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DM1, , i pj n= …  

[ , ]
L,F̂ p q

ij  = alternative local failure event based on the level-of safety 

formulation with multiple NDE inspection opportunities at time q
pt , 

associated with the jth damage mechanism evolving at the ith 

damage location; [0, ]
L1, , pi n= …  and ( , [0, ])

DM1, , i pj n= …  

[ , ]
 L,

p q
ijF  = local false-call event based on the level-of safety formulation with 

single NDE inspection opportunity at time q
pt , associated with the 

jth damage mechanism evolving at the ith damage location; 
[0, ]
L1, , pi n= …  and ( , [0, ])

DM1, , i pj n= …  

[ , ]
 L,
ˆ p q

ijF  = local false-call event based on the level-of safety formulation with 

multiple NDE inspection opportunities at time q
pt , associated with 

the jth damage mechanism evolving at the ith damage location; 
[0, ]
L1, , pi n= …  and ( , [0, ])

DM1, , i pj n= …  
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[ , ]
sysF p q  = failure event associated with the failure of the system (abstracted to 

a series system) at time q
pt  

[ , ]
sysF p q  = alternative failure event associated with the failure of the system at 

time q
pt  and based on the level-of safety formulation with single 

NDE inspection opportunity at time q
pt  

[ , ]
sysF p q  = alternative failure event associated with the failure of the system at 

time q
pt  and based on the level-of safety formulation with multiple 

NDE inspection opportunities at time q
pt  

[ , ]
 sys

p qF  = false-call event (at the system level) at time q
pt  and based on the 

level-of safety formulation with single NDE inspection opportunity 

at time q
pt  

[ , ]
 sys

p qF  = false-call event (at the system level) at time q
pt  and based on the 

level-of safety formulation with multiple NDE inspection 

opportunities at time q
pt  

( )X Yf x y′  = prior probability distribution function of the random variable X 

given Y y=  

( )X Yf x y′′  = posterior probability distribution function of the random variable X 

given Y y=  

( )0
dam

0
damΘ
θf ′  = initial (i.e., before the first NDE inspection at time 0t ) PDF model 

for the damage evolution model parameters 0
damΘ  

( )0
a

0
af ′

A
a  = initial (i.e., before the first NDE inspection at time 0t ) PDF model 

for the actual damage size vector 0
aA  
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( )( , ,0 )
( , ,0)

i j
a

i j
aA

f a  = probability distribution function of the damage size ( , ,0)i j
aa  in the 

range ( , ,0) 0i j
aa >  normalized such that 

( )( , , 0 )
( , ,0) ( , ,0)

00
1i j

a

i j i j
aA

f a p
+

+∞
= −∫  

( )
M

M(k)
(k)f

Ζ
ζ  = probability distribution function characterizing the maneuver 

intensity during the kth flight segment 

( )
M

M(k)
(k)f

Ζ
ζ  = mixed probability distribution function describing the maneuver 

intensity during the kth flight segment and accounting for the fact 

that (within this segment) ( )
M

1 100%(k)pΖ− ×  of the time the 

aircraft is not maneuvering (i.e., M 1Ζ =(k) ) 

FCP = false call probability 

(k)H  = random altitude of flight during the kth flight segment 

(0)I  = cross-section moment of inertia for a composite beam, made out of 

two composite adherends bonded together, with its adhesive 

interface completely damaged (i.e., with total loss of slip stiffness 

and strength) 

( )I ∞  = cross-section moment of inertia for a composite beam, made out of 

two composite adherends bonded together, with its adhesive 

interface completely undamaged (i.e., with infinite slip stiffness 

and pristine ultimate strength) 

aIM  = intensity measure vector characterizing the stochastic load 

fluctuations about the average load intensity (probabilistic 

characterized by the intensity measure vector mIM ) 

mIM  = intensity measure vector characterizing the random average/mean 

load acting on a structure, defined as { }m m m,IM P T= ∆  
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M
(k)IM  = random vector collecting the maneuver-induced intensity measures 

during the kth flight segment 

MIM  = random vector collecting the maneuver-induced intensity measures 

for all the Sn  flight segments in , q
p pt t⎡ ⎤⎣ ⎦  as 

{ }M M, 1, ...,(k)
sk nIM IM= =  

T
(k)IM  = random vector collecting the turbulence-induced intensity measures 

during the kth flight segment 

TIM  = random vector collecting the turbulence-induced intensity 

measures for all the Sn  flight segments in , q
p pt t⎡ ⎤⎣ ⎦  as 

{ }T T , 1, ...,(k)
sk n= =IM IM  

( ), ,i j p  = triplet identifying damage location (i), damage mechanism (j) and 

time of inspection ( pt ) 

( ), ,[ , ]i j p q  = triplet identifying damage location (i), damage mechanism (j) and 

future time ( q
pt ) 

( )L x D  = likelihood function of x for a given set of data (D) collected 

0N  = number of cycles at the time of the first NDE inspection (in the 

application examples presented in this thesis 0 0N =  cycles) 

pN  = number of cycles at current time, i.e., at the time of most recent 

NDE inspection 

q
pN  = q

p pN N q N= + ∆  with { }1, 2, ...,q q∈  

q
pN  = q

p pN N q N= + ∆  

q
pN  = q

p pN N q N= + ∆  with 1i q i− < <  and { }1, 2, ...,i q∈  
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A
pn  = dimension of the random vector a

pA  at time pt ; with A
pn  defined as 

[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑  

( , )
DM
i pn  = number of monitored (at time tp) damage mechanisms evolving at 

the ith location (i.e., number of damage mechanisms at the ith 

location for which new NDE data at time tp are available) 

( , [0, ])
DM
i pn  = number of detected (up to time tp) damage mechanisms evolving at 

the ith damage location 

L
pn  = number of inspected damage locations at time pt  

[0, ]
L

pn  = number of inspected damage locations up to time pt  

[0, ]
L,G

pn  = number of reliability components used in the prognosis analysis 

performed at time pt  

Gn  = number of global (aeroelastic) failure modes; G LCO1n n= +   

LCOn  = number of limit cycle oscillation (LCO) velocities 

M
(k)n  = number of maneuvers (within the kth flight segment) randomly 

generated during the stochastic realization of the random vector 

M
(k)IM  using a censored Poisson rectangular pulse process  

( , , )
MS
i j pn  = number of NDE measurements collected at time pt , associated 

with the jth damage mechanism evolving at the ith damage location  

( , ,[ , ])
MS
i j p qn  = number of NDE measurements that will be performed/collected at 

time q
pt , associated with the jth damage mechanism evolving at the 

ith damage location 
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( , ,[ , ])
MS
i j p qn  = number of NDE measurements that will be performed/collected at 

time q
pt , associated with the jth damage mechanism evolving at the 

ith damage location and satisfying the condition ( , , [ , ])
k

i j p q ij
m cA a<  

( ( , ,[ , ])
MS1, ,… i j p qk n= ) 

Sn  = number of flight segments in , q
p pt t⎡ ⎤⎣ ⎦  

T
(k)n  = number of turbulence patches (within the kth flight segment) 

randomly generated during the stochastic realization of the random 

vector T
(k)IM  using a censored Poisson rectangular pulse process. 

mP  = random intensity of the average/mean load applied on a structure 

[ , ]
G,F p q

rP ⎡ ⎤⎢ ⎥⎣ ⎦  = probability of failure at time q
pt  associated with the rth global 

failure mode, [ , ]
G,F p q

r  ( G1,...,r n= ) 

[ , ]
G,F p q

rP ⎡ ⎤⎢ ⎥⎣ ⎦  = probability of failure at time q
pt  associated with the rth global 

failure mode, [ , ]
G,F p q

r  ( G1,...,r n= ) 

[ , ]
L,F p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦  = probability of local component failure at time q
pt  according to the 

local failure event [ , ]
L,F p q

ij  associated with the jth damage mechanism 

evolving at the ith damage location; ( , [0, ])
DM1, , i pj n= …  and 

[0, ]
L1,..., pi n=  

[ , ]
L,F p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦  = probability of local component failure at time q
pt  according to the 

local failure event [ , ]
L,F p q

ij  associated with the jth damage mechanism 

evolving at the ith damage location; ( , [0, ])
DM1, , i pj n= …  and 

[0, ]
L1,..., pi n=  
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[ , ]
L,F̂ p q

ijP ⎡ ⎤
⎢ ⎥⎣ ⎦  = probability of local component failure at time q

pt  according to the 

local failure event [ , ]
L,F̂ p q

ij  associated with the jth damage mechanism 

evolving at the ith damage location; ( , [0, ])
DM1, , i pj n= …  and 

[0, ]
L1,..., pi n=  

[ , ]
 L,

p q
ijP ⎡ ⎤⎢ ⎥⎣ ⎦F  = probability of local component false-call at time q

pt  according to 

the local false-call event [ , ]
 L,

p q
ijF  associated with the jth damage 

mechanism evolving at the ith damage location; ( , [0, ])
DM1, , i pj n= …  

and [0, ]
L1,..., pi n=  

[ , ]
 L,
ˆ p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦F  = probability of local component false-call at time q
pt  according to 

the local false-call event [ , ]
 L,
ˆ p q

ijF  associated with the jth damage 

mechanism evolving at the ith damage location; ( , [0, ])
DM1, , i pj n= …  

and [0, ]
L1,..., pi n=  

[ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  = probability of system failure at time q

pt  according to the system 

failure event [ , ]
sysF p q  

[ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  = probability of system failure at time q

pt  according to the system 

failure event [ , ]
sysF p q  

[ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  = probability of system failure at time q

pt  according to the system 

failure event [ , ]
sysF p q  

[ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F  = probability of false-call at the global system level at time q
pt  

according to the false-call event [ , ]
 sys

p qF  

[ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F  = probability of false-call at the global system level at time q
pt  

according to the false-call event [ , ]
sys

p qF  
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( )0
(k)P h  = probability of encountering no turbulence (i.e., quiet air) at a given 

instant of time during the kth flight segment at altitude (k)h ; 

( ) ( ) ( )0 1 21(k) (k) (k)P h P h P h= − −  

( )1
(k)P h  = probability of encountering non-storm turbulence at a given instant 

of time during the kth flight segment at altitude (k)h  

( )2
(k)P h  = probability of encountering storm turbulence at a given instant of 

time during the kth flight segment at altitude (k)h  

POD  = probability of detection 

PND  = probability of non-detection 

( , ,0)
0
i jp  = probability of having no damage (i.e., ( , ,0) 0i j

aa = ) for a given 

damage location and damage mechanism 

( , )i jp∞  = probability of missing the detection of a very large damage 

according to the POD curve model proposed by Staat (1993). This 

value is associated with the detectability of the jth damage 

mechanism evolving at the ith damage location 

Fp  = maximum allowable probability of failure (safety threshold) for the 

monitored structural system 

M

(k)pΖ  = fraction of time (within the kth flight segment) during which the 

aircraft is maneuvering (i.e., M 1(k)Ζ ≠ ) 

q  = qth (out of a total of q ) damage prognosis prediction/evaluation 

performed at time pt  

q  = total number of damage prognosis predictions/evaluations 

q  = total number of damage prognosis predictions/evaluations 
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Rσ  = stress ratio within a given loading cycle, defined as the ratio 

between minimum ( minσ ) and maximum ( maxσ ) stresses, i.e., 

min maxRσ σ σ=  

0t  = time of the first NDE inspection 

pt  = current time, time of most recent NDE inspection performed 

q
pt  = q

p pt t q τ= + ∆  with { }1, 2, ...,q q∈  

q
pt  = q

p pt t q= + τ∆  

q
pt  = q

p pt t q τ= + ∆  with 1i q i− < <  and { }1, 2, ...,i q∈  

(k)V  = random vector describing the mean air stream velocity w.r.t. a 

reference system attached to the aircraft   

[ , ]
F

p qV  = flutter instability boundary at time q
pt  (viewed as a random 

variable) 

[ , ]
LCO

p qV  = random vector of LCO velocities at time q
pt  

[ , ]
F,LCO

p qV  = random vector of flutter and LCO velocities at time q
pt  defined as 

{ }[ , ] [ , ] [ , ]
F,LCO F LCO,p q p q p qV=V V   

[ , ]
F,LCO
p qv  = vector of flutter and LCO velocities (for a given/fixed realization of 

[ , ]
a
p qA , matΘ , and damΘ ) obtained as output of the metamodel used 

in the flutter & LCO analyses step 

M
(k)Ζ  = random variable characterizing the maneuver-induced load factor 

during the kth flight segment 
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Fatigue-induced damage is one of the most uncertain and extremely 

unpredictable failure mechanisms for a large variety of structural systems (e.g., 

aerospace, automotive, offshore, and civil structures) subjected to stochastic and cyclic 

loading during service life. Among these systems, composite lightweight aerospace 

structures — such as fighter aircrafts and unmanned aerial vehicles (UAVs) — are 

particularly sensitive to both fatigue-induced and impact-induced damage. Within this 

scenario, an integrated hardware & software system capable of (i) monitoring the 

critical components of these systems, (ii) periodically assessing their structural 
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integrity, (iii) predicting their remaining fatigue life (damage prognosis), and (iv) 

accomplishing a cost-efficient condition-based maintenance (CBM) is ultimately 

needed. This research contributes to the aforementioned objectives by providing a 

novel and comprehensive probabilistic methodology for predicting the remaining 

fatigue life of adhesively-bonded joints in composite structures. According to this 

methodology, non-destructive evaluation (NDE) techniques and recursive Bayesian 

inference are repeatedly employed to update the probability distributions of damage 

extents and damage evolution model parameters at various damage locations after 

each NDE inspection. The propagation of damage is then stochastically simulated 

using a probabilistic model for future operational loads and a surrogate model 

(calibrated and validated at various damage levels using a mechanics-based model) 

capable of predicting the structural response quantities of interest. Finally, local and 

global failure criteria are considered simultaneously to compute the probabilities of 

failure and false-alarm at future times by abstracting the structure (or structural 

component) into a combination of series and parallel sub-systems. Three benchmark 

applications are provided in this work to exercise, verify, and validate the proposed 

framework. The first two benchmark applications analyze the fatigue-driven 

debonding propagation along a pre-defined adhesive interface in a simply supported 

laminated composite beam. They demonstrate the efficiency of the proposed recursive 

Bayesian inference scheme, show the use of the proposed component and system 

reliability analyses to recursively predict and update the evolution in time of the 

probabilities of failure and false-alarm of the structure, and illustrate the robustness of 
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the framework. Finally, the third benchmark application validates the proposed 

damage prognosis methodology by using experimental fatigue test data obtained from 

the literature. 



 

1 

CHAPTER 1  

 

INTRODUCTION 

1.1. Background and motivation 

Probabilistic design and risk assessment methodologies for commercial, 

transport, and fighter aircrafts have been under development by the research 

community for a considerable time (Yang and Trapp, 1974; Deodatis et al., 1996; Lin 

and Styuart, 2007) and, more recently, the increasing use of high-performance 

lightweight composite materials is rendering rigorous probabilistic approaches 

essential. Fiber-reinforced polymer (FRP) composites are characterized by a large 

statistical variability in their mechanical properties, and are extremely sensitive to both 

fatigue-induced and impact-induced damage, as well as to aging caused by operational 

hydrothermal cycling — phenomena that cannot be treated in a deterministic fashion, 

and require periodic monitoring of the structure. Unmanned aerial vehicles (UAVs) 

are a typical example of how extensively composite materials can be used in aircraft 
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structures; additionally, the absence of a pilot on this type of vehicles leads to higher 

levels of damage tolerance in the airframe. Various damage mechanisms — e.g., 

debonding, inter-ply delamination, fiber breakage, and matrix cracking — can initiate 

and invisibly propagate to catastrophic levels in the most damage-sensitive UAV 

primary structural components, such as the wings, the tail stabilizers, and the fuselage. 

In particular, the adhesive joints that bond the aircraft skin to the primary airframe 

components (i.e., wing-spars, bulkheads, stringers, frames, and longerons) are 

recognized as the most fatigue-sensitive subcomponents of a lightweight composite 

UAV, with the skin-to-spar adhesive joints being the most critical. Most importantly, 

the progressive debonding — evolving from the wing-root along these joints (Oliver et 

al., 2007) — can compromise both local component/subcomponent strength and 

global aeroelastic performance of the vehicle, as demonstrated by Bauchau and Loewy 

(1997), and Wang et al. (2005). There is therefore the need for a field-deployable 

Integrated Vehicle Health Management System (IVHMS), as described by Gorinevsky 

et al. (2005), capable of monitoring the composite UAV airframe, assessing its 

structural integrity, identifying a cost-efficient condition/risk-based maintenance 

program, and predicting in probabilistic terms the remaining useful life of its critical 

structural components (damage prognosis) as detailed by Inman et al. (2005). 

Two examples of modern UAVs, manufactured with advanced light-weight 

and damage-sensitive composite materials, are provided in Figures 1.1 and 1.2. The 

Altair Predator B, shown in Figure 1.1, is a UAV designed for civil applications that 

have been developed under the Environmental Research Aircraft and Sensor 
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Technology (ERAST) program at NASA’s Dryden Flight Research Center at 

Edwards, California. The Altair is a modified civil version of the MQ-9 Predator B, a 

military UAV developed through a partnership with General Atomics Aeronautical 

Systems, Inc. (GA-ASI, http://www.ga-asi.com, web page accessed on September 27, 

2010). Researchers, who developed this type of UAV for civil purposes, believe that 

the Altair has significant disaster-management potential, and have proposed using the 

Altair to provide firefighters and rescue workers “bird’s-eye images” of wild/forest 

fires and other natural disasters, such as floods and earthquakes, in real time. (source: 

http://www.nasa.gov/centers/dryden/news/ResearchUpdate/PredatorB/index.html, web 

page accessed on September 27, 2010). 

 

Figure 1.1: Altair Predator B, a UAV used by NASA for environmental research, 
http://www.dfrc.nasa.gov/Gallery/Photo/Altair_PredatorB/Medium/ED06-0208-1.jpg 

(webpage accessed on September 27, 2010). 
 

The second example of a UAV, shown in Figure 1.2, is represented by the 

General Atomics MQ-1 Predator, a military UAV used primarily by the United States 

Air Force (USAF) and Central Intelligence Agency (CIA). Initially conceived in the 
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early 1990s for reconnaissance and forward observation roles, the MQ-1 Predator 

carries cameras and other sensors but has been modified and upgraded to carry and fire 

two AGM-114 Hellfire missiles or other munitions. The aircraft, in use since 1995, 

has seen combats over Afghanistan, Pakistan, Bosnia, Serbia, Iraq, and Yemen 

(source: http://en.wikipedia.org/wiki/General_Atomics_MQ-1_Predator, web- page 

accessed on September 27, 2010). The increase of its operational payloads, especially 

in terms of ammunitions, drastically increased the stress range on the composite wings 

and, as a direct consequence, also the concern for their structural integrity and damage 

tolerance. 

 

Figure 1.2: General Atomics MQ-1 Predator, 
http://img244.imageshack.us/img244/5470/59983012nd8.jpg                       

(webpage accessed on September 27, 2010). 
 

UAVs, such as those presented above, are nowadays widely used by several 

research agencies (e.g., to monitor the environment) as well as by the military in many 

different geographical areas. To further confirm the truth of this fact, a statement 

found on the US Army website is reported herein: “WASHINGTON (Army News 
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Service, May 27, 2010) — The Army recognized a milestone of 1 million hours of 

flight for unmanned aerial systems, May 25 at the Pentagon […]. According to the 

Army Unmanned Aircraft Systems Project Office, Army UAS actually surpassed one 

million flight hours April 14. Of those hours, 88 percent were flown in Iraq and 

Afghanistan. According to the project office, the RQ-7B Shadow flew nearly half of 

those hours, with 478,350 hours to its credit.” (web-source: http://www.army. 

mil/news/2010/05/27/39902-army-hits-1-million-flight-hours-with-unmanned-aircraft, 

web page accessed on September 27, 2010). It is therefore evident that the whole 

structural health monitoring (SHM) and damage prognosis process for this type of 

aerial vehicles is crucial and can lead to a substantial operational cost reduction. 

 

Figure 1.3: One million flight-hours milestone achieved by the US army,    
http://www.army.mil/-news/2010/05/27/39902-army-hits-1-million-flight-hours        

with-unmanned-aircraft (website accessed on September 27, 2010). 
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The probabilistic framework for remaining service life prediction presented in 

this thesis was inspired by a performance-based analysis framework developed in the 

area of earthquake engineering (Moehle, 2004) and constitutes the most complete 

version of the methodology presented by the author in previous technical publications 

(Gobbato et al., 2008, 2009, 2010). According to this approach, data collected during 

pre- and/or in-flight non-destructive evaluation (NDE) inspections (Lanza et al., 2007) 

are used to assess probabilistically the current state of damage of the monitored 

structural components (i.e., damage location, damage mechanism, and damage 

size/extent) considering multiple potential damage mechanisms and locations. The 

uncertainty characterizing the results obtained from the imperfect NDE inspection 

technique is efficiently assimilated by a recursive Bayesian inference scheme that 

intermittently updates the joint probability distribution function (PDF) of the damage 

extent at the inspected locations. A load hazard model for future aerodynamic loads 

(both atmospheric-induced and maneuver-induced) and a damage evolution model — 

either mechanics-based, purely phenomenological (i.e., based on experimental 

observations), or a combination of the two — are then used to stochastically propagate 

the damage in time. Combined local (e.g., exceedance of a critical damage size at a 

damage location) and global (e.g., exceedance of the flutter or divergence instability 

boundary, or initiation of limit cycle oscillation (LCO) behavior) failure criteria, 

similar to those used by Lin et al. (2000) and Styuart et al. (2007), are finally used to 

compute the evolution in time of the probability of system failure (i.e., occurrence of 

one or more failure limit-states) using well-established system reliability analysis 
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methods (Ditlevsen and Madsen, 1996). This information is required to develop a 

cost-efficient condition-based maintenance and repair plan.  

Due to the complexity of solving the full-system problem, this study focuses 

on the simplified case of a composite UAV wing with the skin-to-spar adhesive joints 

as the only possible damageable subcomponents (see Figure 1.4). Additionally, the 

debonding along the joints is assumed to progressively evolve from the wing root (i.e., 

the potential damage locations are known a priori), and to be purely fatigue-driven, 

thus not considering randomly distributed (in time and space) impact-induced damage 

as another possible source of damage initiation. However, the whole formulation can 

be easily extended to the broader scenario in which both sources of damage initiation 

can simultaneously be considered. The propagation of damage along the adhesive 

interfaces can be simulated by using either a purely phenomenological model such as 

Paris-Erdogan Law (Paris and Erdogan, 1963) or other similar phenomenological 

models as reviewed by Degrieck and Paepegem (2001) and Blanco et al. (2004), or a 

cohesive zone model (CZM) with cyclic degradation behavior (Nguyen et al., 2001), 

fully embedded in the finite element (FE) model of the wing. The proposed 

methodology can accommodate both damage propagation modeling approaches. 

However, in both cases, validation and calibration of the damage propagation model 

with experimental static and fatigue test data is essential in order to achieve accurate 

predictions. This important aspect will be discussed and properly addressed — 

together with all the other main building blocks of the proposed damage prognosis 

methodology — in the following chapters of the dissertation. 
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Figure 1.4: Idealized composite UAV wing with the skin-to-spar adhesive joints 
(highlighted in red in the figure) considered as one of the most damage-sensitive 

structural sub-components (Oliver et al., 2007). 
 

1.2. From structural health monitoring to damage prognosis  

As pointed out by Sohn et al. (2003), structural health monitoring (SHM) is 

the process of damage detection for aerospace, civil, and mechanical engineering 

infrastructure. Damage, in a structural or mechanical system, is herein defined as 

intentional or unintentional changes to its material and/or geometric properties, 

including variations of its boundary conditions and connectivities, which adversely 

affect its current and future performance. As an example, a crack that forms in a given 

structural component produces a change that alters the stress distribution and stiffness 

characteristics of the given component. Depending on the size and location of the 
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crack and the loads applied to the system, the adverse effects of this damage can be 

either immediate or may take some time to alter the system’s performance. In terms of 

length scales, all damage begins at the material level and then, under appropriate 

loading conditions, progresses to component-level and system-level damage at various 

rates. In terms of time scales, damage can accumulate incrementally over long periods 

of time, such as damage associated with fatigue or corrosion, or can occur on much 

shorter time scales as a result of scheduled discrete events, such as aircraft landings, 

and from unscheduled discrete events, such as rapid maneuvers or random impacts. 

Implicit in this definition of damage is the concept that damage is not meaningful 

without a comparison between two different system states. 

SHM involves the observation of a system over time, using periodically 

sampled dynamic response measurements from an array of sensors; the extraction of 

damage-sensitive features from these measurements; and the statistical analysis of 

these features to determine the current state of the system. For long-term SHM, the 

output of this process is providing periodically updated information regarding the 

ability of the structure to perform its intended function as the inevitable aging and 

degradation, resulting from operational environments, advance. After extreme events, 

such as earthquakes or blast loading, SHM can be used for remote and rapid condition 

assessment with the aim to provide, in nearly real time, reliable information regarding 

the integrity of the structure. This process is also referred to as condition monitoring, 

particularly when it is applied to rotating machinery, or simply diagnosis. One of the 

most essential parts of an SHM system is therefore given by the embedment of an 



10 

 

NDE system (or a set of NDE systems) into a structure to allow continuous remote 

monitoring for damage. There are several advantages in using an SHM system over 

traditional inspection cycles. The primary goal of SHM is to replace current inspection 

cycles with a continuous monitoring system. This would reduce the downtime of the 

vehicle, and increase the probability of damage detection prior to catastrophic failure. 

More importantly, a continuous monitoring system would allow for shifting towards a 

cost-efficient conditioned-based maintenance (CBM) — i.e., a set of maintenance 

processes based on continuous real-time assessment of the structural health from data 

provided by embedded sensors and/or external tests and measurements (Fitzwater, 

2011). The final objective of CBM is to be able to perform maintenance only upon 

evidence of need. Several parts of SHM systems have been developed and tested 

successfully, however much work remains to be done before these systems can be 

reliably implemented and deployed in an operational vehicle. 

According to Farrar et al. (2003) and Inman et al. (2005), damage prognosis is 

instead the estimate of a system’s remaining useful life. This estimate is based on the 

output of predictive models, which develop such estimates by coupling information 

from (i) usage monitoring; (ii) structural health monitoring; (iii) past, current, and 

predicted future environmental and operational conditions; (iv) original design 

assumptions regarding loading and operational environments; and (v) previous 

component-level and system-level testing. In other words, damage prognosis attempts 

to forecast the performance of a system by assessing its current state of damage 

through NDE measurements, by estimating the future loading environments for that 
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system, and by predicting through simulation and past experience its remaining useful 

life. The damage prognosis problem presents three main critical areas: (i) sensing and 

processing hardware, (ii) modeling and simulation, and (iii) data interrogation. In the 

area of measurement and instrumentation, key challenges include increasing the sensor 

density (i.e., the NDE sensor network embedded in the system) and moving to an 

active sensing approach (Lanza et al., 2007). Modeling and simulation challenges 

include (i) predicting the evolution of component-level damage and its effects on 

system-level failures at future times; (ii) developing reduced-order predictive models 

(i.e., response surface models) for embedment in microprocessors; and (iii) 

quantifying the level of uncertainty and/or confidence in these predictive models. Data 

interrogation challenges include data management and data mining on large databases 

resulting from the increased number of sensors used in the NDE monitoring. 

1.3. Review of NDE techniques for composite materials 

Since NDE techniques represent a crucial part of the damage prognosis 

methodology proposed in this thesis, a brief overview of some of these techniques — 

commonly used to detect, locate, and quantify damage in composite materials and 

structures — is presented in this section. As discussed by Kessler (2002), there are 

several difficulties in detecting damage in composite materials as opposed to more 

traditional engineering materials such as metals and plastics. One reason is due to their 

inherent inhomogeneity and anisotropy: while most metals and plastics are formed by 

one type of uniformly isotropic material with very well known mechanical properties, 

laminated composite materials can exhibit a large variability of their material 
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properties based on the chosen fibers, matrix, layup, and manufacturing process. This 

fact, besides rendering the mathematical modeling of composite materials a very 

complex task, it also considerably complicates the analysis and processing of NDE 

sensor data (Salamone et al., 2009). Other challenges come from the fact that typical 

damage mechanisms in composite materials frequently initiate and propagate below 

the surface (e.g., impact-induced inter-ply delamination, fatigue-induced debonding, 

etc.), a scenario which further prevents the implementation of several, and more 

traditional, detection methods. Furthermore, the importance of damage detection in 

composite structures is accentuated over its counterpart in metallic and unreinforced 

plastic structures because of their (extremely demanding) load bearing requirements 

which could cause an unexpected sudden failure of a composite component and lead to 

the catastrophic failure of the entire system. Therefore, the development of reliable 

damage detection methods is essential to maintain the integrity of structural systems 

employing these materials. The following represent some of the various 

nondestructive techniques that have been developed for the detection of damage in 

composite materials: 

(i) Visual inspection methods 

(ii) X-ray and C-scan methods 

(iii) Strain-gauge and fiber-optic methods 

(iv) Vibration-based methods 

(v) Ultrasonic methods 

(vi) Eddy current methods 
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1.3.1. Review of NDE techniques used for bond inspection 

As already pointed out earlier in this chapter, for aircrafts mainly constructed 

with lightweight carbon fiber composites, such as unmanned aerial vehicles (UAVs), 

the skin-to-spar adhesive joints are among the most critical sub-components. 

Structural defects that initiate (and then invisibly propagate) in these joints can lead to 

a consistent deterioration of the flight performance and even to catastrophic failures. 

Typical bond defects include disbonds, porosity, poor adhesion between adhesive and 

adherend, and poor cohesive strength. Several NDE techniques are currently used by 

the industry as well as the academic world: eddy currents, acoustic emission 

(Velasquez and Kosmatka, 2011), ultrasonic inspections (Blitz and Simpson, 1996), 

radiography, thermography, or just basic visual inspection. Among them, ultrasonic 

inspection (Bartoli, 2007) is considered the only low-cost technique able to achieve 

high level of accuracy in damage detection or materials characterization, and has been 

under development for decades for bond inspection applications. 

In ultrasonic inspection, normal-incidence testing (through-transmission and 

pulse-echo) has been widely used in the past and has been proven to be useful for 

defects detection and mechanical material properties characterization. These 

techniques, which essentially analyze the transmission and reflection of the energy 

carried by the bulk ultrasonic waves, may help calculate stiffness and thickness of the 

bond layer in adhesive joints that, in turn, can be related to the bond cohesive strength. 

Using the same principles, NDE techniques can also be used to evaluate the presence 

and extent of a disbond (i.e., locating the disbond and quantifying its extent). 
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An alternative new ultrasonic approach, for the inspection of the bond state, 

makes use of guided waves. These waves propagate along the structure (i.e., the wave 

guide) with a particular behavior driven by the geometry and material properties of the 

system. The main advantage of this approach is the possibility to inspect a long 

segment of the test piece at once. Larger areas, compared to those normally being 

monitored by localized point-by-point standard bulk wave ultrasonic testing, can in 

fact be inspected using guided waves and single pulse excitation. While the potential 

for long-range propagation of ultrasonic guided waves through layered metal-to-metal 

adhesive interfaces has been investigated and validated by experiments, fewer 

references can be found regarding composite joints. However, the use of ultrasonic 

guided waves presents itself as one of the most realistic methods due to its capability 

of long-range inspection and the ability to work on various types of structural 

components. 

1.4. Damage prognosis applications beyond composite aerospace structures 

The work presented in this thesis can be extended, with some modifications 

and additions, to other engineering fields in which damage prognosis is becoming 

more and more important for a cost-effective life-cycle management of a particular 

structure or system. In Civil Engineering, for instance, the driver for prognosis is 

largely governed by large-scale discrete events rather than more continuous 

degradation (Farrar et al., 2003). Typical examples are aerodynamic gust loads on 

long span bridges and earthquake loading on all types of civil infrastructure. Although 

cyclic loads caused by traffic are also a consideration (Nakasa et al., 1983; Li et al., 
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2010; Morcous et al., 2010), the discrete events are the ones that require immediate 

prognosis for future use. Damage prognosis applications in the civil engineering field 

requires a much denser array of sensors to identify local structural degradation than is 

typical for most current instrumentation systems, designed for seismic monitoring. 

Current wired technology in the seismic field has a cost of about $10,000 per node 

(Farrar et al., 2003), including installation, which limits the sensor density. In 

California, for example, the most densely instrumented structures have on the order of 

10–30 sensors to measure seismic response. For damage prognosis, a one to two 

orders of magnitude increase in sensor density is required. It is the opinion of the 

entire research community that this increase can only be achieved economically by the 

use of new sensing technologies such as wireless, self-assembling, and embedded 

devices based on integrated circuit fabrication technologies. 

Another possible outlet for the damage prognosis methodology proposed 

herein is given by wind turbines and, in particular, composite wind turbine blades 

(Ciang et al., 2008). Renewable energy sources have in fact gained much attention due 

to the recent energy crisis and the urge for clean energy. Among the main options 

being studied, wind energy is a strong contender because of its reliability due to the 

maturity of the technology, good infrastructure and relative cost competitiveness. In 

order to harvest wind energy more efficiently, the size of wind turbines has become 

physically larger, making maintenance and repair work difficult. In order to (i) 

improve safety standards, (ii) minimize downtime, (iii) lower the frequency of sudden 

breakdowns and associated huge maintenance and logistic costs, and (iv) provide 
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reliable power generation, wind turbines must be periodically or continuously 

monitored to ensure that they are in safe operational conditions. Among all possible 

monitoring systems, a continuous structural health monitoring (SHM) solution, 

leveraging on sensor-based non-destructive inspections and evaluation methods, can 

represent the cardinal point to then efficiently perform damage prognosis on this type 

of structures. 

Finally, the proposed damage prognosis framework can also be extended and 

appropriately adapted to study the reliability of aging offshore platforms (Moan, 2005, 

2007, 2008), develop a reliability-based management and maintenance program for 

these critical systems, and to monitor their structural integrity in order to prevent 

environmental disasters such as the one recently occurred in the Gulf of Mexico on 

April 20th, 2010 (http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill, webpage 

accessed on May 16th, 2011). Adequate performance of offshore structures is ensured 

by designing for a service life of twenty years or more (Moan, 2005) and safety 

requirements are imposed to avoid ultimate consequences such as fatalities, 

environmental damage (as mentioned earlier) or property damage. However, periodic 

monitoring of these types of structures represents an essential ingredient for 

maintaining an adequate safety level, especially with respect to fatigue, corrosion and 

other degradation phenomena developing during service life. Periodic monitoring is 

also essential to avoid local failures that could be very expensive to repair (particularly 

for underwater sub-structures) and may result in pollution of the surrounding 

environment. It is also worth noting that operational and environmental loads, acting 
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on offshore structures and thus driving the fatigue damage growth, are highly 

stochastic in nature (Moan et al., 2005) and must be treated in a rigorous probabilistic 

sense. Moreover, for many practical reliability assessment applications, combined 

wave and wind loads must also be simultaneously considered during the analyses 

(Ditlevsen, 2002). A comprehensive framework capable of handling multiple loading 

scenarios and superimposing their effects on the structure is therefore needed also 

within this field of application. 

1.5. Research needs, objectives, and scope 

As pointed out earlier in this chapter, damage prognosis is a multidisciplinary 

field with several challenges. It involves the use of NDE techniques to monitor and 

assess the current state of damage of the structural system under consideration. 

Measurement errors are part of every NDE technique and they need to be rigorously 

taken into account in the damage prognosis process. The uncertainty associated with 

these measurements must be quantified and then propagated through all the 

subsequent prognosis stages up to the final decision making process. These stages 

involve the probabilistic characterization of future operational loads, the propagation 

of the current state of damage through predictive modeling techniques, and the 

computation of the overall system reliability at future times. The outcomes from this 

last stage constitute the basis for the decision making process mentioned above; these 

outcomes are inherently affected by (i) the initial NDE measurement uncertainty, (ii) 

the error in the prediction of future loading conditions, and (iii) all the predictive 

modeling errors. 
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One of the main objectives of this research work is to provide a rigorous and 

robust mathematical integration and connection (within a unique and exhaustive 

probabilistic framework) of all the analysis steps involved in the damage prognosis 

process. Additionally, the proposed research provides the fundamental basis to 

systematically quantify the uncertainty in each of these prognosis steps, and to 

propagate all these sources of uncertainty from the initial NDE inspection up to the 

final decision making step. Furthermore, it also outlines how advanced analysis 

techniques for Bayesian updating, such as Markov Chain Monte Carlo methods, and 

computationally efficient modeling approaches, such as mechanics-based damage 

evolution modeling and response surface methodologies (also known as metamodeling 

or surrogate modeling techniques), can be synergically integrated within the proposed 

damage prognosis framework. 

This framework is verified and validated through three benchmark applications 

with increasing levels of complexity. This strategy allowed for (i) rigorous verification 

and validation of each of the main steps of the methodology, (ii) execution of 

extensive parametric and sensitivity studies, and (iii) comparison of the results 

obtained from the numerical simulations with analytical (closed-form) solutions. 

1.6. Organization of the thesis 

The presentation of this research work has been divided into ten chapters, the 

contents of which are outlined below: 

Chapter 1 serves as an introduction to the topic of structural health monitoring 

and damage prognosis (SHM-DP) of composite aerospace structures and composite 
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UAVs in particular. It provides an overview of the damage mechanisms typical of 

composite structures, with emphasis on fatigue-induced damage evolution along the 

adhesive joints part of this type of structural systems. It also stresses the need for an 

integrated SHM-DP approach for composite aerospace structures, emphasizing its 

interdisciplinarity and complexity. The research needs and objectives of this work are 

also outlined. 

Chapter 2 offers an overview of the proposed reliability-based damage 

prognosis framework for remaining fatigue life prediction of a composite UAV wing. 

Each of the five main analysis steps of the methodology is concisely described in this 

chapter; furthermore, its specific contribution, primarily objective, and inherent 

uncertainty added to the damage prognosis process are clearly highlighted. Finally, an 

overview of a possible extension of the proposed framework to other structural and/or 

mechanical systems is also presented. 

Chapter 3 analyzes in detail the first analytical step of the methodology, 

namely Bayesian inference. This step aims at providing the probabilistic assessment of 

the current state of damage of the monitored structural component and/or sub-

component (e.g., the entire UAV wing or the skin-to-spar adhesive joints of a UAV 

wing). Emphasis is placed on (i) the probabilistic treatment of the NDE inspection 

outcomes and (ii) the proposed recursive Bayesian updating scheme used to update the 

probability distribution functions of both damage sizes and fatigue damage evolution 

parameters. 
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Chapter 4 unveils (after the brief overview provided in Chapter 2) the details of 

the second step of the proposed damage prognosis framework, namely probabilistic 

load hazard analysis. Turbulence- and maneuver-induced load models are presented 

and validated through flight test data found in the literature. Furthermore, the 

extension of the proposed load modeling approaches to other types of loads (acting on 

structural systems different from a composite UAV wing) is also discussed. 

Chapter 5 thoroughly examines the third step of the methodology, namely 

probabilistic structural response analysis. It represents the most complex and 

computationally challenging step of the overall framework, involving fatigue-induced 

damage propagation predictions and multiple applications of the total probability 

theorem in a nested fashion. Both mechanics-based damage models (e.g., cohesive 

zone models) and damage evolution models based on linear elastic fracture mechanics 

(LEFM) and experimental observations are discussed and linked to the proposed 

prognosis framework. 

Chapter 6 uses the damage evolution results, discussed in the previous Chapter, 

to assess probabilistically the global performance level of the structural system 

through the computation of a series of global damage variables (or indicators). For the 

specific case of a composite UAV wing, focus is on its global aeroelastic performance. 

These tasks are part of the fourth step of the proposed framework, namely 

probabilistic flutter & LCO analyses. 

Chapter 7 completes the theoretical illustration of the proposed damage 

prognosis methodology by analyzing its fifth step, namely damage prognosis analysis. 
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In this chapter, the structural system is abstracted to a series system and expressions 

for the computations of uni-modal bounds to the probability of system failure and 

false-alarm at future times are derived and discussed. Both local and global failure 

modes are considered in the analyses. 

Chapter 8 represents the first partial verification and validation of the proposed 

methodology through its application to a simple testbed structure: a simply-supported 

composite laminated beam made out of two unidirectional composite adherends 

bonded together through an (imperfect) adhesive interface and subjected to an external 

concentrated load applied at midspan. The adhesive interface is considered as the 

unique damageable sub-component of the beam and the fatigue-driven damage 

evolution along this joint is modeled through a postulated (exponential) damage 

propagation/evolution process; an approach essentially dictated by mathematical and 

computational convenience, and already used in previous research work (Deodatis et 

al., 1992; Ito et al., 1992; Mohanty et al., 2009). 

Chapter 9 verifies and validates the methodology in its entirety by using the 

same benchmark structure introduced in Chapter 8. However, the fatigue damage 

evolution process along the adhesive interface is herein simulated via a damage 

propagation law based on linear elastic fracture mechanics (LEFM) principles and 

experimental observations: the Forman’s model (Forman, 1972; Chow, 1990). 

Additionally, this chapter validates the proposed recursive Bayesian inference and 

probabilistic damage evolution analysis steps by using a set of fatigue test data found 

in the literature (Virkler et al., 1979). These test data are represented by 68 crack 
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propagation trajectories that were obtained from center-cracked aluminum plates made 

out of 2024-T3 aluminum alloy and fatigued under constant amplitude harmonic load. 

Two of these trajectories are selected and used as underlying true damage propagation 

paths within the application of the proposed damage prognosis framework. Given the 

characteristics of the applied load during the experimental tests (i.e., harmonic load 

with fixed load ratio and constant amplitude and frequency), Paris law (Paris and 

Erdogan, 1963) is used as damage propagation model for this specific experimental 

validation of the proposed prognosis methodology. 

Chapter 10 summarizes the research work performed, emphasizes the 

important original contributions and findings of this dissertation, and discusses future 

research directions and recommendations. 
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CHAPTER 2  

 

OVERVIEW OF PROPOSED DAMAGE 

PROGNOSIS METHODOLOGY 

2.1. Introduction  

This chapter presents an overview of a newly developed reliability-based 

damage prognosis methodology for remaining fatigue life prediction of composite 

UAV wings, monitored through (local) non destructive evaluation (NDE) inspections. 

As illustrated in Figure 2.1, this methodology aims at providing recursive predictions 

of the future performance level and the corresponding reliability index of the 

monitored structure by taking advantage of NDE measurements results that become 

available every time new NDE data are collected and processed. From Figure 2.1, it 

can also be deduced that the proposed framework involves three main fundamental 

blocks, namely, Bayesian inference, predictive modeling, and damage prognosis.  
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Figure 2.1: Flowchart illustrating the proposed recursive damage prognosis scheme 
driven by continuous and/or periodic NDE (sensor-based) monitoring results. 

 

In the first fundamental step, the proposed Bayesian inference scheme is used 

to update the joint probability distribution function (PDF) of the damage extents at the 

inspected damage locations. In other words, it provides an updated/posterior 

information on the current state of damage by combining a prior information on the 

current state of damage and the processed NDE results. The outcome from this first 

fundamental step (i.e. the posterior knowledge about the current state of damage of the 

monitored system) is then used as input for the predictive modeling part. This second 

fundamental step of the proposed framework provides recursive predictions of the 

future (and more severe) states of damage of the structure. Furthermore, when new 

NDE results become available, a subset of the results obtained from this second block 

is used as new prior knowledge to repeat the Bayesian inference step. Finally, the 

damage prognosis step uses the predictive modeling results to compute the reliability 
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index of the structure (or, in an equivalent fashion, the probability of failure of the 

overall system) at future times. 

The predictive modeling part of the proposed methodology can be further 

decomposed into three steps, thereby leading to a total of five analytical steps as clearly 

shown in Figure 2.2. In this Chapter, a brief description of each of these five analytical 

steps is provided in order to introduce the reader to the rigorous in-depth analysis 

presented in Chapters 3 through 7. These five steps are: (1) Bayesian inference, (2) 

probabilistic load hazard analysis, (3) probabilistic structural response analysis 

(sometimes denoted also as probabilistic damage evolution analysis in Chapters 8 and 

9), (4) probabilistic flutter & limit cycle oscillation (LCO) analyses, and (5) damage 

prognosis analysis. All these steps, linked together, lead to the final decision making 

process aimed at providing a conditioned-based cost-efficient maintenance plan. 
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Figure 2.2: Overview of the proposed reliability-based damage prognosis 
methodology for remaining service life prediction of a composite UAV wing. 
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More specifically, the flowchart shown in Figure 2.2 conceptually illustrates 

the main analytical steps of the proposed damage prognosis methodology, as well as 

the process of uncertainty quantification (within each step) and propagation (between 

subsequent steps) necessary to estimate the remaining service life of a UAV structural 

component (with special focus on a composite UAV wing) once a new NDE 

inspection outcome, at current time pt  (i.e., from the most recent NDE inspection), 

becomes available. Additionally, the flowchart clearly shows how the five steps, 

previously mentioned, are all linked together (in a probabilistic sense) and it also 

displays the main random variables considered in each analytical step. 

2.2. Bayesian inference  

This first step aims at providing the posterior joint PDF of the damage sizes at 

the monitored locations by repeatedly using/incorporating the NDE inspection 

outcome obtained after each NDE inspection. The inspection outcome is represented 

by the measured (through NDE sensor data processing) damage size/extent vector, 

m
pa , at the inspected locations at time ,pt  and is viewed herein as a particular 

realization of the random vector m
pA . It is worth noting that for the case of a composite 

UAV wing, whose skin-to-spar adhesive joints are periodically monitored through 

NDE inspections, the vector m
pa  would represent the collection of the measured 

disbond lengths (from the wing-root) at time pt . This new information, m
pa , is used (in 

the first step of the methodology, Bayesian inference) to compute, through a Bayesian 

updating procedure, the posterior joint PDF of the actual/true damage size vector, a
pA , 
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at time ,pt  conditional on the material ( matΘ ) and damage model ( damΘ ) parameters, 

and all the previous 1p+  NDE measurement outcomes obtained up to time ,pt  

denoted as [ ] { }0, 0 1
m m m m, , ...,p p=a a a a . For the sake of simplicity, this posterior joint 

conditional PDF, given in full form as ( )[0, ]
a mat dam m

[0, ]
a mat dam m, ,

, ,p p
p pf ′′

A Θ Θ A
a θ θ a , is hereafter 

denoted ( )
a mat dam

a mat dam,
, ,p

pf ′′
A Θ Θ

a θ θ  without explicitly including the dependency on 

[0, ]
m

pA . Similarly, the prior knowledge about aA p  is given by 

[ ]( )[0, 1]
a mat dam m

0, 1
a mat dam m, ,

, , ,p p

ppf −

−′
A Θ Θ A

a θ θ a  or ( )
a mat dam

a mat dam,
,p

pf ′
A Θ Θ

a θ θ  in the simplified 

manner. The computed (at time )pt  posterior joint conditional PDF, 

( )
a mat dam

a mat dam,
, ,p

pf ′′
A Θ Θ

a θ θ  is unconditional on the damage size vectors 

0 1 1
a a a, , ..., p−A A A  and the entire dynamic loading history (from 0t  to )pt , because 

during each of the p runs of the prognosis methodology, between 0t  and ,pt  the 

uncertainty associated with 0 1 1
a a a, , ..., p−A A A  and the loading characteristics is 

integrated out (in the application of the total probability theorem, TPT); this point is 

shown later in Equation (2.7). As a further remark, multiple damage locations and 

multiple damage mechanisms (evolving simultaneously at a given location) can 

potentially be considered by the recursive Bayesian updating procedure used herein, 

with the actual size of the jth detected damage mechanism evolving at the ith monitored 

damage location at time pt , denoted as ( , , )i j p
aA . Damage locations and damage 

mechanisms are uncertain, due to the inherent imperfections of NDE techniques; 
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however, as a simplifying assumption, they are considered deterministic and known 

throughout this study. 

