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Professor Panagiotis D. Christofides, Chair

Economic model predictive control (EMPC) is a feedback control technique that attempts

to tightly integrate economic optimization and feedback control since it is a predictive control

scheme that is formulated with an objective function representing the process economics. As

its name implies, EMPC requires the availability of a dynamic model to compute its control

actions and such a model may be obtained either through application of first-principles or

though system identification techniques. However, in industrial practice, it may be difficult

in general to obtain an accurate first-principles model of the process. Motivated by this, in

the present work, Lyapunov-based economic model predictive control (LEMPC) is designed

with an empirical model that allows for closed-loop stability guarantees in the context of

nonlinear chemical processes. Specifically, when the linear model provides a sufficient degree

of accuracy in the region where time-varying economically optimal operation is considered,

conditions for closed-loop stability under the LEMPC scheme based on the empirical model

are derived. The LEMPC scheme is applied to a chemical process example to demonstrate

its closed-loop stability and performance properties as well as significant computational

advantages.
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Chapter 1

Introduction

The economic success of chemical and petrochemical industry relies heavily on optimal pro-

cess operation which has led to the emergence of an overall process control goal to translating

process/system economic considerations into feedback control objectives [11]. One key de-

velopment towards achieving this goal is economic model predictive control (EMPC). EMPC

is a feedback control technique that attempts to tightly integrate economic optimization and

feedback control since it is a predictive control scheme that is formulated with an objective

function representing the process/system economics [1, 2, 34] (see, also, [3] for an overview of

recent results on EMPC). While initial efforts on EMPC have focused on closed-loop stability

considerations recent developments have addressed economic performance improvement over

conventional (tracking) model predictive control (MPC) including: formulating a Lyapunov-

based EMPC with closed-loop performance guarantees over finite-time and infinite-time

operating intervals [35], investigating the transient performance and closed-loop stability

of EMPC formulated without terminal constraints [12], and studying the closed-loop per-

formance of EMPC formulated with a self-tuning terminal cost and generalized terminal

constraint [13].

The key underlying assumption to design and apply an EMPC is that a process/system

dynamic model is available to predict the future process state evolution. Constructing mod-
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els of dynamical systems is done either through first principles and/or from process in-

put/output data [14]. First-principle models are developed from conservation equations and

attempt to account for the essential mechanisms behind the observed physico-chemical phe-

nomena. However, arriving at a first principles model requires sufficient process knowledge

which maybe a challenging task for complex industrial processes. On the other hand, system

identification serves as an alternative to first principles models when first-principles models

are unavailable and/or too complex to use on-line in model predictive control. Over the past

thirty years, numerous methods have been developed to construct linear or nonlinear empir-

ical models from input/output data (see, for example, [15, 16, 17, 18, 37] and the references

contained therein for an overview of these methods). Perhaps, the most common type of

empirical model is a linear model. When a process system exhibits significant nonlinearities

as is the case in most chemical processes, the use of multiple linear models has been em-

ployed to improve the accuracy of prediction over a larger operating region [38, 39, 36]. One

potential grouping of the various methods of system identification is to group the methods

on the basis of the type of empirical model derived which may be either an input-output

model or a state-space model. It is important to note that when the output vector is the

entire state vector, input-output modeling methods may be used to construct a state-space

model.

Within the context of input-output models, (nonlinear) autoregressive moving average

with exogenous input models ((N)ARMAX), Volterra models, and neural-network models

are some of the types of input-output models commonly used (see, for instance, [18, 37]

and the references therein for more details on input-output modeling). Numerous works on

integrating input-output models within the context of tracking MPC, which is formulated

with a cost function that is positive definite with respect to a set-point or steady-state, have

been investigated. For instance, the use of Hammerstein, Wiener, and Hammerstein-Wiener

models within MPC[19, 20, 22] has been considered, the use of multiple-models within MPC

constructed from autoregressive with exogenous input (ARX) models has been investigated
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for batch processes (e.g., [26]), and multiple-model adaptive predictive control has been

formulated for mean arterial pressure and cardiac output regulation (e.g., [23]).

On the other hand, empirical state-space modeling methods are another type of em-

pirical modeling techniques. Within this context, linear subspace system identification is

a very widely known and used empirical modeling method that is based on input/output

data [24, 41, 27, 28, 29, 30, 42]. In particular, subspace model identification (SMI) are

non-iterative methods that take into account multi-variable interactions and result in mod-

els that have great numerical stability for multiple-input multiple-output (MIMO) sys-

tems [27, 40, 42]. Some of the various subspace system identification algorithms in the

literature include multi-variable output error state-space algorithm (MOESP) [24, 41, 28, 33],

the Canonical Variate Algorithm (CVA) [44], and numerical algorithms for subspace state-

space system identification (N4SID) [27]. Identifying the deterministic part of a MIMO

state-space model using SMI methods has proven to be successful in the context of indus-

trial settings [41, 43, 33, 32, 31]. Combining subspace methods with MPC has also been

considered (see, for instance, [30] and the references contained therein).

To date, no work on formulating an EMPC scheme using an empirical model with guar-

anteed closed-loop stability properties has been completed. In this work, an integrated view

of system modeling, feedback control, and process/system economics is undertaken. Specif-

ically, an LEMPC formulated with an empirical model is considered. The type of empirical

model is restricted to state-space models given the fact that the economic cost function typi-

cally depends on at least some (if not all) of the state variables. While the linear model may

be derived from any system identification technique, it must be sufficiently close (in a sense to

be made precise below) to the linearization of the nonlinear process model at the steady-state

around which time-varying operation is considered. Under this assumption, sufficient condi-

tions for closed-loop stability (boundedness of the closed-loop state in a compact state-space

set) under the LEMPC with the empirical linear model applied to the nonlinear chemical

process are derived. The LEMPC with empirical model method is applied to a chemical

3



process example and extensive closed-loop simulations are performed that demonstrate the

closed-loop stability and performance properties. Furthermore, a significant reduction in the

on-line computation time with LEMPC formulated with an empirical model is realized over

LEMPC formulated with a nonlinear first-principles model.
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Chapter 2

Preliminaries

2.1 Notation

The Euclidean norm of a vector is denoted by the operator | · | and the (any) norm of a

matrix is denoted as ‖ · ‖. A continuous function α : [0, a) → [0,∞) is said to belong to class

K if it is strictly increasing and is zero when evaluated at zero. The symbol Ωρ is used to

denote the set Ωρ := {x ∈ Rnx : V (x) ≤ ρ} where V is a continuously differentiable positive

definite scalar function and ρ > 0. The symbol xT denotes the transpose of the vector x.

2.2 Class of Process Systems

The class of nonlinear process systems considered can be written in the following continuous-

time state-space form:

ẋ(t) = f(x(t), u(t), w(t)) (2.1)

where x ∈ Rn is the state vector of the system, u ∈ Rm is the control (manipulated)

input vector, and w ∈ Rl is the disturbance vector. The vector function f is assumed to

be locally Lipschitz on Rn × Rm × Rl. The control actions are bounded by the physical

constraints on the control actuators and thus, are restricted to belong to a nonempty convex
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set U := {u ∈ Rm : umin
i ≤ ui ≤ umax

i , i = 1, . . . , m}. The norm of the disturbance vector

is bounded (i.e., |w(t)| ≤ θ for all t where θ > 0 bounds the norm). The equilibrium of the

system of Eq. 2.1 is considered to be the origin, i.e., f(0, 0, 0) = 0. The state of the system

of Eq. 2.1 is assumed to be synchronously sampled and available at sampling time instances

tk = k∆, k = 0, 1, . . . where ∆ > 0 is the sampling period.

We restrict the class of nonlinear systems of Eq. 2.1 considered to a class of stabilizable

nonlinear systems. Specifically, we assume the existence of a Lyapunov-based controller

h(x) ∈ U that renders the origin of the closed-loop nominal system (w(t) ≡ 0) of Eq. 2.1

asymptotically stable for all x in an open neighborhood of the origin. This assumption

implies the existence of a continuously differentiable Lyapunov function, V : Rn → R+, for

the closed-loop system of Eq. 2.1 under u(t) = h(x(t)) that satisfies [4, 5]:

α1(|x|) ≤ V (x) ≤ α2(|x|), (2.2a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|), (2.2b)

∣
∣
∣
∣

∂V (x)

∂x

∣
∣
∣
∣
≤ α4(|x|) (2.2c)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of the origin and αi(·), i = 1, 2, 3, 4

are functions of class K. For various classes of nonlinear systems, several stabilizing control

laws that explicitly account for input constraints have been developed (see, for example, [45,

6, 7, 8] for results in this direction). The stability region (i.e., the set of points in state-space

where convergence to the origin under the Lyapunov-based controller is guaranteed) may be

estimated as the level set of the Lyapunov function where the time-derivative of the Lyapunov

function is negative, and is denoted as Ωρ ⊂ D. Moreover, the origin of the sampled-data

system resulting from the system of Eq. 2.1 under the Lyapunov-based controller when

implemented in a sample-and-hold fashion is practically stable (i.e., the closed-loop state

will converge to a small compact, forward invariant set containing the origin in its interior)
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when a sufficiently small sampling period is used and the disturbance vector is sufficiently

small [9].

