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Learning to categorize requires distinguishing category members from non-members by detecting the features that covary with 
membership. Human participants were trained to sort visual textures into two categories by trial and error with corrective feedback. 
Difficulty levels were increased by decreasing the proportion of covariant features. Pairwise similarity judgments were tested before 
and after category learning.  Three effects were observed: (1) The lower the proportion of covariant features, the more trials it took to 
learn the category and the fewer the participants who succeeded in learning it; after training, (2) perceived pairwise similarity decreased 
between categories and, to a lesser extent, (3) increased within categories, at all levels of difficulty, but only for successful learners. 
This perceived between-category separation and within-category compression is called categorical perception (CP). A very simple 
neural network model for category learning using uniform binary (0/1) features showed similar CP effects. We hypothesize that CP 
occurs because learning to selectively detect covariant features and ignore non-covariant features reduces the dimensionality of 
perceived similarity space. In addition to (1) – (3), the nets showed (4) a strong negative correlation between the proportion of covariant 
features and the size of the CP effect. This correlation was not evident in the human participants, probably because, unlike the formal 
binary features of the input to the nets, which were all uniform, the visual features of the human inputs varied in difficulty. 
   
 
What is Categorization?  
 
  Categorizing includes sorting things into groups based on similarity, pigeon-holing things, and naming 
things (Goldstone, 1994a; Nosofsky, 1986; Zarate & Smith, 1990). But to define a category such as 
“categorization” we cannot just give examples of it. We have to say what its covariant features are: what are 
the features that are common to all instances of “categorization”? Some have suggested that there is something 
wrong with this “classical view” of categorization, according to which all category members share features 
that determine whether or not they are members (Mervis & Rosch, 1981; Smith & Medin, 1981). But the 
alternative to assuming that there must be features that distinguish members from non-members is either to 
assume that categories are not categorical but just a matter of degree (McCloskey & Glucksberg, 1978) – i.e., 
that everything is a member of every category to some extent, but more a member of some categories than 
others – or to assume that categorizing has no objective (covariant) basis at all (Fodor, 1998). 
 
  This paper assumes that the classical view of categories and categorization is correct. The only thing 
that determines whether something is or is not a member of a category is the presence or absence of the features 
that distinguish the members of that category from the non-members – i.e., the features that covary with 
membership in the category. This puts a big load on the notion of a “feature”. Features are mostly sensory 
properties of things, such as size, color, shape, loudness or odor. But each feature is itself a potential category 
too, with members and non-members. That is why it is important to define “categorization” first: 
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  Categorizing is an action. Categorizing is something that organisms -- and not just human ones 
(Jitsumori & Delius, 2008; Thompson & Oden, 2000) -- do with “things”: to categorize is to do the right thing 
with the right kind of thing (Harnad, 2005). A category is a kind of thing. “Things” are whatever input an 
organism receives through its senses from objects (including events and actions and states and properties) in 
the world; and the “right thing to do” is whatever the organism needs to do with the members of the category 
and not-do with the non-members of the category (Fajen & Turvey, 2003) in order to survive, succeed and 
reproduce; for example, eat what’s “edible” and don’t eat what’s “inedible”; approach “prey,” avoid 
“predators;” and  mate with members of your own species and not with trees or stones. 
 
  Naming. For human beings, too, to categorize is to do the right thing with the right kind of thing; but 
apart from the basic survival- and subsistence-doings that we share with other species, our species is capable 
of a kind of doing that is almost certainly unique to us: naming things (verbally or gesturally). Names are 
arbitrary, and we are the ones who agree, by convention, to call some kinds (categories) of things this and other 
kinds of things that. But we don’t name categories just for the pleasure of naming. The unique power of 
language (Blondin-Massé, Harnad, Picard, & St-Louis, 2013; Cangelosi, Greco, & Harnad, 2002; Pagin & 
Westerståhl, 2010; Wisniewski & Gentner, 1991) is to enable us to combine category names to produce 
subject/predicate propositions that describe or define further categories whose features are a combination of 
the categories that we have already learned and named: “bachelor = unmarried man”; “apple = red, round 
fruit”; “prime number = divisible only by itself and 1”; etc. 
 
  The propositional power of learning new categories through language alone depends, in turn, on our 
previously having already learned enough categories without language, directly through our senses, and to 
have given them names, so as to enable us to then go on to name and define other categories through words 
alone. How many categories -- and which ones -- we need to have learned and named in order to be able to do 
this (Vincent-Lamarre, Blondin Massé, Lopes, Lord, Marcotte, & Harnad, 2016) is not the subject of this paper. 
This paper is about what must precede language: how we learn categories through direct sensorimotor doings 
rather than through verbal doings based on re-combinations of categories that we have already learned and 
named. 
 
  Innate and learned categories. Not all categories need to be learned. Some are inborn: The frog is 
born knowing that the right thing to do with an object of a certain size flying across its visual field is to flick 
its tongue out and try to catch and eat it (Zhaoping, 2016); the duckling is born knowing that the right thing to 
do with a moving thing of a certain size and speed is to follow it (Bateson, 2000); and the newborn mammal 
knows that the right thing to do is to seek things that look and smell like nipples and to suckle (Porter & 
Winberg, 1999). But even for nonhuman animals, many of their categories must be learned (Gershman & Daw, 
2017; Marino, 2017; Smith, 2017; Smith, Zakrzewski, Johnson, Valleau, & Church, 2016; Zentall, Wasserman, 
Lazareva, Thompson, & Ratterman, 2008) and for human beings virtually all the nouns, verbs, adjectives and 
adverbs in our dictionaries are the names of categories that we had to learn rather than being born already 
knowing them (Bloom, 2000; Horst & Simmering, 2015). 
 
  Supervised and unsupervised category learning. What is it to “know” a category, whether innately 
or through learning? It is to be able to categorize (i.e., do the right thing with its members, and not its non-
members). How do organisms know what to do with what? Whether the category is innate or learned, their 
brains must be able to detect the features that distinguish the members from the non-members, the features that 
covary with category membership (Gao, Cai, Li, Zhang, & Li, 2016; Smith & Rangarajan, 2016). The frog, 
the duckling and the human neonate each have inborn feature-detectors for their innate categories, selectively 
tuned to the covariant features. But when the organism does not have feature-detectors that have already been 
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“prepared” by millions of years of evolutionary trial and error by random variation and selective retention 
based on survival and reproduction, the organism has to learn by trial and error during its own lifetime what is 
the right thing to do with the right kind of thing. This kind of learning is called “supervised learning” (LeCun, 
Bengio, & Hinton, 2015) or “reinforcement learning” (Sutton & Barto, 1998), because it is based on the 
learner’s first trying to do the right thing with an input and then receiving corrective feedback (reinforcement, 
supervision) from the consequences of that action – feedback that is positive if the organism has done the right 
thing and negative it if has done the wrong thing1. Under these concepts, “supervised learning” refers to 
learning model architectures in which the actual response and the correct response are simultaneous 
components of the model’s input and connection strengths are adjusted to minimize the discrepancy, as in error 
back-propagation.  “Reinforcement learning” refers to performance tasks in which the response occurs first, 
then the consequences (negative or positive) follow, and then the connection strengths are adjusted. By these 
means, the brain (or any learning mechanism) must learn to detect which features of the input covary with 
membership – the features that are shared by the members of the category and that distinguish them from the 
non-members. 
 