The random parameter vector matΘ  (of length matn ) exclusively describes the 

uncertainty in the (potentially time-dependent due to aging) material properties used to 

model the parts of the airframe — such as wing-spars, bulkheads, and stringers — 

which are herein assumed to be non-damageable (within the range of damage 

mechanisms typical of laminated composites mentioned earlier in Chapter 1), while the 

random vector damΘ  (of length damn ) quantifies the uncertainty of those parameters that 

control the mechanical properties (and especially the fatigue-induced material 

degradation) in the pre-identified damageable subcomponents. For the specific case 

being studied herein — a composite UAV wing whose skin-to-spar adhesive joints are 

considered the only damageable subcomponents — matΘ  defines density, damping, 

stiffness and strength parameters of (i) the composite laminated spars, and (ii) the 

honeycomb-core composite panels of the wing-skin. On the other hand, damΘ  

characterizes the mechanical properties of the adhesive joints where debonding can 

occur — e.g., mode I & II critical fracture energies, peak shear strength, ultimate 

opening or sliding displacements before complete debonding, and rate of fatigue 

degradation (through a series of fatigue degradation parameters). Therefore, damΘ  does 

not characterize the bulk material properties of the adhesive/epoxy but it rather describes 

the uncertainty of the adhesive interface, which implicitly accounts for the statistical 

variability induced by other factors such as surface preparation of the adherends, bond 

geometry, etc. In this study, in order to simplify the problem, matΘ  and damΘ  are 
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assumed to be statistically independent (s.i.) ; additionally, they are also considered to 

be time-invariant (i.e., they do not renew in time; Der Kiureghian, 2005). 

As a final remark for this section, it is also worth noting that the joint PDF of the 

damage evolution parameter vector, damΘ , can be recursively updated using the NDE 

inspection outcome after each NDE inspection. In light of this consideration, whenever 

this second update is performed, the damage evolution parameter vector at time pt  will 

be denoted by dam
pΘ  and its corresponding posterior joint PDF will be identified as 

( )[0, ]
mdam

[0, ]
dam mp p
p pf ′′

Θ A
θ a  or, in condensed notation, as ( )

dam
damp
pf ′′

Θ
θ . The procedure to 

achieve this second update will be later described in detail in Chapters 3, 8, and 9. 

2.3. Probabilistic load hazard analysis 

The second step of the damage prognosis methodology, probabilistic load 

hazard analysis, defines the joint PDF of the turbulence ( TIM ) and maneuver ( MIM ) 

intensity measures, conditional on the flight profile ( FΘ ) and the assumed statistically 

independent turbulence ( TΘ ) and maneuver ( MΘ ) random parameter vectors. This 

joint conditional PDF is denoted as ( )
T M F T M F, ,fIM IM Θ im im θ  and is numerically 

computed by unconditioning the joint conditional PDF 

( )
T M T M F T M T M F, , , , , ,fIM IM Θ Θ Θ im im θ θ θ  with respect to (w.r.t.) TΘ  and MΘ , as shown 

later in Equation (2.8). The random vector TIM  is considered to be statistically 

independent of MΘ ; similarly, the random vector MIM  is assumed to be statistically 

independent of TΘ ; however, both TΘ  and MΘ  are generally not statistically 



34 

 

independent of FΘ  (as shown in Chapter 4). Additionally, by defining the intensity 

measure random vector as { }T M,=IM IM IM , it is possible to write, in a more 

compact form, the joint conditional PDF ( )
T M F T M F, ,fIM IM Θ im im θ  as ( )

F FfIM Θ im θ . 

The probabilistic load hazard analysis step described above provides the information 

on the aerodynamic loads necessary to stochastically compute the structural response 

of the UAV wing at a future time pt t> . In the proposed methodology, this task is 

achieved in a discrete fashion by defining q  equally spaced future times 

{ }∆ , 1, 2, ...,q
p pt t q q qτ= + = , at which the response of the system (in terms of 

damage propagation results) is evaluated in probabilistic terms. 

Within the time window (or duty cycle) , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ , an unknown — a priori — 

number of flight segments ( sn ), can occur and each of them is characterized herein by a 

unique altitude of flight. Therefore, the vector FΘ  collects the flight profile parameters 

for each of these sn  flight segments in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  as { }F F , 1, ...,(k)

sk n= =Θ Θ . Similarly, it 

is possible to rewrite the turbulence and maneuver parameter vectors (introduced in the 

previous paragraph) as { }T T , 1, ...,(k)
sk n= =Θ Θ  and { }M M , 1, ..., ,(k)

sk n= =Θ Θ  

respectively. Examples of parameters collected in F
(k)Θ  (Guo et al., 2011) include the 

altitude of flight, (k)H ; the mean airstream velocity w.r.t. a reference system fixed to 

the aircraft, (k)V ; and the time of flight during the kth flight segment, (k)T ; all of them 

viewed as random quantities, with their own PDFs and potential statistical 

correlations. As a direct consequence of these considerations, the vector TIM  must 
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define (probabilistically) the intensity of the turbulence velocity field for each flight 

segment in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  as { }T T , 1, ...,(k)

sk n= =IM IM , where the sub-vectors T
(k)IM  are 

assumed to be mutually s.i. and independent of MΘ ; however, each of them depends on 

T
(k)Θ  as well as on F

(k)Θ  through the altitude (k)H  only, as clarified later in Chapter 4. The 

two random components of T
(k)IM  are chosen to be the root-mean-square (RMS) value 

( T
(k)Σ ) of the atmospheric turbulence velocity field and the extent along the flight path of 

the turbulent patches ( T
(k)S∆ ) during the kth flight segment. 

On the other hand, MIM  provides the probabilistic characterization of the 

intensity and duration of the maneuver-induced loads (acting on the UAV wing) 

during the time window , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  — e.g., the increment (w.r.t. the straight-and-level 

unaccelerated flight conditions) of the aerodynamic lift generated by the aircraft wings 

during a steady-level banked turn. In this work, since the main focus is on the load-

induced stresses at the wing-root and large angles of attack as well as rapid acrobatic 

maneuvers are not considered, the intensity of a maneuver-induced load is treated, as an 

increment (positive or negative) of the aerodynamic lift acting on the UAV wing 

during straight-and-level unaccelerated flight conditions, and it is quantified through a 

non-dimensional (multiplicative) maneuver-induced load factor, herein denoted as 

MΖ . It is worth noting that (i) the condition M 1Ζ =  corresponds to a straight-and-level 

unaccelerated flight and (ii) the load factor MΖ  is also applied/multiplied to each mass 

particle of the wing; consequently, the intensity of the total maneuver-induced load is 
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the sum of the scaled aerodynamic lift and the scaled self-weight of the wing. 

Furthermore, the maneuver intensity MΖ , treated as a random quantity in the proposed 

framework, is assumed to be constant during the entire maneuver (i.e., micro-scale 

fluctuations of the maneuver-induced load within a certain maneuver are not 

considered herein) and its PDF is assumed to be statistically dependent on FΘ . 

Therefore, in the most general case, also MIM  must be specified for each flight 

segment in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  as { }M M , 1, ...,(k)

sk n= =IM IM  where the sub-vectors M
(k)IM  are 

assumed to be mutually s.i. and independent of TΘ . The components of M
(k)IM  

completely characterize the intensity and duration of maneuvers during the kth flight 

segment and are: the maneuver-induced load factor ( M
(k)Ζ ) and the maneuver duration 

( M
(k)T∆ ). In general, MIM  is strongly dependent on the type of aircraft, and its 

probabilistic characterization should thus be based on flight test data (Rustenburg et 

al., 1998, 1999, 2008) from similar aircrafts during similar mission profiles. 

Furthermore, especially for fighter aircrafts and UAVs, the characteristics of a maneuver 

can be reasonably considered independent of the atmospheric turbulence level (i.e., 

TIM  and MIM  are s.i.) and therefore the joint conditional PDF 

( )
T M F T M F, ,fIM IM Θ im im θ  can be written as the product of the two s.i. terms 

( )
T F T FfIM Θ im θ  and ( )

M F M FfIM Θ im θ . These two intensity measures, combined 

together, are then used as driving sources of uncertainty for the stochastic realization of 

the aerodynamic load input as discussed in Chapter 4. 
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2.4. Probabilistic structural response analysis 

In the third step of the proposed methodology, namely probabilistic structural 

response analysis, the joint conditional PDF of the structural response of the system — 

expressed in terms of the predicted (from time pt ) damage size vector ( [ , ]
a
p qA ) at the 

generic future time q
p pt t q∆τ= +  with { }1, 2, ...,q q∈  — is computed through 

extensive Monte Carlo (MC) simulations or more advanced semi-analytical methods 

using either the detailed FE model of the structure or a computationally more efficient 

surrogate model (e.g., metamodel or response surface model; Myers and Montgomery, 

1995; McFarland, 2008) derived from the FE model. This joint PDF, conditional on 

matΘ , damΘ , and all the previous NDE outcomes [ ]0,
m

pa  (not explicitly included in the 

notation), is denoted ( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ  and is computed by unconditioning 

the joint conditional PDF ( )[ , ]
a mat dam a F

[ , ]
a mat dam a F, , , ,

, , , ,p q p
p q pf

A Θ Θ A IM Θ
a θ θ a im θ  w.r.t. a

pA , 

IM , and FΘ . It is worth noting that the conditional joint PDF  

( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ  is not unconditioned w.r.t. matΘ  and damΘ , at this stage of 

the uncertainty propagation process, since these conditioning variables are used 

explicitly in the next analytical step of the methodology as outlined in the next section. 

Furthermore, the interpolated (or extrapolated) joint conditional PDF of the system 

response at time 1,pt +  ( )[ , 1]
a mat dam

[ , 1]
a mat dam,

,p p
p pf +
+

A Θ Θ
a θ θ , is also used as prior information 

for the next Bayesian updating aimed at computing the posterior joint conditional PDF 
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( )1
a mat dam

1
a mat dam,

,p
pf +
+′′

A Θ Θ
a θ θ  as the next NDE inspection outcome ( 1

m
p+a ), at time 1,pt +  

becomes available. 

2.5. Probabilistic flutter and limit cycle oscillation (LCO) analyses 

The fourth step, namely probabilistic flutter and limit cycle oscillation (LCO) 

analyses, estimates the joint PDF of the predicted damage size vector [ , ]
a
p qA , flutter 

velocity [ , ]
F

p qV , and the LCO( -dimensional)n  vector of LCO velocities ( [ , ]
LCO

p qV ) at the 

generic future time ∆q
p pt t q τ= +  —  i.e., the joint PDF ( )[ , ] [ , ][ , ]

a F LCO

[ , ] [ , ] [ , ]
a F LCO, ,

, ,p q p qp q
p q p q p q

V
f v

A V
a v , 

or ( )[ , ][ , ]
a F,LCO

[ , ] [ , ]
a F,LCO,

,p qp q
p q p qf

A V
a v  in a more condensed notation, where the 

G-dimensionaln (with G LCO1n n= + ) vector [ , ]
F,LCO

p qV  is defined as 

{ }[ , ] [ , ] [ , ]
F,LCO F LCO,p q p q p qV=V V . The flutter velocity (altitude-dependent in the most general 

case) represents the lowest velocity at which flutter occurs whereas each of the LCOn  

LCO velocities, collected in the random vector [ , ]
LCO

p qV , indicates the velocity at which the 

corresponding LCO amplitude (e.g., maximum wing tip displacement or twist 

amplitude) reaches a predefined limit threshold. The joint PDF ( )[ , ][ , ]
a F,LCO

[ , ] [ , ]
a F,LCO,

,p qp q
p q p qf

A V
a v  

is based on the posterior information on the level of damage at time pt  and the damage 

propagation results from time pt  to q
pt ; both contributions are combined into the joint 

conditional PDF ( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ  computed in the third step of the 

methodology. Additionally, it contains both local (through [ , ]
a
p qA ) and global (through 
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[ , ]
F,LCO

p qV ) damage-related information and can be theoretically derived by using the 

definition of conditional probability as 

 ( ) ( ) ( )[ , ] [ , ][ , ] [ , ] [ , ]
aa F,LCO aF,LCO

[ , ] [ , ] [ , ] [ , ] [ , ]
a F,LCO F,LCO a a,

,p q p qp q p q p q
p q p q p q p q p qf f f= ⋅

AA V V A
a v v a a  (2.1) 

 

where both PDFs, ( )[ , ] [ , ]
aF,LCO

[ , ] [ , ]
F,LCO ap q p q
p q p qf

V A
v a  and ( )[ , ]

a

[ , ]
ap q
p qf

A
a , are determined by 

unconditioning the joint conditional PDFs ( )[ , ] [ , ]
a mat damF,LCO

[ , ] [ , ]
F,LCO a mat dam, ,

, ,p q p q
p q p qf

V A Θ Θ
v a θ θ  and 

( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ  w.r.t. matΘ  and damΘ . Since the vector { }[ , ] [ , ]

a F,LCO,p q p qA V  

provides information on the overall (i.e., local and global) state of damage of the system 

at time q
pt , it is denoted [ , ]

L,G
p qD  hereafter, i.e., { }[ , ] [ , ] [ , ]

L,G a F,LCO,p q p q p q=D A V , and all its 

components are clearly mutually statistically correlated. 

2.6. Damage prognosis analysis 

Once the joint PDF ( ) ( )[ , ] [ , ][ , ]
aL,G F,LCO

[ , ] [ , ] [ , ]
L,G a F,LCO, ,p q p qp q
p q p q p qf f=D A Vd a v  is determined, the 

probability of system failure at time q
pt , [ , ]

sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦ , can be estimated by performing 

component and system reliability analyses using well established methods (Ditlevsen 

and Madsen, 1996). As detailed in Chapter 7, these analyses are part of the fifth and 

final analytical step of the proposed framework, namely damage prognosis analysis, 

through three sub-steps: (i) computation of the component (or modal) conditional failure 

probabilities, [ , ] [ , ]
L, aF p q p q

ijP ⎡ ⎤
⎢ ⎥⎣ ⎦a  and [ , ] [ , ]

G, F,LCOF p q p q
rP ⎡ ⎤

⎢ ⎥⎣ ⎦v , associated with each of the A
pn  Local 
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and Gn  Global (aeroelastic) failure modes, respectively; (ii) computation of the 

unconditional modal failure probabilities, [ , ]
L,F p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦  and [ , ]
G,F p q

rP ⎡ ⎤⎢ ⎥⎣ ⎦  by unconditioning the 

terms [ , ] [ , ]
L, aF p q p q

ijP ⎡ ⎤
⎢ ⎥⎣ ⎦a  and [ , ] [ , ]

G, F,LCOF p q p q
rP ⎡ ⎤

⎢ ⎥⎣ ⎦v  w.r.t. [ , ]
a
p qA  and [ , ]

F,LCO
p qV , respectively; and (iii) 

computation of lower and upper bounds for [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  by abstracting the UAV wing as a 

series system (i.e., a system that fails if any of its reliability components fails) or a 

combination of series and parallel systems. It is worth noting that the failure event [ , ]
sysF p q  

does not necessarily reflect a physical failure of the UAV wing at time q
pt . Finally, as a 

further remark, by considering different values of q, it is possible to predict the 

evolution in time of the reliability of the system. This step of the proposed methodology 

is described in more detail in Chapter 7. 

2.7. Decision making 

The final and most important outcome of the proposed methodology consists 

of the decision making process. It essentially uses the damage prognosis results 

obtained in the previous step — i.e., the predicted evolution in time of [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  — to 

optimize maintenance, ground inspection and repair programs, and consequently 

reduce their cost over the service life of the structure. The decisions made at current 

time pt  can be revised later (at times 1,pt +  2 ,pt +  etc.) as new NDE data (from both on-

ground and in-flight monitoring) are collected; a concept illustrated in Figure 2.3. 

Scheduling of the next on-ground inspection, maintenance or repair is obtained by 
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interpolating (or possibly extrapolating) the predictions for [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  (with 

1, 2, ...,q q= ) in order to estimate the time at which this probability will exceed a 

specified safety threshold (or decision value) 
F

p . The accepted range for 
F

p  strongly 

depends on the modal failure criteria adopted in the component reliability analyses 

(discussed in Chapter 7) and on the type of aircraft being monitored. Larger values of 

F
p  are generally tolerated for fighter aircrafts and UAVs, which normally operate over 

military zones, whereas a more strict threshold is assigned to commercial carriers. 
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Figure 2.3: Conceptual representation of proposed damage prognosis algorithm for 
two successive NDE inspections (at time pt  and 1pt + ) emphasizing the alternative and 
recursive use of statistical (i.e., data driven) and predictive modeling/analysis steps. 

 

2.8. Proposed damage prognosis framework viewed as an application of the 

total probability theorem 

The proposed reliability-based damage prognosis framework overviewed in 

this chapter can be interpreted (especially under the uncertainty propagation 
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perspective) as a conceptual application of the total probability theorem (TPT). Using 

the assumptions stated thus far in the current chapter together with the notation 

 [ ] [ ] ( )XdP X P x X x dx f x dx= < ≤ + =  (2.2) 

 [ ] [ ] ( ),, ,X YdP X Y P x X x dx y Y y dy f x y dx dy= < ≤ + ∩ < ≤ + =  (2.3) 

 ( )X ZdP X z dP X Z z P x X x dx Z z f x z dx⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = < ≤ + = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (2.4) 

the probability of system failure at time q
pt  can be obtained by using the TPT multiple 

times in a nested fashion as 

 
[ , ]
L,G

[ , ] [ , ]
a F,LCO

[ , ] [ , ] [ , ] [ , ]
sys sys L,G L,G

[ , ] [ , ] [ , ] [ , ] [ , ]
sys a F,LCO a F,LCO

F F

F , ,

p q

p q p q

p q p q p q p q

p q p q p q p q p q

P P dP

P dP

⎡ ⎤⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

∫

∫ ∫
D

A V

D D

A V A V
 (2.5) 

where the term [ , ] [ , ] [ , ]
L,G a F,LCO,p q p q p qdP dP⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦D A V  can be expressed as 

 [ ] [ ]
mat dam

[ , ] [ , ]
a F,LCO

[ , ] [ , ] [ , ]
F,LCO a mat dam a mat dam mat dam

,

, , ,

p q p q

p q p q p q

dP

dP dP dP dP

⎡ ⎤=⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦∫ ∫

Θ Θ

A V

V A Θ Θ A Θ Θ Θ Θ  (2.6) 

and the quantity [ , ]
a mat dam,p qdP ⎡ ⎤⎢ ⎥⎣ ⎦A Θ Θ  can be obtained by unconditioning the 

conditional joint probability [ , ]
a mat dam a F, , , ,p q pdP ⎡ ⎤

⎢ ⎥⎣ ⎦A Θ Θ A IM Θ  w.r.t. a
pA , IM , FΘ , 

and accounting for the fact that a
pA  is s.i. of both IM  and FΘ  (between time pt  and 

∆q
p pt t q τ= + ), as 
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[ ]

Fa

[ , ] [ , ]
a mat dam a mat dam a F

a mat dam F F

, , , , ,

,

p

p q p q p

p

dP dP

dP dP dP

⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤′′⋅ ⋅ ⋅⎢ ⎥ ⎣ ⎦⎣ ⎦

∫ ∫ ∫
IM ΘA

A Θ Θ A Θ Θ A IM Θ

A Θ Θ IM Θ Θ
 (2.7) 

where a mat dam,A Θ ΘpdP ⎡ ⎤′′⎢ ⎥⎣ ⎦  denotes the posterior conditional knowledge of aA p . 

Finally, the term FdP ⎡ ⎤⎣ ⎦IM Θ , which characterizes — in probabilistic terms — the 

turbulence- and maneuver-induced aerodynamic loads within the time window , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ , 

can conceptually be written as the product of two s.i. sub-terms as  

 T

M

F T M F T T F T F

M M F M F

, ,

,

dP dP dP dP

dP dP

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⋅ ⋅⎣ ⎦ ⎣ ⎦

∫

∫
Θ

Θ

IM Θ IM IM Θ IM Θ Θ Θ Θ

IM Θ Θ Θ Θ
 (2.8) 

If the joint PDF of damΘ  is also recursively updated after each NDE inspection 

(i.e., at time 1 2,  ,  ,p p pt t t+ +  etc.) then the damage parameter vector is denoted as dam
pΘ  

and Equations (2.6) and (2.7) must be rewritten as 

 [ ]
mat dam

[ , ] [ , ]
a F,LCO

[ , ] [ , ] [ , ]
F,LCO a mat dam a mat dam mat dam

,

, , ,
p

p q p q

p q p q p p q p p

dP

dP dP dP dP

⎡ ⎤=⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤′′⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦∫ ∫

Θ Θ

A V

V A Θ Θ A Θ Θ Θ Θ  (2.9) 

 
[ ]

Fa

[ , ] [ , ]
a mat dam a mat dam a F

a mat dam F F

, , , , ,

,

p

p q p p q p p

p p

dP dP

dP dP dP

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤′′⋅ ⋅ ⋅⎢ ⎥ ⎣ ⎦⎣ ⎦

∫ ∫ ∫
IM ΘA

A Θ Θ A Θ Θ A IM Θ

A Θ Θ IM Θ Θ
 (2.10) 

where ( )
dam

dam dam damp
p p pdP f d⎡ ⎤′′ ′′=⎢ ⎥⎣ ⎦ Θ

Θ θ θ  and ( )
dam

damp
pf ′′

Θ
θ  represents the posterior joint PDF 

of dam
pΘ  (at time pt ). 
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2.9. Rapid assessment of the UAV wing reliability after each NDE inspection 

In the formulation presented above, the damage prognosis analysis step 

consists of component and system reliability analyses performed at current time tp and 

based on the joint probabilistic characterization of the local and global states of 

damage at time q
pt . These states of damage, at future time q

pt , are predicted during the 

probabilistic damage evolution step, from time pt  to time q
pt , and the probabilistic 

flutter and LCO analyses step. The joint probabilistic characterization of local and 

global states of damage is provided by the joint PDF ( )[ , ]
L,G

[ , ]
L,Gp q
p qfD d , computed through 

Equation (2.6) and used to then provide an estimate for [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  at time q

pt , 

1, 2, ...,q q= . Additionally, as illustrated in Figure 2.4, the proposed prognosis 

framework can provide lower and upper bounds for the probability of system failure 

not only at an arbitrary time q
pt  in the future but also (in nearly real time) at the time 

just after the last NDE inspection (performed at pt ). This goal is achieved by (i) using 

the posterior joint conditional PDF, ( )
a mat dam

a mat dam,
,p

pf ′′
A Θ Θ

a θ θ  — which characterizes 

the local state of damage just after the last NDE inspection at time pt  — in  the flutter & 

LCO analyses step (i.e., without carrying out the probabilistic load hazard analysis and 

damage evolution steps), (ii) computing the joint PDF ( )
L,G

L,Gp
pfD d  at time ,pt  and (iii) 

performing, with this piece of information, the component and system reliability 

analyses necessary to estimate the probability sysF .pP ⎡ ⎤⎢ ⎥⎣ ⎦  
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Figure 2.4: Adaptation of proposed damage prognosis methodology for the    
reliability assessment just after the last NDE inspection at current time .pt  
 

2.10. Summary of novel contributions provided by the proposed methodology 

In summary, the proposed methodology represents an advanced tool 

integrating NDE inspection results, Bayesian updating, mechanics-based damage 

prediction, uncertainty quantification & propagation, and decision making related to 

the damage prognosis of a UAV wing. However, this methodology could be extended 

to the entire UAV structure (airframe), as well as to other mechanical and structural 

systems, such as wind turbines, critical components in offshore structures, etc. These 

extensions were already briefly discussed in Chapter 1 and will be further analyzed 

later on, with specific application examples, in Chapters 8 and 9. This methodology 

alternates between mechanics-based damage evolution prediction and Bayesian 

statistical inference to march forward in time — through successive duty cycles — and 

provide an estimate for the trend of the residual useful life of the structure (damage 
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prognosis). The proposed framework uses the new NDE inspection outcome at time tp 

to update the joint PDF of the damage size vector ( a
pA ) — numerically predicted from 

time tp-1 — through Bayesian updating. Simultaneously, using the same NDE outcome, 

the proposed Bayesian inference scheme can also provide an update for the joint PDF 

of the damage evolution parameter vector damΘ . Notice that the prior information (i.e., 

the prior joint PDF) on the state of damage at time tp is based on all the available NDE 

inspection data up to time tp-1 and the numerical prediction from time tp-1 to time tp. It 

is therefore based on a combination of mechanics-based prediction — inherently 

affected by the modeling assumptions behind the mathematical idealization of the real 

world structural system — and statistical inference from NDE results accounting for 

the uncertainty characterizing the latter. This uncertainty stems from the facts that the 

NDE technique itself is not fully reliable and the sensor data used in NDE may be 

contaminated by systematic errors and measurement noise (see Chapter 3). Once the 

Bayesian updating step (at tp) is completed, the trend in time — in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  — of the 

system reliability is predicted and the state of damage at the time of the next NDE 

inspection (at tp+1) can be estimated by interpolating or extrapolating the damage 

evolution prediction results obtained from the probabilistic structural response 

analysis step performed at time tp . The overall damage prognosis procedure can then 

be applied again (i.e., recursively) over the next duty cycle (from time tp+1 to time tp+2) 

in the same manner. All these concepts are also illustrated in Figure 2.3 (which was 

introduced earlier in this Chapter in Section 2.7). 
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2.11. Extension of the proposed damage prognosis framework to other 

structural and mechanical systems monitored through NDE inspections 

The applicability of the proposed damage prognosis framework is definitely 

not limited to a composite UAV-wing or an entire UAV airframe. For instance, with 

minor changes, it can be used to estimate the remaining fatigue life of composite wind 

turbine blades (as briefly outlined in Chapter 1) periodically and/or continuously 

monitored through NDE inspections. Some changes to the probabilistic load hazard 

models (especially the turbulence model) must be considered and appropriately 

embedded in the framework but, on the other hand, the same local and global failure 

criteria, outlined previously in Section 2.5 (and discussed in depth later in Chapter 7) 

would still be utterly applicable. 

The same general approach can also be extended to civil structures such as 

cable-stayed bridges, suspension bridges, and FRP-retrofitted concrete bridges, as well 

as to other monitored structural and mechanical components fabricated with advanced 

composite materials prone to experience fatigue-induced damage along their adhesive 

joints/interfaces such as the simple composite laminated beam shown in Figure 2.5. 

Figure 2.5: Simply-supported composite beam with two debonding fronts (evolving 
from the beam ends) subjected to a concentrated load, P(t), applied at its midspan. A 

case study extensively analyzed and thoroughly discussed in Chapter 8. 

(1,1, ) (2,1, )(2 )t t
a aL a a− −

2 250L mm=

(1,1, )t
aa

( ) , ( )P t w t
disbond disbond

(2,1, )t
aa

adhesive layer

b

composite beam
cross-section

( )25 3
b h

mm
× =
×

( )11

composite adherends
flexural modulus: 

130 , = 0.1∼fE N GPa δ
1x 2x( )0 , 1,2ix L i≤ ≤ =

3

density of laminated
composite adhedends:

1.50 /V gr cmρ =

total beam mass:
56.25totM gr=



48 

 

Figure 2.6 shows an adaptation and generalization of the original flowchart 

presented earlier in Figure 2.2 that can be used for estimating the remaining fatigue 

life of mechanical and structural systems with multi-site fatigue-driven damage 

growth. First of all, conversely to what is shown in Figure 2.2, this new flowchart 

considers the case in which both posterior joint PDFs, ( )a mat dam,p pf ′′ a θ θ  and 

( )
dam

damp
pf ′′

Θ
θ , are simultaneously computed after each NDE inspection outcome. This 

represents a more general scenario, within the proposed Bayesian inference step, 

which will be thoroughly discussed in Chapter 3 and successfully verified and 

validated through the two application examples presented in Chapter 8 and Chapter 9. 
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Figure 2.6: Extension of the proposed damage prognosis methodology to other 
monitored structural systems with multi-site fatigue-driven damage growth. 

 

As a second change, within the probabilistic load hazard analysis step (i.e., the second 

analysis step of the proposed methodology), maneuver- and turbulence-induced loads 
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are now (respectively) substituted by (i) the mean/average intensity of the applied 

external load, probabilistically characterized by the intensity measure vector mIM , 

and (ii) the superimposed random stochastic load (or load fluctuations) about the 

mean-load intensity, probabilistically described by the intensity measure vector aIM . 

For instance, the random intensity measure vector mIM  can characterize the 

intensity/magnitude and duration of the random mean-load, whereas aIM  can collect 

all those random variables defining the power spectral density (PSD) function of the 

random load oscillations/fluctuations about the mean-load intensity. The joint PDF of 

mIM  and aIM  is herein denoted as ( )
m a, m a,fIM IM im im  and is computed by 

unconditioning the conditional joint PDF ( )
m a m a m a m a, , , ,fIM IM Θ Θ im im θ θ  w.r.t. mΘ  

(i.e., the random parameter vector associated to the mean-load) and aΘ  (i.e., the 

random parameter vector associated with the stochastic load fluctuations about the 

mean-load intensity), respectively. Some Illustrations of this concept for load effects 

generation and superposition are provided in Figure 2.7, Figure 2.8, and Figure 2.9. 

More specifically, Figure 2.7 and Figure 2.8 consider the case in which the load 

fluctuations (red lines in the plots) about the mean-load intensity (dashed blue lines in 

the plots) are assumed to be a stochastic process. Additionally, in Figure 2.7 the root 

mean square (RMS) value of the load fluctuations is considered to be statistically 

independent of the mean-load intensity. On the other hand, in Figure 2.8, these two 

quantities are instead considered to be statistically dependent (i.e., the two intensity 

measure vectors mIM  and aIM  are statistically dependent). 
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Figure 2.7: Illustrative example of load superposition for the case in which mean-load 

intensity and RMS value of the load fluctuations are considered to be statistically 
independent. The RMS value of the load fluctuations is renewed at each mean-load 

pulse occurrence and remains constant for the entire duration of each mean-load pulse. 
 

 

Figure 2.8: Illustrative example of load superposition for the case in which mean-load 
intensity and RMS value of the load fluctuations are considered to be statistically 
dependent. The RMS value of the load fluctuations is renewed at each mean-load 

pulse occurrence, it remains constant for the entire duration of each mean-load pulse, 
and is equal to zero when the mean-load pulse intensity is equal to zero. 
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Figure 2.9: Illustrative example of load superposition for the case in which mean-load 
intensity and the amplitude of the harmonic load fluctuations are considered to be 

statistically dependent. The amplitude value of the load fluctuations is renewed at each 
mean-load pulse occurrence, it remains constant for the entire duration of each mean-
load pulse, and is equal to zero when the mean-load pulse intensity is equal to zero. 

 

The third important difference, w.r.t. the framework originally presented in 

Sections 1.2 through 1.7, is represented by the introduction of the random vector 

[ , ]
GΨ p q  (hereafter referred to as vector of global performance metrics/measures) in the 

probabilistic global performance analysis step. This step constitutes a generalization of 

the probabilistic flutter & LCO analyses step discussed in Section 1.5. The damage-

sensitive random quantities, collected in [ , ]
GΨ p q , can be represented by selected subsets 

of (i) natural frequencies, (ii) mode shapes, (iii) mode shapes curvatures, (iv) modal 

strain energies, as well as by generalized displacements under given maximum 

operational loads at the most critical points of the structure — e.g., midspan deflection 

of a single-span bridge under maximum design load, the reduced (due to damage) 
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initial stiffness and/or peak resistance of a structure under a push-over load of a 

given/fixed spatial distribution, etc.). Nevertheless, the random vector [ , ]
GΨ p q  can still 

contain global aeroelastic damage indicators, such as flutter velocity and LCO 

velocities. A thorough and exhaustive description of all the five analytical steps of this 

generalized/extended damage prognosis framework, together with specific numerical 

applications involving the simple testbed/benchmark structure shown in Figure 2.5, is 

carried out in Chapters 8 and 9. 

Finally, in a very similar fashion to what was already presented in Section 2.9, 

also in this case it is possible to provide a rapid (i.e., in nearly real-time) assessment of 

the system reliability immediately after the last NDE inspection (at current time pt ). 

As illustrated in Figure 2.10, this result is obtained by (i) using the posterior joint 

conditional PDFs — ( )
a mat dam

a mat dam,
,pp

p pf ′′
A Θ Θ

a θ θ  and ( )
dam

damp
pf ′′
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Figure 2.10: Adaptation of the proposed damage prognosis methodology for the 
rapid reliability assessment (in nearly real time) immediately after the last NDE 

inspection at current time .pt  
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global performance analysis step, (ii) computing the joint PDF ( )
L,G

L,Gp
pfD d  at time ,pt  

and (iii) performing, with this piece of information, the component and system 

reliability analyses necessary to estimate upper and lower uni-modal bounds of the 

probability of failure, sysF .pP ⎡ ⎤⎢ ⎥⎣ ⎦  
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CHAPTER 3  

 

RECURSIVE PROBABILISTIC ASSESSMENT 

OF THE CURRENT STATE OF DAMAGE OF 

THE COMPOSITE UAV WING 

3.1. Introduction 

In this chapter non destructive evaluation (NDE) inspection results (i.e., the 

measured damage sizes obtained at each NDE inspection opportunity after sensor-

based data processing) are used to (i) probabilistically assess the current state of 

damage (at the local level, through aΑ p ) of the structural system or sub-component 

being monitored, and (ii) recursively update the probabilistic information associated 

with the damage evolution model parameter vector ( damΘ ), which was already 

introduced in the previous chapter. 
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Information on the current structural integrity of the UAV wing is assumed to 

be provided by continuous in-flight monitoring (through a built-in sensor network), as 

well as by more sophisticated and accurate (but less frequent) on-ground inspections. 

Both of these NDE approaches must be characterized probabilistically in order to 

assess their reliability and fidelity, and within this objective, the following three points 

are the main assumptions made regarding an NDE inspection: 

(i) An NDE inspection can detect and locate damage, identify the 

(potentially multiple) damage mechanisms simultaneously evolving 

at a certain damage location, and (in the best case scenario) quantify 

the extents of damage — by using, for instance, an equivalent 

damage size/extent — for each damage mechanism detected and 

identified at the monitored damage locations; 

(ii) The overall uncertainty (including systematic and random errors) in 

the measured extent of damage, for a given NDE technique, is 

dependent on damage location, damage mechanism, and extent of 

damage (Silk et al., 1987), where the first dependency, in the case of 

sensor-based in-flight monitoring (Lanza di Scalea et al., 2007), may 

arise from the non-uniform sensor distribution and/or from the 

temporary dysfunctional behavior of some network nodes; 

(iii) To simplify the problem formulation, it is assumed that detection 

and measurement of the extent of a certain damage mechanism 

evolving at a certain damage location only depend on the true (and 
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unknown) damage size of that particular damage mechanism at the 

time of inspection (Heasler, 1990; Berens, 1989; Staat, 1993; Zhang 

and Mahadevan, 2001). 

3.2. Probability of detection curves 

The detection capability of a particular NDE technique — for a given damage 

mechanism ( j ) evolving at a given damage location ( I ) at time tp — is provided by the 

so-called probability of detection (POD). The POD, for a particular ( ), ,i j p  

combination, is defined as the probability of detecting damage of any size (i.e., 

( , , ) 0i j p
mA > ) given that the actual/true damage size, at time tp, is ( , , ) ( , , )i j p i j p

a aA a=  (with 

( , , ) 0i j p
aa > ), i.e., 

 ( )( , , ) ( , , ) ( , , ) ( , , )0i j p i j p i j p i j p
a m a aPOD a P A A a⎡ ⎤= > =⎢ ⎥⎣ ⎦  (3.1) 

On the other hand, the probability that the NDE outcome/result constitutes a false 

alarm — i.e., damage detected ( ( , , ) 0i j p
mA > ) when in reality there is no actual damage 

( ( , , ) 0i j p
aa = ) associated with that particular ( ), ,i j p  combination — is referred to as 

false-call probability (FCP); it is defined as 

 ( )( , , ) ( , , ) ( , , )
( , , ) 0 0 0i j p i j p i j p
i j p m a aFCP P A A POD a⎡ ⎤= > = = =⎢ ⎥⎣ ⎦  (3.2) 

and it can be obtained by performing multiple NDE measurements (in a controlled 

environment) on unflawed components for each ( ),i j  combination of interest. The 

two pieces of information provided by Equations (3.1) and (3.2), with the former 
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viewed as a continuous function of ( , , )i j p
aa , are combined together in the so-called 

POD curve. Furthermore, for a given ( , ,i j p ) combination, the conditional event 

( )( , , ) ( , , ) ( , , )0i j p i j p i j p
m a aD A A a> =  (i.e., damage detected given that the actual damage 

size is equal to ( , , )i j p
aa ) has for complement the conditional event 

( )( , , ) ( , , ) ( , , )0i j p i j p i j p
m a aND A A a= =  (i.e., no damage detected given that the actual/true 

damage size is equal to ( , , )i j p
aa ), with ( , , ) 0i j p

aa ≥ . The probability associated with this 

latter conditional event is referred to as probability of non detection (PND), it is 

defined as 

 ( ) ( )( , , ) ( , , ) ( , , ) ( , , ) ( , , )0 | 1i j p i j p i j p i j p i j p
a m a a aPND a P A A a POD a⎡ ⎤= = = = −⎢ ⎥⎣ ⎦  (3.3) 

and, if viewed as a continuous function of  ( , , )i j p
aa , Equation (3.3) is referred to as PND 

curve. Lastly, from Equations (3.2) and (3.3), the value of the PND curve evaluated at 

( , , ) 0i j p
aa =  (i.e., the probability of correctly classifying as unflawed a component that, 

at location I and at time ,pt  does not have any damage mechanism of type j) is equal 

to ( , , )1 i j pFCP− . Several parametric models, for defining a POD curve from the curve-

fit (e.g. using logistic regression; Kutner et al., 2004) of experimental binary data (i.e., 

1POD=  if ( , , ) ( , , ) ( , , )0 |i j p i j p i j p
m a aA A a> =  and 0POD=  if ( , , ) ( , , ) ( , , )0 |i j p i j p i j p

m a aA A a= = ), 

can be found in the literature (Berens, 1989; Heasler, 1990, Staat, 1993). Among these 

models, those proposed by Berens (1989) and Staat (1993) are shown in Equations 

(3.4) and (3.5), respectively. 
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 ( )
( , ) ( , ) ( , , )
0 1

( , ) ( , ) ( , , )
0 1

ln
( , , )

ln1

i j i j i j p
a

i j i j i j p
a

a
i j p

a a

ePOD a
e

α α

α α

⎡ ⎤− + ⎢ ⎥⎣ ⎦

⎡ ⎤− + ⎢ ⎥⎣ ⎦
=
+

 (3.4) 

 ( ) ( )( )( , ) ( , , )
2( , , ) ( , )1 1
i j i j p

aai j p i j
aPOD a p e α−

∞= − −  (3.5) 

where ( , )
0
i jα , ( , )

1
i jα , and ( , )

2
i jα  are regression coefficients and ( , )i jp∞  accounts for the fact 

that the POD for a very large damage size, ( , , )i j p
aa , is not necessarily equal to 1 (i.e., 

there could be a very small probability, ( , )1 i jp∞− , of miss-detecting large crack sizes). 

For illustration purposes, the POD curves that can be obtained from Equations (3.4) 

and (3.5), for some particular values of the regression coefficients mentioned above, 

are depicted in Figure 3.1. 

 

Figure 3.1:  Examples of two POD curve models found in the literature and evaluated 
for given sets of arbitrarily chosen model parameters. 
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3.2.1. Linear damage-size measurement model 

Once, for a particular ( ), ,i j p  combination, damage is detected (D) and its 

extent measured, it is natural to question the fidelity/precision of that NDE 

measurement conditional on the actual damage size. To this end, the NDE 

measurement accuracy is herein accounted for by the following (linear) damage-size 

measurement model, used by Zhang and Mahadevan (2001): 

 ( )( , , ) ( , , ) ( , , ) ( , ) ( , ) ( , , )
0 1, + +i j p i j p i j p i j i j i j p

m a a a ijA A a D aβ β ε= =  (3.6) 

where ( , , )i j p
aA  and ( , , )i j p

mA  (both considered as random variables within the proposed 

Bayesian inference scheme) are respectively the actual and the measured (i.e., inferred 

from NDE data processing) damage size for damage location I, damage mechanism j, 

and inspection time pt . The quantity ( , , )i j p
aa  denotes the value of the actual (but 

unknown) damage size for the particular ( ), ,i j p  combination considered. The two 

terms ( , )
0

i jβ  and ( , )
1

i jβ  are the coefficients of the (assumed) linear model in Equation 

(3.6) accounting for the systematic measurement errors, intrinsic of the NDE technique 

employed, and generally dependent on both damage location and damage mechanism. 

Finally, ( )0,
ijij N εε σ∼  represents the random measurement error/noise assumed to be 

Gaussian distributed with zero-mean and standard deviation 
ijεσ  (considered herein, 

for the sake of simplicity, to be independent of the true damage size ( , , ) ( , , )i j p i j p
a aA a= ; 

Zhang and Mahadevan, 2001). The quantities ( , )
0

i jβ , ( , )
1

i jβ , and 
ijεσ  are unknown and 

have to be estimated for the particular model shown in Equation (3.6), and for each 
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( ),i j  combination, through a linear regression analysis (Seber and Lee, 2003) on a 

given set of known damage sizes, on which several measurements are performed in a 

controlled environment. The estimated linear regression coefficients and standard 

deviation of the random measurement error are respectively denoted as ( , )
0

ˆ i jβ , ( , )
1̂

i jβ , 

and ˆ
ijεσ  (See Section 3.2.2 for a detailed discussion of this topic). Once ( , )

0
ˆ i jβ  and 

( , )
1̂

i jβ  are determined, for each ( ),i j  combination, the estimated mean measurement 

outcome, ( , , )ˆ
m a

i j p
A A
µ , conditional on the true damage size ( , , ) ( , , )i j p i j p

a aA a= , can then be 

derived from Equation (3.6) and expressed as 

 ( , , ) ( , , ) ( , , )
( , , ) ( , ) ( , ) ( , , )

0 1
ˆ ˆˆ ˆ i j p i j p i j p

m a m a a

i j p i j i j i j p
aA A A A a

aµ µ β β
=

= = +  (3.7) 

From Equations (3.6) and (3.7), it is now possible to provide the best estimate for the 

PDF of the measured damage size ( , , ) ,i j p
mA  conditional on the true damage size 

( , , ) ( , , )i j p i j p
a aA a=  and the estimated linear regression parameters, as 

 ( ) ( )

( )

2( , , )( , , )

( , , ) ( , , )

ˆ
1

ˆ2 σ
( , , ) ( , , ) ( , , )

( , , ) ( , , )

1
ˆ2

ˆ ˆ; ,

i j pi j p
m A Am a

ij

i j p i j p
m a m a

ij

ijm a

a

i j p i j p i j p
m a m aA A A A

i j p i j p
m A A

f a a f a a e

a

ε

µ

ε

ε

πσ

ϕ µ σ

⎡ ⎤−⎢ ⎥
⎢ ⎥− ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦= =

=

 (3.8) 

where ( )( , , ) ( , , )ˆ ˆ; ,
ijm a

i j p i j p
m A A

a εϕ µ σ  is the conditional Normal PDF of ( , , )i j p
mA  with mean 

( , , )ˆ
m a

i j p
A A
µ  and standard deviation ( , , ) ˆ

ijm a

i j p
A A εσ σ= . However, this conditional PDF is 

meaningful only in the range ( , , ) 0i j p
mA >  and it is therefore renormalized as 
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 ( ) ( )
1

( , ) ( , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , ) 0 1

ˆ ˆ+ˆ ˆˆ ˆ; , ; ,
ˆij ijm a m a

ij

i j i j i j p
i j p i j p i j p i j p a

m mA A A A

aa aε ε
ε

β βϕ µ σ ϕ µ σ
σ

−⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜= Φ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦
 (3.9) 

where ( )Φ ⋅  represents the Standard Normal cumulative distribution function (CDF). 

All these concepts described above are illustrated in Figure 3.2. 

 

3.2.2. Regression analysis for the estimation of the sizing model parameters 

As anticipated above, linear regression analysis is used to provide an estimate 

for the quantities ( , )
0

i jβ , ( , )
1

i jβ , and 
ijεσ  for each ( ),i j  combination. In a controlled 

( ) ( ), , , ,i j p i j p
m aA a=

( ), ,
|ˆ

m a

i j p
A Aµ

( )( , , ) ( , , )
|ˆ ˆ; ,

m a ij

i j p i j p
m A Aa εϕ µ σ

( )( , , ) ( , , )
|ˆ ˆ; ,

m a ij

i j p i j p
m A Aa εϕ µ σ

( ) ( ), , , ,i j p i j p
m aA a=

( ), ,
|ˆ

m a

i j p
A Aµ

( )( , , ) ( , , )
|ˆ ˆ; ,

m a ij

i j p i j p
m A Aa εϕ µ σ

( )( , , ) ( , , )
|ˆ ˆ; ,

m a ij

i j p i j p
m A Aa εϕ µ σ

 

Figure 3.2: Damage-size measurement model adopted in this study (Zhang and 
Mahadevan, 2001) and plotted for the following set of model parameters: 

( , )
0

ˆ 1.8i j mmβ =− , ( , )
1̂ 1.25i jβ = , and ˆ 1.5

ij
mmεσ = . 



63 

 

environment (e.g., in a laboratory test setup) several measurements ( n ) on a given set 

of An  known damage sizes artificially created for each ( ),i j  combination — herein 

denoted as { }A
T( , , )( , ) ( , ,1) ( , ,2)

a , , ... , i j ni j i j i j
a a aa a aa =  — are performed using the NDE 

technique that will be later deployed on the field (to monitor the real structure) and 

whose measurement uncertainty must therefore be quantified. These measurements are 

collected in the vector { } { } { }{ }A

TTT T ( , , )( , ) ( , ,1) ( , ,2)
m m m m, ,... ,a a a a i j ni j i j i j=  whose generic 

sub-vector, ( , , )
m

i j ka , is defined as { }T( , , ) ( , , ) ( , , ) ( , , )
m ,1 ,2 ,, , ... ,

k

i j k i j k i j k i j k
m m m na a aa =  and represents 

the series of kn  measurements performed on the known damage size equal to ( , , )i j k
aa . 

The total number of measurements performed is therefore equal to A

1

n
kk

n n
=

=∑  and 

each of these measurements collected in ( , )
ma i j  satisfies the condition ( , , )

,1 0i j k
ma >  — 

i.e., the non-detection results are not used to fit the linear measurement model of 

Equation (3.6). Assuming that the n  random measurement errors (i.e., the 

measurement errors occurred in each of the n  measurements performed) are 

independent and identically distributed (i.i.d.), an unbiased estimate for the two linear 

regression coefficients of the proposed damage size measurement model can be 

computed as (Seber and lee, 2003) 

 ( )
( , )

10( , ) T T ( , )
m( , )

1

ˆ
ˆ

ˆ

i j
i j i j

i j

β

β
β X X X a

−⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= =⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
 (3.10) 

where the full-rank regression (or design) matrix X is given by (Seber and Lee, 2003) 
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( )
A

A

( , ,1)
1 a

( , ,2)
2 a

( , , )
a 2

i j

i j

i j n
n n

1 a
1 a

X

1 a
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.11) 

in which the generic vector k1  (with A1,... ,k n= ) is an ( )1kn ×  vector of ones and 

( , , )
a

i j ka  is defined as ( , , ) ( , , )
a

i j k i j k
a kaa 1= . On the other hand, an unbiased estimate for the 

variance ( 2
ijεσ ) of the random measurement error ( ijε ) is given by (Seber and Lee, 

2003) 

 

T( , ) ( , ) ( , ) ( , )
m m2

ˆ ˆ
ˆ

2 2ij

i j i j i j i j
RSS

n nεσ
a Xβ a Xβ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= =

− −
 (3.12) 

where the numerator of equation (3.12) represents the residual sum of squares (RSS) 

between the measured and the predicted (through the regressed linear model) damage 

sizes. Using the results obtained thus far, it is also possible to provide confidence 

bounds for both ( , , ) ( , ) ( , ) ( , , )
0 1

m a

i j p i j i j i j p
aA A

aµ β β= +  and 2
ijε

σ  based on their underline PDFs, 

from which ( , , )ˆ
m a

i j p
A Aµ  and 2ˆ

ijε
σ  are particular realizations (once the measurement vector 

( , )
m

i ja  is available). 100(1−α)% confidence bounds for ( , , )ˆ
m a

i j p
A Aµ  and 2ˆ

ijε
σ  are functions of 

the true damage size ( , , )i j p
aa  and can respectively be expressed as 

 ( ) ( ) ( ) ( )1 2 1 2( , , ) ( , , ) ( , , ) ( , , ) ( , , )
2 2ˆ ˆˆ ˆ

ij ijm a m a m a

i j p i j p i j p i j p i j p
a n a nA A A A A A

a t a tα α
ε εµ σ ν µ µ σ ν− −

− −− ≤ ≤ +  (3.13) 

 
( ) ( )

2 2 2
2 2

2 2

2 2ˆ ˆ
1 2 2ij ij ij

n n

n n
ε ε εσ σ σ
χ α χ α− −

− −≤ ≤
−

 (3.14) 
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where ( )
2nt

i
−  and ( )2

2nχ i−  are the ( )i % percentile of the Student-T and the Chi-Square 

distributions with 2n −  degrees of freedom, respectively; and the function ( )( , , )i j p
aaν  

is expressed as 

 ( ) ( )
( )

A

2( , , ) ( , )
( , , )

2( , , ) ( , )

1

1 i j p i j
a ai j p

a n
i j l i j

a a
l

a a
a

n
a a

ν

=

−
= +

−∑
 (3.15) 

in which ( , )i j
aa  represents the mean value of the components of the vector ( , )

a
i ja , i.e., 

 
A

( , ) ( , , )

1A

1 n
i j i j l

a a
l

a a
n =

= ∑  (3.16) 

It is therefore easily recognizable how the uncertainty associated with ( , , )ˆ
m a

i j p
A A
µ  and 2ˆ

ijε
σ  

can be controlled and reduced by increasing the number of measurements ( n ) and 

choosing an appropriate vector ( , )
a

i ja . The An  known damage sizes in ( , )
a

i ja  must, in 

fact, cover as widely as possible all the damage sizes that can be encountered during 

the NDE monitoring of the real structure. For these reasons outlined above the two 

additional layers of uncertainty associated with ( , , )ˆ
m a

i j p
A Aµ  and 2ˆ

ijε
σ  — and quantified in 

Equations (3.13) and (3.14) — are not included in the damage prognosis framework 

proposed in this thesis. 