In this work, empirical models will be constructed to predict the evolution of the state

of the system of Eq. 2.1 using data-based modeling techniques. Specifically, the type of

empirical models constructed for the system of Eq. 2.1 are linear time-invariant (LTI) state-

space models which have the following form:

ẋ(t) = Ax(t) +Bu(t) (2.3)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and A and B are constant

matrices of appropriate dimensions. When the nominal nonlinear model of Eq. 2.1 is unavail-

able, the Lyapunov-based controller needs to be designed on the basis of the empirical model

of Eq. 2.3. We assume that the pair (A,B) is stabilizable in the sense that there exists a state

feedback controller hL(x) ∈ U that renders the origin of the closed-loop system of Eq. 2.3

exponentially stable for all initial conditions x ∈ DL where DL is some open neighborhood of

the origin. Furthermore, the controller hL(x) ∈ U is assumed to be locally Lipschitz on Rn

in the sense that there exists a K > 0 such that |hL(x)| can be bounded by K|x| for all x in a

compact set containing the origin in its interior. When the controller hL(x) is applied to the

nominal nonlinear system of Eq. 2.1, there are two factors that affect closed-loop stability:

the closeness of the model of Eq. 2.3 to the linearization of the nominal model of Eq. 2.1 at

the origin and the effect of the nonlinearities of the system of Eq. 2.1. Locally, we can show

that the controller hL(x) possesses a robustness margin to overcome these two effects and

render the origin of the nominal closed-loop nonlinear system asymptotically stable. This is

stated in the following proposition.

Proposition 1. If the origin of closed-loop system of Eq. 2.3 under the controller hL(x) is

7



exponentially stable and there exist ρ̂ > 0 and δ > 0 such that:

‖Ā− A‖+ ‖B̄ − B‖K ≤ δ (2.4)

where the matrices Ā and B̄ denote the linearization of f(x, u, 0) at the origin:

Ā :=
∂f

∂x
(0, 0, 0), B̄ :=

∂f

∂u
(0, 0, 0) . (2.5)

then the origin of the nominal closed-loop system of Eq. 2.1 is exponentially stable for all

x ∈ Ωρ̂ ⊂ DL.

Proof. To prove the result of Proposition 1, we will show that there exists a Lyapunov

function for the closed-loop system of Eq. 2.1 under the controller hL(x) when ρ̂ > 0 and

δ > 0 are sufficiently small. Owing to the fact that the origin of closed-loop system of Eq. 2.3

under the controller hL(x) is exponentially stable, there exists a continuously differentiable

Lyapunov function V̂ : Rn → R+ such that [5]:

c1|x|
2 ≤ V̂ (x) ≤ c2|x|

2, (2.6a)

∂V̂ (x)

∂x
(Ax+BhL(x)) ≤ −c3|x|

2, (2.6b)

∣
∣
∣
∣
∣

∂V̂ (x)

∂x

∣
∣
∣
∣
∣
≤ c4|x| (2.6c)

for all x ∈ DL where ci, i = 1, 2, 3, 4 are positive constants. Define

g(x) := f(x, hL(x), 0)− Āx− B̄hL(x) (2.7)

which contains terms of second-order and higher in x. Consider the following closed-loop

system:

ẋ = Ax+BhL(x) + f(x, hL(x))−Ax− BhL(x) . (2.8)
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and the time-derivative of V̂ along the trajectory of the closed-loop system of Eq. 2.8:

˙̂
V =

∂V̂ (x)

∂x
(Ax+BhL(x)) +

∂V̂ (x)

∂x
(f(x, hL(x), 0)−Ax−BhL(x))

(2.6b)

≤ −c3|x|
2 +

∣
∣
∣
∣
∣

∂V̂ (x)

∂x

∣
∣
∣
∣
∣

∣
∣
(
Ā− A

)
x+

(
B̄ −B

)
hL(x) + g(x)

∣
∣

(2.6c)

≤ −c3|x|
2 + c4|x|

(∣
∣
(
Ā− A

)
x+

(
B̄ −B

)
hL(x)

∣
∣ + |g(x)|

)
(2.9)

for all x ∈ DL. Since the controller hL(x) is locally Lipschitz, there exists a K > 0 such

that:

˙̂
V ≤ −c3|x|

2 + c4|x|
((∥
∥Ā−A

∥
∥ |x|+

∥
∥B̄ −B

∥
∥ |hL(x)|

)
+ |g(x)|

)

≤ −c3|x|
2 + c4|x|

((∥
∥Ā−A

∥
∥+

∥
∥B̄ − B

∥
∥K

)
|x|+ |g(x)|

)
(2.10)

for all x ∈ BR = {x ∈ Rn : |x| ≤ R} where R is any R > 0 such that BR ⊂ DL. If the

condition of Eq. 2.4 is satisfied, there exits a δ > 0 such that:

˙̂
V ≤ −c3|x|

2 + c4δ|x|
2 + c4|x||g(x)| (2.11)

for all x ∈ BR. Since g(x) contains terms of second-order and higher in x and vanishes at

the origin, there exists a γ > 0 such that:

|g(x)| < γ|x|2 (2.12)

for all x ∈ BR. Thus,

˙̂
V ≤ −c3|x|

2 + c4δ|x|
2 + c4γ|x|

3 (2.13)
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for all x ∈ BR. For any Br ⊂ BR, the time-derivative of V̂ can be bounded by the following:

˙̂
V ≤ −c3|x|

2 + c4(δ + γr)|x|2 (2.14)

for all x ∈ Br where r < R. If δ > 0 and r > 0 are chosen to satisfy c3/c4 > (δ + γr), then

there exists a ĉ3 > 0 such that:

˙̂
V =

∂V̂ (x)

∂x
(f(x, hL(x), 0)) ≤ −ĉ3|x|

2 (2.15)

for all |x| < r. Let ρ̂ > 0 be such that ρ̂ ≤ min{V̂ (x) : |x| < r} which completes the

proof.

We will make use of the following properties in the “Stability Analysis” subsection. Owing

to the locally Lipschitz property assumed for the vector function f(·, ·, ·) as well as the

fact that the Lyapunov function V (·) is a continuously differentiable function, the following

inequalities hold:

|f(x1, u, w)− f(x2, u, 0)| ≤ Lx |x1 − x2|+ Lw |w| , (2.16)

∣
∣
∣
∣

∂V (x1)

∂x
f(x1, u, w)−

∂V (x2)

∂x
f(x2, u, 0)

∣
∣
∣
∣
≤ L′

x |x1 − x2|+ L′

w |w| (2.17)

for all x1, x2 ∈ Ωρ̂, u ∈ U and |w| ≤ θ where Lx, Lw, L
′

x, and L′

w are positive constants.

Additionally, there exists M > 0 that bounds the vector field:

|f(x, u, w)| ≤ M (2.18)

for all x ∈ Ωρ̂, u ∈ U and |w| ≤ θ because f(·, ·, ·) is a locally Lipschitz vector function of

its arguments and Ωρ and U are compact sets. For the linear model of Eq. 2.3, there exist
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ML > 0 and LL > 0 such that:

|Ax1 +Bu| ≤ ML (2.19)

∣
∣
∣
∣

∂V (x1)

∂x
(Ax1 +Bu)−

∂V (x2)

∂x
(Ax2 +Bu)

∣
∣
∣
∣
≤ LL |x1 − x2| (2.20)

for all x1, x2 ∈ Ωρ̂ and u ∈ U .

2.3 Economic Model Predictive Control

A scalar function l : Rnx × Rnu → R that captures the real-time process economics is used

as the stage cost in EMPC. As previously discussed, the control actuator dynamics are

typically neglected when designing and studying the stability and performance properties of

EMPC with ua(t) = um(t). In this context, EMPC is characterized by the following dynamic

optimization problem:

minimize
um∈S(∆)

∫ tk+N∆

tk

l(x̃(τ), um(τ)) dτ (2.21a)

subject to ˙̃x(t) = f(x̃(t), um(t), 0) (2.21b)

x̃(tk) = x(tk) (2.21c)

um(t) ∈ Um (2.21d)

where the decision variable of the optimization problem is the piecewise constant input

trajectory um(t) that is defined over the prediction horizon t ∈ [tk, tk + N∆). The EMPC

uses the nominal process model (Eq. 2.21b) initialized with a state feedback measurement

at the current sampling time tk (Eq. 2.21c) to predict the evolution of the process over the

prediction horizon. The predicted state trajectory is denoted as x̃(t). The input constraints

(Eq. 2.21d) are included as a constraint in the optimization problem to ensure that the EMPC
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computes an admissible control action. The EMPC is typically implemented in a receding

horizon fashion: at a sampling period tk, a state measurement is received, the optimal control

problem defined by Eq. 2.21 is solved for the optimal input trajectory denoted as u∗

m(t|tk)

where t ∈ [tk, tk + N∆), and the control action defined for the first sampling period of the

prediction horizon, which is denoted as u∗

m(tk|tk), is sent to the control actuator layer to

be implemented over the sampling period. At the next sampling period tk+1, the procedure

is repeated. In general, EMPC, as defined by the problem of Eq. 2.21, is not stabilizing

and thus, additional constraints are added to the problem of Eq. 2.21 to ensure closed-loop

stability. In this work, stability constraints will be designed on the basis of the explicit

feedback controller h(z).
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Chapter 3

Economic Model Predictive Control

using Empirical Models

In this section, we summarize the formulation and implementation of an LEMPC formulated

with an empirical model as well as derive sufficient conditions such that the closed-loop

nonlinear system under the LEMPC formulated with an empirical model will be stable in a

sense to be made precise below.

