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APS/123-QED

Quadrature Rotating-Frame Gradient Fields For Ultra-Low Field
Nuclear Magnetic Resonance and Imaging

Louis-S. Bouchard
Materials Sciences Division, Lawrence Berkeley National Laboratory,

1 Cyclotron Rd. Bldg 11-D64, Berkeley, CA 94709∗

(Dated: January 5, 2006)

Magnetic resonance imaging (MRI) in very low fields is fundamentally limited by untruncated
concomitant gradients which cause severe distortions in image acquisition and volume selection if
the gradient fields are strong compared to the static field. In this paper, it is shown that gradient
fields oscillating in quadrature can be used for spatial encoding in low fields and provide substantial
improvements over conventional encoding methods using static gradients. In particular, cases where
the gradient field is comparable to or higher than the external field, Gmax/B0 > 1, are examined. It
is shown that undistorted slice selection and image encoding is possible because of smaller geometric
phase errors introduced during cyclic motions of the Hamiltonian. In the low field limit (Gmax/B0 →
∞) slice selection is achieved with a combination of soft pulse segments and a coherent train of hard
pulses to average out concomitant fields over the fast scale of the rf Hamiltonian.

PACS numbers: 03.50.De,07.55.Db,76.60.Pc

I. INTRODUCTION

Magnetic resonance imaging (MRI) tomography [1, 2]
relies on Fourier encoding, a method by which the phase
of the transverse magnetization is modulated by appli-
cation of a gradient along some direction. Multiple en-
codings are collected, and inverse Fourier transformation
of the data set provides a reconstructed map of the spin
density. At high fields, this description is accurate be-
cause the spin Hamiltonian is truncated by the strong
Zeeman interaction. Truncation corresponds to the av-
eraging of rapidly oscillating concomitant components in
IX and IY of the gradient field perpendicular to the Zee-
man field (IZ).

At low fields, the truncated Hamiltonian no longer
provides an accurate description of the spin dynamics.
As the ratio Gmax/B0 is increased, the concomitant
fields cause severe distortions in the phase encoding and
slice selection. (Gmax is the maximum gradient field
over the measurement region or field of view.) When
Gmax/B0 ∼ 1, for example, planes of isofrequency are
bent into spheres whose radius equals one half the field
of view [3]. Low field NMR/MRI systems are of great in-
terest because of the possibility of lower production and
operational costs and portability of the device. There
are also several intrinsic advantages including reduced
magnetic susceptibility artifacts, increased T1 contrast,
spatially-resolved zero field J spectroscopy, simultaneous
detection of multiple nuclei.

A recent approach by Meriles et al. [4] uses a rapid
train of dc magnetic field pulses to eliminate the overall
phase accumulated due to components of the concomi-
tant field that are perpendicular to the axis of the π pulse.
The pulse train provides spatial encoding along the di-

∗URL: http://waugh.cchem.berkeley.edu

rection of the pulse axis. We have recently implemented
the Meriles approach in µT fields (to be published) using
SQUID detection. This method, however, only applies
at or near zero fields and is expected to break down at
higher fields (& mT ) where the dynamics are better de-
scribed by a rotating frame.

This article demonstrates that pairs of magnetic field
gradients oscillating in quadrature produce significantly
improved performance for spatial encoding and slice se-
lection in low fields. In a regime where conventional MRI
approaches are either useless or at best, perform poorly,
the rotating gradient method takes advantage of station-
ary gradient field components in the rotating frame to
provide undistorted phase encoding. The remaining os-
cillatory components are linearly polarized rather than
circularly polarized and much less effective in perturb-
ing the intended trajectory. Slice selection is performed
with a combination of hard and soft rf pulses and rotat-
ing frame gradient fields; a coherent train of hard pulses
eliminates the problematic concomitant component. Fi-
nally, I show that undistorted slice selection is possible
in zero fields.

II. BACKGROUND

A. RF Fields

Consider a general Hamiltonian of the form, H =
HZ + HG + Hrf , where HZ is the Zeeman interaction
with the static external field B = B0ẑ (assumed uni-
form and unidirectional throughout), HG is the inter-
action of spins with the applied gradient and its con-
comitant fields and Hrf describes the rf field. Explicitly,
HZ = −µ · B = ω0IZ and HG = −µ · (r · ∇B), where
µ = γI, I =

∑n
i=1 Ii and ω0 = −γB0. I include γ in

the gradient scaling, so the gradient units are reported
in rad/s/cm.
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With the quantization axis along Z, a transformation
to the interaction representation is effected by an oper-
ation eiωkIZt(·)e−iωkIZt, where ωk is the rotating frame
frequency. In the notation H ′ = eiωkIZtH e−iωkIZt and
σ′ = eiωkIZtσe−iωkIZt, the equation of motion for the
density operator σ′ in the interaction representation is
∂σ′/∂t = −i[H ′, σ′], where H ′ = eiωkIZt(HZ + HG +
Hrf )e−iωkIZt − ωkIZ .

1. Linear and quadratic rf excitation

The non-secular components of a linearly polarized rf
pulse significantly perturb the intended trajectory. In
the limit B → 0, spin precession takes place in the
quadrupole gradient field [4]. To eliminate this pos-
sibility, it is better to consider rf fields rotating at
angular frequency ωrf . The lab frame Hamiltonian
is Hrf = ω1 [cos(ωrf t + φ(t))IX + sin(ωrf t + φ(t))IY ]
transforms to the rotating frame ωk = ωrf as,

H ′
rf = 2ω1(t) [IX cos φ(t) + IY sin φ(t)] . (1)

where ω1(t) is the amplitude modulation of the rf field at
carrier frequency ωrf , and φ(t), its phase modulation[18].
The rotating frame is usually taken to be the rf carrier
frequency (ωk = ωrf ), which in turn is normally tuned
at the resonance frequency of the nuclear spins.