3.2.3. An alternative damage size measurement model 

The linear damage size measurement model introduced in Equation (3.6) can 

be substituted with other sizing models proposed and/or used by other researchers. 
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These models can be easily found in the literature; for example, Simola and Pulkkinen 

(1998) proposed the following logit model: 

 ( )( , , ) ( , , ) ( , , ) ( , ) ( , ) ( , , )
0 1ln , + ln +i j p i j p i j p i j i j i j p

m a a a ijZ Z z D zη η ε⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦  (3.17) 

where ( , )
0
i jη  and ( , )

1
i jη  are the model coefficients to be determined through a linear 

regression analysis in the logarithmic space defined by ( , , ) ( , , )ln lni j p i j p
a mz z⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , ijε  

represents the random measurement error assumed to be Gaussian distributed with 

zero-mean and standard deviation 
ijεσ , and the quantities ( , , )i j p

mZ  and ( , , )i j p
aZ  are 

respectively the normalized measured and actual damage sizes defined as 

 
( , , )

( , , )
( , ) ( , , )
max

i j p
mi j p

m i j i j p
m

A
Z

A A
=

−
 (3.18) 

 
( , , )

( , , )
( , ) ( , , )
max

i j p
ai j p

a i j i j p
a

A
Z

A A
=

−
 (3.19) 

Finally, the term ( , )
max
i jA  in Equations (3.18) and (3.19) denotes the maximum observable 

damage size for a given ( ),i j  combination. 

3.3. Recursive Bayesian updating scheme for the damage size vector a
pA  

Equation (3.3), one of the models shown in Equations (3.4) and (3.5), and 

Equation (3.9) are then combined to build the likelihood function needed to update — 

within the proposed recursive Bayesian updating scheme — the prior joint conditional 

PDF, ( )
a mat dam

a mat dam,
,p

pf ′
A Θ Θ

a θ θ , into the posterior joint conditional PDF, 
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( )
a mat dam

a mat dam,
, ,p

pf ′′
A Θ Θ

a θ θ  as the new measurement result, m
pa , becomes available at 

time pt . This recursive Bayesian updating scheme, based on previous work by Zheng 

and Ellingwood (1998), Lin et al.(2000), Zhang and Mahadevan (2001), and Kulkarni 

and Achenbach (2008), can be written as 

 ( )
( )

( ) ( )
( )

[0, ] [0, 1]
a mat dam m a mat dam m

a mat dam a mat dam, ,a mat dam a mat dam

[0, ] [0, 1]
a mat dam m a m a mat dam m, , , ,

, ,

, , , ,p p p p

p p
p p

p p p p p p

f f

f L f

A Θ Θ A Θ Θ

A Θ Θ A A Θ Θ A

a θ θ a θ θ

a θ θ a a a a θ θ a−
−

′′ ′= =

∝  

 (3.20) 

where ( )a m
p pL a a  represents the likelihood function of the true damage size vector at 

time pt  once the new NDE results (i.e., the processed NDE measurements) are 

available. Furthermore, by assuming that the conditional NDE measurement outcomes 

{ }( , , ) ( , , ) ( , , )
MS, 1,...,

k

i j p i j p i j p
m aa a k n= , (where ( , , )

MS
i j pn  is the number of NDE measurements 

performed at time ,pt  at location i, for damage mechanism j ) are realizations from 

statistically independent random variables for every ( ),i j  combination, Equation 

(3.20) can be rewritten as 

 ( ) ( ) ( )
( , , )( , )
MSL DM

a mat dam a mat dam

 
( , , ) ( , , )

a mat dam a mat dam, ,
=1 =1 =1

, ,
i j pi pp

p p
k

nn n
p i j p i j p p

a m
i j k

f L a a f
A Θ Θ A Θ Θ

a θ θ a θ θ
⎡ ⎤
⎢ ⎥′′ ′∝ ⎢ ⎥
⎢ ⎥⎣ ⎦
∏∏∏  

 (3.21) 

where L
pn  denotes the number of inspected locations at time pt  (with [0, ]

L L
p pn n≤  and 

[0, ]
L

pn  representing the total number of inspected locations up to time ),pt  and ( , )
DM
i pn  
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represents the number of detected damage mechanisms at location i at time pt  (with 

( , ) ( , [0, ])
DM DM
i p i pn n≤  and ( , [0, ])

DM
i pn  representing the total number of detected damage 

mechanisms at location i up to time ).pt  Furthermore, the vector 

{ }( , ) [0, ]
a a L, 1, ,p i p pi n= =Α Α … , with { }( , [0, ])( , ) ( , , )

a DM, 1, , i pi p i j p
aA j n= =Α … , represents the 

collection of the actual damage sizes at all inspected locations and all detected damage 

mechanisms up to time .pt  The size (at time )pt  of the damage size vector a
pΑ  is thus 

equal to 
[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑ . On the other hand, the vector { }( , )
m m L, 1, ,p i p pi n= =a a …  — 

with its sub-vectors defined as { }( , ) ( , , ) ( , )
m m DM, 1, ,i p i j p i pj n= =a a …  and 

{ }( , , ) ( , , ) ( , , )
m MS, 1, ,

k

i j p i j p i j p
ma k n= =a …  — collects all the 

( , )
L DM ( , , )

MS MS1 1

i ppn n i j pp
i j

n n
= =

=∑ ∑  NDE 

measurement results obtained at time tp. Finally, ( )( , , )( , , )
k

i j pi j p
a mL a a  represents the 

likelihood function of ( , , )i j p
aa  once the kth NDE measurement result, ( , , )

k

i j p
ma , becomes 

available. It should be noted that: (i) the equality ( )( , , )
a k

i j pp
mL a =a  ( )( , , )( , , )

k

i j pi j p
a mL a a  is 

a direct consequence of the measurement model introduced in Equation (3.6), and (ii) 

the mathematical form of the likelihood function depends on the NDE measurement 

outcome, ( , , )
k

i j p
ma , as 

 ( ) ( ) ( )
( )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

ˆ ˆ; , if  0

if  0

k ij km a

k

k

i j p i j p i j p i j p
m a mA Ai j p i j p

a m
i j p i j p

a m

a POD a a
L a a

PND a a

εϕ µ σ⎧⎪⎪ ⋅ >⎪⎪=⎨⎪⎪ =⎪⎪⎩

 (3.22) 

Equation (3.22) combines the binary source of information provided by ( )( , , )i j p
aPOD a  
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and ( )( , , )i j p
aPND a  with the continuous resolution of the NDE measurement uncertainty, 

through ( )( , , ) ( , , )ˆ ˆ; ,
k ijm a

i j p i j p
m A A

a εϕ µ σ , and thus constitutes an improvement of previous 

research work carried out by Chen (2011) and An et al. (2011). Furthermore, for the 

case in which the NDE technique can only provide either detection (i.e., ( , , ) 0
k

i j p
ma > ) or 

non-detection (i.e., ( , , ) 0
k

i j p
ma = ) results, Equation (3.22) reduces to 

 ( ) ( )
( )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

if  0

if  0
k

k

k

i j p i j p
a mi j p i j p

a m i j p i j p
a m

POD a a
L a a

PND a a

⎧⎪ >⎪⎪=⎨⎪ =⎪⎪⎩
 (3.23) 

It must also be mentioned that: (i) the initial (i.e., before the first NDE inspection at time 

0t ) damage-size PDF model, ( )0
a

0
af ′

A
a , and its parameters are chosen on the basis of 

engineering judgment, as pointed out — among others — by Lin et al. (2000), and (ii) 

the components of the random vector 0
aA , at time 0 ,t  can be reasonably considered 

mutually statistically independent as well as statistically independent of matΘ  and damΘ . 

These assumptions are translated into the following equation: 

 ( ) ( ) ( )
0 ( ,0)
L DM

0 0 ( , ,0)
a mat dam a

0 0 ( , ,0)
a mat dam a,

=1 =1

,
i

i j
a

n n
i j

aA
i j

f f f a′ ′ ′= =∏∏A Θ Θ A
a θ θ a  (3.24) 

For instance, both Lognormal and Exponential PDF models are possible and 

reasonable choices for ( )0
a

0
af ′

A
a . However, the choice of the PDF model, ( )0

a

0
af ′

A
a , has a 

negligible influence on the posterior joint conditional PDF, ( )
a mat dam

a mat dam,
,p

pf ′′
A Θ Θ

a θ θ , 

when a large amount of NDE measurement data is available in the Bayesian updating 
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procedure. Therefore, this initial choice of the PDF model for ( )0
a

0
af ′

A
a  does not 

represent a crucial decision in the damage prognosis framework presented herein. As a 

final remark, mixed PDF models for ( )0
a

0
af ′

A
a  can also be used and efficiently 

incorporated into the proposed Bayesian inference scheme. It is possible, for instance, 

to define each of the 
0
L0 0

A DM1

n

i
n n

=
=∑  marginal PDFs of the random vector 0

aA  as 

 ( ) ( ) ( ) ( )( , , 0) ( , , 0)
( , ,0) ( , ,0) ( , ,0) ( , ,0) ( , ,0)

0 01i j i j
a a

i j i j i j i j i j
a a aA A

f a p a p f aδ′ = ⋅ + − ⋅  (3.25) 

where the quantity ( , ,0)
0
i jp  represents — for the particular ( ),i j  combination — the 

probability of having no damage (i.e., ( , ,0) 0i j
aa = ), ( )( , ,0)i j

aaδ  denotes the Dirac delta, 

and ( )( , ,0 )
( , ,0)

i j
a

i j
aA

f a  constitutes the PDF of the damage size ( , ,0)i j
aa  in the range 

( , ,0) 0i j
aa > ; Lognormal and Exponential PDF models are possible and reasonable 

choices for ( )( , , 0)
( , ,0)

i j
a

i j
aA

f a  as well. 

3.4. Bayesian inference scheme for the recursive updating of the joint PDF of 

the damage evolution parameter vector dam
pΘ  

Processed NDE inspection results (at time pt ) can be used not only to compute 

the posterior conditional joint PDF ( )
a mat dam

a mat dam,
,p

pf ′′
A Θ Θ

a θ θ  (as shown in Section 3.3) 

but also to provide a recursive update of the joint PDF of the damage evolution 

parameter vector dam
pΘ . The proposed recursive Bayesian updating scheme used to 

achieve this result can be expressed as 
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 ( )
( )

( ) ( )
( )

[0, ] [0, 1][0, 1]
m mdam damm mdam

dam dam
dam dam

[0, ] [0, 1] [0, 1]
dam m m dam m dam m,

,p pp p pp p

p p
p p

p p p p p p p

f f

f f f

Θ Θ

Θ A Θ AA Θ A

θ θ

θ a a θ a θ a−−
− −

′′ ′= =

∝  (3.26) 

or, in a more compact form, as  

 ( ) ( ) ( )[0, 1]
dam damm mdam

[0, 1]
dam m dam m dam,

,
Θ ΘA Θ A

θ a θ a θp ppp p

p p p p pf f f−
−′′ ′∝  (3.27) 

where the conditional joint PDF ( )[0, 1]
m mdam

[0, 1]
m dam m,

,pp p
p p pf

A Θ A
a θ a−

−  (i.e., the likelihood 

function of the proposed recursive Bayesian updating scheme) can be computed by 

taking advantage of the total probability theorem as follows: 

 

( )

( )

( ) ( )

[0, 1]
m mdam

[0, 1]
m a mat mdam

a mat

[0, 1]
mata mat mdam

[0, 1]
m dam m,

[0, 1]
m a mat dam m, , ,

[0, 1]
a mat dam m mat mat a, ,

,

, , ,

, ,

A Θ A

A A Θ Θ A
A Θ

ΘA Θ Θ A

a θ a

a a θ θ a

a θ θ a θ θ a

pp p

pp p p

p

pp p

p p p

p p p p

p p p p

f

f

f f d d

−

−

−

−

−

−

=

∫ ∫  (3.28) 

and by noting that ( ) ( )[0, 1]
a mat m a matdam dam

[0, 1]
a mat dam m a mat dam, , ,

, , ,
A Θ Θ A A Θ Θ

a θ θ a a θ θp pp p p
p p p p pf f−

− ′=  

and ( ) ( )[0, 1]
m am a mat mdam

[0, 1]
m a mat dam m m a, , ,

, , ,
A AA A Θ Θ A

a a θ θ a a ap p pp p p
p p p p p pf f−

− = , Equation (3.28) can 

be simplified and rewritten as 

 

( )

( ) ( ) ( )

[0, 1]
m mdam

matm a a mat dam

a mat

[0, 1]
m dam m,

m a a mat dam mat mat a,

,

,

pp p

p p pp

p

p p p

p p p p p

f

f f f d d

A Θ A

ΘA A A Θ Θ
A Θ

a θ a

a a a θ θ θ θ a

−
− =

⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫
 (3.29) 

thereby leading to recast Equation (3.26) as  
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( )

( ) ( ) ( )

( )

dam

matm a a mat dam

a mat

dam

dam

m a a mat dam mat mat a,

dam

,

Θ

ΘA A A Θ Θ
A Θ

Θ

θ

a a a θ θ θ θ a

θ

p

p p pp

p

p

p

p p p p p

p

f

f f f d d

f

′′ ∝

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪′ ×⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

′

∫ ∫  (3.30) 

or, in a more compact way, as 

 ( ) ( ) ( ) ( )
dam damm a a dam

a

dam m a a dam a damp pp p pp

p

p p p p p p pf f f d f
Θ ΘA A A Θ

A

θ a a a θ a θ
⎡ ⎤
⎢ ⎥′′ ′ ′∝ ⎢ ⎥
⎢ ⎥⎣ ⎦
∫  (3.31) 

Furthermore, as already shown in Equation (3.21), the term ( )
m a

m ap p
p pf

A A
a a  can be 

expressed in the following way: 

 ( ) ( )
( , , )( , )
MSL DM

m a

 
( , , ) ( , , )

m a
=1 =1 =1

i j pi pp

p p k

nn n
p p i j p i j p

a m
i j k

f L a a
A A

a a =∏∏∏  (3.32) 

with the likelihood function ( )( , , ) ( , , )
k

i j p i j p
a mL a a  taking the same exact mathematical 

form shown previously in Equation (3.22) and repeated below for the sake of 

convenience 

 ( ) ( ) ( )
( )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

ˆ ˆ; , if  0

if  0

k ij km a

k

k

i j p i j p i j p i j p
m a mA Ai j p i j p

a m
i j p i j p

a m

a POD a a
L a a

PND a a

εϕ µ σ⎧⎪⎪ ⋅ >⎪⎪=⎨⎪⎪ =⎪⎪⎩

 (3.33) 

The damage evolution parameter vector dam
pΘ  (at time pt ) can be written as 

{ }( , ) [0, ]
dam dam L, 1, ,p i p pi n= =Θ Θ … , where { }( , [0, ])( , ) ( , , )

dam dam DM, 1, , i pi p i j p j n= =Θ Θ …  represents 

the sub-vector collecting the damage evolution parameters used to propagate damage 
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at the ith damage location. It is assumed in this study that these [0, ]
L

pn  sub-vectors are 

mutually statistically independent; a reasonable and realistic assumption when the 

mechanical proprieties of the damageable structural sub-components are primarily 

governed by imperfections that can randomly occur during the manufacturing process. 

To provide a practical example related to the research topic of this study, it is well 

known that the mechanical properties of an adhesive interface are strongly affected by 

the presence of voids, normally introduced during the manufacturing process, and 

these voids can randomly occur at any location along the adhesive interface without 

any particular (or known a priori) degree of statistical dependence. This assumption 

allows for rewriting Equation (3.26) in the following (mathematically and 

computationally more convenient) way: 

( )
( )

( ) ( )
( )

( , ) ( ,[0, ]) ( , ) ( , ) [0, 1] ( , ) [0, 1]
dam m m dam m dam m

( , ) ( , )
( , ) dam ( , ) dam
dam dam

( , ) ( ,[0, ]) ( , ) ( , ) ( ,[0, 1]) ( , ) [0, 1]
dam m m dam m dam m,

,i p i p i p i p p i p p

i p i p
i p i p

i p i p i p i p i p i p p

f f

f f f− −
− −

′′ ′= =

∝

Θ Θ

Θ A A Θ A Θ A

θ θ

θ a a θ a θ a

  (3.34) 

with [0, ]
L1, , pi n= … . Furthermore, by taking advantage of the total probability theorem 

as already done previously in Equation (3.28), the conditional joint PDF 

( )( , )( , ) [0, 1]
m mdam

( , ) ( , ) ( ,[0, 1])
m dam m,

,i pi p p
i p i p i pf −

−
A Θ A

a θ a  — i.e., the likelihood function of the proposed 

Bayesian updating scheme in Equation (3.34) — can be expressed as 

 

( )

( ) ( ) ( )

( , )( , ) [0, 1]
m mdam

( , ) ( , )( , )
matm a a mat dam

( , )
a mat

( , ) ( , ) ( ,[0, 1])
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,

,

i pi p p
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i p

i p i p i p

p i p i p i p i p

f

f f f d d

−
− =

⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

A Θ A

ΘA Α Α Θ Θ
Α Θ

a θ a

a a a θ θ θ θ a
 (3.35) 
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thereby leading to recast Equation (3.34) as follows: 

( )

( ) ( ) ( )

( )

( , )
dam

( , ) ( , )( , )
matm a a mat dam

( , )
a mat

( , )
dam

( , )
dam

( , ) ( , ) ( , ) ( , )
m a a mat dam mat mat a,

( , )
dam

,

Θ

ΘA Α Α Θ Θ
Α Θ

Θ

θ

a a a θ θ θ θ a

θ

i p

p i p i pi p

i p

i p

i p

p i p i p i p i p

i p

f

f f f d d

f

′′ ∝

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪′ ×⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

′

∫ ∫  

 (3.36) 

Or, in a more compact way (after carrying out the integration w.r.t. the material model 

parameter vector, matΘ ) as 

 ( ) ( ) ( ) ( )( , ) ( , )( , ) ( , )( , )
dam damm a a dam

( , )
a

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
dam m a a dam a damΘ ΘA Α Α Θ

Α

θ a a a θ a θi p i pp i p i pi p

i p

i p p i p i p i p i p i pf f f d f
⎡ ⎤
⎢ ⎥′′ ′ ′∝ ⎢ ⎥
⎢ ⎥⎣ ⎦
∫  (3.37) 

Once the posterior marginal joint PDFs, ( )( , )
dam

( , )
dami p
i pf ′′

Θ
θ  (with [0, ]

L1, , pi n= … ), are 

computed according to the above equation, the full joint PDF of the damage evolution 

parameter vector can be ideally reconstructed as 

 ( ) ( )
[0, ]
L

( , )
dam dam

( , )
dam dam

=1

p

p i p

n
p i p

i

f f′′ ′′=∏Θ Θ
θ θ  (3.38) 

A simple case is hereafter considered in order to prove that Equation (3.31) — 

i.e., the most general form of the proposed recursive Bayesian updating scheme for 

repeatedly computing ( )
dam

damΘ
θp

pf ′′  every time new NDE results become available — 

can be reduced to Equation (3.37) when the prior joint PDF of dam
pΘ  can be expressed 

as 
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 ( ) ( )
[0, ]
L

( , )
dam dam

( , )
dam dam

=1
Θ Θ

θ θ
p

p i p

n
p i p

i

f f′ ′=∏  (3.39) 

Suppose, in fact, that in a given structure two damage locations (i.e., 1, 2i= ) have 

been identified and are being monitored through periodic NDE inspections at time 

0 1 1, , , ..., , ...p pt t t t + . Additionally, assume that the particular NDE technique employed 

to monitor the structure is capable of providing only a single measurement outcome, at 

inspection time pt , at each of the two damage locations, i.e., { }(1,1, ) (2,1, )
m ,a p p p

m ma a= , 

with 0,1, 2, ...p= . Furthermore, suppose also that, at each damage location, the same 

type of damage mechanism (e.g., debonding between to laminated composite 

adherends) is evolving/developing in time, i.e., 1j=  at both damage locations. Under 

these assumptions, the actual damage size/extent vector, aA p , is expressed as 

{ }(1,1, ) (2,1, )
a a a,A p p pA A=  and Equation (3.31) can be rewritten as 

 

( )

( ) ( )

( )

(1,1, ) (2,1, )
dam dam

(1,1, ) (2,1, )
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(1,1, ) (2,1, )(1,1, ) (2,1, )
a a dam dam

(1,1, ) (2,1, )
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(1,1, ) (1,1, ) (2,1, ) (2,1, )

(1,1, ) (2,1, ) (1,1, ) (2,1, )
a a dam dam, ,

,

, ,

Θ Θ

Θ Θ

θ θ

θ θ

p p

p p

p pp p

p p

p p p p
a m a m

A A

p p p p
A A

f

L a a L a a

f a a d

′′ ∝

⎡
⎢
⎢⎢⎣

′

∫ ∫

( ) ( )(1,1, ) (2,1, )
dam dam

(1,1, ) (2,1, )
a a

(1,1, ) (2,1, )
dam damΘ Θ
θ θp p

p p

p p

a da

f f

⎤
⎥×⎥
⎥⎦

′ ′

 (3.40) 

and, by integrating both left and right hand sides of the above equation with respect to 

(2,1, )
damΘ p , the following result is obtained: 
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f

L a a L a a
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( )(1,1, )
am

(1,1, )
damθp

p

 (3.41) 

Furthermore, the conditional joint PDF ( )(1,1, )(1,1, ) (2,1, )
a a dam

(1,1, ) (2,1, ) (1,1, )
a a dam,

,
Θ

θpp p

p p p

A A
f a a′ , inside the 

integral in Equation (3.41) can be expressed as  
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′ =

′ ′⋅
 (3.42) 

and, by substituting Equation (3.42) into Equation (3.41), the following result is easily 

obtained: 
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p p p pda da f

⎫⎪⎤ ⎪⎪⎥ ′×⎬⎥ ⎪⎪⎥⎦ ⎪⎭

 (3.43) 

It should now be recognized that  
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and therefore, Equation (3.43) can be rewritten as 
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 (3.45) 

Finally, by making use of the fact that (i.e., normality axiom) 

 ( )(1,1, )(2,1, ) (1,1, )
a a dam

(2,1, )
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(2,1, ) (1,1, ) (1,1, ) (2,1, )
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, 1
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A

f a a da′′ =∫  (3.46) 

the following important result is obtained 
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 (3.47) 

The same exact procedure can be initiated by integrating both left and right hand sides 

of Equation (3.40) with respect to (1,1, )
damΘ p . This alternative process would lead to: 
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 (3.48) 

Taking the product of Equations (3.47) and (3.48), and making use of Equation (3.39), 

allows retrieving the desired final result: 
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 (3.49) 

Equation (3.49) essentially states that when the prior joint PDF of (1,1, )
damΘ p  and (2,1, )

damΘ p  

can be written as the product of the marginal PDFs ( )(1,1, )
dam

(1,1, )
damΘ
θp

pf ′  and ( )(2,1, )
dam

(2,1, )
damΘ
θp

pf ′ , 

then the posterior joint PDF, ( )(1,1, ) (2,1, )
dam dam

(1,1, ) (2,1, )
dam dam,

,
Θ Θ

θ θp p
p pf ′′ , can also be expressed as the 

product of the two corresponding posterior marginal distributions ( )(1,1, )
dam

(1,1, )
damΘ
θp

pf ′′  and 

( )(2,1, )
dam

(2,1, )
damΘ
θp

pf ′′ . This result can be easily generalized to multiple damage locations and 

multiple NDE measurements as shown in Equation (3.37). 
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CHAPTER 4  

 

PROBABILISTIC LOAD HAZARD ANALYSIS 

4.1. Introduction 

The first part of this study (i.e., from Chapter 2 through Chapter 7) focuses on 

the development of a comprehensive damage prognosis framework for estimating the 

remaining fatigue life of a lightweight composite unmanned aerial vehicle (UAV) 

wing. Two types of external actions are considered to contribute significantly to the 

fatigue-driven damage accumulation in the skin-to-spar adhesive joints of the wing, 

namely turbulence- and maneuver-induced loads (Wright and Cooper, 2007). The 

probabilistic characterization of these two loading actions constitutes the objective of 

the second analytical step of the proposed framework, namely probabilistic load 

hazard analysis (PLHA), and is essential to then performing the damage evolution 

analysis and assessing the structural integrity of the UAV wing at future time. PLHA 

is thoroughly described in the subsequent sections of this chapter: Section 4.2 analyzes 
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the modeling and simulation of turbulence-induced loads, while Section 4.3 discusses 

the proposed simplified approach to model and simulate maneuver-induced loads 

acting on an aircraft wing (e.g., a UAV wing). Later, in Chapter 8, the main concepts 

of PLHA presented in the subsequent sections of this chapter will be generalized and 

applied to other types of structural systems subjected to different loading scenarios. 

4.2. Turbulence-induced aerodynamic loads 

Turbulence-induced aerodynamic loads are modeled by directly characterizing 

the stochasticity of the atmospheric turbulence velocity patches that can be 

encountered by an aircraft during flight rather than focusing on the pressure load 

distribution induced by these velocity fields. This approach is dictated by the fact that 

pressure load distribution (or any other aerodynamic load distribution acting on an 

aircraft wing) is inherently a response dependent quantity and cannot be modeled as an 

independent variable. Conversely, the atmospheric turbulence velocity field 

surrounding the aircraft is reasonably considered as an independent random field. In 

other words, it is herein assumed that the atmospheric turbulent field is not affected (or 

modified) by the presence of the aircraft flying through it at high speed. However, this 

assumption can no longer be used in the PLHA if, in a given study, aircraft wake 

turbulence (http://en.wikipedia.org/wiki/Wake_turbulence) is an important factor and 

has to be included in the analyses. 

Atmospheric turbulence is modeled as a zero-mean, isotropic, stationary (in 

time), and homogeneous (in space) stochastic Gaussian random velocity field, as 

discussed in detail by Hoblit (1988), and Van Staveren (2003). Its intensity, associated 
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with the kth flight segment in the time window , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  characterized by the parameter 

vector F
(k)Θ , is a scalar random variable taken as the root mean square (RMS) value of 

the wind velocity fluctuations. This random quantity, denoted as T
(k)Σ  in this study, is 

probabilistically characterized by the conditional PDF 
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 (4.1) 

where ( )T
(k)δ σ  denotes the Dirac delta, ( ) ( ) ( ) ( ) ( )0 1 2 1 2, , , ,(k) (k) (k) (k) (k)P h P h P h b h b h  are 

altitude-dependent distribution parameters collected (for each flight segment) in the 

vector T
(k)Θ  and the additional constraint, ( ) ( ) ( )0 1 21(k) (k) (k)P h P h P h= − − , is essentially 

used to guarantee that ( )
T T F

T T F| ,
| ,(k) (k) (k)

(k) (k) (k)f
Θ Θ

θ θ
Σ

σ  is a proper PDF. Additionally, by simple 

inspection of Equation (4.1), it is worth noting that T
(k)Σ  is statistically dependent on 

F
(k)Θ  exclusively through (k)h  (i.e., the altitude of flight during the kth flight segment). 

The first term on the right-hand-side (RHS) of Equation (4.1), ( ) ( )0 T
(k) (k)P h δ σ , is 

normally referred to as quiet air, the second one as non-storm turbulence, and the third 

one as storm turbulence (Hoblit, 1988). Finally, for illustration purposes, a simple 

comparison between the turbulence distribution parameters suggested by the Federal 

Aviation Regulations (FAR) and those derived from flight test data on a Boeing 737 

(found in the literature; Rustenburg et al., 1999) is shown in Figure 4.1. 
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Figure 4.1: Comparison between the turbulence distribution parameters suggested by 
the Federal Aviation Regulations (FAR) for design purposes and those experimentally 

derived from flight test data on a Boeing 737 aircraft as found in the literature. 

 

Another essential piece of information for characterizing the intensity measure 

vector, TIM , associated with the turbulence-induced loads is provided by the spatial 

extent, T
(k)S∆ , of the turbulent patches during the kth flight segment. In this study the 

quantity T
(k)S∆  is considered as a random variable distributed according to an 

exponential distribution with mean value (collected in T
(k)Θ  and possibly dependent on 

(k)h ) denoted as 
T
(k)S

µ
∆

. This assumption is well validated through the analysis of some 

recorded flight data found in the literature (Coleman and Steiner, 1960; Kordes and 

Love, 1967) as shown in Figure 4.2. For each flight segment in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ , turbulence 

intensity ( T
(k)Σ ) and the extent of the turbulent patches ( T

(k)S∆ ) are collected in the 

turbulence intensity measure vector { }T T T,∆(k) (k) (k)SΣ=IM . Furthermore, for all the flight 

segments in the time window , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ , the random quantities T

(k)IM  and F
(k)Θ  are collected 
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in the random vectors { }T T , 1, ...,(k)
sk n= =IM IM  and { }F F , 1, ...,(k)

sk n= =Θ Θ , 

respectively. 

                        (a)                                          (b)                                          (c) 

Figure 4.2: Probability of turbulent patches exceeding a specified extent in different 
geographical areas (from refs.): (a) From XB-70 flight test data collected in Western 
USA and altitudes above 40,000 ft, (b) From flight data collected in Southern USA 
and altitudes above 40,000 ft, (c) From flight data collected in Western Europe and 

altitudes between 20,000 ft and 40,000 ft. The red lines represent the fitted 
Exponential complementary cumulative distribution function (CDF). 

 

4.2.1. Proposed approach for the stochastic realization of turbulence intensity 

sequences along the flight-path 

The random sequence of the intensity of the turbulent patches encountered by 

the aircraft during each of the sn  flight segments in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  can be modeled and 

simulated using homogeneous Poisson rectangular pulse processes with mean rate of 

occurrence 
T

T ∆
1 (k)

(k)
S

λ µ= . Each arrival (in space) of a Poisson event raises a 

rectangular pulse of random intensity T
(k)Σ  — according to the conditional PDF 

( )
T T F

T T F| ,
| ,(k) (k) (k)

(k) (k) (k)f
Θ Θ

θ θ
Σ

σ  in Equation (4.1) — until the next arrival. An illustrative 
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example, for a given set of values for ( ) ( ) ( ) ( )1 2 1 2, , , ,(k) (k) (k) (k)P h P h b h b h  and 
T
(k)S

µ
∆

, is 

shown in Figure 4.3.  

( ) ( )
( ) ( )

T

1 2

1 2

0.20 0.05

3.0 / 10.0 /
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(k) (k)

(k) (k)

S
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miµ∆

= =

= =

=

( ) ( )
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S
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miµ∆

= =

= =

=

 
Figure 4.3: Illustrative example of homogeneous Poisson rectangular pulse process 
used as stochastic model to simulate the sequence of turbulence-induced intensities 

(within the kth flight segment) for a given set of turbulence distribution parameters and 
an average turbulence patch extent of 84 miles (i.e., the average extent from flight data 

collected in Southern USA as shown in Figure 4.2).  
 

Additionally, a generic realization of the random vector TIM  in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  is herein 

denoted { }T T , 1, ...,(k)
sk n= =im im  where the sub-vector T

(k)im  is defined as 

{ },
T T T, 1, ...,(k) (k m) (k)m n=im im  with (i) { }, , ,

T T T, ∆(k m) (k m) (k m)sσ=im  denoting the intensity 

and extent of the mth turbulent patch and (ii) T
(k)n  representing the total number of 

turbulence patches (within the kth flight segment) randomly generated during a generic 

realization of T
(k)IM . The turbulence intensity, ,

T
(k m)σ , is sampled according to the 

conditional PDF shown in Equation (4.1) while the mth turbulent patch extent, ,
T∆ (k m)s , is 
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drawn from the exponential distribution of T∆ (k)S  characterized (as mentioned earlier) by 

the mean value 
T
(k)S

µ
∆

. Finally, for each turbulence velocity intensity, ,
T
(k m)σ , randomly 

sampled as described above, it is then possible to stochastically realize an ensemble of 

turbulence velocity fields by making use of turbulence velocity spectra. This process is 

outlined in the next section. 

4.2.2. Turbulence velocity spectra 

Once an ensemble of turbulence intensity time histories in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  is generated, 

Von Karman or Dryden turbulence velocity spectra (Kim and Hwang, 2004;Van 

Staveren, 2003) are then used — for each sequence of turbulence intensities 

characterized by the vector Tim  — to stochastically realize an ensemble of 1-, 2-, or 3-

D (spatially correlated) turbulence velocity fields/paths for each turbulence intensity 

,
T
(k m)σ  (i.e., for each Poisson rectangular pulse) realized in the previous step. These paths 

are subsequently employed, together with the remaining flight profile information stored 

in FΘ  — e.g., { }, 1, ...,(k)
sk n=V  and { }, 1, ...,(k)

sT k n=  — to generate the ensemble 

of time histories of the turbulence-induced loads for each flight segment in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ . A 

detailed discussion on this topic is provided by Van Staveren (2003). 

4.3. Maneuver-induced aerodynamic loads 

As already introduced in Chapter 2, maneuver-induced loads experienced by 

the UAV wing during the kth flight segment are probabilistically characterized by the 

vector MIM . This vector provides the probabilistic characterization of the intensity 
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and duration of the maneuver-induced loads (acting on the UAV wing) during the time 

window , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  — e.g., the increment (w.r.t. the straight-and-level unaccelerated flight 

conditions) of the aerodynamic lift generated by the aircraft wings during a steady-

level banked turn. In this work, since the main focus is on the load-induced stresses at 

the wing-root and since large angles of attack as well as rapid acrobatic maneuvers are 

not considered, the intensity of a maneuver-induced load is thus treated, as a 

perturbation/change (positive or negative) of the aerodynamic lift acting on the UAV 

wing during straight-and-level unaccelerated flight conditions. The following points 

describe the random variables used in this study to model and simulate maneuver 

intensity time histories:  

(i) The mean rate of occurrence of maneuvers during the kth flight 

segment, M
(k)λ  (collected in M

(k)Θ  and assumed herein to be a 

deterministic function of F
(k)Θ ); 

(ii) The non-dimensional maneuver load factor (multiplicative of the 

straight-and-level aerodynamic lift as well as of each mass particle 

of the wing), M
(k)Ζ , modeled as a random variable and renewed at 

each occurrence of a maneuver. The condition M 1Ζ =  thus 

corresponds to a straight-and-level unaccelerated flight. It is worth 

noting that the load factor MΖ  is also applied/multiplied to each 

mass particle of the wing; consequently, the intensity of the total 

maneuver-induced load is the sum of the scaled aerodynamic lift 
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and the scaled self-weight of the wing. 

(iii) The maneuver duration, M
(k)T∆ , represented by a random variable 

(renewed at each occurrence of a maneuver) following an 

exponential distribution with mean value 
M
(k)T

µ
∆

. As discussed in 

Chapter 2, all these maneuver-related measures are typically 

characterized (in probabilistic terms) on the basis of flight data 

previously collected which make it possible to (i) derive M
(k)λ  as a 

function of the altitude of flight, (ii) assign a certain PDF, ( )
M

M(k)
(k)f

Ζ
ζ , 

to the maneuver intensity, M
(k)Ζ , and (iii) estimate the mean value, 

M
(k)T

µ
∆

, of the maneuver duration within a given flight segment. 

4.3.1. Proposed approach for the stochastic realization of ensembles of 

maneuver intensity time histories 

In this study, the time histories of the maneuver-induced loads are modeled and 

simulated as censored homogeneous Poisson rectangular pulse processes with mean 

rate of occurrence M
(k)λ  for the random arrival in time of the rectangular pulses (Wen, 

1990). The sequence of these random processes, covering all sn  flight segments in 

, q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ , is completely characterized by the vector intensity measure 

{ }M M , 1, ...,(k)
sk n= =IM IM  in which the sub-vector M

(k)IM  is defined as 

{ }M M M,∆(k) (k) (k)TΖ=IM . The random components M
(k)Ζ  and M

(k)T∆  can be in general 
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statistically correlated (Wen, 1990) and their statistical parameters — such as the 

mean value of the maneuver duration, 
M
(k)T

µ
∆

, and the distribution parameters of the 

PDF ( )
M

M(k)
(k)fΖ ζ  — are collected (for each flight segment) in the vector 

{ }M M, 1, ...,(k)
sk n= =Θ Θ . This notation is introduced because the vector MΘ  is 

generally dependent on { }F F , 1, ...,(k)
sk n= =Θ Θ  since (for instance) the intensity and 

duration of a maneuver can depend on the altitude of flight, (k)H , and/or the aircraft 

velocity, (k)V , as defined in Chapter 2; and both variables are collected in F
(k)Θ . 

Furthermore, the values of M
(k)λ  and 

M
(k)T

µ
∆

 estimated from fight data satisfy the 

condition 
M M

M ∆
1(k)

(k) (k)
T

pΖ = ⋅ ≤λ µ , where the quantity 
M

(k)pΖ  (normally referred to as 

probability of selection) represents the fraction of time (within the kth flight segment) 

during which the aircraft is maneuvering (i.e., M 1(k)Ζ ≠ ). It is worth noting that the 

limiting case 
M

1(k)pΖ =  — i.e., when 
M

M ∆
1 (k)

(k)
T
µ=λ  — represents a flight segment 

entirely covered by a continuous sequence of maneuvers. 

In light of these considerations, the stochastic modeling and simulation of the 

maneuver-induced loads, for each of the sn  flight segments in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ , are performed 

in two steps.  In the first step, an underlying (uncensored) Poisson point process with 

mean rate of occurrence ( M,
(k)

uλ ) equal to 
M

M, ∆
1 (k)

(k)
u T

µ=λ  is defined and each arrival in 

time of a Poisson event raises a rectangular pulse of intensity MΖ (k) , lasting/enduring 

until the next Poisson arrival. In the second step, only a fraction 
M

(k)pΖ  of these 
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rectangular pulses is randomly selected thereby leading to a censored Poisson process 

with mean rate of occurrence 
MM, M, M

(k) (k) (k) (k)
c u pΖ= ⋅ =λ λ λ . Following this approach, the 

rectangular load pulses do not overlap as illustrated in Figure 4.4. 

The two steps described above are automatically realized by using the 

following mixed PDF for the load intensity M
(k)Ζ  at each Poisson arrival of the 

underlying (uncensored) Poisson process, 

 ( ) ( ) ( ) ( )
M MM M

M M M1 1(k) (k)
(k) (k) (k) (k) (k)f p p fΖ ΖΖ Ζ

ζ δ ζ ζ= − ⋅ − + ⋅  (4.2) 

which expresses that during ( )
M

1 100%(k)pΖ− ×  of the time, the load intensity is equal to 

M 1Ζ =(k) , corresponding to an aerodynamic lift (for straight-and-level flight) balancing 

the aircraft’s own weight. 
 

Figure 4.4: Illustration of censored Poisson rectangular pulse process (with mean 
maneuver duration of 30 s) used to define the intensity of maneuver-induced loads 

(through a maneuver-induced load factor) within the kth flight segment. 
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Thus, it is evident that 
M

(k)pΖ  controls the sparseness of the pulses in the 

censored Poisson process. When 
M

1(k)pΖ , the occurrence of a maneuver during the kth 

flight segment is very unlikely and therefore M 1(k)Ζ =  for a large fraction (
M

1 (k)pΖ− ) of 

(a)(a)

 
 

(b)(b)

 
 

Figure 4.5: Examples of stochastic realizations of maneuver-induced loads (during the 
kth flight segment) with mean maneuver duration of 30 s and with two different mean 

rate of occurrence: (a) 20 maneuvers per flight-hour, (b) 80 maneuvers per flight-hour. 
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the time; this is generally the case for surveillance UAVs. On the other hand, when 

M
0(k)pΖ , the kth flight segment is covered by a dense sequence of maneuvers; and this 

resembles the typical condition of a fighter aircraft. All these concepts are 

conceptually illustrated in Figure 4.5 where the maneuver intensity, described by M
(k)Ζ , 

is assumed (for the sake of simplicity) to be statistically independent of the maneuver 

duration, and its PDF, ( )
M M

(k) (k)fΖ ζ , is modeled using a scaled and shifted Beta 

distribution, ( ),B α β  (bounded between 0 and 1) , as ( ) ( )
M

6 2,2 2(k)f BΖ ζ = − , where the 

term ( )2, 2B  is defined as a random variable following a symmetric Beta distribution 

of parameters 2α=  and 2β = . The maneuver induced load factor M
(k)Ζ  thus lies in 

the interval M2.0 4.0(k)ζ− ≤ ≤  and its mean value is equal to one. This range of the 

maneuver load factor is consistent with measurements reported in the literature (Allen 

and Dibley, 2003) and aircraft design provisions (FAR, part 23 and part 25; Air Force 

MIL-A-8860B) aimed at preventing maneuver-induced structural damage. 

Finally, with a notation very similar to the one used previously in this chapter, a 

generic realization of the random vector MIM  is denoted { }M M, 1, ...,(k)
sk n= =im im  

where the sub-vector M
(k)im  is defined as { },

M M M, 1, ...,(k) (k m) (k)m n=im im  with (i) 

{ }, ,
M M M, ∆(k m) (k m) (k)tζ=im  denoting the intensity and duration of the mth maneuver and (ii) 

M
(k)n  representing the total number of maneuvers (within the kth flight segment) randomly 

generated in a generic realization of M
(k)IM . The maneuver intensity, ,

M
(k m)ζ , is sampled 

according to the PDF shown in Equation (4.2) while the maneuver duration, M∆ (k)t , is 
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drawn from the exponential distribution of M
(k)T∆  characterized by the mean value 

M
(k)T

µ
∆

. Recalling the notation { }T M,=IM IM IM  introduced in Chapter 2, it is easy to 

realize that IM im=  essentially fixes a particular realization of the combined 

turbulence and maneuver-induced load intensities in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ . 
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CHAPTER 5  

 

PROBABILISTIC STRUCTURAL RESPONSE 

AND DAMAGE EVOLUTION ANALYSES 

5.1. Introduction 

This chapter analyzes in detail the third step of the proposed damage prognosis 

framework, namely probabilistic structural response analysis (or, following the 

notation used later in Chapter 8, probabilistic damage evolution analysis), and 

discusses the use of surrogate modeling techniques to gain computational feasibility. It 

is worth noting that the theory presented in this chapter refers to the case in which only 

the joint PDF of the damage sizes is recursively updated after each NDE inspection. 

However, all derivations can easily be extended to the more general case in which the 

joint PDF of the damage evolution model parameters is also repeatedly updated. A 

detailed discussion of the latter, and more general case, is provided in Chapter 8. 
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5.2. Proposed stochastic damage evolution analysis approach 

Once the two types of aerodynamic loads are characterized probabilistically, the 

joint conditional PDF of the damage extents (at multiple locations) at time 

∆q
p pt t q τ= +  (with 1, 2, ...,q q= ), ( )[ , ]

a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ , is computed through 

extensive Monte Carlo (MC) simulations during which the random vectors a
pA , IM , 

and FΘ  are sampled according to their PDFs — i.e., ( )
a mat dam a mat dam, ,p

pf ′′A Θ Θ a θ θ , 

( )
F FfIM Θ im θ , and ( )

F FfΘ θ  — in the application of the total probability theorem 

(TPT) as shown below: 

 
[ ]

Fa

[ , ] [ , ]
a mat dam a mat dam a F

a mat dam F F

, , , , ,

,

p

p q p q p

p

dP dP

dP dP dP

⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤′′⋅ ⋅ ⋅⎢ ⎥ ⎣ ⎦⎣ ⎦

∫ ∫ ∫
IM ΘA

A Θ Θ A Θ Θ A IM Θ

A Θ Θ IM Θ Θ
 (5.1) 

Equation (5.1) was already introduced and discussed in Chapter 2 and it makes use of 

the following notation: 

 [ ] [ ] ( )XdP X P x X x dx f x dx= < ≤ + =  (5.2) 

 [ ] [ ] ( ),, ,X YdP X Y P x X x dx y Y y dy f x y dx dy= < ≤ + ∩ < ≤ + =  (5.3) 

 ( )X ZdP X z dP X Z z P x X x dx Z z f x z dx⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = < ≤ + = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (5.4) 

It is worth noting that the uncertainty of [ , ]
a
p qA  for given/fixed values of mat mat ,=Θ θ  

dam dam ,=Θ θ  a a ,p p=A a  ,=IM im  and F F=Θ θ  — i.e., the uncertainty quantified by 

the joint conditional PDF ( )[ , ]
a mat dam a F

[ , ]
a mat dam a F, , , ,

, , , ,p q p
p q pf

A Θ Θ A IM Θ
a θ θ a im θ  inside the 
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integral in Equation (5.1) — rises from the record-to-record variability of the structural 

response across the ensemble of turbulence paths that can be stochastically realized for a 

given value of the turbulence intensity T TIM im=  (i.e., for a given/fixed power 

spectral density representation of the turbulence velocity field for each flight segment; 

Van Staveren, 2003). The variability of the structural response across the ensemble of 

the turbulence paths realized adds an additional (nested) layer of uncertainty within this 

third step of the proposed methodology. Therefore, especially when dealing with a 

nonlinear structural system, providing the complete probabilistic characterization of the 

joint conditional PDF, ( )[ , ]
a mat dam a F

[ , ]
a mat dam a F, , , ,

, , , ,
A Θ Θ A IM Θ

a θ θ a im θp q p
p q pf , becomes a 

formidable task. Estimating the conditional mean [ , ]
ens a mat dam a F, , , ,a θ θ a im θp q pE ⎡ ⎤

⎢ ⎥⎣ ⎦  and 

the conditional variance [ , ]
ens a mat dam a F, , , ,a θ θ a im θp q pVar ⎡ ⎤

⎢ ⎥⎣ ⎦ , across the ensemble of 

turbulence patches stochastically realized, is thus a more realistic and computationally 

achievable goal. Furthermore, for the case in which only the conditional mean 

( )[ , ] [ , ] [ , ]
a a mat dam a F ens a mat dam a F, , , , , , , ,p q p q p p q pEa a θ θ a im θ a θ θ a im θ⎡ ⎤= = ⎢ ⎥⎣ ⎦  is estimated and 

used in the analyses — i.e., when the record-to-record variability of the quantity 

( )[ , ]
a mat dam a F, , , ,a θ θ a im θp q p , across the ensemble of turbulence patches stochastically 

realized, is neglected — the conditional joint PDF inside the integral in Equation (5.1) 

can be rewritten as 

 ( ) ( )[ , ]
a mat dam a F

[ , ] [ , ] [ , ]
a mat dam a F a a, , , ,

, , , ,
A Θ Θ A IM Θ

a θ θ a im θ a ap q p
p q p p q p qf δ= −  (5.5) 
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and Equation (5.1), which represents an application of the TPT within the third 

analytical step of the proposed damage prognosis methodology, can be simplified as 

follows: 

( )
( ) ( ) ( ) ( )

[ , ]
a mat dam

FFa mat dam

Fa

[ , ]
a mat dam,

[ , ] [ , ]
a a a mat dam F F a F,

,

,

p q

p

p

p q

p q p q p p

f

f f f d d d

A Θ Θ

ΘIMΘA Θ Θ
IM ΘA

a θ θ

a a a θ θ im θ θ a im θδ

=

′′−∫ ∫ ∫  (5.6) 

The quantity ∆τ , introduced above, is a suitable fixed time interval related to 

the time-scale of the damage propagation process of interest. For example, 100 to 500 

flight-hours for UAVs whose most critical structural components are approaching their 

expected fatigue life, which is generally of the order of tens of thousands of flight-

hours, as reported by the Department of Defense in “Unmanned aerial vehicles 

reliability study, 2003”. However, ∆τ  needs to be sufficiently short and lead to a 

satisfactory grid of response evaluations in , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ , in order to facilitate the interpolation 

(i.e., at q
pt t=  with 1i q i− < <  and { }1, 2, ...,i q∈ ) and/or the extrapolation (i.e., at 

q
pt t> ) of the response of the system at different times in the future. This approach 

aims at providing an accurate and reliable prediction for the trend of the structural 

response of interest (i.e., the trend of damage evolution) as well as for the trend of the 

reliability index of the structure. Furthermore, the value of q  needs to guarantee a 

sufficiently wide prediction window , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦  thereby making the prognosis results 

meaningful for the decision making process. To this end, the fatigue-induced debonding 

evolution process taking place along the skin-to-spar adhesive joints can be simulated 



100 

 

— within the proposed damage prognosis framework — through a mechanics-based 

damage evolution model (as described by Gobbato et al., 2009) or an empirical 

damage-growth model — such as the Paris-Erdogan law (Paris and Erdogan,1963) or 

other similar models (Degrieck and Paepegem,2001; Blanco et al., 2004) — based on 

linear elastic fracture mechanics (LEFM) principles and experimental observations. In 

the former case, the use of a cohesive zone model (CZM) was already proposed in 

several studies analyzing the pseudo-static, and dynamic (i.e., impact-induced and 

fatigue-induced) delamination and debonding propagation process in laminated 

composite structures (Nguyen et al., 2001; Alfano and Crisfield, 2001; Tippetts and 

Hemez, 2005). This modeling approach leads to a damage evolution model fully 

embedded into the FE model (through special cohesive elements) subjected to the 

aerodynamic loads described in Chapter 4. The mechanical/material model parameters 

of the CZM (e.g., mode I and mode II critical fracture energies, maximum normal and 

tangential cohesive stresses, fatigue degradation parameters) are viewed as random 

variables and collected in the vector damΘ  with joint PDF denoted as ( )
dam damfΘ θ . On 

the other hand, if an empirical damage-growth model is used, damΘ  collects the 

parameters of that particular model. 

