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Observed and CAM3 GCM Sea Surface Wind Speed Distributions: Characterization,
Comparison, and Bias Reduction

SCOTT B. CAPPS AND CHARLES S. ZENDER

University of California, Irvine, Irvine, California

(Manuscript received 10 December 2007, in final form 8 April 2008)

ABSTRACT

Climatological surface wind speed probability density functions (PDFs) estimated from observations are
characterized and used to evaluate, for the first time, contemporaneous wind PDFs predicted by a GCM.
The observations include NASA’s global Quick Scatterometer (QuikSCAT) dataset, the NCEP/
Department of Energy Global Reanalysis 2 (NCEP-2) 6-hourly reanalysis, and the Tropical Atmosphere
Ocean (TAO)/Triangle Trans-Ocean Buoy Network (TRITON) moored buoy data, all from 2000 to 2005.
Wind speed mean, 90th percentile, standard deviation, and Weibull shape parameter climatologies are
constructed from these data. New features that emerge from the analysis include the identification of a
stationary pattern to the wind speed variance in the equatorial Pacific. Interestingly, a distinct wind speed
shape anomaly migrates with the ITCZ across this stationary background.

The GCM despite its coarser spatial and temporal resolution predicts wind speed PDFs in general
agreement with observations. Relative to QuikSCAT, the NCAR Community Atmosphere Model, version
3 (CAM3) GCM has a globally averaged positive mean wind speed bias of about 0.2 m s�1 originating
primarily within the trades and Southern Hemisphere storm track. Global standard deviation biases are
largest in the winter hemisphere storm tracks. The largest shape biases occur along the equatorial periph-
eries of the Northern Hemisphere and southern Indian Ocean anticyclones. Year-round negative shape and
mean wind speed biases persist along the ITCZ. The GCM’s overactive tropical convection and slight
subtropical anticyclone displacement contribute to positive mean speed, standard deviation, and shape
trade biases.

Surface heat and energy fluxes depend nonlinearly on wind speed magnitude, are sensitive to the tails of
the wind distribution, and hence vary significantly on spatiotemporal scales not resolved by GCMs. Limited
computing resources force the use of coarse-resolution GCMs, which do not resolve finer-scale wind speed
fluctuations. Rather, surface fluxes are determined from the mean wind speed computed by averaging
spatially and temporally over subgrid-scale features. Some surface flux routines account for gustiness during
low mean winds resulting from thermally driven convection. The authors hypothesize that GCMs system-
atically underestimate surface momentum flux nonlinearities and that this biases surface wind predictions
most in regions of strong winds with high variability. To test this, climate simulations that account for
surface fluxes due to subgrid-scale GCM winds are performed. This significantly improves climatological
surface wind speed statistics, particularly in the Southern Hemisphere storm track, consistent with the
hypothesis. These wind speed improvements can be attributed to a reduction in GCM sea level pressure
biases throughout the globe.

1. Introduction

Surface winds are vital to global climate, driving
ocean currents and initiating convection through sur-
face convergence, divergence, and heat and moisture
transfer. Winds impart stress onto the underlying sur-

face, influence air–sea energy and gas fluxes, and ad-
vect chemical species (Wanninkhof et al. 2002; Donelan
et al. 2002). It is important for models to predict the
wind probability density function (PDF) in regimes
where surface momentum, energy, and gas fluxes de-
pend nonlinearly on wind speed (Wang et al. 1998;
Feely et al. 2004).

Scatterometer measurements offer the opportunity
to characterize wind speed PDFs across climatically sig-
nificant spatial and temporal scales. Monahan (2006a)
first examined global sea surface wind speed PDFs
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from satellite measurements on climatological time
scales. He intercompared global ocean wind PDFs es-
timated from the Quick Scatterometer (QuikSCAT)
with PDFs constructed from blended Special Sensor
Microwave Imager (SSM/I) measurements and Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) analysis, National Centers for Environmen-
tal Prediction (NCEP) reanalysis, and in situ National
Data Buoy Center (NDBC) observations. Two-param-
eter PDFs, such as Weibull distributions, accurately
represent these wind speed data (Monahan 2006a,b).
Our study extends Monahan (2006a) by utilizing re-
cently reprocessed QuikSCAT measurements, consid
ering more regional [Tropical Atmosphere Ocean (TAO)/
Triangle Trans-Ocean Buoy Network (TRITON) mea-
surements] and seasonal aspects of wind variability, and
using these results to evaluate and interpret GCM wind
biases. Further, we demonstrate that resolving surface
wind speed PDFs improves GCM surface wind predic-
tions. In addition to thermodynamic scalar gradients,
atmospheric surface layer flux bulk formulas are depen-
dent upon surface wind speed magnitude. Because ul-
timately we are interested in surface fluxes, this study
characterizes wind speed magnitude PDFs. Other stud-
ies have characterized observed PDFs of wind vector
zonal and meridional components (Monahan 2006a).

Although wind gusts in excess of 15 m s�1 are ob-
served only 5% of the time, they have a large impact on
cyclogenesis within the storm track regions. Yuan
(2004) intercompared QuikSCAT, NCEP–National
Center for Atmospheric Research (NCAR) reanalysis,
and ECMWF operational archive surface analysis data
wind statistics and found climatalogically significant
slower NCEP–NCAR and ECMWF maximum wind
speeds within the Southern Hemisphere storm track.
Storm track intensity and surface kinetic energy fluxes
within NCEP–NCAR and ECMWF are greatly under-
estimated as a result. Our study characterizes the 2000–
05 global distribution of the wind speed mean, 90th
percentile, standard deviation, and shape parameter.