This is to be compared with the linearly polarized field
Hrf = ω1(t) cos(ωrf t + φ(t))IX , whose rotating frame
Hamiltonian is

H ′
rf =

ω1

2

[
I+(e2iωrf teiφ + e−iφ) + I−(e−2iωrf te−iφ + eiφ)

]
.

(2)

The rapidly oscillating terms e±2iωrf t are discarded at
high fields (large ωrf ), producing an effective Hamilto-
nian H ′

rf = ω1 [IX cos φ(t) + IY sin φ(t)]. At low fields,
truncation is not justified so we use rotating rf fields in
our simulations.

B. Encoding By Quadrature RF Gradients

Pairs of gradients driven by currents 90◦ out of phase
with each other generate a field which rotates at the fre-

quency of the rotating frame and can be used to generate
stationary components for use in Fourier encoding. We
discuss two different configurations.

1. Rotating Frame Gradient of the First Kind (Type I)

A gradient of the form B(1)(r) = a(zx̂+xẑ), combined
with another gradient field rotated by 90◦ about the Z
axis, with respect to the first one, B(2)(r) = b(zŷ + yẑ),
produces a total field B(r) = (B(1) + B(2))(r). The sec-
ond field is driven by a current that is 90◦ out of phase
with respect to the first field, i.e. a(t) = g cos(ωgt + ϕ)
and b(t) = g sin(ωgt + ϕ). The respective Hamiltonians
are,

H
(1)

G (r) =zg cos(ωgt + ϕ)IX + xg cos(ωgt + ϕ)IZ ,

H
(2)

G (r) =zg sin(ωgt + ϕ)IY + yg sin(ωgt + ϕ)IZ .

The total Hamiltonian in the rotating frame is,

H
(I)

G
′(r) =zg cos ϕIX + zg sin ϕIY

+ g [x cos(ωgt + ϕ) + y sin(ωgt + ϕ)] IZ .
(3)

Taking ϕ = 0◦ gives a time-independent Z gradient
field in IX , while ϕ = 90◦ gives a time-independent Z
gradient field in IY . The time-dependence of the gradi-
ent has been relinquished to an oscillating field along IZ .
It turns out that this type of Hamiltonian with linearly
polarized oscillating components possesses better aver-
aging properties than one with rotating components (see
Appendix C). I will show that it performs better Fourier
encoding and volume selection along Z in low fields.

2. Rotating Frame Gradient of the Second Kind (Type II)

The linear superposition of a field B(1)(r) = a(yx̂+xŷ)
with another field B(2)(r) = b(−xx̂−yŷ+2zẑ), but scaled
by ε gives a total field B(r) = (ay−εbx)x̂+(ax−εby)ŷ+
2εbzẑ. If these two fields are operated 90◦ out of phase,
i.e. set a(t) = g cos(ωgt + ϕ) and b(t) = g sin(ωgt + ϕ),
gives a rotating frame Hamiltonian,

H
(II)

G
′(r) = [−εxg sin(ωgt + ϕ) + yg cos(ωgt + ϕ)]

(
I+eiωkt + I−e−iωkt

2

)

+ [xg cos(ωgt + ϕ)− εyg sin(ωgt + ϕ)]
(

I+eiωkt − I−e−iωkt

2i

)

+ IZ [ε2zg sin(ωgt + ϕ)] (4)
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In the special case ε = 1.0, this field has the following
features. The X gradient in the rotating frame is time-
independent in IX for ϕ = 90◦ or in IY for ϕ = 0◦. The
Y gradient rotates at a rate 2ωg, while the Z gradient
oscillates in IZ at rate ωg. Likewise, stationary Y gra-
dients in the rotating frame can be obtained by taking
B(1)(r) = a(−yx̂− xŷ) instead of B(1)(r) = a(yx̂ + xŷ),
or equivalently, by inverting the sign of ε.

III. FOURIER ENCODING

To compare the method to conventional phase encod-
ing, we numerically calculate the magnetization evolu-
tion under time-independent gradients and quadrature
rotating-frame gradients. Rotations induced by rotating
frame gradients take place about the IY axis. Therefore,
the magnetization is nutated primarily in the XZ plane.
For conventional MRI gradients, magnetization is mod-
ulated about IZ , so that nutations would be expected to
take place in the XY plane. Deviations to this expected
behavior are due to non-secular gradient components.

Calculations were performed on a Pentium IV machine
using Fortran 90 code compiled using version 8.1 of the
Intel Fortran compiler for Linux. The density operator
is propagated from initial to final states, using at least
100 subdivisions of the time axis per oscillation period of
the rotating frame to calculate the time-ordered product
of matrix exponentials [5] U(Tc) =

∏100
i=1 exp(−iHidt) to

approximate the propagator, where Hi is a step-function
approximation to H ′(t).

A. Conventional imaging gradients

Figure 1 illustrates the effects of concomitant gradient
fields on Fourier encoding for a Maxwell coil with field
B(r) = g(xx̂+yŷ−2zẑ) and Gmax/B0 ∼ 1.0. The intent
is to produce a modulation along Z. Instead of a linear
phase dependence along Z, the modulation depends on X
because of deviations caused by the non-secular concomi-
tant fields. Here, Gmax = g · FOV/2, where FOV = 20
cm is the field of view. The distortions in the spatial
encoding also depend on y, as can be seen by comparing
Figure 1(A) to (B) and (C), which are plots of the mag-
netization following a constant gradient pulse applied for
40 µs. The corresponding results for the magnetization
plots in Y Z planes identical to the XZ planes due to the
symmetry of this gradient. This renders the conventional
gradient useless when the ratio Gmax/B0 is large.