5.3. Surrogate modeling of the fatigue-induced damage evolution process 

The time domain simulations using the mechanics-based approach, which 

employs a CZM for discretizing the skin-to-spar adhesive layer, are computationally 

expensive because of: 

(i) The highly nonlinear response of the adhesive joint,  
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(ii) The highly refined FE mesh needed in proximity of the debonding 

propagation fronts, 

(iii) The much larger — compared to the characteristic time of the dynamics 

of the UAV wing — timescale of the debonding propagation process 

along the skin-to-spar adhesive joints. 

For this reason, the use of metamodels — such as polynomial response surface models 

(Myers and Montgomery, 1995), Gaussian Process (GP) models (McFarland, 2008), 

and Kriging interpolation (Stein, 1999) — has to be considered in order to efficiently 

compute the joint conditional PDF of the damage extent at time q
pt , 

( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ , i.e., the final outcome of the third step of the proposed 

methodology. This joint conditional PDF is obtained by computing the quantity [ , ]
a
p qa , 

through a series of MC simulations (performed using the metamodel) during which the 

input parameters a , ,pa im  and Fθ  are sampled from their joint PDFs, while the samples 

from the random parameter vectors matθ  and damθ  are kept constant from the first 

damage inspection until the time at which the UAV wing failure probability has 

exceeded an acceptable threshold (as presented in Chapter 7). The mathematical reason 

behind this type of approach (within the proposed process of uncertainty propagation) is 

dictated by the intrinsic non-ergodicity nature of the random variables collected in matθ  

and damθ ;  an important aspect thoroughly discussed by Der Kiureghian (2005).  

Based on previous considerations and following a dimensional analysis 

approach (Navarro and De Los Rios, 1987; Sanford, 2003) applied to the specific case 



102 

 

studied herein, a possible mathematical form for the metamodel, capable of providing 

(as output) the average rate of fatigue-induced damage propagation (across the 

ensemble of the turbulence paths realized) for a given set of the input parameters, is 

given by 

 ( ) ( )[ , ] [ , ]
ens a mat dam a F a M T mat dam, , , , , , , ; ,A θ θ a im θ G a v θ θp t p p p tdE

dt
ζ σ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (5.7) 

where: (i) ( )[ , ]
ens a mat dam a F, , , , /A θ θ a im θp t p pE d dt⎡ ⎤

⎢ ⎥⎣ ⎦  — with dt being a “macro” increment 

of time expressed in flight-hours — represents the expected rate of damage propagation 

at time t for fixed values; the vector term [ , ]
a

p ta  (of length A
pn ) represents the 

conditional expectation of the damage-size vector (at future time pt t≥ ) defined as 

[ , ]
aa p t =  ( )[ , ] [ , ]

a mat dam a F ens a mat dam a F, , , , , , , ,a θ θ a im θ A θ θ a im θp t p p t pE ⎡ ⎤= ⎢ ⎥⎣ ⎦ ; (ii) the three-

component vector v  quantifies the velocity of the mean airstream w.r.t. a reference 

system fixed to the aircraft; (iii) Mζ  defines a particular realization of the maneuver-

induced load factor; and (iv) Tσ  characterizes the intensity of the turbulence field. The 

general nonlinear mapping ( ) inp A:G
pn nR R+⋅ →  (with inp A mat dam5pn n n n= + + + ), 

between the input and (positive) output real vector spaces, represents the metamodel 

fitted (through an appropriate and computationally feasible design of experiments) 

over the desired design space for the input parameters using the simulation results 

from the (physics-based) nonlinear FE model of the UAV wing. Thus, Equation (5.7) 

states that the average rate of damage propagation, at a given time pt t≥ , is a function 



103 

 

of the current damage extent [ , ]
a

p ta , the intensity of the applied external loads (i.e., 

straight-and-level flight loads, turbulence- and maneuver- induced loads, quantified 

through the variables v , Tσ , and Mζ , respectively), and the material and damage 

model parameters ( matθ  and damθ ). Furthermore, if the condition for mean square 

differentiability of the random process ( )[ , ]
a mat dam a, , ,p t p pA θ θ a im  is satisfied, 

expectation and differentiation operators can permute, i.e., 

 
( )[ , ] [ , ]

ens a mat dam a F ens a mat dam a F

[ , ]
a

, , , , , , , ,A θ θ a im θ A θ θ a im θ

a

p t p p p t p p

p t

d dE E
dt dt

d
dt

⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

=
 (5.8) 

and Equation (5.7) can now be rewritten as 

 ( )[ , ] [ , ]
a a M T mat dam

a a

, , , ; ,a G a v θ θ

a a

p t p t

p p

d
dt

ζ σ
⎧⎪⎪ =⎪⎨⎪⎪ =⎪⎩

 (5.9) 

where a
pa  represents the value of the vector [ , ]

a
p ta  at time pt t=  and a

pa  is a particular 

realization of a
pA  according to the posterior joint PDF ( )

a mat dam a mat dam, ,p
pf ′′A Θ Θ a θ θ . 

Equation (5.9) represents a system of first-order ordinary differential equations that 

can now be numerically integrated (e.g., by using the 4th order Runge-Kutta time 

marching scheme) between current time, pt , and q
pt  to compute [ , ]

a
p qa . 

Following this approach, the practical computation of the conditional joint 

PDF ( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ  (with 1, 2, ...,q q= ) consists of four stages: 
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(i) In the first stage, a random sample (
spa,1 a,2 a,, , ,p p p

na a a… ) from the posterior 

(i.e., after Bayesian updating) joint conditional PDF,  

( )
a mat dam a mat dam, ,p

pf ′′A Θ Θ a θ θ , is generated using, for instance, Markov 

Chain Monte Carlo (MCMC) simulation techniques (Robert and 

Casella, 2004) in a computationally efficient sampling-resampling 

fashion (Smith and Gelfand, 1992; Berzuini et al., 1997; Ching and 

Chen, 2007); 

(ii) In the second stage, a random ensemble of loading time histories, 

combining both turbulence- and maneuver-induced loads, and covering 

the entire time window , q
p pt t⎡ ⎤⎢ ⎥⎣ ⎦ , is realized according to the procedures 

presented in Chapter 4; 

(iii) In the third stage, the evolution in time of the damage extent is 

computed by integrating (sequentially, segment by segment) Equation 

(5.9) for each of the spn  realizations of the actual damage size vector 

generated in the first stage (i.e., 
spa,1 a,2 a,, , ,p p p

na a a… ) and now combined 

with the ensemble of loading inputs generated in the second stage; 

finally, 

(iv) In the fourth and final stage, the joint conditional PDF, 

( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ , is estimated q  times (at ∆q

p pt t q τ= + , 

with 1, 2, ...,q q= ) by evaluating the distribution of [ , ]
a
p qa  on the basis of 

the ensemble of the predicted paths of the damage evolution in time. 
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Kernel density estimation (Li and Racine, 2006) can represent a useful 

tool to perform this fourth and last stage of the proposed probabilistic 

analysis of damage propagation in time.  

These four stages for the computation of ( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q
p qf

A Θ Θ
a θ θ  are conceptually 

illustrated in Figure 5.1 and Figure 5.2 below, for a given and unique combination of 

damage location ( i ), damage mechanism ( j ), and two subsequent NDE inspection 

times ( pt  and 1pt + ). 

( )
( )( ), ,

mat dam

, ,
mat dam,

,i j p
a

i j p
aA

f a′′
Θ Θ

θ θ

[ ]( )
[ ]( )( ), , ,3

mat dam

, , ,3
mat dam,

,i j p
a

i j p
aA

f a
Θ Θ

θ θ

[ ]( )
[ ]( )( ), , , 2

mat dam

, , ,2
mat dam,

,i j p
a

i j p
aA

f a
Θ Θ

θ θ ( )
( )( ), , 1

mat dam

, , 1
mat dam,

,i j p
a

i j p
aA

f a+

+′
Θ Θ

θ θ

( )
( )( ), ,

mat dam

, ,
mat dam,

,i j p
a

i j p
aA

f a′′
Θ Θ

θ θ

[ ]( )
[ ]( )( ), , ,3

mat dam

, , ,3
mat dam,

,i j p
a

i j p
aA

f a
Θ Θ

θ θ

[ ]( )
[ ]( )( ), , , 2

mat dam

, , ,2
mat dam,

,i j p
a

i j p
aA

f a
Θ Θ

θ θ ( )
( )( ), , 1

mat dam

, , 1
mat dam,

,i j p
a

i j p
aA

f a+

+′
Θ Θ

θ θ

 

Figure 5.1: Illustrative example of the proposed damage evolution prediction approach 
for a particular combination of damage location ( i ), damage mechanism ( j ) and four 

evaluations (i.e., 4q = )  of the damage-size PDF across the predicted (at time pt )  
ensemble of damage sizes.  
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( )
( )( ), , 2

mat dam
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,i j p
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Θ Θ

θ θ
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Figure 5.2: Illustrative example of the proposed damage evolution prediction approach 
for a particular combination of damage location ( i ), damage mechanism ( j ) and four 

evaluations (i.e., 4q = )  of the damage-size PDF across the predicted (at time 1pt + )  
ensemble of damage sizes. 

 

Figure 5.1 illustrates how the sample for the damage size ( , , )i j p
aA , distributed 

according to the posterior marginal PDF ( )( , , )
mat dam

( , , )
mat dam, ,Θ Θ θ θi j p

a

i j p
aAf a′′ , is propagated 

in time in order to evaluate, across the ensemble of damage propagation paths 

generated, the marginal PDF of ( , ,[ , ])i j p q
aA , herein denoted as 

( )( , ,[ , ])
mat dam

( , ,[ , ])
mat dam, ,Θ Θ θ θi j p q

a

i j p q
aAf a . Within the proposed framework, this task is 

performed in a discrete fashion by evaluating the damage size distribution at 

∆q
p pt t q τ= +  (for 1, 2, ...,q q= ); the propagated samples and the corresponding PDFs, 
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evaluated at these (future) instants of time for the particular case in which 4q = , are 

represented by the blue diamonds and the blue PDF curves shown in Figures 5.1 and 

5.2. These damage propagation results can be extrapolated at instants of time beyond 

∆q
p pt t q τ= + (magenta sample and PDF curve shown in Figures 5.1) or interpolate at 

any given time between pt  and q
pt  (orange sample and PDF curve shown in Figure 5.1). 

The interpolated sample and PDF at time 1pt + , shown by the orange diamonds and curve 

in Figure 5.1, provide the prior probabilistic information — 

( )( , , 1)
mat dam

( , , 1)
mat dam, ,Θ Θ θ θi j p

a

i j p
aAf a+

+′  — for the Bayesian inference step to be performed at 

time 1pt +  when new NDE measurement results are available. The output of this analysis 

step, at time 1pt + , is given by the posterior sample and PDF of ( , , 1)i j p
aA + , 

( )( , , 1)
mat dam

( , , 1)
mat dam, ,Θ Θ θ θi j p

a

i j p
aAf a+

+′′ , depicted in Figure 5.2. At this point the damage 

propagation analysis can be repeated in order to provide the PDF of ( , ,[ 1, ])i j p q
aA +  at the 

instants of time identified as 1 1 ∆q
p pt t q τ+ += +  (for 1, 2, ...,q q= ). This family of PDFs 

is herein denoted as ( )( , ,[ 1, ])
mat dam

( , ,[ 1, ])
mat dam, ,Θ Θ θ θi j p q

a

i j p q
aAf a+

+  (with 1, 2, ...,q q= ) and 

they are shown in Figure 5.2 for the particular case in which 4q = . These new damage 

propagation results can be extrapolated at instants of time beyond 

1 1 ∆q
p pt t q τ+ += + (magenta sample and PDF curve shown in Figure 5.2) or interpolated 

at any given time between 1pt +  and 1
q
pt +  (red sample and PDF curve shown in Figure 

5.2). The interpolated sample and its associated PDF at time 2pt + , shown by the red 
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diamonds and curve in Figure 5.2, provide the prior probabilistic information — 

( )( , , 2)
mat dam

( , , 2)
mat dam, ,Θ Θ θ θi j p

a

i j p
aAf a+

+′  — for the Bayesian inference step to be performed 

at time 2pt +  when another series of new NDE measurement results are available. 
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CHAPTER 6  

 

PROBABILISTIC FLUTTER AND LIMIT 

CYCLE OSCILLATION (LCO) ANALYSES 

6.1. Introduction 

This chapter describes in detail the fourth analytical step of the damage 

prognosis framework, namely probabilistic flutter and limit cycle oscillation (LCO) 

analyses. This step represents the last computational effort — before the subsequent 

component and system reliability analyses part of the sixth and last step of the 

methodology — and aims at providing the joint probabilistic information of both, local 

and global, states of damage at future times. Practically, this fourth step aims at 

assessing, in probabilistic terms, the overall (global) performance level of the 

monitored structural systems as damage progresses throughout the most critical 

damageable sub-components (e.g., the skin-to-spar adhesive joints of a composite 
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UAV wing). This goal is achieved by probabilistically characterizing a series of global 

performance measures capable of assessing the structural integrity and the 

performance level of the structure of interest. As an example, if an aircraft wing 

represents the structural system of interest, focus can be addressed on its overall 

aeroelastic behavior/performance as damage progresses in time (Bauchau and Loewy, 

1997; Lin and Styuart, 2007; Styuart et al., 2008). In the first part of this thesis (i.e., in 

Chapters 2 through 7), which focuses on the development and applicability of the 

proposed damage prognosis framework to a composite UAV wing, these global 

performance measures are selected to be (i) the flutter velocity, and (ii) a set of limit 

cycle oscillation (LCO) velocities (Safi et al., 2002). The evolution in time of all these 

quantities is probabilistically characterized at discrete (future) times after each NDE 

inspection — i.e., at ∆q
p pt t q τ= +  with 1, 2, ...,q q=  — accounting for all the material 

and damage model parameter uncertainties carried out up to the fourth analytical step of 

the damage prognosis framework (Pettit, 2006). 

As pointed out by Le Meitour et al. (2010), the prediction of the flutter onset 

speed — sometimes referred to as  flutter instability boundary (Librescu, 2003) — is 

fundamental in the aerospace field. The loss of dynamic stability results in unbounded 

vibrations of the structure and may lead to the failure of the aircraft’s primary 

structural components. When structural and/or aerodynamic nonlinearities are present, 

the growth in the amplitude of the structural response quantities of interest (e.g., wing-

tip vertical displacement) is stabilized to limit cycle oscillations (Lee et al., 1999; 

Librescu et al., 2003). These types of phenomena can lead to an excessive fatigue of 
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the airframe as well as to unacceptable workloads for pilots thereby increasing the risk 

of incorrectly performing critical tasks (Bunton and Denegri, 1999; Thompson and 

Strganac, 2000). 

Another important nonlinear phenomenon which can affect the global 

performance of an aeroelastic system is the so-called internal resonance (Thompson 

and Strganac, 2000). This phenomenon is caused by the nonlinear coupling between 

different vibration modes and cannot be captured through linear analysis. More 

precisely, when the frequencies of vibration are nearly proportional to each other (e.g., 

2 12ω ω≈ , 2 13ω ω≈ , etc.) strong interactions between different modes and a transfer of 

energy from one mode to the other may occur (Nayfeh and Mook, 1979). These 

considerations suggest that these modal frequencies are worth monitoring, as damage 

evolves throughout the structure, in order to prevent any nonlinear coupling phenomena 

within the range of airspeeds of interest. However, for the sake of simplicity, they are 

not included in the theoretical treatment presented in this chapter. 

To conclude this introduction, it is worth mentioning (as already stated at the 

beginning of Chapter 5) that the theory and derivations presented in this chapter refer 

to the case in which only the joint PDF of the damage sizes is recursively updated after 

each NDE inspection. However, all the derivations discussed in the following sections 

can easily be extended to the more general case in which the joint PDF of the damage 

evolution model parameters is also repeatedly updated after each NDE inspection. A 

detailed discussion of the latter, and more general case, is provided in Section 8.3 in 

Chapter 8. 
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6.2. Proposed predictive modeling approach for the derivation of the Joint 

PDF of local and global states of damage at future times  

The fourth step of the proposed damage prognosis methodology uses the results 

obtained from the damage evolution prediction analysis from time pt  to time q
pt  (with 

1, 2, ...,q q= ), for estimating (at future time q
pt ) the joint PDF of (i) the damage size 

vector [ , ]
a
p qA  , (ii) the flutter velocity [ , ]

F
p qV  — i.e., the velocity at which the flutter 

instability boundary is reached — and (iii) the vector of LCO velocities [ , ]
LCO

p qV  — i.e., 

the velocities at which the considered LCOs reach their respective pre-defined 

amplitude threshold, beyond which the structural integrity of the UAV wing is 

compromised. The LCO velocities are computed via aerodynamic analyses performed in 

the time domain and can potentially be lower — in the case of a damaged wing — than 

the (linear) flutter velocity (Safi et al., 2002). In the proposed framework, these LCO 

velocities are collected in the random vector { }[ , ] ( ,[ , ])
LCO LCO LCO, 1, ,p q r p qV r n= =V …  and their 

joint PDF at time q
pt  is denoted by ( )[ , ]

LCO

[ , ]
LCOp q
p qf

V
v . The total number of global aeroelastic 

failure modes considered in this fourth step is therefore equal to G LCO1n n= +  and also 

represents the dimension of the random vector { }[ , ] ( ,[ , ])
F,LCO F,LCO G, 1, ,p q r p qV r n= =V …  

probabilistically characterized by the joint PDF ( )[ , ]
F,LCO

[ , ]
F,LCOp q
p qf

V
v . The random flutter 

velocity [ , ]
F

p qV  and the random vector [ , ]
LCO

p qV  are clearly statistically dependent and also 

dependent on the (numerically predicted) damage size vector [ , ]
a
p qA . 
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The (ideal) final outcome of this step is represented by the joint PDF, 

( ) ( )[ , ] [ , ][ , ]
aL,G F,LCO

[ , ] [ , ] [ , ]
L,G a F,LCO,

,p q p qp q
p q p q p qf f=

D A V
d a v , of the random vector { }[ , ] [ , ] [ , ]

L,G a F,LCO,p q p q p q=D A V . 

This joint PDF can be obtained through two sub-steps. In the first sub-step, the joint 

conditional PDF ( )[ , ] [ , ]
a mat damF,LCO

[ , ] [ , ]
F,LCO a mat dam, ,

, ,p q p q
p q p qf

V A Θ Θ
v a θ θ  is numerically estimated by 

performing multiple flutter and LCO analyses — each of them for a fixed realization 

of (i) the predicted (during the probabilistic structural response and damage evolution 

analysis) damage size vector [ , ]
a
p qa , and (ii) the vectors matθ  and damθ  sampled from 

their PDFs ( )
mat matfΘ θ  and ( )

dam damfΘ θ  at the time of the first NDE inspection as 

mentioned earlier in Chapter 5 (Der Kiureghian, 2005). In the second sub-step, the 

unconditional joint PDF of [ , ]
L,G
p qD  is computed as 

 ( ) ( ) ( ) ( )[ , ] [ , ] [ , ] [ , ][ , ] [ , ]
a aL,G F,LCO aF,LCO

[ , ] [ , ] [ , ] [ , ] [ , ] [ , ]
L,G a F,LCO F,LCO a a,

,
D A V AV A

d a v v a ap q p q p q p qp q p q
p q p q p q p q p q p qf f f f= = ⋅  (6.1) 

where the term ( )[ , ] [ , ]
aF,LCO

[ , ] [ , ]
F,LCO aV A

v ap q p q
p q p qf  is derived as 

 
( )

( ) ( ) ( )

[ , ] [ , ]
aF,LCO

[ , ] [ , ] mat dama mat damF,LCO
mat dam

[ , ] [ , ]
F,LCO a

[ , ] [ , ]
F,LCO a mat dam mat dam mat dam, ,

, ,

V A

Θ ΘV A Θ Θ
Θ Θ

v a

v a θ θ θ θ θ θ

p q p q

p q p q

p q p q

p q p q

f

f f f d d

=

∫ ∫
 (6.2) 

and the term ( )[ , ]
a

[ , ]
aA

ap q
p qf  can be expressed as 

 
( )

( ) ( ) ( )

[ , ]
a

[ , ]
mat dama mat dam

mat dam

[ , ]
a

[ , ]
a mat dam mat dam mat dam,

,

A

Θ ΘA Θ Θ
Θ Θ

a

a θ θ θ θ θ θ

p q

p q

p q

p q

f

f f f d d

=

∫ ∫
 (6.3) 
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Similarly, the joint marginal PDF of the vector [ , ]
F,LCOV p q , denoted as ( )[ , ]

F,LCO

[ , ]
F,LCOV

vp q
p qf , can 

be expressed as 

 ( ) ( ) ( )[ , ] [ , ][ , ] [ , ]
aF,LCO aF,LCO

[ , ]
a

[ , ] [ , ] [ , ] [ , ] [ , ]
F,LCO F,LCO a a aV AV A

A

v v a a ap q p qp q p q

p q

p q p q p q p q p qf f f d= ∫  (6.4) 

For many practical applications, the joint PDF ( )[ , ]
L,G

[ , ]
L,Gp q
p qfD d  is never fully 

computed during this fourth step of the damage prognosis methodology. More 

precisely, if only uni-modal bounds (Ditlevsen, 1996) of the probability of system 

failure, [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  at time q

pt , have to be determined in the subsequent analytical step of 

damage prognosis, then: (i) the A
pn  marginal PDFs of the individual components of the 

damage size vector ( )
( )( ), ,[ , ]

, ,[ , ] ,i j p q
a

i j p q
aA

f a  [0, ]
L 1,..., pi n∀ =  and ( , [0, ])

DM1,..., i pj n= , (ii) the 

marginal PDF of the flutter velocity ( )[ , ]
F

[ , ]
Fp q

p q
V

f v , and (iii) the LCOn  marginal PDFs of 

the individual LCO velocities, ( )( ,[ , ])
LCO

( ,[ , ])
LCO ,r p q

r p q
V

f v  (with LCO1,...,r n= ) are sufficient. 

Conversely, if a better estimation of the reliability index of the UAV wing is needed 

and bi-modal bounds of [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  have to be computed, then in addition to the 

marginal PDFs mentioned above, the bivariate joint PDFs of all possible pairs of 

failure modes are needed. These bivariate joint PDFs can characterize two local 

random quantities (e.g., ( )1, ,[ , ]i j p q
aA  and ( )2 , ,[ , ]i j p q

aA ), a local and a global random quantity 

(e.g., ( )1, ,[ , ]i j p q
aA  and [ , ]

F
p qV ), or two global random quantities (e.g., 1( ,[ , ])

F,LCO
r p qV  and 2( ,[ , ])

F,LCO
r p qV  

with { }1 2 LCO, 1, ,r r n…∈  and 1 2r r≠ ). 
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6.3. Surrogate modeling for the efficient computation of flutter and LCO 

velocities at future times 

The use of metamodels is also extremely useful in this step in order to reduce 

the computational cost of the probabilistic flutter and LCO analyses aimed at 

determining the joint conditional PDF ( )[ , ] [ , ]
a mat damF,LCO

[ , ] [ , ]
F,LCO a mat dam, ,

, ,
V A Θ Θ

v a θ θp q p q
p q p qf . It is 

well known that flutter and LCO velocities are primarily governed by the stiffness, 

strength and level of damage of the wing. Additionally, if the air density — which 

renders the flutter and LCO velocities dependent on FΘ  through the altitude of flight 

, 1, ...,(k)
sH k n=  — is considered as a deterministic quantity and assumed (as a 

simplification) to be independent of (k)H  (Wilts, 1957), then a possible mathematical 

form for the metamodel is given by 

 ( )[ , ] [ , ]
F,LCO a mat dam; ,v Q a θ θp q p q=  (6.5) 

where the vector [ , ]
F,LCO
p qv , defined as ( )[ , ] [ , ] [ , ]

F,LCO F,LCO a mat dam, ,v V A Θ Θp q p q p q= , represents the 

output of the metamodel for a given set of the input parameters ( [ , ] [ , ]
a aA ap q p q= , 

mat matΘ θ= , and dam damΘ θ= ), and ( ) inp G: n n
+⋅ →Q R R  — with inp A mat dam

pn n n n= + +  

and 
[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑  — is a general nonlinear mapping, between the input and 

(positive) output real vector spaces, representing the metamodel fitted — over the 

desired design space for the input parameters — by making use of the simulation 

results from the coupled physics-based finite element (FE) and aerodynamic models of 

the UAV wing. Furthermore, as a direct consequence of Equation (6.5), the joint 
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conditional PDF of the vector [ , ]
F,LCO

p qV , ( )[ , ] [ , ]
a mat damF,LCO

[ , ] [ , ]
F,LCO a mat dam, ,

, ,
V A Θ Θ

v a θ θp q p q
p q p qf , can be 

rewritten as 

 ( ) ( )[ , ] [ , ]
a mat damF,LCO

[ , ] [ , ] [ , ] [ , ]
F,LCO a mat dam F,LCO F,LCO, ,

, ,p q p q
p q p q p q p qf δ= −

V A Θ Θ
v a θ θ v v  (6.6) 

and Equation (6.2) can then be simplified as 

 
( )
( ) ( ) ( )

[ , ] [ , ]
aF,LCO

mat dam

mat dam

[ , ] [ , ]
F,LCO a

[ , ] [ , ]
F,LCO F,LCO mat dam mat dam

V A

Θ Θ
Θ Θ

v a

v v θ θ θ θ

p q p q
p q p q

p q p q

f

f f d dδ

=

−∫ ∫
 (6.7) 
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CHAPTER 7  

 

DAMAGE PROGNOSIS ANALYSIS 

7.1. Introduction 

This chapter concludes the theoretical description and discussion of all five 

analytical steps of the proposed reliability-based damage prognosis methodology. The 

Bayesian inference step was covered in Chapter 3; the three steps part of the predictive 

modeling block (i.e., probabilistic load hazard analysis, probabilistic structural 

response and damage evolution analysis, and probabilistic flutter and LCO analyses) 

were analyzed in Chapters 4, 5, and 6, respectively; finally, in this Chapter, the fifth 

and last analysis step of the methodology, namely damage prognosis analysis, is 

thoroughly examined. A general overview of the proposed reliability assessment 

procedure, part of this fifth step, is presented in Section 7.2; the component reliability 

analyses involving local and global failure modes are then illustrated in Sections 7.3 

and 7.4, respectively; and finally, the suggested system reliability analyses, used for 
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the computation/estimation of the probability of failure and false-call at the overall 

(global) system level, are discussed in Section 7.5. 

7.2. Overview of proposed reliability assessment approach 

The fifth and final step of the proposed reliability-based SHM framework — 

namely damage prognosis analysis — can be carried out in three sub-steps by (i) 

using the joint probabilistic information (computed in the previous steps of the 

methodology as described in Chapters 2 through 6) of the local and global states of 

damage at time q
pt , and (ii) defining appropriate limit-state functions for both local and 

global (aeroelastic) potential failure modes. In this step, the real structural system (i.e., 

the UAV wing in this first part of the thesis) is abstracted to a collection of reliability 

components linked together as a combination of series and parallel sub-systems. Each 

reliability component is associated with a single limit-state (defined by a single 

mathematical function referred to as limit-state function) and is considered failed when 

the associated limit-state is reached or exceeded. Thus, component failure does not 

necessarily represent a physical failure of the UAV wing. 

For the case in which uni-modal bounds of the probability of system failure are 

to be determined, the three sub-steps can be described as follows. The first sub-step 

consists of computing the modal failure probability — for each (local and global) 

reliability component (or failure mode) considered in the damage prognosis analysis 

— conditional on the true damage size (for local failure modes) and the flutter or LCO 

velocities (for global failure modes); i.e., [ , ] [ , ]
L, aF p q p q

ijP a⎡ ⎤
⎢ ⎥⎣ ⎦  (with [0, ]

L1, , pi n= …  and 
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( , [0, ])
DM1, , i pj n= … ) and [ , ] [ , ]

G, F,LCOF p q p q
rP v⎡ ⎤

⎢ ⎥⎣ ⎦  (with G1, ,r n…= ), respectively. The definition 

of the local failure event [ , ]
L,F p q

ij  involves the marginal PDF of ( ), ,[ , ]i j p q
aA  and, potentially, 

the fidelity of the NDE technique. Conversely, the definition of the global failure 

event [ , ]
G,F p q

r  considers the uncertainty of the random velocity ( ,[ , ])
F,LCO

r p qV  and, potentially, 

the variability of the maximum aircraft velocity MAXV  (e.g., the maximum diving speed 

of the aircraft). Hence, the total number of local failure modes is equal to the 

dimension of the damage size vector [ , ]
a
p qA  ( A

pn ), whereas the total number of global 

failure modes is equal to the size of the random vector [ , ]
F,LCO

p qV  (denoted earlier as Gn ). 

In the second sub-step, the local and global conditional modal failure probabilities 

computed in the first sub-step are unconditioned w.r.t. [ , ]
a
p qA  and [ , ]

F,LCO
p qV , respectively; 

and the two outcomes are denoted by [ , ]
L,F p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦  (with [0, ]
L1, , pi n= …  and 

( , [0, ])
DM1, , i pj n= … ) and [ , ]

G,F p q
rP ⎡ ⎤⎢ ⎥⎣ ⎦  (with G1, ,r n…= ). In general, as described in Chapter 

3, multiple damage mechanisms can evolve simultaneously at the same damage 

location, and therefore A
pn  can be larger than the number of inspected locations up to 

time ,pt  [0, ]
L

pn . Thus, the final number of reliability components (considered in the 

reliability analysis performed at time )pt  is equal to [0, ]
L,G A G

p pn n n= + . Finally, in the third 

and last sub-step, lower and upper bounds for the probability of system failure, denoted 

[ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦ , are computed by considering the UAV wing as a combination of series and 

parallel sub-systems. 



122 

 

7.3. Local failure modes 

The following sub-sections present all the different failure criteria proposed 

herein and derive the analytical expressions necessary to compute the associated 

modal probabilities of failure and false-call at the local component level (i.e., for each 

combination of damage location and damage mechanism). Section 7.3.1 discusses the 

simplest failure criterion based on the exceedance of a pre-defined critical 

crack/damage size; Section 7.3.2 introduces an alternative local failure event based on 

the level-of-safety (LOS) formulation (Lin et al., 2000; Huang and Lin, 2005; 

Backman, 2005); Section 7.3.3 extends the LOS formulation to the case of multiple 

NDE measurements; Section 7.3.4 defines and examines the false-call event with a 

single NDE measurement; finally, Section 7.3.5 extends the derivations of Section 

7.3.4 to the case of multiple NDE measurements. 

7.3.1. Probability of local component failure, [ , ]
L,F p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦ , based on the actual 

damage extent exceeding a pre-defined critical threshold 

The simplest (and most logical) local failure event [ , ]
L,F p q

ij  — i.e., the failure event 

(at time q
pt ) associated with the jth detected damage mechanism, evolving at the ith 

monitored damage location — can be defined as 

 { }[ , ] ( , ,[ , ])
L,F p q i j p q ij

ij a cA a≥  (7.1) 

where ij
ca  represents a pre-defined critical damage size. It is worth noting that ij

ca  

generally depends on both damage location and damage mechanism, and its magnitude 
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is governed by residual strength and damage propagation stability considerations, 

generally based on coupon test data. Strictly speaking, ij
ca  should also be treated as a 

random variable, but in this study, it is considered deterministic. According to the above 

definition for [ , ]
L,F p q

ij , the conditional modal failure probability [ , ] [ , ]
L, aF⎡ ⎤

⎢ ⎥⎣ ⎦ap q p q
ijP  is given by 

 
( , ,[ , ])

[ , ] [ , ] [ , ] ( , ,[ , ])
L, a L, ( , ,[ , ])

0 if
F F

1 if

i j p q ij
p q p q p q i j p q a c
ij ij a i j p q ij

a c

a a
P P a

a a
a

⎧⎪ <⎪⎡ ⎤ ⎡ ⎤= =⎨⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪ ≥⎪⎩
 (7.2) 

and the unconditional modal failure probability is then computed as 

 
( )

( ) ( )

( , ,[ , ])

( , ,[ , ]) ( , ,[ , ])

+
[ , ] [ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L, L,

0
+

( , ,[ , ]) ( , ,[ , ])

F F

1

i j p q
a

i j p q i j p q
a a

ij
c

p q p q i j p q i j p q i j p q
ij ij a a aA

i j p q i j p q ij
a a cA A

a

P P a f a da

f a da F a

∞

∞

⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= = −

∫

∫
 (7.3) 

where the term ( )( , ,[ , ])i j p q
aA

F ⋅  represents the cumulative distribution function (CDF) of the 

random variable ( , ,[ , ])i j p q
aA . 

7.3.2. Probability of local component failure, [ , ]
L,F p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦ , based on the level-of-

safety (LOS) formulation with single NDE inspection opportunity at time 

q
p pt t q τ= + ∆  

Alternative definitions for the local failure event (i.e., local component failure) 

can be adopted in the proposed framework. For instance, in previous research by Lin 

et al.(2000), Huang and Lin (2005), and Backman (2005), the local failure event [ , ]
L,F p q

ij  

is defined as 
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 ( ) ( ){ } ( ){ }[ , ] ( , , [ , ]) ( , , [ , ]) [ , ] ( , , [ , ])
L, L,F Fp q i j p q ij i j p q ij p q i j p q ij

ij a c m c ij m cA a A a A a≥ ∩ < = ∩ <  (7.4) 

This definition is herein referred to as level-of-safety (LOS) formulation and represents 

the event that the actual damage size, ( , , [ , ])i j p q
aA , is greater than the pre-defined critical 

damage size ( ij
ca ), and that the outcome, ( , , [ , ])i j p q

mA , of the (assumed) single NDE 

inspection opportunity at future time q
pt  is lower than ij

ca . This definition of the failure 

event is illustrated graphically in Figures 7.1, 7.2, and 7.3. 

( ) ( ), ,[ , ] , ,[ , ]i j p q i j p q
m aA A=
( ), ,[ , ]

|ˆ
m a

i j p q
A Aµ

ij
ca

ij
ca

[ , ]
L,

Failure domain
according to F
in Equation (7.4)

p q
ij

False-Call
domain

( ) ( ), ,[ , ] , ,[ , ]i j p q i j p q
m aA A=
( ), ,[ , ]

|ˆ
m a

i j p q
A Aµ

ij
ca

ij
ca

[ , ]
L,

Failure domain
according to F
in Equation (7.4)

p q
ij

False-Call
domain

 

Figure 7.1: Conceptual illustration of the failure and false-call domains according to 
the (local component) failure and false-call events [ , ]

L,F p q
ij  and [ , ]

 L,
p q
ijF , respectively. 

 

According to this alternative failure criterion (at the local component level), the 

probability of the failure event [ , ]
L,F p q

ij , conditional on the true damage size 

[ , ] [ , ]
a a
p q p qA a= , is given by 
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 ( )
( , ,[ , ])

[ , ] [ , ] [ , ] ( , ,[ , ])
L, a L, ( , ,[ , ]) ( , ,[ , ])

0 if
F F

if

i j p q ij
a cp q p q p q i j p q

ij ij a i j p q i j p q ij
a a c

a a
P P a

a a aψ
a

⎧⎪ <⎪⎪⎡ ⎤ ⎡ ⎤= =⎨⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪ ≥⎪⎪⎩
 (7.5) 

where the function ( )( , ,[ , ])i j p q
aaψ  is defined as 

 ( ) ( ) ( )( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])ˆ1i j p q i j p q i j p q
a a aa a POD aψ ψ= − ⋅  (7.6) 

and the non-negative function ( ) ( )( , ,[ , ]) ( , ,[ , ]) ( , ) ( , )
0 1

ˆ ˆ ˆ ˆ ˆ; , ,
ij

i j p q i j p q i j i j
a aa a εψ ψ β β σ=  — the 

derivation of which is provided in Appendix A — is expressed as 

 ( )
1

( , ) ( , ) ( , ,[ , ]) ( , ) ( , ) ( , ,[ , ])
( , ,[ , ]) 0 1 0 1

ˆ ˆ ˆ ˆˆ
ˆ ˆ

ij ij

i j i j i j p q ij i j i j i j p q
i j p q a c a

a
a a aa
ε ε

β β β βψ
σ σ

−⎡ ⎤⎛ ⎞ ⎛ ⎞⎟ ⎟+ − +⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜=Φ ⋅ Φ⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (7.7) 

Finally, using the total probability theorem (TPT) and recalling Equation (7.3), the 

unconditional modal failure probability, [ , ]
L,F p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦ , is then computed as 

 

( )

( ) ( ) ( ) ( )

( , ,[ , ])

( , ,[ , ]) ( , ,[ , ])

[ , ]
L,

+
[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L,

0
+

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

F

F

ˆ1

i j p q
a

i j p q i j p q
a a

ij
c

p q
ij

p q i j p q i j p q i j p q
ij a a aA

ij i j p q i j p q i j p q i j p q
c a a a aA A

a

P

P a f a da

F a a POD a f a daψ

∞

⎡ ⎤=⎢ ⎥⎣ ⎦

⎡ ⎤ =⎢ ⎥⎣ ⎦

⎡ ⎤− −⎢ ⎥⎣ ⎦

∫

( ) ( ) ( )( , ,[ , ])

+
[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L,

ˆF i j p q
a

ij
c

p q i j p q i j p q i j p q i j p q
ij a a a aA

a

P a POD a f a daψ

∞

∞

=

⎡ ⎤ −⎢ ⎥⎣ ⎦

∫

∫

 (7.8) 

Figures 7.2 and 7.3 provide three-dimensional views (from two different view 

point) of the joint PDF of ( , , [ , ])i j p q
aA  and ( , , [ , ])i j p q

mA  at time q
pt  together with the failure 

domain defined by the failure event [ , ]
L,F p q

ij , introduced in Equation (7.4). The solid 
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magenta line in Figures 7.2 and 7.3 represents the POD curve (scaled by a factor of 

1/100) used to generate the plots; the dashed green line identifies the (predicted) 

marginal PDF of ( , , [ , ])i j p q
aA  (scaled by a factor of 1/10); while the solid red line denotes 

the joint PDF (scaled by a factor of 1/10) of ( , , [ , ])i j p q
aA  and the non-detection result 

( ( , ,[ , ]) 0i j p q
ma = ) from the assumed single NDE inspection opportunity at time q

pt . This 

joint PDF is denoted by ( )( , ,[ , ]) ( , ,[ , ])
( , ,[ , ]) ( , ,[ , ])

, 0
, 0i j p q i j p q

a m

i j p q i j p q
a mA A

f a a
=

=  and is computed as 

( ) ( )( , ,[ , ])
( , ,[ , ]) ( , ,[ , ])0.1 i j p q

a

i j p q i j p q
a aA

PND a f a⎡ ⎤⋅ ⋅⎢ ⎥⎣ ⎦

( )( , ,[ , ])0.01 i j p q
aPOD a⋅

( )( , ,[ , ])
( , ,[ , ])0.1 i j p q

a

i j p q
aA

f a⋅

[ , ] ( , ,[ , ]) ( , ,[ , ])
L,Failure Domain for F : , 0,p q i j p q ij i j p q ij

ij a c m cP A a A a⎡ ⎤ ⎡ ⎤≥ ∈ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

( ) ( ) ( )( , ,[ , ])m a

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
A |Aˆ ˆ; , σ i j p qij a

i j p q i j p q i j p q i j p q
m a aA

a POD a f aεϕ µ ⋅ ⋅

( ) ( )( , ,[ , ])
( , ,[ , ]) ( , ,[ , ])0.1 i j p q

a

i j p q i j p q
a aA

PND a f a⎡ ⎤⋅ ⋅⎢ ⎥⎣ ⎦

( )( , ,[ , ])0.01 i j p q
aPOD a⋅

( )( , ,[ , ])
( , ,[ , ])0.1 i j p q

a

i j p q
aA

f a⋅

[ , ] ( , ,[ , ]) ( , ,[ , ])
L,Failure Domain for F : , 0,p q i j p q ij i j p q ij

ij a c m cP A a A a⎡ ⎤ ⎡ ⎤≥ ∈ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

( ) ( ) ( )( , ,[ , ])m a

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
A |Aˆ ˆ; , σ i j p qij a

i j p q i j p q i j p q i j p q
m a aA

a POD a f aεϕ µ ⋅ ⋅

 

Figure 7.2: Conceptual illustration of (i) the joint PDF of ( , , [ , ])i j p q
aA  and ( , , [ , ])i j p q

mA  at 
time q

pt  and (ii) the failure domain according to the failure event [ , ]
L,F p q

ij . View point #1. 
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( ) ( )( , ,[ , ])
( , ,[ , ]) ( , ,[ , ])0.1 i j p q

a

i j p q i j p q
a aA

PND a f a⎡ ⎤⋅ ⋅⎢ ⎥⎣ ⎦

( )( , ,[ , ])0.01 i j p q
aPOD a⋅

( )( , ,[ , ])
( , ,[ , ])0.1 i j p q
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Figure 7.3: Conceptual illustration of (i) the joint PDF of ( , , [ , ])i j p q
aA  and ( , , [ , ])i j p q

mA  at 
time q

pt  and (ii) the failure domain according to the failure event [ , ]
L,F p q

ij . View point #2. 
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On the other hand, the marginal PDF of ( , , [ , ])i j p q
aA  conditional on a particular measured 

outcome from the assumed single NDE inspection opportunity at time q
pt  — i.e., 

damage detected and measured ( , ,[ , ]) ( , ,[ , ])i j p q i j p q
m mA a=  with ( , ,[ , ]) 0i j p q

ma >  — can be 

expressed as 

 ( ) ( ) ( )( , ,[ , ]) ( , ,[ , ])
( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])ˆ ˆ; ,i j p q i j p q ijm aa m

i j p q i j p q i j p q i j p q i j p q
a m m aA AA A

f a a a POD aεϕ µ σ=  (7.10) 

Leading to rewrite the joint PDF of ( , ,[ , ])i j p q
aA  and ( , ,[ , ])i j p q

mA  (under the condition 

( , ,[ , ]) 0i j p q
ma > ) as 

 

( )

( ) ( )

( ) ( )

( , ,[ , ]) ( , ,[ , ])

( , ,[ , ])( , ,[ , ]) ( , ,[ , ])

( , ,[ , ]) ( , ,[ , ])
,

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
0

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

,

0

ˆ ˆ; ,

i j p q i j p q
a m

i j p qi j p q i j p q
aa m

ijm a

i j p q i j p q
a mA A

i j p q i j p q i j p q
a m aAA A

i j p q i j p q i j p q
m aA A

f a a

f a a f a

a POD a fεϕ µ σ

=

=

= ⋅ =

⋅ ⋅ ( )( , ,[ , ])
( , ,[ , ])

i j p q
a

i j p q
aA

a

 (7.11) 

As a final verification, the total probability content ( totP ) under the joint PDF of 

( , ,[ , ])i j p q
aA  and ( , ,[ , ])i j p q

mA  over the domain ( ) ( )( , ,[ , ]) ( , ,[ , ])0 0i j p q i j p q
a mA A≥ × ≥  satisfies the 

normality axiom. totP  can in fact be expressed as 

 

( )

( ) ( )

( , ,[ , ]) ( , ,[ , ])

+ +
( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

,
0 0

+ +
( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

0 0

,

ˆ ˆ; ,

1

i j p q i j p q
m a

ijm a

i j p q i j p q i j p q i j p q
tot m a m aA A

i j p q i j p q i j p q i j p q
m a mA A

P f a a da da

a POD a da

POD

εϕ µ σ
+

∞ ∞

∞ ∞

=

⎧⎡ ⎤⎪⎪⎪⎢ ⎥= +⎨⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎪⎩

−

∫ ∫

∫ ∫

( ) ( )( , ,[ , ])
( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

i j p q
a

i j p q i j p q i j p q
a a aA

a f a da
⎫⎪⎪⎪⎡ ⎤⎬⎢ ⎥⎣ ⎦⎪⎪⎪⎭

 (7.12) 
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and, by noticing that (see Section 3.2.1 in Chapter 3) 

 

( ) ( )

( ) ( )
( ) ( )

+
( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

0

+
( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

0

( , ,[ , ]) ( , ,[ , ])

ˆ ˆ; ,

ˆ ˆ; ,

1

ijm a

ijm a

i j p q i j p q i j p q i j p q
m a mA A

i j p q i j p q i j p q i j p q
a m mA A

i j p q i j p q
a a

a POD a da

POD a a da

POD a POD a

ε

ε

ϕ µ σ

ϕ µ σ

+

+

∞

∞

=

⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦
⋅ =

∫

∫  (7.13) 

Equation (7.12) can be reduced as follows: 

 
( ) ( ){ } ( )

( )

( , ,[ , ])

( , ,[ , ])

+
( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

0

+
( , ,[ , ]) ( , ,[ , ])

0

1

1

i j p q
a

i j p q
a

i j p q i j p q i j p q i j p q
tot a a a aA

i j p q i j p q
a aA

P POD a POD a f a da

f a da

∞

∞

⎡ ⎤= + −⎢ ⎥⎣ ⎦

= =

∫

∫

 (7.14) 

7.3.3. Probability of local component failure, [ , ]
L,F̂ p q

ijP ⎡ ⎤
⎢ ⎥⎣ ⎦ , based on the level-of-

safety (LOS) formulation with multiple NDE inspection opportunities at 

time q
p pt t q τ= + ∆  

The level-of-safety formulation used in Section 7.3.2 can be generalized to 

multiple NDE measurements at time q
pt . The total number of (processed) NDE 

measurements, for each ( ),i j  combination, is hereafter denoted as ( , ,[ , ])
MS
i j p qn  and the 

measurement results are collected in the vector ( , , [ , ])
mA i j p q , defined as 

 { }( , , [ , ]) ( , , [ , ]) ( , ,[ , ])
m MS, 1, ,A …

k

i j p q i j p q i j p q
mA k n= =  (7.15) 

This can be rearranged as follows: 
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 { }( , , [ , ]) ( , , [ , ]) ( , , [ , ])
m m m,A A Ai j p q i j p q i j p q=  (7.16) 

where the sub-vector { }( , , [ , ]) ( , , [ , ]) ( , ,[ , ])
m MS, 1, ,

k

i j p q i j p q i j p q
mA k nA …= =  collects the ( , ,[ , ])

MS
i j p qn  

NDE measurement results lower than the critical threshold ij
ca  while the other sub-

vector, ( ){ }( , , [ , ]) ( , , [ , ]) ( , ,[ , ]) ( , ,[ , ])
m MS MS, 1 , ,

k

i j p q i j p q i j p q i j p q
mA k n nA …= = + , collects the remaining 

( )( , ,[ , ]) ( , ,[ , ])
MS MS
i j p q i j p qn n−  NDE measurements which are greater or equal than the pre-

defined critical threshold ij
ca . Under these considerations, the local failure event [ , ]

L,F̂ p q
ij  

can be defined as 

 ( ) ( ){ }[ , ] ( , , [ , ]) ( , ,[ , ]) ( , ,[ , ])
L, MS MSF̂ p q i j p q ij i j p q i j p q

ij a cA a n n≥ ∩ ≥  (7.17) 

where the notation ( , ,[ , ]) ( , ,[ , ])
MS MS
i j p q i j p qn n≥  can be read as follows: at least ( , ,[ , ])

MS
i j p qn  out of 

the assumed ( , ,[ , ])
MS
i j p qn  NDE measurements (performed at time q

pt ) are lower than the 

critical crack damage size ( ij
ca ). If ( , ,[ , ]) ( , ,[ , ])

MS MS
i j p q i j p qn n≥ , then the monitored component 

is not considered to have failed and therefore is not stopped from operating; while, on 

the other hand, if ( , ,[ , ]) ( , ,[ , ])
MS MS
i j p q i j p qn n<  the system is stopped and maintenance (at the ith 

damage location) is performed. The value to be assigned to ( , ,[ , ])
MS
i j p qn  can be chosen as 

a reasonably large fraction of the total number of NDE measurements assumed to be 

performed at time q
pt , i.e., ( , ,[ , ])

MS
i j p qn . For example, if at least 90% of the ( , ,[ , ])

MS
i j p qn  NDE 

measurements are below the critical threshold ij
ca  — i.e., ( , ,[ , ]) ( , ,[ , ])

MS MS
i j p q i j p qn n≥  with 

( , ,[ , ]) ( , ,[ , ])
MS MS0.9i j p q i j p qn n= ⋅  — that particular local reliability component (or local failure 
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mode) is not classified, by the NDE inspection outcome, as “failed” and it would not 

be stopped from operating. 