This study has three goals. First, we seek to char-
acterize agreement among three recent datasets
[QuikSCAT, NCEP/Department of Energy Global Re-
analysis 2 (NCEP-2), and TAO/TRITON] that provide
independent estimates of surface wind PDFs. As an in
situ measurement network, TAO/TRITON also pro-
vides the additional information necessary to estimate
surface flux PDFs, which we will assess in a future
study. Second, we wish to characterize GCM predic-
tions against these observations to identify regions and
seasons where fast time-scale and/or fine spatial scale
wind variability may contribute significantly to surface
fluxes, and thus the local climate state. This will help us

quantify the importance of representing subgrid-scale
wind variability in models, that is, in predicting the
wind PDF in addition to the mean wind. Third, we show
that prescribing (with the goal of eventually predicting)
the wind speed PDF improves GCM surface wind pre-
dictions. This is attributed to the nonlinear momentum
flux response to subgrid-scale wind speed variability.

The paper proceeds as follows: Section 2 describes
the datasets, GCM, and analysis techniques. Model bi-
ases will be quantified through a surface wind speed
PDF comparison globally (section 3) and regionally in
the storm track (section 3a), trade winds (section 3b),
South Asian monsoon (section 3c), and TAO/TRITON
(section 3d) regions. Improved predictions in these re-
gions will be shown to result from the representation of
subgrid-scale wind speed PDFs within the model (sec-
tion 4). The implications of this study for future re-
search and our conclusions are summarized in sections
5 and 6.

2. Methods

a. SeaWinds on QuikSCAT

The two operational satellite-borne scatterometers
are the European Space Agency’s Remote Sensing Sat-
ellite (ERS, launched 1993) and NASA’s SeaWinds on
board QuikSCAT (launched mid-1999). Here we ana-
lyze QuikSCAT data, which has comparable accuracy
(Bentamy et al. 2000) but higher spatial resolution
(0.25° � 0.25° versus 0.5° � 0.5°) and a wider swath
(1800 km versus 500 km), allowing for 93% daily
coverage. QuikSCAT measures surface stress twice
daily (approximately 0600 and 1800 LST), with the
primary goal of estimating global ocean surface
winds (Hoffman and Leidner 2005). Comparisons of
QuikSCAT with in situ buoy and ship-based measure-
ments place QuikSCAT accuracy at approximately 1
m s�1 with a slight overestimation at high wind speeds
(Ebuchi et al. 2002; Bourassa et al. 2003; Chelton and
Freilich 2005). Level 3 QuikSCAT data, available since
19 July 1999, were reprocessed in 2006 to improve flag-
ging of rain contamination and performance at high
speeds. We use the 6-yr (January 2000–December
2005) level 3 reprocessed QuikSCAT 10-m surface
wind speed climatology. Temporal wind speed PDFs
are calculated at each of the wind vector cells across the
entire time period. To intercompare with the GCM,
these temporal statistics are regridded to the horizontal
resolution (T85) of the GCM (described below). Wind
vector cells containing the possibility of rain were not
included in this study.

There are intrinsic differences between scatterom-
eter-derived winds and GCM-predicted surfaces winds.
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QuikSCAT detects surface wind stress from ocean
roughness. The 10-m wind velocity is then estimated
using a retrieval algorithm that assumes a neutrally
stable atmosphere. This assumption (Hoffman and
Leidner 2005) introduces a bias during nonneutral con-
ditions and is not remedied in this study. Mears et al.
(2001) and Chelton and Freilich (2005) found that 10-m
anemometer winds are typically 0.2 m s�1 slower than
in situ 10-m neutral-stability winds. Moreover, the re-
trieved 10-m wind is relative to the underlying ocean
current and is the correct wind velocity to employ when
calculating air–sea exchange. However, most GCMs
predict winds relative to a fixed location. Thus, fast
surface ocean currents can cause differences up to 1
m s�1 between modeled and QuikSCAT wind speeds
(Kelly et al. 2001; Chelton and Freilich 2005). Kelly et
al. (2001) found differences between QuikSCAT and
buoys of 0.5 m s�1 over the slower tropical Pacific equa-
torial currents. TAO/TRITON buoy winds used in this
study (section 2c) are relative to climatological zonal
ocean surface currents (Kelly et al. 2005).

b. The Community Atmosphere Model

The GCM we employ is the Community Atmosphere
Model, version 3 (CAM3) (Collins et al. 2006a), the
atmospheric component of the NCAR Community Cli-
mate System Model (CCSM). Simulations are per-
formed at the standard T85 resolution (approximately
1.4° � 1.4° equatorial with 26 levels) and the Eulerian
spectral dynamical core. Observed annually varying
monthly mean sea surface temperatures (SSTs) and ice
concentrations from 2000 to 2005 (Reynolds et al. 2002)
bound the atmospheric model over the oceans. The
GCM linearly interpolates the midmonth values pro-
vided by the SST dataset to obtain instantaneous SSTs.
For each time step (10 min) the GCM predicts sur-
face layer winds and interpolates them to 10 m with
an iterative approach (Collins et al. 2004) that ac-
counts for atmospheric stability and ocean roughness.
We subsample the instantaneous GCM predictions at
QuikSCAT overflight times (approximately 0600 and
1800 LST) before intercomparing the data. Sea ice
regions within the GCM (typically poleward of 60°)
were removed from this study to prevent erroneous
QuikSCAT versus GCM differences owing to scatter-
ometer retrieval problems near sea ice.

c. TAO/TRITON array

Data from the 66 Autonomous Temperature Line
Acquisition System (ATLAS) and TRITON buoys
were obtained from the Pacific Marine Environmental
Laboratory (PMEL). The TAO buoys report 6-min-

(standard ATLAS) and 10-min- (next-generation
ATLAS) average winds from 2-Hz measurements.
We convert TRITON and ATLAS measurements
within 20-min windows of the 0600 and 1800 local time
QuikSCAT overflights to 10-m wind speeds assuming
neutral stability using the approach of Liu and Tang
(1996). This procedure requires simultaneous measure-
ments of air temperature, humidity, or SST. Sampling
points missing any of these inputs were discarded. Miss-
ing surface pressure measurements were converted to
1010 mb, following Mears et al. (2001). Zonal wind
vector components are relative to climatological zonal
ocean surface currents following Kelly et al. (2005).
Linear interpolation between monthly Southern Oscil-
lation index means provide daily values for the Kelly et
al. formulation. The TAO data are bilinearly interpo-
lated to T85 horizontal resolution.