Categorical Perception (CP) 
 
  This paper will report some findings from experiments on human participants who are trained in the 
laboratory to learn new categories. We are particularly interested here in a phenomenon called “categorical 
perception” (CP) that sometimes (but not always) accompanies categorization, both innate and learned 
(Harnad, 1987, 2003). CP occurs when members of different categories look more different from one another 
and members of the same category look more alike. On the face of it, this sounds trivial: Of course members 
of the same category look more like one another than like members of a different category! Otherwise why 
would they be in the same category? This sounds like the very first notion of categorization mentioned in the 
opening paragraph of this paper: “sorting things into groups based on similarity.” But categorization depends 
on doing the right thing with the right kind of thing; and it is not clear that the obvious similarities and 
differences in the appearances of things (to any of our senses) are always enough to inform us as to what to do 
with what -- at least not for some categories, and not immediately. For categories whose covarying features 
are harder to find (rather than evident upon repeated exposure through unsupervised learning), learning to 
categorize may be more challenging and time-consuming. And the resulting feature-detector may alter what 
we perceive as more similar to what, so as to make the category readily recognizable. 
 
  The Whorf hypothesis.  According to the “Whorf Hypothesis” (Hussein, 2012; Kay & Kempton, 
1984), it is learning to put things in different categories by giving them different names that makes them look 
more different to us, rather than vice-versa: Categorical Perception (CP), the expansion or separation of the 
perceived differences between members of different categories and the compression of the perceived 
differences among members of the same category is attributed to “language” by the Whorf Hypothesis: The 
reason different shades of green all look green rather than blue is that we call them “green” rather than “blue.” 
In languages that do not have a word to distinguish green from blue, but only the equivalent of “bleen” to name 
them both, they both look bleen, rather than green or blue, according to the Whorf Hypothesis. 
 
  Color categories. Perceived colors (hues) correspond to differences in wave-length of light (Figure 
1). Small equal-sized differences in wave-length that cross the boundary between the range we call “green” 

	
1 Another form of learning is unsupervised learning (Fisher, Pazzani, & Langley, 2014), through repeated passive 
exposure, without response or feedback. Some covariation can already be learned this way, and this may facilitate later 
category learning. Unsupervised learning is further discussed in the section on our neural net modeling. 
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and the range we call “blue” look more different and are easier to discriminate than equal-sized differences 
within the range of green or within the range of blue (Bird, Berens, Horner, & Franklin, 2014; Hanley, 2015). 
If this CP separation/compression had been the result of language and naming, it would have been a bona-fide 
Whorfian effect. But cross-cultural and cross-linguistic comparisons of color naming and color discrimination 
have found that not only do most languages give distinct names to the very same distinct sub-regions of the 
visible wave-length continuum, but that even the speakers of those languages that do not (as in “bleen” 
languages) nevertheless show the same separation/compression CP effects within and across the color 
boundaries as the speakers of those languages that do (Ozturk, Shayan, Liszkowski, & Majid, 2013). So in the 
case of color perception, the categorization indeed follows the perceived similarity gradient rather than causes 
it. Yet the perceived similarities and differences are not really in the color input, which is just light varying 
continuously along a uniform gradient of wave-length. The CP effect is the result of the brain’s innate feature-
detectors for color (involving cones that are selectively tuned for the red, green and blue regions of the 
frequency spectrum, paired red/green and blue/yellow opponent processes, and other specialized neural 
feature-detectors for perceiving color categories; Jacobs, 2013). So it is not language that has produced the 
perceived separation/compression among colors. It is Darwinian evolution. 

 
  CP induced by learning. There is nevertheless growing evidence in other sensory domains that 
“weak” Whorfian CP effects – not as dramatic as the rainbow, not always both separation and compression, 
but going in that direction – have been reported under some conditions as a result of category learning alone, 
with simple stimuli, colors and faces (Clifford et al., 2012; De Baene, Ons, Wagemans, & Vogels, 2008; 
Goldstone, 1994b; Goldstone, Lippa, & Shiffrin, 2001; Goldstone & Steyvers, 2001; Harnad, 1987; Kang 
2014; Livingston, Andrews, & Harnad, 1998; Notman & Snowden, 2005; Pérez-Gay et al., 2016; Pevtzow & 
Harnad, 1997; Pothos & Reppa, 2014; Sigala & Logothetis, 2013; Simanova et al., 2016; Wallraven, Bülthoff, 
Waterkamp, van Dam, & Gaißert, 2013). Studies of shape category learning, however, have been more mixed 
(Folstein et al., 2012, 2014; Gillebert, Op de Beeck, Panis, & Wagemans, 2008; Jiang et al., 2007; Newell & 
Bülthoff, 2002; Ozgen & Davies, 2002; Van Gulick & Gauthier, 2014). 
 
  We report here some recent behavioral findings on CP separation/compression effects induced by 
learning to categorize unfamiliar visual textures of increasing levels of difficulty (Experiments 1, 2 and 3). 
Textures were used because they are novel stimuli and their features are distributed and holistic, rather than 
local and shape-based. This was intended to make it harder for participants to learn to categorize them by using 
an explicit, verbal rule based on familiar, local features. A simplified version of the human participants’ 
category-learning task was then administered to a category-learning neural network model (Experiment 4) to 
test whether it too generated CP separation/compression effects, and if so, how and why. 

	
Figure 1. Blue-Green (“Bleen”) continuum (in nanometers) of light wavelength. By Xession (Own work) [CC BY 3.0 
(http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons. 
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Experiment 1 
 

Method 
 
  Participants.  Forty-two right-handed participants (22 males, 20 females), aged between 18 and 35 years were recruited 
online through Kijiji and the UQAM and McGill Classified Ads Website. Participants were either native English-speakers or native 
French-speakers, free of significant neurological and/or psychiatric conditions. Each participant was assigned randomly to one of four 
levels of difficulty. 
 
  This experiment, as well as the following two, were approved as part of the same project by the CIEREH, Comité 
institutionnel d’éthique de la recherche avec des êtres humains of UQAM – Université du Québec à Montréal. All participants signed 
the informed consent form approved by the Committee before participating in the experiment. 
 
  Stimuli.  To design a categorization task with unfamiliar stimuli and features that were not local but distributed (hence less 
readily verbalizable), we computer-generated a large set of 270 x 270 pixel black and white square-shaped textures. The textures were 
in turn composed of twelve distinct 6 x 6 black and white matrices, each consisting of 18 black and 18 white pixels arranged in twelve 
different patterns (Figure 2a). These twelve matrices were then split (arbitrarily) into 6 pairs to serve as binary, mutually exclusive 
features. For simplicity, we will henceforth refer to the matrices as “features”. 
 
  Each individual texture was thus built out of 900 features, 30 along the width dimension and 30 along the height dimension, 
their spatial positions randomly distributed. The resulting 180x180 grid was then amplified 1.5 times to result in our final 270x270 
textures. For each category, the texture would include only one or the other of each of the six binary features. This generated a very 
large sample of textures to be used as training sets for category learning (examples in Figure 2b). 
 
