interaction networks for each SST classification. The network for 

anomalously cool years is shown in blue, the network for normal years is shown in 

gray, and the network for anomalously warm years is shown in red. For all networks 

the black circles (nodes) denote the species groups. . . . . . . . . . . . . . . . . . . . . . . . . .  89 

 

Figure 3.5: Violin plot showing the distribution of the degree centrality of all incoming and 

outgoing nodes in the networks for each of the SST classifications, where the width 

of the violin corresponds to the distribution of degree centrality values of all nodes. 

Raw degree centrality values are shown by the black points. . . . . . . . . . . . . . . . . . .  90 

 

Figure 3.6: Proportion of total landings made up by each species group for the different SST 

classifications for years across the time series (1983 – 2017). Species groups are 

shown by different shades of gray: RF = Rockfish spp., KB = Kelp Bass, SB = Barred 

Sand Bass, BO = Pacific Bonito, YT = Yellowtail. . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

 

Figure 4.1: Results of the FMI calculations for all countries. Countries along the x axis are 

ordered based on the magnitude of the difference between FMIP and FMICmean across 

all products. The color and shape of the points are indicative of the FMI calculation, 

with red points of different shapes denoting FMIC derivations. . . . . . . . . . . . . . . .  115 

 

Figure 4.2: Plot comparing FMIP to the different FMIC derivations. The points depict the raw 

data (countries), while the lines show the linear model results. The shaded areas 



x 

 

around the lines denote the 95% confidence intervals for the linear model fit. The 

different colors denote the different FMIC derivations. . . . . . . . . . . . . . . . . . . . . . . 116 

 

Figure 4.3: Multiple linear regression results showing the effect of region and per capita GDP on 

the disparity between FMIP and FMICmean. The top panel (a) shows the relationship 

with GDP with the points indicating the raw data, the line the model estimate, and the 

shaded area the 95% confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117  

 

Figure 4.4: The proportion of global exports (a) and imports (b) from 2012-2017 by FMIP. The 

size and color of the points shows the number of trade partners for each country (note 

difference in scale of y-axis). The top five exporters and importers are labeled in each 

panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

 

Figure 4.5: Figure depicting China’s global exports 2012-2017. In the top panel, China is shaded 

based on its own FMIP. The lines and points show the destination of exports from 

China, with the color denoting the FMIP of the export trade partner. The thickness and 

darkness of the lines and points are scaled to the magnitude of the trade. . . . . . . .  119 

 

Figure 4.6: Figure depicting the origin of the United States’ imports 2012-2017. In the top panel, 

the United States is shaded based on its own FMIP. The lines and points show the 

origin of imports to the United States, with the color denoting the FMIP of the import 

trade partner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

 

 

 

 

 

  



xi 

 

 

LIST OF TABLES 

Table 1.1: Leave-one-out cross-validation model comparison testing the relationship between 

bulk isotope estimates and total length (fixed effect), sample site (random effect), year 

(random effect), and year/site (random effect). Expected log pointwise predictive 

accuracy (elpd_loo) is a measure of the predictive. . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

 

Table 1.2: Prey types gathered from direct and anecdotal observations. The size of the Giant Sea 

Bass and associated prey items are given where available, along with the habitat 

associated with the prey type, and the source of the observation. Lengths of prey items 

are recorded in total length for fish and octopus. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20  

 

Table 2.1: Summary data of tagged Giant Sea Bass, including tagging date, total length (TL) at 

tagging, and summary metrics of each fish’s interaction with the La Jolla array. 

*These fish either had no detections after data filtering (56711) or only had detections 

from two receivers the day after tagging (56706). . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

 

Table 2.2: Summary of the Poisson generalized linear mixed-effects model of the influence of 

month and MPA presence on the daily detection count. The p values shown were 

estimated based on asymptotic Wald tests (P) (Bates et al. 2015). . . . . . . . . . . . . . . . 58 

 

Table 2.3: Summary of the binomial generalized linear mixed-effects model of the influence of 

month and diel period on the probability of non-zero movement rates. The p values 

shown were estimated based on asymptotic Wald tests (P) (Bates et al. 2015). . . . . . 60 

 

Table 2.4: Summary of the linear mixed-effects model of the influence of month and diel period 

on the non-zero movement rates. The p values shown were estimated based on 

asymptotic Wald tests (P) (Bates et al. 2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 

 

 

  

  



xii 

 

ACKNOWLEDGEMENTS 

 

This dissertation is the culmination of five years of work, learning, and support, and it 

would not be in existence without the help of many, many people. 

Thank you to my advisor, Dr. Brice Semmens, for taking me on despite the fact that I did 

not fit the bill for his ideal student. He showed patience in helping develop my coding and 

quantitative skills. He helped me become a true scientist, in all that the title entails. From analysis, 

to writing, to collaborating, Brice was always there to provide valuable guidance and insight. I will 

be forever grateful for the time I spent in his lab and for the lessons he taught me. 

In addition to being my advisor, Brice is also responsible for bringing together an amazing 

group of people who helped give me moral and scientific support. The Semmens Lab is truly a 

wonderful place to learn, and I am so fortunate I got to be a part of such an amazing community. 

The original Semmens Lab crew, Lynn, Brian, Josh, Lyall, and Noah, each helped shape my 

trajectory as a scientist and made me feel welcomed and supported as a new lab member when I 

started this journey. The folks that came in along the way, Peter, Dan, Connor, Richie, and more, 

all also helped me succeed whether it was talking about coding or sharing their mad fishing skills. 

As for my ladies, Erica and Jordan, I cannot begin to express how grateful I am I got to meet them 

both and that they were there to support me through all of the ups and downs of graduate school. 

A lot of life has happened in the past five years, and they were there with me through it all to 

advise, commiserate, and celebrate.  

Thank you to my committee members, Dr. Carolyn Kurle, Dr. Jeff Bowman, Dr. Phil 

Hastings, and Dr. Ed Parnell. You all provided valued guidance in completing this dissertation. 

Carolyn was my go to person for all things isotopes, but also shared helpful insight into the realities 



xiii 

 

of being a female and a mother in academia. Jeff was always available for a chat and brought a 

new perspective to the group that helped me get back to basics when discussing my work. I also 

deeply appreciated his advice when I was applying for postdoctoral opportunities and evaluating 

my future career aspirations. Phil shared his expansive knowledge of fish, was always quick to 

provide feedback on my drafts, and was a calming presence on my committee. As for Ed, I can 

only hope I will one day have a fraction of the natural history knowledge he has, and I thank him 

for bringing decades of experience working in San Diego’s kelp forests to my committee. I really 

enjoyed our chats about Giant Sea Bass, and hearing all of his stories about how one of my favorite 

places in the world, the La Jolla Kelp Forest, has changed over the years. 

In addition to my committee, I received guidance and aide from a number of other people. 

Dr. Rasmus Swalethorp lent his isotope expertise and was invaluable to developing my first 

chapter, particularly the compound specific stable isotope elements. Dr. Alan Haynie helped my 

ecologist-self wade into the waters of economics and trade relationships, and was instrumental in 

shaping the development of my last chapter from very different beginnings to the final product. 

Dr. Noah Ben-Aderet swept me into the world of acoustic tagging, and after a bit of a rocky start, 

developed into one my closest mentors and confidants. I would not have been able to complete 

this dissertation without the busiest people at SIO for some reason deciding I was worth their time 

to teach and guide through field work. Thank you Phil Zerofski, Rich Walsh, Brett Pickering, and 

Christian McDonald. SIO is incredibly fortunate to have these men leading their field programs, 

and teaching the next generation of field scientists. They are hands down the best teachers I had 

the privilege of learning from at SIO. Each in their own way has perfected the art of stressing the 

seriousness of safety while still empowering their students to feel confident handling boats, diving, 

and organizing field operations.  



xiv 

 

I would also be remiss if I did not thank the many volunteers who helped with receiver 

diving and fishing for Giant Sea Bass. I will not name them all here, but you know who you are. 

Taking sole ownership of the field work involved in this dissertation was a massive undertaking, 

but it was made much easier by the enthusiastic support of my volunteer divers and boat crews. 

Thank you, thank you, thank you.  

I received funding from a number of different sources that helped support my research as 

well as my time spent as a student at UC San Diego. I would like to thank the Center for Marine 

Biodiversity and Conservation (CMBC) Program for Interdisciplinary Environmental Research 

for supporting my first year of graduate school via the San Diego Fellowship and the Mary M. 

Yang Graduate Fellowship for Environmental Stewardship, and introducing me to an amazing 

community of scientists, academics, and passionate conservation minded folks. I would also like 

to acknowledge the NMFS QUEST/CIMEC funds for supporting myself and the Semmens Lab 

more broadly. Through their dedication to training quantitative scientists they provided me the 

freedom to explore many different quantitative techniques at SIO and the University of 

Washington. Thank you to the Los Angeles Rod and Reel Club Foundation Maxwell J. Fenmore 

Memorial Fellowship for their support as well. And finally thank you to the grants and fellowships 

that supported my research activities, including the Mia Tegner Memorial Fellowship, The Women 

Divers of Hall of Fame Marine Conservation Scholarship sponsored by the Rachel Morrison 

Memorial Fund, the Link Family Foundation (via Dr. Phil Hastings), and the Edna Bailey Sussman 

Fund Graduate Environmental Internship. 

Finally, I need to thank my family, birth and chosen. My parents successfully convinced 

me that I can do and be whatever I want in this life by constantly telling me they are proud of me 

and that I am amazing. Thank you to them for never leaving room to doubt my ability to succeed 



xv 

 

and being my lifelong cheerleaders in all that I decide to commit myself to. Thank you to my 

brother and sister, Kam and Kelsey, for being lifelong best friends and for not letting me slack on 

developing my social skills while I have been nerding out for the past 30 years. Thank you to all 

of the friends I made at SIO and beyond over the past five years, they not only made my PhD 

experience bearable, they made it enjoyable. And last but certainly not least, thank you to Alex. I 

told him recently I didn’t think I could do this without him, and he told me I definitely could. I 

think he was probably right, but I know for certain it would have been a whole lot harder. Thank 

you for helping me clean pigeon poop off the boat, dumpster diving for dead Giant Sea Bass 

(literally), deriving macroeconomics equations before I was able to find them in the literature, and 

picking me up and setting me straight whenever I stumbled.  

Chapter 1, in full, is currently being prepared for submission for publication and is printed 

here with the permission of co-authors Rasmus Swalethorp, Arturo Ramirez-Valdez, and Brice X. 

Semmens. The dissertation author is the primary investigator and author of this paper. 

Chapter 2, in full, is currently being prepared for submission for publication and is printed 

here with the permission of co-author Brice X. Semmens. The dissertation author is the primary 

investigator and author of this paper.  

Chapter 3, in full, has been submitted for publication and is printed here with the 

permission of co-author Brice X. Semmens. The dissertation author is the primary investigator and 

author of this paper.  

Chapter 4, in full, is currently being prepared for submission for publication and is printed 

here with the permission of co-authors Alan C. Haynie and Brice X. Semmens. The dissertation 

author is the primary investigator and author of this paper. 



xvi 

 

VITA 

2012  B.S. Ecology, Behavior, Evolution Biology, University of California San Diego 

2014  Master of Conservation Biology, University of Queensland 

2021 Doctor of Philosophy Marine Biology, Scripps Institution of Oceanography, 

University of California San Diego 

 

 

PUBLICATIONS 

Nosal AP, Cartamil DC, Ammann AJ, Bellquist LF, Ben-Aderet NJ, Blincow KM, Burns ES, 

Chapman ED, Freedman RM, Klimley AP, Logan RK, Lowe CG, Semmens BX, White CF, 

Hastings PA. Triennial migration and philopatry in the Critically Endangered Soupfin Shark 

(Galeorhinus galeus). Journal of Applied Ecology. 2021; 00: 1-13. 

 

Blincow KM, Bush PG, Heppell SA, McCoy CM, Johnson BC, Pattengill-Semmens CV, Heppell 

SS, Stevens-McGeever SJ, Whaylen L, Luke K, Semmens BX. Spatial ecology of Nassau Grouper 

at home reef sites: using acoustic telemetry to track a large, long-lived epinephelid across multiple 

years (2005-2008). Marine Ecology Progress Series. 2020; 655: 199-214. 

 

Hanna G, Blincow KM, Hein E. Species abundance and sex ratios of Drosophila melanogaster 

and Zaprionus indianus in two different habitats of the Tropical Dry Forest of Alamos, Mexico 

(Diptera: Drosophilidae). Drosophila Information Service. 2010; 93: 106-109.  

 



xvii 

 

 

 

 

 

 

 

 

ABSTRACT OF THE DISSERTATION 

 

Addressing applied fisheries ecology questions across species, fishery, and global scales. 

 

by 

 

Kayla Makenzie Blincow 

 

Doctor of Philosophy in Marine Biology 

 

University of California San Diego, 2021 

 

Professor Brice X. Semmens, Chair 

 

Fisheries are economically and culturally important features of coastal communities around 

the globe. Ranging from recreational fishing to commercial harvest, fisheries represent the final 

large-scale vestige of humans hunting for food. While terrestrial food systems shifted almost 

entirely toward agriculture and cultivation, aquatic and marine food systems are still remarkably 

reliant on wild capture for their supply. As a result, fisheries and the species they target are 

inextricably linked to human behavior. Ecologists wishing to better understand fisheries and how 
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to make them more sustainable must account not only for variables in the natural environment, but 

also variables associated with the anthropogenic use of fisheries resources. My dissertation 

explores this notion by addressing applied fisheries ecology questions across species, fishery, and 

global scales. At the species scale, chapters one and two investigate the trophic and movement 

ecology of Giant Sea Bass (Stereolepis gigas), a species nearly extirpated from United States 

waters by fishing activities. At the fishery scale, chapter three explores the interdependencies 

between species harvested by a multispecies fishery and how those relationships change as a 

function of sea surface temperature. And finally at the global scale, chapter four looks at the nature 

of global seafood trade and characterizes the management intensity associated with production 

versus consumption of seafood across countries. Each chapter and scale of fisheries ecology 

investigated contributes a different type of information to the broader knowledge base of fisheries 

science, and combined they present a valuable contribution to the field.  
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Giant Appetites: Exploring the trophic ecology of the kelp forest’s largest predator, the 

Giant Sea Bass (Stereolepis gigas). 

Kayla M. Blincow, Rasmus Swalethorp, Arturo Ramirez-Valdez, Brice X. Semmens 
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Abstract 

After suffering severe population declines due to fishing pressure, Giant Sea Bass 

(Stereolepis gigas) in southern California are showing signs of recovery. As large-bodied predators 

often associated with the kelp forest and rocky reef environments of southern California and Baja 

California, Mexico, the local recovery of this species could influence trophic dynamics in these 

systems. Here we leverage stable isotope and gut content analysis to produce the first study 

describing the trophic ecology of adult Giant Sea Bass. We found that Giant Sea Bass are generalist 

predators, feeding on a wide array of different prey. We also found that Giant Sea Bass feeding 

habits change as they grow, with larger individuals relying more heavily on macroalgae-derived 

carbon, expanding their diets to include other and larger prey taxa, and obtaining higher trophic 

positions. Using these results, we speculate about the relationship between Giant Sea Bass and 

kelp forest ecosystems, a vulnerable yet key habitat, including the impact of the return of these 

predators, as well as how contemporary threats to kelp forests might mediate the continued 

recovery of Giant Sea Bass.  
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1.1 Introduction 

Giant Sea Bass (Stereolepis gigas) are Critically Endangered (International Union for 

Conservation of Nature) large-bodied predators that were once abundant in the kelp forests and 

rocky reefs of southern California and Baja California, Mexico (Dayton et al. 1998, Domeier 2001, 

Hawk and Allen 2014, Erauskin-Extramiana et al. 2017). Historically a sought after recreational 

and commercial fisheries species, Giant Sea Bass experienced severe population declines due to 

overfishing in the early 20th century (Baldwin and Keiser 2008, Allen 2017). By the 1970s Giant 

Sea Bass were nearing extirpation in California; however, recent reports suggest that they are 

recovering after implementation of fishing regulations that decreased intentional and incidental 

catch of the species in the United States (Pondella and Allen 2008, Allen and Andrews 2012, 

House et al. 2016).  Few studies currently exist on the ecology of Giant Sea Bass, due in part to 

the rarity of this species over the last half century. 

With the exception of one study that focused on the young-of-the-year age class (Benseman 

2018), we were unable to find any published records of studies explicitly researching the trophic 

and feeding dynamics of this species. However, there are natural history reports on the species that 

provide a baseline for what to expect regarding their trophic ecology (Young 1969, Feder et al. 

1974, Domeier 2001). Giant Sea Bass are assumed to be generalist, high trophic level predators 

that feed on a wide array of primarily benthic nearshore rocky reef and kelp forest species, ranging 

from stingrays and small sharks to lobsters and octopuses (Domeier 2001, Allen and Andrews 

2012, House et al. 2016). They are suction feeders, rapidly expanding their jaws to create a flow 

of water into their mouths that carries their prey along with it (Bishop et al. 2008). Beyond this 

feeding mechanism and long lists of anecdotal reports of prey items, little else is known about 

Giant Sea Bass feeding ecology. For instance, there is not an understanding of the influence of 
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ontogeny, different primary producers, or individual prey species on Giant Sea Bass trophic 

dynamics.  

Understanding how Giant Sea Bass rely on different primary producers in their 

environment can help determine the extent to which shifts in production dynamics, whether from 

natural or anthropogenic drivers, might mediate Giant Sea Bass recovery. Kelp forests are a key 

habitat for Giant Sea Bass (Domeier 2001, House et al. 2016). Kelp supports complex trophic 

systems by serving as an ecosystem engineer, creating structure and habitat in nearshore 

environments for diverse communities of organisms (Teagle et al. 2017, Layton et al. 2019). 

Primary production in kelp forest systems is derived chiefly from macroalgae (e.g., kelp) and 

phytoplankton (Duggins et al. 1989, Fredriksen 2003, von Biela et al. 2016). Fluctuations in these 

producers can propagate throughout the food web, influencing the growth and production of higher 

trophic level species, including fishes (Koenigs et al. 2015; von Biela et al. 2016). Kelp forests 

globally are declining in patch size and kelp density, likely due to anthropogenic drivers of global 

change (Johnson et al. 2011, Steneck and Johnson 2014, Layton et al. 2019). While previous 

studies demonstrate that, generally, higher trophic level fish tend to rely more on macroalgae-

derived primary production in kelp forest ecosystems (Koenigs et al. 2015, von Biela et al. 2016), 

no studies have assessed the link between primary producers and Giant Sea Bass trophic ecology. 

As high-level predators, fluctuations in the population size of Giant Sea Bass have the 

potential to influence food web structure and ecosystem function (Hamilton et al. 2014, Spiers et 

al. 2016, Donohue et al. 2017, Ho et al. 2019). Understanding the extent to which this is the case 

is hampered by a lack of knowledge of Giant Sea Bass trophic ecology. It is not uncommon for 

other generalist fish predators to undergo size-dependent diet shifts (Werner and Gilliam 1984, 
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Hamilton et al. 2014). However, once settled in rocky reef and kelp forest environments, we do 

not know if or how the role of Giant Sea Bass in the food web changes ontogenetically.  

In this study we leveraged bulk and compound specific stable isotope analyses along with 

gut content data to better understand the trophic role of Giant Sea Bass in kelp forest and rocky 

reef systems throughout their range. In particular, we set out to determine: (1) what Giant Sea Bass 

eat, and how that changes as a function of size/ontogeny; (2) which primary production sources 

Giant Sea Bass are most reliant on and if/how that relationship changes throughout their life 

history; (3) the relative trophic position of Giant Sea Bass; and, (4) what insight this information 

can give us about the role of Giant Sea Bass in one of their key habitats, the kelp forest ecosystem. 

 

1.2 Methods 

Using a combination of field campaigns and opportunistic collection, we collected tissue 

samples from regions within the core range of Giant Sea Bass from northern San Diego County, 

USA, to central Baja California and Gulf of California, Mexico (Figure 1.1). We analyzed our 

tissue samples using bulk and compound-specific stable isotope analysis to gather information on 

the trophic ecology of Giant Sea Bass. To link our isotope data with observed diets, we collated 

gut content information from the literature, unpublished data, and physical samples associated with 

our sample collection effort.  