Figure 2 shows similar plots of magnetization following
a constant gradient pulse (Gmax/B0 ∼ 1.0), for a Golay
pair as used in conventional MRI. Such coils are nor-
mally used to provide modulations along X and Y . The
total field is B(r) = g(zx̂ + xẑ) and includes a concomi-
tant component along Z. This component is responsible
for the heavy distortions in the modulation profile. Fig-
ure 2(A) shows greatest distortions in the XZ (y = 0 cm)
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FIG. 1: (Color online) Conventional Fourier encoding along
Z with Maxwell coil in the presence of concomitant gradients
operated at constant current and Gmax/B0 ∼ 1.0. Curved
surfaces rather than planes of constant phase are produced.
Magnetization along XZ for planes at (A) y = 0 cm, (B)
y = 0.5 cm and (C) y = 10 cm.

plane. The least distortion is seen in the plot of magne-
tization along XY , as shown in Fig. 2(C), for the plane
z = 0 cm. However, distortions increase with z; as seen
in Fig. 2(B) for the case z = 10 cm.

In both cases of Maxwell or Golay pair coils, a similar
behavior is observed in which curved surfaces converging
towards a common attractor whose location, according to
Yablonski [3], is a focal point for these concentric surfaces
and the radius of curvature is Rc = B0/g.

B. Rotating frame gradients

1. Encoding in the XZ and Y Z plane

In Fig.3 are plots of the magnetization profile in a 20
cm field of view following 40 µs of evolution in a quadra-
ture rotating-frame gradient for which Gmax/B0 ∼ 1.0
(g = 62, 872 rad/s/cm, B0 = 628, 716 rad/s). Fig-
ure 3(A) shows a Z modulation produced using a Type
I rotating frame gradient which is to be compared with
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FIG. 2: (Color online) Conventional Fourier encoding along
X with a saddle coil operated with constant current such that
Gmax/B0 ∼ 1.0 (g = 2.35 G/cm for 40 µs). Magnetization is
plotted (A) in the XZ plane at y = 0 cm, in the XY plane
at z = 10 cm (B) and at z = 0 cm (C).

the pattern of Fig. 1(A). The single focal point is split in
two opposite attractor points, resulting in lower overall
curvature of the phase profile. The smaller phase errors
are due to the smaller solid angle traced by the Hamilto-
nian trajectory; see the discussion on geometric phase in
Appendix C.

If a square region is cut out of this magnetization pro-
file at 45◦ to the field of view (Fig. 3), the modulation
is close to ideal, with displacements of the isofrequency
sets along the direction of curvature less than 5% of the
length of the corresponding isofrequency segment. The
area of this reduced field of view is 1/

√
2 the original field

of view; this is equivalent to undistorted Fourier encoding
with Gmax/B0 ∼ 0.7.

To realize Fourier encoding of MRI slices in the XZ
and Y Z plane, this type of gradient presents a substan-
tial improvement for imaging under conditions of strong
gradients, i.e. when Gmax/B0 & 0.5, over conventional
static gradients. A simulated MRI image is shown in
the next section which documents the improved spatial
encoding.

Rotating frame Type II gradients also provide im-
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FIG. 3: (Color online) Magnetization profile following 40 µs
of evolution (Gmax/B0 ∼ 1.0) under (A) Type I and (B,C)
Type II rotating frame gradients (with ε=0.5). In (B) X and
(C) Y modulations are shown. Subsets of the field of view
where the modulation in Mx is most uniform are enlarged.

proved spatial encoding in the case of magnetization
modulations along X and Y within an XZ or Y Z slice,
respectively. The results in Figs. 3(B,C) were produced
with a scaling factor ε = 0.5. This choice of ε reduces the
impact of the oscillating concomitant component along
IZ , which is responsible for much of the distortion in the
encoding. This comes at the price of a slight oscillatory
perturbation in the static concomitant component of the
gradient along IY ; however, results show that this error is
tolerable. Again, this improved performance can be un-
derstood in terms of geometric phase (see Appendix C),
with the exception of a rotating 2ωg term in the trans-
verse plane. However, this component is small in the
neighborhood of y = 0. The performance of this gradi-
ent degrades at large |y|, as shown in the next section.

As for the case of a conventional static gradient, the
magnetization profile degrades further as the plane is
moved away from the origin (data not shown). However,
for the purposes of Fourier encoding a slice whose thick-
ness is 1 cm, the profile is sufficiently constant across the
slice thickness when Gmax/B0 ∼ 1.0.

2. Encoding in the XY plane

Figure 4 shows that undistorted Fourier encoding along
X or Y in an XY slice at z = 0 cm is possible only in a



5

M
x
(x,y)

x [cm]

y
 [

c
m

]

−10.0 0.0 10.0

10.0

0.0

−10.0

−1 0 1

M
y
(x,y)

x [cm]
−10.0 0.0 10.0

10.0

0.0

−10.0

−1 0 1

M
z
(x,y)

x [cm]
−10.0 0.0 10.0

10.0

0.0

−10.0

−1 0 1

M
x
(x,y)

x [cm]

y
 [

c
m

]

−10.0 0.0 10.0

10.0

0.0

−10.0

−1 0 1

M
y
(x,y)

x [cm]
−10.0 0.0 10.0

10.0

0.0

−10.0

−1 0 1

M
z
(x,y)

x [cm]
−10.0 0.0 10.0

10.0

0.0

−10.0

−1 0 1

(A)

(B)

encoding along x

encoding along y

FIG. 4: (Color online) Fourier encoding along X (A) and Y
(B) in the XY plane at z = 0 cm using Type II rotating
frame gradients (Gmax/B0 ∼ 1.0). Rectangular subsets of
the field of view where the modulation in Mx is most uniform
are enlarged.

reduced field of view, which is half the full field of view,
as shown in Figs. 4(A) and (B). Encoding along X or Y
in the XY plane is an instance where conventional MRI
static gradients perform better than rotating frame gra-
dients at low fields (see Fig.2C). In both cases of static
gradient and rotating frame gradient fields, the perfor-
mance degrades at large |z| (see Fig. 2B).