d. NCEP-2

We also examine wind PDFs built from the four
times daily 6-h forecast 10 m surface wind data from the
NCEP-DOE AMIP-II reanalysis (Kanamitsu et al.,
2002). Given the coarse temporal resolution we convert
NCEPII measurements within 6-h windows of the 0600
and 1800 local time QuikSCAT overflights. These
PDFs are then regridded from T62-horizontal resolu-
tion to T85-horizontal resolution.

e. Weibull PDF

The two-parameter Weibull probability density func-
tion can closely approximate the observed surface wind
speed distribution (Justus et al. 1979; Pavia and
O’Brien 1986; Monahan 2006b). Like the gamma dis-
tribution, the Weibull PDF is bounded by zero on the
left and is fitted using shape and scale parameters.
Both parameters modify the height and sharpness of
the PDF peak and stretch or compress the PDF
breadth. The shape parameter varies nearly linearly
with the mean wind speed U and inversely with the
standard deviation �,

k � �U���1.086. �1�

The skewness (PDF asymmetry) and kurtosis (PDF
peak sharpness; tail thickness) are both unique func-
tions of shape. Skewness varies inversely with shape,
becoming negative for shape values greater than 3.6
(Monahan 2006a). Kurtosis decreases sharply to 0
as shape increases to 2, staying close to zero for
shape values greater than 2. Weibull PDFs fit well the
QuikSCAT-estimated 2005 wind speed distribution for
two climatologically distinct locations (Fig. 1). Regions
with moderate and persistent winds, such as the trades,
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have a relatively high shape value in comparison to
gusty storm track regions. The Weibull scale parameter
is similar to, and within about 10% of, the mean wind
speed U (Gillette and Passi 1988) that, as a more famil-
iar and intuitive metric, we show in our results.

3. Results

The 2000–05 climatological mean surface wind speed
PDFs derived from QuikSCAT measurements demon-
strate the spatial variation of the wind speed mean U,
its temporal variability (shown as standard deviation
�), Weibull shape parameter k [Eq. (1)], and 90th per-
centile wind U90 (Fig. 2, row 1, columns 1–4, respec-
tively). For both NCEP-2 and CAM3, biases are deter-
mined relative to QuikSCAT. The statistical signifi-
cance of CAM � QuikSCAT biases is tested applying
the Student’s t test to a monthly resolution time series
(5% level of significance). NCEP-2 is the second ob-
servationally based estimate of global surface winds
(Fig. 2, second row). NCEP-2 has faster and more vari-
able winds in the high latitudes and matches or under-
estimates QuikSCAT in the tropics.

The global mean NCEP-2 wind speed is 0.4 m s�1

faster than QuikSCAT with the difference greatest in
the storm tracks. The NCEP-2 wind speed standard
deviation and 90th percentile statistics are larger in the
storm tracks and trades. NCEP-2 underestimates
Weibull shape values throughout the tropics and mid-
latitudes and matches QuikSCAT in the storm tracks.

The spatial structure of the GCM biases can, in many
cases, be identified with underlying climatological wind
regimes. GCM surface ocean winds are on average 0.21

m s�1 faster than QuikSCAT (Fig. 2). Most of these
faster GCM winds are statistically significant and reside
in the storm track regions of both hemispheres and in
the Northern Hemisphere (NH) trade wind regions.
These are consistent with surface stress biases found
when comparing the GCM to ERS measurements (Col-
lins et al. 2006b). GCM mean wind speeds within the
Southern Hemisphere (SH) trade wind regions are
slightly faster than for QuikSCAT [also consistent with
Collins et al. (2006b)]. The GCM winds are too slow (by
up to 3 m s�1) in the doldrums relative to QuikSCAT
and agree better with NCEP-2 winds in this region.
QuikSCAT data are fewest in the doldrums where in-
tertropical convergence zone (ITCZ) precipitation of-
ten contaminates wind retrievals (Monahan 2006a, his
Fig. 4). We speculate that QuikSCAT-based wind re-
trievals may be too fast in the ITCZ if they sample
winds outside precipitating clouds and miss the conver-
gent winds under precipitating clouds.

Relative to QuikSCAT, the GCM winds are too vari-
able in most regions (Fig. 2). The global mean standard
deviation bias is about 0.10 m s�1, with the majority of
this excess variability found in the Atlantic storm track,
the Pacific and Atlantic trade wind regions, and along
the periphery of the Southern Ocean circumpolar re-
gion. GCM variability is underestimated near the NH
western boundary currents. Within these regions, SST
fronts and oceanic eddies create subgrid-scale spatial
inhomogeneities in the atmospheric surface layer sta-
bility and wind variability.

The Weibull shape parameter [Eq. (1)] depends on
both the mean and the standard deviation of the wind
speed. The global mean GCM shape parameter bias is
�0.10, with the largest discrepancies found along the
ITCZ where GCM winds are too slow and too variable
(Fig. 2). The GCM significantly overestimates the
shape parameter just poleward of the ITCZ. The small
annual mean shape parameter biases in the storm track
regions are the net sums of larger seasonal oscillations
(not shown) between positive and negative biases in the
winter and summer storm tracks, respectively.

The zonal mean of these statistics further reveals the
distinction between the mostly negative tropical model
biases and the mostly small or positive extratropical
biases (Fig. 4). Zonal mean shape biases are near zero
or slightly positive in the subtropics and storm track
regions. Negative shape biases near the equator suggest
a more positively skewed GCM wind speed PDF with
respect to QuikSCAT.

a. Storm-track regions

Cyclogenesis causes dramatic shifts in atmospheric
stability and vertical momentum transport that lead to

FIG. 1. 2005 QuikSCAT wind histograms and best Weibull PDF
fits for a (top) storm track and (bottom) trade wind location.
Squares on horizontal axis indicate mean and circles, median val-
ues.
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relatively high mean wind speeds and variability. This is
evident in the midlatitude storm track regions. GCM
climatological surface ocean winds are between 1 and 3
m s�1 faster than for QuikSCAT near 50° in the South-
ern Ocean circumpolar region and North Pacific and
Atlantic storm tracks (Fig. 2). The strong underlying
ocean currents, such as the North Atlantic drift and
Antarctic Circumpolar Current, may contribute a por-
tion of these biases (section 2a).