3.1 Lyapunov-based EMPC

A specific type of EMPC will be considered in this work. Specifically, we consider Lyapunov-

based EMPC (LEMPC) [2] which utilizes the Lyapunov-based controller h(x) in the design

of two constraints. The two constraints allow for provable guarantees on closed-loop stability

(the closed-loop state is always bounded in Ωρ). Each constraint defines an operating mode

of the LEMPC. The formulation of LEMPC is given by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (3.1a)
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s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (3.1b)

x̃(tk) = x(tk) (3.1c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.1d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N) if x(tk) ∈ Ωρe (3.1e)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0)

≤
∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0) if x(tk) /∈ Ωρe (3.1f)

where the input trajectory over the prediction horizon N∆ is the decision variable in the

optimization problem. The notation x̃(t) denotes the predicted behavior of the state tra-

jectory under the input trajectory computed by the LEMPC. The region Ωρe is a subset of

the stability region Ωρ where time-varying operation is allowed (ρe which defines a level set

of the Lyapunov function is chosen to make Ωρ invariant; see [2] for details regarding this

point).

The objective function of the optimization problem of Eq. 3.1a is formulated with a stage

cost derived from the economics of the system of Eq. 2.1 (e.g., the operating cost, energy

cost, the negative of the operating profit, the negative of the production rate). The initial

value problem embedded in the optimization problem (Eq. 3.1b-3.1c) is used to predict the

evolution of the system over the prediction horizon where the initial condition is obtained

through a state measurement at the current time step. The input constraint of Eq. 3.1d

bounds the computed input trajectory to be within the admissible input set. Depending

on where the current state is in state-space, mode 1, which is defined by the constraint of

Eq. 3.1e, or mode 2, which is defined by the constraint of Eq. 3.1f, are active. Under mode

1 operation of the LEMPC, the computed input trajectory is allowed to force a potentially

transient (time-varying) state trajectory while maintaining the predicted state in a subset
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of the stability region. The region Ωρe ⊂ Ωρ is chosen on the basis of closed-loop stability

in the presence of uncertainty, i.e., w(t) 6≡ 0. Under mode 2 operation of the LEMPC, the

constraint of Eq. 3.1f forces the control action for the first sampling period in the prediction

horizon to decrease the Lyapunov function by at least as much as the decrease forced by the

control action computed by the Lyapunov-based controller. This contractive constraint will

guarantee that any state starting in Ωρ \Ωρe will be eventually forced back to Ωρe . For more

details and discussion of LEMPC along with a complete closed-loop stability analysis, the

interested reader may refer to [2].

3.2 Formulation with Empirical Models and Implemen-

tation

The formulation of the LEMPC with the empirical model is similar to the LEMPC of Eq. 3.1

except it is formulated with the empirical model of Eq. 2.3, the stabilizing controller hL(x),

and the Lyapunov function V̂ (x). The formulation of the LEMPC using an empirical model

is given by:

min
u∈S(∆)

∫ tk+N

tk

Le(x̂(τ), u(τ)) dτ (3.2a)

s.t. ˙̂x(t) = Ax̂(t) +Bu(t) (3.2b)

x̂(tk) = x(tk) (3.2c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.2d)

V̂ (x̂(t)) ≤ ρ̂e, ∀ t ∈ [tk, tk+N) if x(tk) ∈ Ωρ̂e (3.2e)

∂V̂ (x(tk))

∂x
(Ax(tk) +Bu(tk))
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≤
∂V̂ (x(tk))

∂x
(Ax(tk) +BhL(x(tk))) if x(tk) /∈ Ωρ̂e (3.2f)

where the notation x̂(t) is used to distinguish that the LEMPC predicts the evolution of the

system of Eq. 2.1 with the empirical model of Eq. 2.3 and Ωρ̂e ⊂ Ωρ̂ is the subset where time-

varying operation under the LEMPC may dictate a time-varying operating policy (the other

constraints are similar to that used in Eq. 3.1). The optimal solution of the optimization

problem of Eq. 3.2 is denoted as u∗(t|tk) defined for t ∈ [tk, tk+N).

The LEMPC of Eq. 3.2 is implemented in a receding horizon fashion. At a sampling

instance, the LEMPC is solved for an input trajectory u∗(t|tk) for t ∈ [tk, tk+N), but only

applies the control action for the first sampling period of the prediction horizon to the system.

The control action to be applied over the first sampling period is denoted as u∗(tk|tk). The

implementation strategy of the LEMPC is summarized in the following algorithm:

1. Receive a state measurement x(tk). Go to Step 2.

2. If x(tk) ∈ Ωρ̂e , go to Step 2.1. Else, go to Step 2.2.

2.1 The mode 1 constraint of Eq. 3.2e is active and the mode 2 constraint of Eq. 3.2f

is inactive. Go to Step 3.

2.2 The mode 2 constraint of Eq. 3.2f is active and the mode 1 constraint of Eq. 3.2e

is inactive. Go to Step 3.

3. The optimization problem of Eq. 3.2 solves for its optimal input trajectory defined for

t ∈ [tk, tk+N). Go to Step 4.

4. The first control action of the input trajectory u∗(tk|tk) is applied to the system of

Eq. 2.1. Go to Step 5.

5. k := k + 1 and go to Step 1.
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3.3 Stability Analysis

In this subsection, the stability properties of the LEMPC formulated with the empirical

model are analyzed. The following proposition bounds the difference between the actual

state trajectory of the system of Eq. 2.1 in the presence of uncertainty (w(t) 6≡ 0) and the

predicted state trajectory from the model of Eq. 2.3 over a time period from t = 0 to t = T .

Proposition 2. Consider the solutions, denoted as x(t) and x̂(t), respectively, of the follow-

ing dynamic equations:

ẋ(t) = f(x(t), u(t), w(t)), x(0) = x0, (3.3)

˙̂x(t) = Ax̂(t) +Bu(t), x̂(0) = x0, (3.4)

where u(t) ∈ U and |w(t)| ≤ θ for all t ∈ [0, T ] and initial condition x(0) = x̂(0) = x0 ∈ Ωρ̂.

If x(t), x̂(t) ∈ Ωρ̂ for all t ∈ [0, T ], then the difference between x(T ) and x̂(T ) is bounded by

the function fw(·):

|x(T )− x̂(T )| ≤ fw(T ) :=
Lwθ +Merr

Lx

(
eLxT − 1

)
. (3.5)

where Merr bounds the difference between right-hand sides of Eqs. 3.3-3.4 (with w(t) ≡ 0):

|f(x, u, 0)− (Ax+Bu)| ≤ Merr (3.6)

for all x ∈ Ωρ̂ and u ∈ U .

Proof. Let e(t) be the difference between the state trajectory of Eq. 3.3 and the state trajec-

tory of Eq. 3.4 (i.e., e(t) := x(t)− x̂(t)) with dynamics ė(t) = ẋ(t)− ˙̂x(t) and initial condition

e(0) = 0). The error dynamics can be bounded by:

|ė(t)| = |f(x(t), u(t), w(t))− (Ax̂(t) +Bu(t))|
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≤ |f(x(t), u(t), w(t))− f(x̂(t), u(t), 0)|

+ |f(x̂(t), u(t), 0)− (Ax̂(t) +Bu(t))| . (3.7)

For a given Ωρ̂, there exists a Merr > 0 such that:

|f(x, u, 0)− (Ax+Bu)| ≤ Merr (3.8)

for all x ∈ Ωρ̂ and u ∈ U owing to the Lipschitz property assumed for the vector function

f(·, ·, ·) and the fact that x and u are bounded in compact sets. From Eq. 3.7 and Eq. 3.8

and the locally Lipschitz property for f(·, ·, ·) (Eq. 2.16), we have the following bound:

|ė(t)| ≤ Lx |x(t)− x̂(t)|+ Lw |w(t)|+Merr

≤ Lx |e(t)| + Lwθ +Merr (3.9)

for all t ∈ [0, T ] where the last inequality follows from the fact that |w(t)| ≤ θ. Integrating

the bound of Eq. 3.9 from t = 0 to t = T gives:

∫ T

0

|ė(t)|

Lx|e(t)|+ Lwθ +Merr
dt ≤ T (3.10)

and solving for |e(T )|:

|e(T )| = |x(T )− x̂(T )| ≤
Lwθ +Merr

Lx

(
eLxT − 1

)
(3.11)

with x(T ), x̂(T ) ∈ Ωρ̂.