C. MRI image acquisition

Distortions in the phase encoding ultimately translate
into image distortions. In the limit k → 0, there are no
significant distortions to the phase encoding simply be-
cause there is no evolution under the gradient fields. Dis-
tortions from concomitant gradients increase with spa-
tial frequency. To illustrate image distortion effects, the
phase encoding process is simulated in Fig. 5, including
evolution under all non-secular field components of the
Hamiltonian.

A 128 × 128 single show echo-planar (EPI) read-
out is applied to the 128 × 128 proton density maps
of Figs. 5(A,C). Conventional high-field MRI images
(Figs. 5 B,D) faithfully represent the respective proton
density maps while acquisition in low field (Figs. 5 E,G)
suffers from heavy distortions, ghosting and blurring over
most of the field of view. (Gmax/B0 ∼ 3.2 at 10 cm
from the center). Most of these artifacts are absent over
the middle 1/

√
2 region of the field of view in the case

of quadrature rotating-frame gradient encoding (Figs. 5
F,H).

IV. VOLUME SELECTIVITY

1. Slice Selection with rotating frame gradients

In previous sections, rotations about IY in the XZ
plane were used to impart the desired spatial encoding.
This means that any magnetization which is along IY re-
mains along IY . Assuming an rf field polarized along IX ,
this suggest two simple schemes for selective excitation.
The first scheme uses a Type I rotating frame gradient
whose Hamiltonian, H

(I)
G

′ (Eq. 3), can be made to pro-
vide a Z gradient along IY . The second scheme uses a
Type II gradient (Eq. 4) to produce a stationary X or Y
gradient along IY in the rotating frame.

Then, consider the following sequence of events:

1. A non-selective (hard) 90◦ pulse rotates the equi-
librium z magnetization towards IY : IZ → IY .

2. A soft 90◦ pulse along IX in the rotating frame is
applied in the presence of an IY [zg] (z gradient)
term in the Hamiltonian.

The soft pulse will rotate IY towards −IZ within its
bandwidth, and leave spins unaffected (i.e. pointed along
IY ) outside its bandwidth. The spins outside the pulse
bandwidth will remain along IY since the rotating frame
gradients induce nutations mostly about IY . With the
excited spins along IZ , spatial encoding is then performed
with a rotating frame gradient. The MRI signal is con-
tained in the X and Z components of the magnetization.
A readout of Mx provides the in-phase NMR signal while
permitting further subsequent encoding of this magneti-
zation. If desired, the XZ plane can be rotated into the
XY plane for a full readout of the complex magnetiza-
tion.

There are two regimes of interest when considering
such a selective excitation: when the rotating frame fre-
quency is rapid compared to variations in the rf pulse
envelope, and when the rotating frame is slow, as in the
limit of ultra-low fields. In the first case, the rf pulse is
perceived as being a constant field with a time interval
dt, during which, the IZ term oscillates back and forth
possibly many times. The oscillating IZ term will then
experience a certain amount of self-averaging in the limit
where the IZ term is small. In the second limit, the field
from the IZ term appears stationary on the timescale
of rf field envelope fluctuations. In this case, multipulse
techniques can be used to eliminate the IZ term during
the soft pulse passage. The result is justified by Average
Hamiltonian Theory (AHT) (see Appendix A). In Ap-
pendix B we describe a coherent averaging approach for
eliminating the IZ term.

A. Composite selective pulses

To minimise the phase errors that normally accrue in
the presence of a gradient beyond the energy isocenter of
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Proton Density Map High Field − Truncated Concomitant Gradients

Low Field With Concomitant Gradients Rotating Frame Gradients in Low Field

(C) (D)

(G) (H)
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Proton Density Map High Field − Truncated Concomitant Gradients

FIG. 5: Single shot EPI using proton density maps (128 × 128) as input parameters (A,C) for a Cartesian grid phantom
(A,B,E,F) and axial slice of human brain (C,D,G,H). The 20 cm field of view (Y Z plane) is phase encoded in 128× 128 steps
by simulating an echo-planar readout. (B,D) high field images with conventional MRI encoding gradients (Gmax/B0 < 0.1).
(E,G) conventional low field MRI images (Gmax/B0 ∼ 3.2) with saddle pair and Maxwell coils. (F,H) low field images
(Gmax/B0 ∼ 3.2) with quadrature rotating frame gradients.

TABLE I: Fourier coefficients used to construct the Geen &
Freeman self-refocusing pulse (from Reference [6]).

n An Bn

0 0.23 0.00
1 0.89 -0.40
2 -1.02 -1.42
3 -0.25 0.74
4 0.14 0.06
5 0.03 0.03
6 0.04 -0.04
7 -0.03 -0.02
8 0.00 0.01

a selective pulse, it is preferrable to use a self-refocusing
pulse, such as that of Geen & Freeman [6]. The envelope
of the rf Hamiltonian (0 ≤ t ≤ Tp) in the interaction
representation is a sum of Fourier components according
to

H ′
rf (t) =

{
8∑

n=0

[
An cos

(
n

2π

Tp
t

)
+ Bn sin

(
n

2π

Tp
t

)]}
ω1IX ,

with the coefficients (An, Bn) listed in Table I. The pulse
envelope is shown in Fig.6(A). To get a 90◦ flip angle
on the proton resonance with this pulse, ω1 = γB1 of
approximately 600 rad/s is required. (Referring to the
scaling in Fig.6(A), this corresponds to a peak rf ampli-
tude of ∼ 2, 040 rad/s.)