Extreme wind speeds within the storm tracks create
dynamic nonlinear responses in momentum flux. Drag
imposed at the air–sea interface can act as a sink or
source of atmospheric and oceanic momentum affect-
ing wind speeds, mixed layer depths, and ocean cur-
rents. The SH storm track wind speed biases are con-
sistent with well-documented westerly surface wind
stress biases in this GCM (Hurrell et al. 2006; Collins et
al. 2006b; Hack et al. 2006). These biases are linked to
sea level pressure (SLP) and to surface drag. Large
(��8 hPa) SH winter SLP biases are found throughout
the circumpolar region south of 50°S (e.g., Figs. 1 and
13 of Hurrell et al. 2006). The too strong meridional
pressure gradient contributes to enhanced westerlies.

We believe that a second major factor that contrib-
utes to wind speed biases is the inadequate representa-
tion of wind speed variability within GCM grid cells.
Air–sea momentum flux is a function of surface layer

stability and ocean surface roughness. When all other
properties are held constant, stronger ocean surface
winds drive significantly nonlinear responses in mo-
mentum fluxes (Fig. 3). Sensible and latent heat flux
increases with wind speed are much more linear than
momentum flux increases. The momentum flux nonlin-
earity is convex, such that momentum fluxes increase
more per unit wind speed as wind speed increases
(Wright and Thompson 1983). The convex shape of the
surface drag response to stronger winds dictates that
the momentum flux computed from the full wind speed
distribution is greater than that computed from the
mean wind speed alone.

This suggests that representing subgrid-scale wind
speed variability within a GCM would increase the
global surface momentum flux. To test this, we used
four equal-probability wind speed bins to better resolve
the CAM3 subgrid-scale wind distribution. The experi-
mental CAM3 is configured identical to that described
above (section 2b). However, a spatial (within each T85
grid cell) and temporal (over each 10-min time step)
wind speed distribution is now approximated using the
Weibull PDF (section 2e). We prescribe a shape pa-
rameter proportional to the gridcell mean wind speed
using the formulation by Justus et al. (1978),

k � Ck	U, �2�

FIG. 2. (top) QuikSCAT 2000–05 mean 10-m ocean surface wind speed, standard deviation, Weibull shape, and 90th percentile.
Differences (middle) NCEP-2 � QuikSCAT and (bottom) CAM3 � QuikSCAT. (top left) Mean absolute bias/mean bias and (top
right) max/min/RMSE. Stippling indicates 5% level of significance.
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where Ck is 1.05, 0.94, and 0.83 for low, average, and
high variability, respectively. The scale parameter is a
function of k and U,

c �
U

��1 
 1�K�
, �3�

where � is the complete gamma function.
Our experiment divides the PDF fitted above into

four equal-probability bins. For a more detailed expla-
nation on how equal-probability wind speed bins and
mean winds are calculated see the appendix [(A5)].
Each wind speed bin contains a truncated portion of the
Weibull PDF. Using this truncated PDF, a mean wind
speed can be calculated for each bin. The mean wind
speed for each truncated PDF is equal to the first mo-
ment of the truncated PDF normalized by the wind
speed interval probability [see (A5)]. Over all surfaces
the experimental CAM computes the instantaneous
surface momentum and energy fluxes at every time step
using the mean wind speed of each of the four bins. The
total flux at each grid point and time step is the average
of the four bin fluxes. The experimental and control
versions of CAM differ only in how the surface fluxes
are computed.

Our sensitivity study shows that CAM3 momentum
fluxes from the four-bin PDFs exceed the fluxes from
the unresolved (i.e., one bin) PDFs (Fig. 4). Partially
resolving (with four equally weighted bins) the surface

wind PDF increases the climatological June 2000–05
momentum flux 13%–24% over most regions. Section 4
examines the impact these instantaneous forcings have
on atmospheric circulation when allowed to feed back
throughout the climate.

GCM zonal mean winds are faster by 1.4 and 1.8 m
s�1 within the storm tracks near 50°S and 55°N, respec-
tively (Fig. 5). These correspond to relative biases of
12% and 16%, respectively (Fig. 4). Similar differences
exist between NCEP-2 and QuikSCAT within the
storm track regions (Fig. 2). Larger climatological 90th
percentile wind speed and standard deviation biases oc-
cur in the Atlantic storm track region than in the Pacific
(Fig. 2). The underlying North Atlantic Current (sec-
tion 2a) may contribute to this bias.

The largest seasonal biases in the standard deviation
and 90th percentile wind speed occur in the winter
storm tracks. These seasonal biases (not shown) are up
to 1 and 5 m s�1, respectively. The GCM overestima-
tion of the 90th percentile winds within the seasonal
storm tracks is in contrast to the ECMWF GCM, which
has the opposite bias relative to QuikSCAT (Yuan
2004). These storm track wind biases may both mani-
fest and result from biases in surface fluxes and cyclone
intensity (Yuan 2004).

The overestimated winter and underestimated sum-
mer wind speed variances nearly offset each other and
produce relatively small zonal mean climatological
biases of 0.25 (5% departure) and 0.1 m s�1 (2% de-
parture) in the NH and SH storm tracks, respectively
(Fig. 5).