Sample Collection 

We collected fin clip samples, approximately 1-2 cm of tissue clipped from the anal fin, to 

perform stable isotope analyses (n = 63). Our sampling effort took place from 2017 to 2020, and 

spanned the core range of Giant Sea Bass, which is south of Pt. Conception, California, USA to 
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Punta Abreojos, Baja California, Mexico and the upper Gulf of California (Domeier 2001) (Figure 

1.1). We collected the majority of our samples (n = 56) from individuals caught by fishing 

cooperatives involved in the finfish fishery in Baja California, Mexico, through a collaboration 

with the biological monitoring program, Proyecto Mero Gigante, and the non-profit Comunidad y 

Biodiversidad A.C. (COBI). Additionally, we collected samples from La Jolla, California, as part 

of a separate effort permitted by the California Department of Fish and Wildlife (CDFW) that 

involved tagging and releasing Giant Sea Bass (n = 5). We opportunistically collected two samples 

from deceased individuals that washed up in Solana Beach and Carlsbad, California. Due to limited 

availability of freezer facilities for our samples from Mexico, we preserved all the fin clip samples 

in a 95% ethanol solution. In addition to fin clips, we gathered morphometric information on all 

the fish sampled, including total length (TL), head length (HL), and in some cases standard length 

(SL). 

We gathered information on the isotopic signatures of potential primary producers 

(macroalgae vs. phytoplankton) through two methods. First, we collected samples of the dominant 

macroalgae (Macrocystis pyrifera) from a kelp forest in La Jolla, California (the same location 

where we collected fin clip samples) in the fall of 2019 (n = 8). We also collected samples of 

pyrosomes (Pyrosoma atlanticum), which have previously been used as a primary consumer proxy 

for phytoplankton production (Richards et al. 2020), from the offshore waters of San Diego, 

California during Scripps Institution of Oceanography research cruises in the fall of 2019 (n =10). 

We preserved these samples by freezing them. Second, we conducted a literature review and 

recorded M. pyrifera and particulate organic matter (a proxy for phytoplankton; POM) isotope 

values from studies that previously measured primary producers in our study region (Table A1.1) 
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(Page et al. 2008, Hamilton et al. 2011, Vega-García et al. 2015, Piñón-Gimate et al. 2016, Kurle 

and McWhorter 2017, Gabara 2020).  

 

Figure 1.1. Map depicting the sampling locations (triangles) for Giant Sea Bass fin clips.  

Gut Content Data 

Gut content data are difficult to collect for Giant Sea Bass, because they are largely 

protected from harvest in the United States and those that are caught in fisheries are generally 

gutted at sea. To overcome this challenge and gather information on the diet of Giant Sea Bass we 
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drew from multiple data sources. First, we conducted a literature review, recording all prey taxa 

mentioned and whether the observations were from live feeding events, from inspecting gut 

contents, or uncredited anecdotal reports. Second, the Hubbs-SeaWorld Research Institute 

(HSWRI) shared information recorded on the stomach contents of Giant Sea Bass caught 

incidentally during their juvenile White Seabass (Atractoscion nobilis) gill net surveys. Third, we 

conducted gut content analysis on an individual that washed up in Solana Beach, CA, as well as 

10 individuals from Isla Natividad, Baja California, Mexico, that had their gut contents retained 

by fishing cooperative members on our request. And finally, we reached out to fellow researchers 

for any unpublished records of gut content analysis or observations of feeding interactions in the 

field. Most notably, Dr. Larry Allen provided information on an individual from La Jolla, CA that 

he performed a necropsy and gut content analysis on in 2015.  

Bulk Stable Isotope Analysis 

Unlike gut contents, which provide information on what an organism was eating just before 

being sampled, stable isotopes constitute a representation of trophic interactions that is integrated 

through space and time. Ratios of nitrogen isotopes (15N/14N) can help determine the relative 

trophic position (TP) of an organism, because they enrich at a predictable rate with each increasing 

trophic level (Finlay et al. 2002, Post 2002). Ratios of carbon isotopes (13C/12C) tend to reflect 

sources of primary productivity, because carbon isotopic signatures are generally well-conserved 

through trophic transfer (Hobson 2005, Kurle et al. 2011). Typically, stable isotope analyses of 

fish use muscle tissue; however previous studies demonstrate that fin clips can be good analogs 

for muscle tissue when the latter is not available, as was the case in this study (Suzuki et al. 2005, 

Sanderson et al. 2009, Hanisch et al. 2010, Jardine et al. 2011).  
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We prepared fin clip and primary producer samples for bulk stable isotope analysis in 

accordance with previously published works (Hanisch et al. 2010, Jardine et al. 2011, Hetherington 

et al. 2019). We removed each sample from its ethanol preservative (for fin clips) or the freezer 

(for primary producers), rinsed it with de-ionized water for at least one minute, and freeze-dried 

the samples for 48 hours. Once dried, we homogenized the samples using a mortar and pestle 

and/or a scalpel, and placed approximately 1 mg ± 0.2 mg (for fin clips) or 5 mg ± 0.2 mg (for 

primary producers) of material into pre-weighed tin capsules. The Isotope Biogeochemistry 

facility at Scripps Institution of Oceanography analyzed all samples to determine the bulk carbon 

and nitrogen isotope values. We expressed all results as δ values (parts per thousand differences 

from a standard or per mil (‰)) using the following equation: 

(1)         δX = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) ∗ 1000 

where X is either 13C or 15N, R is the ratio 13C/12C or 15N/14Nusing acetanilide standards (Baker 

A068-03, Lot A15467). 

Compound Specific Stable Isotope Analysis 

We performed compound specific stable isotope analysis of amino acid (CSIA-AA) 

nitrogen on a subsample of 20 fin clips. Selected samples came from fish captured in Guerrero 

Negro, Mexico that represented a wide size range of fish (TL: 51 cm – 197 cm). We split a single 

fin clip from one individual into three subsamples that we processed separately to produce 

procedural reproducibility errors for each of four target AAs: Alanine (Ala), Glutamic acid (Glu), 

Glycine (Gly) and Phenylalanine (Phe). δ15N of the selected AAs is not significantly altered by 

ethanol and thus preservation effects on TP estimation are negligible (Swalethorp et al. 2020).  
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We removed each sample from the ethanol preservative, rinsed with de-ionized water for 

at least one minute, and then freeze-dried for 48 hours. We employed a relatively new high 

precision method using high-pressure liquid chromatography and offline elemental analysis - 

IRMS (HPLC/EA-IRMS) (Broek and McCarthy 2014, Swalethorp et al. 2020). All specifics of 

this method can be found in Swalethorp et al. (2020). Briefly, we hydrolyzed a minimum of 6 mg 

(dry weight) of each sample in 1 mL of 6 mol L-1 HCl in capped glass tubes for 24 hours at 90°C. 

We then dried the samples on a centrifugal evaporator under vacuum at 60°C, re-dissolved them 

in 0.5 mL 0.1 mol L-1 HCl, and filtered them through an IC Nillix—LG 0.2-μm hydrophilic 

polytetrafluoroethylene (PTFE) filter to remove particulates. Finally, we re-dried the samples 

before re-dissolving them in 100 μL of 0.1% trifluoroacetic acid (TFA) in Milli-Q water and 

transferring them to glass inserts in glass vials. We stored all samples at -80°C for 1-4 weeks prior 

to AA purification. For each sample we purified and collected the trophic AAs Ala and Glu, and 

the source amino acids Gly and Phe. We dried these AAs in a centrifugal evaporator at 60°C, re-

dissolved them in 40 µL 0.1 mol L-1 HCl, then transferred them into small tin capsules and dried 

them under vacuum. We used the Stable Isotope Laboratory facility at the University of California, 

Santa Cruz to carry out analyses on a Nano-EA-IRMS designed for high precision analysis of low 

mass samples (≥0.6 µg N).  

Data Analysis 

We performed all analyses using R statistical software, version 3.6.1 (R Core Team 2019). 

The code for our analyses can be found at https://github.com/kmblincow/GSBIsotopeAnalysis.  

We analyzed the bulk stable isotope data for relationships with fish body size using 

Bayesian linear models coded in R and JAGS software (Plummer 2003) with the package R2jags 

(Su and Yajima 2020). In order to account for possible influences of year and sample location, we 
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tested multiple models incorporating different combinations of these variables (Table 1.1). We 

treated year, sample site, and a derived categorical variable of year and sample site combined as 

random effects, and the TL of each fish sampled as a fixed effect. We ran each model using 3 

parallel Monte Carlo Markov Chain (MCMC) chains, each obtaining 350,000 samples, the first 

25,000 of which were discarded as burn-in. We retained every 25th iteration to reduce 

autocorrelation, resulting in an output of 39,000 samples of the posterior distribution for each 

chain. We confirmed model convergence by evaluating trace plots and the potential scale reduction 

factor (R hat) (Gelman and Rubin 1992). We used leave-one-out cross-validation (LOO) to 

determine which models best predicted the data using the package loo (Vehtari et al. 2017, 2020).  

We incorporated our bulk isotope results into a Bayesian isotope mixing model to 

determine what proportion of Giant Sea Bass diets are derived from either phytoplankton or 

macroalgae primary production sources using the MixSIAR package (Stock et al. 2018). MixSIAR 

requires the input of source isotope values (i.e. macroalgae and phytoplankton primary 

production), mixture isotope values (i.e. Giant Sea Bass), estimates of the trophic discrimination 

factors (TDF) between the source and mixture for each isotope, and data on relevant covariates 

(i.e. TL). We ran our model using 3 parallel MCMC chains, each obtaining 100,000 samples, the 

first 50,000 of which were discarded as burn-in. We retained every 50th iteration. We used the 

same convergence criteria as in the prior analysis.  

To determine our source isotopic signatures, we collected the mean estimated bulk isotope 

values from multiple studies (including our own), and then calculated the mean and variance of 

these values. We subsequently used these means and variances as fixed source values (not 

estimated based on sample data) in our mixing model (Stock et al. 2018). We estimated the relative 

proportion of macroalgae-derived carbon by relying on isotopic estimates of the dominant Pacific 
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coastal macroalgae species in our sample locations, M. pyrifera (Edwards and Hernández-

Carmona 2005). However, we had one fin clip sample from the upper Gulf of California, which 

does not encompass the range M. pyrifera. Despite the fact that other coastal macroalgae present 

in the upper Gulf of California likely have similar values to M. pyrifera, we chose to exclude this 

sample from the mixing model analysis because it was unreasonable to assume M. pyrifera would 

be contributing to its isotopic signature. In order to convert pyrosome isotope values into 

phytoplankton primary production (under the assumption that pyrosomes rely exclusively on a 

phytoplankton-derived food web), we corrected our pyrosome-derived δ15N estimates by -2 ‰ and 

our δ13C estimates by 0.5 ‰ based on previously published estimates of the trophic position of 

pelagic tunicates (Hetherington et al. 2018, Décima et al. 2019, Schram et al. 2020).  

To our knowledge, there are no experimental estimates of TDF for Giant Sea Bass. We 

chose to use mean TDF values of 0.9 ‰ (SD = 0.5) and 3.4 ‰ (SD = 0.5) for δ13C and δ15N, 

respectively, based on previously published isotope research for similar species (Artero et al. 2015) 

and broad TDF estimates for carnivorous species (DeNiro and Epstein 1978, Post 2002). Since our 

source and mixture populations were multiple trophic steps apart, it was necessary to correct our 

TDF values based on that difference (Phillips et al. 2014). To do so we used the trophic position 

estimates from our CSIA-AA analysis (described below) to calculate a mean trophic position for 

Giant Sea Bass and multiplied our TDF values by that value minus 1. 

We evaluated the isotopic niche of different age classes of Giant Sea Bass using the SIBER 

package (Stable Isotope Bayesian Ellipses in R) (Jackson et al. 2011). Giant Sea Bass are thought 

to mature between the ages of 7 and 13 (Domeier 2001, Hawk and Allen 2014). Using the age-

growth equation derived by Hawk and Allen (2014), we calculated the expected age associated 

with each of our samples, and classified them as either “immature” (< 7, n = 18), “transition” (7-
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12, n = 23), or “mature” (>12, n = 22). We calculated the standard ellipse area (SEAc), which is a 

representation of bivariate standard deviation, for each of these groups. Additionally, we 

performed Bayesian estimation of the standard ellipses and compared across groups. SEAc is 

robust to small sample sizes, unlike other isotopic niche metrics such as convex hulls (Jackson et 

al. 2011). We ran our SIBER model using 3 parallel MCMC chains, each obtaining 50,000 

samples, the first 25,000 of which were discarded as burn-in. We retained every 5th iteration. We 

confirmed model convergence by evaluating trace plots and the potential scale reduction factor (R 

hat). 

We used the two trophic (Trp) and two source (Scr) AAs δ15N values to calculate the 

trophic position of Giant Sea Bass using β and TDF values from Bradley et al. (2015) and the 

following equation:  

(2)      𝐹𝐶𝐿 =  
δ N𝑇𝑟𝑝 −  

15 δ N𝑆𝑐𝑟 − 𝛽 
15

𝑇𝐷𝐹𝐴𝐴
+ 1 

Where 𝛽 is the δ15N offset between Trp and Scr AAs in primary producers while 𝑇𝐷𝐹𝐴𝐴 is the 

average δ15N enrichment of Trp relative to Scr AAs in consumers for each increasing trophic step. 

To generate more robust trophic position estimates we used weighted means of both Ala and Glu, 

and Gly and Phe (Nielsen et al. 2015) using the following equation: 

(3)      𝛿 𝑁�̅�𝑊 
15 =  

∑
𝛿 𝑁𝑥 

15

𝜎𝑥
2

∑
1

𝜎𝑥
2

  

Where δ15Nx is the value of a specific Trp or Scr AA and σx is the procedural reproducibility error 

reported here as the standard deviation (SD) from replicate analysis of the three subsamples of one 

of the fin clips. These SD values were 0.24, 0.68, 0.17, 1.57 for Ala, Glu, Gly and Phe, respectively. 
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We also calculated weighted means for the β and TDF values and associated SDs (Bradley et al. 

2015). 

After calculating the trophic position associated with our samples, we performed a simple 

Bayesian linear regression to look for a relationship with fish size (TL) using the same model 

specifications described for the linear models above. For the fin clip sample that was split into 

three and run separately, we calculated the mean of the associated results so as not to triple count 

them. 

After compiling the disparate records of stomach contents, we generated a list of potential 

prey items and grouped each based on our confidence in the source of the information. For the data 

that encompassed enumeration of prey types definitively associated with visual inspection of 

stomach contents (HSWRI, Larry Allen’s necropsy, and our own stomach content analyses), we 

generated a species accumulation curve to determine whether we had sampled the full range of 

prey using the vegan package (Oksanen et al. 2020). 

 

1.3 Results 

Bulk Stable Isotopes 

We gathered a total of 63 tissue samples from fish with TLs ranging from 44 to 197 cm 

(94.57 ± 42.08; Mean ± SD). δ13C values ranged from -16.50 to -12.39 ‰ (-14.53 ± 1.10), and 

δ15N values ranged from 15.95 to 19.54 ‰ (17.91 ± 0.90) (Figure 1.2). Due to our opportunistic 

sampling strategy, the sample sites are not evenly represented (Table A1.2), with the majority of 

samples coming from Baja California, Mexico (n = 56), in particular Guerrero Negro (n = 31). Our 

Bayesian linear models indicated a strong positive relationship between TL and δ13C (Figure 1.3a). 
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LOO model comparison found that sample site and TL were the most important variables for 

predicting δ13C (Table 1.1). While LOO identified year and TL as the best predictors of δ15N out 

of the variables we tested (Table 1.1), the relationship between TL and δ15N was weak (Figure 

1.3b). We should note that some of the models we evaluated using LOO had a small number of 

Pareto k values that exceeded 0.5. We evaluated each of these points individually, and found that 

they rarely exceeded 0.7, the recommended cutoff for the utility of LOO methods in model 

comparison (Vehtari et al. 2017). Based on the guidance of Vehtari et al. (2017), we decided our 

models were robust for LOO comparison. 

 

Figure 1.2. δ13C- δ15N biplot for all bulk stable isotope samples. The size of the points denotes the total 

length of the fish the sample is derived from. 
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Figure 1.3. Bayesian estimates of the linear relationships between the bulk isotope results and total length. 

Note that the y axis displays the scaled bulk isotope values, which have a mean of 0 and standard deviation 

of 1. The black lines denote the mean posterior hyperparameter estimates for the slope and intercept. The 

gray lines depict 1,000 random draws from the hyperparameter posterior estimates for the slope and 

intercept. a) δ13C and total length (cm) using the model which incorporated total length as a fixed effect and 

sample site as a random effect. b) δ15N and total length (cm) using the model which incorporated total 

length as a fixed effect and year as a random effect.  

 

The mixing model showed that Giant Sea Bass are chiefly reliant on macroalgae as a basal 

carbon source and that this trend increases with size (Figure 1.4). The median proportion of the 

diet associated with macroalgae was 0.61 (95% Credible Interval (CI): 0.55 – 0.66) at the smallest 

end of the size range and 0.91 (95% CI: 0.83 – 0.95) at the largest end of the size range.  

By plotting the SEAc derived from the SIBER analysis, we found overlap in the isotopic 

niches of the three different age groups (Figure 1.5a). We found that the mature age class had the 

highest Bayesian SEAc estimate, followed by the transition, then the immature age classes (Figure 

1.5b). 
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Table 1.1. Leave-one-out cross-validation model comparison testing the relationship between bulk isotope 

estimates and total length (fixed effect), sample site (random effect), year (random effect), and year/site 

(random effect). Expected log pointwise predictive accuracy (elpd_loo) is a measure of the predictive 

accuracy of the model which can be compared across models using the same data. The difference between 

these values for different models is given by the elpd_diff column, and the standard error of component-

wise differences of the elpd_loo between models is shown in the se_diff column. 
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Figure 1.4. Mixing model results showing the relative proportion of different primary producers in Giant 

Sea Bass diets as a function of total length.  

 

 

Figure 1.5. Results of the SIBER analysis. a) Bulk stable isotope biplot with standard ellipse areas (SEAc) 

for each age class shown by the solid ellipses, and ellipses encompassing 95% of the data shown by the 

dotted lines. b) Bayesian estimates of the SEAc where the black dot represents the mode and the boxes 

indicate the 50%, 75%, and 95% credible intervals. 
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CSIA-AA 

Of the 20 samples we used for CSIA-AA, we found that three had unreasonably high Phe 

δ15N values that lead to very low trophic position estimates, and neither was supported by the 

associated bulk δ15N data. These samples had possibly degraded and were classified as outliers 

and subsequently removed from further analyses (Figure A1.1). Additionally, we were unable to 

determine the Gly value for one sample, so we did not include that sample in our trophic position 

estimates. Ala values ranged from 25.65 to 30.06 ‰ (28.04 +/- 1.45), Glu acid values ranged from 

26.65 to 32.11 ‰ (29.81 +/- 1.72), Gly values ranged from 7.15 to 11.51 ‰ (9.42 +/- 1.00), and 

Phe ranged from 10.01 to 13.16 ‰ (11.67 +/- 0.90) (Figure 1.6a). The trophic position estimates 

ranged from 2.7 to 4.1 (3.39 +/- 0.35). We found a strong positive linear relationship between 

trophic position and TL (Figure 1.6b).  

 

Figure 1.6. Compound specific stable isotope analysis of amino acids (CSIA-AA) results. a) The δ15N 

values for the AAs we tested. Glutamic acid and alanine are trophic AAs which enrich with trophic level 

increases, while glycine and phenylalanine are source AAs which do not enrich with increasing trophic 

levels. We used the differences between the source and trophic AAs to estimate the trophic position for 

each fish tested using CSIA-AA. b) The Bayesian estimate of the linear relationship between the trophic 

position and total length of samples analyzed using CSIA-AA. The black line denotes the line associated 

with the mean posterior estimates of slope and intercept. The gray lines denote 1,000 random draws from 

the posterior estimates for slope and intercept. 
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Gut Contents 

Synthesizing information from the compiled gut content data and literature reports, we 

found a total of 35 prey items, 24 of which were associated with direct observations from Giant 

Sea Bass ranging in size from 43.7-141.3 cm TL (60.90 ± 27.58, n = 22) (Table 1.2). Most of our 

gut content data did not include records of prey size, though where it was recorded we found that 

the largest prey items tended to be associated with larger Giant Sea Bass (Table 1.2). We should 

note that this relationship was not reciprocal, and larger Giant Sea Bass also had smaller prey items 

in their stomachs, such as the Solana Beach individual (137.0 cm TL) which had 20 individual 

crabs in its stomach ranging in size from 4.2 to 9.0 cm in carapace length (Table 1.2). Prey items 

included both fish and invertebrates, and most were associated with benthic habitats, with the 

largest proportion (44.8%) associated primarily with sandy bottom habitats (Figure 1.7). Three 

other habitats were equally represented (18.4% each), including rocky or sandy bottom habitats, 

rocky bottom habitats, and pelagic habitats (Figure 1.7). By plotting the species accumulation 

curve associated with the stomach content data, we found that the curve did not reach an asymptote 

(Figure 1.8). 