To produce a selective pulse which averages out the IZ

term to zero during its course, we modify the soft pulse
by inserting the following coherent train of hard pulses
(see Appendix B),

{
2τ−(πy)−τ−(πz)−2τ−(π−z)−τ−(π−y)−2τ

}

n

. (5)

This subunit is repeated n times, for the entire dura-
tion of the soft pulse and its duration should be short
compared to the time scale of fluctuations in the soft
pulse envelope. We show later that for a Geen & Freeman
pulse, τ should be roughly three orders of magnitude less
than the pulse duration; the exact figure ultimately de-
pends on the shape of the soft pulse with smoother shapes
generally less demanding of the coherent train. The new
pulse will be slightly longer; its length increases by the
total duration of the hard pulses added. The new pulse
is sketched in Fig. 6(B). This procedure introduces two
widely different time scales to the pulse whose fine struc-
ture naturally averages out, as explained in Appendix
A.

B. Slice selection in ultra-low fields

We first examine the case of weak gradients
(Gmax/B0 ∼ 0.16). The slice profile of the Geen &
Freeman pulse for a slice selection along X is shown
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FIG. 6: (A) Amplitude modulation for the Geen & Freeman
self-refocusing pulse. (B) New composite selective pulse for
low field imaging takes the soft pulse and inserts the coherent
train of hard pulses for the entire duration of the soft pulse.
The duration of the new pulse is increased by the total length
of all the hard pulses. For clarity, only a few subunits are
sketched.

in Fig. 7(E) under conditions of no concomitant gradi-
ents. Figure 7(F) shows the corresponding distortion in
the slice selection profile, in the form of a slight curva-
ture, when concomitant gradients from a saddle pair coil
are turned on (Gmax/B0 ∼ 0.17). For a Type II gra-
dient with ε = 1.0, undistorted slices are obtained for
XZ planes at y = 0 cm and y = −10 cm, as seen in
Figs. 7(A) and (B). Similarly, undistorted slice selection
can be obtained along Z using Type I rotating frame
gradients. This is observed in Figs. 7(C) and (D) for the
case y = −10 cm and y = 0 cm, respectively. The corre-
sponding slices for a constant Z gradient from a Maxwell
coil are shown in Figs. 7(G) and (H).

The more interesting case is Gmax/B0 & 1.6, where
conventional MRI slice selection schemes are incapable
of producing slices without a severe amount of distor-
tion. Whether the excitation is on- or off-axis makes no
difference, as seen in Fig. 8(A) and (D) for a slice selec-
tion along X. The slice profile is heavily distorted into a
spherical shell and there is a significant amount of exci-
tation occurring outside the intended slice. Figures 8(B)
and (C) illustrate that slice selection on-axis (y = 0 cm)
along X or Y using a Type II rotating frame gradient
with ε = 1.0. While the performance is slightly degraded
when going off-axis (|y| = 10 cm), as seen in Figs. 8(E)

and (F), the degradation is far less important than the
conventional case of Fig. 8(A) and (D), and such distor-
tions are only significant near the edges (|y| > 8 cm) of
the volume.

The effects of concomitant gradients on slice selec-
tion were first analyzed by Gao et al. [7]. Yablonskiy
et al. [3] point out a slice curvature effect when surfaces
of constant frequency ω = γ

[
(B0 + Gxx)2 + (Gxz)2

]1/2

are excited by the rf pulse. In the case of an applied
X gradient of strength Gx from a Golay pair, these be-
come cylindrical surfaces (x − xc)2 + z2 = R2

x of radius
Rx = |x+B0/Gx| and xc = −B0/Gx rather than a plane
at x = x0, where x0 = (ω/γ − B0)/Gx. For applied Z
gradients, the surfaces of constant frequency are ellip-
soids of revolution [3]. It is generally difficult to predict
analytically the effects of non-secular concomitant com-
ponents in the rotating frame. These components lead
to excitation of spins outside the slice region, as seen in
Figs.9(A,B) and 8(A,D).

The case of conventional slice selection with an ap-
plied Z gradient from a Maxwell coil (Gmax/B0 ∼ 1.6) is
shown in Figs.9(A,B). The performance is slightly better
than a Golay pair generating an orthogonal slice on-axis
(compare Figs.9B and 8A). Unfortunately, the slice pro-
file suffers from a heavy elliptical curvature and strong
contamination originating from outside the intended vol-
ume. At any rate, it is clear that conventional MRI
gradient encoding performs poor slice selection in the
regime Gmax/B0 ∼ 1.6. In contrast, a Type I rotat-
ing frame gradient provides clean slice selection both on-
and off-axis, as seen in Figs. 9(C) and (D). This Type I
gradient performs equally well in the asymptotic regime
Gmax/B0 & 25 (data not shown).

The Type I gradient performs better than a Type II
gradient for slice selection because the Type I gradient
only has 2 concomitant field components and it is possi-
ble to align the rf field with the third axis. On the other
hand, a Type II gradient has 3 concomitant fields, one
along each axis. The main distortion effects arise from
contamination of the rf excitation by the third concomi-
tant component that is parallel to it.

C. Slice selection in zero fields

Slice selection in zero field is a relatively simple mat-
ter since there are no time-dependent gradients. While it
can be viewed as the limit Gmax/B0 → ∞ of the previ-
ous selection schemes, there is an important difference in
that only a single gradient field is required for the slice
selection because quadrature excitation is not needed.
Moreover, a 2-component gradient field should be used,
rather than 3-components, because there the third com-
ponent no longer self-averages due to oscillatory time de-
pendence.