The next proposition bounds the difference of Lyapunov function values between any two

points in Ωρ̂. The proof may be found in [9].

Proposition 3 (c.f. [9]). Consider the continuous differentiable Lyapunov function V (x)
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that satisfies the inequalities of Eq. 2.2. There exists a quadratic function fV (·) such that

V̂ (x1) ≤ V̂ (x2) + fV (|x1 − x2|) (3.12)

for all x1, x2 ∈ Ωρ̂ where

fV (s) :=
c4
c1
ρ̂s+ βs2 (3.13)

and β is a positive constant.

The state feedback controller hL(x) renders the origin of Eq. 2.3 asymptotically stable

under continuous implementation. In general, the controller hL(x) implemented in a sample-

and-hold fashion may only render the origin of the closed-loop system of Eq. 2.3 practically

stable, that is the closed-loop state of Eq. 2.3 under the controller hL(x) implemented in

a sample-and-hold is ultimately bounded in a small invariant set containing the origin in

its interior. To guarantee a feasible solution to the optimization problem of Eq. 3.2 under

mode 1 operation, the set Ωρ̂e must be larger than the set that closed-loop state is ultimately

bounded in under the controller hL(x) implemented in a sample-and-hold fashion for a given

sampling period ∆ > 0. The following proposition states sufficient conditions for that governs

the minimum size of ρ̂e for a given ∆ needed to guarantee a feasible solution of Eq. 3.2e

under mode 1 operation. To this end, let x̂(t) denote the solution of sampled-data system

resulting from the system of Eq. 2.3 with the initial condition x̂(0) ∈ Ωρ̂ and with the input

trajectory obtained from the controller hL(x) implemented in a sample-and-hold fashion:

u(t) = hL(x̂(tk)) (3.14)

for t ∈ [tk, tk+1), k = 0, 1, . . . with t0 = 0.

Proposition 4. Consider the sampled-data system resulting from the system of Eq. 2.3

under the controller hL(x) that satisfies the inequalities of Eq. 2.6 implemented in a sample-
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and-hold fashion. Let ∆ > 0, ε̂s > 0, ρ̂s > 0, and ρ̂e ≥ ρ̂min > 0 satisfy:

−
c3
c2
ρ̂s + LLML∆ ≤ −ε̂s/∆ (3.15)

and

ρ̂min := max
{

V̂ (x̂(t+∆)) : V̂ (x̂(t)) ≤ ρ̂s

}

. (3.16)

If x̂(0) ∈ Ωρ̂e, then x̂(t) ∈ Ωρ̂e for all t ≥ 0 and

V̂ (x̂(tk+1))− V̂ (x̂(tk)) ≤ −ε̂s (3.17)

for x(tk) ∈ Ωρ̂e and x̂(t) is ultimately bounded in Ωρ̂min
.

Proof. Consider the sampled-data system resulting from the system of Eq. 2.3 under the

controller hL(x) applied in a sample-and-hold fashion. At each sampling period tk, the input

trajectory obtained from the controller hL(x) applied in a sample-and-hold fashion has the

following property:

∂V̂ (x̂(tk))

∂x
(Ax̂(tk) +BhL(x̂(tk))) ≤ −c3|x̂(tk)|

2 (3.18)

from Eq. 2.6b. For simplicity of notation, let û(tk) := hL(x̂(tk)). Consider the time-derivative

of the Lyapunov function for the empirical model for τ ∈ [tk, tk+1):

∂V̂ (x̂(τ))

∂x
(Ax̂(τ) +Bû(tk)) =

∂V̂ (x̂(τ))

∂x
(Ax̂(τ) +Bû(tk))−

∂V̂ (x̂(tk))

∂x
(Ax̂(tk) +Bû(tk))

+
∂V̂ (x̂(tk))

∂x
(Ax̂(tk) +Bû(tk))

≤ LL |x̂(τ)− x̂(tk)| − c3|x̂(tk)|
2 (3.19)

where the last inequality follows from Eq. 3.18 and Eq. 2.20. Owing to continuity of solutions
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in a compact set and the bound of Eq. 2.19, the following bound holds:

|x̂(τ)− x̂(tk)| ≤ ML∆ (3.20)

for τ ∈ [tk, tk+1]. From Eq. 3.19 and Eq. 3.20, the time-derivative of the Lyapunov function

is bounded by:

∂V̂ (x̂(τ))

∂x
(Ax̂(τ) +Bû(tk)) ≤ −c3|x̂(tk)|

2 + LLML∆ (3.21)

for τ ∈ [tk, tk+1).

If ∆ > 0 is sufficiently small such that there exist ρ̂s > 0, ρ̂min > 0, and ε̂s > 0 with

ρ̂e ≥ ρ̂min defined according to Eqs. 3.15-3.16, the state x̂(t) remains bounded in Ωρ̂e for

t ≥ 0 when x̂(0) ∈ Ωρ̂e . To show this, we need to consider two cases: x̂(tk) ∈ Ωρ̂e \ Ωρ̂s

and x̂(tk) ∈ Ωρ̂s . When x̂(tk) ∈ Ωρ̂e \ Ωρ̂s and x̂(τ) ∈ Ωρ̂e for τ ∈ [tk, tk+1), the following

bound on the time-derivative of the Lyapunov function can be written from the inequalities

of Eq. 3.21 and Eq. 2.6a:

∂V̂ (x̂(τ)))

∂x
(Ax̂(τ) + Bû(tk)) ≤ −

c3
c2
ρ̂s + LLML∆ (3.22)

for τ ∈ [tk, tk+1). If the condition of Eq. 3.15 holds, there exists a ε̂s > 0 such that:

∂V̂ (x̂(τ)))

∂x
(Ax̂(τ) +Bû(tk)) ≤ −ε̂s/∆ (3.23)

for τ ∈ [tk, tk+1). Integrating the bound for τ ∈ [tk, tk+1], we have:

V̂ (x̂(tk+1)) ≤ V̂ (x̂(tk))− ε̂s,

V̂ (x̂(τ)) ≤ V̂ (x̂(tk)), ∀ τ ∈ [tk, tk+1]

(3.24)

for all x̂(tk) ∈ Ωρ̂e \Ωρ̂s which shows the result of Eq. 3.17 and x(t) ∈ Ωρ̂e for all t ∈ [tk, tk+1].

For any x̂(tk) ∈ Ωρ̂e \ Ωρ̂s , we showed that the Lyapunov function under the controller
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hL(x) applied in a sample-and-hold fashion will decrease at the next sampling period. When

x̂(tk) ∈ Ωρ̂s and there exists a ρ̂min ≤ ρ̂e defined according to Eq. 3.16, the state is ultimately

bounded in Ωρ̂min
under the Lyapunov-based controller applied in a sample-and-hold fashion

owing to the definition of ρ̂min. Thus, Ωρ̂e is forward invariant for the sampled-data system

resulting from the system of Eq. 2.3 under the Lyapunov-based controller implemented in a

sample-and-hold fashion (i.e., there exists a sample-and-hold trajectory with sampling period

∆ that maintains x̂(t) in Ωρ̂e).

The purpose of Ωρ̂e is to make Ωρ̂ invariant for the closed-loop system of Eq. 2.1 under

the LEMPC of Eq. 3.2. The condition on ρ̂e along with other sufficient conditions such that

the closed-loop state trajectory of Eq. 2.1 under the LEMPC of Eq. 3.2 is always maintained

in Ωρ̂ are given in the following theorem.

Theorem 1. Consider the closed-loop system of Eq. 2.1 under the LEMPC of Eq. 3.2 based

on the controller hL(x) that satisfies the inequalities of Eq. 2.6. Let εw > 0, ∆ > 0, N ≥ 1,

and ρ̂ > ρ̂e > 0 satisfy

−
ĉ3
c2
ρ̂e + L′

xM∆ + L′

wθ ≤ −εw/∆ , (3.25)

ρ̂e ≤ ρ̂− fV (fw(∆)) . (3.26)

If x(0) ∈ Ωρ̂ and the conditions of Proposition 1 and Proposition 4 are satisfied, then the

state trajectory x(t) of the closed-loop system is always bounded in Ωρ̂ for t ≥ 0.