  The task had four levels of apriori (i.e., presumed) difficulty based on what proportion of the features co-varied with category 
membership (but each participant was trained at only one difficulty level). At the easiest level, all 6 binary features covaried with 
category membership: the zero value of each binary pair occurred in every member of the K category (KALAMITES) and the one 
value of each pair occurred in every member of the L category (LAKAMITES). Our assumption was that stimuli in which all the 
features covaried with category membership would be the easiest to learn to categorize, and that difficulty would increase as the 
proportion of covarying (relevant) features decreased and the proportion of non-covarying (irrelevant) features increased. The four 
levels of difficulty we tested ranged from 6/6 covariants (easiest), to 5/6, 4/6 and 3/6 (hardest). The non-covarying features varied 
randomly at each level, independent of category membership. Pilot testing suggested that the smallest ratios of covariants (2/6 or 1/6) 
made the category unlearnable within a single training session, so we tested only from 6/6 to 3/6. Each stimulus set consisted of 180 
different texture images (each presented two to three times with corrective feedback following each response, across a total of 400 
training trials). The experiment was created and the stimuli were generated using the PsychoPy2 open source software (Peirce, 2007, 
2009). 
 
  Although we tried to make all six features as equal as possible, minimizing disparities, only in the formal neural net model 
described in Experiment 4 could full feature equality be ensured. In Experiments 1 and 2, the proportion of covariant features decreased 
at each difficulty level (k/N, k being the number of features that co-vary with category membershinp, and N being the total number of 
features that conform each stimulus), but only one arbitrary combination of k features was tested at each level, not every possible 
combination of k features: For example, all Ss trained at level 3/6 viewed stimuli with the very same three (arbitrarily chosen) covariant 
features (Figure 2). 
 
  One of the objectives of Experiment 1 was to derive from the apriori difficulty levels an estimate of the aposteriori (i.e., 
observed) difficulty levels based on the Ss’ actual performance, as reflected by the percentage of successful learners and the number 
of trials it took them to reach the learning criterion. On this performance basis we could then choose our stimuli and difficulty levels 
for Experiment 2, as described below. The outcomes are important for our discussion, as the role of feature inhomogeneity for the 
human visual system compared to the feature homogeneity of the neural net model proved to be highly relevant factor in the 
interpretation of our overall findings. 
 
  Procedure. The experiment was conducted in a sound isolated chamber with dim lighting and no other sources of 
electromagnetic interference. Ss were seated in a comfortable armchair in front of a glass window through which they saw the computer 
screen presenting the stimuli. They had a keyboard on a table between themselves and the window to click the K and L keys. 
 
  Task.  A standard supervised learning procedure was used, consisting of trial-and-error training with corrective feedback 
following each trial. The training session lasted about forty minutes (pauses included). Ss had to learn to categorize each texture as 
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either a “KALAMITE” or a “LAKAMITE” by pressing K or L. The training set included 180 different textures generated as described 
above. Ss saw a total of four hundred textures (each texture appeared 2-3 different times during the task). 
 
  Each trial consisted of a fixation cross (500 ms) followed by one of the stimuli, shown at the center of the computer screen 
against a white background (1.25 s). Ss were instructed to click K or L on the keyboard to indicate the category. Ss had to respond 
within 2s of the onset of the stimulus; if they did not, the computer prompted them to respond faster. Categorization was followed by 
immediate feedback (lasting 750 ms) indicating whether the response had been correct or incorrect. 
 
  The 400 training trials were divided into four blocks of 100 stimuli each. Following each block, there was a pause in which 
Ss responded to a questionnaire about whether they thought they had detected the difference between the KALAMITES and 
LAKAMITES. If they replied “yes”, they were asked to describe in words what the difference was. If they replied “no”, they were 
asked to describe the provisional strategy they were using to try to categorize the stimuli. The instructions and questionnaires were in 
English or French depending on the Ss’ native language. We recorded responses as well as reaction times during the task. 
 
 
Results 
 
  Training trials and indicators of task difficulty.  Forty-two participants (aged 19-34, 22 male, 20 
female) completed the visual category-learning task, each randomly assigned to each of the four difficulty 
levels. Overall, 28 of the 42 Ss succeeded in learning the category as determined by attaining our apriori 
monotonic learning criterion (reaching and sustaining at least 80% correct). Four Ss were classified as 
“Borderlines”: they reached but did not sustain the 80% level. The remaining 10 Ss did not reach the learning 
criterion throughout the training session and were classified as non-learners (Figure 3). 
 
  To test the apriori difficulty of our stimulus sets (based on the assumption that the lower the proportion 
of features covarying with category membership, the greater the difficulty), we compared performance at each 
level of difficulty in terms of (1) the proportion of Ss who successfully reached the 80% learning criterion and 
(2) the number of trials it took them to do so (Table 1 and Figure 4). A one-way ANOVA showed a significant 
effect of difficulty level (proportion of covariates) on the number of trials it took to reach the learning criterion, 
F(3,25) = 3.066, p = 0.046. The participants’ performance levels did not correspond to our apriori expected 
levels of difficulty, however. We had expected the hardest level to be the one with the lowest proportion of 
covarying features (3/6), but this level turned out to require the smallest number of trials to reach the learning 
criterion. Also, the level with 5/6 covarying features turned out to be (nonsignificantly) easier than the level 
with 6/6 covarying features, t(20) = 0.341, p = 0.283. This indicates that the sets did differ in difficulty, but 
that the degrees of difficulty did not correspond to the proportion of covariants. 
 
 

Table 1 
Outcome Profile for Each Apriori Difficulty Level in Experiment 1 

Apriori 
difficulty 

level 

Covarying     
features 
(k/N) 

Learners Borderlines Non-Learners Trials to 
learn: mean 

(SE) 

Aposteriori 
difficulty 

level 

1 6/6 7 1 3 149 (21) 3 
2 5/6 8 0 3 180 (38) 2 
3 4/6 5 3 2 278 (61) 4 
4 3/6 8 0 2 138 (20) 1 
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Figure 2.  The twelve matrices (henceforth “features”) of which the textures were composed and a sample of category 
members from the a-priori easiest (6/6) and hardest (3/6) level of difficulty in Experiments 1 and 2.   Above (2a): the 
six specific pairs of binary features used to generate the two texture categories: “Kalamites” (Ks) and “Lakamites” (Ls). 
Below (2b) Left: sample of 4 Kalamites and 4 Lakamites at the easiest level (6/6, in which all six features covaried with 
category membership) Right:  4 Kalamites and 4 Lakamites at the hardest level (3/6, in which only three of the six features 
covaried with membership; the non-covarying pairs varied randomly). 
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Figure 4. Indicators of difficulty in Experiment 1. On the left, Figure 4a) shows the percentage of participants that reached our 
learning criterion. On the right, figure 4b) shows the number of trials it took the learners to reach it. The four groups differed 
significantly but difficulty (percentage of unsuccessful learners and number of trials to reach criterion) did not increase 
monotonically as the proportion of covariant features decreased. Error bars represent ±2 SE. 