According to the failure criterion (at the local component level) introduced in 

Equation (7.17), the probability of the failure event [ , ]
L,F̂ p q

ij , conditional on the true 

damage size [ , ] [ , ]
a a
p q p qA a= , is given by 

 
( )

( , ,[ , ])
[ , ] [ , ] [ , ] ( , ,[ , ])
L, a L, ( , ,[ , ]) ( , ,[ , ])

0 if
ˆ ˆF F

if
a

i j p q ij
a cp q p q p q i j p q

ij ij a i j p q i j p q ij
a a c

a a
P P a

a a aψ

⎧⎪ <⎪⎪⎡ ⎤ ⎡ ⎤= =⎨⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪ ≥⎪⎪⎩
 (7.18) 

in which the term ( )( , ,[ , ])i j p q
aaψ  is the Binomial complementary CDF expressed as  

 ( ) ( ) ( ) ( )
( , ,[ , ])

( , ,[ , ])MS
MS

( , ,[ , ])
MS

( , ,[ , ])
( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])MS 1

i j p q
i j p q

i j p q

n i j p q l n li j p q i j p q i j p q
a a a

l n

n
a a a

l
ψ ψ ψ

−

=

⎛ ⎞⎟⎜ ⎡ ⎤ ⎡ ⎤⎟= −⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎣ ⎦ ⎣ ⎦⎟⎜⎝ ⎠∑  (7.19) 

The function ( )( , ,[ , ])i j p q
aaψ in Equation (7.19) was derived in Section 7.3.2 and is shown 

in Equation (7.6), whereas the binomial coefficient is explicitly written as 

 
( , ,[ , ])( , ,[ , ])
MSMS

( , ,[ , ])
MS

!

! !

i j p qi j p q

i j p q

nn
l l n l

⎡ ⎤⎛ ⎞ ⎢ ⎥⎟ ⎣ ⎦⎜ ⎟=⎜ ⎟⎜ ⎡ ⎤⎟⎜ −⎝ ⎠ ⎢ ⎥⎣ ⎦
 (7.20) 

Finally, by using the total probability theorem (TPT), the unconditional modal failure 

probability, [ , ]
L,F̂ p q

ijP ⎡ ⎤
⎢ ⎥⎣ ⎦ , is then computed as 

 
( )

( ) ( )

( , ,[ , ])

( , ,[ , ])

+
[ , ] [ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L, L,

0
+

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

ˆ ˆF F i j p q
a

i j p q
a

ij
c

p q p q i j p q i j p q i j p q
ij ij a a aA

i j p q i j p q i j p q
a a aA

a

P P a f a da

a f a daψ

∞

∞

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

∫

∫
 (7.21) 
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For the special case in which ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
MS MS MS 1i j p q i j p q i j p qn n n= = =  (i.e., a single 

inspection opportunity at time q
pt ) the function ( )( , ,[ , ])i j p q

aaψ  reduces to ( )( , ,[ , ])i j p q
aaψ  and  

therefore the results derived in Equations (7.5) and (7.7) can be retrieved. In other 

words, the LOS formulation with multiple NDE inspection opportunities at time q
pt  

yields to the same result as the LOS formulation derived for a single NDE inspection 

opportunity at time q
pt . 

7.3.4. Probability of local component false-call based on the level-of-safety 

formulation (LOS) with single NDE inspection opportunity with single 

NDE inspection opportunity at time q
p pt t q τ= + ∆  

Besides the modal probability of failure, computed according to the alternative 

definition of the local failure event [ , ]
L,F p q

ij  introduced in Section 7.3.2, it is also of interest 

to compute the modal probability of false-call (or false-alarm) for each of the A
pn  local 

reliability components identified up to time pt .  

The false-call event [ , ]
 L,

p q
ijF , at the local component level, is defined as  

 ( ) ( ){ }[ , ] ( , ,[ , ]) ( , ,[ , ])
 L,

p q i j p q ij i j p q ij
ij a c m cA a A a< ∩ ≥F  (7.22) 

and its graphical interpretation is shown in Figure 7.1. Hence, from the above equation, 

a false-call represents the joint event that the actual damage size, ( , , [ , ])i j p q
aA , is lower 

than the pre-defined critical damage size ( ij
ca ), and the measured damage size, 

( , , [ , ])i j p q
mA , from the (assumed) single NDE inspection opportunity at time q

pt  is larger 
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than or equal to ij
ca . The probability of the false-call event [ , ]

 L,
p q
ijF  conditional on the true 

damage size [ , ] [ , ]
a a=A ap q p q  (referred herein as conditional modal false-call probability) is 

given by  

 
( )( , ,[ , ]) ( , ,[ , ])

[ , ] [ , ] [ , ] ( , ,[ , ])
 L, a  L, ( , ,[ , ])

1 if

0 if
a

i j p q i j p q ij
a a cp q p q p q i j p q

ij ij a i j p q ij
a c

a a a
P P a

a a

ψ⎧⎪ − <⎪⎪⎡ ⎤ ⎡ ⎤= =⎨⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪ ≥⎪⎪⎩
F F  (7.23) 

Using the TPT, the unconditional modal false-call probability, [ , ]
 L,

p q
ijP ⎡ ⎤⎢ ⎥⎣ ⎦F , is then 

computed as 

 

( )

( ) ( )

( ) ( )

( , ,[ , ])

( , ,[ , ])

+
[ , ] [ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

 L,  L,
0

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

0

( , ,[ , ]) ( , ,[ , ])

1

ˆ

i j p q
a

ij
c

i j p q
a

p q p q i j p q i j p q i j p q
ij ij a a aA

a
i j p q i j p q i j p q

a a aA

i j p q i j p q
a a

P P a f a da

a f a da

a POD a f

ψ

ψ

∞
⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= −⎢ ⎥⎣ ⎦

=

∫

∫

F F

( )( , ,[ , ])
( , ,[ , ]) ( , ,[ , ])

0

ij
c

i j p q
a

a
i j p q i j p q

a aA
a da∫

 (7.24) 

where the functions ( )( , ,[ , ])i j p q
aaψ  and ( )( , ,[ , ])ˆ i j p q

aaψ  were defined previously in 

Equations (7.6) and (7.7). 

7.3.5. Probability of local component false-call based on the level-of-safety 

(LOS) formulation with multiple NDE inspection opportunities at time 

q
p pt t q τ= + ∆  

The false-call event introduced in Section 7.3.4 can also be generalized to the 

case in which multiple NDE measurements are collected at time q
pt . Following the 
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same definitions introduced and used in Section 7.3.3, the false-call event at the local 

component level, [ , ]
 L,
ˆ p q

ijF , can be defined as 

 ( ) ( ){ }[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
 L, MS MS
ˆ p q i j p q ij i j p q i j p q

ij a cA a n n< ∩ <F  (7.25) 

where the event represented by the inequality ( , ,[ , ]) ( , ,[ , ])
MS MS
i j p q i j p qn n<  can be read as 

follows: at most ( )( , ,[ , ])
MS 1i j p qn −  out of the ( , ,[ , ])

MS
i j p qn  NDE measurements (assumed to be 

performed at time q
pt ) are lower than the critical damage size for that particular ( ),i j  

combination. According to the above definition, the conditional modal probability of 

false-call can be expressed as 

 ( )( , ,[ , ]) ( , ,[ , ])
[ , ] [ , ] [ , ] ( , ,[ , ])

 L, a  L, ( , ,[ , ])

1 ifˆ ˆ
0 if

a
i j p q i j p q ij

a a cp q p q p q i j p q
ij ij a i j p q ij

a c

a a a
P P a

a a

ψ⎧⎪ − <⎪⎪⎡ ⎤ ⎡ ⎤= =⎨⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪ ≥⎪⎪⎩
F F  (7.26) 

and the unconditional modal probability of false-call, [ , ]
 L,
ˆ p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦F , can then be derived by 

taking advantage of the TPT as shown below: 

 
( )

( ) ( )

( , ,[ , ])

( , ,[ , ])

+
[ , ] [ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

 L,  L,
0

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

0

ˆ ˆ

1

i j p q
a

ij
c

i j p q
a

p q p q i j p q i j p q i j p q
ij ij a a aA

a
i j p q i j p q i j p q

a a aA

P P a f a da

a f a daψ

∞
⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= −⎢ ⎥⎣ ⎦

∫

∫

F F

 (7.27) 

It is worth noting that for the special case in which ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
MS MS MS 1i j p q i j p q i j p qn n n= = =  

(i.e., a single NDE inspection opportunity at time q
pt ) the function ( )( , ,[ , ])i j p q

aaψ  

simplifies to ( )( , ,[ , ])i j p q
aaψ  and therefore Equation (7.27) reduces to Equation (7.24). 
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7.4. Proposed global component failure criteria and derivation of the 

corresponding probabilities of global component failure 

The global failure event [ , ]
G,F p q

r  — i.e., the failure event (at time q
pt ) associated 

with the rth global reliability component or modal failure mode — can be defined as 

{ }[ , ] ( , [ , ])
G, F,LCOF p q r p q r

r cV v≤ , where r
cv  represents the pre-defined critical velocity associated 

with the rth global failure mode. According to this definition for the failure event [ , ]
G,F p q

r , 

the conditional modal failure probabilities [ , ] [ , ]
G, F,LCOF p q p q

rP v⎡ ⎤
⎢ ⎥⎣ ⎦  (with G1, ,r n…= ) are now 

given by 

 
( , [ , ])
F,LCO[ , ] [ , ] [ , ] ( , [ , ])

G, F,LCO G, F,LCO ( , [ , ])
F,LCO

0 if
F F

1 if
v

r p q r
cp q p q p q r p q

r r r p q r
c

v v
P P v

v v

⎧⎪ >⎪⎡ ⎤ ⎡ ⎤= =⎨⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪ ≤⎪⎩
 (7.28) 

and, by using the TPT, the unconditional modal failure probabilities [ , ]
G,F p q

rP ⎡ ⎤⎢ ⎥⎣ ⎦  (with 

G1, ,r n…= ) can then be written as 

 

( )

( ) ( )

( ,[ , ])
F,LCO
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0

F F

1, ,…
r p q

r
c

r p q r p q

p q p q r p q r p q r p q
r r V

v
r p q r p q r

cV V

P P v f v dv

r n

f v dv F v

+∞
⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

= =

∫

∫
 (7.29) 

where the term ( )( ,[ , ])
F,LCO

r p qV
F ⋅  represents the cumulative distribution function (CDF) of the 

random variable ( ,[ , ])
F,LCO

r p qV . 

Similarly to what was shown before in Section 7.3.4, alternative definitions for 

[ , ]
G,F p q

r  can also be used within the proposed framework. For example, a possible 
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alternative global failure criterion (Lin et al., 2000; Styuart et al., 2007) considers the 

structural system to have failed when the maximum operational aircraft velocity 

( MAXV ) exceeds either the reduced (due to damage) flutter velocity ( [ , ]
F

p qV ), or any of 

the LCOn  components of the LCO velocity vector ( [ , ]
LCO

p qV ), at time q
pt . Each of the 

G LCO1n n= +  global failure events, with graphical interpretation provided in Figure 

7.4, is defined as 

 { }[ , ] ( , [ , ])
G, MAX F,LCO GF , 1, ,…p q r p q

r V V r n≥ =  (7.30) 

[ , ]
G,

Failure domain
according to F
in Equation (7.45)

p q
r

( )( , [ , ])
MAXF,LCO

( ,[ , ])
F,LCO MAX,

,r p q
r p q

V V
f v v

[ , ]
G,

Failure domain
according to F
in Equation (7.45)

p q
r

( )( , [ , ])
MAXF,LCO

( ,[ , ])
F,LCO MAX,

,r p q
r p q

V V
f v v

 

Figure 7.4: Failure domain according to the global failure criterion in Equation 
(7.30): MAXV  exceeding the rth component of the velocity vector [ , ]

F,LCOV p q , at future 
time q

pt , after damage propagation from time pt  to time q
pt . 

 

where the variable MAXV  can be characterized probabilistically by the extreme value 

type I (Gumbel) distribution (Styuart et al., 2007). Furthermore, in this part of the 
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study, MAXV  is considered to be statistically independent of [ , ]
F,LCOV p q  — a reasonable 

assumption for UAVs which do not have an onboard pilot. According to the 

alternative definition for the global component failure event, provided in Equation 

(7.30), the conditional modal failure probabilities can be expressed as 

 ( )
MAX

[ , ] [ , ] [ , ] ( , [ , ]) ( , [ , ])
G, F,LCO G, F,LCO F,LCO GF F 1 , 1, ,v …p q p q p q r p q r p q

r r VP P v F v r n⎡ ⎤ ⎡ ⎤= = − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (7.31) 

and, using the TPT, the corresponding unconditional global component  failure 

probabilities, [ , ]
G,F p q

rP ⎡ ⎤⎢ ⎥⎣ ⎦  (with G1, ,r n…= ), are then computed as 

 
( )

( ) ( )

( ,[ , ])
F,LCO

( ,[ , ])MAX F,LCO

[ , ] [ , ] ( , [ , ]) ( , [ , ]) ( , [ , ])
G, G, F,LCO F,LCO F,LCO

0
G

( , [ , ]) ( , [ , ]) ( , [ , ])
F,LCO F,LCO F,LCO

0

F F

1, ,

1

…
r p q

r p q

p q p q r p q r p q r p q
r r V

r p q r p q r p q
V V

P P v f v dv

r n

F v f v dv

+∞

+∞

⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

= −

∫

∫
 (7.32) 

The final result obtained from Equation (7.32) represents the probability content of the 

triangular failure domain shown in Figure 7.4. 

7.5. System reliability analysis for the computation of lower and upper uni-

modal bounds of the probabilities of system failure and false-call 

Once component reliability analysis has been performed for all A
pn  local and 

Gn  global failure modes (identified up to time pt ) and all the corresponding modal 

failure probabilities have been computed, it is possible to compute lower and upper 

bounds for the probabilities of system failure and false-call, by abstracting the UAV 

wing into a combination of series and parallel systems involving the local and global 

component failure and false-call probabilities derived in the previous sections. Several 
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failure and false-call criteria (at the system level) can be formulated and used within 

the proposed framework; these criteria are presented and discussed in the following 

sub-sections as follows: 

(i) Section 7.5.1 uses [ , ]
L,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
ijP  together with either [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP  or [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP  to 

provide lower and upper uni-modal bounds for the probability of system 

failure denoted as [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦ ; 

(ii) Section 7.5.2 combines the local component failure probabilities [ , ]
L,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
ijP  

with either [ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  or [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP  to derive lower and upper uni-modal 

bounds for the probability of system failure denoted as [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦ ; 

(iii) Section 7.5.3 provides a logical expression, using set theory language, for 

the failure event, [ , ]
sysF p q , by combining [ , ]

L,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
ijP , with either [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP  or 

[ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP , and with the reliability/fidelity of the NDE technique used to 

monitor the structure; 

(iv) Section 7.5.4 makes use of [ , ]
L,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
ijP  and [ , ]

 L,
p q
ijP ⎡ ⎤⎢ ⎥⎣ ⎦F  together with either 

[ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  or [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP  to obtain a mathematical expression for the lower and 

upper uni-modal bounds for the probability of false-call (at the overall 

system level) denoted as [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F ; 

(v) Finally, Section 7.5.5 presents a logical expression, using set theory 

language, for the false-call event, [ , ]
sys

p qF , by combining [ , ]
L,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
ijP , with 
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either [ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  or [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP , and with the reliability/fidelity of the NDE 

technique used to monitor the structure. 

Analytical expressions for the probabilities [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  and [ , ]

 sys
p qP ⎡ ⎤⎢ ⎥⎣ ⎦F  — associated with 

the failure and false-call events [ , ]
sysF p q  and [ , ]

sys
p qF  — are not provided in this thesis; 

however, [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  can be derived by generalizing the approach discussed in Section 

7.5.2 and Appendix C, whereas [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F  could be obtained by extending and adapting 

in Section 7.5.4 and Appendix D. 

7.5.1. Derivation of lower and upper uni-modal bounds for the probability of 

system failure [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  

As conceptually shown in Figure 7.5, the event of system failure, [ , ]
sysF p q , can be 

defined as the union of all the A
pn  local and Gn  global component failure events, [ , ]

L,F p q
ij  

(with [0, ]
L1, , pi n= …  and ( , [0, ])

DM1, , i pj n= … ) and [ , ]
G,F p q

r  (with G1, ,= …r n ), described 

earlier; i.e., 

 
[0, ] ( , [0, ])

GL DM
[ , ] [ , ] [ , ]
sys L, G,1 1 1

F F F
p i p nn n

p q p q p q
ij ri j r= = =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟⎜⎪ ⎪⎟⎢ ⎥ ⎜⎟∪ ∪ ∪ ∪⎜ ⎟⎨ ⎬⎜⎟⎢ ⎥ ⎟⎜ ⎟⎜⎟⎪ ⎪⎜ ⎝ ⎠⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
 (7.33) 

Equation (7.33) indicates that the whole system is considered to have failed when at 

least one of its A G+pn n  reliability components ( [ , ]
L,F p q

ij  and [ , ]
G,F p q

r ) has failed. A
pn  

represents the number of local reliability components at time pt , defined as 
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[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑ , whereas, G LCO1n n= +  denotes the number of global failure 

modes considered. Lower and upper uni-modal bounds (also referred to as Boole’s 

Bounds; Boole, 1854) for the probability of this failure event, [ , ]
sysF p q , are given by 

( )
[0, ] ( , [0, ])

GL DM
[ , ] [ , ] [ , ] [ , ] [ , ]
L, G, sys L, G,, ,

1 1 1

max F , F F min 1, F F
p i p nn n

p q p q p q p q p q
ij r ij ri j r

i j r

P P P P P
= = =

⎛ ⎞⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎜≤ ≤ + ⎟⎜⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎟⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  (7.34) 

where the lower bound corresponds to the exact solution in the case of fully correlated 

failure modes. Furthermore, as pointed out by Christensen and Sorensen (1982), in the 

case of positively correlated failure modes, an improved uni-modal upper bound for 

the probability of system failure is given by  

 ( ) ( )
[0, ] ( , [0, ])

GL DM
[ , ] [ , ] [ , ]
sys L, G,

1 1 1

F 1 1 F 1 F
p i p nn n

p q p q p q
ij r

i j r

P P P
= = =

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤ ≤ − − × −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
∏ ∏ ∏  (7.35) 

and it corresponds to the exact solution for the case of statistically independent failure 

modes. Additionally, Equations (7.34) and (7.35) remain valid when the global 

component failure probabilities [ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  are replaced by [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP . 

1 2 A
pn

nG global failure modes

A 1pn + A 2pn + A G
pn n+

[ , ]
L,

[0, ] ( ,[0, ])
L DM

F
1, ..., 1, ,

p q
ij

p i p

P
i n j n

⎡ ⎤⎢ ⎥⎣ ⎦
= = …

[ , ]
G,

G

F
1, ,

p q
rP

r n

⎡ ⎤⎢ ⎥⎣ ⎦
= …

A  local failure modespn

1 2 A
pn

nG global failure modes

A 1pn + A 2pn + A G
pn n+

[ , ]
L,

[0, ] ( ,[0, ])
L DM

F
1, ..., 1, ,

p q
ij

p i p

P
i n j n

⎡ ⎤⎢ ⎥⎣ ⎦
= = …

[ , ]
G,

G

F
1, ,

p q
rP

r n

⎡ ⎤⎢ ⎥⎣ ⎦
= …

A  local failure modespn  

Figure 7.5: Series system abstraction of the real structure used to compute lower and 
upper uni-modal bounds to the probability of system failure [ , ]

sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦ . 
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To conclude this section, the structural system is considered failed (conservatively) 

when the upper bound for [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  reaches or exceeds a critical and pre-defined safety 

threshold ( Fp ). At that particular time, the structural system (or part thereof) needs to 

be replaced or repaired. 

7.5.2. Derivation of lower and upper uni-modal bounds for the probability of 

system failure [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  assuming a single NDE inspection opportunity at 

time q
p pt t q τ= + ∆  

Similarly to the derivations followed during the discussion concerning the 

local component reliability analysis (in Section 7.3.2), the failure event representative 

of the overall system failure can alternatively be defined as 

 
[0, ] ( , [0, ]) [0, ] ( , [0, ])

GL DM L DM
[ , ] [ , ] [ , ] ( , , [ , ])
sys L, G,1 1 1 1 1

F F F
p i p p i pnn n n n

p q p q p q i j p q ij
ij r m ci j r i j

A a
= = = = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟ ⎟⎜ ⎜⎪ ⎪⎟⎢ ⎥ ⎢ ⎥⎜⎟ ⎟∪ ∪ ∪ ∪ ∩ ∩ ∩ <⎜ ⎜⎟⎨ ⎬⎜⎟ ⎟⎢ ⎥ ⎟ ⎢ ⎥⎜ ⎜⎟⎜⎟ ⎟⎪ ⎪⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
 (7.36) 

or, in a more compact form, as 

 
[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , , [ , ])
sys sys 1 1

F F
p i pn n

p q p q i j p q ij
m ci j

A a
= =

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟∩ ∩ ∩ <⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 (7.37) 

i.e., the event that at least one of the A G+pn n  reliability components ( [ , ]
L,F p q

ij  and [ , ]
G,F p q

r ) 

has failed and, at the same time, each of the A
pn  NDE measurement outcomes, ( , , [ , ])i j p q

mA  

(with [0, ]
L1, , pi n= …  and ( , [0, ])

DM1, , i pj n= … ), from the assumed single NDE inspection 

opportunity at time q
pt  is lower than ij

ca . Uni-modal bounds for the probability of this 
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alternative failure event are more complicated than those derived for [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  and can 

be expressed as (see Appendix C) 

 ( ) ( )[ , ] [ , ] [ , ] [ , ] [ , ]
local global sys local globalmax F , F F min 1, F Fp q p q p q p q p q

low low up upP P P P P⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤≤ ≤ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (7.38) 

where [ , ]
localF p q

lowP ⎡ ⎤⎢ ⎥⎣ ⎦  is expressed as 

 ( )[ , ] [ , ] [ , ] *
local L, L, A,

F max max 0, F 1p q p q p q p
low ij ij iji j

P R P P n⎡ ⎤⎡ ⎤⎡ ⎤= ⋅ + − +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (7.39) 

in which [ , ] [ , ] [ , ]
L, L, L,F Fp q p q p q

ij ij ijR P P⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  and the term *
ijP , is defined as 

 ( )
[0, ] ( ,[0, ])
L DM

* ( , , [ , ])

1 1

1
p l pn n

l m p q lm
ij m c il jm

l m

P P A a δ δ
= =

⎡ ⎤= < −⎣ ⎦∑ ∑  (7.40) 

with ilδ  and jmδ  being the Kronecker delta, i.e., 

 
1 if 1 if

and
0 if 0 ifil jm

i l j m
i l j m

δ δ
⎧ ⎧= =⎪ ⎪⎪ ⎪= =⎨ ⎨⎪ ⎪≠ ≠⎪ ⎪⎩ ⎩

 (7.41) 

The term [ , ]
localF p q

upP ⎡ ⎤⎢ ⎥⎣ ⎦  is instead calculated using the following equation 

 ( )
[0, ] ( , [0, ])
L DM

[ , ] [ , ] [ , ] **
local L, L,

1 1

F min 1, min F ,
p i pn n

p q p q p q
up ij ij ij

i j

P R P P
= =

⎛ ⎞⎟⎜ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎟⎜= ⋅ ⎟⎢ ⎥⎜⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎟⎣ ⎦⎣ ⎦ ⎟⎜⎝ ⎠
∑ ∑  (7.42) 

where the contribution **
ijP  is defined as 

 ( ) ( ) ( )** ( , , [ , ])

,
min , , ,l m p q lm

ij m cl m
P P A a l m i j⎡ ⎤= < ∀ ≠⎣ ⎦  (7.43) 

Finally, the two remaining terms, [ , ]
globalF p q

lowP ⎡ ⎤⎢ ⎥⎣ ⎦  and [ , ]
globalF p q

upP ⎡ ⎤⎢ ⎥⎣ ⎦ , can be computed as 
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 ( )
[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , , [ , ])
global G, A

1 1

F max 0, max F
p i pn n

p q p q i j p q ij p
low r m cr i j

P P P A a n
= =

⎛ ⎞⎟⎜ ⎡ ⎤⎡ ⎤ ⎟⎡ ⎤⎜= + < − ⎟⎜⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎟⎣ ⎦ ⎣ ⎦ ⎟⎜⎝ ⎠
∑ ∑  (7.44) 

 ( )
G

[ , ] [ , ] ( , , [ , ])
global G, ,

1

F min 1, F , min
n

p q p q i j p q ij
up r m ci j

r

P P P A a
=

⎛ ⎞⎟⎜ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎟= <⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎜⎣ ⎦ ⎣ ⎦ ⎟⎜⎝ ⎠∑  (7.45) 

Also in this case, Equations (7.44) and (7.45) remain valid when the global component 

failure probabilities [ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  are replaced by [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP , as derived in Equation (7.32). 

7.5.3. Proposed logical expression for the failure event [ , ]
sysF p q  assuming multiple 

NDE inspection opportunities at time q
p pt t q τ= + ∆  

When multiple NDE measurements — i.e., a total of ( , ,[ , ])
MS 1i j p qn ≥  — are 

assumed to be collected during the NDE inspection at time q
pt  for each ( ),i j  

combination, the failure criterion introduced in Equation (7.36) can be modified as 

follows: 

 
[0, ] ( , [0, ]) [0, ] ( , [0, ])

GL DM L DM
[ , ] [ , ] [ , ] ( , ,[ , ]) ( , ,[ , ])
sys L, G, MS MS1 1 1 1 1

F F F
p i p p i pnn n n n

p q p q p q i j p q i j p q
ij ri j r i j

n n
= = = = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟ ⎟⎜ ⎜⎪ ⎪⎟⎢ ⎥ ⎢ ⎥⎜⎟ ⎟∪ ∪ ∪ ∪ ∩ ∩ ∩ ≥⎜ ⎜⎟⎨ ⎬⎜⎟ ⎟⎢ ⎥ ⎟ ⎢ ⎥⎜ ⎜⎟⎜⎟ ⎟⎪ ⎪⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
 (7.46) 

or, in a more compact form, as 

 
[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , ,[ , ]) ( , ,[ , ])
sys sys MS MS1 1

F F
p i pn n

p q p q i j p q i j p q

i j
n n

= =

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟∩ ∩ ∩ ≥⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 (7.47) 

Equations (7.46) and (7.47) can be interpreted as follows: at least one of the A G+pn n  

reliability components ( [ , ]
L,F p q

ij  and [ , ]
G,F p q

r ) has failed and, at the same time, at least 
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( , ,[ , ])
MS
i j p qn  out of the assumed ( , ,[ , ])

MS
i j p qn  NDE measurements (performed at time q

pt ) are 

lower than the critical crack damage size ( ij
ca ) for each ( ),i j  combination. Both 

Equations listed above remain valid when the global component failure probabilities 

[ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  are replaced by [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP . As a final remark, if ( , ,[ , ]) ( , ,[ , ])

MS MS 1i j p q i j p qn n= =  for 

each ( ),i j combination, then Equation (7.46) reduces to Equation (7.36). 

7.5.4. Derivation of lower and upper uni-modal bounds for the probability of 

false-call at the global system level, [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F , assuming a single NDE 

inspection opportunity at time q
p pt t q τ= + ∆   

The false-call event for the entire system (i.e., the event of having a false alarm 

during an assumed single NDE inspection opportunity at time q
pt ), herein denoted 

[ , ]
 sys

p qF , is defined as 

 
[0, ] ( , [0, ]) [0, ] ( , [0, ])

GL DM L DM
[ , ] [ , ] [ , ] ( , , [ , ])

 sys L, G, 1 11 1 1
F F

p i p p i pnn n n n
p q p q p q i j p q ij

ij r m ci ji j r
A a

= == = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟ ⎟⎜ ⎜⎪ ⎪⎟⎢ ⎥ ⎢ ⎥⎜⎟ ⎟∩ ∩ ∩ ∩ ∩ ∪ ∪ ≥⎜ ⎜⎟⎨ ⎬⎜⎟ ⎟⎢ ⎥ ⎟ ⎢ ⎥⎜ ⎜⎟⎜⎟ ⎟⎪ ⎪⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
F  (7.48) 

where [ , ]
L,F p q

ij  and [ , ]
G,F p q

r  denote the complement of the local and global component 

failure events [ , ]
L,F p q

ij  and [ , ]
G,F p q

r   , respectively. Equation (7.48) represents the event that, 

at least for one ( ),i j  combination, the measured damage size ( , ,[ , ])i j p q
mA , from the single 

NDE inspection opportunity at time q
pt , is larger than or equal to ij

ca  and (at the same 

time) all local and global reliability components, associated with the local and global 
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failure events [ , ]
L,F p q

ij  and [ , ]
G,F p q

r , have not failed. Uni-modal bounds for [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F  are 

specified in terms of (i) the modal false-call probabilities, [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F  (with 

[0, ]
L1, , pi n= …  and ( , [0, ])

DM1, , i pj n= … ), provided in Equation (7.24), (ii) the 

complements of the local component failure probabilities — i.e., 

( )( , ,[ , ])
[ , ] [ , ]
L, L,F 1 F i j p q

a

p q p q ij
ij ij cA

P P F a⎡ ⎤ ⎡ ⎤= − =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦  (with [0, ]
L1, , pi n= …  and ( , [0, ])

DM1, , i pj n= … ) — 

from Equation (7.3), and (iii) the complements of the global component failure 

probabilities [ , ] [ , ]
G, G,F 1 Fp q p q

r rP P⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦  (with G1, ,= …r n ). These lower and upper uni-

modal bounds for [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F  can be expressed as (see Appendix D) 

 ( )
G

[ , ] [ , ] [ , ]
 sys local G, G

1

max 0, FC 1 F
n

p q p q p q
low r

r

P P P n
=

⎛ ⎞⎟⎜ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎟≥ + − −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎟⎜⎝ ⎠
∑F  (7.49) 

 ( )[ , ] [ , ] [ , ]
 sys local G,min FC , min 1 Fp q p q p q

up rr
P P P⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤≤ −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
F  (7.50) 

where [ , ]
localFC p q

lowP ⎡ ⎤⎢ ⎥⎣ ⎦  is equal to 

( ) ( )
[0, ] ( , [0, ])
L DM

[ , ]
 L,[ , ] [ , ]

local L, A[ , ],
1 1L,

FC max max 0, 1 F 1
1 F

p i pp q n n
ijp q p q p

low ijp qi j
i jij

P
P P n

P = =

⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤⎟⎜ ⎟⎜⎢ ⎥ ⎟⎣ ⎦ ⎢ ⎥ ⎟⎜ ⎡ ⎤⎡ ⎤ ⎜⎟= × − − − ⎟⎜ ⎜⎢ ⎥ ⎟ ⎢ ⎥⎢ ⎥ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎡ ⎤ ⎜⎟ ⎟− ⎟⎜⎜ ⎟⎜ ⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑

F
 (7.51) 

and [ , ]
localFC p q

upP ⎡ ⎤⎢ ⎥⎣ ⎦  is computed as 

 ( )
[0, ] ( , [0, ])
L DM

[ , ]
 L,[ , ] [ , ]

local L,[ , ] ,
1 1 L,

FC min 1, min 1 F
1 F

p i p p qn n
ijp q p q

up ijp q i j
i j ij

P
P P

P= =

⎛ ⎞⎡ ⎤⎡ ⎤ ⎟⎜ ⎢ ⎥⎢ ⎥ ⎟ ⎡ ⎤⎣ ⎦⎜ ⎡ ⎤⎡ ⎤ ⎟= × −⎜ ⎢ ⎥ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜⎣ ⎦ ⎣ ⎦⎟⎡ ⎤ ⎣ ⎦⎜ ⎢ ⎥− ⎟⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦
∑ ∑

F
 (7.52) 
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Additionally, Equations (7.49) and (7.50) remain valid when the global component 

failure probabilities [ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  are replaced by [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP . 

7.5.5. Proposed logical expression for the probability of false-call at the global 

system level, [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F , assuming multiple NDE inspection opportunities at 

time q
p pt t q τ= + ∆  

When multiple NDE measurements (i.e., ( , ,[ , ])
MS
i j p qn ) are assumed to be collected 

during the NDE inspection at time q
pt  for each ( ),i j  combination, the failure criterion 

introduced in Equation (7.48) can be modified as follows: 

 
[0, ] ( , [0, ]) [0, ] ( , [0, ])

GL DM L DM
[ , ] [ , ] [ , ] ( , ,[ , ]) ( , ,[ , ])

 sys L, G, MS MS1 11 1 1
F F

p i p p i pnn n n n
p q p q p q i j p q i j p q

ij r i ji j r
n n

= == = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟ ⎟⎜ ⎜⎪ ⎪⎟⎢ ⎥ ⎢ ⎥⎜⎟ ⎟∩ ∩ ∩ ∩ ∩ ∪ ∪ <⎜ ⎜⎟⎨ ⎬⎜⎟ ⎟⎢ ⎥ ⎟ ⎢ ⎥⎜ ⎜⎟⎜⎟ ⎟⎪ ⎪⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
F  (7.53) 

Equation (7.53) can be interpreted as follows: all local and global reliability 

components, associated with the local and global failure events [ , ]
L,F p q

ij  and [ , ]
G,F p q

r , have 

not failed and, at the same time, at most ( )( , ,[ , ])
MS 1i j p qn −  out of the ( , ,[ , ])

MS
i j p qn  NDE 

measurements (assumed to be performed at time q
pt ) are lower than the critical damage 

size at least for one ( ),i j  combination. Furthermore, the equation listed above 

remains valid when the global component failure probabilities [ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  are replaced by 

[ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP . It is worth noting that, if ( , ,[ , ]) ( , ,[ , ])

MS MS 1i j p q i j p qn n= =  for each ( ),i j combination, 

then Equation (7.53) reduces to Equation (7.48). 

 



147 

 

References 

B.F. Backman, Composite structures, design, safety and innovation, Elsevier, 2005. 
 
G. Boole, The laws of thought in which are founded the mathematical theories of logic 

and probabilities, American Reprint of 1854 edition, Dover, New York, 1958. 
 
O. Ditlevsen, Narrow reliability bounds for structural systems, Mechanics Based 

Design of Structures and Machines, 7(4), 453-472, 1979. 
 
M. Fréchet, Généralisations du théorème des probabilités totales, Fundamenta 

Mathematicae, 25, 379-387, 1935. 
 
C. Huang, and K.Y. Lin, A method for reliability assessment of aircraft structures 

subject to accidental damage, Proc. 46th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics, and Materials Conference, Austin, TX, April 
2005. 

 
K.Y. Lin, J. Du, and D. Rusk, Structural design methodology based on concepts of 

uncertainty, Report NASA/CR-2000-209847, NASA Langley Research Center, 
Hampton, VA, 2000. 

 
A.V. Styuart, M. Mor, E. Livne, and K.Y. Lin, Aeroelastic failure risk assessment in 

damage tolerant composite airframe structures, Proc. 48th AIAA/ASME/ASCE/ 
AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, 
Hi, April 23-26,2007. 

 
P. Thoft-Christensen, and J.D. Sorensen, Reliability of structural systems with 

correlated elements, Applied Mathematic Modelling, 6(3),171-178, 1982. 
 
Y.C. Zhang, Higher-order reliability bounds for series systems and applications to 

structural systems, Computers & Structures, 46(2), 381-386, 1993. 
 

 



 

148 

CHAPTER 8  

 

VERIFICATION OF THE PROPOSED 

RELIABILITY-BASED DAMAGE 

PROGNOSIS FRAMEWORK VIA A 

POSTULATED (EXPONENTIAL) DAMAGE 

PROPAGATION PROCESS  

8.1. Introduction 

This Chapter is intended to provide a generalization and a partial verification 

and validation of the proposed reliability-based damage prognosis framework 

discussed thus far in this thesis. Sections 8.2 and 8.3 cover the theoretical aspects of 

the generalized version of the framework; Section 8.4 discusses the applicability of the 
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proposed methodology by analyzing the fatigue-driven damage evolution process 

along the adhesive interface in a simple benchmark structure; Section 8.5 provides 

additional insight into the proposed recursive Bayesian inference scheme through a 

series of parametric studies; finally, Sections 8.6 and 8.7 briefly investigate alternative 

expressions for computing lower and upper uni-modal bounds for the probabilities of 

failure and false-call [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  and [ , ]

 sys
p qP ⎡ ⎤⎢ ⎥⎣ ⎦F , and compare the tightness of these 

(alternative) bounds with those obtained from the relationships provided in Sections 

7.5.2 and 7.5.4 in Chapter 7. 

8.2. Background on structural health monitoring and damage prognosis 

Probabilistic design, risk assessment and combined structural health 

monitoring & damage prognosis (SHM-DP) methodologies (Inman et al., 2005; Guan 

et al., 2009) for civil infrastructures, mechanical systems, offshore platforms (Moan, 

2005, 2007, 2008), and aerospace structures (Yang et al., 1974; Deodatis et al., 1996; 

Lin and Styuart, 2007) such as commercial, transport, and fighter aircrafts, have been 

under development by the research community for a considerable time. Furthermore, 

the increasing use of high-performance lightweight composite materials — well-

known to be very sensitive to both fatigue- and impact-induced damage — is 

rendering these rigorous probabilistic design and analysis approaches essential. 

Various damage mechanisms can in fact initiate and develop, potentially invisibly, to 

catastrophic levels in the most damage-sensitive components of these structures. 

Among them, unmanned aerial vehicles (UAVs) are exemplary of how extensively 

composite materials can be used in aircraft structures; furthermore, the absence of a 
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pilot, the operational conditions, and the deployment in military zones of these 

vehicles lead to higher levels of damage tolerance in the airframe compared to 

commercial airplanes. In particular, as discussed in Chapter 1 and Chapter 2, the wing 

skin-to-spar adhesive joints are recognized by UAV manufacturers and operators as 

one of the most fatigue-sensitive subcomponents of a lightweight composite UAV, 

with the fatigue-driven debonding process progressively evolving from the wing-root 

and compromising both local component/sub-component strength and global 

aeroelastic performance (Bauchau and Loewy, 1997; Wang et al., 2005; Styuart et al., 

2007). 

The probabilistic framework for remaining fatigue life prediction overviewed 

in this chapter (in Section 8.3) represents a generalization of the SHM-DP 

methodology proposed and thoroughly analyzed in Chapters 2 through 7. According to 

this approach, data collected during non-destructive evaluation (NDE) inspections are 

used to assess the current state of damage of the monitored structure or structural 

component (i.e., damage location, damage mechanism, damage size/extent, and 

damage model evolution parameters). A recursive Bayesian inference scheme is used 

to update the joint probability distribution function (PDF) of the damage extents at the 

inspected damage locations as well as the joint PDF of the damage evolution model 

parameters used to characterize the fatigue-driven damage growth. The Bayesian 

inference outcome (i.e. the posterior knowledge about the current state of damage of 

the monitored system) is then used, in the predictive modeling block of the proposed 

framework, to provide recursive predictions of the reliability index of the structure at 
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future times (damage prognosis) as shown conceptually in Figure 2.1 in Chapter 2. 

This predictive modeling part of the framework uses a load hazard model for the 

probabilistic characterization of future service loads and a damage evolution model to 

stochastically propagate damage in time. Local (e.g., exceedance of a critical damage 

size at a certain damage location) and global (e.g., exceedance of the flutter instability 

boundary, and/or initiation of limit cycle oscillation behavior) failure criteria are 

finally used to compute the evolution in time of the probability of system failure and 

false-call using well-established component and system reliability analysis methods 

(Ditlevsen and Madsen, 1996). 

The proposed methodology constitutes an advanced tool for performing SHM-

DP of a composite structural system, or structural component/element, with potential 

multi-site fatigue-driven damage growth and monitored through periodic and/or 

continuous NDE inspections. This novel framework integrates (i) probabilistic 

treatment of NDE inspection results, (ii) recursive Bayesian inference, (iii) stochastic 

characterization and superposition of operational loads, (iv) mechanics-based damage 

evolution prediction, (v) state-of-the-art component and system reliability analyses, 

and (vi) decision making. The verification, practicability, and robustness of this 

framework are demonstrated through a numerical application, analyzing the fatigue-

driven debonding propagation along a pre-defined adhesive interface in a simply 

supported laminated composite beam (Section 8.4). Although this particular 

application does not engage all the analytical steps of the proposed damage prognosis 

methodology, it demonstrates the efficiency and robustness of the proposed recursive 
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Bayesian updating scheme, which updates simultaneously the joint PDFs of both 

damage extents and damage evolution model parameters, and shows the use of the 

proposed component and system reliability analyses to predict the evolution in time of 

the probabilities of failure and false-alarm of the structure. 

8.3. Overview of the generalized damage prognosis methodology 

The flowchart shown in Figure 8.1 illustrates the process of uncertainty 

quantification and propagation needed to estimate the remaining fatigue life of a given 

monitored structural system once a new NDE inspection outcome, at current time tp, 

becomes available. The inspection outcome is herein defined as the measured (through 

NDE sensor-based data processing) damage size vector, ma p , at the inspected locations 

at time tp, and is viewed as a particular realization of the random vector mA p . This new 
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Figure 8.1: Extension of the proposed damage prognosis methodology to other 
monitored structural systems with multi-site fatigue-driven damage growth. 
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information is used in the Bayesian inference step to compute the posterior joint PDF 

of the actual damage size vector, aA p , conditional on the material ( matΘ ) and damage 

model parameters ( damΘ p ), as well as on all NDE measurement outcomes up to time tp, 

denoted by [ ] { }0, 0 1
m m m m, , ...,a a a ap p=  and not explicitly included in the notation of 

Figure 8.1. Henceforth, this conditional joint PDF is denoted as 

( )
a mat dam

a mat dam,
,

A Θ Θ
a θ θp p

p pf ′′ . The dimension of the random vector aA p  is equal to 

[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑ , where ( , [0, ])
DM
i pn  represents the total number of detected damage 

mechanisms, at damage location i up to time pt , and [0, ]
L

pn  denotes the total number of 

damage locations inspected up to time pt . Simultaneously, the measured damage sizes 

collected in ma p  are also used to compute the posterior joint PDF of the damage 

evolution model parameters, ( )
dam

damΘ
θp

pf ′′ . 

As indicated by the notation introduced above, multiple damage locations and 

multiple damage mechanisms (developing simultaneously at a given damage location) 

can be readily accommodated by the proposed Bayesian updating scheme. In reality, 

both damage locations and damage mechanisms are uncertain due to the inherent 

imperfections of NDE techniques; however, as a simplifying assumption, they are 

considered deterministic and known in this study. The random parameter vector matΘ  

(of length matn ) exclusively describes the uncertainty of the material properties used to 

model the parts of the structure which are assumed to be non-damageable while the 
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random vector damΘ p  (of length damn ) quantifies the uncertainty of those parameters that 

control the fatigue-driven material degradation in the pre-identified damageable sub-

components (e.g., the adhesive joints/interfaces) and, as pointed out in Chapter 2, it does 

not characterize the bulk material properties of these identified damageable sub-

components. Furthermore, Since matΘ  and damΘ p  characterize the mechanical properties 

of different materials and/or sub-components, they are reasonably assumed to be 

statistically independent (s.i.) hereafter. 

The second step of the methodology, probabilistic load hazard analysis, 

defines the joint PDF of a vector of intensity measures, IM . This vector characterizes 

future operational/service loads, including extreme load events such as unexpected 

rough turbulence-induced loads impacting an aircraft during flight. In this study, the 

vector IM  is defined as { }m a,IM IM IM= : mIM  provides the probabilistic 

characterization of the average (mean) load intensity acting on the structure, whereas 

aIM  defines the intensity/amplitude of the superimposed random load (or load 

fluctuations) about the mean load. This concept was already introduced and outlined in 

Chapter 2. For example, when considering an aircraft structure, mIM  could describe 

the intensity of maneuver-induced loads, while aIM  could characterize the 

randomness of the turbulence velocity fields encountered by the aircraft during flight; 

a detailed treatment of this specific case is provided in Chapter 4. The joint PDF of 

IM  is herein denoted as ( )IM imf  and computed by unconditioning the conditional 

joint PDF ( )
m a m a, ,IM Θ Θ im θ θf  with respect to (w.r.t.) the distribution parameter 
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vectors mΘ  and aΘ  — i.e., those parameters characterizing the joint PDF of mIM  and 

aIM as described in detail in Section 8.3.2. 

In the third step of the proposed methodology, probabilistic damage evolution 

analysis, the conditional joint PDF of the system structural response — expressed in 

terms of the predicted damage size vector, [ , ]
aA p q , at future time q

p pt t q= + ∆τ  with 

{ }1, 2, ...,q q∈  — is computed through extensive Monte Carlo (MC) simulations. 