Table 1.2. Prey types gathered from direct and anecdotal observations. The size of the Giant Sea Bass and 

associated prey items are given where available, along with the habitat associated with the prey type, and 

the source of the observation. Lengths of prey items are recorded in total length for fish and octopus, and 

carapace length for crustaceans. 

Count Type 
Common 

Name 
Scientific Name Habitat 

Prey 
Length 

(cm) 

GSB 
Total 

Length 
(cm) 

Source 

Direct Observation 

1 Fish 
Spotted 

Cusk Eel 
Chilara taylori Sandy 21.3 60.9 HSWRI 

2 Fish 
Plainfin 

Midshipman 
Porichthys 

notatus 
Sandy 18 63.0 

Isla 
Natividad 
Stomach 

3 Fish 
Hornyhead 

Turbot 
Pleuronichthys 

verticalis 
Sandy 

15.1; 
15.9 

63.3 HSWRI 

 



21 

 

Table 1.2. Prey Types, Continued. 

Count Type 
Common 

Name 
Scientific Name Habitat 

Prey 
Length 

(cm) 

GSB 
Total 

Length 
(cm) 

Source 

Direct Observation 

6 Fish Scorpionfish 
Scorpaenidae 

spp. 
Rocky 17.8 69.1 HSWRI 

5 Fish Sardine Sardinops sagax 
Open 
Water 

NA 76.5 

HSWRI; 
Feder et 

al. (1974); 
Baldwin 

and Keiser 
(2008) 

6 Fish Cabezon 
Scorpaenichthys 

marmoratus 
Rocky/ 
Sandy 

21.6, 
27.0 

78.8 HSWRI 

7 Fish Barracuda 
Sphryaena 
argentea 

Open 
Water 

NA 79.0 HSWRI 

8 Fish 
Specklefin 

Midshipman 
Porichthys 
myriaster 

Rocky/ 
Sandy 

NA 79.1 

HSWRI; 
Young 
(1969); 
Baldwin 

and Keiser 
(2008) 

9 Fish Turbot Unspecified Sandy NA 79.1 HSWRI 

10 Fish Queenfish Seriphus politus Sandy 21.3 88.8 HSWRI 

11 Fish 
Shovelnose 
Guitarfish 

Rhinobatis 
productus 

Sandy 
30.0, 
60.0 

141.3 
Allen 

Necropsy 

12 Fish 
White 

Croaker 
Genyonemus 

lineatus 
Sandy 18.3; NA 

53.7; 
86.7 

HSWRI; 
Young 
(1969); 
Baldwin 

and Keiser 
(2008) 

13 Fish 
Smooth 

stargazer 
Kathetostoma 

averruncus 
Sandy 22 NA 

SIO 
Vertebrate 
Collection 

14 Fish Bat Ray 
Myliobaus 
californica 

Rocky/ 
Sandy 

NA NA 
Diver 
Video 

15 Invertebrate 
Ghost 
Shrimp 

Neotrypaea spp. Sandy NA 42.1 HSWRI 

16 Invertebrate 
California 
Two-Spot 
Octopus 

Octopus 
bimaculoides 

Rocky 18 63.0 
Isla 

Natividad 
Stomach 

17 Invertebrate Razor Clam Tagelus spp. Sandy NA 79.1 HSWRI 

18 Invertebrate 
Spiny 

Lobster 
Panulirus 

interruptus 
Rocky NA 113.5 

HSWRI; 
Diver 

Observati
on; Feder 

et al. 
(1974); 

Domeier 
(2001) 
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Table 1.2. Prey Types, Continued. 

Count Type 
Common 

Name 
Scientific Name Habitat 

Prey 
Length 

(cm) 

GSB 
Total 

Length 
(cm) 

Source 

Direct Observation 

19 Invertebrate 
Graceful 

Crab 
Metacarcinus 

gracilis 
Sandy 

8.0; 8.4; 
9.0 

137.0 
Solana 
Beach 

Stomach 

20 Invertebrate 
Armed Box 

Crab 
Platymera 

gaudichaudii 
Sandy 

4.2; 5.4; 
6.3; 6.5; 
6.6; 7.0; 
7.0; 7.1; 
7.2; 7.3; 
7.4; 7.6; 

7.7 

137.0 
Solana 
Beach 

Stomach 

21 Invertebrate 
Swimming 

Crab 
Portunus 
xantusii 

Sandy 
6.1; 6.2; 
6.3; 6.8 

137.0 
Solana 
Beach 

Stomach 

22 Invertebrate Octopus Unspecified Rocky NA 

43.7; 
46.6; 
51.8; 
61.5 

HSWRI; 
Domeier 
(2001) 

23 Invertebrate Red Crab 
Pleuroncodes 

planipes 

Rocky/ 
Sandy/ 
Open 
Water 

NA 
85.0; 
110.0 

Isla 
Natividad 
Stomach;  
Domeier 
(2001); 
Baldwin 

and Keiser 
(2008) 

24 Invertebrate 
California 

Mantis 
Shrimp 

Hemisquilla 
californiensis 

Sandy 7.0; NA 
90.0; 
141.3 

Isla 
Natividad 
Stomach; 

Allen 
Necropsy 

Anecdotal Observation 

25 Fish Sargo 
Anisotremus 
davidsonii 

Rocky/ 
Sandy 

NA NA 
Domeier 
(2001) 

26 Fish 
Ocean 

Whitefish 
Caulolatilus 

princeps 
Rocky NA NA 

Young 
(1969); 

Domeier 
(2001); 
Baldwin 

and Keiser 
(2008) 

27 Fish Blacksmith 
Chromis 

punctipinnis 
Rocky NA NA 

Domeier 
(2001) 

28 Fish Anchovies 
Engraulis 
mordax 

Open 
Water 

NA NA 

Young 
(1969); 
Baldwin 

and Keiser 
(2008) 
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Table 1.2. Prey Types, Continued. 

Count Type 
Common 

Name 
Scientific Name Habitat 

Prey 
Length 

(cm) 

GSB 
Total 

Length 
(cm) 

Source 

Anecdotal Observation 

29 Fish Kelp Bass 
Paralabrax 
clathratus 

Rocky/S
andy 

NA NA 

Feder et 
al. (1974); 
Domeier 
(2001) 

30 Fish 
Barred Sand 

Bass 
Paralabrax 
nebulifer 

Sandy NA NA 

Young 
(1969); 

Domeier 
(2001); 
Baldwin 

and Keiser 
(2008) 

31 Fish 
Pacific 
Bonito 

Sarda chiliensis 
lineolata 

Open 
Water 

NA NA 

Feder et 
al. (1974); 
Baldwin 

and Keiser 
(2008) 

32 Fish 
Pacific 

Mackerel 
Scomber 
japonicus 

Open 
Water 

NA NA 
Baldwin 

and Keiser 
(2008) 

33 Fish 
California 

Sheephead 
Semicossyphus 

pulcher 
Rocky NA NA 

Young 
(1969); 

Domeier 
(2001); 
Baldwin 

and Keiser 
(2008) 

34 Fish 
Pacific Jack 

Mackerel 
Trachurus 

symmetricus 
Open 
Water 

NA NA 

Young 
(1969); 
Baldwin 

and Keiser 
(2008) 

35 Fish Sting Ray Unspecified Sandy NA NA 

Domeier 
(2001); 
Baldwin 

and Keiser 
(2008) 
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Figure 1.7. Relative proportion of prey from all stomach content observations (direct and anecdotal) 

associated with different habitat types. 

 

Figure 1.8. Species accumulation curve associated with prey observations from stomach samples. 
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1.4 Discussion 

The analysis we present here constitutes the first documented study of the trophic ecology 

of adult Giant Sea Bass. The wide array of observed prey items and the fact that our stomach 

content species accumulation curve did not reach an asymptote support the previous 

characterization of Giant Sea Bass as generalist predators (Domeier 2001, Allen and Andrews 

2012, House et al. 2016), at least at the population level. It is also clear that Giant Sea Bass alter 

their feeding habits as they grow. The increase in δ13C, estimated trophic position, and trophic 

niche width with increasing size are indicative of shifts in their diet with size. The overlap of 

trophic niche width among age classes and an increase in SEAc among the mature age class 

suggests that Giant Sea Bass are likely consuming similar prey across size ranges, but that they 

expand their diet to include new types of prey as they grow. It is possible the expansion of trophic 

niche width is due to size limitation, with larger Giant Sea Bass expanding their diets to include 

larger, higher trophic level species that were inaccessible at smaller sizes. This relationship could 

also account for the increased trophic position we found in larger individuals. A widening trophic 

niche in the mature population also suggests increased specialization at the individual level. For 

the gut content samples where prey size information was available, it was the case that larger prey 

items tended to be found in stomachs of larger individuals. For example, the largest Giant Sea Bass 

sampled, measuring 141 cm in TL, had two Shovelnose Guitarfish (Rhinobatus productus) 

measuring 60 cm and 30 cm in TL inside its stomach. It is unlikely Giant Sea Bass at the smaller 

end of those analyzed in this study (~40-60 cm) would be able to consume these prey. Anecdotal 

reports cited in Baldwin and Keiser (2008) also support the idea that Giant Sea Bass alter their 

feeding ecology as they grow, and that smaller Giant Sea Bass are associated with small transient 

species such as anchovies and sardines.  
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Our mixing model results indicated that Giant Sea Bass feed chiefly in macroalgae-based 

food chains, and that this becomes increasingly true as they grow. Anecdotal reports of smaller 

Giant Sea Bass relying more heavily on pelagic species such as anchovies and sardines (Baldwin 

and Keiser 2008) provide an explanation for the shifts we see in the relative proportion of primary 

producer sources in their diets. These prey could serve as links between offshore and nearshore 

environments, increasing the relative proportion of phytoplankton-derived carbon in the tissue of 

smaller Giant Sea Bass. As Giant Sea Bass grow and transition to a diet consisting of 

predominantly benthic organisms, there is an increase in the proportion of macroalgae-derived 

carbon in their diets. Previous studies tracing primary producer contributions to fish diets in 

nearshore environments in the eastern Pacific also document high proportions of macroalgae-

derived carbon (Duggins et al. 1989, Koenigs et al. 2015, von Biela et al. 2016). The vast majority 

of the prey items we documented lived in benthic habitats, and most of those benthic prey were 

associated with sandy bottom habitats in particular. Initially, this might seem to contradict the 

mixing model results; however, it is likely that Giant Sea Bass are feeding in sandy bottom habitats 

that rely on macroalgae from adjacent rocky reefs to subsidize their carbon supply (Polis et al. 

1997, Harroschold et al. 1998, KR et al. 2009, Filbee-Dexter et al. 2018). 

It is unclear how current threats to kelp forest systems, such as climate change, will 

influence the trophic ecology of Giant Sea Bass and by extension their continued recovery, but we 

can make some speculations based on the results of this study. While the individuals in our analysis 

showed that a large portion of their diet is derived from macroalgae-based food chains, their prey 

are not necessarily obligate kelp forest inhabitants and neither are the Giant Sea Bass themselves.  

Assuming that the ecosystem can still support an adequate prey supply, there does not seem to be 

a reason Giant Sea Bass need kelp. One study that looked at the impact of M. pyrifera deforestation 
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caused by urchin grazing on kelp forest food web structure found that the negative impacts of 

deforestation were not as strong at higher trophic levels (similar to those occupied by Giant Sea 

Bass) (Graham 2004). Furthermore, a portion of the geographic range of Giant Sea Bass does not 

coincide with the range of kelp, and there are anecdotal reports of the local extirpation of kelp from 

rocky reefs in the Channel Islands having no apparent influence on the presence of Giant Sea Bass 

(Domeier 2001). These findings suggest that threats to kelp forests do not necessarily equate to 

threats to Giant Sea Bass. 

It is likely that the reason Giant Sea Bass are often associated with kelp forest environments 

is the ability of these systems to support a high biomass of diverse prey groups both in the 

immediate rocky reef environment and in adjacent sandy bottom habitats (Polis et al. 1997, 

Graham 2004). As such, the impact of the potential loss of kelp forests on Giant Sea Bass will 

depend, at least in part, on the extent of the impacts on Giant Sea Bass prey. Generally, resource-

limited conditions, like those brought on by the loss of kelp, lead to increased diet specialization 

among predator populations because there is an increased need for efficient resource exploitation 

(Bolnick et al. 2003, Matich et al. 2011). For example, sea otters in Central California, a relatively 

resource-limited environment experiencing ongoing declines in kelp biomass, have more 

specialized diets when compared to sea otters in Washington, a more resource-rich environment 

(Laidre and Jameson 2006, Tinker et al. 2008, Matich et al. 2011). It is possible that we could see 

a similar shift in Giant Sea Bass trophic ecology with the reduction of kelp. Overall, their ability 

to exploit a diverse array of prey items suggests that Giant Sea Bass populations would be able to 

adapt relatively well to changing conditions when compared to other more specialist predators.  

Giant Sea Bass have been essentially absent from kelp forests in their southern California 

range for over 50 years making it difficult to predict how their recovery will influence these 
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ecosystems. It is very possible that ecosystem conditions have changed since the last time Giant 

Sea Bass were a regular feature of kelp forest environments in the region. Previous work has found 

that fluctuations in generalist predator populations can be associated with intense ecosystem 

impacts (Clavel et al. 2011, Layman and Allgeier 2012). For example, Pisaster ochraceus is a 

generalist predatory sea star that is the subject of many foundational studies in trophic ecology, 

informing our understanding of keystone predators, trophic cascades, and indirect effects of 

predation (Paine 1966, 1969, 1974). The recent decline of P. ochraceus populations as a result of 

sea star wasting disease resulted in a release of prey communities, shifts in abundance of predator 

communities, and an alteration of the structure of rocky intertidal ecosystems throughout the 

Pacific coast of North America (Menge et al. 2016, Miner et al. 2018, Kay et al. 2019). The 

ongoing recovery of P. ochraceus seems to influence and be influenced by trophic dynamics, with 

increased recruitment of juveniles in areas with high prey availability and drastic impacts on prey 

community structure (especially in regard to mussel abundance) where sea star densities have 

recovered (Blanchette et al. 2005, Menge et al. 2016). As generalists, the impact of the Giant Sea 

Bass population is spread across a wide variety of prey, but our finding that they primarily feed on 

benthic species, especially as large adults, suggests their recovery is likely to influence the 

structure of benthic communities in particular. Furthermore, the observed increase in trophic 

position with size suggests that these impacts are not limited to lower trophic level species, but 

can influence intermediate benthic predator populations as well.  

While Giant Sea Bass are remarkably generalist predators at the population level, our 

results show an increase in isotopic niche space with growth suggesting that adults have 

increasingly specialized diets at the individual level. Individual specialization in predators can 

influence the magnitude of their trophic-related impacts, including their effect on the stability of 



29 

 

prey populations and inter- and intra-species competition for prey resources (Bolnick et al. 2003, 

2011, Araújo et al. 2011, Layman and Allgeier 2012). Individual specialization can serve to 

diversify the prey communities impacted by a predator population, reducing intra-specific 

competition and promoting the stability of both predator and prey populations (Bolnick et al. 2011, 

Araújo et al. 2011). However, depending on its energy demands, a single predatory individual with 

a specialized diet can have large impacts on the prey communities it targets, especially if those 

communities are already experiencing stress from other sources, such as fishing pressure or climate 

change. While we determined that individual specialization is likely a factor in Giant Sea Bass 

trophic ecology, further work is needed to determine the extent to which it influences the trophic 

structure of the ecosystems Giant Sea Bass inhabit. 

In this study we confirmed that Giant Sea Bass are generalist predators, occupying a 

relatively high trophic position overall, though they feed on a wide array of different prey items 

throughout the food web. We found that they occupy similar trophic niche space throughout their 

life history, but that they expand their diets to include new prey as they grow. These diet shifts 

contribute to individuals occupying increasingly higher trophic positions as they grow, and are 

likely associated with increased individual specialization. We determined that Giant Sea Bass are 

chiefly feeding in macroalgae-based food webs, especially as adults. Despite the importance of 

macroalgae as a major carbon source for Giant Sea Bass diets, they do not appear to be directly 

reliant on kelp forests for survival. When combined, our findings suggest that Giant Sea Bass likely 

have broad, top down effects on kelp forest ecosystems, particularly among benthic communities, 

that will strengthen through time as populations continue to recover. The extent to which these 

impacts will influence prey communities, competition with other predators, and kelp forest 

ecosystem dynamics overall is still unclear. Future work should be directed toward monitoring 
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shifts in kelp forest community structure as Giant Sea Bass populations continue to increase, 

especially in regard to benthic prey communities and potential inter-species competitors.  
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Appendix 

Table A1.1 Primary producer isotope values derived from the literature. 
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Table A1.2 Table showing number of fin clip samples from each sample site. 
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Figure A1.1. While we ran CSIA-AA on 20 samples, we only calculated the trophic position for 16 samples. 

Three samples had unreasonable phenylalanine results which indicated that there was an error during 

sample processing so they were removed from all data analysis. There was one additional sample we were 

unable to determine the glycine value for, so it was not included in the trophic position estimates either. 

This figure shows the unreasonable phenylalanine samples (circled). The other AA values associated with 

those samples are also shown in red. 
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Investigating the spatial ecology of Giant Sea Bass (Stereolepis gigas) using acoustic 
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Abstract 

The history of Giant Sea Bass fisheries is closely linked to their spatial ecology. 

Overharvest of the species is directly associated with their formation of spatially distinct spawning 

aggregations during summer months, while their subsequent population growth appears to be the 

result of spatially-explicit gear restrictions. It stands to reason that understanding the spatial 

ecology of Giant Sea Bass is a key part of efforts to assess interactions with contemporary 

commercial harvest and incidental catch by recreational fisheries. In this study, we used acoustic 

telemetry to characterize Giant Sea Bass space use in the La Jolla kelp forest by tracking 

acoustically tagged individuals with a passive hydrophone network that encompasses two marine 

protected areas (MPAs) and proximal, heavily trafficked recreational fishing grounds (where all 

of our fish were tagged). Five of the seven fish we tagged remained in the La Jolla array for at 

least six months following tagging, while two were resident throughout the three year study. Only 

one of the fish that left the La Jolla array was detected in the broader network of regional acoustic 

receivers, moving north to Del Mar. Fish tagged outside MPAs tended to spend most of their time 

outside MPAs, exhibiting strong site fidelity that likely benefits those individuals with fidelity to 

habitat inside MPAs. However, increased movements between non-proximal receivers and 

increased detections in unprotected habitat on the northwest corner of the La Jolla kelp forest 

suggest that spawning behaviors are increasing individual exposure to incidental catch. Thus, 

during spawning season, recreational anglers should take extra care to avoid incidental catch, and 

should be well prepared to safely and quickly release these fish.  
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2.1 Introduction 

Reaching close to three meters in length, Giant Sea Bass, Stereolepis gigas (Polyprionidae), 

are the largest bony fish found in the kelp forests and rocky reefs of Southern California and the 

Baja California Peninsula (Hawk and Allen 2014). They are top predators that were once plentiful 

in coastal rocky reef habitats south of Point Conception (Dayton et al. 1998, Domeier 2001, 

Erauskin-Extramiana et al. 2017). Historically, Giant Sea Bass were a sought after fisheries species 

(Domeier 2001, Baldwin and Keiser 2008, Allen 2017). Commercial landings peaked in 1932 at 

approximately 115 metric tons in the United States of America (US) and approximately 367 metric 

tons in Mexico (Domeier 2001, Baldwin and Keiser 2008). Both sides of the US-Mexico border 

experienced declines in commercial landings following these peaks (Domeier 2001). The peak in 

US recreational landings occurred in 1963, and was also followed by stark declines in catch 

(Domeier 2001). By the 1970s Giant Sea Bass in the US were nearing extirpation largely due to 

fishing pressure (Domeier 2001, Baldwin and Keiser 2008, Pondella and Allen 2008). One 

contributing factor to the decline of Giant Sea Bass populations in the US is their formation of 

spawning aggregations at predictable times and places (Allen 2017, Erauskin-Extramiana et al. 