 
 
 
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
  We think this outcome pattern arises because our difficulty levels were not determined solely by the 
proportion of covariant features at each level, but also by which particular features were used at each level (see 
Appendix). The covariant features at each level were picked randomly but then that choice was the same for 
all participants at that level: only one random combination was used at each level. 
 

	
Figure 3. Examples of the three patterns of learning observed for the 42 participants in our categorization task. Left to right:  
Learners (29), borderlines (5) and non-learners (11). X axis is number of trials and Y axis is percentage of correct responses. Red 
line represents learning criterion of 80% sustained correct responses. 
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Experiment 2  
 
  We chose the two apriori levels that had also proved significantly different aposteriori in Experiment 1, in terms of number 
of trials to criterion and proportion of learners/non-learners, and conducted a second experiment to test for changes in perceived 
similarity after the categorization task. The experiment was conducted under the same conditions as those described in the Procedure 
section of Experiment 1. 
 
 
Method 
 
  Participants.  Forty-one right-handed participants (23 Females, 18 Males) aged between 18 and 35 years were recruited as 
in Experiment 1. The difficulty condition for each participant was assigned randomly. 
 
  Stimuli.  We used only two levels of difficulty, one that had proven easier in Experiment 1 (5/6 covarying features) and one 
that had proven harder (4/6 covarying features). 
 
  Procedure.  Same as in Experiment 1. 
 
  Tasks.  In Experiment 2, participants made pairwise similarity judgments on a subset of forty stimulus-pairs, once before the 
categorization training and once again after the training: A fixation cross was presented for 500 ms and then two stimuli appeared at 
the center of the screen one after the other for 1s each, with an inter-stimulus interval of 1s. After the second stimulus participants were 
to rate the similarity of the two stimuli on a scale of 1 to 9 on the keyboard with 1 corresponding to “very similar” and 9 to “very 
different.” They were encouraged to make use of the full range of the scale. Of the total of forty pairs presented, 20 were within-
category pairs (10 “Kalamites” and 10 “Lakamites”) and 20 were between-category pairs (but of course before training, participants 
did not know the categories or their names). We recorded responses and reaction times during the task. The same set of 40 stimulus-
pairs were presented in the same order for the similarity judgements before and after training. Following the first set of similarity 
judgements, participants began their visual category training with corrective feedback as in the first experiment (400 trials divided into 
four blocks with questionnaires in each pause). 
 
 
Results 

 
  Learning.  Forty-one participants completed the category-learning task, 21 assigned to the easier (5/6) 
and 20 to the harder (4/6) level. Twenty-four participants successfully reached our learning criterion (sustained 
80% correct), 16 at the easier level, 8 at the harder level and were considered learners. Interestingly, at the 
easier level, 5 participants already had 80% accuracy from the outset, without training. This suggests that mere 
exposure to the 40 pairs of stimuli during the pairwise similarity judgement task, without feedback to indicate 
that there were two categories or which belonged in which, had been enough to induce passive learning (i.e., 
unsupervised learning) in these participants in the easier condition. We classified them as “immediate 
learners”. 
 
  In the harder condition, two participants were classified as “Borderlines”, showing the same pattern of 
partial learning described in Experiment 1 for this same difficulty. Four participants in the easy condition and 
ten in the hard condition were non-learners. See Table 2. It is important to point out that the average number 
of trials to learn does not include the immediate learners, who were performing above our criterion from the 
first 20 trials. 
 
  Similarity judgments. To compare similarity ratings before and after training, we calculated the 
“average pairwise distances”, meaning the average score given by the participant for stimulus pairs between 
(B) or within (W) categories. We did so for the session before (pre) training and the session after (post), creating 
four variables “Bpre,” “Bpost,”  “Wpre” and “Wpost.” To estimate between-category separation we assessed 
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the changes in similarity ratings for between-category pairs. (diffB = Bpost – Bpre); we did the same for within-
category compression (diffW = Wpost – Wpre).  We then separately tested whether diffB and diffW differed 
from zero with separate correlated-sample t-tests for learners and non-learners. A repeated-measures ANOVA 
with learner/non-learner as the between-group factor tested the effect of successful learning on these perceived 
changes in pairwise similarity between and within categories. Combining both difficulty levels for the learners 
(including the immediate learners) the between-category separation (positive diffB) was significant, t(24) = 
6.785, p < 0.001, but the within-category compression (negative diffW) was not, t(24) = -1.551, p = 0.134 
(Figure 5). In repeated measures ANOVAS with Learning group as the between-subject factor, excluding the 
two borderlines, both Separation, F(1, 37) = 5.320, p = 0.027, and Compression, F(1, 37) = 4.083, p = 0.050, 
were significant. 
 

Table 2 
Number of Learners and Number of Trials before Reaching the Learning Criterion for 
Each Level in Experiment 2 
Level Immediate 

Learners 
Learners Borderlines Non-

Learners 
Trials to learn: mean (SE) 

Easier 6 10 0 5 106 (33)  
Harder 0 8 2 10 262 (32) 

 
 
  The non-learners had no significant effects at all (only small, non-significant separation both within 
categories, t(13) = 1.296, p = 0.217, and between categories, t(13) = 1.566, p = 0.141. The changes in perceived 
similarity for both learners and non-learners are shown in Figure 5. 
 

 

	
Figure 5. Changes in average pairwise distance in learners and non-learners in Experiment 2. Between categories (green-
dashed) and within categories (blue-solid) similarity ratings before training compared to after training, for learners (left) and non-
learners (right), averaged across the two difficulty levels. Learners showed significant between-category separation as well as 
within-category compression (the separation more pronounced than the compression). Non-learners showed no significant changes. 
Error bars represent ±2 SE., and those for between category pairs scores in the non learners have been purposefully displaced to 
displaced towards the outside of the graph to avoid overlapping with the error bars from within category pairs.  



 
$$!

!

	
	

  A difference between the easier and the harder condition was found for Successful Learners’. While 
there was significant between-category separation in both the easier (mean diffB = 1.82), t(15) = 5.70, p < 
0.001, Cohen’s d = 1.32, and the harder conditions (mean diffB = 1.35), t(7) = 3.36, p = 0.012, Cohen’s d 
= 1.194, within-category compression was only significant in the easier condition (mean diffW = -0.89), t(15) 
= -2.48, p = 0.025, Cohen’s d = 0.87 (Figure 6). The harder condition showed only a small, non-significant 
separation for within category pairs (mean diffW = 0.46), t(7) = 1.17, p = 0.282, Cohen’s d = 0.43. These 
results corroborate the existence of the separation effect in both conditions.  
 
  Repeated-measures ANOVAS with difficulty as a between-subject factor found no significant 
hard/easy difference in between-category separation, F(1,22) = 0.66, p = 0.426, partial η2 = 0.028, Observed 
Power = 0.12, but there was a significant hard/easy difference in within-category compression, F(1,22) = 5.53, 
p = 0.028, partial η2 = 0.194, Observed Power = 0.62. 