Proof. The proof is divide into two parts. In Part 1, feasibility of the LEMPC optimization

problem is proved when the state is maintained in Ωρ̂. Subsequently, the closed-loop state

under the LEMPC of Eq. 3.2 is shown to always bounded in Ωρ̂ in Part 2.

Part 1: If mode 1 operation of the LEMPC of Eq. 3.2 is active (x(tk) ∈ Ωρ̂e) and the

conditions of Proposition 4 are satisfied (i.e., there exist positive constants ρ̂s, ρ̂min, and ε̂s

that satisfies Eqs. 3.15-3.15 for a given ρ̂e, ∆ pair), the LEMPC (under mode 1 operation)

is feasible because the sample-and-hold trajectory obtained from the controller hL(x) is a
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feasible solution to the LEMPC optimization problem which follows from Proposition 4.

When the current state x(tk) ∈ Ωρ̂ \ Ωρ̂e and the LEMPC of Eq. 3.2e operates in mode 2

operation, the optimization problem is feasible because the input trajectory u(t) = hL(x(tk))

for t ∈ [tk, tk+1) and any piecewise constant trajectory u(t) ∈ U for t ∈ [tk+1, tk+N) will satisfy

the input constraint of Eq. 3.2d and the mode 2 constraint of Eq. 3.2f. Thus, the LEMPC

is recursively feasible if the closed-loop state is maintain in Ωρ̂.

Part 2: Consider the closed-loop state trajectory under the LEMPC of Eq. 3.2. If

x(tk) ∈ Ωρ̂ \ Ωρ̂e , the LEMPC operates in mode 2 (the constraint of Eq. 3.2f is active) and

the computed input satisfies:

∂V̂ (x(tk))

∂x
(Ax(tk) +Bu(tk)) ≤

∂V̂ (x(tk))

∂x
(Ax(tk) +BhL(x(tk))) (3.27)

for all x(tk) ∈ Ωρ̂ \ Ωρ̂e . From Proposition 1 (Eq. 2.15), for δ and ρ̂ sufficiently small, there

exists a ĉ3 > 0 such that:

∂V̂ (x(tk))

∂x
f(x(tk), hL(x(tk)), 0) ≤ −ĉ3|x(tk)|

2 . (3.28)

The time-derivative of the Lyapunov function (of the closed-loop nonlinear system) over the

sampling period is

˙̂
V (x(τ)) =

∂V̂ (x(τ))

∂x
f(x(τ), hL(x(τ)), w(τ))−

∂V̂ (x(tk))

∂x
f(x(tk), hL(x(tk)), 0)

+
∂V̂ (x(tk))

∂x
f(x(tk), hL(x(tk)), 0)

(2.17),(3.27)

≤ L′

x|x(τ)− x(tk)|+ L′

w|w(τ)| − ĉ3|x(tk)|
2

≤ −
ĉ3
c2
ρ̂e + L′

x|x(τ)− x(tk)|+ L′

w|w(τ)| (3.29)

for τ ∈ [tk, tk+1) where the last inequality follows from the fact that x(tk) ∈ Ωρ̂ \ Ωρ̂e . From
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Eq. 2.18 and the continuity of solutions, the difference between x(τ) and x(tk) is bounded:

|x(τ)− x(tk)| ≤ M∆ (3.30)

for all τ ∈ [tk, tk+1). From Eqs. 3.29-3.30 and the fact that the disturbance vector is bounded

(|w(τ)| ≤ θ), we have:

∂V̂ (x(τ))

∂x
f(x(τ), u(tk), 0) ≤ −

ĉ3
c2
ρ̂e + L′

xM∆ + L′

wθ (3.31)

for all τ ∈ [tk, tk+1). If the condition of Eq. 3.25 is satisfied, then the following can be

derived:

V̂ (x(tk+1)) ≤ V̂ (x(tk))− εw,

V̂ (x(τ)) ≤ V̂ (x(tk)), ∀ τ ∈ [tk, tk+1]

(3.32)

for all x(tk) ∈ Ωρ̂ \Ωρ̂e by employing the same steps used to derive the equations of Eq. 3.24.

Thus, when the LEMPC operates in mode 2, the Lyapunov function value will decrease at

the next sampling period and converge to the set Ωρ̂e in a finite number of sampling periods.

If x(tk) ∈ Ωρ̂e , the LEMPC will operate in mode 1. The predicted state at the next

sampling period must be in Ωρ̂e (x̂(tk+1) ∈ Ωρ̂e) which is enforced by the constraint of

Eq. 3.2e. By Propositions 2 and 3, we have:

V̂ (x(tk+1)) ≤ V̂ (x̂(tk+1)) + fV (|x(tk+1)− x̂(tk+1)|)

≤ ρ̂e + fV (fw(∆)) (3.33)

If the condition of Eq. 3.26 is satisfied, x(tk+1) ∈ Ωρ̂. Thus, under mode 1 and mode 2

operation of the LEMPC, the closed-loop state is maintained in Ωρ̂ which completes the

proof.

Remark 1. Since the empirical model of Eq. 2.3 can only accurately predict the behavior
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of the system of Eq. 2.1 within a limited region in state-space, it may be difficult to find

an empirical model that can adequately capture the dynamics of the system of Eq. 2.1 for

use in EMPC. The accuracy of the model used in EMPC is critical because it affects both

the closed-loop performance and stability. A strategy to improve the accuracy of the model

of Eq. 2.3 is to use multiple empirical models for different regions of state-space to better

capture the nonlinear dynamics of Eq. 2.1 and as a result of the increased accuracy, use

a larger Ωρ̂ than what is possible (from a closed-loop stability perspective) with a single

empirical model.

Remark 2. The general heuristic is that the closed-loop economic performance improves with

increasing prediction horizon when applying nonlinear EMPC (i.e., EMPC formulated with

a nonlinear model). However, when using EMPC with an empirical model, the predicted

behavior of the system obtained from the empirical model over a long horizon may be

significantly different than the actual nonlinear behavior. Thus, increasing the prediction

horizon of EMPC with an empirical model may not increase the performance. In other words,

the accuracy of the prediction by the empirical model may affect the closed-loop performance

and it be better from a closed-loop performance standpoint to restrict operation to a smaller

region state-space where the empirical model can provide a sufficient degree of accuracy.

Remark 3. As a by-product of using an empirical model in LEMPC, the computational ef-

ficiency of LEMPC is improved in general compared to using a nonlinear model in LEMPC

since the resulting the optimization problem has less nonlinearities and the empirical model of

Eq. 2.3 can be converted to an exact discrete-time model with zeroth-order sample-and-hold

inputs (i.e., no need to embed a numerical ordinary differential equation solver to solve the

dynamic optimization problem of the LEMPC). Thus, one may consider to use an empirical

model even when a nonlinear model is available owing to the improved computational effi-

ciency. This point will be demonstrated in the “Application to a Chemical Process Example”

section.

Remark 4. It is important to emphasize that at each sampling time the LEMPC of Eq. 3.2
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is re-initialized with a state measurement. This incorporation of feedback allows for the

LEMPC of Eq. 3.2 to maintain robustness to disturbances.
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Chapter 4

Application to a Chemical Process

Example

Consider a non-isothermal, well-mixed continuous stirred tank reactor (CSTR) where an

irreversible, second-order, exothermic reaction occurs. The reaction converts the reactant

A to the product B and is of the form A → B. The feedstock of the reactor contains A

in an inert solvent and the inlet concentration of A is CA0, inlet temperature is T0, and

feed volumetric flow rate is F . A jacket is used to heat/cool the reactor at heat rate Q.

The liquid density ρL, heat capacity Cp, and liquid hold-up V are assumed to be constant.

The dynamic model equations describing the evolution of the CSTR, obtained by applying

standard modeling assumptions and mass and energy balances to the reactor, are presented

Table 4.1: Parameter values of the CSTR.

T0 = 300 K F = 5.0 m3/hr

V = 1.0 m3 E = 5.0× 104 kJ/kmol

k0 = 8.46× 106 m3/hr kmol ∆H = −1.15× 104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3
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below:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E/RTC2
A (4.1a)

dT

dt
=

F

V
(T0 − T )−

∆Hk0
ρLCp

e−E/RTC2
A +

Q

ρLCpV
(4.1b)

where CA and T are the reactant A concentration in the reactor and reactor temperature,

respectively. The notation k0, E, ∆H denotes the pre-exponential factor, activation energy

of the reaction, and the enthalpy of the reaction, respectively. The values of the process

parameters are given in Table 4.1. In the simulations below, the explicit Euler method with

an integration time step of hc = 10−4 hr was used to integrate the dynamic model of Eq. 4.1.