Vertical momentum transport within the ABL over
warmer SSTs reduces vertical wind shear, resulting in
faster surface winds (Chelton et al. 2004). Conversely,
suppression of vertical momentum transport over
cooler SSTs results in slower surface winds and faster
winds aloft. The resulting finescale horizontal wind
field divergence and vorticity patterns can further in-
duce vertical mixing within the ABL. Thus, GCM wind
speed biases near SST fronts are highly influenced by
the temporal and spatial resolution of the SST bound-
ary dataset. The west-to-east finger of statistically sig-
nificant excessive GCM climatological wind speed
mean, variability, and 90th percentile statistics near the
SST front off the eastern coast of South Africa (39 °S)
is of particular interest (Fig. 2). This is where the Agul-
has Current meets the Circumpolar Current. The pre-
scribed GCM SST dataset underestimates SST gradi-
ents and subgrid-scale meanders of the SST front in this
region (O’Neill et al. 2005). Smaller SST gradients
should result in smaller horizontal pressure gradients
and surface winds, yet the GCM has too strong mean

FIG. 3. Ocean surface energy and momentum flux dependence
on wind speed as used in CAM3.
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and 90th percentile wind speeds and higher variability
in this region.

The GCM and QuikSCAT shape values agree rela-
tively well in the NH storm tracks. This is expected
from (1) given the collocated positive mean and stan-
dard deviation biases (Fig. 2). A climatological mean
shape parameter bias of 0.75 stretches from New Zea-
land south of Australia (Fig. 2), coincident with the
greatest SLP gradient bias (Fig. 1 of Hurrell et al. 2006).
This shape parameter bias reaches about 1 during the
SH spring.

b. Trade wind regions

Trade wind regions appear as the elongated oval-
shaped areas along the equatorial periphery of the sub-

tropical anticyclones containing moderate mean wind
speeds (7–8 m s�1), low standard deviations (1 m s�1),
and relatively high shape values (6–7) (Fig. 2).

GCM climatological winds are predominantly faster
with higher shape values in the trade wind regions, con-
sistent with subtropical SLP biases. Differences in the
strength and location of the northern Pacific and At-
lantic summer subtropical anticyclones result in SLP
biases as high as 8 and 3 hPa, respectively (Figs. 1 and
2 of Hurrell et al. 2006). These positive SLP biases
decrease during NH winter to 5 and 1 hPa, respectively.
SLP biases in the SH subtropics are smaller and less
seasonal than in the NH, consistent with the smaller
seasonal migration of the SH storm track and anticy-
clone.

Coincident with the SLP biases, NH speed and shape
differences are largest during the late NH spring and
summer months when the trade wind regimes reach
their northernmost location (Fig. 6). The mean trade
wind speed biases are smaller in the SH than the NH in
most months in all three ocean basins. The largest SH
trade wind shape biases (exceeding 3) occur in August–
October. Two bands of large positive shape biases
straddle the equatorial Pacific from June to November.
Surface wind convergence studies have confirmed the
existence of a double ITCZ in the eastern equatorial
Pacific (Liu and Xie 2002). Surface wind convergence
within the southern ITCZ is a result of wind speed
deceleration while flowing from warmer to colder SSTs.
Thus, strong SST gradients and differing atmospheric
stability regimes associated with the subgrid-scale equa-
torial cold tongue could contribute to these biases.

The GCM exaggerates the persistence and mean
speed of the northerly winds along the Californian

FIG. 5. Zonal profile of CAM � QuikSCAT (left) surface wind statistic biases and (right) differences as a
percentage of zonal mean observed values.

FIG. 4. Sensitivity of mean 2000–05 June momentum fluxes to
representation of subgrid-scale winds. Difference shows CAM3
predictions with four wind bins per grid cell minus standard one-
bin predictions.
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coast between the NH summer Pacific high and the
desert southwest heat low (Figs. 6, far left). Positive
mean wind speed biases on the order of 3 m s�1 (not
shown) exist along the equatorial flank of both NH
anticyclones in NH summer. These biases along with
collocated negative standard deviation biases result in
significant shape biases exceeding 4 (Fig. 7). Similar
biases exist in the northern Atlantic. Thus, a crescent
swath of positive mean wind speed, shape, and negative
standard deviation biases migrate meridionally in a sea-
sonal rhythm along the equatorial flanks of the Pacific

and Atlantic anticyclones (Figs. 6). During the NH win-
ter months, these swaths stretch zonally across the ba-
sins, containing smaller biases of approximately 1 m s�1

and 1, respectively.
A swath of positive shape biases of about 2 persists

through the year in the southern Indian Ocean, reach-
ing a peak of 2.4 during SH spring (Figs. 7 and 6). This
and the collocated faster mean winds (not shown)
are likely related to a GCM meridional pressure gradi-
ent overestimate in the same region (Hurrell et al.
2006).

FIG. 6. Monthly zonal mean near-surface (top) mean wind speed, (middle) standard deviation, and (bottom)
shape biases (CAM � QuikSCAT) for (left) Pacific, (middle) Atlantic, and (right) Indian Ocean.
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c. South Asian monsoon

Winds within the South Asian monsoon (SAM) re-
gion (20°S–30°N, 40°–140°E) are influenced by the mi-
grating ITCZ and land–sea thermal contrasts. In addi-
tion to drastic seasonal changes in wind direction, this
region is characterized by large seasonal wind speed
PDF oscillations. The range in monthly climatological
wind speed and shape within the Somali jet region is the
largest of all other oceanic locations (Fig. 8, left). Dur-
ing NH summer, the southerly winds of the Somali jet
prevail off the coast of Somalia and the Arabian Pen-
insula (Chang et al. 2004). These winds are strong
(mean speed �11 m s�1) and persistent (standard de-
viation �2 m s�1), resulting in high shape values �7

(Fig. 8, right). In contrast, weaker (mean �4 m s�1) and
slightly more variable northerly winds occur through-
out the rest of the year, resulting in lower shape values.