 
  We think the explanation for the smaller between-category separation (and absence of within-category 
compression) in the harder condition may be that because learners in the hard condition learned significantly 
later than learners in the early condition, they had less practice categorizing correctly, reducing their 
separation/compression effects. To test this possibility, we combined the two difficulty conditions and 
recalculated compression and separation using the number of trials to reach the criterion of 80% correct (rather 
than k/N) as the index of difficulty. A one-way ANOVA with Linear Contrast tested the effect of the number 
of trials to criterion on the CP effects. The main effect of number of trials on separation was not significant, 
F(8,9) = 2.124, p = 0.142, but there was a significant negative linear trend: the more trials it took to learn, the 
smaller the separation effect, F(8,9) = 8.345, p = 0.032. This was also consistent with a significant Pearson 
product-moment correlation between number of trials to learn and the size of the between-category separation 
effect in the learners, r = -0.535, n = 18, p < 0.05 (Figure 7). There was neither a correlation nor a linear trend 
for the number of trials and the compression effect. A second possible explanation derives from feature 

	
Figure 6. Changes in average pairwise distance in the easier and harder task (in learners of Experiment 2). Average between-
category (green-dashed) and within-category (blue-solid) similarity ratings, before and after training. Left: easier condition (5/6 
covariant features): significant separation between and compression within categories. Right: harder condition (4/6 covariant 
features) significant separation between categories but no effect within categories. Error bars represent ±2 SE. Same as Figure 5, 
error bars in the non-learners for between category pairs have been purposefully displaced to avoid overlap. 
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inequality: the black and white features were not homogeneous and some of them were more salient or 
noticeable for our participants (see Appendix for details). 
 

 
 

Experiment 3 
 
  To test the stimulus characteristics that influenced our previous results, we created a new version of the textures and 
conducted an on-line version of the experiment to test the difficulty levels as well as the perceptual effects induced by learning to 
categorize them correctly. 
 
 
Method 
 
  Online implementation of the experiment.  Experiment 3 was implemented in Percept (Rivas & Prévost, 2016), our 
laboratory web platform, where behavioral experiments are built using the Django web framework, with a MySQL database contained 
in a VPN hosted by the laboratory. The experiment was constructed using the open source library jsPsych (De Leeuw, 2015) and written 
in JavaScript. 
 
  Participants.  The experiment was conducted on 57 participants aged 18 - 35, recruited as in Experiments 1 and 2. 
 
  Stimuli.  For this online version of the experiment, we modified our stimuli in the following way: (1) we made the 
components smaller and hence not individually detectable by participants, the density of our new stimuli was 300 x 300 pixels per 
texture, composed by 45 x 45 components of 6 x 6 pixels each;  (2) we removed the specific disproportionately salient micro-component 
described by our previous participants (Figure 2-app); and (3) now only the number of covarying features was constant for a given 

	
Figure 7. Number of trials to reach criterion and degree of between-category separation after learning in Experiment 2. 
Correlation between (1) increase in perceived between-category separation in learners (after learning minus before learning) and 
the number of trials it took them to reach criterion. The later the learning, the smaller the separation in both conditions (easy and 
hard). 
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difficulty level, not the specific features themselves, which differed from participant to participant (e.g., the stimuli at difficulty level 
2/5 always had two covarying features for each participantt, but which particular two features were used varied across participants; 
Figure 8). 
 
  Procedure.  The experiment was conducted in each participants browser and would stop running if participants were idle for 
more than five minutes. 
 
  Tasks.  We used the same three tasks as in the laboratory version of the experiment: similarity judgements before category 
training – category training – similarity judgements after category training. The categorization task was also divided into four blocks 
of one hundred trials each with pauses in which participants filled out an online questionnaire about their strategy. The similarity 
judgements consisted of 40 trials; participants had to respond by clicking with the cursor on a sliding bar that went from very similar 
to very different. The values in the sliding bar were transformed into a 0 to 100 scale. 
 
  Learning assessment.  We classified our participants as “immediate learners”, “learners”, “borderlines” and “non-learners” 
following the same criteria we used in the two previous experiments. 
 

 
 
Results 
 
  Learning.  Fifty-seven participants completed the online experiment, each randomly assigned to one 
of the four difficulty levels: 5/5(easiest), 4/5, 3/5, and 2/5(hardest). We classified our participants as 
“immediate learners,” “learners,” “borderlines,” and “non-learners” following the same criteria we used in the 
two previous experiments. Forty-one participants were successful in learning the category, as determined by 
reaching our apriori criterion (four of them were immediate learners). Twelve participants did not succeed in 
learning and four were borderlines. The levels confirmed our assumption that fewer covarying features would 
make the category harder to learn, as indicated by the number of trials to criterion and the proportion of 

	
Figure 8. Modified textures for Experiment 3 (online). Example of the new textures presented in the online experiments and 
(enlargements of) the micro-component pairs of which they are composed. 
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successful learners as the difficulty increased (Figure 9). A one-way ANOVA confirmed a significant effect 
of difficulty on the number of trials before reaching the learning criterion, F(3, 37) = 4.620, p = 0.008. 
 

 
 
  Similarity judgments.  Combining the data for all four levels of difficulty reveals significant 
between-category separation, positive dB, t(40) = 9.073, p < 0.01, as well as within-category compression, 
negative dW, t(40) = -5.512, p < 0.01, for learners. Non-learners again showed only a small pairwise separation 
both between and within categories (Figure 10 as in Figure 5), significant between, t(11) = 3.237, p = 0.006, 
non-significant within, t(11) = 1.705, p = 0.109. We think this significant separation effect in the non-learners 
is likely to be a passive-exposure effect (unsupervised learning) in which, after being exposed to the stimuli, 
everything becomes slightly more distinct from everything else (Mackintosh & Bennett, 2014). We ran 
repeated measures ANOVAS testing Compression and Separation with learner/non-learner as the between-
subject factor. The interaction with the learning group (learner or non-learner) for within-category compression 
was significant, F(1, 55) = 18.655, p < 0.01, whereas for between-category separation, F(1, 55) = 0.592, p = 
0.445, it was not. 
 
  CP effect and task difficulty.  A one-way ANOVA with Linear Contrasts tested the effect of task 
difficulty on separation and compression for learners. The effect of difficulty level on separation (diffB), F(3, 
37) = 1.95, p = 0.138, was not significant, but it showed a siginificant weighted linear trend, F(3, 37) = 5.13, 
p = 0.029; for compression (diffW), difficulty had no significant effect, F(3,37) = 1.30, p = 0.289, and there 
was no linear trend, F(3, 37) = 0.327, p = 0.629 (Figure 11). The linear trend for separation, however, was 
downward as difficulty increased: this was consistent with what we had found in Experiment 2 but it was once 
again contrary to what we had predicted (i.e., increased separation with increased difficulty). Varying which 
of the features were the covariant ones within each level reduced the likelihood that this contrary outcome was 
an artefact of unintended inequalities in the salience of the features, individually or jointly, but it did not  

Figure 9. Indicators of difficulty in Experiment 3. On the left, Figure 9a) shows the proportion of learners decreases with 
difficulty. On the right, figure 9b) shows the number of trials it took the learners to reach it. The fewer the covariant features, the 
harder to learn the categorization. Error bars represent ±2 SE. 
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Figure 10. Changes in perceived pairwise distances from before to after categorization training in Experiment 3. All four 
difficulty levels combined. Left: Learners had both significant between-category separation and significant within-category 
compression. Right: Non-learners showed a small separation both between categories (significant) and within (non-significant), as 
in Figure 5. Error bars represent ±2 SE. Error bars for between-category pairs for non-learners have been displaced one more time 
to avoid overlap with within category pairs scores.  