Computationally efficient surrogate models (Myers and Montgomery, 1995) are used for 

this purpose; these models are fitted and calibrated upon an appropriate design of 

experiments involving the detailed mechanics-based finite element (FE) model of the 

structure. The joint PDF of [ , ]
aA p q , conditional on matΘ , damΘ p , and all the previous NDE 

outcomes [ ]0,
ma p  (not explicitly included in the notation), is denoted as 

( )[ , ]
a mat dam

[ , ]
a mat dam,

| ,
A Θ Θ

a θ θpp q
p q pf  and is computed by unconditioning the conditional joint 

PDF ( )[ , ]
a mat adam

[ , ]
a mat dam a, , ,

| , , ,
A Θ Θ A IM

a θ θ a impp q p
p q p pf  w.r.t. aA p  and IM . The quantity 

[ , ]
aA p q  provides a probabilistic characterization of the future state of damage at the local 

level. Furthermore, the quantity ∆τ  is a suitable fixed time interval related to the time-

scale of the damage propagation process of interest as discussed in Chapter 5. To 

conclude this brief overview of the probabilistic damage evolution analysis step, it 

should be pointed out that in some cases (e.g., structures subjected to harmonic loads or 

any other cyclic loading conditions) it is more appropriate to express all the above 

considerations in terms of number of load cycles. Current time, pt , is replaced by the 
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current number of cycles, pN , and the time between two subsequent damage 

propagation evaluations, ∆τ , is substituted with the number of cycles, N∆ . As a direct 

consequence, the number of cycles at future time q
pt , denoted as q

pN , can then be 

expressed as q
p pN N q N= + ∆  with { }1, 2, ...,q q∈ . This latter approach will be used in 

the application examples discussed in Section 8.4 and in Chapter 9. 

The fourth step, probabilistic global performance analysis, estimates the joint 

PDF of the [ , ]
aA p q  and Gn  global performance metrics/measures (collected in [ , ]

gΨ p q ) at 

the generic future time q
p pt t q= + ∆τ  — i.e., the joint PDF ( )[ , ] [ , ]

a g

[ , ] [ , ]
a g,

,
A Ψ

a ψp q p q
p q p qf . To 

provide some examples, the random vector [ , ]
gΨ p q  could collect a given set of natural 

frequencies of the monitored structure, the reduced (due to damage) flutter velocity of 

an aircraft wing, the reduced (due to damage) initial stiffness and/or peak resistance of a 

structure under a push-over load of a given spatial distribution, etc. The joint PDF 

( )[ , ] [ , ]
a g

[ , ] [ , ]
a g,

,
A Ψ

a ψp q p q
p q p qf  thus contains both local (through [ , ]

aA p q ) and global (through 

[ , ]
gΨ p q ) damage-related information, and is denoted ( )[ , ]

L,G

[ , ]
L,GD

dp q
p qf , where 

{ }[ , ] [ , ] [ , ]
L,G a g,D A Ψp q p q p q= . This PDF can be obtained through three sub-steps: (i) 

computation of the conditional joint PDF ( )[ , ]
g a mat dam

[ , ]
g a mat dam, ,

, ,
Ψ A Θ Θ

ψ a θ θpp q p
p q p pf  through a 

series of numerical simulations using surrogate models for the response quantities of 

interest collected in [ , ]
gΨ p q ; (ii) derivation of the conditional joint PDF 

( )[ , ]
g a

[ , ]
g aΨ A

ψ ap q p
p q pf  by unconditioning the previously computed quantity, 
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( )[ , ]
g a mat dam

[ , ]
g a mat dam, ,

, ,
Ψ A Θ Θ

ψ a θ θpp q p
p q p pf , w.r.t. matΘ  and damΘ p ; (iii) estimation of 

( )[ , ] [ , ]
a g

[ , ] [ , ]
a g,

,
A Ψ

a ψp q p q
p q p qf  by using the definition of a conditional PDF as 

 ( ) ( ) ( ) ( )[ , ] [ , ] [ , ] [ , ][ , ]
a g aL,G g a

[ , ] [ , ] [ , ] [ , ] [ , ] [ , ]
L,G a g g a a,

,
A Ψ AD Ψ A

d a ψ ψ a ap q p q p q p qp q p
p q p q p q p q p q p qf f f f= = ⋅  (8.1) 

where the marginal PDF ( )[ , ]
a

[ , ]
aA

ap q
p qf  is computed as 

 ( ) ( )[ , ] [ , ]
a a mat dam

mat dam

[ , ] [ , ]
a a mat dam mat dam,

| ,
A A Θ Θ

Θ Θ

a a θ θ θ θp q pp q

p

p q p q p pf f d d= ∫ ∫  (8.2) 

Once the joint PDF ( )[ , ]
L,G

[ , ]
L,GD

dp q
p qf  is determined, the probability of system 

failure at time q
pt , [ , ]

sysF p qP ⎡ ⎤⎣ ⎦ , can be estimated by performing component and system 

reliability analyses. These analyses are part of the fifth step of the framework, namely 

damage prognosis analysis, and are carried out through three sub-steps: (i) 

computation of the component (or modal) conditional failure probabilities, 

[ , ] [ , ]
L, aF Ap q p q

ijP ⎡ ⎤⎣ ⎦  with [0, ]
L1, ,… pi n=  and ( , [0, ])

DM1, ,… i pj n= , and [ , ] [ , ]
G, gF Ψp q p q

rP ⎡ ⎤⎣ ⎦  with 

G1, ,…r n= , associated with each local and global failure mode/condition, 

respectively; (ii) computation of the unconditional modal failure probabilities; and (iii) 

computation of lower and upper bounds (e.g., uni-modal bounds) for [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  by 

abstracting the real structure into a combination of series and parallel sub-systems. It is 

worth mentioning that the use of these bounds is no longer necessary when direct 

simulation techniques and a sample representation of the aforementioned PDFs is 
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adopted, exploiting for example transitional Markov Chain Monte Carlo methods, 

TMCMC (Ching and Chen, 2007). 

The final stage of the proposed methodology consists of the decision making 

process. It essentially uses the damage prognosis results obtained in the previous step 

to optimize the maintenance and repair/retrofit program and consequently reduce their 

cost over the entire or remaining service life of the structure. The decisions made in 

this step, at current time tp, can be revised later as new NDE data are collected at times 

tp+1, tp+2, … Scheduling of the next maintenance can be obtained by interpolating or 

extrapolating the predictions for [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  (with 1, 2, ...,q q= ) in order to estimate the 

time at which this probability will exceed a specified safety threshold Fp . 

8.3.1. Proposed Recursive Bayesian inference scheme 

Information on the current state of damage of the structural system (or 

structural component/element) is assumed to be provided by continuous and/or 

periodic NDE inspections. The following three main assumptions are made herein 

about an NDE inspection: (i) an NDE inspection can detect and locate damage, 

identify the damage mechanisms developing concurrently at a specified damage 

location, and, in the best case scenario, quantify the extents of damage for each 

damage mechanism detected and identified; (ii) The overall uncertainty (i.e., including 

both systematic and random errors) associated with the measured extent of damage 

provided by a given NDE technique, is dependent on damage location, damage 

mechanism, and damage extent; (iii) for simplicity, it is assumed that both detection 
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and measurement of the extent of a certain damage mechanism, developing at a given 

damage location, depend only on the actual and unknown damage extent (or stage of 

formation) of this damage mechanism at the time of inspection. 

As more thoroughly analyzed in Chapter 3, the detection capability of a given 

NDE technique is provided by the so-called probability of detection (POD) curve 

(Berens, 1989; Staat, 1993). Under the constraint ( , , ) 0i j p
aa > , the POD for a particular 

combination of damage location ( )i , damage mechanism ( )j , and inspection time , 

pt , i.e., a particular ( ), ,i j p  combination, is defined as 

 ( )( , , ) ( , , ) ( , , ) ( , , )0i j p i j p i j p i j p
a m a aPOD a P A A a⎡ ⎤= > =⎣ ⎦  (8.3) 

On the other hand, the probability that the NDE outcome constitutes a false-call (or 

false-alarm) — i.e., damage detected ( ( , , ) 0i j p
mA > ) even though in reality there is no 

actual damage ( ( , , ) 0i j p
aa = ) — is referred to as false-call probability (FCP), and it is 

defined as 

 ( )( , , ) ( , , ) ( , , )
( , , ) 0 | 0 0i j p i j p i j p
i j p m a aFCP P A A POD a⎡ ⎤= > = = =⎢ ⎥⎣ ⎦  (8.4) 

A particular example of the POD curve model proposed by Berens (1989), for a given 

set of model parameters, is shown in Figure 8.2. This specific POD curve will also be 

used in the application example proposed later in this Chapter, as well as in all the 

parametric studies provided in Sections 8.4 and 8.5. 
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Figure 8.2: Example of POD curve model found in the literature (Berens, 1989) and 
used later in the application example and parametric studies in Sections 8.4 and 8.5.  

 

Once, for a given ( ), ,i j p  combination, damage is detected (D) and its extent 

measured, it is natural to question the accuracy of that NDE measurement conditional 

on the actual (but unknown) damage size. As already discussed in Chapter 3, this 

accuracy is herein modeled by using the following linear damage-size measurement 

model (see Figure 8.3): 

 ( )( , , ) ( , , ) ( , , ) ( , ) ( , ) ( , , )
0 1, + +β β ε= =i j p i j p i j p i j i j i j p

m a a a ijA A a D a  (8.5) 

where ( , , )i j p
aA  and ( , , )i j p

mA  are respectively the actual and measured damage size for 

damage location i, damage mechanism j, and inspection time pt . The quantity ( , , )i j p
aa  

denotes the value of the actual damage size for the particular ( ), ,i j p  combination 

considered. The two terms ( , )
0

i jβ  and ( , )
1

i jβ  are the coefficients of the (assumed) linear 
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model in Equation (8.5) accounting for the systematic measurement errors. Finally, 

( )0,∼
ijij N εε σ  represents the random measurement error assumed to be Gaussian 

distributed with zero-mean and standard deviation 
ijε

σ  assumed, for the sake of 

simplicity, to be constant and independent of ( , , )i j p
aa  (Zhang and Mahadevan, 2001). 

The damage-size measurement model parameters ( , )
0

i jβ , ( , )
1

i jβ , and 
ijε

σ  are unknown 

and have to be estimated, for each ( ),i j  combination, through a linear regression 

analysis on a given set of known damage sizes (see Chapter 3). The estimated linear 

regression coefficients and standard deviation of the random measurement error are 

respectively denoted ( , )
0

ˆ i jβ , ( , )
1̂

i jβ , and ˆ
ijε

σ . With these estimates, it is then possible to 

derive the PDF of the measured damage size ( , , )i j p
mA , conditional on the actual damage 

size ( , , ) ( , , )i j p i j p
a aA a=  as (see Chapter 3) 

 ( ) ( )( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )ˆ ˆ; ,i j p i j p ijm am a

i j p i j p i j p i j p
m a m A AA A

f a a a εϕ µ σ=  (8.6) 

where ( )( , , ) ( , , )ˆ ˆ; ,
ijm a

i j p i j p
m A A

a εϕ µ σ  is the conditional Normal PDF of ( , , )i j p
mA  with mean 

( , , ) ( , ) ( , ) ( , , )
0 1

ˆ ˆˆ
m a

i j p i j i j i j p
aA A

aµ β β= +  and standard deviation ˆ
ijε

σ . However, as shown in Figure 

8.3, this conditional PDF is meaningful only in the range ( , , ) 0i j p
mA >  and is therefore 

scaled as 

 ( ) ( )
1

( , ) ( , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , ) 0 1

ˆ ˆ+ˆ ˆ ˆ ˆ; , ; ,
ˆij ijm a m a

ij

i j i j i j p
i j p i j p i j p i j p a

m mA A A A

aa aε ε
ε

β βϕ µ σ ϕ µ σ
σ

−
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟=

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
Φ  (8.7) 
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where ( )⋅Φ  represents the Standard Normal cumulative distribution function (CDF). 

( )
( ,1, ) ( ,1, )

| 0 1
( ,1, ) ( ,1, )

ˆ ˆˆ
1, 2m a

i p i p
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a
i

A a

µ β β= +
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Figure 8.3: Linear sizing model characterized by a (truncated) Gaussian distributed 
measurement error and plotted for a given set of estimated model parameters 

(1,1) (2,1)
0 0 0

ˆ ˆ ˆ 1.5mmβ β β= = = − , (1,1) (2,1)
1 1 1

ˆ ˆ ˆ 1.2β β β= = = , and 
1,1 2,1

ˆ ˆ ˆ 2 mmε ε εσ σ σ= = = . 
 

POD curve and Equation (8.7) are used together to derive the likelihood 

function, ( )a ma ap pL , needed to update the prior conditional joint PDF, 

( )
a mat dam

a mat dam,
,

A Θ Θ
a θ θpp

p pf ′ , into the posterior conditional joint PDF, 

( )
a mat dam

a mat dam,
, ,

A Θ Θ
a θ θpp

p pf ′′  as the new measurement results, ma p , become available at 

the inspection time tp. Simultaneously, the NDE results obtained at time tp are also 

used to compute the posterior joint PDF of the damage evolution model parameters, 
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( )
dam

damΘ
θp

pf ′′ . All the mathematical details and derivations together with an exhaustive 

discussion of this topic are provided in Chapter 3. The updating Equations derived in 

Chapter 3 are used later in the application example presented in Section 8.4. 

8.3.2. Probabilistic load hazard analysis 

In this second part of the thesis, aimed at providing a more general version of 

the proposed damage prognosis framework, a random dynamic load acting on the 

monitored structural system is conveniently decomposed into two components: its 

mean/average intensity, characterized probabilistically by the intensity measure vector 

mIM , and the superimposed random stochastic load (or load fluctuations) about the 

mean-load intensity, probabilistically described by the intensity measure vector aIM . 

A realization of such a stochastic load is conceptually illustrated in Figure 8.4 and a 

particularization of this load decomposition and superposition approach, when the load 

fluctuations are represented by a harmonic load of given/fixed frequency and random 

amplitude, is conceptually depicted in Figure 8.5. Additionally, to facilitate the 

description and discussion of the proposed probabilistic load hazard analysis step, it is 

assumed throughout this section that the external load acting on the structure is 

characterized by a given/fixed spatial distribution thereby reducing the problem to the 

probabilistic characterization of a single/scalar load quantity. However, the theory 

presented hereafter can be generalized to the case of multiple load spatial distributions 

as well as to a scenario involving multiple random concentrated loads with potential 

spatial cross-correlation (He et al., 2008). 
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Figure 8.4: Illustrative example of load superposition for the case in which mean-load 
intensity and RMS value of the load fluctuations are considered to be statistically 
dependent. The RMS value of the load fluctuations is renewed at each mean-load 

pulse occurrence, remains constant for the entire duration of each mean-load pulse, 
and is equal to zero when the mean-load pulse intensity is equal to zero. 
 

 

Figure 8.5: Illustrative example of load superposition for the case in which mean-load 
intensity and amplitude of the harmonic load fluctuations are considered to be 

statistically dependent. The amplitude value of the load fluctuations is renewed at each 
mean-load pulse occurrence, remains constant for the entire duration of each mean-
load pulse, and is equal to zero when the mean-load pulse intensity is equal to zero. 
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The random sequence of the applied mean-load (e.g., blue line in Figure 8.4 and 

Figure 8.5) is modeled and simulated using a homogeneous Poisson rectangular pulse 

process (Wen, 1990) with mean rate of occurrence 
mm 1/ ∆Tλ µ=  (where 

mTµ∆ , collected 

in the random parameter vector mΘ , denotes the average duration of the mean-load 

pulses). Each arrival (in time) of a Poisson event raises a rectangular pulse of random 

intensity mP  — according to its conditional PDF ( )
m m| m m|Θ θPf p  — until the next 

arrival. Based on these considerations, the intensity measure vector mIM  is defined as 

{ }m m m,IM P T= ∆ . Additionally, a generic realization of the random vector m mIM im=  

in , q
p pt t⎡ ⎤⎣ ⎦  is herein defined as { }m m m, 1, ...,im im(k) k n=  with (i) { }m m m, ∆im(k) (k) (k)p t=  

specifying the intensity and duration of the kth mean-load pulse and (ii) mn  

representing the total number of pulses randomly generated during a generic realization 

of mIM . The mean-load intensity, m
(k)p , is sampled according to the conditional PDF 

( )
m m| m m|Θ θPf p  while the pulse duration, m∆ (k)t , is drawn from the exponential 

distribution of m∆T  characterized by the mean value 
mTµ∆ . From the discussion above, it 

is also deduced that the random parameter vector mΘ  collects all the distribution 

parameters necessary to probabilistically characterize the random variables mP  and 

mT∆ . For example, if the conditional PDF ( )
m m| m m|Θ θPf p  is modeled using a uniform 

distribution, then the two boundaries of this distribution (i.e., the lower boundary min
mP  

and the upper boundary max
mP ) would be contained in mΘ  and could themselves be 

considered (in the most general case) as random variables. 
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Once the random sequence of mean/average load pulses, m mIM im= , is 

stochastically realized, according to the procedure outlined above, an additional random 

sequence of load pulses, a aIM im= , characterizing the intensity of the stochastic load 

fluctuations, is generated and superimposed to mim . These stochastic load fluctuations 

are modeled as a zero-mean stationary (within each pulse) random process — 

completely characterized by its power spectral density (PSD) function — and they are 

considered to be the driving factor of the fatigue-induced damage growth throughout the 

pre-identified damageable sub-components of the structure (see Chapter 2). For the sake 

of simplicity and illustration purposes, the area ( aΣ ) under the PSD function, defining 

the stochastic load fluctuations, is considered as the only random variable characterized 

by the conditional PDF ( )
a a| a a|Θ θf σΣ . In other words, for given values of a aΣ σ=  and 

a aΘ θ=  the random process, used to model and simulate these load fluctuations, is 

completely defined and can be stochastically realized (e.g., by using spectral 

representation methods; Priestley, 1987). Furthermore, if aIM is considered to be s.i. of 

mIM , the same reasoning as the one outlined above for mIM  can be used. A 

homogeneous Poisson rectangular pulse process with mean rate of occurrence 

aa 1/ ∆Tλ µ=  (where 
aTµ∆ , collected in the random parameter vector aΘ , denotes the 

average duration of the load pulse) is also used to model and simulate the random 

sequence of the intensity (measured, as outlined above, through its root-mean-square 

value, aΣ ) of the stochastic dynamic load fluctuations about the mean-load intensity 

( mP ). Each arrival (in time) of a Poisson event raises a rectangular pulse of random 
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intensity aΣ  according to its conditional PDF ( )
a a| a a|Θ θf σΣ . Additionally, a generic 

realization of the random vector a aIM im=  in , q
p pt t⎡ ⎤⎣ ⎦  is defined as 

{ }a a a, 1, ...,im im(k) k n=  with (i) { }a a a, ∆im(k) (k) (k)tσ=  specifying the intensity and 

duration of the kth pulse and (ii) an  representing the total number of pulses randomly 

generated during a generic realization of aIM . The quantity a
(k)σ  is sampled according 

to the conditional PDF ( )
a a| a a|Θ θf σΣ  while the pulse duration, a∆ (k)t , is drawn from the 

exponential distribution of a∆T  defined by the mean value 
aTµ∆ . However, in the most 

general case, mIM  and aIM  can or must be considered statistically dependent. For 

example, as depicted in Figure 8.4 and Figure 8.5, the physics behind the loading 

process being modeled or (sometimes) mathematical convenience could dictate that 

a m∆ =∆(k) (k)t t  (for m1, ...,k n= ) and/or a 0σ =  when m 0p = . In this second (and more 

complicated) scenario, once the vector mim  is randomly realized, then the other 

intensity measure vector, aim , must be sampled from the conditional PDF 

( )
a m a| , m m a| ,IM IM Θ im im θf . 

8.3.3. Probabilistic damage evolution analysis 

The third step of the proposed methodology (namely probabilistic damage 

evolution analysis) is the most computationally expensive analysis step; therefore, the 

use of metamodels and reasonably simplifying assumptions becomes essentials in 

order to maintain the computational feasibility of the overall framework. This analysis 
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step aims at computing the conditional joint PDF ( )[ , ]
a mat dam

[ , ]
a mat dam,

,
A Θ Θ

a θ θp q p
p q pf  at 

time ∆q
p pt t q τ= +  (with 1, 2, ...,q q= ) by unconditioning the conditional joint PDF 

( )[ , ]
a mat adam

[ , ]
a mat dam a, , ,

, , ,
A Θ Θ A IM

a θ θ a imp q p p
p q p pf  — appearing at the beginning of the third 

analytical step in Figure 8.1 — w.r.t. aA p  and IM  as shown below 

 

( )

( )

( ) ( )

[ , ]
a mat dam

[ , ]
a mat adam

a

a mat dam

[ , ]
a mat dam,

[ , ]
a mat dam a, , ,

a mat dam a,

,

, , ,

,

A Θ Θ

A Θ Θ A IM
IMA

IMA Θ Θ

a θ θ

a θ θ a im

a θ θ im im a

pp q

pp q p

p

pp

p q p

p q p p

p p p

f

f

f f d d

=

′′

∫ ∫  (8.8) 

Equation (8.8) is an application of the total probability theorem (TPT) and its final 

result is obtained through extensive Monte Carlo (MC) simulations during which the 

random vectors a
pA  and IM  are sampled according to their PDFs — i.e., 

( )
a mat dam a mat dam, ,A Θ Θ a θ θp

pf ′′  and ( )IM imf . It is worth noting that the uncertainty of [ , ]
a
p qA  

for given/fixed values of mat mat ,=Θ θ  dam dam,Θ θp p=  a a ,p p=A a  and IM im=  — i.e., the 

uncertainty quantified by the joint conditional PDF 

( )[ , ]
a mat adam

[ , ]
a mat dam a, , ,

, , ,
A Θ Θ A IM

a θ θ a imp q p p
p q p pf  inside the integral in Equation (8.8) — 

arises from the record-to-record variability of the structural response across the 

ensemble of load time histories realized for a given value of the load intensity 

a aIM im=  (e.g., for a given/fixed power spectral density representation of the load 

fluctuations about the mean-load intensity previously described in Section 8.3.2). This 
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variability of the structural response across the ensemble of load time history 

realizations represents an additional (nested) layer of uncertainty, expressed by the 

above PDF, within the third step of the proposed methodology. In light of these 

considerations and in order to reduce the computational cost of this third analysis step, 

the record-to-record variability of the quantity ( )[ , ]
a mat dam a, , ,A θ θ a imp q p p  is neglected in 

this study and, in the forthcoming discussion, the conditional joint PDF 

( )[ , ]
a mat adam

[ , ]
a mat dam a, , ,

, , ,
A Θ Θ A IM

a θ θ a imp q p p
p q p pf  is replaced by the conditional mean value of 

the random variable ( )[ , ]
a mat dam a, , ,A θ θ a imp q p p . Under this perspective the conditional 

joint PDF, ( )[ , ]
a mat adam

[ , ]
a mat dam a, , ,

, , ,
A Θ Θ A IM

a θ θ a impp q p
p q p pf , is conveniently rewritten as 

 ( ) ( )[ , ]
a mat adam

[ , ] [ , ] [ , ]
a mat dam a a a, , ,

, , ,
A Θ Θ A IM

a θ θ a im a app q p
p q p p p q p qf δ≅ −  (8.9) 

where (i) the term ( )δ ⋅  denotes the Dirac Delta and (ii) the vector [ , ]
aa p q , introduced in 

the above equation for the sake of conciseness, is defined as 

( )[ , ] [ , ] [ , ]
a a mat dam a ens a mat dam a, , , , , ,a a θ θ a im A θ θ a imp q p q p p p q p pE ⎡ ⎤= = ⎣ ⎦  and represents the 

conditional expectation of [ , ]
aa p q  (at time q

pt ) across the ensemble of the load time 

history realizations for fixed values of m mIM im=  and a a .IM im=  Substituting 

Equation (8.9) into Equation (8.8) yields to 

 
( )

( ) ( ) ( )

[ , ]
a mat dam

a mat dam
a

[ , ]
a mat dam,

[ , ] [ , ]
a a a mat dam a,

,

,

A Θ Θ

IMA Θ Θ
IMA

a θ θ

a a a θ θ im im a

pp q

pp

p

p q p

p q p q p p p

f

f f d dδ

=

′′−∫ ∫
 (8.10) 
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In order to compute the quantity [ , ]
aa p q  in a computationally efficient manner, 

the conditional expectation (across the ensemble of load time histories for given/fixed 

IM im= ) of the rate of damage propagation at time pt t≥  — i.e., 

( )[ , ]
ens a mat dam a, , ,A θ θ a imp t p pE d dt⎡ ⎤
⎣ ⎦  — is fitted with a surrogate/polynomial model, 

( )G ⋅ . Following a dimensional analysis approach for the response quantity of interest 

(Navarro and De Los Rios, 1987; Sanford, 2003) this polynomial model is herein 

assumed to depend on (i) the conditional expectation of [ , ]
aa p t  (at time pt t≥ ), denoted 

as [ , ]
aa p t  and defined as  ( )[ , ] [ , ] [ , ]

a a mat dam a ens a mat dam a, , , , , ,a a θ θ a im A θ θ a imp t p t p p p t p pE ⎡ ⎤= = ⎣ ⎦ , 

(ii) the intensity measure vector IM im=  through the load intensity measures mp  and 

aσ  introduced and discussed in Section 8.3.2, (iii) the material parameter vector 

mat matΘ θ= , and (iv) the vector of damage evolution model parameters dam damΘ θp p= . 

Under the aforementioned assumptions, this polynomial fitting yields to 

 ( ) ( )[ , ] [ , ]
ens a mat dam a a m a mat dam, , , , , ; , ,A θ θ a im G a θ θp t p p p t p

p
dE p t t
dt

σ⎡ ⎤ = ≥⎢ ⎥⎣ ⎦
 (8.11) 

where the quantity ( )[ , ]
a mat dam a, , ,A θ θ a imp t p pd dt  (with dt  being a macro increment 

of time as discussed in Chapter 5) denotes the first-order time derivative of the random 

process ( )[ , ]
a mat dam a, , ,A θ θ a imp q p p . The general nonlinear mapping ( ) inp A:G

pn n
+⋅ →R R  

(with inp A mat dam2pn n n n= + + + ), between the input and (positive) output real vector 

spaces, represents the metamodel fitted (through an appropriate and computationally 
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feasible design of experiments) over the desired design space for the input parameters 

using the simulation results from a (mechanics-based) nonlinear FE model of the 

structure obtained for each realization of the load time histories. Furthermore, if the 

condition for mean square differentiability of the random process 

( )[ , ]
a mat dam a, , ,A θ θ a imp t p p  is satisfied, expectation and differentiation operators can 

permute, i.e., 

( ) ( )
[ , ]

[ , ] [ , ] a
ens a mat dam a ens a mat dam a, , , , , , aA θ θ a im A θ θ a im

p t
p t p p p t p p dd dE E

dt dt dt
⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎣ ⎦

 (8.12) 

Thus Equation (8.11), for pt t≥ , can be rewritten as 

 ( )[ , ] [ , ]
a a m a mat dam

a a

, , ; ,a G a θ θ

a a

p t p t p

p p

d p
dt

σ⎧ =⎪
⎨
⎪ =⎩

 (8.13) 

where aa p  represents the value of the vector [ , ]
aa p t  at time pt t=  (i.e., at current time, 

immediately after the last NDE inspection), and aa p  is a particular realization of aA p  

according to the posterior joint PDF ( )
a mat dam

a mat dam,
,

A Θ Θ
a θ θp p

p pf ′′  computed as outlined in 

Section 8.3.1. Hence, Equation (8.13) represents a system of 
[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑  

generally coupled (see Appendix G) first-order ordinary differential equations that can 

now be numerically integrated (e.g., by using the 4th order Runge-Kutta time marching 

scheme) between current time pt  and q
pt  to compute [ , ]

aa p q  (with 1, 2, ...,q q= ). 
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As a final remark in this Section, for the particular and simpler case in which 

the load fluctuations about the mean-load intensity are represented by a harmonic load 

with random amplitude ( aAMP ) and, potentially, also random frequency ( aΩ ), the 

intensity measure vector aIM  takes the form { }a a a a, ,∆IM AMP T= Ω . Furthermore, 

for a given/fixed value of IM im= , the record-to-record variability (across the 

ensemble of loading time histories) discussed earlier no longer exists. In other words, 

the random term ( )[ , ]
a mat dam a, , ,A θ θ a imp q p p  becomes a deterministic quantity — i.e., 

( ) ( )[ , ] [ , ] [ , ]
a a mat dam a a mat dam a, , , , , ,a A θ θ a im a θ θ a imp q p q p p p q p p= =  — and, similarly, the 

random process ( )[ , ]
a mat dam a, , ,A θ θ a imp t p p  (with pt t≥ ) reduces to a deterministic 

(damage evolution) process — i.e., ( )[ , ] [ , ]
a a mat dam a, , ,a A θ θ a imp t p t p p= =  

( )[ , ]
a mat dam a, , ,a θ θ a imp t p p . Consequently, the conditional joint PDF of [ , ]

aA p q , 

( )[ , ]
a mat adam

[ , ]
a mat dam a, , ,

, , ,
A Θ Θ A IM

a θ θ a imp q p p
p q p pf , is now represented by a Dirac Delta 

located at ( )[ , ] [ , ]
a a mat dam a, , ,a a θ θ a imp q p q p p=  and the fitting of the metamodel 

( ) inp A:G
pn n

+⋅ →R R  becomes easier and computationally less expensive since it does no 

longer involve the averaging across the ensemble of load time histories. 

8.3.4. Probabilistic global performance analysis 

Similarly to the original version of the proposed framework, as presented in 

Chapter 6, the fourth step of the generalized damage prognosis methodology discussed 

in this chapter uses the results obtained from the damage evolution prediction analysis 
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from time pt  to time q
pt  (with 1, 2, ...,q q= ), for estimating (at future time q

pt ) the joint 

PDF of (i) the damage size vector [ , ]
a
p qA  and (ii) the vector of global performance 

measures [ , ]
gΨ p q . 

The (ideal) final outcome of this step is represented by the joint PDF, 

( ) ( )[ , ] [ , ] [ , ]
a gL,G

[ , ] [ , ] [ , ]
L,G a g,

,
A ΨD

d a ψp q p q p q
p q p q p qf f= , of the random vector { }[ , ] [ , ] [ , ]

L,G a g,D A Ψp q p q p q= . 

This joint PDF can be obtained through two sub-steps. In the first sub-step, the joint 

conditional PDF ( )[ , ] [ , ]
g a mat dam

[ , ] [ , ]
g a mat dam, ,

, ,
Ψ A Θ Θ

ψ a θ θpp q p q
p q p q pf  is numerically estimated 

through Monte Carlo (MC) simulations — each of them for a fixed realization of (i) 

the predicted (during the probabilistic structural response and damage evolution 

analysis) damage size vector [ , ]
a
p qa , and (ii) the vectors matθ  and damθ p  sampled from 

their PDFs ( )
mat matfΘ θ  and ( )

dam
damΘ
θp

pf . In the second sub-step, the unconditional joint 

PDF of [ , ]
L,G
p qD  is computed as 

 ( ) ( ) ( ) ( )[ , ] [ , ] [ , ] [ , ][ , ] [ , ]
a g aL,G g a

[ , ] [ , ] [ , ] [ , ] [ , ] [ , ]
L,G a g g a a,

,
A Ψ AD Ψ A

d a ψ ψ a ap q p q p q p qp q p q
p q p q p q p q p q p qf f f f= = ⋅  (8.14) 

where the conditional joint PDF, ( )[ , ] [ , ]
g a

[ , ] [ , ]
g aΨ A

ψ ap q p q
p q p qf , of the performance measure 

vector ( [ , ]
gΨ p q ) is obtained as 

( )
( ) ( ) ( )

[ , ] [ , ]
g a

[ , ] [ , ] mat damg a mat dam
mat dam

[ , ] [ , ]
g a

[ , ] [ , ]
g a mat dam mat dam mat dam, ,

, ,

Ψ A

Θ ΘΨ A Θ Θ
Θ Θ

ψ a

ψ a θ θ θ θ θ θ

p q p q

ppp q p q

p

p q p q

p q p q p p p

f

f f f d d

=

∫ ∫
 (8.15) 
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and the marginal joint PDF, ( )[ , ]
a

[ , ]
aA

ap q
p qf , can be expressed as 

 
( )

( ) ( ) ( )
[ , ]
a

[ , ] mata mat dam dam
mat dam

[ , ]
a

[ , ]
a mat dam mat dam mat dam,

,

A

ΘA Θ Θ Θ
Θ Θ

a

a θ θ θ θ θ θ

p q

p q p

p

p q

p q p p p

f

f f f d d

=

∫ ∫
 (8.16) 

Also in this fourth step of the proposed methodology, the use of metamodels is 

extremely useful in order to reduce the computational cost of the MC numerical 

simulations involved. A Metamodel, ( ) inp G: n n
+⋅ →Q R R  (with inp A mat dam

pn n n n= + + ), 

is used to compute the conditional joint PDF of the vector of global performance 

measures, ( )[ , ] [ , ]
g a mat dam

[ , ] [ , ]
g a mat dam, ,

, ,
Ψ A Θ Θ

ψ a θ θpp q p q
p q p q pf , as 

 ( ) ( )[ , ] [ , ]
g a mat dam

[ , ] [ , ] [ , ] [ , ]
g a mat dam g g, ,

, ,
Ψ A Θ Θ

ψ a θ θ ψ ψpp q p q
p q p q p p q p qf δ= −  (8.17) 

where the vector [ , ]
gψ p q  is defined as 

 ( ) ( )[ , ] [ , ] [ , ] [ , ] [ , ]
g g g a mat dam a mat dam, , ; ,ψ ψ Ψ a θ θ Q a θ θp q p q p q p q p p q p= =  (8.18) 

As a further result, Equation (8.15) can therefore be simplified as 

 
( )
( ) ( ) ( )

[ , ] [ , ]
g a

mat dam
mat dam

[ , ] [ , ]
g a

[ , ] [ , ]
g g mat dam mat dam

Ψ A

Θ Θ
Θ Θ

ψ a

ψ ψ θ θ θ θ

p q p q

p

p

p q p q

p q p q p p

f

f f d dδ

=

−∫ ∫
 (8.19) 

and the marginal joint PDF of [ , ]
gΨ p q , used to compute upper and lower uni-modal 

bounds to the probabilities of failure and false-call, in the subsequent system reliability 

analysis, can be expressed as 
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( )
( ) ( )

( ) ( )

[ , ]
g

[ , ]
a mat dam[ , ]

a mat dam

mat dam

[ , ]
g

[ , ] [ , ] [ , ]
g g a mat dam,

[ , ]
mat dam a mat dam

,

Ψ

A Θ Θ
A Θ Θ

Θ Θ

ψ

ψ ψ a θ θ

θ θ a θ θ

p q

pp q

p q p

p

p q

p q p q p q p

p p q p

f

f

f f d d d

δ

=

′′−

′′

∫ ∫ ∫  (8.20) 

8.3.5. Damage prognosis analysis 

The fifth step, damage prognosis analysis, represents the final computational 

step of the proposed methodology (before the decision making process) and it aims at 

providing an estimate of the probabilities of failure and false-call for the monitored 

structural system at future times (i.e., pt t≥ ) by performing component and system 

reliability analyses. Local and global failure criteria are therefore needed in order to 

compute the component (or modal) probabilities of failure and false-call which are 

then combined in the subsequent system reliability analysis. The simplest (and most 

logical) local failure event [ , ]
L,F p q

ij  — i.e., the failure event (at time q
pt ) associated with 

the jth detected damage mechanism, developing at the ith monitored damage location 

— can be defined as { }[ , ] ( , ,[ , ])
L,F p q i j p q ij

ij a cA a≥  and the corresponding modal failure 

probability is expressed as ( )( , ,[ , ])
[ , ]
L,F 1 i j p q

a

p q ij
ij cA

P F a⎡ ⎤ = −⎣ ⎦ . 

As already stated in Chapter 7, alternative definitions for the local failure event 

can be adopted in the proposed framework. For instance, in previous research work by 

Lin et al. (2000), Huang and Lin (2005), and Backman (2005), the local failure event 

[ , ]
L,F p q

ij  is defined as ( ){ }[ , ] [ , ] ( , , [ , ])
L, L,F Fp q p q i j p q ij

ij ij m cA a∩ < , its graphical interpretation is 

shown in Figure 8.6, and the associated modal failure probability can be computed as 
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(see Chapter 7 and Appendix A for all the mathematical derivations) 

 ( ) ( ) ( )( , ,[ , ])

+
[ , ] [ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L, L,

ˆF F i j p q
a

ij
c

p q p q i j p q i j p q i j p q i j p q
ij ij a a a aA

a

P P a POD a f a daψ
∞

⎡ ⎤ ⎡ ⎤= −⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ∫  (8.21) 

where the strictly positive function ( )( , ,[ , ])ˆ i j p q
aaψ  is defined as (see Chapter 7 and 

Appendix A) 

 ( )
1

( , ) ( , ) ( , ,[ , ]) ( , ) ( , ) ( , ,[ , ])
( , ,[ , ]) 0 1 0 1

ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ
ij ij

i j i j i j p q ij i j i j i j p q
i j p q a c a

a
a a aa
ε ε

β β β βψ
σ σ

−
⎡ ⎤⎛ ⎞ ⎛ ⎞+ − +⎢ ⎥⎜ ⎟ ⎜ ⎟= Φ ⋅ Φ

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (8.22) 

( ) ( ), ,[ , ] , ,[ , ]i j p q i j p q
m aA A=
( ), ,[ , ]

|ˆ
m a

i j p q
A Aµ

ij
ca

ij
ca

[ , ]
 L,

False-Call
domain, p q

ijF

[ , ]
L,

Failure domain
according to F p q

ij

( ) ( ), ,[ , ] , ,[ , ]i j p q i j p q
m aA A=
( ), ,[ , ]

|ˆ
m a

i j p q
A Aµ

ij
ca

ij
ca

[ , ]
 L,

False-Call
domain, p q

ijF

[ , ]
L,

Failure domain
according to F p q

ij

 
Figure 8.6: Conceptual illustration of the failure and false-call domains according to 

the failure and false-call events [ , ]
L,F p q

ij  and [ , ]
 L,

p q
ijF , respectively. 

 

Besides the local failure event [ , ]
L,F p q

ij , the local false-call event, [ , ]
 L,

p q
ijF , is also of 

interest. This event is defined as ( ) ( ){ }[ , ] ( , ,[ , ]) ( , ,[ , ])
 L, < ∩ ≥p q i j p q ij i j p q ij

ij a c m cA a A aF , its 
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graphical representation is shown in Figure 8.6, and the associated modal probability 

of false-call can be computed as (see Chapter 7 and Appendix B) 

 
( ) ( )

( ) ( ) ( )( , ,[ , ])

[ , ] ( , ,[ , ]) ( , ,[ , ])
 L,

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

0

ˆ
ij
c

i j p q
a

p q i j p q ij i j p q ij
ij a c m c

a
i j p q i j p q i j p q i j p q

a a a aA

P P A a A a

a POD a f a daψ

⎡ ⎤⎡ ⎤ = < ∩ ≥⎣ ⎦ ⎣ ⎦

= ∫

F

 (8.23) 

On the other hand, the global component failure events [ , ]
G,F p q

r  (with 

G1, ,…r n= ) are defined on the basis of the global performance measures computed in 

the probabilistic global performance analysis step and collected in the random vector 

[ , ]
gΨ p q . For instance, if the global aeroelastic performance of the structure is of primary 

concern, one component (e.g., the rth component) of the random vector [ , ]
gΨ p q  could be 

taken as the flutter velocity ( FV ) and the corresponding failure event could be defined 

as { }[ , ] [ , ]
G, F FF p q p q crit

r V v≤  where F
critv  is the critical flutter velocity that can be expressed 

as a fraction of the nominal flutter velocity ( F
nomv ) as F F

crit nomv vα= ×  

( F Fe.g., 0.90crit nomv v= × ). Alternatively, it could be of interest to monitor the downtrend 

(due to damage propagation) of a given natural frequency (e.g., the jth natural 

frequency, [ , ]p q
jω ) and the corresponding failure event could be defined as 

{ }[ , ] [ , ]
G,F p q p q crit

r j jω ω≤  where crit
jω  represents a critical frequency threshold that can be 

taken as a fraction of the nominal frequency ( nom
jω ) as crit nom

j jω α ω= ×  

( e.g., 0.90crit nom
j jω ω= × ). 
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Finally, as shown in Equations (8.24) through (8.28), local and global failure 

( [ , ]
L,F p q

ij , [ , ]
G,F p q

r ) events, their complements ( [ , ]
L,F p q

ij , [ , ]
G,F p q

r ), and false-call ( [ , ]
 L,

p q
ijF ) events 

are combined together to define failure ( [ , ]
sysF p q , [ , ]

sysF p q , [ , ]
sysF p q ) and false-call ( [ , ]

 sys
p qF , [ , ]

 sys
p qF ) 

events at the system level, by abstracting the real structure into a combination of series 

and parallel sub-systems. Upper and lower uni-modal bounds for each of these events 

can be computed as detailed in Section 7.5 in Chapter 7. 

 
[0, ] ( , [0, ])

GL DM
[ , ] [ , ] [ , ]
sys L, G,1 1 1

F F F
p i p nn n

p q p q p q
ij ri j r= = =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟⎜⎪ ⎪⎟⎢ ⎥ ⎜⎟∪ ∪ ∪ ∪⎜ ⎟⎨ ⎬⎜⎟⎢ ⎥ ⎟⎜ ⎟⎜⎟⎪ ⎪⎜ ⎝ ⎠⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
 (8.24) 

 
[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , , [ , ])
sys sys 1 1

F F
p i pn n

p q p q i j p q ij
m ci j

A a
= =

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟∩ ∩ ∩ <⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 (8.25) 

 
[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , ,[ , ]) ( , ,[ , ])
sys sys MS MS1 1

F F
p i pn n

p q p q i j p q i j p q

i j
n n

= =

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟∩ ∩ ∩ ≥⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 (8.26) 

 
[0, ] ( , [0, ]) [0, ] ( , [0, ])

GL DM L DM
[ , ] [ , ] [ , ] ( , , [ , ])

 sys L, G, 1 11 1 1
F F

p i p p i pnn n n n
p q p q p q i j p q ij

ij r m ci ji j r
A a

= == = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟ ⎟⎜ ⎜⎪ ⎪⎟⎢ ⎥ ⎢ ⎥⎜⎟ ⎟∩ ∩ ∩ ∩ ∩ ∪ ∪ ≥⎜ ⎜⎟⎨ ⎬⎜⎟ ⎟⎢ ⎥ ⎟ ⎢ ⎥⎜ ⎜⎟⎜⎟ ⎟⎪ ⎪⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
F  (8.27) 

 
[0, ] ( , [0, ]) [0, ] ( , [0, ])

GL DM L DM
[ , ] [ , ] [ , ] ( , ,[ , ]) ( , ,[ , ])

 sys L, G, MS MS1 11 1 1
F F

p i p p i pnn n n n
p q p q p q i j p q i j p q

ij r i ji j r
n n

= == = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟ ⎟⎜ ⎜⎪ ⎪⎟⎢ ⎥ ⎢ ⎥⎜⎟ ⎟∩ ∩ ∩ ∩ ∩ ∪ ∪ <⎜ ⎜⎟⎨ ⎬⎜⎟ ⎟⎢ ⎥ ⎟ ⎢ ⎥⎜ ⎜⎟⎜⎟ ⎟⎪ ⎪⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
F  (8.28) 

In the Boolean equations above, ( , [0, ])
DM
i pn  denotes the number of detected (up to time tp) 

damage mechanisms developing at the ith damage location and [0, ]
L

pn  the number of 

inspected damage locations up to time tp. Therefore, the total number of local reliability 

components ( A
pn ) at time tp can be expressed as 

[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑ . 
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8.4. Application example: Simply-supported laminated composite beam 

characterized by two debonding fronts 

The numerical example presented below aims at (i) validating the proposed 

recursive Bayesian inference scheme used to update both damage extents and damage 

evolution model parameters, (ii) assessing the computational feasibility of the 

proposed failure criteria (both local and global), and (iii) quantifying the confidence 

level on the damage prognosis results obtained by making use of uni-modal bounds for 

the probabilities of system failure and false-call, as defined and computed in Chapter 

7. The benchmark structure used in this application example is shown in Figure 8.7 

and consists of a simply supported composite beam, of length 2 250.0L mm= , made 

out of two identical unidirectional laminated composite adherends, with solid 

rectangular cross section, bonded through an idealized zero-thickness adhesive 

interface/layer. The width and depth of each unidirectional laminated composite 

adherend are 25.0b mm=  and 3.0h mm= , respectively. 

Figure 8.7: Simply-supported composite beam with two debonding fronts (evolving 
from the beam ends) subjected to a concentrated load, P(t), applied at its midspan. 

 

The only material parameter of interest is represented by the flexural modulus (Jones, 

1976) of the lower and upper unidirectional composite adherends (i.e., 

(1,1, ) (2,1, )(2 )t t
a aL a a− −

2 250L mm=

(1,1, )t
aa

( ) , ( )P t w t
disbond disbond

(2,1, )t
aa

adhesive layer

b

composite beam
cross-section

( )25 3
b h

mm
× =
×

( )11

composite adherends
flexural modulus: 

130 , = 0.1∼fE N GPa δ
1x 2x( )0 , 1,2ix L i≤ ≤ =

3

density of laminated
composite adhedends:

1.50 /V gr cmρ =

total beam mass:
56.25totM gr=
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mat mat 11Θ fE= Θ = ) assumed to follow a Normal distribution with mean 

11
130.0fE

GPaµ =  and a coefficient of variation of 10%. (see Figure 8.8 below)  

( )
11 11 11

11 ~ 130,000 , 0.1f f f
f

E E E
E N MPaµ σ µ= =( )

11 11 11
11 ~ 130,000 , 0.1f f f
f

E E E
E N MPaµ σ µ= =

 
Figure 8.8: PDF of the composite adherends flexural modulus, 11

fE  
 

The debonding, along the adhesive interface between the two composite adherends, is 

considered the only damage mechanism (i.e., 1j =  at all damage locations) evolving 

in time. More specifically, two debonding fronts, propagating from the two end 

supports (i.e., from the beam ends) towards the beam midspan, are considered in this 

example. The lengths of the two disbonds at generic time t are denoted as (1,1, )t
aa  (i.e., 

1i =  and 1j = ) and (2,1, )t
aa  (i.e., 2i =  and 1j = ), respectively. Similarly, the two 

damage locations are hereafter referred to as damage location 1 (i.e., 1i = ) and 

damage location 2 ( i.e., 2i = ), respectively. The beam is subjected to a dynamic 

concentrated load, applied at its midspan, constituting the driving factor of the 

debonding propagation process along the adhesive interface; however, for the narrow 
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scope of this application example, it is postulated herein that the debonding 

propagation process, at time pt t≥ , is governed by the following system of uncoupled 

ordinary differential equations 

 

( )

( ) ( )

(1,1,[ , ]) (1,1, )

(2,1,[ , ]) (2,1, )

(1,1, ) (1,1, )

(2,1, ) (2,1, )

γ

γ , 0,1, 2, ...

p t p
a

p t p
a p

p p
a a

p p
a a

d a G
dt
d a G t t p
dt
a a
a a

⎧ =⎪
⎪
⎪ = ≥ =⎨
⎪

=⎪
⎪ =⎩

 (8.29) 

Furthermore, it is assumed that ( ) ( )(1,1, ) (1,1, )γ exp γp pG =  and ( ) ( )(2,1, ) (2,1, )γ exp γp pG = , 

and therefore Equation (8.29) is rewritten as shown in Equations (8.30) and (8.31): 

 ( ) ( )
(1,1,[ , ]) (1,1, )

(1,1, ) (1,1, )

exp γ
, 0,1, 2, ...

p t p
a

p
p p

a a

d a
t t pdt

a a

⎧ =⎪ ≥ =⎨
⎪ =⎩

 (8.30) 

 ( ) ( )
(2,1,[ , ]) (2,1, )

(2,1, ) (2,1, )

exp γ
, 0,1, 2, ...

p t p
a

p
p p

a a

d a
t t pdt

a a

⎧ =⎪ ≥ =⎨
⎪ =⎩

 (8.31) 

Finally, by performing the analytical integration between current time pt  and a generic 

future time pt t≥ , the equations dictating the debonding propagation processes, at the 

two identified damage locations, are expressed as 

 ( ) ( )(1,1,[ , ]) (1,1, ) (1,1, )exp γ , 0,1, 2, ...p t p p
a a p pa a t t t t p⎡ ⎤= ⋅ − ≥ =⎣ ⎦  (8.32) 

 ( ) ( )(2,1,[ , ]) (2,1, ) (2,1, )exp γ , 0,1, 2, ...p t p p
a a p pa a t t t t p⎡ ⎤= ⋅ − ≥ =⎣ ⎦  (8.33) 
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where: (i) the two outputs, (1,1,[ , ])p t
aa  and (2,1,[ , ])p t

aa , are the predicted (from time pt ) 

debonding lengths at time pt t≥ ; (ii) (1,1, )p
aa  and (2,1, )p

aa  represent a particular 

realization of the actual and unknown debonding lengths ( (1,1, )p
aA and (2,1, )p

aA ) at time 

pt , distributed according to the posterior conditional joint PDF 

( ) ( )
a mat adam dam

a mat dam a dam,
,

A Θ Θ A Θ
a θ θ a θp pp p

p p p pf f′′ ′′= , in which the damage size vector A p
a  is 

given by { }(1,1, ) (2,1, ),A p p p
a a aA A= ; and finally, (iii) (1,1, )γ p  and (2,1, )γ p  constitute a 

particular realization of the random damage evolution model parameters (1,1, )Γ p  and 

(2,1, )Γ p , distributed according to the posterior joint PDF ( )
dam

damΘ
θp

pf ′′ , in which the 

damage evolution model parameter vector damΘ p  is given by { }(1,1, ) (2,1, )
dam Γ , ΓΘ p p p= . At 

( ) ( )

( ) ( )

(1,1,0 )

(2,1,0 )

(1,1,0)
1

(2,1,0)
2

1 2

1 / , 2, 20
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x L x L

′ =

′ =
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(1,1,0)
1
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1 / , 2, 20
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L
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′ =

′ =

≤ ≤ ≤ ≤

Same initial prior  
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Figure 8.9: Initial prior PDF of debonding length at both damage locations 
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initial time 0 0t = , the debonding lengths (1,1,0)
aA  and (2,1,0)

aA  are assumed to be s.i. and 

distributed according to the scaled Beta distribution shown in Figure 8.9. Similarly, 

the two damage evolution parameters (1,1,0)Γ  and (2,1,0)Γ  are also considered to be s.i. 

and uniformly distributed in 5[1.0, 2.0] 10−×  (see Figure 8.10). 