SAM region mean wind speed, standard deviation,
and shape biases are strongly seasonal (Fig. 9). Winds
in the South China Sea and Bay of Bengal are approxi-
mately 3 m s�1 too fast (slow) in winter (summer).
Meehl et al. (2006) note this same bias. Similarly, winds
are too gusty (too persistent) (about 2 m s�1) in winter
(summer). NH summer negative shape biases exist
within the Bay of Bengal (shape biases ��3) and the
eastern Arabian Sea. In contrast, NH summer positive
shape biases exist within the Somali jet (�3.5) where
mean winds are also too fast (up to 1 m s�1) and vari-
ability is underestimated. Positive wind speed and

FIG. 7. Northern Hemisphere (top) summer and (bottom) winter global climatological shape
biases (CAM � QuikSCAT). (top left) Mean absolute bias/mean bias and (top right) max/
min/RMSE. Stippling indicates 5% level of significance.
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FIG. 8. (left) QuikSCAT 2000–05 seasonal cycle wind speed range (max � min). (right) Somali jet region (5°–20°N, 295°–308°W)
area-averaged monthly climatological wind speed mean, shape, and standard deviation.

FIG. 9. Northern Hemisphere (left) winter and (right) summer (top) climatological mean, (middle) standard deviation,
and (bottom) shape biases (CAM � QuikSCAT): 5% level of significance stippled.
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shape biases of about 2 m s�1 and 2 occur near 10°S,
just south of the southern ITCZ. The simulated cross-
equatorial mean wind speeds near the Somalian coast
agree well with QuikSCAT. However, this region has
moderate positive shape biases (�1).

In NH winter the largest mean wind speed biases are
in the South China Sea and Bay of Bengal. Too fast
winds (�2.0 m s�1) in the western Arabian Sea coupled
with near-zero standard deviation biases result in col-
located positive shape biases of �1.25. Winds are �2
m s�1 too fast in eastern Indonesia in both seasons.
QuikSCAT measurements in this region may experi-
ence island and reef effects on ocean surface roughness.
The central and western Indian Ocean suffer from ex-
tensive though moderate wind speed and shape biases
(�2 m s�1 and 1, respectively).

d. TAO/TRITON region

The TAO/TRITON region (9°S–9°N, 135°E–90°W)
is dominated by the Pacific warm pool, ITCZ, and
northern branch of the South Pacific convergence zone
(SPCZ). The TAO buoys sense wind speed and shape
maxima that are associated with seasonally migrating
trade wind incursions near 5°N and 5°S (Fig. 10). Slow,
positively skewed winds (shape � 3.6) migrate meridi-
onally with the ITCZ and, thus, spend more time in the
NH. This is in contrast to the wind speed standard de-
viation whose pattern is relatively stationary. The
SPCZ characterized by low wind speed means and
higher variability (low shape values) is seen south of
5°S.

Differences between QuikSCAT retrievals and in
situ measurements (corrected for ocean currents) help
to indicate the measurement uncertainty. Many studies
examine QuikSCAT differences between TAO and re-
search vessel data (Chelton and Freilich 2005; Ebuchi
et al. 2002; Weissman et al. 2002). Differences �1 m s�1

are considered within the measurement uncertainty.
The correction for ocean currents applied to the TAO/
TRITON buoy measurements reduces these differ-
ences (Kelly et al. 2005). Despite the drastic differences
in measurement methods, QuikSCAT and TAO obser-
vations agree well. Mean wind speed differences (Quik-
SCAT � TAO) are between 0.58 and �0.51 m s�1,
shape differences between 0.67 and �0.56, and stan-
dard deviation differences between 0.06 and �0.50
m s�1 (Fig. 10, second row). Differences in 90th per-
centile speed are higher, between 0.58 and �1.04 m s�1.
This is consistent with the high frequency of TAO sam-
pling relative to QuikSCAT and the slight decline of
QuikSCAT accuracy with high winds. Faster and more
persistent QuikSCAT winds near 5°N and 5°S result in

collocated positive shape differences. These faster
QuikSCAT wind speeds are consistent with the findings
of Jiang et al. (2005). In contrast, QuikSCAT winds
along the equator are slower with near-zero shape and
standard deviation differences.

The GCM underestimates zonal-average wind
speeds by up to 2.26 m s�1 during the NH winter and
spring months (Fig. 10). This exceeds the 0.5 m s�1

QuikSCAT versus TAO differences reported by Kelly
et al. (2001) and thus cannot be attributed to measure-
ment uncertainties. The SPCZ, eastern Pacific cold
tongue, and northern ITCZ (8°N) have slower simu-
lated NH winter mean and 90th percentile winds. Simu-
lated 90th percentile wind speeds are too slow by up to
3.50 m s�1 throughout the ITCZ seasonal cycle.

Negative shape biases in excess of 1.0 occur during
NH winter while positive biases larger than 1.0 occur
the rest of the year (Fig. 10). Too high shape value
biases along the northern and southern ITCZ bounds
are connected to the GCM overestimate of subtropical
subsidence (Hurrell et al. 2006). Excessive subsidence
can exaggerate trade wind strength and persistence, re-
sulting in a more negatively skewed wind speed PDF.
Shape biases throughout the summer and fall also ap-
pear to be related to the GCM’s unrealistically strong
convection within the southern ITCZ. The positive
shape bias of 2.6 in May is due to a lag between the
simulated and observed NH trade wind northward mi-
gration (Fig. 10).

4. Representing subgrid-scale wind speeds

The momentum flux is greater when computed from
the full wind speed distribution than from the mean
wind speed alone (section 3a). Additionally, smaller
sensible and latent heat flux responses (not shown) of
varying sign are realized over the oceans with signifi-
cant responses within the western boundary current re-
gions. When integrated over a multiyear time period
these surface flux responses alter climate features, such
as atmospheric stability and tropospheric circulation.
We now allow these instantaneous responses to feed
back throughout the climate and examine the impact on
wind speed statistic biases found above. CAM3 is inte-
grated over 2000–05 using a four-bin wind speed PDF
(as in section 3a). However, four-bin weighted average
fluxes are now exchanged between the land, lake, at-
mosphere, ocean, and ice components.