2017). Species that aggregate to spawn are easily targeted once aggregation locations are found 

(Erauskin-Extramiana et al. 2017). At the height of Giant Sea Bass commercial and recreational 

fisheries, fishers in southern California heavily targeted spawning aggregations during summer 

months (Allen 2017). Today, Giant Sea Bass are listed as Critically Endangered by the 

International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Cornish 

2004). 

In response to population declines, the state of California implemented regulations in 1981 

that essentially closed all US Giant Sea Bass fisheries (FGC §8380, Title 14, CCR, §28.10). 
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Current regulations in California prohibit all recreational take of Giant Sea Bass, and allow one 

incidentally caught fish per trip for California commercial set gill net and trammel net fisheries 

(Domeier 2001, Baldwin and Keiser 2008). There are yet to be any major commercial regulations 

for Giant Sea Bass in Mexico (Chabot et al. 2015). The cross-border differences in management 

and regulation make it difficult to get a clear picture of the status of Giant Sea Bass; however, 

recent reports indicate that they are recovering in US waters (Pondella and Allen 2008, Allen and 

Andrews 2012, House et al. 2016). These reports attribute the apparent population growth of Giant 

Sea Bass in California waters to species-specific state fishing regulations, as well as the banning 

of the nearshore gill net fishery in 1994, which many believe reduced incidental commercial 

landings (Pondella and Allen 2008, Allen and Andrews 2012, House et al. 2016, Guerra et al. 

2018). 

While reports of Giant Sea Bass population growth in US waters are encouraging, the 

species still faces ongoing take, including the Mexican fishery, allowable commercial catch in the 

US, and incidental catch by US recreational fisheries. It is difficult to gather reliable data on the 

status of the Mexican Giant Sea Bass fishery, because much of the historic catch data reported 

from artisanal fisheries are aggregated based on coarse regional areas or multi-specific groupings 

(Erauskin-Extramiana et al. 2017). However, one study found that the combined landings of 

Pacific Goliath Grouper (Epinephelus quinquefasciatus) and Giant Sea Bass in the Magdalena-

Almejas Bay lagoon complex rose steadily from approximately 5 metric tons in 2001 to 25 metric 

tons in 2013 (Erauskin-Extramiana et al. 2017). Furthermore, a recent study estimating Giant Sea 

Bass landings in Mexico from multiple data sources found that commercial landings in Mexico 

averaged 50.9 metric tons per year between 2000 and 2016 (Ramirez-Valdez et al. in press). 

Fishing activities in the US are also likely mediating the local recovery of this species. From 2000 
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to 2020, commercial fishers in the US landed an average of 2.76 metric tons of Giant Sea Bass per 

year (calculated from Pacific Fisheries Information Network (PacFIN) Commercial Landed Catch 

Species Report). Despite the ban on recreational take of the species in the US, individuals are 

regularly incidentally caught and released. While recreational fishers are supposed to make every 

effort to ensure the survival of incidentally caught Giant Sea Bass, it can be difficult to properly 

care for fish of their size with barotrauma, especially if captured from kayaks or larger vessels with 

raised decks.  

The decline and subsequent indications of population growth of Giant Sea Bass can be 

linked to the complex history of spatial resource use and spatial management this species 

experienced throughout its distribution range. From fishers actively targeting areas known to be 

spawning aggregations (Allen 2017, Erauskin-Extramiana et al. 2017), to the apparent positive 

response of US Giant Sea Bass populations to spatially explicit regulations limiting fishing gear 

types (Pondella and Allen 2008, House et al. 2016), space appears to be an important consideration 

when it comes to the conservation of Giant Sea Bass. Gaining a better understanding of how this 

species uses space can help determine the effectiveness of current management strategies and 

better understand the potential risks posed by contemporary fishing activities. For example, other 

spatial management initiatives such as the California Marine Protected Area network, while not 

explicitly directed at conserving Giant Sea Bass, might provide benefits to the species by 

protecting important habitat or providing refuge from fisheries.  

In this study we use internal acoustic tagging data to characterize Giant Sea Bass spatial 

ecology over a longer time scale than previously studied for the species (~three years) focusing on 

their movement in the La Jolla kelp forest (La Jolla, California, USA). The La Jolla kelp forest is 

home to at least one historic Giant Sea Bass spawning site. It is also known as one of the best areas 
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for divers to observe adult and young-of-the-year Giant Sea Bass (Allen et al. 2019). The kelp 

forest has two separate no-take marine protected areas (MPAs) as well as one of the most intensely 

recreationally fished areas in the San Diego region (Parnell et al. 2010). Our goals were to (1) 

determine whether tagged individuals are resident to La Jolla; (2) characterize the seasonality of 

tagged Giant Sea Bass space use; and (3) investigate how tagged individuals interact with spatial 

management and contemporary fishing activities that potentially influence this species.  

 

2.2 Methods 

Study Area 

We conducted this study in the La Jolla kelp forest, which at ~8.25 km2 is the second largest 

kelp forest in California (Parnell et al. 2005, 2006). La Jolla’s kelp forest environment is marked 

by hard bottom with channels of sand and cobble interspersed throughout. It is bounded on the 

northern edge by a submerged canyon with a sandy shelf and sandy bottom habitats on the western 

and southern edges (Parnell et al. 2006). There are two no-take marine reserves in the area, 

Matlahuayl State Marine Reserve and South La Jolla State Marine Reserve (Figure 2.1). The 

region between these two reserves constitutes an important fishing ground for commercial sea 

urchin and spiny lobster fishers as well as recreational anglers from private vessels and the San 

Diego Commercial Passenger Fishing Vessel (CPFV) fleet, which are chartered vessels that take 

groups fishing (usually ~30-50 passengers) (Parnell et al. 2010).  

Acoustic Tagging 

We tagged seven Giant Sea Bass in the La Jolla kelp forest (Figure 2.1) from August 2018 

to October 2019 using Vemco V16-4H acoustic tags with a randomized 30 to 120 s reporting 
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interval and 1400 d battery life. When detected by an acoustic receiver, these tags provide spatial 

and temporal presence information on individual fish.  

 

Figure 2.1. Map of the study area. The larger map depicts the broader regional receiver coverage that we 

checked for detections of our tagged fish. The inset map shows receivers in the La Jolla region. The dark 

blue polygons depict the bounds of the marine protected areas overlapping the La Jolla array, the 

Matlahuayl State Marine Reserve to the north and the South La Jolla State marine reserve to the south. The 

grey-blue polygons depict conservation areas in the region, which allow limited marine or recreational take. 

The purple points denote the core La Jolla array, while the green points depict other receivers adjacent to 

the La Jolla array. Purple points with black outlines depict the receivers where we performed range testing. 

The black asterisk symbols denote the locations where we captured Giant Sea Bass for tagging. 

 

With the exception of one individual, we captured all the fish monitored in this study using 

hand lines equipped with 9/0 or 10/0 circle hooks and whole dead Pacific Chub Mackerel (Scomber 
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japonicus) for bait. In addition to the baited line, we also chummed the water using a combination 

of Shakin Bait (an Anchovy and Sardine based chum oil) and a frozen mixture of roughly chopped 

and/or blended Pacific Chub Mackerel, Pacific Jack Mackerel (Trachurus symmetricus), and/or 

Pacific Sardines (Sardinops sagax). We targeted fish at depths < 20 m and brought them to the 

surface at a moderate speed to minimize barotrauma while not exhausting the fish. To further 

address the potential negative effects of barotrauma we made every effort to reduce the amount of 

time each fish spent at the surface. One of the individuals we tagged was caught during Hubbs Sea 

World Research Institute’s (HSWRI) White Seabass (Atractoscion nobilis) gill net survey 

permitted by California Department of Fish and Wildlife (CDFW) and approved by the HSWRI 

Institutional Animal Care and Use Committee (IACUC) protocols. After being pulled up in the 

gill net, we assessed this individual, found it to be in good condition, and transferred it to a holding 

tank before beginning tagging procedures (described below). 

For all of the fish captured using hand lines, once at the surface we positioned them inside 

a vinyl sling mounted on the side of our vessel that restricted their movement while keeping them 

in the water. For the fish captured during the HSWRI survey, we kept it in an oxygenated holding 

tank prior to tagging, and placed it in a vinyl cradle on the deck of the vessel during surgical 

tagging. During tagging, we covered the fish in a wet towel and had continuous water flowing over 

the gills via hose and water pump. We implanted acoustic tags into each fish’s gut cavity via an 

incision off-center of the midline and posterior to the pelvic girdle in accordance with methods 

outlined in previous telemetry studies (Lowerre-Barbieri et al. 2014). We used sterile antibiotic 

infused, dissolvable cutting sutures (PDS II violet 27” CP-1) to close the incision. We then 

measured each fish for total length (cm), standard length (cm), and head length (cm). We also took 

a small fin clip (1-2 cm) from the anal fin for later genetic and stable isotope analyses as part of 
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separate ongoing studies that are not reported here. We secured an external Floy tag (BFIM-96) at 

the base of the dorsal fin so that tagged fish could be visually identified. Finally, we positioned the 

fish in a dorsal side-up position to recover alongside the vessel (or within the holding tank for the 

HSWRI fish) before being released. In instances where fish had inflated swim bladders, we 

released them at depth using a descending device (SeaQuilizer). CDFW permitted our activities, 

and the University of California, San Diego IACUC approved our tagging protocols.  

Acoustic Receiver Arrays 

We used a stationary receiver array deployed in the La Jolla kelp forest to track tagged fish 

movements over time. This array comprised 31 Vemco VR2w single channel passive autonomous 

data-loggers. Each VR2w receiver logged date, time, and individual ID when a tag came within 

the detection range of the receiver. In addition to the 31 receivers moored in the La Jolla kelp 

forest, we also checked for detections of our tagged fish by other regional acoustic receiver arrays 

ranging from Isla de Cedros, Baja California, Mexico to Santa Barbara California, USA (Figure 

2.1).  

Data Analysis 

We performed a detection range analysis on six of the 31 receivers in the La Jolla array 

based on methods used in previous acoustic telemetry research (Blincow et al. 2020) (Figure 2.1). 

We performed a drift starting at the coordinates of a given receiver mooring while towing a 

Vemco-coded transmitter tag (~ 1 to 2 m depth). We simultaneously recorded all acoustic tag 

transmissions (pings) during the drift using a Vemco VR100 mobile receiver unit deployed off the 

vessel in close proximity to the tag. Using the coordinates for each ping detection on the VR100, 

we calculated the distance of each ping from the VR2 receiver mooring where it was detected. We 
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compiled these data for all the receivers that detected the towed tag and analyzed them using a 

generalized linear mixed-effects model (glmm) with a logit link and a random slope effect of 

receiver to determine the detection probability of individual pings (binary response) and distance 

of the tag from the receiver (continuous covariate). With the exception of our movement rate 

analysis (described below), we assumed the detection range of all of our receivers to be the distance 

at which our model estimated we could detect tag pings with a 50% probability. We recognize that 

detection ranges can vary depending on environmental factors, such as diurnal noise patterns and 

current variability (Mathies et al. 2014, Huveneers et al. 2015); however, for the purpose of this 

study we made the simplifying assumption of a relatively constant detection range over time for 

all of our receivers. 

Prior to analysis, we filtered our data to remove detections that occurred on the same day 

as when we tagged the fish to avoid any behavior associated with near-term recovery from tagging 

influencing our results (Farmer and Ault 2011). To avoid spurious detections resulting from code 

collisions we removed single detections that occurred in isolation on one day, and any detections 

from the same tag that occurred across time intervals that were less than the minimum time it takes 

for the tag to transmit a signal. We performed all analyses using R statistical software, version 

3.6.1 (R Core Team 2019). We implemented all of our models using the lme4 package which uses 

a maximum likelihood approach (Bates et al. 2015). The code for our analyses can be found at 

https://github.com/kmblincow/GSBMovementAnalysis. 

We calculated the residency of each tagged fish within the core La Jolla array by dividing 

the number of days the fish was at liberty by the number of days the fish was detected within the 

array. We calculated the mean detections per day for each tag at each receiver by dividing the total 

number of detections at each receiver by the total number of days each receiver was deployed. We 
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had one fish that left the La Jolla array and was detected consistently at the Del Mar receiver for a 

period of months. To confirm that this fish was active we calculated the number of detections per 

hour inside and outside the La Jolla array, and evaluated the results for fluctuations that would be 

indicative of movement. 

To determine how tagged fish interacted with local MPAs we calculated the total number 

of detections inside and outside MPAs each day a fish was detected. Some receivers had detection 

ranges that crossed MPA boundaries. We classified these receivers as either inside or outside 

MPAs based on the position of the receiver mooring itself. We analyzed the resulting daily 

detection counts using a Poisson glmm (log link function) with the count of detections per day as 

the response variable. We included an interaction effect of month and MPA (in or out) as the 

explanatory variable and individual as a random intercept effect.  

To investigate seasonal differences in the activity of our fish we estimated movement rates 

when fish transited between non-proximal receivers. We used the VTrack package (Campbell et 

al. 2012) to calculate the straight-line distance between receiver moorings minus a 600 m detection 

radius. The 600 m correction is a conservative estimate of the distance at which a receiver will 

have a 0% probability of detecting a tag based on our range analysis results. This was necessary 

to avoid overestimation of distance traveled by fish when they were occupying space between 

receivers with overlapping detection ranges. We divided the distance between each detection by 

the time between detections for each fish to calculate movement rates. The resulting movement 

rate data were zero-inflated, so we analyzed them using two separate models. First, we converted 

the movement rates to a binary variable, with 0 being a zero movement rate and 1 being a non-

zero movement rate. Using this information we constructed a binomial glmm (logit link function) 

to calculate the probability of a positive movement rate given the explanatory variables of diel 
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period (dawn, day, dusk, or night) and month. Second, we filtered our data for only non-zero 

movement rates, and used a linear mixed-effects model to determine the effect of the explanatory 

variables diel period and month. We log transformed the non-zero movement rates before running 

the model to normalize the distribution of the data. Both models included a random intercept effect 

of individual. 

 

2.3 Results 

Based on our range analysis, we found that the VR2 receivers in the La Jolla array on 

average detect tag pings with a 50% probability at 218.3 m (Figure 2.2). When investigating 

receiver effects, we found that receivers that were in sandy areas on the edges of the kelp forest 

tended to have a larger detection radius than receivers within the kelp forest. 

 

Figure 2.2. Range testing results. The colored lines depict model estimates of probability of detection with 

distance for each receiver, and colored points depict the binary detections of those receivers (1 for pings 

detected on both the VR100 and the range tested receiver or 0 for pings only detected on the VR100). The 

solid black line shows the global mean estimate for the probability of detection with distance of all receivers. 

The dotted black lines show where the global mean estimate has a 50% probability of detection (218.3m). 
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We tagged seven fish ranging in total length (TL) from 77 cm to 163 cm (126.14 ± 30.25; 

Mean ± SD) (Table 2.1). The number of days each tagged fish was at liberty ranged from 586 to 

1023 (788.43 ± 169.68) (Table 2.1). The number of days each fish was detected within the La Jolla 

array (after data filtering) ranged from 0 to 758 (247.57 ± 265.14), and the number of receivers 

each fish was detected at ranged from 0 to 26 (14.43 ± 9.90) (Table 2.1). Residency within the La 

Jolla array ranged from 0 to 0.815 (0.288 ± 0.279) (Table 2.1). We removed two fish from 

subsequent analyses, because they did not have sufficient detections after filtering. Tag Number 

11125 was only detected leaving the array on the day it was tagged, and thus did not have any 

detections following data filters to account for post-tagging behavior. Tag Number 56706 was only 

detected at two receivers leaving the array on the day following its tagging date. 

Table 2.1. Summary data of tagged Giant Sea Bass, including tagging date, total length (TL) at tagging, 

and summary metrics of each fish’s interaction with the La Jolla array. * These fish either had no detections 

after data filtering (56711) or only had detections from two receivers the day after tagging (56706), so were 

removed from subsequent analyses. 

Tag 
Number 

Tag Date 
Fish TL 

(cm) 
Station 
Count 

Days At 
Liberty 

Days Detected 
in Array 

Array 
Residency 

56705 8/15/2018 77 15 1023 414 0.405 

56711 11/9/2018 148 26 937 179 0.191 

27063 11/16/2018 117 22 930 758 0.815 

56704 7/22/2019 153 16 680 202 0.297 

11125* 7/23/2019 163 0 681 0 0 

56706* 7/24/2019 118 2 682 1 0.001 

27070 10/26/2019 107 20 586 179 0.305 

 

We found that the spatial distribution of detections varied across fish, but that the area 

between the two MPAs, where we captured and released fish, recorded the most detections per day 
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overall (Figure 2.3). Two fish (Tag Numbers 56706 and 11125) left the La Jolla array within two 

days of being tagged (Table 2.1). Two fish (Tag Numbers 27063 and 56705) remained within the 

bounds of the La Jolla array consistently throughout their time at liberty, a period of 2.36 and 2.79 

years respectively. Three fish (Tag Numbers 56711, 27070, and 56704) left the array bounds after 

approximately nine, eight, and six months respectively (Figure 2.3). One of these three fish 

traveled to the Del Mar receiver and remained there consistently for approximately five months 

before briefly leaving and then returning to Del Mar (Figure 2.4). Based on the fluctuations shown 

in the hourly detections, we are confident that this fish was active (not detections from a shed tag) 

following its departure from the La Jolla array. Our fish were not detected at any other receivers 

from the broader southern California and Baja California, Mexico regional arrays based on the 

most recent receiver downloads available. 

 

Figure 2.3. Summary of detection data for the five tagged fish used in our analysis. The first panel shows 

the detections within the La Jolla array across time. The other panels show the mean detections per day at 

each receiver in the La Jolla array for each fish (specified in the upper left corner). The size of the points 

on the map denotes the mean detections per day, while the color of the points denotes whether the receiver 

mooring occurs inside or outside a marine protected area. 
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Figure 2.4. Number of detections each hour for Tag Number 56711 in the La Jolla array (purple points) and 

at the Del Mar Receiver (green points). The black line shows the moving average of the hourly detections 

across 12 hours. The fluctuations shown in this plot suggest that the fish is active despite the increased 

frequency of detection while at the Del Mar receiver. 

 

Our model of daily detection count inside and outside MPAs found that fish had more 

detections per day outside of MPAs overall (Table 2.2; Figure 2.5 a, b). The greatest monthly 

difference between inside and outside MPAs occurred from August to November (Table 2.2; 

Figure 2.5 a, b).  
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Table 2.2. Summary of the Poisson generalized linear mixed-effects model of the influence of month and 

MPA presence on the daily detection count. The p values shown were estimated based on asymptotic Wald 

tests (P) (Bates et al. 2015).  

Model Equation: Daily Detection Count ~ Month*MPA + (1|Tagged Individual) 

Fixed Effects 

 Estimate SE z value Pr(>|z|) 

Intercept 5.38078 0.15398 34.945 <2e-16 

MPA-Out 0.33408 0.01317 25.362 <2e-16 

Month2 -0.20623 0.01628 -12.671 <2e-16 

Month3 -0.25762 0.01552 -16.601 <2e-16 

Month4 -0.28772 0.01671 -17.214 <2e-16 

Month5 -0.45620 0.02002 -22.782 <2e-16 

Month6 -1.15353 0.03067 -37.616 <2e-16 

Month7 -1.16770 0.03159 -36.967 <2e-16 

Month8 -1.39605 0.08279 -16.863 <2e-16 

Month9 -2.35069 0.12022 -19.553 <2e-16 

Month10 -2.50720 0.08820 -28.428 <2e-16 

Month11 -1.52763 0.02750 -55.542 <2e-16 

Month12 0.25622 0.01544 16.591 <2e-16 

MPA-Out:Month2 0.25357 0.01777 14.269 <2e-16 

MPA-Out:Month3 0.43921 0.01691 25.971 <2e-16 

MPA-Out:Month4 0.47860 0.01815 26.369 <2e-16 

MPA-Out:Month5 0.12376 0.02252 5.496 3.89e-08 

MPA-Out:Month6 0.63056 0.03230 19.521 <2e-16 

MPA-Out:Month7 0.33526 0.03313 10.120 <2e-16 

MPA-Out:Month8 0.79402 0.08315 9.549 <2e-16 

MPA-Out:Month9 1.71214 0.12050 14.208 <2e-16 

MPA-Out:Month10 2.07314 0.08853 23.417 <2e-16 

MPA-Out:Month11 1.41537 0.02829 50.026 <2e-16 

MPA-Out:Month12 -0.34643 0.01687 -20.538 <2e-16 
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Table 2.2. Poisson glmm, continued. 