Figure 11. Effect of learning difficulty on changes in perceived pairwise distance in Experiment 3. Left: Learners have a 
significant downward linear trend for between-category separation: They show separation between categories at all difficulty 
levels, but it decreases when difficulty increases (i.e., separation is smaller when there are fewer covariant features). Learners 
show within-category compression at all levels, with no linear trend. Right: Non-learners show separation both within and 
between categories at all levels, with no linear trend related to difficulty level.  Error bars represent ±2 SE. 
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eliminate it entirely. A more likely explanation is the second of the two proposed earlier: higher levels of 
difficulty mean later learning, fewer successful trials, and hence weaker learning in the late learners than the 
more practiced earlier learners. This is illustrated in Figure 12. In ongoing longer-term studies we are extending 
the training trials to reduce the difference between early and late learning. The issue of feature inequality is 
analyzed further in the Discussion. 
 
  As in Experiment 2, we combined the data for learners across the four conditions and tested the effect 
of the number of trials to criterion on the size of the separation effect using a one-way ANOVA with Linear 
Contrasts. There was no significant main effect, F(17,19) = 1.112, p = 0.409, but there was again a significant 
linear trend downward: the more trials it took to learn, the smaller the degree of separation F(17,19) = 9.938, 
p = 0.005. This was also apparent in the Pearson product-moment correlation between the number of trials to 
criterion and the size of the separation effect, r = -0.512, p = 0.01 (Figure 12). 
 

 
   

 
 

	
Figure 12. Number of trials to reach criterion and degree of between-category separation after learning in Experiment 3. 
Correlation between (1) increase in perceived between-category separation in learners (after learning minus before learning) and 
the number of trials to reach criterion. As in Experiment 2 (Figure 7), the later the learning, the smaller the separation in both 
conditions (easy and hard). 
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Experiment 4: Neural Net Model for Experimental Outcomes 
 
 
Method 
 
  Building on prior simpler models (Harnad, Hanson, & Lubin 1995; Tijsseling & Harnad, 1997; 
Damper & Harnad, 2000), we modeled the category learning task with a general deep learning neural network 
(LeCun et al., 2015). The input consisted of binary vectors of dimension, N = 20 that had to be 
sorted into two categories according to the k binary features that covaried with category membership. As in 
the human experiments, we varied the proportion k/N of covarying features. 
 
       
       .  
   
  Each category is initialized by randomly creating two orthogonal binary vectors. At difficulty level 
k/N, stimuli are generated by randomly flipping the binary value of the N-k non-covarying components that 
are irrelevant to category membership. The other k components covary with category membership. 
 
The neural network model was an unsupervised auto-encoder (Figure 13) feeding into a supervised 
classification layer (Figure 14) (Bengio, Courville, & Vincent, 2013). Through auto-association, this net first 
learns to generate as output the training stimuli it receives as input. Through exposure, the network learns a 
representation from which it is able to regenerate learned examples x when presented with partial, incomplete 

or noisy examples   
 
The forward and feedback activation of layer h and layer x are respectively given by 
 
             
 
 
 
and 
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where f is a nonlinear activation function, W is the connection weights between the layers, and b is an 

activation bias. The connection weights are trained by repeated presentation of noisy examples . During the 

learning process, W is progressively modified to minimize the error  obtained when the 

network is attempting to regenerate examples x from noisy examples . 
 
  Once the auto-encoder has learned a proper space of representation, these are passed forward to a 
second level of representation where the categories are learned using error-corrective feedback. On each trial 
the second layer of connection weights  is modified through gradient backpropagation based on the net’s 
error -- the difference between its output and the correct category name -- strengthening correct connections 
and weakening incorrect ones. 
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Figure 13. General auto-encoder architecture. 
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 Each experiment consists of training and testing the network with 600 examples of binary vectors 

  with dimension N=20, as defined above, for two disjoint categories. A total of 50 experiments was 
run, each time with new randomized values defining the categories and the initial network connection weight 
matrices { ,  }. For each experiment, the auto-encoder and the classification layers were trained until a 
98% success rate was reached. The averaged categorization results over all experiments are summarized below. 
Figure 15 shows that with all other learning parameters fixed, the number of trials needed to learn to categorize 
successfully (i.e., the level of difficulty) increases as the proportion of co-varying dimensions (binary 0/1 
features) decreases. 
   

{ }N1,0Îx

1W 2W

	
Figure 14. General architecture of auto-encoder network feeding into a categorizer layer. 
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  As in the laboratory experiments with human participants, the number of trials to reach criterion (which 
was 80% for the human participants and 98% for the nets) increased as the task was made more difficult by 
decreasing the proportion of the binary features that covaried with category membership (Figure 15). The 
important differences were that the features in the human experiments were two-dimensional visual textures 
composed out of a random distribution of 12 paired 6x6 (or 5 x 5) pixel patterns of black and white squares 
whereas for the nets they were merely digital 0/1 components of a one-dimensional input vector. In the human 
experiments, N was 6 and the proportion of covariants k/N tested ranged from 6/6 to 3/6 (in Experiments 1 and 
2,  and 5/5 to 2/5 in Experiment 3) whereas for the nets N was 20 and the proportion of covariants k/N ranged 
from 20/20 to 2/20. The most important difference was that being just binary 0 and 1 components of the input 
vector, the binary features of the stimuli for the nets were completely uniform and identical, whereas the paired 
micro-components of the visual textures that served as the input to the humans (Figure 2) were not uniform 
and identical, even though they all had the same number of black and white components. 
 
 

	
Figure 15. Model predictions. Number of learning trials increases as difficulty of the task increases (proportion of covariant 
features decreases) (Cf. Figure 9, Right.). 
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  As a measure of the pairwise distances between and within categories for the network, we calculated 
the pairwise vector distance between inputs, using as coordinates the activations on each of the three hidden 
units in the net’s internal representation, averaged across all 600 inputs. We then compared these distances 
before learning (but after auto-encoding) with after learning the category, within and between each of the two 
categories. 
 
  As in the human experiments, category learning resulted in between-category separation and within-
category compression -- the learned CP effect (Figure 16). The neural network simulations were repeated many 
times, varying many network parameters, but they almost always produce the same profile of between-category 
separation and within-category-compression. (Note that the separation/compression outcome was not imposed 
on the simulation: the net only had to learn to categorize. The CP effect was an observed correlate of having 
learned the category.) 
 
  Although the model produced the same pattern of results as the human experiments for (1) the 
increasing number of trials to reach criterion as the decreasing proportion of covariants increased task difficulty 
as well as for (2) the learning-induced separation/compression averaged across all the levels of difficulty (the 
learned CP effect), the model diverged from the human experiments in the correlation between task difficulty 
and the size of the CP effect. For the net, separation/compression increased with task difficulty (as had been 
predicted for the human participants; Figure 17) whereas for the human participants the relationship was 

	
Figure 16. Model predictions. Pairwise distances within and between categories, averaged across all difficulty levels (20/20 – 
2/20), before and after learning the categories (cf. Figure 7, Left, and Figure 10, Left). 
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inconsistent, with a trend in the opposite direction (Figure 11, Left). We think the cause of the discrepancy is 
the feature inhomogeneity in the human visual stimuli, as analyzed further in the Discussion. 