The largest CAM3 bias improvements (summarized
in Table 1) are realized with wind speed PDFs pre-
dicted using a Ck of 1.05. Surface flux improvements are
expected to be gained from subgrid-scale wind speed
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variability representation. Moreover, it is not surprising
to find resulting tropospheric circulation improve-
ments. CAM3 NH winter SLP biases (CAM3 � NCEP-
2) are similar to those reported by Hurrell et al. (2006)
(Fig. 11, left). With the inclusion of a four-bin wind
speed PDF, the December–February (DJF) global
mean absolute bias is reduced from 2.57 to 1.83 hPa.
Positive CAM3 SLP biases within the subtropics are
reduced across all seasons (not shown). Especially
noteworthy are the SLP improvements in the region
occupied by the Aleutian low. Further, negative SLP

biases poleward of 50°S improve in most regions, with
drastic improvements in the Arctic regions. Significant
collocated 500-hPa geopotential height bias reductions
are also found (Fig. 11, right). The DJF 500-hPa height
global mean absolute bias is reduced from 33.01 to
25.86 gpm.

With significant SLP improvements, we expect to see
improvements in surface wind speed statistics (summa-
rized in Table 1). Global mean absolute wind speed,
standard deviation, shape, and 90th percentile speed
biases are reduced from 0.67 to 0.58 m s�1, from 0.24 to

FIG. 10. (top) 2000–05 monthly zonal mean TAO array 10-m wind speed mean, shape, standard deviation, and 90th percentile;
differences (middle) QuikSCAT � TAO and (bottom) CAM � TAO. Note difference in scales.
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0.20 m s�1, from 0.36 to 0.34 m s�1, and from 0.80 to
0.62 m s�1, respectively (Fig. 12). Root-mean-square er-
rors and maximum biases are reduced for all statistics.
Positive biases, regardless of their location, are reduced
for all statistics. In contrast, negative biases within the
tropics and western boundary currents worsened
slightly both in spatial extent and magnitude for all
statistics.

5. Discussion

The majority of GCM wind speed biases are identi-
fied with known climate features such as the subtropical
anticyclones, storm tracks, and ITCZ. Thus, it is not

surprising that we have found evidence linking these
biases to tropospheric circulation and thermodynamic
GCM biases reported by previous studies. Large NH
summer positive mean wind speed and shape biases are
found within the NH trade wind regions, consistent
with subtropical anticyclone location and strength bi-
ases. Winter storm tracks are dominated by large posi-
tive wind speed mean, 90th percentile speed, and stan-
dard deviation biases consistent with negative storm
track SLP biases reported in other studies (Hurrell et
al. 2006). Representing subgrid-scale surface wind
speed variability reduces SLP and 500-hPa height bi-
ases considerably. However, a portion of these dynam-
ics-related GCM wind biases are likely to persist until
the GCM large-scale circulation improves. Addition-
ally, year-round negative wind speed mean, 90th per-
centile speed, and shape biases within the ITCZ are
consistent with overactive GCM convection (Dai and
Trenberth 2004; Rasch et al. 2006). Unlike the SLP and
500-hPa height biases, these are exacerbated when sub-
grid-scale wind speed variability is included.

The primary climatological wind bias is in the storm
tracks of both hemispheres where the westerlies are 1
m s�1 too fast. These biases, also noted in earlier stud-
ies (Hurrell et al. 2006; Collins et al. 2006b; Hack et al.
2006), are symptomatic of underestimated surface drag
by fast, subgrid-scale winds. Surface momentum flux
has a nonlinear, convex relationship with wind speed
(Wright and Thompson 1983). Thus, the momentum
flux predicted by the mean wind speed of a wind PDF

FIG. 11. 2000–05 mean DJF (left) sea level pressure (hPa) and (right) 500-hPa geopotential
height differences (gpm). (top) CAM3 � NCEP-2 and (bottom) CAM3 four-bin wind speed
PDF � NCEP-2. (top left) Mean absolute bias/mean bias and (top right) max/min/RMSE.
Stippling indicates 5% level of significance.

TABLE 1. 2000–05 global mean absolute biases and percent
changes.

CAM3
CAM3

four-bin PDF
Change

(%)

Wind speed mean (m s�1) 0.67 0.58 �13.43
Wind speed std dev (m s�1) 0.24 0.20 �16.67
Wind speed shape parameter 0.36 0.34 �5.56
Wind speed 90th percentile

(m s�1)
0.80 0.62 �22.50

Sea level pressure (hPa) 2.52 2.13 �15.48
DJF sea level pressure (hPa) 2.57 1.83 �28.79
500-hPa geopotential height

(gpm)
31.67 27.66 �12.66

DJF 500-hPa geopotential
height (gpm)

33.01 25.86 �21.66
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is less than the mean momentum flux of the fully re-
solved wind PDF. We have confirmed this with offline,
single-column sensitivity studies of the air–sea fluxes in
equilibrium with single-bin and multibin wind PDFs.
By representing wind speed variability within a GCM
and allowing for feedbacks, we have reduced SLP and
500-hPa geopotential height biases in many regions
throughout the globe. Most notable are the dramatic
improvements associated with the Aleutian low during
NH winter. A significant reduction in surface wind
speed biases resulted from both increased drag and im-
proved tropospheric circulation.

The ITCZ is dominated by year-round negative
GCM shape and mean wind speed biases. Further, with
the exception of the positive trade biases, mean and
90th percentile wind speeds are slower year-round
within the TAO region. The too-slow winds along the
ITCZ may be a generic bias in tropical convection
simulations. This study shows that the bias appears in
the CAM3 GCM (see also Hack et al. 2006) as well as
NCEP-2. Chelton and Freilich (2005) describe this bias
in the ECMWF operational numerical weather predic-
tion model. The CAM3-simulated convection in this
region is overactive (Dai and Trenberth 2004; Rasch et
al. 2006) and moves surface vapor aloft too efficiently.
This enhanced convection increases surface wind vari-
ability and precipitation. As a result, the GCM overes-
timates convective rainfall and underestimates strati-
form rain in the tropics (Rasch et al. 2006), although the

total tropical precipitation agrees reasonably well with
observations.