A field such as B(r) = a(zx̂ + xẑ) can be used to pro-
vide slice selection along X or Z in the following manner.
For a Z slice, a selective pulse field is applied along IY
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FIG. 7: (Color online) Conventional and rotating frame gradient slice profiles at Gmax/B0 ∼ 0.17. (A,B) is an X slice selection
(XZ plane shown) using a Type II rotating frame gradient. The undistorted slice profile (concomitant fields turned off), as
would be seen in high field, is shown in (E). (F) is the corresponding profile from a conventional X gradient with concomitant
fields. Comparing (B) with (F) shows that curvature is eliminated. (G,H) are conventional X slices showing a small amount
of curvature. In (C,D) is the slice selection for a Type I rotating frame gradient. The effects of going off-axis are illustrated by
the planes at y = −10 cm (plots A, C and G). Parameters were: ε = 1.0, τ=31.5 µs, Tsub=252 µs (80 subunits per soft pulse),
Tpuls=10 ms, Nsub=39 subunits per soft pulse, g = 856 rad/s/cm, ωg = γB0 = 50, 400 rad/s (1 cycle lasts 125 µs) and FOV =
20 cm.
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FIG. 8: (Color online) Comparison of static and Type II rotating frame gradients for slice selection in the case Gmax/B0 ∼ 1.6.
Plots (A,D) are the slice selection profiles for a saddle pair gradient along X for XY planes at y = 0 cm and y = −10 cm,
respectively. (B,E) is the X slice selection using Type II gradients with a stationary X gradient. (C,F) is the Y slice selection
for a Type II gradient with stationary Y gradient field. Parameters were: τ=15.75 µs, Tsub=126 µs, Tpuls=10 ms, Nsub=79
subunits per soft pulse, g = 1, 605 rad/s/cm, ωg = γB0 = 10, 080 rad/s (1 cycle lasts 623µs; there are 16 cycles across the pulse
duration).

and the IZ component is eliminated using the pulse train
of Eq. 5. For an X slice, a selective pulse is applied along
IX with a coherent train of hard pulses to eliminate the
IX term. Likewise, a field B(r) = a(zŷ + yẑ) can pro-
vide Y and Z slice selection. The Y slice is obtained,

for example, by applying the selective pulse along IX

and eliminating the IY term using the coherent train of
Eq. B1.

In Fig.10(A) it is clear that conventional soft pulses in
zero field (Gmax/B0 → ∞) with concomitant gradients
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FIG. 9: (Color online) Comparison of slice selection along Z
for a conventional Maxwell coil and a Type I rotating frame
gradient. Plots (A,B) are for the static Maxwell coil. (C,D)
is for a Type I gradient. XZ planes are aligned according to:
(A,C) 10 cm off-center and (B,D) on-axis. Parameters were:
τ=15.75 µs, Tsub=126 µs, Tpuls=10 ms, Nsub = 79 subunits
per soft pulse, g = 1, 605 rad/s/cm, ωg = γB0 = 10, 080
rad/s (1 cycle lasts 623µs; there are 16 cycles across the pulse
duration) so that Gmax/B0 ∼ 1.6 and FOV = 20 cm. Nearly
identical performance is obtained at Gmax/B0 ∼ 25.

are incapable of slice selection. The magnetization plots
in Figs. 10(B-D) show that good slice selection can be
achieved over a range of values for the inter-pulse spacing
τ . At τ = 20 µs and beyond, the slice profile begins to
break down, as excited magnetization outside the slice of
interest begins to contaminate the signal.

Thus, a soft pulse can be altered using a train of hard,
composite pulses to eliminate effects of concomitant fields
during the slice selection process of an MRI experiment
in zero field. Results suggest that, for good performance,
the inter-pulse spacing τ should be three orders of mag-
nitude shorter than the soft pulse duration. Ultimately,
this depends on the pulse shape, with flatter soft pulse
shapes requiring refocusing less frequently.

V. DISCUSSION

Rotating frame gradients possess better properties for
spatial encoding than conventional static gradients in the
ultra-low field regime, where non-secular terms in the
Hamiltonian must be included in the analysis. Since the
nutations of magnetization under the gradient primarily
occur about an axis in the transverse plane, the gradi-
ents act as excitation pulses and the effects of magnetic
field inhomogeneities and susceptibility artifacts during
gradient evolution are not of concern.

As mentioned previously, quadrature rf excitation and

rotating frame gradient fields reduce the impact of non-
secular terms in the Hamiltonian. These improvements
are most beneficial when Fourier encoding coronal or
sagittal planes (XZ or Y Z), as seen in Fig.(3), or when
selecting a slice in a strong gradient (Figs.8 and 9). In
zero fields, slice selection is also possible along any axis
using a combination of soft pulse and coherent train of
hard dc pulses (Fig. 10). The EPI images of Fig. 5
demonstrate that nearly undistorted image encoding is
possible in regimes where the concomitant gradient fields
are several times stronger than the Zeeman field.

While the time dilation factor in the average Hamil-
tonian characterizing the coherent part of the selective
pulse, H (0)′ = 1

2 (aIx + cIz) (see Appendix B), is equiva-
lent to scaling down the gradient amplitudes by a factor
of 2, the results of Figs.(10) and (9) show that slice selec-
tion can be done in conditions where Gmax/B0 & 25 and
Gmax/B0 →∞, respectively. These two regimes are well
beyond the scope of applicability of conventional slice
selection pulse and gradient methods. Immunity to dis-
tortions (Fig. 9) can be achieved under conditions where
the gradient field is an order of magnitude larger than the
static field. Applications are not limited to imaging, but
include undistorted pulsed-field gradient diffusion mea-
surements and coherence pathway selection in low fields.

Rf gradients have been successfully implemented for
NMR spectroscopy and imaging by several investiga-
tors [8–10], however, their advantageous properties for
low field imaging when used in quadrature appear to
have been overlooked. The gradient fields discussed
herein can be generated using tune and matched circuits
[8]. Low cost NMR spectrometers for low field imaging
can be assembled on a desktop PC using commercially-
available integrated multi-channel waveform generators.
Rapid point readouts interleaved with oscillating gradi-
ent pulses have been implemented by Raulet et al. [8].
Further speed improvements are possible with active Q-
switched circuits [9] to suppress residual coil ringing.
While rf power deposition from oscillating gradients and
rf pulses is an important concern at high fields, this is
generally not an issue at low fields, where rf absorption
is orders of magnitude less.