 
 
 

Discussion 
 
Perceptual Effects of Category Learning 
 
  To categorize is to do the right thing with the right kind of thing. To learn to categorize requires 
detecting the features that distinguish the members of the category from the non-members: the features that 
covary with category membership. The lower the proportion of covariant features, the harder it is to learn the 
category, as indicated by the fact that it requires more trials with corrective feedback to learn successfully, and 
fewer participants succeed in reaching the learning criterion. We observe a perceptual change that occurs in 
successful learners only and is absent in those participants who failed to learn the category with the same 
number of training trials. The change is categorical perception (CP): differences between members of different 

	
Figure 17. Model predictions. Pairwise distances increase between categories and decrease within categories, as proportion of 
covariant features decreases (difficulty increases) (Cf. Figure 11, Left.). 
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categories come to look bigger after successfully learning to categorize them compared to before (between-
category separation), and differences between members of the same category (sometimes) look smaller 
(within-category compression). This same CP separation/compression effect as a result of category learning 
also occurs in our neural net model, but the model also shows a strong and consistent negative correlation 
between the size of the CP effect and the proportion of covariant features. 
 
Dimensional Reduction 
 
  The neural net model suggests an explanation of why category learning causes categorical perception: 
dimensional-reduction (Edelman & Intrator, 1997; Folstein et al., 2012, 2014; Tenenbaum et al., 2000). The N 
binary features can be treated as dimensions of a (discrete) N-dimensional similarity space. Initially, the 
pairwise distance between inputs (which are points in this discrete space) is based on all N binary dimensions 
(i.e., the ordinary Euclidean distance between N-component vectors). Category learning occurs when the 
learner has successfully learned to detect the k covariant features and to ignore the N-k non-covariant features. 
This reduced k-dimensional subspace of the original N-dimensional similarity space acts as a kind of feature 
filter: Inputs (now k-component vectors rather than N-component vectors) from different categories are 
separated on the k covariant dimensions while inputs from the same category are compressed on them, 
compared to their prior distances in the full original N-dimensional similarity space. 
   
  Our neural nets, whose inputs are simply a vector of N binary features, show this pattern very clearly: 
The CP effect -- between-category separation in hidden-unit activation space (and, to a lesser degree, within-
category compression) -- increases as the proportion of covariant features k/N decreases (i.e., CP grows as k/N 
shrinks). In our human experiments, too, significant CP (between-category separation and sometimes within-
category compression) occurs after successful learning in almost all cases. The same linear trend as in the nets 
is also there in the human participants for the negative correlation between k/N (i.e., difficulty) and the number 
of trials required to learn the category. The correlation between difficulty and the size of the CP effect, 
however, is either absent or the linear trend is in the opposite direction (i.e., CP shrinks as k/N shrinks) in the 
human participants. 
 
Feature Homogeneity and Practice Time 
 
  We think this partial discrepancy between the human performance and the neural net model is due in 
part to inequalities in the detectability and salience of the visual features for the human visual system. Unlike 
in an artificial neural network, it is very difficult to make multiple visual features equally distinct to the human 
brain. A further difference between the humans and the nets is that nets can be trained much longer, to much 
higher criteria (98% accuracy) whereas our experimental participants had only 400 trials to reach 80% 
accuracy. The human difficulty levels therefore had a confounding factor: Because reaching the 80% criterion 
at the higher levels of difficulty occurred later in the one-hour training session, it was also based on fewer 
successful learning trials. The weaker CP effect that we observed with higher difficulty may hence have been 
a consequence, not of the higher difficulty itself, but of the smaller number of remaining trials to practice and 
consolidate the learning once it had taken place, as seen in the significant negative correlation between the 
number of trials to learn and the size of the separation effect in both Experiment 2 and Experiment 3. 
 
Conjunctive vs. Disjunctive Covariance 
 
  Another potential explanation of the partial difference between the human and net outcome for task 
difficulty could be related to conjunctive vs. disjunctive covariance: Did learning reduce dimensionality to k 
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or to 1? The covariance in this study was conjunctive: All k of the N covariant binary features had one value 
for the Kalamite category and the other value for the Lakamite category. Hence although it became harder to 
find the k covariant features as k/N became smaller, it was still true that, once found, any one of the k 
dimensions would have been enough all by itself to serve as a basis for categorizing correctly. In other words, 
both the human participants and the nets really only needed to find one out of the k covariants, regardless of 
the size of k. To analyze this further in future studies, we will test disjunctive covariants, in which the presence 
of any one (or more) of the k dimensions covaries with the category. Task difficulty should then correlate 
positively instead of negatively with k (because the bigger the k, the more independent features S must learn 
to detect), but the size of the CP effect (dimensionality reduction) should correlate negatively with k (because 
the smaller the k, the fewer the covariant dimensions). 
 
Overlearning 
 
  The next step in this research will be a series of long-term studies with extended overlearning trials 
(Shibata et al., 2016; Smolen et al., 2016), spaced across weeks (in place of the trials massed in a single one-
hour training session as in Experiments 1-3), with a much larger sample of inputs and a sustained learning 
criterion of 98% instead of 80%. Our expectation is that under such extended overlearning conditions and with 
a much more exacting learning criterion all participants will become successful learners eventually, with a 
robust category pop-out effect (Al-Rasheed, 2016) mediated by the feature filter underlying CP.  We will also 
test whether the size of the (overlearned) CP effect itself correlates negatively with the k/N ratio (dimensional 
reduction), as in the neural net model (Figure 17). 
 
Name Bias? 
 
  Is the separation/compression in similarity judgments really a perceptual effect or just a response bias 
from having learned the category name (a tendency to rate textures as more different when their names are 
different and more similar when their names are the same)? This frequently asked question cannot be answered 
rigorously on the basis of similarity judgments alone. It also needs to be tested by measuring psychophysical 
discriminability (rather than just similarity judgment), between and within categories, before and after category 
learning, using signal detection analysis to distinguish changes in discriminability (d’) from response bias (B) 
(Goldstone & Hendrickson, 2009; Wood, 1976). In such an analysis the name can generate a response bias, B, 
toward one category or the other, but it cannot affect the discriminability parameter d’, which is independent 
of B and measures a limit on the participants capacity to perceive differences. We are currently conducting 
such discriminability studies. 
 