This assessment of observed and predicted wind
speed PDFs suggests future avenues of research to re-
duce model biases. Predicting physically based wind
speed PDFs is one avenue. This improves surface fluxes
of mineral dust over land (e.g., Cakmur et al. 2004),
which, like momentum fluxes, increase nonlinearly with
wind speed. Such methods may well improve air–sea
exchange too. Boundary layer conditions, which could
be used to diagnose subgrid-scale wind speed variabil-
ity, include mechanical (wind shear) and thermody-
namic (buoyancy driven) turbulence, Richardson num-
ber, Deardorff velocity, and moist convection. Most
GCMs provide these diagnostics, although more re-
search is necessary to understand their connection to
surface wind PDFs (Panofsky et al. 1977; Cakmur et al.
2004). Assessing climate sensitivity to wind speed com-
ponent (zonal and meridional) variability is another av-
enue.

6. Conclusions

We characterized and intercompared 2000–05 sur-
face wind speed probability density functions (PDFs)
from QuikSCAT measurements, NCEP-2 reanalysis,
TAO/TRITON buoys (TAO), and CAM3 GCM pre-
dictions. The datasets were spatially and temporally re-
gridded and filtered to make the comparisons equi-

FIG. 12. As in Fig. 2 but for (middle) CAM3 � QuikSCAT and (bottom) CAM3 four-bin wind speed PDF � QuikSCAT.
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table. Some intrinsic differences remained, however,
such as the distinction between QuikSCAT instanta-
neous measurements and the GCM and reanalysis time
steps (10 min and 6 h, respectively). Global and re-
gional 6-yr wind speed mean, 90th percentile wind
speed, standard deviation, and Weibull shape param-
eter climatologies were examined. Overall, the PDFs
from measurements, despite their methodological, spa-
tial, and temporal sampling differences, are in much
closer agreement with one another than with the GCM
predictions.

Swaths of homogeneous wind speed statistics accom-
pany large-scale climate features such as the subtropical
anticyclones, ITCZ, and storm tracks. As expected,
wind speed mean, 90th percentile winds and variance
peak within the wintertime storm tracks. Further,
Southern Hemisphere (SH) storm track wind speed sta-
tistics vary less intraannually compared to the Northern
Hemisphere (NH). The trade wind regions that bound
the northern and southern extent of the ITCZ are char-
acterized by moderate wind speeds, low variability, and
high shape values. We identify an approximately sta-
tionary pattern to the wind speed variance in the equa-
torial Pacific. Interestingly, a distinct wind speed mean
and shape anomaly migrates with the ITCZ across this
stationary background. The region with the largest sea-
sonal-mean wind speed and shape variability is the So-
mali jet.

NCEP-2 overestimates QuikSCAT measurements
within the extratropics over most statistics examined,
with peak differences found in the storm tracks. The
tropics were characterized by negative or near-zero dif-
ferences for both NCEP-2 and the GCM. Negative
shape parameter differences were found throughout
most of the globe with the largest differences in the
tropics. Negative (NCEP-2 minus QuikSCAT) shape
parameter differences were found throughout the glob-
al ocean regions and were nearly zero within the storm
tracks.

The GCM-predicted wind speed PDFs agree well
with QuikSCAT and the other observations in most
seasons and regions. Surface wind speed PDFs are de-
pendent upon atmospheric boundary layer (ABL) sta-
bility and large-scale circulations. Thus, our intercom-
parison between observed and predicted global winds
suffers most from dataset and model limitations near
fast ocean currents, sea surface temperature fronts, and
regions where ABL stability deviates from neutral.
However, most GCM biases that we identify cannot be
attributed entirely to such methodological limitations.
The primary climatological wind bias in the GCM oc-
curs in the storm tracks of both hemispheres where the
westerlies are 1 m s�1 too fast.

Owing to the nonlinear response of surface fluxes to
wind speed, it is important to understand subgrid-scale
wind speed variability and to represent it accurately in
GCMs. A first step for models is to quantify their wind
variability performance against high-resolution obser-
vations such as QuikSCAT and TAO/TRITON. Tro-
pospheric circulation and wind speed statistics were im-
proved in many regions with the representation of sub-
grid-scale wind speed variability. At the same time,
initiatives such as the Coupled Boundary Layers Air–
Sea Transfer (CBLAST) Defense Research Initiative
(Edson et al. 2007) are investigating the importance of
surface features such as wave breaking on the air–sea
transfer of surface fluxes. Improved surface transfer pa-
rameterizations derived from such studies will help
highlight biases and further improve models.
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APPENDIX

Equal-Probability Wind Speed Bin Methodology

The Weibull PDF is analytically integrable, resulting
in a cumulative distribution function (CDF)

W�Ut, n� � �
Ut

�

Un�k

c��U

c �k�1

exp���U

c �k� dU,

�A1�

where k and c are the shape and scale, and U, Ut, and
n are wind speed, wind speed threshold, and moment
number. With a change of variables a condensed ver-
sion of the CDF above is formulated using the gamma
(Ut � 0 m s�1) and upper incomplete gamma function
(Ut  0 m s�1)

W�Ut, n� � cn��k 
 n

k
, �Ut

c �k�. �A2�

The probability of a wind speed exceeding a threshold
Ut is given by

p�U � Ut� � exp���Ut

c �k�, �A3�
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and p(U � Ut) � 1 � p(U  Ut). Inverting and solving
Eq. (A3) for Ut we can calculate the wind speed Ui at
which a fraction pi of the PDF exceeds Ui

Ui � c��lnpi�
1�k. �A4�

Thus, upper Ui,max and lower Ui,min bin limits for each
bin are calculated using

Ui,min � c��ln�1 � pi,min��1�k, �A5�

Ui,max � c��ln�1 � �pi,min 
 1�4���1�k. �A6�

Four mean wind speeds corresponding to the four bins
(truncated PDFs) are calculated. The mean wind speed
for each truncated PDF is equal to the first moment of
the truncated PDF normalized by the wind speed inter-
val probability

Ui �
W�Ui,min, 1� � W�Ui,max, 1�

W�Ui,min, 0� � W�Ui,max , 0�
. �A7�
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