VI. CONCLUSION

In this article, I have shown that distortions in the
Fourier encoding at ultra-low magnetic fields can be sub-
stantially reduced by using quadrature rotating-frame
gradients. These impart significantly less phase errors
in the encoding. Rather than attempting to eliminate
them, the concomitant fields are utilized to provide the
required encoding. Calculations show that phase encoded
and slice selective MRI is possible in ultra-low fields using
a class of pulses that are combinations of soft and hard
pulses to average out undesirable gradient components in
zero and low fields.



10

M
z
(y,z)

y [cm]

z
 [
c
m

]

-10.0 0.0 10.0

10.0

0.0

-10.0
-1

-0.5

0

0.5

1

M
z
(y,z)

y [cm]

z
 [
c
m

]

-10.0 0.0 10.0

10.0

0.0

-10.0
-1

-0.5

0

0.5

1

(A) (B) (C)M
z
(y,z)

y [cm]

z
 [
c
m

]

-10.0 0.0 10.0

10.0

0.0

-10.0
-1

-0.5

0

0.5

1

FIG. 10: Slice selection in zero field. (A) soft pulse in zero field with concomitant gradients. (B,C) soft pulse combined with
train of hard pulses to eliminate the concomitant component for an interpulse spacing of (B) τ = 1 µs and (C) τ = 20 µs.
Longer τ correspond to composite pulse trains that contain less hard pulses, for a fixed soft pulse duration.
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APPENDIX A: RF PULSE HAMILTONIANS
WITH TWO TIME SCALES

This section contains a simple explanation of the com-
posite slice-selective pulse in terms of the Average Hamil-
tonian Theory (AHT) of Waugh and Haeberlen [11–13].
On the fine scale, AHT describes the effective Hamilto-
nian locally while smooth fluctuations on the coarse scale
provide the desirable selective properties of the pulse in
low fields.

Let t be the fast variable and T be the slow vari-
able [14, 15]. The fast scale is related to the slow scale
via a small parameter ε, by t = T/ε. For a function of
two length scales, σ(T, t) = σ(T, T/ε), the chain rule for
differentiation gives

d

dT
=

∂

∂T
+

(
1
ε

)
∂

∂t
.

If the Hamiltonian contains slow and fast dynamics, it is
an explicit function of T and t, i.e. H ≡ H (T, t), and
so will be the density operator σ ≡ σ(T, t). Since ε is
a small parameter, H (T, t) and σ ≡ σ(T, t) can be for-
mally expanded as one-parameter families of operators,

H ε(T, t) =εlH0(T, t) + εl+1H1(T, t) + O(εl+2),

σε(T, t) =εlσ0(T, t) + εl+1σ1(T, t) + O(εl+2).

The homogenization limit is ε → 0. The case where
H ε(T, t) and σε(T, t) are periodic in t is particularly

simple. Since H is O(1), l = 0, and substitution into
the Liouville von Neumann equation dσ/dT = −i[H , σ]
gives,

(∂T + (1/ε)∂t)(σ0 + εσ1 + O(ε2)) =

− i[H0 + εH1 + O(ε2), σ0 + εσ1 + O(ε2)].

Identifying the powers of ε gives, in the lowest order,

ε−1 : ∂tσ0(T, t) = 0,

ε0 : ∂T σ0(T, t) + ∂tσ1(T, t) = −i[H0(T, t), σ0(T, t)].

The first equation implies that σ0 ≡ σ0(T ) is inde-
pendent of the fast variable t. This is the homogenized
density operator. Taking the time average of the second
equation over one period, and using the t-periodicity of
σ1(T, t), i.e.

1
tc

∫ tc

0

∂tσ1(T, t)dt =
1
tc

(σ1(T, tc)− σ1(T, 0)) = 0,

gives an equation of motion that is identical in form to
the Liouville von Neumann equation,

∂σ0(T )
∂T

= −i[H 0(T ), σ0(T )],

where H 0(T ) = (1/tc)
∫ tc

0
H0(T, t)dt is the homogenized

Hamiltonian, which we also recogize to be identical with
the zeroth order average Hamiltonian in the Magnus ex-
pansion.

In the homogenized limit, limε→0 H ε(T, t) =
H0(T, t) almost everywhere. For Hamiltonians
which are everywhere bounded, i.e. ‖H ε(T, t)‖ ≤
H(T, t) for some H(T, t) such that

∫ tc

0
H(T, t)dt <

∞, Lebesgue’s dominated convergence theorem gives
limε→0

∫ tc

0
H ε(T, t)dt =

∫ tc

0
H0(T, t)dt. The bounded-

ness requirement for the rf Hamiltonian is not a problem
in practice (a physical bound is given by the maximum
achievable rf field amplitude).
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Thus, a soft pulse combined with a fast train of co-
herent hard pulses is a Hamiltonian with two time scales
(Hrf + HG)′(t, T ). Averaging over one period removes
the dependence on t, the fast scale, giving the homog-
enized Hamiltonian (Hrf + HG) ′(T ). Consider the fol-
lowing two cases.