( )(1,1,0) (2,1,0) 5 5Γ , Γ ~ 1.0 10 , 2.0 10U − −× ×

(2,1,0)
trueγ (1,1,0)

trueγ

( )(1,1,0) (2,1,0) 5 5Γ , Γ ~ 1.0 10 , 2.0 10U − −× ×

(2,1,0)
trueγ (1,1,0)

trueγ

 
Figure 8.10: Initial prior PDF of damage evolution parameters (1,1,0)Γ  and (2,1,0)Γ . 

 

The true (but in reality unknown) values of the damage evolution model parameter at 

damage location 1 and damage location 2 are taken as (1,1) 5
trueγ 1.80 10−= ×  and 

(2,1) 5
trueγ 1.15 10−= × , respectively. These two values, together with the assumed initial 

true debonding lengths ( (1,1,0)
, true 1.0aa mm=  and (2,1,0)

, true 2.0aa mm= ), and Equations (8.32) 

and (8.33), provide the pair of true damage evolution paths shown in Figure 8.11. 

These two debonding evolution paths are used to simulate random NDE measurements 

at each inspection opportunity (and at each of the two damage locations) according to 

the POD curve model proposed by Berens (1989), depicted in Figure 8.2, and the 
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linear damage size measurement model (Zhang and Mahadevan, 2001) introduced 

earlier in Equation (8.5) and shown in Figure 8.3.  

1,1 2,1 10.0c ca a mm= =

(1,1,0)
,true

(2,1,0)
,true

1.0
2.0

a

a

a mm
a mm

=
=

(1,1) 5
true
(2,1) 5
true

γ 1.80 10
γ 1.15 10

−

−

= ×
= ×

1,1 2,1 10.0c ca a mm= =

(1,1,0)
,true

(2,1,0)
,true

1.0
2.0

a

a

a mm
a mm

=
=

(1,1) 5
true
(2,1) 5
true

γ 1.80 10
γ 1.15 10

−

−

= ×
= ×

 
Figure 8.11: True damage evolution paths at each damage location together with the 

assumed six NDE inspection opportunities evenly spaced at 40,000 cycles. 
 

For the specific benchmark structure analyzed in this chapter, the POD curve model 

proposed by Berens (1989) is expressed as 

 ( ) ( )
( , ) ( , ) ( , , )
0 1

( , ) ( , ) ( , , )
0 1

ln
( , , )

ln
1, 2 and 1

1

i j i j i j p
a

i j i j i j p
a

a
i j p

a a

ePOD a i j
e

α α

α α

⎡ ⎤− + ⎢ ⎥⎣ ⎦

⎡ ⎤− + ⎢ ⎥⎣ ⎦
= = =
+

 (8.34) 

where the values for the model parameters, ( , )
0
i jα  and ( , )

1
i jα , are estimated through 

logistic regression analysis (Kutner, 2004). These estimates are denoted as ( , )
0ˆ i jα  and 

( , )
1ˆ i jα , and for the particular application example presented in this chapter they are 

assigned the following values: (1,1) (2,1)
0 0 0ˆ ˆ ˆ 0.3α α α= = =  and (1,1) (2,1)

1 1 1ˆ ˆ ˆ 2.0α α α= = = . 
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Similarly, the estimates (obtained from linear regression analysis; Seber and Lee, 

2003) for ( , )
0

i jβ , ( , )
1

i jβ , and ( , , )
ijm a

i j p
A A εσ σ=  in Equation (8.5) are denoted as ( , )

0
ˆ i jβ , ( , )

1̂
i jβ  

and ˆ
ijε

σ , and are assumed to be equal to: (1,1) (2,1)
0 0 0

ˆ ˆ ˆ 1.5mmβ β β= = =− , 

(1,1) (2,1)
1 1 1

ˆ ˆ ˆ 1.2β β β= = = , and 
11 21

ˆ ˆ ˆ 2.0mmε ε εσ σ σ= = = . 

8.4.1. Local and global failure modes 

Two local failure criteria are defined (and then used in the component 

reliability analyses) for this specific application example. The first local failure 

criterion is based on the discussions presented in Section 8.3.5 and in Section 7.3.1 in 

Chapter 7, and, within the benchmark application discussed herein, is particularized as 

 { }[ , ] ( ,1,[ , ]) ,1
L, 1F , 1,2p q i p q i

i a cA a i≥ =  (8.35) 

with the critical debonding length, crita , set to be equal to 10.0crita mm=  at both 

damage locations (i.e., 1,1 2,1
c c crita a a= = ) as already shown in Figure 8.11. Thus, the 

probability of local component failure, associated with the local failure event, [ , ]
L, 1F p q

i , in 

Equation (8.35), is computed as 

 ( )( ,1,[ , ])
[ , ] ( ,1,[ , ]) ,1 ,1
L, 1F 1 , 1, 2i p q

a

p q i p q i i
i a c cA

P P A a F a i⎡ ⎤ ⎡ ⎤= ≥ = − =⎣ ⎦⎣ ⎦  (8.36) 

where ( )( ,1,[ , ]) ii p q
aA

F  represents the marginal CDF of the actual debonding length 

( ,1,[ , ])i p q
aA , 1, 2i = . The second local component failure criterion is instead based on the 

level-of-safety (LOS) formulation, with single NDE inspection opportunity, 
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introduced and discussed in Section 7.3.2 in Chapter 7. This alternative failure 

criterion, when applied to the specific application example presented herein, can be 

particularized as follows 

 ( ){ }[ , ] [ , ] ( ,1, [ , ]) ,1
L, 1 L, 1F F , 1,2p q p q i p q i

i i m cA a i∩ < =  (8.37) 

where ( ,1, [ , ])i p q
mA  (with 1,2i= ) represents the measurement outcome from the assumed 

single NDE inspection opportunity performed at damage location i at time q
pt . 

Consequently, the probability of local component failure, associated with the local 

failure event in Equation (8.37), is computed as 

 ( )

( ) ( ) ( )( ,1,[ , ])

,1

[ , ]
L, 1

[ , ] ( ,1, [ , ]) ,1
L, 1

+
[ , ] ( ,1,[ , ]) ( ,1,[ , ]) ( ,1,[ , ]) ( ,1,[ , ])
L, 1

F

F 1,2

ˆF i p q
a

i
c

p q
i

p q i p q i
i m c

p q i p q i p q i p q i p q
i a a a aA

a

P

P A a i

P a POD a f a daψ
∞

⎡ ⎤=⎢ ⎥⎣ ⎦
⎡ ⎤∩ < = =⎢ ⎥⎣ ⎦

⎡ ⎤ −⎢ ⎥⎣ ⎦ ∫

 (8.38) 

where the function ( )( ,1,[ , ])ˆ i p q
aaψ  is expressed in Equation (8.22) and the probability of 

detection ( )( ,1,[ , ])i p q
aPOD a  is computed by using Equation (8.34). This alternative 

failure criterion, shown in Equation (8.37), introduces the following false-call event: 

 ( ){ }[ , ] [ , ] ( ,1, [ , ]) ,1
 L, 1 L, 1F , 1, 2p q p q i p q i

i i m cA a i∩ ≥ =F  (8.39) 

where [ , ]
L, 1F p q

i  represents the complement of the local component failure event [ , ]
L, 1F p q

i . 

Hence, the probability, [ , ]
 L, 1

p q
iP ⎡ ⎤⎢ ⎥⎣ ⎦F , associated with this local false-call event is 

computed as 
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 ( )

( ) ( ) ( )
,1

( ,1,[ , ])

[ , ]
 L,

[ , ] ( ,1, [ , ]) ,1
L, 1

( ,1,[ , ]) ( ,1,[ , ]) ( ,1,[ , ]) ( ,1,[ , ])

0

F 1,2

ˆ
i
c

i p q
a

p q
ij

p q i p q i
i m c

a
i p q i p q i p q i p q

a a a aA

P

P A a i

a POD a f a daψ

⎡ ⎤=⎢ ⎥⎣ ⎦
⎡ ⎤∩ ≥ = =⎢ ⎥⎣ ⎦

∫

F

 (8.40) 

and represents a particularization of Equation (7.22) derived in Section 7.3.4 in 

Chapter 7. 

Similarly, two global failure criteria, [ , ]
G,F p q

r  (with 1,2r = ), are also introduced 

(and then used in the component reliability analyses) in this benchmark application. 

The first global failure criterion is defined as 

 { }[ , ] [ , ]
G,1 1 1F p q p q critΩ ≤ ω  (8.41) 

where the quantity [ , ]
1

p qΩ  represents the reduced (due to damage) first bending 

frequency of the composite beam at time q
pt , as predicted from current time pt . 1

critω  is 

a critical threshold for the bending frequency [ , ]
1

p qΩ  and is herein chosen as a fraction 

of the nominal first bending frequency, 1
nomω . In this specific example the assigned 

values are 1 10.85crit nomω ω= ×  and ( )(1,1) (2,1)
1 1 110, 0, 130.0nom f

a aa a E GPaω ω= = = =  — 

i.e., 1
nomω  represents the first bending frequency of the undamaged beam evaluated at 

the mean value of 
11

11 130.0f
f

E
E GPaµ= = . The probability of local component failure, 

associated with the global failure event in Equation (8.41), is then computed as 

 ( )[ , ]
1

[ , ] [ , ]
G,1 1 1 1F p q

p q p q crit critP P Fω ω
Ω

⎡ ⎤ ⎡ ⎤= Ω ≤ =⎣ ⎦ ⎣ ⎦  (8.42) 
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where ( )[ , ]
1

ip qF
Ω

 represents the marginal CDF of the first bending frequency, [ , ]
1

p qΩ . 

The second global failure criterion is instead defined as 

 { }[ , ] [ , ]
G,2F p q p q crit

st stW w≥  (8.43) 

where [ , ]p q
stW  is the predicted midspan vertical displacement generated by a given 

static concentrated load ( max 1,500stP N= ) acting at the beam midspan. Finally, 

/10 12.5crit
stw L mm= =  constitutes the assumed critical threshold for [ , ]p q

stW . Due to 

the simple geometry and the simple damage scenario of the benchmark structure used 

in this application example, response surface (RS) models for the first bending 

frequency, ( )[ , ] [ , ] (1,1, ) (2,1, )
1 1 11, ,p t p q t t f

a aa a Eω = Ω , and the beam midspan displacement, 

( )[ , ] [ , ] (1,1, ) (2,1, ) max
11, , ,p t p q t t f

st st a a stw W a a E P= , at time pt t≥ , are derived analytically (i.e., by 

using exact or approximate analytical methods as opposed to a carefully designed set 

of FE model simulations). More specifically, the midspan displacement conditional on 

the debonding lengths, (1,1, ) (1,1, )t t
a aA a=  and (2,1, ) (2,1, )t t

a aA a=  at time pt t≥ , the flexural 

modulus of the adherends 11
fE , and the maximum applied load max

stP , can be computed 

in closed-form as (see Appendix E)  

 ( )
( ) ( )3 33 (1,1, ) (2,1, )

[ , ] [ , ] (1,1, ) (2,1, ) max max
11 3

11

2 3
, , ,

8

t t
a a

p t p q t t f
st st a a st stf

L a a
w W a a E P P

E b h

⎡ ⎤+ +⎢ ⎥⎣ ⎦= =  (8.44) 

Consequently, the compliance, ( )(1,1, ) (2,1, )
11, ,t t f

a aC a a E , defined as the ratio between 

[ , ]p t
stw  and max

stP , can be expressed as 
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 ( )
( ) ( )3 33 (1,1, ) (2,1, )

[ , ]
(1,1, ) (2,1, )

11 max 3
11

2 3
, ,

8

t t
p t a a

t t f st
a a f

st

L a awC a a E
P E b h

⎡ ⎤+ +⎢ ⎥⎣ ⎦= =  (8.45) 

On the other hand, any bending frequency (in the vertical plane) of the composite 

beam shown in Figure 8.7 can be computed by making use of the Ritz method as 

illustrated in the four points below: 

(vi) Approximate the deflected shape of the beam, using a linear combination 

of nφ  harmonic terms, as  

 ( ) ( )
1

sin 0 2
2

n

m m m
m

xw x C x C m x L
L

φ πφ
=

⎛ ⎞= = ≤ ≤⎜ ⎟
⎝ ⎠

∑  (8.46) 

(vii) Compute the coefficients of the ( )n nφ φ×  stiffness matrix [ ]Κ mnK=  of the 

damaged composite beam (at generic time pt t≥ ) as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

(1,1, ) (2,1, )

(1,1, )

(2,1, )

2 22
1 1

11 1 1 12 2
1 10

22 2 2 2
1 1 1 1

11 (0) 1 12 2 2 2
1 1 1 10

2 22
1 1

12 2
1 12

4

            

t t
a a

t
a

t
a

L
m nf

mn

a L a
m n m nf

a

L
m n

L a

d x d x
K E x I x dx

dx dx

d x d x d x d x
E I dx dx

dx dx dx dx

d x d x
dx

dx dx

−

−

=

⎡
= + +⎢

⎢⎣
⎤
⎥
⎥⎦

∫

∫ ∫

∫

φ φ

φ φ φ φ

φ φ

 (8.47) 

where: ( ) ( )3
(0) 2 12I x I bh= =  in the range (1,1, )0 t

ax a≤ ≤  and 

(2,1, )2 2t
aL a x L− ≤ ≤ ; and ( ) ( )3

( ) (0)8 12 4I x I bh I∞= = =  in the range 

(1,1, ) (2,1, )2t t
a aa x L a< < − ; results that can also be expressed as a function of 

the moment of inertia of the single composite adherend, 3 /12aI bh= , as 
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(0) ( ) (0)2  and 4 8a aI I I I I∞= = = , respectively. Carrying out the analytical 

integration of Equation (8.47) leads to the off-diagonal terms (i.e., m n≠ ) 

 

( )

( ) ( )

( )

2 2 3 (1,1, ) (1,1, )
11 (0)

2 2 3

(1,1, ) (1,1, )

(2,1, ) (2,1, )

(2,1, )

3 sin cos
8 2 2

sin cos
2 2

2 2
sin cos

2 2

2
sin

2

f t t
a a

mn

t t
a a

t t
a a

t
a

m n E I a aK m n m
L Lm n L

a an m n
L L

L a L a
n i n

L L

L a
m n

L

⎧ ⎛ ⎞ ⎛ ⎞⎪= −⎨ ⎜ ⎟ ⎜ ⎟
− ⎪ ⎝ ⎠ ⎝ ⎠⎩

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥ −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−

π π π

π π

π π

π ( )(2,1, )2
cos

2

t
aL a

m
L

⎫⎡ ⎤ ⎡ ⎤− ⎪⎢ ⎥ ⎢ ⎥⎬
⎢ ⎥ ⎢ ⎥⎪⎣ ⎦ ⎣ ⎦⎭

π

 (8.48) 

and to the following diagonal terms (i.e., m n= ) 

 

( )

( )

(2,1, )3 3 (1,1, )
11 (0)
4

(1,1, ) (2,1, )

2
3 sin 3 sin

32

                               8 3 3

tf t
aa

mm

t t
a a

L am E I aK L m L m
L L L

m L a a

⎧ ⎡ ⎤−⎛ ⎞⎪ ⎢ ⎥= − +⎨ ⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎩

⎫⎪− − ⎬
⎪⎭

ππ π

 (8.49) 

(viii) Compute the coefficients of the ( )n nφ φ×  mass matrix [ ]M mnM=  of the 

composite beam as 

 ( ) ( ) ( )
2

0

  if 
0         if 

L
L

mn L m n

L m n
M I x x x dx

m n
ρ

ρ φ φ
=⎧

= = ⎨ ≠⎩
∫  (8.50) 

where Lρ  represents the density per unit length of the composite beam and 

is computed as ( )2L Vb hρ ρ= × × , with ( )b h×  being the cross-section area 

of a single composite adherend and Vρ  representing the volumetric density 
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of the composite material (see Figure 8.7). 

(ix) Compute the first nφ  natural bending frequencies of the composite beam by 

solving the eigenvalue problem in Equation (8.51) 

 2 0− =Κ Mω  (8.51) 

A set of selected response surfaces, computed according to Equations (8.45) and 

(8.51), and conditional on the mean value of the flexural modulus of the composite 

laminated adherends (i.e., 
11

130.0fE
GPaµ = ), are shown (for illustrative purposes) in 

Figures 8.12 through 8.15. 

( )
11

[ , ]
(1,1,[ , ]) (2,1,[ , ])

11 max, 130.0f

p t
p t p t f st

a a E
st

wC a a E GPa
P

µ= = =( )
11

[ , ]
(1,1,[ , ]) (2,1,[ , ])

11 max, 130.0f

p t
p t p t f st

a a E
st

wC a a E GPa
P

µ= = =

 
Figure 8.12: Response surface for the midspan compliance, defined in Equation (8.45) 

and conditional on 
11

11 130.0f
f

E
E GPaµ= = , as a function of the level of damage. 
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1st Bending 
Frequency
1st Bending 
Frequency

 
Figure 8.13: First bending frequency as a function of the level of damage ( 20nφ = ). 

 

5th Bending 
Frequency
5th Bending 
Frequency

 
Figure 8.14: Fifth bending frequency as a function of the level of damage ( 20nφ = ). 
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10th Bending 
Frequency

10th Bending 
Frequency

 
Figure 8.15: Tenth bending frequency as a function of the level of damage ( 20nφ = ). 

 

8.4.2. Bayesian updating results 

This section presents a selection of the Bayesian updating results obtained 

through the proposed recursive Bayesian inference scheme introduced in Chapter 3 

and briefly reviewed in Section 8.3.1. Within this scheme, debonding extents, 

(1,1, )p
aA and (2,1, )p

aA , and damage evolution model parameters, (1,1, )Γ p  and (2,1, )Γ p , are 

simultaneously updated after each NDE inspection. As shown in Figure 8.11, a total of 

six NDE inspections (evenly spaced every 40,000 load cycles) are considered in this 

application example and, at each NDE inspection opportunity, three different scenarios 

are envisioned. In the first scenario, five s.i. NDE measurements are taken and 

processed using the proposed Bayesian inference scheme. In the second scenario, ten 
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s.i. NDE measurements are considered. Lastly, in the third scenario, twenty s.i. NDE 

measurements are used to repeatedly compute the posterior PDFs of A p
a  and damΘ p . 

Furthermore, the three sets of measurements are assumed to be mutually statistically 

independent. Figure 8.16 and Figure 8.17 report the posterior marginal PDFs (after 

each NDE inspection) of the debonding extents (1,1, )p
aA and (2,1, )p

aA , respectively. Figure 

8.18 and Figure 8.19 show the posterior marginal PDFs (after each NDE inspection) of 

the damage evolution model parameters (1,1, )Γ p  and (2,1, )Γ p , respectively. These four 

figures highlight the benefit, in terms of uncertainty reduction, provided by the larger 

number of NDE measurements collected at each NDE inspection opportunity. Figure 

8.16 and Figure 8.17 also indicate that a larger set of NDE measurements allows for a 

better collocation/centering of the computed posterior marginal PDFs of (1,1, )p
aA and 

(2,1, )p
aA  on the true debonding lengths. Focusing now on the Bayesian updating results 

for the damage model parameters ( (1,1, )Γ p  and (2,1, )Γ p ), it is observed (see Figure 8.18) 

that at damage location 1, three to four NDE inspections are needed in order to start 

having the posterior PDF of the damage model parameter converge towards the true 

value of the parameter, (1,1) 5
trueγ 1.80 10−= × . On the other hand, at damage location 2, the 

correct convergence trend, towards (2,1) 5
trueγ 1.15 10−= × , is already captured right after 

the second NDE inspection at time N1 (see Figure 8.19). It is worth emphasizing that 

in this study, it is assumed that the damage propagation law is known and only the 

damage parameters (i.e., (1,1, )Γ p  and (2,1, )Γ p , in the specific application example 

presented herein) are considered unknown and modeled as random variables. 
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Figure 8.16: Posterior marginal PDF of debonding length at damage location 1. 

 

 
Figure 8.17: Posterior marginal PDF of debonding length at damage location 2. 



196 

 

 
Figure 8.18: Posterior marginal PDF of (1,1, )Γ p  after each NDE inspection. 

 

 
Figure 8.19: Posterior marginal PDF of (2,1, )Γ p  after each NDE inspection. 
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8.4.3. Comparison between partial and full Bayesian updating schemes 

The set of results presented in this Section shows the importance of performing 

a full Bayesian updating (i.e., when the PDFs of both, damage sizes and damage 

evolution model parameters, are simultaneously updated) versus a partial Bayesian 

updating (i.e., when only the PDF of the damage sizes is updated). To this end, Figure 

8.20 and Figure 8.21 compare (after each NDE inspection) the posterior marginal 

PDFs of (1,1, )p
aA  and (2,1, )p

aA , obtained from the two Bayesian updating approaches 

mentioned above, when ( ,1, )
MS 10 ( 1,2 and 0,1,...,5)i pn i p= = = . 

 
Figure 8.20: Comparison between the results obtained from the proposed full and 
partial updating schemes in terms of uncertainty reduction in the evaluation of the 

posterior marginal PDF of the debonding length, (1,1, )p
aA , at damage location 1; 

( ,1, )
MS 10 ( 1,2 and 0,1,...,5)i pn i p= = = . 
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Figure 8.21: Comparison between the results obtained from the proposed full and 
partial updating schemes in terms of uncertainty reduction in the evaluation of the 

posterior marginal PDF of the debonding length, (2,1, )p
aA , at damage location 2; 

( ,1, )
MS 10 ( 1,2 and 0,1,...,5)i pn i p= = = . 

 

From the Bayesian updating results presented above, it is observed that the 

accuracy in computing the posterior marginal PDFs of (1,1, )p
aA and (2,1, )p

aA  degrades 

considerably after the fourth NDE inspection (at 3 120,000N =  cycles). Furthermore, 

the debonding length (1,1, )p
aA  is consistently underestimated at 4 160,000N =  cycles 

and 5 200,000N =  cycles (see Figure 8.20) while (2,1, )p
aA  becomes biased towards 

larger debonding extents (see Figure 8.21). 



199 

 

8.4.4. Global performance analysis results 

A selected set of results from the fourth step of the proposed methodology (i.e., 

probabilistic global performance analysis) is shown in Figure 8.22 and Figure 8.23. As 

discussed earlier two global performance metrics/measures have been selected for this 

specific application example: midspan displacement, [ , ]p q
stW , conditional on an 

assumed maximum operational (static) load max 1,500stP N= , and first bending 

frequency, [ , ]
1

p qΩ . The marginal PDFs of these two quantities, computed — semi-

analytically through Equations (8.44) and (8.51), respectively — after each NDE 

inspection for the case in which ( ,1, )
MS 10 ( 1,2 and 0,1,...,5)i pn i p= = = are shown in the 

figures below. Thus, six PDF curves are provided in each of the two plots and only at 

the 6th NDE inspection — i.e., when both local reliability components have already 

failed — an appreciable damage-induced change/shift of both PDFs can be observed. 

Recalling the true underlying debonding evolution paths shown in Figure 8.11, it can 

be seen that both debonding lengths exceed the critical threshold, 10.0crita mm= , 

between the forth (at 3 120,000N =  cycles) and the fifth (at 4 160,000N =  cycles) 

NDE inspection. More specifically, the debonding length at damage location 1 

exceeds 10.0crita mm=  at time ( )(1,1) (1,1, )
,true 127,900= = =N

crit a critN N a a cycles, while the 

debonding length at damage location 2 exceeds the critical threshold at time 

( )(2,1) (2,1, )
,true 139,900= = =N

crit a critN N a a cycles. Therefore, the two global failure criteria 

(arbitrarily) chosen for this specific application example are not able to detect the 

exceedance of the (selected) critical local damage thresholds (i.e., 10.0crita mm= ) at 
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an early enough stage. In other words, the two global reliability components, selected 

in this application example, do not represent the dominant failure modes in the 

subsequent system reliability analyses discussed in Section 8.4.5. As a direct 

consequence, and for this specific application example, it can be equivalently stated 

that the predictions for the probability of system failure and false-call (discussed in the 

next Section) are dominated by the two local reliability components (i.e., the 

debonding lengths at damage location 1, (1,1,[ , ])p q
aA , and at damage location 2, 

(2,1,[ , ])p q
aA ) and the corresponding local component failure criteria introduced earlier in 

Section 8.4.1. Furthermore, (1,1,[ , ])p q
aA  represents the overall dominant failure mode 

since (1,1) (2,1)<crit critN N . This fact is well captured by the proposed system reliability 

analyses part of the damage prognosis step of the methodology. 

1 10 85crit nomω . ω= ×

Higher 
Level of 
Damage               

[ ]
1 1Normalized First Bending Frequency, p , q nom/ω ω

1 10 85crit nomω . ω= ×

Higher 
Level of 
Damage               

[ ]
1 1Normalized First Bending Frequency, p , q nom/ω ω  

Figure 8.22: Marginal PDFs of first bending frequency, 1
pΩ , computed after each 

NDE inspection for the case in which ( ,1, )
MS 10 ( 1,2 and 0,1,...,5)i pn i p= = = . 
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Figure 8.23: Marginal PDFs of beam midspan displacement, p
stW , computed after each 

NDE inspection for the case in which ( ,1, )
MS 10 ( 1,2 and 0,1,...,5)i pn i p= = = . 

 

8.4.5. Damage prognosis analysis results 

In the first part of this section, a selected set of the damage prognosis results 

for [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  — obtained by making use of (i) the outcomes of the previous analysis 

steps, (ii) the local failure criteria defined in Equation (8.35), and (iii) the global 

failure criteria provided in Equations (8.41) and (8.43) — is presented and discussed. 

Figures 8.24 through 8.26 show the predictions for the lower and upper uni-modal 

bounds to the probability of system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , corresponding to three different 

NDE inspection scenarios, i.e., ( ,1, )
MS 5,10, 20i pn =  ( with 1,2i =  and 0,1,..., 4p = ). The 

results obtained from the damage prognosis analysis performed at initial time 0 0N =  

cycles make use only of the NDE inspection results collected at that time. On the other 
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hand, the results from the damage prognosis analysis performed at 1 40,000N = , 

2 80,000N = , and 3 120,000N =  cycles make use of the NDE inspection results 

collected up to that particular number of cycles. Furthermore, the number of cycles 

between two successive damage prognosis predictions was chosen as 4,000N∆ =  

cycles, and the prediction window was chosen to be equal to q
p pN N q N− = ∆ =  

120,000  load cycles (where 30q = ). 

Figures 8.24 through 8.26, indicate that the increasing number of NDE 

measurements collected at each inspection (from 5 to 20) significantly increases the 

tightness of the lower and upper bounds of the time-dependent probability of failure, 

[ , ]
sysF p qP ⎡ ⎤⎣ ⎦ . Additionally, the results of the damage prognosis analysis performed at 

initial time 0t  significantly underestimate the time at which the true debonding length 

(1,1, )
,true

t
aa  reaches the critical threshold 10.0crita mm= . Note that, all these types of 

observations are possible because in this benchmark application — unlike in a real-

world application of the damage prognosis framework presented herein — the instants 

of time (or the number of cycles) at which the true debonding lengths exceed 10.0 mm 

are known exactly as indicated by the blue and green vertical lines in Figures 8.24 

through 8.26. 

The results for the time-dependent upper uni-modal bound of the probability of 

system failure [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  (obtained from the damage prognosis analyses performed at 

0 0N = , 1 40,000N = , 2 80,000N = , and 3 120,000N =  cycles) are combined together 

in Figure 8.27. In this figure, the prediction for the upper uni-modal bound of 
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[ , ]
sysF p qP ⎡ ⎤⎣ ⎦  between time pN  and time 1pN +  (with 0,1,2,3p = ) is obtained by making 

use of the NDE results up to pN  (i.e., ( ,1,[0, ])i p
ma , 1, 2i = ). As it can be noticed from the 

figure, every time new NDE data are assimilated by the proposed framework, the 

estimate for the probability of failure of the system is updated and a new branch for 

the upper bound of [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  is computed. Furthermore, Figure 8.27 also indicates 

that the results from the damage prognosis analysis performed at time 3 120,000t =  

hours (i.e., inspection time closest to the time at which the true failure of the system 

occurs, as identified by the vertical blue line at ( )(1,1, )
,true 127,900t

aN a = cycles) tend to 

capture the real underlying “step-function” behavior for [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ . Additionally, it is 

worth mentioning that the value for [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , in the range 0 120,000N≤ ≤ cycles, is 

dominated by the contribution of [ , ]
1 1 0.436%p q critP ω⎡ ⎤Ω ≤ =⎣ ⎦  (constant over the entire 

range of load cycles due to the considerations discussed in Section 8.4.4 and the 

results shown in Figure 8.22). These results emphasize the strength and robustness of 

the proposed recursive updating and prediction scheme for damage prognosis aimed at 

providing more accurate damage prognosis predictions every time new NDE data are 

collected and processed (i.e., used to updated the PDFs of aΑ p  and damΘ p ). They also 

show (see light-blue boxes and arrows in Figure 8.27) a gain of accuracy in the 

damage prognosis predictions obtained as the number of NDE measurements — 

collected at each NDE inspection opportunity — increases (i.e., from 5 to 20 for the 

specific case analyzed herein and shown in Figures 8.24 through 8.27). 
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Figure 8.24: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , as computed immediately after the first four NDE 

inspections using 5 NDE measurements (i.e., ( ,1, )
MS 5 for 1,2 and 0,1,..., 4i pn i p= = = ). 
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Figure 8.25: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , as computed immediately after the first four NDE 

inspections using 10 NDE measurements (i.e., ( ,1, )
MS 10 for 1,2 and 0,1,..., 4i pn i p= = = ).
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Figure 8.26: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , as computed immediately after the first four NDE 

inspections using 20 NDE measurements (i.e., ( ,1, )
MS 20 for 1,2 and 0,1,..., 4i pn i p= = = ).
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Figure 8.27: Comparison between two sets of recursive damage prognosis predictions 

for the upper uni-modal bound of the probability of system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , 

( ,1, ) ( ,1, )
MS MS5 vs. 20 (with 1,2 and 0,1,2,3)i p i pn n i p= = = = . 

 

Similar results, discussions, and conclusions can be provided for the recursive 

predictions of: (i) the probability of system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , computed according to 

the failure event [ , ]
sysF p q , as defined in Equation (8.25), and (ii) the probability of false-

call, [ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F , computed according to the false-call event, [ , ]
 sys

p qF , as defined in 

Equation (8.27). Figures 8.28 through 8.30 show the predictions for the lower and 

upper uni-modal bounds to the probability of system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , corresponding 

to three different NDE inspection scenarios already discussed earlier, i.e., 

( )( ,1, )
MS 5,10, 20 with 1, 2 and 0,1,..., 4i pn i p= = = . Also in this case, the results obtained 

from the damage prognosis analysis performed at initial time 0 0N =  cycles make use 
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only of the NDE inspection results collected at that time. On the other hand, the results 

from the damage prognosis analysis performed at 1 40,000N = , 2 80,000N = , and 

3 120,000N =  cycles make use of the NDE inspection results collected up to that 

particular number of cycles (i.e., up to the most recent NDE inspection). Furthermore, 

the number of cycles between two successive damage prognosis predictions was 

chosen again as 4,000N∆ =  cycles and the prediction window, used in the damage 

prognosis analyses, was selected as 120,000q
p pN N q N− = ∆ =  cycles (where 30q = ). 

From Figures 8.28 through 8.31, it is observed that the increase in the number 

of NDE measurements collected at each inspection (from 5 to 20) generally increases 

the tightness of the lower and upper bounds of the time-dependent probability of 

failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ . Also, as the number of NDE measurements increases and the 

prediction time moves closer to the time at which the true failure of the system occurs 

— i.e., the time identified by the vertical blue line at ( )(1,1, )
,true 127,900t

aN a = cycles — the 

prediction for [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  tends to capture the ideal “Dirac delta” proportional behavior 

that can be mathematically expressed as 

 ( )[ , ] (1,1, )
sys ,trueF p q t

aP N N aδ ⎡ ⎤⎡ ⎤ ∝ −⎣ ⎦ ⎣ ⎦  (8.52) 

Analogously to Figure 8.27, the results for the time-dependent upper uni-

modal bound of the probability of system failure [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  — obtained from the four 

damage prognosis analyses performed at 0 0N = , 1 40,000N = , 2 80,000N = , and 

3 120,000N =  cycles, respectively — are combined together in the plot of Figure 8.31. 
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Figure 8.28: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , as computed immediately after the first four NDE 

inspections using 5 NDE measurements (i.e., ( ,1, )
MS 5 for 1, 2 and 0,1,..., 4i pn i p= = = ). 
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Figure 8.29: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , as computed immediately after the first four NDE 

inspections using 10 NDE measurements (i.e., ( ,1, )
MS 10 for 1, 2 and 0,1,..., 4i pn i p= = = ).
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Figure 8.30: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦ , as computed immediately after the first four NDE 

inspections using 20 NDE measurements (i.e., ( ,1, )
MS 20 for 1, 2 and 0,1,..., 4i pn i p= = = ).
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Figure 8.31: Comparison between two sets of recursive damage prognosis predictions 
for the upper uni-modal bound of the probability of system failure, [ , ]

sysF p qP ⎡ ⎤⎣ ⎦ , 
( ,1, ) ( ,1, )
MS MS5 vs. 20 (with 1,2 and 0,1,2,3)i p i pn n i p= = = = . 

 

Also for this plot, the prediction for the upper uni-modal bound of [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  between 

time pN  and time 1pN +  (with 0,1,2,3p = ) is obtained by making use of the NDE 

results up to pN  (i.e., ( ,1,[0, ])i p
ma , 1, 2i = ). The light-blue boxes and arrows in Figure 

8.31 emphasize the benefits in the prediction results due to the larger number of NDE 

measurements. However, providing a larger number of NDE measurements does not 

help to reduce the value of [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  in the range 0 120,000N≤ ≤ cycles, due to the 

fact that, in this range of load cycles, [ , ]
sysF p qP ⎡ ⎤⎣ ⎦  is essentially equal to the global 

component failure probability [ , ]
1 1 0.436%p q critP ω⎡ ⎤Ω ≤ =⎣ ⎦  (constant over the range 

0 120,000N≤ ≤ cycles). It should be pointed out that the global component 
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probability of failure, [ , ]
1 1

p q critP ω⎡ ⎤Ω ≤⎣ ⎦ , is dominated by the uncertainty of 

mat mat 11Θ fE= Θ = ; an uncertainty quantified by the PDF shown in Figure 8.8 and 

never updated during this particular application of the proposed framework. This 

choice is dictated by the fact that the material parameter 11
fE  is not involved in the 

postulated damage propagation law introduced in Equations (8.32) and (8.33), and 

therefore its PDF cannot be recursively updated through the proposed Bayesian 

inference scheme. If 11
fE  was part of the damage propagation law, its PDF could be 

updated after each NDE inspection and, as a direct consequence, the uncertainty of 

[ , ]
1

p qΩ  could be reduced and the prediction for [ , ]
1 1

p q critP ω⎡ ⎤Ω ≤⎣ ⎦  improved. 

Finally, Figures 8.32 through 8.35 show the predictions for the lower and 

upper uni-modal bounds to the probability of false-call, [ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F , corresponding to 

the three NDE inspection scenarios already discussed above. From Figures 8.32 

through 8.34, it is observed that the increase in the number of NDE measurements 

collected at each inspection generally increases the tightness of the lower and upper 

bounds of the time-dependent probability of false-call, [ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F . These results also 

indicate that as the number of NDE measurements increases and the prediction time 

moves closer to the time at which the true failure of the system occurs — i.e., the time 

identified by the vertical blue line at ( )(1,1, )
,true 127,900t

aN a = cycles — the prediction for 

[ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F  tends to capture the ideal “Dirac Delta” proportional behavior that can be 

mathematically expressed as ( )[ , ] (1,1, )
 sys ,true

p q t
aP N N aδ ⎡ ⎤⎡ ⎤ ∝ −⎣ ⎦ ⎣ ⎦F . 
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Figure 8.32: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F , as computed immediately after the first four NDE 

inspections using 5 NDE measurements (i.e., ( ,1, )
MS 5 for 1, 2 and 0,1,..., 4i pn i p= = = ). 
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Figure 8.33: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F , as computed immediately after the first four NDE 

inspections using 10 NDE measurements (i.e., ( ,1, )
MS 10 for 1, 2 and 0,1,..., 4i pn i p= = = ).
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Figure 8.34: Time-dependent lower and upper uni-modal bounds for the probability of 

system failure, [ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F , as computed immediately after the first four NDE 

inspections using 20 NDE measurements (i.e., ( ,1, )
MS 20 for 1, 2 and 0,1,..., 4i pn i p= = = ).
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Analogously to Figure 8.27 and Figure 8.31, the results for the time-dependent 

upper uni-modal bound of the probability of false-call [ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F  (obtained from the 

damage prognosis analyses performed at 0 0N = , 1 40,000N = , 2 80,000N = , and 

3 120,000N =  cycles) are combined together in the plot depicted in Figure 8.35. From 

the two cases shown in this figure (i.e., ( ,1, )
MS 5i pn =  and ( ,1, )

MS 20i pn = , for 1, 2i =  and 

0,1,2,3p = ), the benefit provided by a larger number of NDE measurements is 

apparent (see light-blue boxes and arrows). 
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Figure 8.35: Comparison between two sets of recursive damage prognosis predictions 

for the upper uni-modal bound of the probability of false-call, [ , ]
 sys

p qP ⎡ ⎤⎣ ⎦F , 
( ,1, ) ( ,1, )
MS MS5 vs. 20 (with 1,2 and 0,1,2,3)i p i pn n i p= = = = . 
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8.5. Additional considerations and parametric studies related to the proposed 

Bayesian inference scheme 

In this section, the results from a selected set of comparative analyses and 

parametric studies is presented and discussed with the objective to demonstrate the 

versatility, consistency, and robustness of the proposed recursive Bayesian updating 

scheme. In more detail: 

(i) Section 8.5.1 analyzes the influence of the NDE detection capability on the 

Bayesian updating results at 0pt t≥ ; 

(ii) Section 8.5.2 discusses the influence of the initial prior distribution 

function assigned to 0
aA  on the Bayesian updating results at 0pt t> ; 

(iii) Section 8.5.3 illustrates the influence of the number of NDE measurements, 

collected and processed at each NDE inspection opportunity, on the 

posterior PDF of aA p . 

These comparative analyses and parametric studies use the benchmark structure and 

all the assumptions discussed in Section 8.4. 

8.5.1. Influence of NDE detection and sizing capabilities on the Bayesian 

updating results obtained after each NDE inspection 

In this first comparative analysis, two different NDE detection and sizing 

capability levels are considered: in the first case, the NDE technique is assumed to be 

capable of detecting and measuring a given damage extent (i.e., once damage is 

detected a measurement, quantifying the damage extent, is also provided); in the 
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second case, alternatively, it is assumed that the NDE technique is only capable of 

providing a binary outcome (i.e., either damage detected, D, or damage not detected, 

ND) without any additional measurement information (Kutner, 2004). The first case is 

representative of the so-called continuous resolution NDE technique (i.e., the best 

scenario), whereas the second case corresponds to the least capable NDE technique. 

Both cases have already been considered and discussed in Chapter 3 and Equations 

(3.22) and (3.23) show how the detection and measurement/sizing capabilities of a 

given NDE technique are affecting the mathematical form of the likelihood function to 

be used in the proposed recursive Bayesian updating scheme. 

Figures 8.36 through 8.39 can be used to qualitatively analyze the effect of the 

NDE detection capability on the posterior PDFs of damage extents ( aA p ) and damage 

evolution model parameters ( damΘ p ), which are computed after each NDE inspection 

opportunity according to the proposed Bayesian updating scheme. The POD curve and 

the damage size measurement model used to perform this comparative study are 

shown in Figure 8.2 and Figure 8.3, respectively; the initial prior PDF (at 0 0N =  

cycles) is represented by the scaled Beta distribution reported in Figure 8.9; and the 

(assumed) underlying true damage evolution paths, at the two damage locations of the 

composite beam shown in Figure 8.7, are those paths reported in Figure 8.11. 

Furthermore, only the scenario in which ( ,1, )
MS 10 (with 1,2 and 0,1,...,5)i pn i p= = =  is 

considered in this comparative study. Therefore, the results corresponding to the 

continuous resolution NDE (blue lines in Figures 8.36 through 8.39) are identical to 

those already derived in Section 8.4.2 (i.e., blue lines in Figures 8.16 through 8.19). 
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Figure 8.36: Posterior marginal PDF of debonding length (1,1, )p
aA , at damage location 

1, computed after each NDE inspection according to the proposed Bayesian inference 
scheme for the specific case in which ( ,1, )

MS 10 (with 1,2 and 0,1,...,5)i pn i p= = = . Blue 
lines: continuous resolution NDE technique. Red lines: least capable NDE technique  

 

Figure 8.36 and Figure 8.37 show the posterior PDFs of (1,1, )p
aA  and (2,1, )p

aA  

computed according to the two detection and sizing capability levels outlined earlier. 

Within the specific application example provided in this study, both figures represent a 

clear evidence of the benefits provided by the use of a continuous resolution NDE 

technique. The loss of accuracy in evaluating ( )(1,1, )
(1,1, )

p
a

p
aA

f a′′  and ( )(2,1, )
(2,1, )

p
a

p
aA

f a′′ , 

associated with the use of the least capable NDE technique, becomes apparent already 

after the second NDE inspection opportunity, at 1 40,000N =  load cycles. 
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Figure 8.37: Posterior marginal PDF of debonding length (2,1, )p
aA , at damage location 

2, computed after each NDE inspection according to the proposed Bayesian inference 
scheme for the specific case in which ( ,1, )

MS 10 (with 1,2 and 0,1,...,5)i pn i p= = = . Blue 
lines: continuous resolution NDE technique. Red lines: least capable NDE technique. 

 

On the other hand, Figure 8.38 and Figure 8.39 report the posterior marginal 

PDFs of (1,1, )pΓ  and (2,1, )pΓ  (at time pt ) computed according to the same two detection 

and sizing capability levels discussed above. By simple inspection of the results 

presented in these two figures, it is evident that the posterior PDFs ( )(1,1, )
(1,1, )

p
p

af γ
Γ
′′  and 

( )(2,1, )
(2,1, )

p
p

af γ
Γ
′′ , obtained by using the least capable NDE technique, are unable to 

converge towards the true (underlying) values of the postulated damage evolution 

parameters, (1,1) 5
trueγ 1.80 10−= ×  and (2,1) 5

trueγ 1.15 10−= × , respectively. 
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Figure 8.38: Posterior marginal PDF of postulated damage evolution parameter (1,1, )Γ p , 
at damage location 1, computed after each NDE inspection according to the proposed 

Bayesian inference scheme when ( ,1, )
MS 10 (with 1,2 and 0,1,...,5)i pn i p= = = . Blue 

lines: continuous resolution NDE technique. Red lines: least capable NDE technique. 
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Figure 8.39: Posterior marginal PDF of postulated damage evolution parameter (2,1, )Γ p , 
at damage location 2, computed after each NDE inspection according to the proposed 

Bayesian inference scheme when ( ,1, )
MS 10 (with 1,2 and 0,1,...,5)i pn i p= = = . Blue 

lines: continuous resolution NDE technique. Red lines: least capable NDE technique. 
 

8.5.2. Influence of initial prior PDF assigned to 0
aA  on the Bayesian updating 

results obtained after each NDE inspection 

The proposed recursive Bayesian inference scheme, presented in Chapter 3 and 

briefly recalled in Section 8.3.1 in the present chapter, must be provided with an initial 

prior PDF for the damage size vector 0
aA  at initial time 0t . This initial prior PDF, 

denoted as ( )′0
a

0
aA

af  throughout this thesis, is normally chosen on the basis of 

engineering judgment (Lin et al., 2000) and has a negligible influence on the posterior 
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joint conditional PDF of the damage size vector, ( )
a mat dam

a mat dam,
,′′

A Θ Θ
a θ θpp

p pf , as well as 

on the posterior joint PDF of the damage evolution parameters, ( )
dam

dam′′
Θ

θp
pf , when a 

large amount of NDE measurement data is available. Figures 8.40 through 8.43 intend 

to qualitatively demonstrate this statement by reanalyzing the same benchmark 

application discussed in Section 8.4. The POD curve and the damage size 

measurement model used to perform this comparative study are shown in Figure 8.2 

and Figure 8.3, respectively; and the (assumed) underlying true damage evolution 

paths, at the two damage locations of the composite beam shown in Figure 8.7, are 

those reported in Figure 8.11. However, two different initial prior marginal PDFs of 

the s.i. debonding lengths (1,1,0)
aA  and (2,1,0)

aA  (at 0 0N =  load cycles) are now assigned: 

the first one is represented by the scaled Beta distribution reported in Figure 8.9; the 

second one is given by a uniform distribution between 0 mm  and 50 mm  — i.e., 

( )( ,1,0) 0,50∼i
aA U , with 1,2=i . Furthermore, only the scenario in which 

( ,1, )
MS 5 (with 1,2 and 0,1,...,5)i pn i p= = =  is considered in this second comparative 

study and therefore the results corresponding to the choice of a scaled Beta 

distribution as initial prior PDF for (1,1,0)
aA  and (2,1,0)

aA  (blue lines in Figures 8.36 

through 8.39) are identical to those presented in Section 8.4.2 (i.e., red lines in Figures 

8.16 through 8.19). If the influence of ( )′0
a

0
aA

af  on ( )
a mat dam

a mat dam,
,′′

A Θ Θ
a θ θpp

p pf  and 

( )
dam

dam′′
Θ

θp
pf  becomes negligible with ( ,1, )

MS 5i pn = , it will be even more imperceptible 

when a larger number of NDE results (i.e., ( ,1, )
MS 10i pn =  and ( ,1, )

MS 20i pn = ) is used. 
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Figure 8.40: Posterior marginal PDF of debonding length (1,1, )p
aA , at damage location 

1, computed after each NDE inspection according to the proposed Bayesian inference 
scheme for the specific case in which ( ,1, )

MS 5 (with 1,2 and 0,1,...,5)i pn i p= = = . Blue 

lines: ( ) = Scaled Beta distribution′0
a

0
aA

af . Red lines: ( ) = Uniform distribution′0
a

0
aA

af . 