Electrophysiological Correlates 
 
  In ongoing work (Pérez-Gay et al., 2016) we have observed a late positive component of the visual 
event-related potential (ERP) that is present in participants who have successfully learned the texture category 
and absent in participants who have not. Late ERP components are thought to be cognitive and decisional 
(Barceló & Cooper, 2017). Early visual ERP components (such as N1) are correlated with perceptual 
discrimination (Balas & Conlin, 2015; Vogel & Luck, 2000). In participants who have successfully learned 
the texture category there is also an N1 effect that is absent in participants who have failed. The size of this 
early sensory component is also positively correlated with the size of the CP separation effect. This finding too 
makes it more likely that the separation/compression is a reflection of the perceived distinctness of the 
members of the two categories, rather than just a bias from the distinctness of their names. 
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Verbal and Non-Verbal Learning 
   
  In order to know whether its name is Kalamite or Lakamite, participants first have to learn to detect 
whether each stimulus is a member of category K or L. That is what changes between our successful learners’ 
similarity judgments before and after learning the category (and hence its name). It should be noted that, as 
described in the methodology of the present study, although the names of the categories were Kalamites and 
Lakamites, when participants were doing the supervised trial-and-error learning, they were just pressing on the 
K and L keys of the keyboard in response to individual stimuli. Hence it is not clear how much of a role the 
overt naming of the category, rather than just a differential motor response, played in the learning itself (cf. 
Holmes & Wolff, 2012). After (successful) learning, the similarity judgments were made with a cursor on a 
sliding scale, in response to pairs of stimuli. It is not clear how much participants were likely to covertly name 
the category of each stimulus when comparing pairs for similarity. 
 
Detecting Covariants or Memorizing Examples?  
 
  Did our participants really learn the covariance or did they just remember some special cases? With a 
learning criterion of 80% there is the possibility of partial learning of a remembered subset of the stimuli rather 
than the covariance underlying all cases. With training extended across days and weeks and an overlearning 
criterion of 98% this outcome is far less likely. The role of overt and covert naming vs. nonverbal motor 
responses can also be tested in long-term overlearning studies. 
 
Categories and Language 
 
  Our findings provide support for the weak version of the Whorf Hypothesis (Wang, 2016), according 
to which language, in the form of learning to categorize and name things – as in categorizing novel textures as 
“Kalamites” and “Lakamites” – subtly changes how those things are perceived. The truly revolutionary power 
of language, however, is cognitive rather than just perceptual, and becomes possible after a sufficient number 
of category names has been perceptually “grounded” through learned feature-detectors and their resulting 
perceptual separation/compression (Blondin-Massé et al., 2013; Cangelosi et al., 2002; Vincent-Lamarre et al., 
2016). For then the names of our perceptually grounded categories can go on to be combined and recombined 
into propositions that define still further categories verbally, allowing the members of our species (only) to 
transmit and receive categories across time and space through words alone, freed of the need to undergo the 
laborious, time-consuming (and potentially risky) direct perceptual learning through trial and error undergone 
by our laboratory participants, our neural nets and all species other than human. 
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Appendix 
 
Categorization Strategies 
 
  Participants described their strategies in response to an open-ended question, hence responses varied 
widely. We identified some common patterns and divided their detailed strategies into three main categories. 
We classified participants as using a “global strategy” if they reported looking for patterns in the whole texture 
(Figure 1-app). (Examples: “Lakamites had more waves and were more structured, Kalamites had a more 
random distribution of dots,” “The images with well-defined lines were Kalamites and the distorted images 
with unclear lines were Lakamites.”) participants who reported looking at a particular location inside the 
texture (and categorizing on the basis of the presence or absence of a feature there) were classified as using 
“local strategies” (Examples: “Distinguished by the presence or absence of ‘L’ shaped boxes”; “I tended to go 
with Kalamites if I saw a small square”). For all participants, but especially learners, difficulty levels 5/6 and 
3/6 had a higher proportion of local strategies. Among the local strategies, some participants even drew the 
shape they were using to determine the category (Figure 2-app). When participants could not verbalize what 
they were doing (Examples: “I knew which one was right but I couldn't figure out why”, “the classification 
became intuitive”) their strategy was classified as “undetermined” 
 
  Navon, 1977 (as subsequently expanded upon by Fink, Marshall, Halligan, & Dolan, 1997; Han & 
Chen, 1999; Kimchi, 1992; Ward, 1982) suggested that attention to global versus local features has an influence 
on perceptual processing. The focus on global vs. local features has turned out to be important for many 
processes related to perceptual learning, such as selective attention (Pomerantz, 1983), object and natural scene 
recognition (Lowe, 1999; Oliva & Torralba, 2006) and flexibility (Baumann, 2005). It has also been shown 
recently that selective attention to global versus local features of visual stimuli can induce different types of 
problem solving (Wegbreit et. al., 2012; Ng & Beeman, 2017). 
 
  About two thirds of the participants used a global strategy and one third used a local strategy (2% 
undetermined). There was no systematic relation between the level of difficulty (proportion of covariants) and 
the strategy used.  The proportion of learners who used a local strategy (72%) or a global strategy (63%) did 
not differ significantly. Another potential measure of strategy advantage, the mean number of trials to reach 
criterion (for learners) also showed no significant advantage for the local over the global strategy (137 trials 
for local vs. 195 for global; t(23) = -1.8, p = 0.069). 
 
 Among the difficulty levels, there were also differences in the proportion of participants using local and 
global strategies. The two sets that turned out to be the easiest (3/6 and 5/6) had a larger proportion of local 
strategies among the learners. In the majority of cases, the local “feature” they were using emerged from some 
combination of our matrices (big black blotches, white squares, etc.). At what we had expected to be the hardest 
(but what turned out to be the easiest) difficulty level, half the participants were classifying the textures based 
on the presence or absence of one single feature that corresponded specifically to one of our matrices (Figures 
4 & 5). 
 
 Two factors could explain the discrepancy between the number of covarying features and the resulting 
difficulty for each level: (1) For the visual system, our matrix features are not equal and homogeneous. Some 
(such as the feature depicted in Figure 2-app) are more easily detectable than others and draw the attention of 
the participant. Given that our features are binary, the presence or absence of the especially salient feature in 
Figure 2-app signals category membership and leads to easier learning of the category. (2) In addition, for the 
learners using global strategies, the distributed patterns arising from the interaction of the covarying features 
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also made the Kalamites more discriminable at level 3/6 than at the other levels, although this stimulus set had 
the lowest proportion of co-varying features. This indicates that it is not only the proportion of diagnostic 
features that determines difficulty but also their interaction in generating distributed global patterns. 

 
 
 

 
  Given this outcome for Experiment 1, we modified our stimuli for Experiment 3 as described under 
the methodology section, making our matrices smaller and randomizing which matrices were combined in each 
level’s textures, so that only the number of co-varying matrices (features) would remain constant. After this 
change, all participants used global strategies, referring to distributed patterns in the textures rather than 

	
Figure 1-app. Uneven distribution of strategies across difficulty levels. Left: strategies across all participants (learners, non-
learners, borderlines). Right: strategies of the learners only. 

	
Figure 2-app. Local strategies. Two examples of local strategies described and drawn by two different participants assigned to 
difficulty 3/6 in Experiment 1. The local strategy they used corresponded exactly to detecting one of the invariant components of 
the KALAMITES. 
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focusing on smaller local elements (E.g.: “KALAMITES are fuzzy and scattered, LAKAMITES are fuzz with 
lines”, or “KALAMITES have a diagonal orientation”, or “LAKAMITES are rounder and more nebulous, 
KALAMITES are straighter and more structured”). 
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