The inlet concentration CA0 and the heat supply/removal Q are the two manipulated in-

puts of the CSTR. The manipulated inputs are bounded as follows: 0.5 ≤ CA0 ≤ 7.5 kmol/m3

and −5.0 × 105 ≤ Q ≤ 5.0 × 105 kJ/hr. The control objective is to maximize the time-

averaged production rate of the product B by operating the CSTR in a compact state-space

set around the operating steady-state of the CSTR. To this end, the operating steady-state

vector of the CSTR is [CAs Ts] = [1.2 kmol/m3 438.0 K] and the corresponding steady-

state input vector is [CA0s Qs] = [4.0 kmol/m3 0.0 kJ/hr]. The steady-state is open-loop

asymptotically stable. The state and input vector of the CSTR are defined using deviation

variables: xT = [CA − CAs T − Ts] is the state vector and uT = [CA0 − CA0s Q − Qs] is

the manipulated input vector. Given the control objective is to maximize the time-averaged

production rate of B, the average production rate of B will be used in the LEMPC as the

cost function and is given by:

Le(x, u) =
1

(tk+N − tk)

∫ tk+N

tk

k0e
−E/RT (τ)C2

A(τ) dτ . (4.2)

In addition, we consider that there is a limitation on the amount of reactant material that

may be fed to the CSTR during a given period of operation tp. Therefore, the control input
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trajectory of u1 should satisfy the following material constraint:

1

tp

∫ tp

0

u1(τ) dτ = 0.0 kmol/m3. (4.3)

where tp = 1.0 hr is the operating period length to enforce the material constraint.

Model Identification and Validation

We assume that for the CSTR, the nonlinear model of Eq. 4.1 is not available and a model

needs to be identified and validated. The model will be fit using standard input/output

data-based techniques (recall that state feedback is assumed, so the output is the state)

to identify a linear time invariant state-space model. A series of step inputs were used to

generate the input/output data. An iterative process was employed to identify and validate

the model. First, a step input sequence was generated and applied to the CSTR. From

the input/output data, the ordinary multivariable output error state space (MOESP) [41]

algorithm was used to regress a linear model of the CSTR of Eq. 4.1. Step, impulse, and

sinusoidal input responses were used to validate the model. Additionally, a LEMPC scheme

of the form described below in the subsequent subsection was designed using the empirical

model. The LEMPC with the identified model was applied to the CSTR of Eq. 4.1. Extensive

closed-loop simulations with the LEMPC were performed. From these validation experiments

(input response tests and the closed-loop simulations), a model was identified and validated.

The identified matrices for the linear model of the CSTR (in continuous-time) are:

A =






−34.5 −0.473

1430 18.1




 , B =






5.24 −8.09× 10−6

−11.6 4.57× 10−3




 (4.4)

where the state-space coordinates correspond to the coordinates used in the nonlinear model

of Eq. 4.1. The step, impulse, and sinusoidal input responses are shown in Figs. 4.1-4.3.

From Figs. 4.1-4.3, the predicted response of the CSTR using the identified linear model is
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Figure 4.1: Response of the CSTR of Eq. 4.1 (black line) to a step input compared to the
response predicted by the identified linear model of Eq. 4.4 (gray line). The step is in the
heat rate input (u2) starting at 1 hr with a magnitude of 5000 kJ/hr.
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Figure 4.2: Response of the CSTR of Eq. 4.1 (black line) to an impulse input compared
to the response predicted by the identified linear model of Eq. 4.4 (gray line) which are
nearly overlapping. To numerically simulate the impulse, a rectangular pulse of magnitude
1, 500 kJ/hr in the heat rate input was applied for 36 sec.
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Figure 4.3: Response of the CSTR of Eq. 4.1 (black line) to a sinusoidal input response
compared to the response predicted by the identified linear model of Eq. 4.4 (gray line). The
amplitude of the heat rate input sinusoid is 30, 000 kJ/hr with a frequency of 8.72 rad/hr.

close to the response of the actual nonlinear system of Eq. 4.1.

Application of LEMPC based on an Empirical Model

Before an LEMPC may be designed, a Lyapunov-based controller is designed, a Lyapunov

function under the Lyapunov-based controller is constructed, and the stability region of the

CSTR under the Lyapunov-based controller is estimated. Since we assume that only the

empirical model is available, we work with the empirical model to design the Lyapunov-

based controller. The Lyapunov-based controller consists of two elements for each input:

hT (x) = [h1(x) h2(x)], and the inlet concentration input is fixed to 0.0 kmol/m3 to satisfy

the material constraint of Eq. 4.3 (h1(x) = 0). Defining the vector and matrix functions

f : Rn → Rn and g : Rn → Rn × Rm as followed:

ẋ = Ax
︸︷︷︸

=:f(x)

+ B
︸︷︷︸

=:g(x)

u , (4.5)
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the following control law is used for the heat rate input in the Lyapunov-based controller [21]:

h2(x) =







−
LfV +

√
LfV 2 + Lg2V

4

Lg2V
, if Lg2V 6= 0

0, if Lg2V = 0

(4.6)

where LfV is the Lie derivative of the Lyapunov function V (x) with respect to the vector

field f(x) and the notation g2(x) denotes the second column of B. A quadratic Lyapunov

function of the form: V (x) = xTPx where P is the following positive definite matrix:

P =






1060 22

22 0.52




 (4.7)

was used. After extensive closed-loop simulations under the Lyapunov-based controller and

under the LEMPC designed on the basis of the Lyapunov-based controller h(x) and with

the model of Eq. 4.4, the level sets Ωρ̂ and Ωρ̂e , which will be used in the LEMPC, were

estimated to be ρ̂ = 64.3 (i.e., Ωρ̂ = {x ∈ Rn : V (x) ≤ ρ̂}), and ρ̂e = 55.0, respectively.

The sampling period and prediction horizon of the LEMPC are ∆ = 0.01 hr and N = 10,

respectively.

An LEMPC scheme of the form of Eq. 3.2 was designed utilizing the model of Eq. 4.4

for the CSTR with the cost function of Eq. 4.2 and the material constraint of Eq. 4.3.

The material constraint of Eq. 4.3 is enforced over each 1.0 hr operating period using the

strategy described in [3]. To solve the LEMPC optimization problem at each sampling

period, the interior point solver IPOPT was employed [10]. To make the simulations more

realistic, the solver was forced to terminate solving and return a solution by the end of

the sampling period although instantaneous availability of the control action at the current

sampling time is assumed in the closed-loop simulations. For the remainder, nonlinear

LEMPC will refer to an LEMPC scheme formulated with the nonlinear dynamic model of

Eq. 4.1, while linear LEMPC will refer to an LEMPC scheme formulated with the linear
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Figure 4.4: The state and input profiles of the closed-loop CSTR under the nonlinear LEMPC
(black line) and under the linear LEMPC (gray line) for the initial condition: CA(0) =
1.2 kmol/m3 and T (0) = 438 K.

model of Eq. 4.4. In the following simulations, both nonlinear LEMPC and linear LEMPC

were considered as a baseline comparison. While this comparison may be done through

simulations, a nonlinear model may not be available and thus, this type of comparison may

not be able to be completed in practice. For the nonlinear LEMPC simulations, only mode

1 operation of the controller was considered since the nonlinear LEMPC is able to maintain

operation within Ωρ̂e under nominal operation. To solve the initial value problem embedded

in the optimization problem, the explicit Euler method was used for the nonlinear LEMPC,

and the discrete-time version of the model of Eq. 4.4 with a zero-order hold of the inputs

with sampling period ∆ = 0.01 hr was used in the linear LEMPC.

Linear LEMPC Compared with Nonlinear LEMPC

Both the nonlinear and linear LEMPC were applied to the CSTR of Eq. 4.1, and a closed-loop

simulation over one operating period (1 hr) was completed for each case. The CSTR was

initialized at the steady-state: CA(0) = 1.2 kmol/m3 and T (0) = 438.0 K. The closed-loop
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Figure 4.5: The state trajectories of the CSTR under: nonlinear LEMPC (solid line) and
linear LEMPC (dashed-dotted line).

trajectories for the CSTR under both LEMPC schemes are shown in Fig. 4.4. The trajectories

of the two cases demonstrate a similar behavior with three distinct phases. In the first phase,

the LEMPC forces the CSTR from the initial condition to a greater temperature to increase

the production rate of B. In the second phase, the trajectories settle on an equilibrium

point located at the boundary of Ωρ̂e from approximately 0.2 hr to 0.8 hr. This steady-

state has a greater temperature than the operating steady-state (CAs = 1.2 kmol/m3 and

Ts = 438.0 K). Finally, to achieve additional economic performance benefit at the end of the

operating period and to satisfy the material constraint, the LEMPC forces the state away

from the steady-state to a greater temperature. Perhaps, the two most noticeable differences

in the closed-loop trajectories of Fig. 4.4, are the oscillations or chattering observed in the u1

trajectory computed by the linear LEMPC and the differences in the trajectories at the end

of the operating period. The oscillations are caused by the linear LEMPC switching between

mode 1 and mode 2 operations of the controller. Given the fact that the linear LEMPC uses

an inexact model, it cannot compute a control action that exactly maintains the actual state

at the boundary of Ωρ̂e . A state starting in Ωρ̂e may leave Ωρ̂e under the linear LEMPC.
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However, it will still be contained in Ωρ̂ at the next sampling period by design of Ωρ̂e . Once

the state is in Ωρ̂ \ Ωρ̂e , the linear LEMPC switches to mode 2 operation to force the state

back into Ωρ̂e . The linear LEMPC operates in mode 1 operation after the state converges

back to Ωρ̂e . On the other hand, the nonlinear LEMPC is able to maintain the LEMPC at

the boundary of Ωρ̂e since we are considering nominal operation (i.e., the LEMPC uses an

exact model of the CSTR to compute its control action). Thus, the nonlinear LEMPC is

able to maintain operation in Ωρ̂e , so the controller always operates in mode 1 operation.