Random Effects 

 Variance Standard Deviation 

Tagged Individual (Intercept) 0.1178 0.3433 

 

 

Figure 2.5. Plots of monthly daily detection counts inside (a) and outside (b) MPAs along with the monthly 

probability of non-zero movement rates. The color of the points in panel a and b denote the tag number, 

and the overlaid violin plots show the distribution of the daily detection count for each month. The black 

points and associated intervals denote model estimates and 90% prediction intervals of daily detection per 

month inside (a) and outside (b) MPAs and probability of non-zero movement rates (c). The black vertical 

lines in all panels show the range of spawning months reported for Giant Sea Bass. 

(c) 
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The majority of intervals between detections did not constitute movement between non-

proximal receivers. Our model of the binary response of zero movement rate or non-zero 

movement rate found that there were no significant differences between different diel periods 

(Table 2.3). Fish had a higher probability of non-zero movement during the months of May through 

October and a lower probability of non-zero movement during the month of April (Table 2.3, 

Figure 2.5c). The model of non-zero movement rates did not find any relationship with diel period. 

There was low variability in non-zero movement rates across months overall, but our model found 

that the magnitude of non-zero movement rates was smaller during May, June, and September 

(Table 2.4).  

Table 2.3. Summary of the binomial generalized linear mixed-effects model of the influence of month and 

diel period on the probability of non-zero movement rates. The p values shown were estimated based on 

asymptotic Wald tests (P) (Bates et al. 2015).  

Model Equation: Binary Movement ~ Diel Period  + Month + (1|Tagged Individual) 

Fixed Effects 

 Estimate SE z value Pr(>|z|) 

Intercept -6.59038 0.21954 -30.019 <2e-16 

Diel Period - Day -0.03454 0.11921 -0.290 0.771995 

Diel Period - Dusk -0.23020 0.17740 -1.298 0.194428 

Diel Period - Night -0.06466 0.12588 -0.514 0.607516 

Month2 -0.28772 0.12387 1.108 0.268041 

Month3 -0.45620 0.12146 1.029 0.303588 

Month4 -1.15353 0.16628 -3.148 0.001644 

Month5 -1.16770 0.15232 3.478 0.000506 

Month6 -1.39605 0.15815 5.339 9.34e-08 

Month7 -2.35069 0.14355 9.255 <2e-16 

Month8 -2.50720 0.13251 7.233 4.73e-13 

Month9 -1.52763 0.15438 3.233 0.001226 

Month10 0.25622 0.12521 7.551 4.31e-14 

Month11 0.25357 0.12997 1.256 0.209161 
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Table 2.3 Binomial glmm, continued. 

 Estimate SE z value Pr(>|z|) 

Month12 0.43921 0.13473 -1.535 0.124846 

Random Effects 

 Variance Standard Deviation 

Tagged Individual (Intercept) 0.2471 0.4971 

 

Table 2.4. Summary of the linear mixed-effects model of the influence of month and diel period on the non-

zero movement rates. The p values shown were estimated based on asymptotic Wald tests (P) (Bates et al. 

2015).  

Model Equation: Non-Zero Movement Rates ~ Diel Period  + Month + (1|Tagged Individual) 

Fixed Effects 

 Estimate SE z value Pr(>|z|) 

Intercept -10.53552 0.36693 28.71267 <2e-16 

Diel Period - Day 0.00168 0.18491 0.00910 0.9927 

Diel Period - Dusk 0.25430 0.27570 0.92239 0.3565 

Diel Period - Night -0.10669 0.19299 -0.55282 0.5805 

Month2 -0.13921 0.18262 -0.76226 0.4461 

Month3 -0.21414 0.17530 -1.22155 0.2222 

Month4 0.10681 0.23552 0.45351 0.6503 

Month5 -0.48130 0.21960 -2.19165 0.0286 

Month6 -0.83161 0.23317 -3.56648 0.0004 

Month7 -0.40127 0.21251 -1.88827 0.0593 

Month8 -0.15619 0.19200 -0.81346 0.4161 

Month9 -0.44481 0.22323 -1.99267 0.0466 

Month10 -0.01940 0.17908 -0.10834 0.9138 

Month11 -0.00214 0.18917 -0.01131 0.9910 

Month12 -0.32384 0.19575 -1.65439 0.0984 

Random Effects 

 Variance Standard Deviation 

Tagged Individual (Intercept) 0.4213 0.6491 
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2.4 Discussion 

Giant Sea Bass are an ecologically and culturally important species in southern California 

and Baja California, Mexico. The lack of knowledge about the residency of individuals to certain 

areas, the seasonality of their movements, and their interaction with existing spatial management 

measures hinders efforts to understand the extent to which contemporary fishing activities are 

impacting the species. In this study, we found that some Giant Sea Bass appear to be long term 

residents of the La Jolla kelp forest, though residency varied among individuals. Tagged fish had 

the highest probability of traveling between non-proximal receivers during summer spawning 

months, and tended to spend more time outside of local MPAs during this same time period. 

Furthermore, even outside of spawning season, when fish were present in the La Jolla array, they 

tended to spend most of their time outside of the boundaries of local MPAs, particularly in highly 

trafficked recreational fishing areas.  

With the exception of the two fish that left the array within two days of tagging, we found 

that tagged fish remained in the La Jolla area for extended periods. Two fish were consistently 

detected for a period of over two and a half years, while three remained in the region between six 

and nine months following tagging. One fish that left the array after nine months went to the 

vicinity of the Del Mar receiver, approximately 8 km to the north of the La Jolla array, and 

remained there consistently for a period of eight months with less consistent detections occurring 

up to almost a year after arriving at Del Mar. This apparent site fidelity agrees with the findings of 

previous studies on Giant Sea Bass and similar species. As part of a larger regional multi-species 

mark-recapture study, Hanan and Curry (2012) recaptured two out of 14 tagged Giant Sea Bass 

245 and 1240 days post-tagging, one within 1 to 5 km and the other 5 to 20 km from the tagging 

locations. Studies on similar large predatory coastal bony fishes, Goliath Grouper (Epinephelus 
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itajara) and Giant Grouper (Epinephelus lanceolatus), also found site fidelity across years, in some 

cases with individuals being resighted in the same location up to four years after the initial record 

(Eklund and Schull 2001, Giglio et al. 2014, Clua et al. 2015). While our sample size is small, it 

is possible the large spatial extent of contiguous kelp forest habitat in La Jolla and its ability to 

support ample prey resources contribute to predominant model of prolonged site fidelity we 

observed among fish from the area (Parnell et al. 2006, Udy et al. 2019).  

There is evidence of variability in site fidelity from previous work, which could account 

for the fish that left the La Jolla array after spending over half a year there. One of the species’ 

congeners in the Polyprionidae family, the Hāpuku (Polyprionidae oxygeneios), showed variable 

movement patterns during a multi-year mark-recapture study with some being recaptured close to 

1400 km from their tagging location and others being recaptured at the same location as tagging 

(Beentjes and Francis 1999). More recently, Clevenstine and Lowe (2021) used external acoustic 

tagging to investigate aggregation site fidelity of Giant Sea Bass on Santa Catalina Island. They 

found that tagged individuals tended to frequent suspected aggregation sites during the summer 

spawning season, and about a third of tagged individuals returned to the same aggregation site in 

the subsequent year (Clevenstine and Lowe 2021). They also found that while some individuals 

remained on the island year round, others traveled to other islands in the Channel Islands or the 

mainland coast of California (Burns et al. 2020, Clevenstine and Lowe 2021). We did not observe 

similar long distance movements in our tagged fish. There is a chance that the fish that left the La 

Jolla array made long excursions; however, we are unable to say for certain, because to date they 

have not been detected on any of the regional receivers along the southern California coast, in the 

Channel Islands, or Baja California, Mexico. The variability in movement patterns among 

individuals could be the result of demographic (e.g. sex, age, reproductive status) differentiation 
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in movement behavior, resource limitation and/or niche partitioning, or external environmental 

factors (Hertel et al. 2020). Unfortunately determining the likely cause of the individual variability 

observed in this and other studies is outside of the scope and scale of our work, but future research 

should focus on characterizing individual differences in movement behavior in Giant Sea Bass. 

The fish we tagged tended to occupy areas outside of MPAs; however, we exclusively 

captured and tagged Giant Sea Bass outside of MPAs. It is therefore likely the case that this finding 

reflects strong site fidelity rather than behavioral selection for non-MPA habitat. Most of our 

tagged fish had the greatest detection rates on receivers near where they were captured, suggesting 

that they tend to occupy relatively small, defined areas. In addition, tagged fish within the La Jolla 

array rarely moved between non-proximal receivers. Even the fish that traveled to Del Mar, while 

fairly active throughout the La Jolla array during its time there, showed remarkably consistent 

detections (averaging over 60 detections per hour) at the Del Mar receiver for a period of five 

months, and was not detected at any of the other more coastal receivers just north of the Del Mar 

receiver. Given the persistent strong site fidelity exhibited by most of our tagged fish, we believe 

that the MPAs in the La Jolla kelp forest are likely sheltering individuals from contemporary 

fishing activities in the area in proportion to the amount their ranges overlap with protected habitat.  

MPAs as management tools for Giant Sea Bass would likely be most effective if they 

encompassed spawning aggregation sites. Previous studies show that spatial protections of 

spawning aggregations can help support recovery from overfishing (Nemeth 2005, Chollett et al. 

2020, Waterhouse et al. 2020). While the California MPAs were not implemented with Giant Sea 

Bass in mind, if their boundaries include spawning aggregation sites they could help support the 

species’ recovery by protecting fish during a critical stage of their life history (Chollett et al. 2020). 

Our results suggest that there is likely a spawning aggregation in La Jolla—we detected fish year 
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round and found seasonal differences in movement during the presumed spawning season. 

Unfortunately, our results also indicate that the aggregation site may be outside of the local MPA 

boundaries. We found that fish were much more likely to be detected outside of MPAs during 

summer spawning months, and that they showed significantly higher probabilities of non-zero 

movement rates between non-proximal receivers during this time period. In particular, fish seemed 

to be most active in the northwest corner of the array, which coincides with heavily trafficked 

fishing grounds. Previous characterizations of spawning sites of Giant Sea Bass and similar species 

suggest that aggregations tend to occur near promontories and in areas with strong currents 

(Eklund and Schull 2001, Clevenstine and Lowe 2021); these habitat characteristics are descriptive 

of the northwestern La Jolla kelp forest. The La Jolla submarine canyon runs along the northwest 

corner of the kelp forest and is home to steep sandstone cliffs and subsurface promontories which 

contribute to the generation of strong currents close the edge of the kelp forest (Parnell et al. 2005, 

2006, 2010). Incidentally, these same currents are responsible for attracting pelagic migratory 

species (e.g. Yellowtail (Seriola lalandi)) that are highly sought after by recreational anglers 

(Parnell et al. 2010).  

While our sample size is small, our results provide insight into the susceptibility of La Jolla 

Giant Sea Bass to the three major contemporary fishing activities influencing the species: 

commercial catch in Mexico, incidental commercial catch in the US, and incidental recreational 

catch. Regarding targeted commercial catch in Mexico, while we do not have evidence of fish 

tagged in the US crossing the border into Mexican waters, it is not out of the realm of possibility 

for individuals to travel from the San Diego region to Baja California given records of fish 

traveling long distances in other studies (Burns et al. 2020, Clevenstine and Lowe 2021). However, 

based on our findings of generally high levels of regional and local site fidelity, these types of long 
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distance excursions are not necessarily the norm for Giant Sea Bass, and fish residing in US waters 

are likely to be well-protected despite the disparity in management between the US and Mexico. 

Similarly, incidental catch by commercial fisheries in the US does not seem to be a strong threat, 

at least for Giant Sea Bass in La Jolla. We did not find any evidence that fish travel beyond the 

scope of the 3 mile nearshore gill and trammel net ban, and the records of long distance movements 

from other studies indicate that when Giant Sea Bass do traverse beyond the scope of these spatial 

gear restrictions it is to transit relatively quickly to other coastal areas (Clevenstine and Lowe 

2021). Incidental commercial landings of Giant Sea Bass are highest during the spawning months 

of June and July (Ramirez-Valdez et al. in press). It is possible that the bulk of incidental 

commercial landings occur at spawning aggregation sites located farther offshore or as fish are 

transiting to spawning aggregation sites on offshore islands, like those found on Santa Catalina 

Island.  

The largest potential fishery-related concern for Giant Sea Bass in La Jolla appears to be 

incidental catch by recreational fisheries. The area where tagged fish spent most of their time is 

one of the most highly trafficked recreational fishing areas in San Diego (Parnell et al. 2010). As 

discussed above, our fish were tagged in this region, so minimally, this finding suggests that fish 

with ranges predominantly in this fished region are persistently exposed to incidental take. 

However, because tagging data suggest that this region is also used for regional spawning, the 

scope of impact could be much larger than just resident fish. While much of the recreational fishing 

community in San Diego is conscientious of regulations and efforts to support the recovery of 

Giant Sea Bass, fatalities do occur as a result of incidental catch. Barotrauma can occur when there 

is rapid change in pressure, such as when a fish is brought to the surface quickly from depth, that 

results in overexpansion of gases in the body of the fish, especially the swim bladder (Rummer 
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and Bennett 2005, Parker et al. 2006, Jarvis and Lowe 2008). One of the strongest indicators of 

post-release survival following barotrauma is the amount of time a fish spends at the surface 

between catch and release (Jarvis and Lowe 2008, Roach et al. 2011). With a species that regularly 

reaches over a meter in length and is often interacting with anglers on kayaks or larger chartered 

fishing vessels with raised decks (Parnell et al. 2010), reducing surface time is especially 

challenging. In the event a fish is released successfully, there is still a chance delayed mortality 

can occur if there is excessive damage to the swim bladder or other organs (Parker et al. 2006, 

Jarvis and Lowe 2008). Furthermore, sublethal effects of catch and release fishing can also 

negatively impact individuals by decreasing their overall fitness (Cooke and Schramm 2007, 

Campbell et al. 2010).  

The extent to which incidental catch is a problem for Giant Sea Bass specifically is still 

largely unknown. Incidentally caught fish often go unreported, especially in the case of protected 

species. Furthermore, there are no estimates of post-release survival for Giant Sea Bass that are 

incidentally caught and released by recreational fishers. Future studies should attempt to quantify 

the effects of incidental recreational catch on Giant Sea Bass populations. Nevertheless, this study 

provides valuable insight that can help guide the recreational fishing community in La Jolla to 

minimize potential negative impacts of their activities on Giant Sea Bass. Fortunately, there is an 

understanding of best practices to mitigate the effects of incidental catch, chief among them 

quickly and efficiently releasing fish back to depth. Given that our results indicate the most likely 

area for a local spawning aggregation is also frequented by recreational fishers during summer 

months, there is an increased risk of incidental catch for Giant Sea Bass in the area during this time 

period. The recreational fishing community should take extra care to avoid incidental catch of 

Giant Sea Bass during summer months and be prepared to properly handle any individuals that are 
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caught. Development of tools, such as larger versions of descending devices (e.g. SeaQuilizers) 

often used with rockfish, can help support efforts to reduce the negative impacts of incidental catch 

on Giant Sea Bass.  
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The effect of sea surface temperature on the structure and connectivity of species landings 

interaction networks in a multispecies recreational fishery. 
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Abstract 

Multispecies fisheries, particularly those that routinely adapt the timing, location, and 

methods of fishing to prioritize fishery targets, present a challenge to traditional single-species 

management approaches. Efforts to develop robust management for multispecies fisheries require 

an understanding of how priorities drive the network of interactions between catch of different 

species, especially given the added challenges presented by climate change. Using 35 years of 

landings data from a southern California recreational fishery, we leveraged empirical dynamic 

modelling methods to construct causal interaction networks among the main species targeted by 

the fishery. We found strong evidence for dependencies among species landings time series driven 

by apparent hierarchical catch preference within the fishery. In addition, by parsing the landings 

time series into anomalously cool, normal, and anomalously warm regimes (the latter reflecting 

ocean temperatures anticipated by 2040), we found that network complexity was highest during 

warm periods. Our findings suggest that as ocean temperatures continue to rise, so too will the risk 

of unintended consequences from single species management in a multispecies fishery. 
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3.1 Introduction 

As the name suggests, a multispecies fishery is a single fishery that targets multiple species. 

Such fisheries, especially those that readily adapt their fishing strategy to prioritize different 

species targets, can create complex interactions between species landings that are difficult to 

account for using traditional single species assessments (Murawski 1991; Vinther et al. 2004; 

Thorpe et al. 2016). In recent decades, researchers and managers have developed a number of 

novel modelling techniques and expanded management frameworks to address some of the 

difficulties that can arise from applying single species tools to multispecies fisheries (e.g. Vinther 

et al. 2004, Ulrich et al. 2011, Plagányi et al. 2014, Thorpe et al. 2016, Nielsen et al. 2018). Despite 

these advances, many challenges remain when it comes to multispecies fisheries. One such 

challenge is the ability to quantify and describe the complex dependencies that can be created 

between species landings. Moreover, given the influence of climate change on ocean ecosystems, 

efforts to understand how future ocean conditions will mediate such dependencies is an important 

part of planning for resilient fisheries.  

Climate change presents a formidable challenge across disciplines and sectors globally, 

impacting everything from crop yields (Campbell et al. 2016; Kukal and Irmak 2018), to the 

frequency of disease outbreaks (Wu et al. 2016; Caminade et al. 2019), to fisheries yields 

(Weatherdon et al. 2016; Free et al. 2019). The impact of climate change on social-ecological 

systems, or systems in which humans and nature interact (e.g., fisheries), can be especially difficult 

to predict as they constitute a complex network of social, environmental, and economic 

interactions (Folke 2006; Miller et al. 2010; Garmestani et al. 2019). Yet, understanding and 

predicting climate induced shifts in social-ecological systems, including fisheries, is a critical part 

of efforts to maintain productivity and protect livelihoods. 
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Figure 3.1. Visualization of the conceptual framework of our analysis. Landings time series from a fishery 

are the result of a combination of interacting factors which influence how CPFV captains choose to target 

different species. These factors can be environmental, social, or regulatory. To identify how a specific 

factor, warm SST, influences the causal interaction network of species landings, we filtered our landings 

time series based on that factor of interest. We then used convergent cross mapping to identify causal 

relationships between those filtered species landings and construct the interaction network. By comparing 

interaction networks under different SST conditions, we can gain insight into how SST influences the 

underlying landings connectivity in this fishery. 

 

One of the hallmark effects of anthropogenic climate change is a global increase in sea surface 

temperature (SST) (Rayner et al. 2003; Weatherdon et al. 2016). In this study we used catch data 

from a multispecies fishery to construct causal networks of species landings under different SST 

conditions to better understand differences in landings network structure and complexity under 

different ocean temperature scenarios. A visual representation of the conceptual framework of our 
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analysis is provided in Figure 3.1. The basis of our approach lies in the understanding that by 

identifying relationships between the landings of different species targeted by the same fishery, 

we can gain insight into the extent to which shifts in the landings of one species can influence the 

landings of other species. We can compile these relationships to build networks of causal 

interactions between landings of species targeted by the same fishery. This is useful, because 

fisheries landings data are a representation of all of the upstream processes that influence species-

specific catch including, but not limited to, fisher preference, regulations, population dynamics, 

and environmental variability. By grouping landings based on an upstream process of interest, 

regional SST in our case, it is possible to see how that process influences the causal landings 

network, which in turn provides insight into the responses of the fishery as a whole to that process. 

If the underlying landings network responds to regional SST changes by becoming more complex 

and connected, processes that influence the landings of a single species, such as regulatory 

changes, are more likely to have unintended effects on other species targeted by the same fishery. 