In the zero field case (B0 = 0), H ′
G = gzIX +

gxIZ and H ′
rf = ω1(t)IY . Therefore, (Hrf + HG) ′ =

ω1(t)IY + gzIX for a soft pulse ω1(t) which contains
the coherent pulse train of Eq.(B2). In the low field
case with a Type I gradient, H

(I)
G

′ is given by Eq.(3)
with ϕ = 0◦, so that (Hrf + HG) ′ = zgIX + ω1(t)IY +
g[x cos(ωgt) + y sin(ωgt)]IZ . If 2π/ωg is large compared
to the duration of a subunit (8τ), the time-dependent
term is nearly constant from the perspective of the coher-
ent pulse train and the IZ term vanishes. For the calcu-
lation with Gmax/B0 ∼ 25 mentioned in Fig.(9) caption,
2π/ωg was 9740 µs and 8τ was 126 µs. The results in
Fig.(9)(C,D), have Gmax/B0 ∼ 1.6 (2π/ωg = 623 µs and
8τ = 126 µs) and the performance is still good. The aver-
aging worsens for lower values of Gmax/B0, however, this
corresponds to the high field regime where truncation in
conventional MRI is efficient and the coherent train of
pulses is no longer necessary or desirable.

APPENDIX B: COHERENT AVERAGING IN
COMPOSITE SELECTIVE PULSES

Suppose we would like to eliminate the IY term of
the Hamiltonian and use the IX term for spatial en-
coding. Two possible approaches can be considered.
The first method eliminates IY by a fast train of 180◦
pulses applied along IX . This transforms IZ → −IZ

and IY → −IY and the IY and IZ terms of the effec-
tive Hamiltonian vanish in the limit of short inter-pulse
spacings.

The second method eliminates only the IY term and is
required in the following situation: rf or dc field along IX ,
slice selective gradient field along IZ , and concomitant
gradient along IY . Consider the sequence of four pulses:

{
2τ−(πx)−τ−(πy)−2τ−(π−y)−τ−(π−x)−2τ

}

n

. (B1)

The refocusing pulses are short, hard pulses, in be-
tween which the spins evolve under an arbitrary Hamil-
tonian of the form H ′(t) = a(t)IX+b(t)IY +c(t)IZ . Over
this period of duration 8τ , this pulse sequence produces a
zeroth order average Hamiltonian H (0)′ = 1

2 (aIX +cIZ),
where a is the time average of a. In the Magnus expan-
sion, the IY term is o(τ) and the scaling factor 1/2 for
IX and IZ causes a time dilation. Similarly, the following
sequence removes the IZ term:

{
2τ−(πy)−τ−(πz)−2τ−(π−z)−τ−(π−y)−2τ

}

n

. (B2)

motion α Beff φtot φdyn f φtot − φdyn Ω(α)
[rad] [rad/s] [rad] [rad] % [rad] [ster.]

H A(s)
0.1 10.0 9.89 9.87 0.2 0.02 0
0.1 20.0 19.75 19.75 0.0 0.0 0
0.2 10.0 9.98 9.87 0.1 0.11 0
0.2 20.0 19.77 19.75 0.1 0.02 0

H C(s)
0.1 10.0 10.03 9.87 1.6 0.16 0.0314
0.1 20.0 19.78 19.77 0.1 0.01 0.0314
0.2 10.0 10.56 9.87 7.0 0.69 0.1252
0.2 20.0 19.86 19.75 0.6 0.11 0.1252

TABLE II: The parameter f = 100% × [(φtot − φdyn)/φdyn]
gives the percentage geometric phase relative to the dynam-
ical phase. The solid angle of the motion is Ω(α) =

R
dΩ =R 2π

0

R cos α

1
d(cos θ)dφ.

APPENDIX C: GEOMETRIC PHASE

The nutation motion of the magnetization vector when
the effective field traces a closed loop results in two con-
tributions to the phase: the dynamical phase which is
proportional to the time integral of the effective field,
φdyn =

∫ t

0
γ|Beff (t′)|dt′, and a geometric phase [16, 17]

which is related to the path traced by a vector in param-
eter space. In MRI, the motion is classical and described
by a Hannay’s phase. For parallel transport, the geomet-
ric phase is proportional to the solid angle subtended by
the motion relative to a nearby degeneracy.

The better performance of rotating frame gradients
over conventional MRI encoding gradients can be under-
stood in terms of geometric phase. The IZ term in a Type
I Hamiltonian perturbs the path of the gradient-induced
nutation in IY such that the solid angle subtended by the
Hamiltonian path in parameter space is zero. In the case
of conventional MRI, the gradient in IZ is perturbed by
oscillating components in the XY plane whose Hamilto-
nian traces a closed path with nonzero solid angle. The
consequence of this is a bigger phase error.

The contribution from geometric phase can be calcu-
lated exactly by comparing the dynamic phase to the
actual phase during one cycle of evolution. The Hamilto-
nian is a map H : [0, 2π] → h which describes a curve in
the vector space h spanned by the operators {IX , IY , IZ}.
The two distinct cases of an arclength vs. circular tra-
jectory are to be compared. In the former case, the solid
angle is zero but not in the latter case.

An arclength trajectory is defined by the curve
H A(s) = IY ω1 sin α sin s + IZω1

√
1− (sin α sin s)2,

which begins parallel to IZ , then tilts by an angle α
towards −IY , then towards +IY and back to IZ along
a geodesic path. Likewise, we define a circular trajec-
tory by H C(s) = IXω1 sin α cos s + IY ω1 sin α sin s +
IZω1 cos α, where α is the spherical polar angle mea-
sured from the IZ axis. The initial density matrix IX

is propagated using N = 80 steps with propagators of
the form U

C/A
j = exp

[−iH C/A(Tj)dt
]
, j = 1, . . . , N
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with ω1 = Beff/N during one revolution about IZ and
Tj = 2πj/N .

During the trajectory, the geometric phase is measured
as the total angle traced by the magnetization vector, in-
cluding all windings, as the magnetization nutates about
the Z axis while mostly remaining near the XY plane.

The angles are tabulated in Table II. In support of the
quadrature rotating frame gradients, we note the relative
phase errors (f parameter) which are nearly an order of
magnitude larger for the circular trajectory H C(s) than
the arclength geodesic trajectory H A(s).
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