To better observe the differences between the closed-loop state trajectories, the closed-loop

trajectories for each of the two previous simulations are shown in state-space (Fig. 4.5).

From Fig. 4.5, noticeable differences between the evolution of the two cases at the end of the

operating period is observed. In the region of operation at the end of the operating period,

the linear model is less accurate and hence, the linear LEMPC computes a different input

trajectory than the nonlinear LEMPC.

The fact that a similar trend was observed between the closed-loop CSTR under the

nonlinear LEMPC, which uses the exact dynamic model, and the linear LEMPC, which uses

a linear model identified through input/output data, speaks positively on EMPC using an

empirical model. It indicates that one may be able to use standard identification techniques

to identify an empirical model for use within the context of EMPC when a nonlinear model is

not available. However, it is also important to investigate the advantages and disadvantages

and possible trade-offs of using nonlinear LEMPC (when a nonlinear model is available) and

using linear LEMPC. To quantify the closed-loop performance of each case, we define the

average economic cost index as:

Je =
1

tf

∫ tf

0

k0e
−E/RT (t)C2

A(t) dt (4.8)

where tf is the length of simulated closed-loop operation. For simplicity of presentation, the

units on the average economic cost index, which are kmol/m3, are omitted. For the linear
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Figure 4.6: The computation time in seconds required to solve the nonlinear LEMPC (trian-
gle markers) and the linear LEMPC (circle markers) optimization problem at each sampling
period.

LEMPC, the economic cost index is 15.70, while the economic cost index of the closed-loop

CSTR under the nonlinear LEMPC is 15.77. For an 1 hr operating period, applying nonlinear

LEMPC achieves less than a 0.5% improvement of the economic cost index compared to the

economic cost under the linear LEMPC.

The computation time required to solve the LEMPC optimization problem at each sam-

pling period was also considered for the nonlinear and linear LEMPCs. Fig. 4.6 shows the

computation time required to solve the nonlinear and linear LEMPC at each sampling pe-

riod, respectively. The higher computation time observed at the end of the operating period

in each of the cases is associated with the fact that the constraints are active (the constraint

to maintain operation in Ωρ̂e and the average input constraint). From Fig. 4.6, the opti-

mization solver terminated early four times (recall that the solver was constrained to return

a solution by the end of the current sampling period). For this case, the total amount of

computation time required to solve the LEMPC optimization problem over all the sampling

periods was 193 sec. For the linear LEMPC, early termination of the optimization solver

was never experienced and for most of the sampling periods, the solver converged in less
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Figure 4.7: Closed-loop state trajectory (x1 = CA − CAs) of the CSTR under the linear
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Figure 4.8: Input trajectory (u1 = CA0 − CA0s) under the linear LEMPC over ten hours.

than 0.1 sec (Fig. 4.6). The total computation time required to solve the LEMPC at each

sampling period in the simulation was 22 seconds; the total time required to solve the non-

linear LEMPC at each sampling period is 777% greater than the computation time required

to solve the linear LEMPC.

To demonstrate the application of the linear LEMPC to the CSTR of Eq. 4.1, a closed-

loop simulation of ten hours was completed. The closed-loop trajectories are shown in

Figs. 4.7-4.10. The closed-loop economic performance as measured by the average economic

cost of Eq. 4.8 was 15.29. Maintaining the CSTR at the initial condition, which is the
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Figure 4.9: Closed-loop state trajectory (x2 = T−Ts) of the CSTR under the linear LEMPC
over ten hours.
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Figure 4.10: Input trajectory (u2 = Q−Qs) under the linear LEMPC over ten hours.

Table 4.2: Average economic cost (Je) for one period of operation (1 hr) using various
modeling methods.

Model Je

Nonlinear Model 15.77
Linear Model of Eq. 4.4 15.70
Least Squares Model 15.48
Jacobian Linearization of Nonlinear Model 15.39
Sinusoidal System ID 15.39
Impulse System ID 15.51

steady-state, has an average economic cost of 13.88 (the linear LEMPC dictates an operating

policy that is 10% better than operating the CSTR at the operating steady-state). Another

simulation was performed with the nonlinear LEMPC. The closed-loop trajectories of the

CSTR under the nonlinear LEMPC were similar to that under the linear LEMPC except from

a few differences: the closed-loop u1 trajectory computed by the nonlinear LEMPC did not

have chattering like the closed-loop u1 trajectory computed by the linear LEMPC (Fig. 4.8)

for reasons stated above and the other differences in the closed-loop trajectories noted above

for the 1 hr simulations were also observed. The average economic cost of the closed-

loop CSTR under the nonlinear LEMPC was 15.40. The closed-loop performance under

the nonlinear LEMPC is 0.7% better than that achieved under linear LEMPC. However, the

average total computation time required to solve the nonlinear LEMPC optimization problem

over each operating period is 159 sec, while the average total computation time required to

solve the linear LEMPC optimization problem is 23.6 sec (the nonlinear LEMPC average

computation time is 560% more).
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Other approaches to identify the empirical model could be used. To demonstrate this,

several other methods were used to obtain a linear model of Eq. 4.1 and similar one operating

period (1 hr) simulations were performed. Specifically, a model was obtained through the

following methods: least squares parameter fit using the input/output data obtained through

step tests, Jacobian linearization of the nonlinear model of Eq. 4.1 around the steady-state,

applying the MOESP algorithm to input/output data generated from sinusoidal input re-

sponse, and applying the MOESP algorithm to input/output data generated from impulse

input response. The closed-loop average economic performance of these simulations are re-

ported in Table 4.2. From Table 4.2, similar closed-loop performance was achieved in each

case. The linear LEMPC using the model of Eq. 4.4 achieved the best performance by design

(extensive closed-loop simulations under the LEMPC were employed to construct and vali-

date the model of Eq. 4.4). In all cases, closed-loop stability (boundedness of the closed-loop

state in Ωρ̂) was achieved.

Improved Accuracy with Empirical Models

Given that the CSTR exhibits nonlinear dynamic behavior (Eq. 4.1), the empirical model can

only accurately predict the behavior within a limited region of state-space. In the previous

simulations, the linear LEMPC computed a much different input trajectory compared to

the nonlinear LEMPC at the end of each operating period owing to the fact that the linear

model did not accurately predict the evolution within this region of operation. In this

section, we consider two methods that improve the accuracy of the empirical model used

in the LEMPC: employing on-line system identification and using multiple linear models to

describe the process within different regions of operation.

The first method that is investigated is on-line system identification. In on-line system

identification, the first model used in the linear LEMPC is the model of Eq. 4.4. The

model is used for only one operating period. At the end of the operating period, the closed-

loop input/output data of the first operating period is used to compute a new model from
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the MOESP algorithm. At the end of each subsequent operating period, a new model is

generated via the input/output data of the previous operating period. Over the course of a

ten hour simulation, the average economic cost with on-line system identification was 15.41.

Recall, for the ten hour simulation under linear LEMPC without on-line system identification

(Figs. 4.7-4.10), the average economic cost was 15.29 and a less than 0.7% improvement in

the closed-loop performance was realized with the on-line system identification. For this

particular example, little benefit may be achieved when using on-line system identification.