To identify causal relationships between landings time series we employed empirical dynamic 

modelling (EDM), a nonlinear time series analysis method. This approach draws from Takens’ 

theorem, which posits that you can reconstruct the manifold of a chaotic dynamical system by 

lagging a time series of a variable from that system across the appropriate dimensions (Takens 

1981; Deyle and Sugihara 2011). Convergent cross mapping (CCM) uses this theorem as a basis 

to test for causal relationships between variables from the same system by determining the extent 

to which the time series of one variable can estimate states of the other (Sugihara et al. 2012). By 

applying CCM to catch time series, we were able to explicitly describe the underlying structure of 

a multispecies fishery by constructing networks of causal interactions between the landings of 

different fishery species.  
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We chose to investigate the southern California Commercial Passenger Fishing Vessel (CPFV) 

fishery as our case study. This is a multispecies recreational fishery that constitutes an important 

part of the economy and culture of southern California (Weber and Heneman 2000; Schroeder and 

Love 2002; Jarvis et al. 2004; Bellquist and Semmens 2016; Bellquist et al. 2017). It is important 

to note that since this is a recreational fishery and fishers are not selling their catch, the relative 

perceived value (hereafter referred to as “value”) of different species is based on the collective 

preferences of the recreational angling community. The CPFV fleet is made up of charter sport 

fishing vessels which typically take groups of 30-50 anglers on fishing trips in the inshore and 

offshore waters of southern California and northern Baja California, Mexico (Parnell et al. 2010; 

Bellquist et al. 2017). CPFV captains take into account the desires and skill level of their patrons, 

environmental variables, and sport fishing regulations to decide which species are the best targets 

for any given trip. As a consequence of these decisions, species that are not necessarily biologically 

or ecologically connected become linked through their fishery landings. For example, the seasonal 

emergence of warm water species in summer months and regulation changes limiting harvest of 

one or more species have resulted in shifting species targets and ultimately, shifts in landings 

(Dotson & Charter 2003, Bellquist & Semmens 2016). It seems reasonable to conjecture that 

climate driven shifts in SST would similarly reorganize the landings interaction network of the 

southern California CPFV fishery.  

California’s Fourth Climate Change Assessment states that, based on climate model 

predictions, SST in the region of our case study will increase ~0.5 to 1.5˚C by 2040 and 2 to 4˚C 

by 2100 (Sievanen et al. 2018). CPFVs are known to show seasonal variation in species landings, 

in part due to changes in SST that mediate the presence of transient, often high value species, such 

as Tuna spp. (Dotson and Charter 2003; Parnell et al. 2010). However, it is less clear how sustained 
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(cross season) SST changes resulting from climate change will influence the interactions between 

species landings. To isolate how the complexity of such landings interaction networks might 

change under different SST regimes, we built our networks after first grouping the landings time 

series into cool, normal, and warm regimes based on past regional SST anomalies. We reasoned 

that the dynamics present during anomalously warm periods, in particular, would provide insight 

into what we might expect from future CPFV species landings interactions given climate change. 

The networks we created inherently account for the complex dynamics associated with 

management action, fisher behavior, environmental variability, and every other factor influencing 

the fishery, because they rely on landings data that are influenced by all of these things. Using 

these species landings networks, we identified and highlighted potential challenges to the 

resilience and management of the southern California CPFV fishery. 

 

3.2 Methods 

Data 

We used California Department of Fish and Wildlife (CDFW) CPFV logbook data for this 

analysis. These data constitute daily trip records from CPFVs, including information on the date 

of fishing, trip length, port code or town of landing, and the CDFW fishing blocks fished (10-

minute latitude by 10-minute longitude). Landings are recorded as the number of fish kept by 

species per trip. It should be noted that the logbook data do not necessarily represent a census of 

landings from the CPFV fishery due to log non-compliance by captains; however, logbook 

landings are consistent with other catch reports from this fishery, including reports to newspapers 

for advertising purposes, and the logbook data are frequently used as the primary source of data 
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for investigating trends in the CPFV fishery (Hill and Barnes 1998; Dotson and Charter 2003; 

Bellquist et al. 2017). While CPFV logbook data were available from 1980 to 2017, to perform 

our analysis it was necessary to limit our time series to the extent of our available SST data (1983-

2017). 

The species frequently targeted by CPFVs vary across the California coast (Dotson and 

Charter 2003). To account for this, we filtered the logbook data based on regional classifications 

of the CPFV fleet made in Dotson and Charter (2003) to only include ports south of San Clemente 

(Zone A). By limiting our analysis to this region, we were able to limit the number of species 

groups targeted by the fleet. Based on our region of interest, we selected six species and species 

complexes for our analysis: Rockfish spp. (Sebastes sp., Sebastidae), Kelp Bass (Paralabrax 

clathratus, Serranidae), Barred Sand Bass (Paralabrax nebulifer, Serranidae), Yellowtail (Seriola 

lalandi, Carangidae), Pacific Bonito (Sarda leniolata, Scombridae), and Tuna spp. (Thunnus sp., 

Scombridae). We selected Barred Sand Bass and Kelp Bass because they are the most important 

recreational species in the region based on the number of fish taken and the relative importance 

placed on them by the CPFV fleet (Dotson and Charter 2003; Jarvis et al. 2014; Bellquist et al. 

2017). Pacific Bonito and Rockfish spp. account for the second and third largest percentages of 

total landings respectively, after bass species (Dotson and Charter 2003). We selected Tuna spp. 

and Yellowtail because, based on weight, they are among the largest recreational harvests in 

California, and are especially important in the southern-most region (Dotson and Charter 2003). 

For the Rockfish group, we compiled the landings of all Sebastes sp. represented in the data. For 

the Tuna group, we compiled landings of the three most commonly caught Tuna species in 

southern California: Albacore (Thunnus alalunga, Scombridae), Yellowfin Tuna (Thunnus 

albacares, Scombridae), and Pacific Bluefin Tuna (Thunnus orientalis, Scombridae). 
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Different vessels in the CPFV fleet have different strategies for targeting fish (Bellquist et 

al. 2017). Some vessels only target high value species typically found farther offshore, while others 

exclusively fish nearshore (Bellquist et al. 2017). To avoid potential biases associated with 

different targeting strategies, we filtered the data to include only those vessels that interact with 

the full suite of species groups we identified by targeting both nearshore and offshore species. To 

identify which vessels targeted both nearshore and offshore species we determined the top 10 

most-landed species for each vessel and evaluated them for the presence of our species groups. 

We then determined whether nearshore and offshore CDFW fishing blocks accounted for the bulk 

of each vessel’s landings to confirm that the vessel was interacting with areas associated with each 

of our species groups. Nearshore fishing blocks included all blocks that touched the mainland 

coast. With the exception of the blocks along the coast of offshore islands, the rest of the fishing 

blocks were classified as offshore. We evaluated vessels that frequently targeted fishing blocks 

associated with offshore islands on a case by case basis as captains will often opportunistically 

target high value offshore species while transiting to the islands to target more nearshore associated 

species. If a vessel did not chiefly target members of our species groups, solely targeted nearshore, 

or solely targeted offshore fishing blocks, we did not include them in the analysis. This resulted in 

a total of 270 vessels out of a possible 428 from our selected region. After selecting vessels, we 

summed the landings of our six species groups from these vessels and created a daily landings 

time series for each group spanning from 1983 to 2017 (Figure 3.2). For the species complexes, 

Rockfish spp. and Tuna spp., we pooled the landings for the species included in those groups 

(group composition specified above). For the construction of the interaction networks, we limited 

our time series to the main fishing season of March through October. Note that our EDM analysis 

methods are robust to time gaps (described below).  
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Figure 3.2. Landings time series (1983 – 2017) for each species group: RF = Rockfish spp., KB = Kelp 

Bass, SB = Barred Sand Bass, BO = Pacific Bonito, YT = Yellowtail, TU = Tuna spp. 

 

We used the National Oceanic and Atmospheric Administration’s (NOAA) Optimum 

Interpolation Sea Surface Temperature (OISST) data to classify the years in the CPFV landings 

time series based on SST. These data interpolate observations from satellites, ships, buoys, and 

Argo floats to create a map of daily SST at a resolution of 1/4°, and were provided by the 

NOAA/Ocean and Atmospheric Research/Earth System Research Laboratories Physical Sciences 

Laboratory (NOAA/OAR/ESRL PSL), Boulder, Colorado, USA from their website at 

https://psl.noaa.gov/ (Reynolds et al. 2007). For this analysis, we selected SST data from a grid of 
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the Southern California Bight ranging from Point Conception, California, USA to Punta Colonet, 

Baja California, Mexico. We classified each year from our time series as “anomalously warm”, 

“anomalously cool”, or “normal”. To do so, we first removed seasonal temperature effects by 

standardizing our SST data by calculating monthly temperature anomalies, such that the mean and 

standard deviation of SST for each month was 0 and 1, respectively. We then calculated a three 

month rolling mean of the daily SST anomalies across the temperature time series. We classified 

any year that had a three month rolling mean that exceeded one standard deviation from the mean 

at any point during the year as “anomalously warm” in the positive direction and “anomalously 

cool” in the negative direction (Figure 3.3). We classified the remaining years as “normal”. We 

explored other SST classification methods, such as classifying years based on recorded El Nino 

Southern Oscillation (ENSO) events, and found that our results were generally robust to different 

methods of classification. We ultimately chose to classify years using the methods described, 

because they more accurately represented regional SST anomalies in our southern California study 

area than other commonly used classifications.  

We performed all analyses using R statistical software, version 3.6.1 (R Core Team 2019). 

The code for our analyses can be found at https://github.com/kmblincow/CPFVs_CCMandSST.  

Convergent Cross Mapping 

We tested for causal relationships between the landings of each of our species groups using 

CCM. CCM is a non-parametric method for identifying causal relationships in nonlinear dynamic 

systems (Sugihara et al. 2012). Given two time series, X and Y, CCM tests for causation by 

determining the extent to which the historical record of the values of Y, the predictor variable, can 

reliably estimate corresponding time points of X, the target variable (Sugihara et al. 2012). If X 

causally influences Y, it is possible to reconstruct system states of X from Y, because Y is 
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inherently dependent on the dynamics of X (Sugihara et al. 2012; Ye et al. 2015). It is important 

to note that causal networks built from multiple time series can be transitive; if X causes Y and Y 

causes Z, it follows that X and Z will also display a causal relationship (Sugihara et al. 2012). 

CCM detects these types of transitive causal relationships as well. For a more in depth explanation 

and discussion of how CCM is able to distinguish causal relationships from correlative ones, see 

Sugihara et al. (2012).  

We used the rEDM package (version 0.7.5) to carry out our CCM analyses (Ye et al. 2021). 

After classifying each year based on SST, we subset and grouped the species landings time series 

based on these classifications. We performed CCM on every possible pairing of our species groups 

using daily landings time series from the main fishing season for all the years within each SST 

classification. CCM allows for specification of non-consecutive time series when constructing 

manifolds, allowing us to build networks representing the main fishing season for all the years in 

each SST classification despite the fact they did not constitute a continuous time series. To lower 

computing time, we scaled our time series such that the landings ranged from 0 to 1 by dividing 

each observation by the maximum landings observation. For each cross map we used Simplex 

projection to identify the optimal embedding dimension, and tested for non-linearity using S-map 

forecasting (Sugihara et al. 2012). We used Pearson’s correlation coefficient (ρ) to measure 

relative cross map strength, or the relative strength of the causal effect between the two cross-

mapped landings time series (Sugihara et al. 2012).  

Due to the seasonal nature of the landings time series, it is critical to distinguish between 

seasonal correlation effects and true causal effects. To test the significance of the causal 

relationships we observed, we used a seasonal surrogate test (Deyle et al. 2016). To perform this 

test, we cross mapped every predictor time series (each species landings time series within each 
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SST classification) against 500 surrogate time series that preserved the seasonality of the original 

target time series but with randomized anomalies by computing the mean seasonal trend over the 

specified time period then shuffling the residuals. If the cross-map prediction was greater than the 

95th percentile for the true target time series than the surrogate time series (p < 0.05), then we 

concluded that there was a causal interaction between the two landings time series in question. We 

subsequently constructed interaction networks between species landings for each SST 

classification based on the relationships we identified as significant.  

Network Analysis 

Networks are often visualized using nodes (depictions of unit of interest) and edges 

(visualizations of the relationship connecting the nodes) (Proulx et al. 2005). In our case our nodes 

are our landings time series for each species group and our edges are the causal relationships we 

found between the landings time series using CCM. Networks can also be directed or undirected 

(Proulx et al. 2005). A directed network has edges which incorporate directionality depicting 

which node is influencing the other in any given relationship in the network (Proulx et al. 2005). 

Our network is directed, because our causal relationships display directionality. Additionally, 

network edges can be weighted, meaning the relationships between nodes can carry some value 

(Opsahl et al. 2010). In our case, our edges are weighted by the strength of the causal relationship 

detected by the CCM analysis (ρ). There are mathematical tools and techniques (i.e. network 

analysis tools) that are used to describe the structure and connectivity of relationships between the 

nodes and edges of a network (Proulx et al. 2005).  

We used two network analysis metrics, network density and degree centrality, to 

quantitatively characterize the structure of the interaction networks that resulted from the CCM 

analysis. Network density is the ratio of the number of direct connections in a network to the total 
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number of direct connections possible, and indicates the overall complexity of causal interactions 

in the network. Degree centrality is a metric that classifies nodes of a network based on how 

connected they are relative to other nodes. High degree centrality indicates greater connectivity of 

a node, or network, when considering centrality of all nodes. As a result, networks with higher 

overall degree centrality are generally more complex. We used the degree centrality metric for 

directed and weighted networks put forth in Opsahl (2010), which accounts for the number of 

connections (i.e. edges) a node has, as well as the weights associated with those connections (in 

our case the strength of the causal interaction): 

(1) 𝐶𝐷−𝑖𝑛
𝑤𝛼 (𝑖) = 𝑘𝑖

𝑖𝑛 × (
𝑠𝑖

𝑖𝑛

𝑘𝑖
𝑖𝑛)

𝛼

       

(2) 𝐶𝐷−𝑜𝑢𝑡
𝑤𝛼 (𝑖) = 𝑘𝑖

𝑜𝑢𝑡 × (
𝑠𝑖

𝑜𝑢𝑡

𝑘𝑖
𝑜𝑢𝑡)

𝛼

     

Where degree centrality in (Equation 1) or out (Equation 2) of a node (𝑖) is 𝐶𝐷
𝑤𝛼, 𝑘𝑖 is the number 

of edges in or out of node (𝑖), 𝑠𝑖 is the total weight of the edges in or out of node (𝑖), and 𝛼 is a 

tuning parameter which denotes the relative influence of 𝑘 and 𝑠. We set 𝛼 to 0.5, which gives 

equal weight to the number and weight of edges at a node (Opsahl et al. 2010).  

 

3.3 Results 

Based on our standardization of monthly SST anomalies, we classified 11 years as 

anomalously cool, nine years as anomalously warm, and 15 years as normal (Figure 3.3). Each 

SST classification was comprised of years spread throughout the time series.  
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Figure 3.3. SST time series (1983 – 2017) standardized to depict monthly anomalies. Light gray lines depict 

the daily SST monthly anomalies. The solid black line depicts the three month rolling mean of the daily 

SST monthly anomalies. The dashed horizontal lines depict one standard deviation above and below the 

mean. We classified years as anomalously cool if the three month rolling mean exceeded one standard 

deviation below the mean at any point during the year (marked with blue rectangles), and as anomalously 

warm if the three month rolling mean exceeded one standard deviation above the mean (marked with red 

rectangles). All other years are classified as normal. 

We found significant causal interactions between species landings under each SST 

classification (p < 0.05). Often these were bi-directional interactions, in which the two species 

landings causally influenced each other. The interaction networks varied in structure and strength 

of connections under each SST classification, and increased in complexity with increasing 

temperature (Figure 3.4). Many of the relationships we found are likely a result of transitive 

causation (X causes Y, Y causes Z, therefore X also causes Z) (Sugihara et al. 2012), making it 

difficult to disentangle each species to species relationship.  
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Figure 3.4. Species landings interaction networks for each SST classification. The network for anomalously 

cool years is shown in blue, the network for normal years is shown in gray, and the network for anomalously 

warm years is shown in red. For all networks the black circles (nodes) denote the species groups: RF = 

Rockfish spp., KB = Kelp Bass, SB = Barred Sand Bass, BO = Pacific Bonito, YT = Yellowtail, TU = Tuna 

spp. The direction and strength of the causal interaction between landings of species groups is shown by 

the lines connecting the species nodes. Links above the central plane of the nodes indicate causal 

relationships going from left to right, while links below the central plane denote causal relationships from 

right to left. The width and transparency of the link indicates the strength of the causal interaction, measured 

by Pearson’s correlation coefficient (rho). 

 

The anomalously warm network had the highest density (0.967), followed by the normal 

(0.800), and then the anomalously cool networks (0.700). The degree centrality of the nodes varied 

between the different SST classifications (Figure 3.5). The anomalously warm network showed 

the highest degree centrality overall with all outgoing and incoming nodes having a degree 

centrality greater than 2.0 (Figure 3.5). The spread of the degree centrality across nodes was 

greatest for the anomalously cool (1.08 – 2.61, 1.85 ± 0.45; Range, Mean ± SD) and normal 

networks (1.00 – 2.71, 1.93 ± 0.56), showing higher variability in the connectedness of nodes than 

the anomalously warm network (2.04 – 2.92, 2.60 ± 0.22).  
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Figure 3.5. Violin plot showing the distribution of the degree centrality of all incoming and outgoing nodes 

in the networks for each of the SST classifications, where the width of the violin corresponds to the 

distribution of degree centrality values of all nodes. Raw degree centrality values are shown by the black 

points. 

 

We found that the proportions of total landings made up by each species group varied 

between SST classifications (Figure 3.6). Yellowtail and Tuna spp. made up a larger proportion of 

total landings with increased SST. Others made up a larger proportion of total landings with 

decreased SST, such as Rockfish spp.  
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Figure 3.6. Proportion of total landings made up by each species group for the different SST classifications 

for years across the time series (1983 – 2017). Species groups are shown by different shades of gray: RF = 

Rockfish spp., KB = Kelp Bass, SB = Barred Sand Bass, BO = Pacific Bonito, YT = Yellowtail.  The tuna 

group is split into a stacked bar of the three species comprising the species group: AL = Albacore, YF = 

Yellowfin Tuna, BF = Bluefin Tuna. 

 

3.4 Discussion 

Multispecies fisheries constitute complex social-ecological systems that can be difficult to 

manage, especially given the added challenges associated with climate change. Climate change is 

causing the world’s oceans to warm, and predictions suggest that marine environments will 

experience a greater frequency of warm SST anomalies in the future (Cai et al. 2014, 2015; 
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Sievanen et al. 2018). This warming impacts fisheries, but the extent and nature of these impacts 

is not well understood, particularly within multispecies fisheries (Perry et al. 2010; Pörtner and 

Peck 2010; Cheung et al. 2013; Weatherdon et al. 2016). We used a retrospective analysis to 

describe underlying causal interaction networks of species landings in a multispecies fishery under 

different SST scenarios. While many of the individual relationships we found could be deduced 

based on anecdotal knowledge of our case study fishery, others were more difficult to account for, 

likely due to being a result of transitive causation. The focus of our study was to use CCM to 

quantify the structure of the entire network as a function of SST, allowing us to draw conclusions 

about how the system, as a whole, responds to warming. It is important to note that our “system” 

is limited to the vessels which we selected for in the CPFV fleet, namely those southern California 

vessels which target the full suite of our species of interest. Vessels that choose to solely target 

nearshore or solely target offshore species are likely subject to different underlying landings 

network conditions. We found causal dependencies between species landings under all SST 

scenarios, but warmer temperatures were associated with more connected causal interaction 

networks as shown by higher network density and degree centrality values. Notably, the 

anomalously warm SST conditions from our analysis mirror regional climate model predictions 

for the year 2040 (increase of ~0.5 to 1.5˚C)  (Sievanen et al. 2018). The increased connectivity of 

the species landing interaction network under future warm SST conditions will likely increase the 

risk of unintended consequences from single species management, as changing the landings of one 

species will have stronger and more complex cascading effects throughout the landings network. 

Robust fisheries management in a future warm ocean thus demands the continued development of 

tools which can account for multispecies interactions. 
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Studies investigating the response of fisheries to climate change tend to focus on the 

biological system rather than the human dimensions (Field and Francis 2006; Haynie and Pfeiffer 

2012). In this study, we chose to use landings data as the basis of our CCM networks, because 

these data implicitly capture both the ecological dynamics of this fishery and the economic, 

institutional, and management dynamics. This is especially important in the CPFV social-

ecological system, because the multispecies nature of this fishery creates linkages between species 

that would not otherwise be connected in a purely ecological context (Dotson and Charter 2003). 

For example, we found significant causal interactions between Rockfish spp. and Tuna spp. under 

every SST scenario. These species occupy different habitats, have different life history strategies, 

and would only interact in the natural environment under the rarest of circumstances. Nevertheless, 

their landings are linked because they are targeted by the same fishery. One strength of CCM is 

that it does not necessitate parsing apart the myriad potential drivers of the dynamics of CPFV 

landings (Sugihara et al. 2012). Because this method allows the data as a whole to direct the results, 

the networks we constructed are inherently influenced by all the factors that influence the landings 

themselves.  

By splitting our time series based on SST anomalies, we were able to isolate how 

temperature influences this system, while still allowing for the other socio-ecological dynamics to 

operate. One concern with this approach is that filtering our data by SST could be confounded by 

other major shifts in the system, such as technological advances, that occur at the same time, which 

would result in our spuriously attributing the changes we saw to SST when in fact they were the 

result of unknown drivers. This is unlikely in our analysis, because the years included in each of 

the SST classifications are dispersed throughout the landings time series and there are no 

coincident major shifts in the management, environment, or functioning of the CPFV fishery that 



94 

 

occurred across all of the years represented in each of the SST scenarios. For example, in 2013 

CDFW enacted new regulations on the bass species complex (Paralabrax sp.) which raised the 

size limit from 12 to 14 inches and reduced the bag limit from 10 to 5 individuals (California Code 

of Regulations Title 14, Section 28.30). While our time series encompasses these changes in 

regulation, they did not influence our SST network comparisons, because our SST classifications 

include sufficient time periods before and after these changes.  

Based on knowledge of the fishery, we believe that an underlying hierarchical valuation of 

species targeted by the CPFV fleet is driving the dependencies we observed in our networks. 

Generally, pelagic species like Tuna spp. and Yellowtail are more highly valued by the recreational 

community than other commonly encountered nearshore species such as Rockfish spp. (Dotson 

and Charter 2003; Parnell et al. 2010). Despite the fact that nearshore species are generally more 

consistent targets, CPFV captains will often opt to invest resources in traveling farther if there are 

reports of Tuna or Yellowtail, especially off San Diego in southern California (Dotson and Charter 

2003; Parnell et al. 2010). During anomalously warm years higher value species such as Yellowtail 

become more prevalent (Dotson & Charter 2003). We believe this increased presence of highly 

valued species accounts for the more complex landings network constructed from anomalously 

warm years (as shown by the physical structure of the network, higher network density, and higher 

degree centrality values), because CPFV captains are more regularly making the choice to target 

these species over more consistent nearshore targets. Anomalously cool and normal years likely 

have less complex networks, because only a subset of the species groups are readily available. This 

assertion is further reinforced by the greater proportion of landings made up by high value, 

transient species in anomalously warm years. Our analysis quantitatively confirms anecdotal and 
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previously published evidence of the hierarchy of target species among southern California CPFVs 

(Dotson and Charter 2003; Parnell et al. 2010; Bellquist et al. 2017).  

One major concern in predicting fishery responses to climate change is determining the 

ability of fishery systems to adapt to the unforeseen consequences of a changing ocean (Perry et 

al. 2010; Chavez et al. 2017; Fuller et al. 2017). Social-ecological resilience can be defined as the 

ability of a social-ecological system to withstand disturbances while preserving the same basic 

function (Folke 2006; Craig 2017; Garmestani et al. 2019). The less adaptable a fishery system is, 

the more vulnerable it is thought to be to perturbation, and therefore the less resilient it is (Chavez 

et al. 2017; Fuller et al. 2017; Gaines et al. 2018). By explicitly describing the underlying structure 

of species landings networks under different SST scenarios, our analysis provides an avenue for 

assessing the resilience of the CPFV fleet to warming ocean conditions. The marked differences 

in network density and degree centrality between the different SST networks suggests that the 

CPFV vessels we studied are well-equipped to adapt to changing conditions brought on by 

different SST scenarios. The structural differences in landings networks we observed are likely 

due to the fact that the CPFV fishery is able to readily adjust to changes in species availability 

brought on by SST changes. Indeed, the CPFV fleet has a long history of proving themselves 

adaptable to system disturbances (Dotson and Charter 2003). This is in large part due to the 

flexibility in target species afforded to CPFVs; they are able to alter their target strategy relatively 

quickly in response to system changes. For example, in 2001, in apparent response to regulations 

limiting the catch of Rockfish spp., the fleet began targeting alternative species like Sanddab 

(Citharichthys sp., Paralichthyidae) (Dotson and Charter 2003). Given the perseverance captains 

have shown in the past, and our demonstration that the underlying species landings network can 
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and will shift under different SST conditions, it is likely the southern California CPFVs can rise to 

the challenges posed by climate change.  

It is difficult to make broad generalizations about the effect of warming SST and climate 

change on multispecies fisheries; however, our analysis demonstrates that quantifying causal 

interactions between species landings can be a helpful tool in characterizing fishery-level 

responses to climate change. A key determinant of changes in network structure and connectivity 

in our case study was the increased presence of high value transient species during anomalously 

warm years. Numerous studies have documented fishery species range shifts driven by climate 

change (e.g. Booth, Bond, & Macreadie, 2011; Gaines et al., 2018; Rogers et al., 2019). Many 

other multispecies fisheries target species whose presence are mediated by factors affected by 

climate change, and it is likely that many will experience landings network reorganization in the 

future as a result. Our findings suggest that the nature of the reorganization will be fishery 

dependent, based on species-level responses to climate impacts, the underlying preference 

structure for target species, and the ability of the fishery to adapt to changing conditions. Gaining 

an understanding of the structure of species landings networks and how the dependencies therein 

change as a function of climate impacts provides valuable insight into the often unseen interactions 

in multispecies fisheries that can influence the effectiveness of fisheries management measures.  

The CPFV fleet is an important part of the economy, ecosystem, and culture of the southern 

California region (Schroeder and Love 2002; Dotson and Charter 2003; Jarvis et al. 2004; Bellquist 

and Semmens 2016). While not comprehensive in its analysis of the potential impacts of climate 

change, this study provides some guidance as to what can be expected as the CPFV fishery 

confronts the challenges of a warming ocean. We have shown that years with anomalously warm 

SST akin to what we can expect as a result of near-term climate change are characterized by more 



97 

 

complex and connected networks of species landings. Increased dependencies between species 

landings are ill-suited for single species management, because management actions meant to 

regulate the landings of one species can have unforeseen impacts on the landings of other species 

throughout the network. To support the continued success of the southern California CPFV fleet 

and multispecies fisheries more broadly in the face of a warming ocean, management agencies 

need to continue making strides toward implementing multispecies and ecosystem-based 

approaches.  
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Abstract 

Ensuring the sustainability of seafood is increasingly important for supporting food 

security and stable livelihoods in the face of a growing human population. Previous work has 

demonstrated that, on a country-by-country basis, fisheries management intensity is positively 

correlated with the sustainability of seafood production. However, because seafood consumption 

sustainability depends on seafood sourcing, even countries with intensively managed fisheries may 

largely consume (and economically support) seafood from less intensively managed sources. Here 

we combined three disparate datasets to relate global seafood trade dynamics to fisheries 

management to estimate the disparity between management of seafood production and 

consumption across countries. We found that countries that have intensively managed fisheries 

had comparatively lower levels of management intensity associated with their consumption. In the 

context of seafood sustainability, countries with the highest production sustainability, on average, 

consumed less sustainable seafood products than what they produced. On the other hand, many 

countries with less intensive fisheries management consumed more sustainable seafood than they 

produced. These disparities appeared to be related to wealth, with higher GDP countries having a 

greater disparity between sustainability of seafood consumption and production. We assert that the 

globalization of seafood trade and trends in the flow of seafood products contribute to the 

disparities in the sustainability of seafood consumption and production in the context of 

management. To support the sustainability of seafood consumption we need better mechanisms 

for tracing the fate of seafood products from their point of capture to their final point of 

consumption.  
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4.1. Introduction 

Freshwater and marine products sourced from wild capture and aquaculture fisheries, 

referred to from here onward as seafood, play a critical role in global food systems. In 2017, 

approximately 3.3 billion people derived 20% of their animal protein intake from fish, with this 

percentage being even higher for many developing and small island nations (FAO 2020a). In 

addition to providing sustenance, seafood and fishing industries are an important source of jobs 

and income for many people around the world, supporting the livelihoods of more than 10% of the 

global population (Teh and Sumaila 2013, FAO 2020a). As demand for fisheries as a source of 

food and livelihoods increases through time, so do potential negative environmental impacts 

stemming from unsustainable fishing (e.g. loss of biodiversity, fisheries-induced evolution, and 

altered trophic dynamics; Smith et al. 2010, Heino et al. 2015, Ortuño Crespo and Dunn 2017). In 

recognition of the importance of marine and aquatic resources, such as fisheries, to global 

development the United Nations included them in their Sustainable Development Goals for 2030, 

calling on the global community to “conserve and sustainably use the oceans, seas, and marine 

resources for sustainable development” (UN General Assembly 2015, Ovando et al. 2021). 

Sustainable fisheries can be defined in many ways. On a fishery-by-fishery basis in wild 

capture fisheries, managers often rely on the development of standard indicators to assess and 

regulate sustainable production, such as maximum sustainable yield (MSY) abundance (B/BMSY) 

or fishing mortality (U/UMSY) (FAO 2019, Hilborn et al. 2020). The effectiveness of these 

indicators (and thus fisheries management) is dependent on the quality of data available, the 

sophistication of modeling methods, and ultimately, the successful application of regulatory efforts 

(Ovando et al. 2021). As such, one measure of fisheries sustainability on the scale of countries is 

the relative level of fisheries management and enforcement. Increased fisheries management 
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intensity is associated with more sustainable fisheries production (Costello et al. 2016, Melnychuk 

et al. 2017, 2021, Hilborn et al. 2020). That is, countries that are better equipped to establish strong 

fisheries management, particularly in reference to enforcement, fishing regulations, and capacity 

to conduct stock assessments (Melnychuk et al. 2017), have relatively few overfished stocks. 

Similarly, within aquaculture, countries that have the stability and capacity to support strong 

property rights and establish regulatory oversight of the industry have more strongly managed and 

sustainable aquaculture production (Anderson 2015). While countries with stronger capacity to 

manage their fisheries generally produce sustainable seafood, the sustainability of their 

consumption is the product of both locally produced seafood and imports from other countries—

the latter operating outside the bounds of local fisheries management.  

Trade of seafood products is increasingly globalized (Swartz et al. 2010, Asche et al. 2015, 

Gephart and Pace 2015). As some of the most traded food commodities in the world, 78% of 

seafood products experience competition from international trade and 38% of all fisheries 

production enters international trade markets (FAO 2020a). The globalization of seafood markets 

means that countries are not just consuming seafood products that they produce themselves, but 

rather are a part of a vast network of international seafood trade that derives products from many 

different sources. This creates potential for a mismatch between seafood production and seafood 

consumption sustainability (Guillen et al. 2018).   

In this study, we adapted a metric of country-specific management intensity to account for 

consumption sustainability based on both production and trade, and compared it to previous 

estimates of production-only sustainability. To do so, we combined different sources of fisheries 

trade data to link management intensity (as a metric for sustainability), seafood production, and 

seafood consumption. In particular, we used the FAO Food Balance Sheet of fish and fishery 
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products (FAO 2020b) and a highly resolved international trade dataset, the HIS MarkIT Global 

Trade Atlas (GTA). By contrasting production versus consumption sustainability on a country-by-

country basis, we highlight those countries with broad disparities between the two, and discuss the 

economics and information gaps that may be causing such disparities.  

 

4.2. Methods 

We used three main sources of data in our analysis: the FAO Food Balance Sheet of fish 

and fishery products (FAO 2020b), the GTA dataset (data compiled by the Alaska Fisheries 

Information Network in GTA_TRADE_DATA_V), and the Fishery Management Index (FMI) 

(Melnychuk et al. 2017, Ocean Health Index 2019). We used information from these sources and 

various assumptions (defined below) regarding the nature of trade of seafood products and 

consumption to estimate the management intensity of seafood products that are consumed within 

a country. Using these values we explored the relationship between management of seafood 

products consumed and produced across countries globally. We performed all of our analyses 

using R Statistical Software, version 3.6.1 (R Core Team 2019). The corresponding code can be 

found at https://github.com/kmblincow/GlobalSeafoodTrade.  

Data 

The FAO Food Balance Sheet includes information on the production, imports, exports, 

and total food supply of seafood products associated with countries grouped by coarse product 

types and year (FAO 2020b). The product types in the FAO data are derived from the International 

Standard Statistical Classification of Aquatic Animals and Plants (ISSCAAP) and include: 

Freshwater and Diadromous Fish, Pelagic Fish, Demersal Fish, Marine Fish Not Elsewhere 
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Indicated (NEI), Crustaceans, Cephalopods, Molluscs Excluding Cephalopods, and Aquatic 

Animals NEI. We relied chiefly on the FAO dataset as the core of our analysis due to it being the 

standard data used in these types of analysis and a lack of a better alternative including estimates 

of the components of seafood consumption across a wide array of countries.  

The GTA data include information on the quantity of imports and exports of seafood 

products (Harmonized System Codes (HS) -03, -16) between trade partners. We will refer to 

countries that report to the dataset as “reporters” and their associated trade partners as “partners”. 

We used this dataset to define which trade partners contributed to the imports of reporters recorded 

in the FAO Food Balance Sheet. We filtered out products that are not intended for human food 

consumption as defined by the FAO Food Balance Sheet metadata, including ornamentals, oils, 

feed, and capsules. We also filtered out trade relationships that did not apply to our analysis, for 

example, some countries reported trade that occurred between regions within their national 

boundaries. Additionally, we filtered out reporters that were grouped or were duplicates of other 

reporters (e.g. European Union reporters that were aggregates of member countries). The GTA 

data on imports and exports are recorded in product weight, while the FAO data is recorded in live 

weight. To combine information from both datasets we converted the product weights to live 

weights in the GTA data. We used the suggested conversion factors (CF) from the FAO 

Coordinating Working Party on Fishery Statistics (CWP) Handbook of Fishery Statistical 

Standards detailed in Annex I.1 (FAO 2004). In cases where products did not have a direct FAO 

CF, we used the most closely taxonomically related CF available. There were some cases (0.2% 

of total imports) that did not have a close equivalent FAO CF (e.g. caviar and shark fins) or did 

not have information regarding the product (e.g. confidential product trade). In these cases we used 

the best available CF from other sources or assigned a CF of 1. In particular, we chose to assign a 
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CF of 1 to product groups with no information, such as confidential trade, as we did not have a 

basis for determining what an appropriate CF would be other than the product weight itself. 

Additionally, we classified all GTA products into the FAO ISSCAAP product groupings used in 

the FAO Food Balance Sheet data.  

The FMI data constitute estimates of the management intensity of wild capture fisheries in 

different countries. Originally created by Melnychuk et al. (2017), FMI is a metric ranging from 0 

to 1 that uses information from surveys of fisheries experts to assess research, management, 

enforcement, and socioeconomics of fisheries management across 28 different countries that 

account for > 80% of global catch. Melnychuk et al. later expanded the FMI to include additional 

countries and fisheries stocks (Melnychuk et al. 2020, Hilborn et al. 2020). The Ocean Health 

Index (OHI) estimated FMI for additional countries/territories in order to incorporate it into their 

resilience estimates of coastal countries for their 2019 Ocean Health Index global assessment 

(Halpern et al. 2012, Ocean Health Index 2019). To do so, they used linear models to determine 

which variables best predicted FMI from an original set of 40 countries from Melnychuk et al., 

including various measures of gross domestic product (GDP), governance, and region. They found 

that the Social Progress Index (SPI) and United Nations geo-regions were the best predictors of 

FMI. SPI is an index that measures how well countries support basic human needs, foundations of 

wellbeing, and opportunity for their citizens (Stern et al. 2018). After fitting a linear model using 

these explanatory variables, they used it to fill gaps in the FMI dataset to include 80 additional 

countries/territories (Ocean Health Index 2019). There were a total of 324 different trade partners 

reported in the GTA dataset, some of which represented smaller territories within countries or 

groupings of multiple countries. For trade partners that constituted groups of countries (e.g. 

European Union) or unrecognized territories we determined FMI by either calculating the mean 
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FMI of the group of countries or finding the most closely related country or territory associated 

with the unaccounted for trade partner. For the remaining countries (n = 44), we used the OHI gap 

filling model to further expand the FMI dataset. We should note that FMI was created as a measure 

of management intensity for wild capture fisheries, but we applied it to both wild capture and 

aquaculture seafood products as the trade datasets do not specify the method of production. We 

believe this is a safe assumption considering many of the country-level factors influencing 

management intensity of wild capture seafood products (e.g. enforcement capacity) have similar 

influences on the management of aquaculture seafood products (Anderson 2015).  For the purposes 

of our analysis we are referring to the FMI data of country-level management intensity as FMIP, 

or the FMI associated with a country’s production. The data also formed the basis for our 

calculation of FMII, or the management intensity of a country’s imports of seafood products, and 

FMIC, or the management intensity of a country’s consumption of seafood products (see below). 

Calculating FMIC 

We combined the three datasets described above to determine the FMI associated with 

consumption (FMIC) for each reporter present in both the GTA and FAO datasets. The GTA data 

did not have high resolution trade information for all reporters prior to 2012, and the FAO dataset 

only included data up to 2017. For these reasons we limited our analysis to the years 2012-2017.  

We used the same equation for calculating consumption that underpins the FAO Food 

Balance Sheet calculation of total food supply to serve as the basis for our calculations (Equation 

1). This equation states that the product that is available for human consumption is what is left 

over after accounting for inputs of product from domestic production and imports from other 

countries, and outputs of product associated with exports: 
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(1)        C = P + I − E 

Where for any given reporter and product group, C is consumption of the seafood product, P is 

domestic production of the product, I is imports of the product from other countries, and E is 

exports of the product to other countries. Building from this fundamental relationship we generated 

an equation for calculating FMIC (Equation 2): 

(2)     FMIC𝑟
= (pP𝐶𝑟

× FMIP𝑟
) + (pI𝐶𝑟

× FMII𝑟
) 

Where for reporting country r, pP𝐶𝑟
 is the proportion of consumption of a product associated with 

domestic production, pI𝐶𝑟
 is the proportion of consumption associated with imports from other 

countries, FMIP𝑟
 is the production FMI for the reporting country, and FMII𝑟

 is the FMI associated 

with the trade partners supplying imports of the product scaled based on their contribution to total 

imports to country r. We calculated FMII𝑟
 as follows (Equation 3): 

(3)  FMII𝑟
= ∑ ((pP𝐸𝑗

× pI𝑟𝑗
× FMIP𝑗

) + (pI𝐸𝑗
× pI𝑟𝑗

× FMIglbl))𝑛
𝑗=𝑃𝑎𝑟𝑡𝑛𝑒𝑟1  

Where pP𝐸𝑗
 is the proportion of exports of a product by trade partner j associated with their 

domestic production, pI𝐸𝑗
is the proportion of exports by trade partner j associated with their 

imports, pI𝑟𝑗
 is the proportion of imports of the reporting country r associated with trade partner 

j, FMIP𝑗
 is the production FMI for trade partner j, and FMIglbl is a global estimate of the FMI for 

a given product scaled based on the relative production by countries (Equation 4):  

(4)      FMIglbl = ∑ (𝑝𝑃𝑔𝑙𝑏𝑙𝑘
× 𝐹𝑀𝐼𝑃𝑘

)𝑛
𝑘=𝑐𝑜𝑢𝑛𝑡𝑟𝑦1  

Where 𝑝𝑃𝑔𝑙𝑏𝑙𝑘
 is the proportion of global production of a product associated with country k, and 

𝐹𝑀𝐼𝑃𝑘
 is the production FMI associated with country k.  
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Assumptions and Sensitivity of Unknown Parameters 

In the equations above, there are 3 key unknowns that we were unable to estimate with the 

data in hand: 1) the proportion of consumption of a product that is associated with domestic 

production (pP𝐶𝑟
), 2) the proportion of exports of a product that is associated with domestic 

production (pP𝐸𝑗
), and 3) country of origin for any re-exported seafood products. Each of these 

unknowns are the result of a common, and poorly documented practice: re-exporting and/or re-

importing products. While some countries do report re-exports, the recognized definition of re-

exports within global trade only includes products that are imported and re-exported in the same 

form. Products that are imported and undergo processing get reported as new products originating 

from the point of processing. For example, if country A imports whole fish from country B, then 

processes and re-exports that product as canned fish, that fish becomes a new product attributed to 

country A. As a result, tracing the origin of seafood products that undergo processing in countries 

separate from where they are harvested is currently not possible with the data we have. For the 

purposes of this study we will refer to this challenge as the issue of re-exports. Since our goal was 

to trace the origin of seafood products from their original point of raw production, we were forced 

to make assumptions regarding these values. To address these unknowns, we either made 

regularizing assumptions, or conducted a parameter sensitivity analysis based on prior parameter 

estimates in the literature.  