The second method that was investigated is formulating and applying linear LEMPC

with multiple linear models. In this method, multiple linear models are regressed off-line

for different regions of operation. Given that employing multiple linear models can more

accurately predict the behavior of the nonlinear CSTR, a larger estimate of the level sets

used in the linear LEMPC can be used. For this set of simulations, the level sets used in the

LEMPC design where ρ̂ = 368.0 and ρ̂e = 340.0. Operating the CSTR over a larger region in

state-space is desirable from a process economics standpoint given that the (instantaneous)

production rate scales with the exponential of −1/T (i.e., the production rate is larger at

higher temperatures). When multiple linear models were used within the linear LEMPC, the

model used in the LEMPC optimization problem was selected on the basis of which region

the initial condition was in. After extensive simulations, three models were identified for

three regions in state-space. The first model is:

A =






−34.5 −0.473

1430 18.1




 , B =






5.24 −8.09× 10−6

−11.6 4.57× 10−3




 (4.9)

and is most accurate for deviation temperatures less than 35.0 K (i.e., x2 ≤ 35.0). The

second model is:

A =






−48.6 −0.657

1960 23.2




 , B =






6.22 −1.13× 10−5

189 8.98× 10−3




 . (4.10)
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Figure 4.11: The closed-loop trajectories of the CSTR under the linear LEMPC (linear model
of Eq. 4.9).

and is most accurate for deviation temperatures between 35.0 K to 43.0 K. The third model

is:

A =






1.38 0.0894

−476 −10.7




 , B =






0.901 −1.24× 10−4

504 9.98× 10−3




 (4.11)

and is most accurate for deviation temperatures greater than 43.0 K. The use of one, two,

and three linear empirical models in the linear LEMPC was considered. Also, the nonlinear

LEMPC was also considered for comparison purposes. The linear LEMPC based on one

model uses the model of Eq. 4.9, the linear multiple-model LEMPC based on two models

uses the models of Eqs. 4.9-4.10, and the linear multiple-model LEMPC based on three

models uses the models of Eqs. 4.9-4.11.

One operating period simulations were completed with each LEMPC. The closed-loop tra-

jectories for the CSTR: under the linear LEMPC with one model, under the linear multiple-

model LEMPC with two models, and under the linear multiple-model LEMPC with three

models and under the nonlinear LEMPC are shown in Fig. 4.11, Fig. 4.12, and Fig. 4.13,

respectively. From these figures, the closed-loop evolution of the CSTR under the linear
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Figure 4.12: The closed-loop trajectories of the CSTR under the linear multiple-model
LEMPC with two linear models.
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Figure 4.13: The closed-loop trajectories of the CSTR under the linear multiple-model
LEMPC with three linear models (gray line) and under the nonlinear LEMPC (black line).

42



−1.5 −1 −0.5 0 0.5 1 1.5
−80

−60

−40

−20

0

20

40

60

80

CA −CAs (kmol/m3)

 

 

T
−

T
s
(K

)

Ωρ
Ωρ

e

Nonlinear LEMPC
3 Model LEMPC

Figure 4.14: The closed-loop state trajectories of the CSTR under the linear multiple-model
LEMPC with three linear models (dashed-dotted line) and under the nonlinear LEMPC
(solid line).

Table 4.3: Average economic cost for the CSTR under LEMPC formulated with multiple
empirical models as well as with the nonlinear model for one period of operation (1 hr).

Method Je

One linear model 16.61
Two linear models 16.80
Three linear models 17.14
Nonlinear Model 17.22
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LEMPC with one and two models is much different than that under the linear multiple-model

LEMPC with three models and the nonlinear LEMPC because the CSTR under LEMPC

is initially driven to and maintained in a region where the first and second models are not

accurate. The closed-loop behavior of the CSTR under the linear multiple-model LEMPC

with three models and the nonlinear LEMPC is similar with the most significant deviation

being observed towards the end of the operation period (Fig. 4.14). The closed-loop average

economic costs for these simulations are given in Table 4.3 and demonstrate that increas-

ing the number of linear models used in the LEMPC improves the closed-loop performance

and extends the region of time-varying operation (c.f., in Fig. 4.4 and Fig. 4.14). Over the

one hour length of operation, the total computation time under the nonlinear LEMPC is

205.2 sec and under the linear LEMPC with three empirical models is 20.4 sec (the com-

putation time for the nonlinear LEMPC is 906% greater than the computation time for the

linear LEMPC with three empirical models).
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Chapter 5

Conclusions

In this work, an LEMPC method formulated with empirical models was considered for non-

linear process systems. Under the assumption that the error between the empirical linear

model and the one of the linearization of the nonlinear model at the steady-state around

which time-varying operation is considered, sufficient conditions such that the LEMPC for-

mulated with the empirical linear model will guarantee closed-loop stability of the nonlinear

system in the sense of boundedness of the closed-loop state in a compact set were derived. A

chemical process example demonstrated the application of the proposed method and exten-

sive simulation results were given. From these results, a similar closed-loop behavior between

the chemical process under the LEMPC with the nonlinear model and under the LEMPC

with an empirical model was observed with comparable closed-loop economic performance.

However, a significant decrease in the computation time required to solve the LEMPC with

a linear model compared to LEMPC with a nonlinear model was observed. In all of the sim-

ulations, the LEMPC with the linear model maintained closed-loop stability and obtained

better closed-loop economic performance than that obtained at steady-state.
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[20] S. J. Norquay ; A. Palazoğlu and J. A. Romagnoli. Model predictive control based on
Wiener models. Chemical Engineering Science 1998, 53, 75 - 84.

[21] E. D. Sontag. A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization.
Systems & Control Letters 1989, 13, 117–123.

[22] Bloemen, H. H. J. ; Van Den Boom, T. J. J. and Verbruggen, H. B. Romagnoli. Model-
based predictive control for Hammerstein-Wiener systems International Journal of Con-
trol 2001, 74, 482-495.

[23] Yu, C. ; Roy, R. J. and Kaufman, H. and Bequette, B. W. Model-based predictive control
for Hammerstein-Wiener systems IEEE Transactions on Biomedical Engineering 1992,
39, 765-778.

[24] Verhaegen, M. and Deprettere, E. A Fast, recursive MIMO state space model identi-
fication algorithm Proceedings of the 30th IEEE Conference on Decision and Control
1991, 1349-1354.

[25] Verhaegen, M. and Dewilde, P. Subspace model identification Part 1. The output-error
state-space model identification class of algorithms International Journal of Control
1992, 56, 1187–1210.

[26] Aumi, S. and Mhaskar, P. integrating data-based modeling and nonlinear control tools
for batch process control AIChE Journal 2012, 58, 1547-5905.

47



[27] Van Overschee, P. and De Moor, B. N4SID: Subspace algorithms for the identification
of combined deterministic-stochastic systems Automatica 1994, 30, 75-93.

[28] Viberg, M. Subspace-based methods for the identification of linear time-invariant sys-
tems Automatica 1995, 31, 1835 - 1851.

[29] Qin, S. J. An overview of subspace identification Automatica 2006, 30, 1502 - 1513.

[30] Huang, B. and Kadali, R. Dynamic modeling, predictive control and performance mon-
itoring Lecture Notes in Control and Information Sciences, Springer. London 2008.

[31] Anderson, S. R. ; Kadirkamanathan, V. Modeling and identification of non-linear de-
terministic systems in the delta-domain Automatica 2007, 43, 1859 - 1868.

[32] Markovsky, I. ; Willems, J. C. and Rapisarda, P. and De Moor, B. L. M. Algorithms
for deterministic balanced subspace identification Automatica 2005, 41, 1755 - 766.

[33] Favoreel, W. ; De Moor, B. and Van Overschee, P. Subspace state space system identi-
fication for industrial processes Journal of Process Control 2000, 10, 49 - 155.

[34] R. Huang ; E. Harinath and L. T. Biegler. Lyapunov stability of economically oriented
NMPC for cyclic processes Journal of Process Control 2011, 21, 501 - 509.

[35] Ellis, M. and Christofides, P. D. On finite-time and infinite-time cost improvement of
economic model predictive control for nonlinear systems Automatica 2014, 50, 2561 –
2569.

[36] Hariprasad, K. ; Bhartiya, S. and Gudi, R. D. A gap metric based multiple model
approach for nonlinear switched systems Journal of Process Control 2012, 22, 1743 -
1754.

[37] Billings, S. A. Nonlinear System Identification: NARMAX Methods in the Time, Fre-
quency, and Spatio-Temporal Domains John Wiley & Sons 2013,.

[38] Murray-Smith, R. and Johansen, T. Multiple Model Approaches to Nonlinear Modelling
and Control CRC press 1997,.

[39] Jin, X. ; Huang, B. and Shook, D. S. Multiple model LPV approach to nonlinear process
identification with EM algorithm Journal of Process Control 2012, 21, 182 - 193.

[40] Chou, C.T. and Verheagen, M. Subspace Algorithms for the Identification of Multivari-
able Dynamic Errors-in-Variables Models Automatica 1997, 33, 1857 - 1869.

[41] Verhaegen, M. and Dewilde, P. Subspace model identification Part 1. The output-error
state-space model identification class of algorithms International Journal of Control
1992, 56, 1187–1210.

[42] Van Overschee, P. and De Moor, B. Subspace identification for linear systems: Theory,
Implementation, Application Methods 1996.

48



[43] Verhaegen, M. Identification of the deterministic part of MIMO state space models given
in innovations form from input-output data Automatica 1994, 30, 61 - 74.

[44] Larimore, W.E. Ianonical Variate Analysis in identification, filtering, and adaptive con-
trol Automatica 1990, 12, 596-604.

[45] Y. Lin and E. D. Sontag. A universal formula for stabilization with bounded controls
Systems & Control Letters 1991, 16, 393–397.

49