Regarding the proportion of consumed seafood products that are domestic in origin, we 

used a range of parameters, including a naïve assumption and two values derived from the 

literature. First, we calculated FMIC under the assumption that, for all countries and products, 

consumption that was domestic in origin was proportional to the amount of domestic production 

of that product. For example, if a country produced 50 tons of fish and imported 10 tons of fish, 
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we assumed the total food supply available for consumption associated with domestic production 

versus imports was 5:1 ( pP𝐶𝑟
: pI𝐶𝑟

). We refer to this FMIC estimate as the proportional derivation. 

Second, we relied on an estimate of the proportion of consumption associated with domestic 

production made in Gephart et al. (2019). They estimated that 35-38% of seafood consumption in 

the United States is produced domestically, accounting as best as possible for the issue of re-

exports. We applied a pP𝐶𝑟
of 0.365 to all countries for our second estimate of FMIC, which we 

refer to as the Gephart derivation. Given that it is not necessarily reasonable to assume all countries 

would operate under similar circumstances to the United States in regards to seafood trade 

dynamics, we applied one additional estimate. We used a value from Guillen et al. (2018) that used 

a Multi-Region Input-Output model (MRIO) to characterize global seafood consumption and 

estimated that approximately 74% of final consumption of seafood products is from domestic 

supply globally. Their MRIO model did not directly account for the issue of re-exports, and 

assumed products originated from the country of export. We applied a pP𝐶𝑟
of 0.74 to all countries 

for our third estimate of FMIC, which we refer to as the Guillen derivation. 

Regarding the proportion of exports of a product from trade partners that are domestic in 

origin (Equation 3), we used the naïve assumption that both pP𝐸𝑗
 and pI𝐸𝑗

 were equal to 0.5.  For 

most countries, this is likely an underestimate of the amount of exports associated with domestic 

production. However, by making this assumption it allows us to simultaneously leverage the power 

of the highly resolved binational trade flows present in the GTA data while still allowing our results 

to correct for the issue of re-exports by attributing a conservative proportion of exports to a global 

mean FMI (described below).  

Finally, regarding the country of origin for any re-exported seafood products, we made the 

regularizing assumption that re-exported products had an FMI equivalent to the global average of 
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the FMI for all product groups and countries. We scaled this global estimate based on the level of 

production of each product by each country (Equation 4).  

Analysis 

We calculated all of the equations above based on the FAO product groups, and aggregated 

the final FMIC estimates based on the relative proportion of total seafood consumption associated 

with each product. All of the assorted FMIP values were drawn from the FMI dataset. The GTA 

data provided the relative contribution of different trade partners to each reporter’s imports. The 

FAO data provided information on the total food supply and relative proportions of different 

product groups to the total food supply for each reporter. We compared the total live weight of 

imports by country from the GTA dataset against the FAO dataset to determine how much they 

differed, and found that the FAO data had lower estimates, in some cases substantially so (see 

Figure A4.1). Despite the disparities in the magnitude of trade reported by the different datasets, 

we assumed that the relative contribution of trade partners derived from the GTA data was the 

same for the FAO data.  

We analyzed our resulting estimates of FMIC using linear modelling techniques. We used 

simple linear models to determine the direct relationship between FMIP and our estimates of FMIC. 

We tested for differences in the disparity of FMIP and the mean of our FMIC estimates (FMICmean) 

using a multiple linear regression with FMIP-FMICmean as the response variable and region and per 

capita GDP as the explanatory variables. We further explored the trade relationships associated 

with the largest importers and exporters globally by looking at the relative contributions and 

differences in FMIP among their trade partners. 
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4.3. Results 

We found that while all countries had an FMIC that differed from their FMIP (Figure 4.1), 

the direction and magnitude of the difference depended on their FMIP.  Countries on the lower end 

of the FMIP spectrum tended to have FMIC values greater than their FMIP, while countries on the 

higher end of the FMIP spectrum tended to have FMIC values lower than their FMIP (Figure 4.1).  

 

Figure 4.1. Results of the FMI calculations for all countries. Countries along the x axis are ordered based 

on the magnitude of the difference between FMIP and FMICmean across all products. The color and shape of 

the points are indicative of the FMI calculation, with red points of different shapes denoting FMIC 

derivations, blue points denoting FMII, and black points denoting FMIP. The size of the points is the 

consumption of each country (Total Food Supply from FAO data) scaled by dividing by the maximum 

consumption estimate (China). 

 

We found that overall FMIC had a significant positive linear relationship with FMIP, which 

was expected given the FMIC calculations were dependent on FMIP. The estimates of the linear 

coefficients varied across the different FMIC derivations (Figure 4.2). The Guillen FMIC derivation 

had the highest slope estimate and was the closest to a 1:1 relationship between FMIP and FMIC  

(FMIC = 0.797 x FMIP + 0.112, R2 = 0.99), followed by the proportional estimate (FMIC = 0.602 
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x FMIP + 0.210, R2 = 0.85), then the Gephart estimate (FMIC = 0.511 x FMIP + 0.287, R2 = 0.87) 

(Figure 4.2). Countries with FMIP values at the extreme ends of the spectrum differed the most 

from the 1:1 relationship (Figure 4.2).   

 

Figure 4.2. Plot comparing FMIP to the different FMIC derivations. The points depict the raw data 

(countries), while the lines show the linear model results. The shaded areas around the lines denote the 95% 

confidence intervals for the linear model fit. The different colors denote the different FMIC derivations. The 

black line shows the hypothetical direct 1:1 relationship between the two variables for comparison. 

 

We found significant differences in the disparity between FMIP and FMICmean with region 

and per capita GDP (R2 = 0.67, F(13,65) = 13.24, p = 1.19e-13). There was a significant positive 

effect of per capita GDP (p = 0.001) (Figure 4.3a). There were significant differences among 

regions, with Eastern Europe (p = 2.29e-5), Australia and New Zealand (p = 0.034), and Northern 

America (p = .007) differentiating from the intercept region of Southern Asia (Figure 4.3b). All of 
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these regions showed model estimates well above zero, indicating their FMIP is likely to be greater 

than their FMIC. The model estimates for Asian regions were chiefly less than zero, indicating 

their FMIP is likely to be less than their FMIC.  

 

Figure 4.3. Multiple linear regression results showing the effect of region and per capita GDP on the 

disparity between FMIP and FMICmean. The top panel (a) shows the relationship with GDP with the points 

indicating the raw data, the line the model estimate, and the shaded area the 95% confidence interval. The 

lower panel (b) shows the model estimates of the disparity by region. The point estimates for each region 

are shown by the red squares, and the intervals denote the 95% confidence intervals.  
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The top five exporters by volume across 2012 to 2017 in descending order were China, 

Norway, Thailand, Russia, and the United States (Figure 4.4a). The top five importers in 

descending order were the United States, China, Japan, Spain, and France (Figure 4.4b). The 

highest exporters tended to trade with more partners than the highest importers. 

 

Figure 4.4. The proportion of global exports (a) and imports (b) from 2012-2017 by FMIP. The size and 

color of the points shows the number of trade partners for each country (note difference in scale of y-axis). 

The top five exporters and importers are labeled in each panel. 

 

China and the United states contributed most to global exports and imports, respectively. 

China’s exports are traded globally, with the largest proportions of its exports going to Japan 
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(17.9%), South Korea (15.1%), and the United States (14.6%) (Figure 4.5). A majority of China’s 

major trade partners had higher FMIP values than China itself (0.370; Figure 4.5). The United 

States traded largely with countries that have lower FMIP values (Figure 4.6). The majority of 

imports coming into the United States were from Asian countries (>57% of total imports), with 

the largest contributions from the region coming from China (24.8%), Vietnam (9.4%), Thailand 

(6.7%), and Indonesia (6.3%) (Figure 4.6). The second largest country contributing to the United 

States’ imports after China was Canada (13.9%) (Figure 4.6). 

 

Figure 4.5. Figure depicting China’s global exports 2012-2017. In the top panel, China is shaded based on 

its own FMIP. The lines and points show the destination of exports from China, with the color denoting the 

FMIP of the export trade partner. The thickness and darkness of the lines and points are scaled to the 

magnitude of the trade going to each country. The bottom panel shows the top 25 trade partners receiving 

China’s exports and the proportion of China’s total exports attributable to each partner. The bars are shaded 

based on the trade partner’s FMIP. 
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Figure 4.6. Figure depicting the origin of the United States’ imports 2012-2017. In the top panel, the United 

States is shaded based on its own FMIP. The lines and points show the origin of imports to the United States, 

with the color denoting the FMIP of the import trade partner. The thickness and darkness of the lines and 

points of origin are scaled to the magnitude of the trade coming from each country. The bottom panel shows 

the top 25 trade partners contributing to the United States’ imports and the proportion of the United Sates’ 

total imports attributable to each partner. The bars are shaded based on the trade partner’s FMIP. 

 

 

4.4. Discussion 

Most efforts to assess national seafood sustainability have focused on the quality of 

fisheries management and enforcement of seafood harvest domestically (Costello et al. 2016, 

Melnychuk et al. 2017, Hilborn et al. 2020). However, seafood is one of the most traded food 

commodities in the world, with most countries relying on international trade to some extent to 

support their seafood consumption (Swartz et al. 2010, Asche et al. 2015, FAO 2020a). As this 

global trade gains complexity, it is increasingly clear that assessments of national seafood 
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sustainability must also account for the sustainability of imported seafood products. Here, we 

generated estimates of the management intensity associated with country-specific seafood 

consumption (FMIC), accounting both for production and imports, and assessed disparities 

between this metric and the management intensity of country-specific seafood production (FMIP). 

We then related these estimates of management intensity to sustainability of production and 

consumption based on the understanding that more intensely managed fisheries tend to be more 

sustainable (Costello et al. 2016, Melnychuk et al. 2017, 2021, Hilborn et al. 2020). Overall we 

found that countries that have intensively managed fisheries (higher FMIP) tend to have relatively 

lower FMIC than countries with less intensively managed fisheries (lower FMIP). That is, countries 

associated with sustainable seafood production, on average, consumed seafood products at much 

lower sustainability levels than what they produced. On the other hand, many countries with low 

FMIP actually consumed more sustainable seafood than they produced. In general, these disparities 

appear to be at least partially mediated by wealth; as GDP increases, so does the disparity between 

the sustainability of consumption and production. 

While directly calculating sustainability of seafood consumption is fraught with 

uncertainty, the general patterns we observed appear robust to the different parameter estimates 

we considered. The reciprocal pattern we found in the relationship between FMIP and its difference 

with FMIC highlights the overall disparity in management intensity globally. This pattern held, 

regardless of the assumptions we made concerning the proportion of national seafood consumption 

stemming from domestic production versus imports. It makes sense given the nature of the 

globalization of seafood trade that countries at the upper end of the FMIP spectrum, which are 

known for producing well-managed, sustainable seafood (Macpherson 2018, Gephart et al. 2019), 

will almost always see decreases in the level of management associated with their seafood 
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consumption the more they rely on imports from other countries. Alternately, countries with less 

intensive fisheries management occupying space at the lower end of the FMIP spectrum will almost 

always see an increase in the level of management associated with their seafood consumption the 

more they rely on imports. We cannot definitively determine the magnitude of the disparity 

between the management intensity of seafood production and consumption without knowledge of 

the relative proportions of seafood consumption attributable to domestic production. However, we 

can feel confident that there is in fact a disparity for most countries because most countries rely at 

least in part on imports to supply their seafood consumption.  

The globalization of seafood trade means that domestic fisheries management practices 

have international influence, and guarantees that countries will see differences in the level of 

management in seafood they produce versus seafood they consume. We found that the countries 

responsible for the most global exports of seafood tended to export to a large number of trade 

partners. China (FMIP = 0.370) as the largest exporter across the time period we studied, exported 

seafood products with remarkably broad global reach (Figure 4.5). Because of this, the 

sustainability of fishery management practices in China are a part of the seafood consumption 

sustainability budget of most countries across the globe.  Many countries, especially in the 

developed world, are net importers of seafood, meaning they consume more than they produce 

(Bellmann et al. 2016, Watson et al. 2016, West et al. 2019). It follows that the level of fisheries 

management associated with their seafood consumption will shift principally based on the 

countries from which they import. In general, developed countries, or countries that have 

developed economies based on United Nations assessments, tend to import most of their seafood 

products from developing countries, or countries that have less developed economies according to 

the United Nations (Asche et al. 2015, Ye and Gutierrez 2017, Watson et al. 2017). Developed 
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countries have had decreased fisheries production in recent years, and responded in part by 

increasing reliance on seafood imports (Ye and Gutierrez 2017). An increase in the production and 

export of high quality seafood from the developing world has largely met this demand (Asche et 

al. 2015, Watson et al. 2016, 2017, Ye and Gutierrez 2017). Fisheries management and governance 

in the developing world is generally lower than in the developed world (Smith et al. 2010, Asche 

et al. 2015, Ye and Gutierrez 2017), meaning this flow of exports from developing countries to 

developed countries contributes to a mismatch in the overall sustainability of seafood consumption 

in developed countries compared to their seafood production.  

The impact of the disparity in management practices associated with fisheries production 

and imports in the developed world is highlighted by our examination of the United States, the 

largest importer of seafood globally across the time period we studied. The United States is 

estimated to rely on imports for 62-65% of their seafood consumption (Gephart et al. 2019). Every 

trade partner in the top 25 sources of imports to the United States from 2012-2017 had a lower 

FMIP than the United States (FMIP = 0.932), and the majority of United States imports by volume 

had origins from countries with FMIP < 0.5. It is clear the United States is largely consuming 

seafood that is held to different management and sustainability standards than what they produce. 

One interpretation of this is that countries in the developed world with intensive management 

practices, such as the United States, are diverting the costs of their intensively managed production 

of luxury seafood products to developing nations that forego the costs of more intensive 

management in favor of short-term economic development supported by the income derived from 

exporting seafood (Ye and Gutierrez 2017).  

Many seafood products traverse complex global processing and supply chains before they 

reach their final destination (Bellmann et al. 2016, Blaha and Katafono 2020). When products are 
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imported, processed, and exported as entirely new products they get attributed to the country that 

did the processing, not the country that initially harvested them from the environment (Pramod et 

al. 2014, Watson et al. 2016, Gephart et al. 2019). As a result of these trade dynamics we, like 

many other accounts of global seafood consumption (e.g. Watson et al. 2016, Gephart et al. 2019), 

were unable to directly estimate the proportion of a country’s consumption and exports associated 

with their own production versus imports. This issue of re-exports is just one in a list of challenges 

facing seafood traceability. Fisheries reporting largely fails to capture transshipment, or offloading 

of catch to refrigerated vessels far from port masking original catch locations (Miller et al. 2018). 

There are also issues of mislabeling (Watson et al. 2016), high seas fishing, and private fisheries 

agreements that result in products being attributed to countries separate from where they are 

harvested (Ye and Gutierrez 2017, Watson et al. 2017). In addition, there is poor accounting for 

illegal, unreported, and unregulated (IUU) fishing practices (Agnew et al. 2009, Pramod et al. 

2014, Watson et al. 2016). By not having a reliable means to track products from their source to 

the final point of consumption, it is challenging to accurately estimate the sustainability of seafood 

consumption (Watson et al. 2016, Gephart et al. 2019). Given the increasing global trade in seafood 

products, this lapse in the accounting of seafood traceability makes efforts to promote 

sustainability difficult (Watson et al. 2016, Gephart et al. 2019). Furthermore, the inability to 

determine the origin of products shields less sustainable products from economic disincentives to 

production, and thus indirectly promotes unsustainable fisheries. 

What can be done to improve seafood traceability, particularly as it relates to the issue of 

re-exports? Some non-profit groups have begun establishing consumer-facing traceability 

certifications that attempt to inform consumers of the origin of seafood products that meet their 

certification criteria (Bailey et al. 2016). These programs allow consumers to choose between 
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certified products that have some degree of traceability to their point of capture over 

uncertified/untraceable products (Bailey et al. 2016). While such programs are a step in the right 

direction, they are also wide-ranging in terms of their scope and efficacy, especially given that 

most products are not traceable to their point of origin (Bailey et al. 2016). Chan et al. (2015) 

provide some suggestions for improving customs accounting of wildlife trade products, including 

seafood. For example, they suggest extending the international standardized system of names and 

codes for trade classification (HS) to include 10 digits that would allow for more specificity in 

product reporting (Chan et al. 2015). While increased specificity in customs product reporting 

would certainly help decrease the uncertainty in tracing supply chains of seafood products, there 

is still a need for a mechanism to track seafood from the point of capture to the point of 

consumption. Emerging technologies such as blockchain provide one avenue for addressing this 

need. Blockchain in the context of fisheries would essentially provide a definitive, immutable 

digital record of the path of a seafood product. Blockchain works by creating a unique digital link 

between points of the seafood supply chain, with new data added at each point the product is 

transformed or traded (Blaha and Katafono 2020). For example, when a fish is caught it can be 

given a unique, immutable digital identifier containing information on the point of capture. When 

it is subsequently sent to a processing facility, it will be given a new unique digital identifier that 

is directly linked to the original one containing information on the point of capture. This happens 

at each point of the supply chain. If at any point the data is changed or the chain is broken, all 

participants in the blockchain network are notified helping to avoid fraudulent activity. By 

chaining these identifiers together, it is possible to track the movement of an individual product 

from the point of capture to the point of consumption. This type of technology is not without 

barriers to implementation including regulatory uncertainty, limited interoperability, costs 
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associated with developing blockchain solutions or relying on third party services to implement 

them, lack of centralized management, and risks associated with inaccurate data reporting at any 

point of the chain (Blaha and Katafono 2020, Howson 2020). Nevertheless, if blockchain 

technology continues to develop and improve it could help address one of the biggest challenges 

in seafood traceability and consumption accounting. 

It is well documented that improved fisheries management supports more sustainable 

fisheries (Costello et al. 2016, Ye and Gutierrez 2017, Melnychuk et al. 2021). In particular, 

supporting the development of multi-faceted approaches to management that include rebuilding 

plans for overfished stocks and are catered to the individual capacity of countries to implement 

and sustain management is likely to have to greatest positive impact on sustainability (Costello et 

al. 2020, Melnychuk et al. 2021). These types of changes to fisheries management systems can be 

costly and difficult to implement in developing countries, but previous work has shown that the 

long term benefits of establishing effective fisheries management systems outweigh the short term 

costs (Mangin et al. 2018). Mechanisms such as trade agreements or tariffs have the potential to 

incentivize developing countries to prioritize improving fisheries management practices if 

implemented with that goal in mind (Bellmann et al. 2016, Watson et al. 2017). Additionally, 

consumers have the power to promote improved fisheries management practices through the 

choices they make regarding their seafood purchases (Vázquez-Rowe et al. 2013, McClenachan et 

al. 2016). This consumer purchasing power is further aided by attempts from non-profits to reduce 

the ambiguity in seafood traceability and sustainability via certification systems, such as those 

created by the Marine Stewardship Council (McClenachan et al. 2016, Bailey et al. 2018). Though 

we should note these programs are not without their pitfalls including increased consumer 

confusion is some cases (largely due to the complex nature and varying definitions associated with 
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classifying seafood as sustainable) and barriers to access for small-scale and developing country 

fisheries that do not have the capacity or infrastructure to meet certification standards (Bellmann 

et al. 2016, McClenachan et al. 2016, Bailey et al. 2018). All of these strategies for supporting 

increased fisheries management in developing countries need to be considered carefully as each 

carries a risk of increasing the disparity between developed and developing nations if financial, 

infrastructural, or capacity barriers are not addressed (Bailey et al. 2016, 2018, Bellmann et al. 

2016).  

Developed countries that have the capacity to do so have largely implemented intensive 

fisheries management that supports sustainable seafood production. Increasingly, however, a 

country’s seafood consumption is the result of a complex network of global production and trade, 

and we have demonstrated that even countries with the best fisheries management are heavily 

contributing to the economic drivers behind the fishing practices of countries with less intensive 

fisheries management via seafood consumption. Thus, any assessment of national seafood 

sustainability that does not account for the sustainability of seafood products consumed will 

continue to paint a skewed picture of seafood sustainability that is particularly rosy for the 

wealthiest countries. As the global community strives to meet the United Nations Sustainable 

Development Goals for 2030, the nature of the globalization of seafood trade and consumption, 

and the challenges we face in accounting for global seafood trade, will be critical to determining 

which steps need to be taken to ensure the sustainability of seafood globally. 
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Appendix  

 
Figure A4.1. Comparison of total imports by country between FAO and GTA datasets. The 1:1 

line indicating an exact match between the data is shown in the solid black line.  
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