 

For the particular case studied herein, the results presented in Figures 8.40 

through 8.43 indicate that the effect of a different choice for ( )′0
a

0
aA

af  becomes 

negligible — in the evaluation of both ( )
a mat dam

a mat dam,
,′′

A Θ Θ
a θ θpp

p pf  and ( )
dam

dam′′
Θ

θp
pf  — 

immediately after the third (at 2 80,000=N  load cycles) and fifth (at 4 160,000=N  

load cycles) NDE inspections, respectively. Similar results and conclusions can be 

drawn when different PDF models for ( )0
dam

0
damΘ
θf ′  are assigned. 
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Figure 8.41: Posterior marginal PDF of debonding length (2,1, )p
aA , at damage location 

2, computed after each NDE inspection according to the proposed Bayesian inference 
scheme for the specific case in which ( ,1, )

MS 5 (with 1,2 and 0,1,...,5)i pn i p= = = . Blue 

lines: ( ) = Scaled Beta distribution′0
a

0
aA

af . Red lines: ( ) = Uniform distribution′0
a

0
aA

af . 
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Figure 8.42: Posterior marginal PDF of postulated damage evolution parameter (1,1, )Γ p , 
at damage location 1, computed after each NDE inspection according to the proposed 
Bayesian inference scheme when ( ,1, )

MS 5 (with 1,2 and 0,1,...,5)i pn i p= = = . Blue lines: 

( ) = Scaled Beta distribution′0
a

0
aA

af . Red lines: ( ) = Uniform distribution′0
a

0
aA

af . 
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Figure 8.43: Posterior marginal PDF of postulated damage evolution parameter (2,1, )Γ p , 
at damage location 2, computed after each NDE inspection according to the proposed 
Bayesian inference scheme when ( ,1, )

MS 5 (with 1,2 and 0,1,...,5)i pn i p= = = . Blue lines: 

( ) = Scaled Beta distribution′0
a

0
aA

af . Red lines: ( ) = Uniform distribution′0
a

0
aA

af . 

 

8.5.3. Influence of number of NDE measurements and random measurement 

error on the variance of the posterior PDF of aA p  

This section presents the results of a parametric study conducted on the same 

benchmark application discussed in Section 8.4 and aims at qualitatively assessing the 

influence of both, (i) the number of NDE measurements and (ii) the standard deviation 

of the random measurement error, on the variance of the posterior PDFs of the 

debonding lengths at the two damage locations. The POD curve and the damage size 
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measurement model used to perform this parametric study are those shown in Figure 

8.2 and Figure 8.3, respectively; the initial prior PDF (at 0 0N =  cycles) is represented 

by the scaled Beta distribution reported in Figure 8.9; and the (assumed) underlying 

true damage evolution paths, at the two damage locations of the composite beam 

shown in Figure 8.7, are those reported in Figure 8.11. Two different series of NDE 

inspection opportunities are assumed herein: in the first case, a series of six NDE 

inspections, evenly spaced every 40,000 cycles, is considered (i.e., 0,1,...,5p = ); in 

the second case, a series of eleven NDE inspections, evenly spaced every 20,000 

cycles (i.e., 0,1,...,10p = ), is used in the proposed recursive Bayesian updating 

scheme . In each of these two cases, three different scenarios for the number of NDE 

measurements collected at each NDE inspection opportunity are also considered: 

( ,1, )
MS 5,10, 20 (with 1,2 and 0,1,...,5)i pn i p= = =  in the first case where six NDE 

inspections are involved, while ( ,1, )
MS 5,10, 20 (with 1,2 and 0,1,...,10)i pn i p= = =  in the 

second one. Furthermore, within each of these three scenarios, three different values 

for the standard deviation of the random measurement error ( )0,∼
ijij N εε σ , introduced 

in Equation (8.5), are taken into account: 2.0, 4.0, and 8.0
ij

mm= =ε εσ σ ). 

In the specific benchmark application discussed in Section 8.4, the actual 

debonding lengths, (1,1, )p
aA and (2,1, )p

aA  ( 0,1,...p = ), are independent random variables; 

a direct consequence of (i) the assumed statistically independent prior PDFs for 

(1,1,0)
aA and (2,1,0)

aA  at initial time 0t  depicted in Figure 8.9, and (ii) the uncoupled 

postulated damage propagation laws, shown in Equations (8.32) and (8.33), governing 
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the debonding propagation at the two damage locations. These considerations allow 

for rewriting the Bayesian updating equation for (1,1, )p
aA and (2,1, )p

aA as follows: 

 

( )

( ) ( )
( )

( ,1, ) ( ,1, )

( ,1, )
MS

( ,1, ) ( ,1, )

( ,1, ) ( ,1, )

( ,1, ) ( ,1, ) ( ,1, ) ( ,1, )

=1

1,2

i p i p
a

i p

i p i pk a

i p i p
aA

n
i p i p i p i p

a m aA
k

f a

i
L a a f a

Γ

Γ

′′ γ ∝

=⎡ ⎤
′ γ⎢ ⎥

⎢ ⎥⎣ ⎦
∏

 (8.53) 

where ( )( ,1, ) ( ,1, )
( ,1, ) ( ,1, )

i p i p
a

i p i p
aA

f a
Γ

′ γ  and ( )( ,1, ) ( ,1, )
( ,1, ) ( ,1, )

i p i p
a

i p i p
aA

f a
Γ

′′ γ  represent the prior and 

posterior conditional PDFs of ( ,1, )i p
aA  (with 1,2i = ), respectively; and ( )( ,1, ) ( ,1, )

k

i p i p
a mL a a  

denotes the likelihood function of ( ,1, )i p
aa  given ( ,1, ) ( ,1, )

k k

i p i p
m mA a= , whose mathematical 

expression is shown in Equation (3.22) in Chapter 3. It is thus of interest to evaluate 

the effect of (i) the number of NDE measurements, ( ,1, )
MS
i pn , used in the likelihood 

function of Equation (8.53), and (ii) the standard deviation, 
ij
=ε εσ σ , of the random 

measurement error introduced in Equation (8.5), on the standard deviation of the 

posterior PDF ( )( ,1, ) ( ,1, )
( ,1, ) ( ,1, )

i p i p
a

i p i p
aA

f a
Γ

′′ γ , herein denoted as ( )( , , ) ( ,1, )
MS, ,i j p i p

post aA n εσ σ . 

This effect is analyzed by computing the std ratios, ( )10,5
ratio εσ σ  and ( )20,5

ratio εσ σ , 

expressed in Equations (8.54) and (8.55) below, after each NDE inspection. 

  ( ) ( )
( ) ( )

( ,1, ) ( ,1, )
MS10,5

( ,1, ) ( ,1, )
MS

, 10,
2.0, 4.0, 8.0

, 5,

i p i p
post a

ratio i p i p
post a

A n
mm

A n

=
= =

=
ε

ε ε
ε

σ σ
σ σ σ

σ σ
 (8.54) 

 ( ) ( )
( ) ( )

( ,1, ) ( ,1, )
MS20,5

( ,1, ) ( ,1, )
MS

, 20,
2.0, 4.0, 8.0

, 5,

i p i p
post a

ratio i p i p
post a

A n
mm

A n

=
= =

=
ε

ε ε
ε

σ σ
σ σ σ

σ σ
 (8.55) 
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The results obtained through the application of these two equations are reported in 

Figure 8.44 (for the case of six NDE inspections, i.e., 0,1,...,5p = ) and Figure 8.45 

(for the case of eleven NDE inspections, i.e., 0,1,...,10p = ). Both figures show that 

the quantity ( )10,5
ratio εσ σ  tends to converge to 1 2  while the ration ( )20,5

ratio εσ σ  

approaches 1 2 . Furthermore, the convergence towards these constant values is faster 

for the smallest εσ  considered (i.e., 2.0=εσ ). This behavior can be explained by 

recalling the closed-form solution for the variance of the posterior PDF in the classical 

conjugate Gaussian univariate case (Duda et al., 2001). Adapting this closed-form 

solution to this specific case study, when the prior PDF of ( ,1, )i p
aA  (with 1,2i = ) is 

represented by a Gaussian distribution, with variance denoted by ( )2 ( ,1, )i p
prior aAσ , and 

the likelihood function, ( )( ,1, ) ( ,1, )
k

i p i p
a mL a a  in Equation (8.53), is also provided by a 

Gaussian distribution, then, it can be shown (Duda et al., 2001) that the posterior PDF 

of ( ,1, )i p
aA  is Gaussian and its variance can be expressed as 

 ( ) ( )
( )

2 ( ,1, ) 2
2 ( ,1, ) ( ,1, )

MS ( ,1, ) 2 ( ,1, ) 2
MS

, ,
i p

prior ai p i p
post a i p i p

prior a

A
A n

n A

⋅
=

+
ε

ε
ε

σ σ
σ σ

σ σ
 (8.56) 

For a large number of NDE measurements (i.e., a large value for ( ,1, )
MS
i pn ), the above 

equation can be approximated as 

 ( ) ( )
( )

2 ( ,1, ) 2 2
2 ( ,1, ) ( ,1, )

MS ( ,1, )( ,1, ) 2 ( ,1, )
MSMS

, ,
i p

prior ai p i p
post a i pi p i p

prior a

A
A n

nn A

⋅
≈ =ε ε

ε

σ σ σσ σ
σ

 (8.57) 
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and, as a direct consequence, the following relationships for ( )10,5
ratio εσ σ  and ( )20,5

ratio εσ σ  

can be derived: 

 
( )
( ) ( ) ( )

( )
2 ( ,1, ) ( ,1, ) ( ,1, ) ( ,1, )

MS MS10,5
2 ( ,1, ) ( ,1, ) ( ,1, ) ( ,1, )

MS MS

, 10 , 101 1
2, 5 , 5 2

i p i p i p i p
post a post a

ratioi p i p i p i p
post a post a

A n A n

A n A n

= =
= ⇒ = =

= =ε

σ σ
σ σ

σ σ
 (8.58) 

 
( )
( ) ( ) ( )

( )
2 ( ,1, ) ( ,1, ) ( ,1, ) ( ,1, )

MS MS20,5
2 ( ,1, ) ( ,1, ) ( ,1, ) ( ,1, )

MS MS

, 20 , 201 1
4 2, 5 , 5

i p i p i p i p
post a post a

ratioi p i p i p i p
post a post a

A n A n

A n A n

= =
= ⇒ = =

= =ε

σ σ
σ σ

σ σ
 (8.59) 

 

Figure 8.44: Ratio between the standard deviation of the posterior marginal PDFs of 
( , , )i j p
aA  and ( , , )i j p

aA , as defined in Equations (8.58) and (8.59), evaluated after each of 
the (assumed) six NDE inspections for three different values of the standard deviation 

of the random measurement error (i.e., 2.0, 4.0, and 8.0 mm=εσ ). 
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Figure 8.45: Ratio between the standard deviation of the posterior marginal PDFs of 
( , , )i j p
aA  and ( , , )i j p

aA , as defined in Equations (8.58) and (8.59), evaluated after each of 
the (assumed) eleven NDE inspections for three different values of the standard 

deviation of the random measurement error (i.e., 2.0, 4.0, and 8.0 mm=εσ ). 
 

8.6. Additional insight on the derivation of lower and upper uni-modal bounds 

for the probability of system failure, [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦  

In Section 7.5.2 in Chapter 7 and in Section 8.3.5 of this chapter, the 

alternative failure event, [ , ]
sysF p q , used to characterize the overall system failure at time 

= + ∆q
p pt t q τ , was defined as  
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[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , , [ , ])
sys sys 1 1

F F
p i pn n

p q p q i j p q ij
m ci j

A a
= =

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟∩ ∩ ∩ <⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 (8.60) 

and an expression for lower and upper uni-modal bounds of the probability associated 

with this failure event, [ , ]
sysF⎡ ⎤⎢ ⎥⎣ ⎦

p qP , was provided in Equation (7.38) in Chapter 7. 

However, by combining the reliability components of Equation (8.60) in different 

ways, different expressions for lower and upper uni-modal bounds of [ , ]
sysF⎡ ⎤⎢ ⎥⎣ ⎦

p qP  are 

obtained. For instance, lower and upper uni-modal bounds for the probability 

associated with the first failure event in Equation (8.60), [ , ]
sysF p q , were derived in 

Equation (7.34) in Chapter 7. These bounds can be expressed as 

 [ , ] [ , ] [ , ]
sys sys sysF F Fp q p q p q

low upP P P⎡ ⎤ ⎡ ⎤ ⎡ ⎤≤ ≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (8.61) 

where [ , ]
sysF⎡ ⎤⎢ ⎥⎣ ⎦

p q
lowP  and [ , ]

sysF⎡ ⎤⎢ ⎥⎣ ⎦
p q

upP  are mathematically written as shown below: 

 ( )[ , ] [ , ] [ , ]
sys L, G,, ,

F max F , Fp q p q p q
low ij ri j r

P P P⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (8.62) 

 
[0, ] ( , [0, ])

GL DM
[ , ] [ , ] [ , ]
sys L, G,

1 1 1

F min 1, F F
p i p nn n

p q p q p q
up ij r

i j r

P P P
= = =

⎛ ⎞⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎟⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎜= + ⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  (8.63) 

Hence, Equation (8.60) can now be viewed as a parallel system with A 1pn +  reliability 

components, and A
pn  defined as 

[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑ . Lower and upper uni-modal 

bounds of the probability associated with the failure event, [ , ]
sysF p q , of this parallel 

system can then be specified as (Fréchet, 1935) 
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[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , , [ , ])
sys sys A

1 1

F max 0 , F
p i pn n

p q p q i j p q ij p
low m c

i j

P P P A a n
= =

⎛ ⎞⎟⎜⎡ ⎤ ⎡ ⎤ ⎟⎡ ⎤⎜≥ + < − ⎟⎢ ⎥⎜⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎟⎣ ⎦ ⎣ ⎦ ⎟⎜⎝ ⎠
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 ( )[ , ] [ , ] ( , , [ , ])
sys sys

,
F min F , minp q p q i j p q ij

up m c
i j

P P P A a
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥≤ <⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (8.65) 

These bounds are much simpler than those derived in Equation (7.38) in Chapter 7; 

however, the tightness of these simpler bounds is considerably compromised as shown 

in Figure 8.46. To the author’s knowledge, Equation (7.38) in chapter 7 provides the 

tightest lower and upper uni-modal bounds for [ , ]
sysF⎡ ⎤⎢ ⎥⎣ ⎦

p qP . 

 

Figure 8.46: Time-dependent lower and upper uni-modal bounds of the probability of 
system failure, [ , ]

sysF p qP ⎡ ⎤⎣ ⎦ , for the benchmark application discussed in Section 8.4. 
Bounds computed immediately after the first NDE inspection (at 0 0N =  cycles) using 

5 NDE measurements at each damage location (i.e., ( ,1,0)
MS 5 with 1,2in i= = ). 
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8.7. Additional insight on the derivation of lower and upper uni-modal bounds 

for the probability of false-call, [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F  

In Section 7.5.4 in Chapter 7 and in Section 8.3.5 in this chapter, the false-call 

event, [ , ]
 sys

p qF , used to characterize the false-call event at the overall system level at 

time = + ∆q
p pt t q τ , was defined as  
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i p nn
p q p q
ij rr

E

 (8.66) 

where the event 4E , introduced for the sake of clarity, represents a series system and 

therefore lower and upper uni-modal bounds for the associated probability, 4
⎡ ⎤⎣ ⎦P E , can 

be expressed as 4 4 4low upP E P E P E⎡ ⎤ ⎡ ⎤ ⎡ ⎤≤ ≤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , with 4
⎡ ⎤⎣ ⎦lowP E  and 4

⎡ ⎤⎣ ⎦upP E  defined as 

 ( )( , , [ , ])
4 ,

max i j p q ij
low m ci j

P E P A a⎡ ⎤⎡ ⎤= ≥⎢ ⎥⎣ ⎦ ⎣ ⎦  (8.67) 

 
[0, ] ( , [0, ])
L DM

( , , [ , ])
4

1 1

min 1,
p i pn n

i j p q ij
up m c

i j

P E P A a
= =

⎛ ⎞⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎟⎡ ⎤⎜⎡ ⎤= ≥ ⎟⎜ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎟⎣ ⎦⎜ ⎟⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (8.68) 

Additionally, Equation (8.66) can be viewed as a parallel system with A G 1pn n+ +  

reliability components; therefore, lower and upper uni-modal bounds of the probability 

associated with the false-call event, [ , ]
sys

p qF , of this parallel system can be specified as 

(Fréchet, 1935) 
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 ( )
[0, ] ( , [0, ])
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= = =
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 ( )[ , ] [ , ] [ , ]
 sys L, G, 4, ,

min min F , F ,p q p q p q
ij r upi j r

P P P P E⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤≤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
F  (8.70) 

These bounds are much simpler than those derived in Equations (7.49) and (7.50) in 

Chapter 7; however, as pointed out also in the previous section, the tightness of these 

simpler bounds is considerably compromise and an example to validate this statement 

is provided in Figure 8.47. 

 

Figure 8.47: Time-dependent lower and upper uni-modal bounds of the probability of 
system failure, [ , ]

 sys
p qP ⎡ ⎤⎣ ⎦F , for the benchmark application discussed in Section 8.4. 

Bounds computed immediately after the first NDE inspection (at 0 0N =  cycles) using 
5 NDE measurements at each damage location (i.e., ( ,1,0)

MS 5 with 1,2in i= = ). 
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To the author’s knowledge, Equations (7.49) and (7.50) constitute the tightest uni-

modal bounds for [ , ]
 sys

⎡ ⎤⎢ ⎥⎣ ⎦
p qP F . 
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CHAPTER 9   

 

VERIFICATION AND VALIDATION OF THE 

PROPOSED RELIABILITY-BASED DAMAGE 

PROGNOSIS FRAMEWORK VIA DAMAGE 

PROPAGATION LAWS BASED ON LINEAR 

ELASTIC FRACTURE MECHANICS 

9.1. Introduction 

This chapter presents two additional numerical applications of the proposed 

damage prognosis framework, used for code verification and experimental validation 

purposes. The first numerical application, described in Section 9.2, uses the same 

benchmark structure introduced in Chapter 8 to study the fatigue-driven debonding 
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propagation along the idealized zero-thickness adhesive interface in a simply 

supported composite beam. However, conversely to the approach followed in Chapter 

8, the debonding propagation process is herein simulated by using a damage 

propagation law based on linear elastic fracture mechanics (LEFM) and experimental 

observations, namely the Forman’s model (Forman, 1972). This analysis approach 

allows for a complete engagement of all probabilistic analysis steps of the proposed 

methodology shown in Figure 9.1 (i.e., even the probabilistic load hazard analysis step 

which was bypassed in the numerical application presented in the previous chapter). In 

the second part of this chapter, in Section 9.3, a set of experimental fatigue test data 

found in the literature (Virkler et al., 1979) is used to provide a first experimental 

validation of the proposed framework, with special emphasis towards the recursive 

Bayesian inference scheme and the probabilistic damage evolution analysis step. 
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Figure 9.1: Flowchart of the proposed reliability-based damage prognosis. 
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9.2. Benchmark application: fatigue-driven debonding propagation analysis in 

a simply supported composite beam 

The numerical example presented in this section aims at (i) engaging all five 

probabilistic analysis step of the proposed damage prognosis methodology; (ii) further 

validating the proposed recursive Bayesian inference scheme by applying it to a more 

complicated scenario; (iii) illustrating the practical use of the proposed stochastic load 

simulation and superposition via censored Poisson processes (see Chapter 4 and 

Section 8.3.2 in Chapter 8); (iv) assessing the computational feasibility of the 

proposed framework when the stochasticity of the applied load is explicitly taken into 

account; (v) demonstrating that well-known damage propagation models — such as 

Paris law (Paris and Erdogan, 1963), Forman’s model (Forman, 1972), and many 

others (Degrieck and Paepegem, 2001; Blanco et al., 2004) available in the literature 

— can be readily used within the proposed framework; and (vi) proposing reasonable 

simplifying assumptions within the probabilistic damage evolution analysis step in 

order to gain computational feasibility without excessively compromising the 

effectiveness of the other steps of the methodology. 

The benchmark structure used in this application example is the same one 

already introduced in Section 8.4 of Chapter 8 and, for the sake of clarity, is shown 

again here in Figure 9.2. It consists of a simply supported composite beam, of length 

2 250.0L mm= , made out of two identical unidirectional laminated composite 

adherends, with solid rectangular cross section, bonded through an idealized zero-

thickness adhesive interface/layer. The width and depth of each unidirectional 
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laminated composite adherend are 25.0b mm=  and 3.0h mm= , respectively. The 

only material parameter of interest is represented by the flexural modulus (Jones, 

1976) of the lower and upper unidirectional composite adherends (i.e., 

mat mat 11Θ fE= Θ = ) assumed to follow a Normal distribution with mean 

11
130.0fE

GPaµ =  and a coefficient of variation of 5%. The debonding, along the 

adhesive interface between the two composite adherends, is considered the only 

damage mechanism (i.e., 1j =  at all damage locations) evolving in time. More 

specifically, two debonding fronts, propagating from the two end supports (i.e., from 

the beam ends) towards the beam midspan, are considered in this example. The 

lengths of the two disbonds at generic time t are denoted as (1,1, )t
aa  (i.e., 1i =  and 

1j = ) and (2,1, )t
aa  (i.e., 2i =  and 1j = ), respectively. Similarly, the two damage 

locations are hereafter referred to as damage location 1 (i.e., 1i = ) and damage 

location 2 ( i.e., 2i = ), respectively. Finally, the beam is subjected to a harmonic 

concentrated load, applied at its midspan, constituting the driving factor of the 

debonding propagation process along the adhesive interface. 

Figure 9.2:  Simply-supported composite beam with two debonding fronts (evolving 
from the beam ends) subjected to a concentrated load, P(t), applied at its midspan. 

(1,1, ) (2,1, )(2 )t t
a aL a a− −

2 250L mm=

(1,1, )t
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( ) , ( )P t w t
disbond disbond

(2,1, )t
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adhesive layer

b

composite beam
cross-section

( )25 3
b h

mm
× =
×

( )11

composite adherends
flexural modulus: 

130 , =0.05fE N GPa δ∼
1x 2x( )0 , 1,2ix L i≤ ≤ =

3

density of laminated
composite adhedends:

1.50 /V gr cmρ =

total beam mass:
56.25totM gr=
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9.2.1. Probabilistic characterization of loading conditions 

As already discussed in Section 8.3.2 of Chapter 8, a random harmonic load 

acting on the monitored structural system is herein conveniently decomposed into two 

components: its mean/average intensity, characterized probabilistically by the intensity 

measure vector { }m m m,IM P T= ∆ , and the superimposed harmonic load fluctuations 

about the mean-load intensity, probabilistically described by the intensity measure 

vector { }a a,AMP TIM = ∆ ; a realization of such a stochastic load, emphasizing the 

superposition of mean-load and amplitude-load rectangular pulses, is illustrated in 

Figure 9.3. The random variable mP  represents the intensity of the applied mean-load 

pulse, mT∆  denotes the duration (herein expressed in number of cycles) of the mean-

0mp =0mp =

m at t=∆ ∆

( ) ( ) ( )
( ) ( )

0.2 0.8 ;-250,500

;2,2,0,500
mP m m m

AMP

f p p U p

f amp Beta amp

δ= +

=

mp

amp

( )~ exp ;0.01m mT t∆ ∆
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=
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( )~ exp ;0.01m mT t∆ ∆

 
Figure 9.3:  Example of load superposition for the case in which mean-load intensity 

and amplitude of the harmonic load fluctuations are considered to be statistically 
dependent. The amplitude value of the harmonic load fluctuations is renewed at each 
mean-load pulse occurrence, remains constant for the entire duration of each mean-
load pulse, and is equal to zero when the mean-load pulse intensity is equal to zero. 
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load pulse, aAMP  indicate the amplitude of the harmonic load fluctuations about the 

mean-load intensity mP , and aT∆  symbolizes the duration (herein expressed in number 

of cycles) of the harmonic load pulse of intensity/amplitude aAMP . 

The random sequence of the applied mean-load (e.g., blue line in Figure 9.3) is 

modeled and simulated using a homogeneous Poisson rectangular pulse process (Wen, 

1990) with mean rate of occurrence 
mm 1/ ∆Tλ µ=  (where 

mTµ∆ , collected in the random 

parameter vector mΘ , denotes the average duration of the mean-load pulses). Each 

arrival (in time) of a Poisson event raises a rectangular pulse of random intensity mP  

— according to its conditional PDF ( )
m m| m m|Θ θPf p  — until the next arrival. 

Additionally, a generic realization of the random vector m mIM im=  in , q
p pt t⎡ ⎤⎣ ⎦  is 

herein defined as { }m m m, 1, ...,im im(k) k n=  with (i) { }m m m, ∆im(k) (k) (k)p t=  specifying the 

intensity and duration of the kth mean-load pulse and (ii) mn  representing the total 

number of pulses randomly generated during a generic realization of mIM . The mean-

load intensity, m
(k)p , is sampled according to the conditional PDF ( )

m m| m m|Θ θPf p  while 

the pulse duration, m∆ (k)t , is drawn from the exponential distribution of m∆T  

characterized by the mean value 
mTµ∆ . Based on these considerations, it is deduced that 

the random parameter vector mΘ  collects all the distribution parameters necessary to 

probabilistically characterize the random variables mP  and mT∆ . For example, if the 

conditional PDF ( )
m m| m m|Θ θPf p  is modeled using a uniform distribution, then the two 
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boundaries of this distribution (i.e., the lower boundary min
mP  and the upper boundary 

max
mP ) would be contained in mΘ  and could themselves be considered (in the most 

general case) as random variables.  

Once the random sequence of mean/average load pulses, m mIM im= , is 

stochastically realized, according to the procedure outlined above, an additional random 

sequence of load pulses, a aIM im= , characterizing the intensity of the harmonic load 

fluctuations, is generated and superimposed to mim . These harmonic load fluctuations 

are assumed to be characterized by a fixed frequency and random amplitude (AMP), 

with the latter distributed according to the conditional PDF ( )
a| a|AMPf ampΘ θ  and 

renewed at each load pulse occurrence. In other words, for given values of 

AMP amp=  and a aΘ θ=  the harmonic load intensity to be superimposed to 

m mIM im=  is completely defined. Furthermore, if aIM is considered to be statistically 

independent of mIM , the same reasoning as the one outlined above for mIM  can be 

used. A homogeneous Poisson rectangular pulse process with mean rate of occurrence 

aa 1/ ∆Tλ µ=  (where 
aTµ∆ , collected in the random parameter vector aΘ , denotes the 

average duration of the load pulse) is also used to model and simulate the random 

sequence of the intensity of the harmonic load fluctuations about the mean-load 

intensity ( mP ). Each arrival (in time) of a Poisson event raises a rectangular pulse of 

random intensity/amplitude AMP , distributed according to its conditional PDF 

( )
a| a|AMPf ampΘ θ , until the next arrival. Additionally, a generic realization of the 
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random vector a aIM im=  in , q
p pt t⎡ ⎤⎣ ⎦  is defined as { }a a a, 1, ...,im im(k) k n=  with (i) 

{ }a a, ∆(k) (k) (k)amp tim =  specifying the intensity and duration of the kth pulse and (ii) an  

representing the total number of pulses randomly generated during a generic realization 

of aIM . The quantity (k)amp  is sampled according to the conditional PDF 

( )
a| a|AMPf ampΘ θ  while the pulse duration, a∆ (k)t , is drawn from the exponential 

distribution of a∆T  defined by the mean value 
aTµ∆ . However, in the most general case, 

mIM  and aIM  can or must be considered statistically dependent. For example, as 

depicted in Figure 9.3, the constraints a m∆ =∆(k) (k)t t  (for m1, ...,k n= ) and/or 

( ) ( )
m| m| 0AMP Pf amp p ampδ= =  can be imposed. In this alternative scenario, once the 

vector mim  is randomly realized, then the other intensity measure vector, aim , must be 

sampled from the conditional PDF ( )
a m a| , m m a| ,IM IM Θ im im θf . This alternative load 

modeling approach is used in the proposed numerical application. 

In this specific application example the average duration of the applied mean-

load pulses, 
mTµ∆ , is set to be equal to 100 cycles. Therefore, the mean rate of 

occurrence of these mean-load pulses (blue dashed line in Figure 9.3) becomes 

mm 1/ 0.01T∆λ µ= =  and the exponential PDF of mT∆  can be written as 

 ( ) ( ) ( )m m m~ exp ; 0.01 exp , 0
mm m T m m mT t f t t tλ λ λ∆∆ ∆ = ⇒ ∆ = − ⋅ ∆ ∆ ≥  (9.1) 

At each random occurrence in time, the intensity/magnitude of the mean-load pulse is 

then assumed to follow the mixed PDF shown below 
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( ) ( ) ( ) ( )

( ) ( ) ( )

min max
m m1 ; ,

1 0.8 0.8 ; 250, 500
m

sel sel
P m m m m m

m m

f p p p p U p P P

p U p

δ

δ

= − ⋅ + ⋅

= − ⋅ + ⋅ − +
 (9.2) 

where 0.8sel
mp =  represents the probability of selection (see Chapter 4) of the 

censored Poisson pulse process (Wen, 1990), ( )δ i  denotes the Dirac Delta, and 

( )min max
m m; ,mU p P P  indicates the Uniform PDF for the random load intensity mP  

between min
m 250.0P N=−  and max

m 500.0P N=+ . Finally, within each mean-load 

pulse, the random amplitude (AMP) of the superimposed harmonic load fluctuations is 

distributed according to the following PDF: 

 ( ) ( )
0 if 0

; 2.0, 2.0, 0, 500 otherwise
m

AMP

P
f amp

Beta amp
⎧ =⎪⎪=⎨⎪⎪⎩

 (9.3) 

where ( ) ( )min max; , , , ; 2.0, 2.0, 0, 500Beta amp amp amp Beta ampα β =  represents the 

four-parameter Beta distribution with 2.0α β= =  defined over the domain 

[ ] [ ]min max, 0, 500amp amp N= . The mathematical expression of such PDF is expressed 

as (Kleiber and Kotz, 2003) 

 

( ) ( )
( ) ( )

( )

( )
( ) ( )

1 1
min max

1
max min

3

1
,

0 500
5001 0 500

2,2 500

AMP

amp amp amp amp
f amp

B amp amp
amp

amp amp
amp

B

α β

α βα β

− −

+ −

− −
=

−
≤ ≤

−
= ≤ ≤

 (9.4) 

where the normalizing constant ( ),B α β  is the Beta function (sometimes also referred 

to as the Euler integral of the first kind) defined as 
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 ( ) ( )
1

11

0

, 1B t t dtβαα β −−= −∫  (9.5) 

9.2.2. Damage evolution model 

The debonding propagation process, along the adhesive interface between the 

two composite adherends, is modeled and simulated by using a damage evolution 

model based on LEFM principles and experimental observation, namely the Forman’s 

model (Forman, 1972). This model essentially represents an improved version of the 

Paris law (Paris and Erdogan, 1963) by including — as it will be shown later — load 

ratio effects and capturing the unstable damage propagation behavior within the so-

called Stage III growth (Sanford, 2003). Under these assumptions and for the specific 

case studied herein, the debonding propagation process, at load cycle pN N≥ , is 

governed by the following system of uncoupled ordinary differential equations: 

 

( )

( ) ( )

(1,1, )

(2,1, )

(1, )(1,1, )
(1,1,[ , ])

(1,1, ) (1, )
max

(2, )(2,1, )
(2,1,[ , ])

(2,1, ) (2, )
max

(1,1, ) (1,1, )

(2,1, ) (2,1, )

1

, 0,1, 2, ...
1

p

p

nNp
p N

a p N
C

nNp
p N p

a p N
C

p p
a a

p p
a a

Gd Ca
dN Q G G

Gd C N N pa
dN Q G G

a a

a a

⎧ ∆⎪ =⎪ − −
⎪
⎪⎪ ∆ ≥ =⎨ =
⎪ − −
⎪
⎪ =
⎪

=⎪⎩

 (9.6) 

where ( ,1, )i pC , ( ,1, )i pn , and ( ,1, )i p
CG  ( )with 1,2i=  are the three damage evolution model 

parameters involved in the damage propagation process at each of the two damage 

locations considered in this benchmark application. Each of these two triplets of 

damage evolution parameters is collected in the sub-vector ( , )
dam
i pΘ , defined as 
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{ }( , ) ( ,1, ) ( ,1, ) ( ,1, )
dam , ,i p i p i p i p

CC n GΘ = , and these two sub-vectors are then grouped together as 

{ }(1, ) (2, )
dam dam dam,p p pΘ Θ Θ= . The quantities ( ,1, )i pC  and ( ,1, )i pn  ( )with 1,2i=  are material-

dependent empirical parameters determined through the analysis and curve fitting of 

fatigue test data, while ( ,1, )i p
CG  ( )with 1,2i=  denotes the critical fracture energy of the 

adhesive interface, at either damage location 1 or damage location 2, and can be 

experimentally evaluated through standardized static tests according to the ASTM 

standards (ASTM Standard D6671-04). The coefficient Q accounts for both load ratio 

and shear reversal (Degrieck and Paepegem, 2001) effects and is defined as 

 
if 1 1

1 if 1

P P

P
P

R R
Q

R
R

⎧ − ≤ ≤+⎪⎪⎪⎪=⎨⎪ >⎪⎪⎪⎩

 (9.7) 

where PR  represents the load ratio and is computed as the ratio between the minimum 

( minP ) and maximum ( maxP ) applied load within the Nth load cycle, i.e., 

 min m

max m
P

P P AMPR
P P AMP

−= =
+

 (9.8) 

The quantity ( , )i NG∆  ( )with 1,2i= , in Equation (9.6), constitutes the range of applied 

strain energy release rate (SERR), at either damage location 1 ( 1i= ) or damage 

location 2 ( 2i= ), during the Nth load cycle and is defined as 

 ( )
( , ) ( , )

( , ) max min
( , ) ( , )
max min

if 0
1,2

if 0

i N i N
i N

i N i N

G G Q
G i

G G Q

⎧⎪ − ≥⎪∆ = =⎨⎪ + <⎪⎩
 (9.9) 

in which ( , )
max
i NG  and ( , )

min
i NG  ( )with 1,2i=  can be expressed as (see Appendix F) 
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( ) ( ) ( )

2 2max ( ,1,[ , ])
( , )
max 2 3

11

9 1,2
16

i p N
m ai N

f

P a
G i

E b h
= =  (9.10) 

 
( ) ( ) ( )

2 2min ( ,1,[ , ])
( , )
min 2 3

11

9 1,2
16

i p N
m ai N

f

P a
G i

E b h
= =  (9.11) 

Finally, ( , )
max
i NG  characterizes the maximum (in absolute value sense) applied SERR 

during the Nth load cycle and is mathematically computed as 

 ( ) ( )( , ) ( , ) ( , )
max min maxmax , 1,2i N i N i NG G G i= =  (9.12) 

Maintaining the focus on Equation (9.6), (1,1,[ , ])p N
aa  and (2,1,[ , ])p N

aa  are the 

predicted (from current load cycle pN ) debonding lengths at load cycle pN N≥ ; 

(1,1,[ , ]) /p N
ad a dN  and (2,1,[ , ]) /p N

ad a dN  represent the rate of debonding propagation, 

expressed in increment of debonding length per load cycle; lastly, (1,1, )p
aa  and (2,1, )p

aa  

represent a particular realization of the actual debonding lengths ( (1,1, )p
aA and (2,1, )p

aA ) at 

current load cycle pN , distributed according to the posterior conditional joint PDF 

( )
a mat dam

a mat dam,
,p p

p pf
A Θ Θ

a θ θ′′ , in which the damage size vector A p
a  is given by 

{ }(1,1, ) (2,1, ),A p p p
a a aA A= . 

Equation (9.6) is integrated numerically between current load cycle pN  and 

(future) load cycle q
p pN N q N= + ∆  (with 1, 2, ...,q q= ) to provide the conditional 

joint PDF ( )[ , ]
a mat adam

[ , ]
a mat dam a, , ,

, , ,p q p p
p q p pf

A Θ Θ A IM
a θ θ a im  appearing at the beginning of the 
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third analytical step of the proposed damage prognosis methodology, namely 

probabilistic damage evolution analysis (see Figure 9.1). Under the assumptions 

discussed thus far, this conditional joint PDF can be expressed as 

 ( ) ( )[ , ]
a mat adam

[ , ] [ , ] [ , ]
a mat dam a a a, , ,

, , ,p q p p
p q p p p q p qf δ= −

A Θ Θ A IM
a θ θ a im a a  (9.13) 

where [ , ]
a

p qa  represents the outcome from the numerical integration of Equation (9.6), 

between current load cycle pN  and (future) load cycle q
p pN N q N= + ∆ , for a given 

realization of mat mat=Θ θ , dam dam
p p=Θ θ , a a

p p=A a , and { }m a,= =IM im im im , i.e., 

( ) ( )[ , ] [ , ] [ , ]
a a mat dam a a mat dam a, , , , , ,p q p q p p p q p p= =a a θ θ a im A θ θ a im . The conditional joint 

PDF in Equation (9.13) is then used to compute the conditional joint PDF 

( )[ , ]
a mat adam

[ , ]
a mat dam a, ,

, ,p q p p
p q p pf

A Θ Θ A
a θ θ a  through the total probability theorem as 

 

( )
( ) ( )

( ) ( )

[ , ]
a mat adam

[ , ]
a mat adam

[ , ]
a mat dam a, ,

[ , ]
a mat dam a, , ,

[ , ] [ , ]
a a

, ,

, , ,

p q p p

p q p p

p q p p

p q p p

p q p q

f

f f d

f dδ

=

=

−

∫

∫

A Θ Θ A

IMA Θ Θ A IM
IM

IM
IM

a θ θ a

a θ θ a im im im

a a im im

 (9.14) 

and the result from Equation (9.14) is subsequently exploited to estimate the conditional 

joint PDF ( )[ , ]
a mat dam

[ , ]
a mat dam,

,p q p
p q pf

A Θ Θ
a θ θ  as 

 
( )

( ) ( )
[ , ]
a mat dam

[ , ]
a mat a a matdam dam

[ , ]
a

[ , ]
a mat dam,

[ , ]
a mat dam a a mat dam a, , ,

,

, , ,

pp q

p pp q p p

p q

p q p

p q p p p p p

f

f f d

=

∫
A Θ Θ

A Θ Θ A A Θ Θ
A

a θ θ

a θ θ a a θ θ a
 (9.15) 
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This result represents the final outcome of the third analytical step of the proposed 

damage prognosis framework. 

In order to gain computational feasibility within the probabilistic damage 

evolution analysis step, the conditional joint PDF of [ , ]
a
p qA  obtained from Equation 

(9.14) — i.e., ( )[ , ]
a mat adam

[ , ]
a mat dam a, ,

, ,p q p p
p q p pf

A Θ Θ A
a θ θ a  — can be approximated by its 

(conditional) expectation [ , ]
a

[ , ]
a mat dam a, ,p q
p q p pE ⎡ ⎤

⎢ ⎥⎣ ⎦A
a θ θ a , defined as 

 ( )
[ , ]
a

[ , ]
a mat adam

[ , ]
a

[ , ]
a mat dam a

[ , ] [ , ] [ , ]
a a mat dam a a, ,

, ,

, ,

p q

pp q p

p q

p q p p

p q p q p p p q

E

f d

⎡ ⎤=⎢ ⎥⎣ ⎦

∫
A

A Θ Θ A
A

a θ θ a

a a θ θ a a
 (9.16) 

Equation (9.16) can be further expanded as 

 ( )

( ) ( )

[ , ]
a

[ , ]
a mat adam

[ , ]
a

[ , ]
a mat adam

[ , ]
a

[ , ]
a mat dam a

[ , ] [ , ] [ , ]
a a mat dam a a, ,

[ , ] [ , ] [ , ]
a a mat dam a a, , ,

, ,

, ,

, , ,

p q

pp q p

p q

pp q p

p q

p q p p

p q p q p p p q

p q p q p p p q

E

f d

f f d d

⎡ ⎤=⎢ ⎥⎣ ⎦

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∫

∫ ∫

A

A Θ Θ A
A

IMA Θ Θ A IM
IMA

a θ θ a

a a θ θ a a

a a θ θ a im im im a

 (9.17) 

and, by swapping the order of integration and making use of the result obtained in 

Equation (9.13), it is possible to rewrite the above equation as 

 

( ) ( )

( )

[ , ]
a

[ , ]
a

[ , ] [ , ] [ , ] [ , ] [ , ]
a mat dam a a a a a

[ , ]
a

[ , ]
a

, ,p q

p q

p q p p p q p q p q p q

p q

p q

E d f d

f d

E

δ
⎡ ⎤
⎢ ⎥⎡ ⎤= −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

=

⎡ ⎤= ⎢ ⎥⎣ ⎦

∫ ∫

∫

IMA
IM A

IM
IM

IM

a θ θ a a a a a im im

a im im

a

 (9.18) 
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In other words, the conditional expectation of ( )[ , ]
a mat dam a, ,p q p pA θ θ a , defined in 

Equation (9.16) is equal to the average, with respect to IM, of the output [ , ]
a

p qa  obtained 

from the numerical integration of Equation (9.6), between current load cycle pN  and 

(future) load cycle q
p pN N q N= + ∆ . This result is conceptually shown in Figure 9.4 

below. Each of the light-blue debonding propagation trajectories, shown in the figure, 

was obtained by numerically integrating Equation (9.6) for a given set of material and 

damage evolution model parameters and a given initial debonding length equal to 6.0 

mm. The dashed red line represents instead the expected trajectory of debonding 

( )[ , ]
a mat adam

[ , ]
a mat dam a, ,

, ,pp q p
p q p pf

A Θ Θ A
a θ θ a

( )[ , ]
a mat dam a, , ,p q p pE ⎡ ⎤⎣ ⎦IM a θ θ a im

70,000 cyclesq
pN N= =pN N=

Number of Cycles

( )[ , ]
a mat adam

[ , ]
a mat dam a, ,

, ,pp q p
p q p pf

A Θ Θ A
a θ θ a

( )[ , ]
a mat dam a, , ,p q p pE ⎡ ⎤⎣ ⎦IM a θ θ a im

70,000 cyclesq
pN N= =pN N=

Number of Cycles
 

Figure 9.4: Illustrative example of an ensemble of debonding propagation trajectories 
obtained by integrating Equation (9.6) for a given/fixed set of material and damage 

evolution model parameters and a given initial debonding length. The dashed red line 
indicates the average debonding propagation trajectory computed numerically from 

the numerical time integration of  the ODE in Equation (9.19) 
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propagation, computed by solving numerically the following system of ordinary 

differential equations (ODEs), with the same set/realization of material and damage 

evolution parameters: 

 
( )

( )

( ,1, )
( , )( ,1, )

(1,1,[ , ])
( ,1, ) ( , )

max

( ,1, ) ( ,1, )

1 0 and 1,2

6.0

i pni Ni p
p N

a i p i N
C

i p i p
a a

Gd CE a E
dN Q G G N i

a a mm

IM IM

⎧ ⎡ ⎤∆⎪ ⎢ ⎥⎡ ⎤ =⎪ ⎣ ⎦ ⎢ ⎥− − ≥ =⎨ ⎢ ⎥⎣ ⎦⎪
⎪ = =⎩

 (9.19) 

This approximation is reasonable and does not compromise the efficiency and accuracy 

of the other analysis steps of the proposed damage prognosis framework only for closely 

spaced NDE inspections (i.e., only when a continuous monitoring system is envisioned). 

In this case, the variability of ( )[ , ]
a mat dam a, ,p q p pA θ θ a , induced by the loading uncertainty, 

is kept within reasonable bounds and does not overcome the other sources of 

uncertainties involved in the prognosis process (e.g., damage evolution model 

parameters uncertainty, NDE measurement uncertainty, etc.). 

9.2.3. Probability distribution functions assigned to the damage evolution model 

parameters 0
damΘ  

As anticipated in Section 9.2.2, at each of the two damage locations shown in 

Figure 9.2, there are three damage evolution model parameters involved in the 

propagation process governed by the system of ODEs introduced in Equation (9.6). 

Parameters (1,1, )pC , (1,1, )pn , and (1,1, )p
CG  at damage location 1 and parameters (2,1, )pC , 

(2,1, )pn , and (2,1, )p
CG  at damage location 2. The first triplet of damage evolution model 
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parameters is collected in (1, )
dam

pΘ  as { }(1, ) (1,1, ) (1,1, ) (1,1, )
dam , ,p p p p

CC n GΘ = , while the second 

triplet is grouped in (2, )
dam

pΘ  as { }(2, ) (2,1, ) (2,1, ) (2,1, )
dam , ,p p p p

CC n GΘ = . The vectors (1, )
dam

pΘ  and 

(2, )
dam

pΘ  are assumed to be statistically independent; a reasonable assumption already 

discussed and explained in Chapter 3. Additionally, for the sake of simplicity, the 

three damage evolution parameters collected in (1,0)
damΘ  and (2,0)

damΘ  (at initial time 

0 0 cyclesN = ) are considered mutually statistically independent. In reality, as shown 

later on in Section 9.3, ( ,1, )i pC  and ( ,1, )i pn  ( )with 1,2 and 0i p= ≥  are generally 

statistically correlated; however, within the limited scope of this particular application 

example presented in this section, considering ( ,1,0)iC , ( ,1,0)in , and ( ,1,0)i
CG  ( )with 1,2i=  

to be statistically independent does not represent a crucial assumption towards the 

verification and validation of the proposed recursive Bayesian updating scheme and 

probabilistic damage evolution analysis step. 

Parameter ( ,1,0)iC ( )with 1,2i=  is assumed to follow a Normal distribution 

with mean equal to ( ,1,0)
( ,1,0) 0.04i
i

C
E C µ⎡ ⎤ = =⎣ ⎦  and a coefficient of variation of 10%. 

Parameter ( ,1,0)in  ( )with 1,2i=  is considered to be uniformly distributed between a 

lower bound of 2.7 and an upper bound of 3.1 — i.e., ( )( ,1,0) ~ 2.7, 3.1in U . Finally, the 

critical fracture energy ( ,1,0)i
CG  ( )with 1,2i=  is modeled as a random variable normally 

distributed with mean equal to ( ,1,0)
( ,1,0) 1.50 /i

C

i
C G

E G N mmµ⎡ ⎤ = =⎣ ⎦  and a coefficient of 

variation of 10%. 
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9.2.4. Effect screening of material and damage evolution model parameters 

The material parameter 1 11
fP E= , introduced at the beginning of Section 9.2, 

and the three damage evolution model parameters ( ,1, )
2

i pP n= , ( ,1, )
3

i p
CP G= , and 

( ,1, )
4

i pP C= , introduced in Equation (9.6) and briefly discussed in Section 9.2.3, do not 

equally contribute to the total variability of the rate of debonding propagation denoted 

by ( ,1,[ , ]) /i p N
ad a dN  (with pN N≥ ). The relative contribution of each of these four 

parameters ( , 1, 2, 3, 4kP k = ) to the total variability of the response quantity of 

interest, at time pN N≥ , can be measured through the so-called correlation ratio 

(Kenney and Keeping, 1951) herein denoted as ( )2
[ , ]p N kPη  and based on the posterior 

PDFs of the damage evolution parameter computed at time pN N= . Based on these 

considerations, it is evident that the relative contribution of each parameter can vary in 

time and therefore, in a real-world scenario, this process of effect screening should be 

performed multiple times during the monitoring process in order to account for the 

effects induced by the changes in the posterior PDFs of the damage evolution 

parameters (which are recursively updated every time new NDE data become 

available). At initial time, 0 0 cyclesN = , the correlation ratio ( )2
[ 0, 0]p N kPη = =  is 

expressed as 

 ( )

( ,1,0)

2
[0,0] ( ,1,0)

, 1, 2, 3, 4

i
a

k

k i
a

d aVar E P
dN

P k
d aVar

dN

η

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (9.20) 
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and is numerically computed by using the initial prior PDFs of material and damage 

evolution model parameters presented at the beginning of Section 9.2 and in Section 

9.2.3. The numerator of the right-hand-side (RHS) of Equation (9.20) denotes the so-

called explained variance of the rate of debonding propagation at time 0 0 cyclesN = , 

while the denominator represents the total variance of the rate of debonding 

propagation at time 0 0 cyclesN = . A large value of ( )2
[ 0, 0]p N kPη = = , relative to the other 

values obtained, indicates that the corresponding parameter kP  is significant to control 

how the response quantity of interest varies (i.e., the rate of debonding propagation in 

this specific case). Figure 9.5 shows the relative contribution of each of the three 

damage evolution parameters ( ( ,1,0)iC , ( ,1,0)in , and ( ,1,0)i
CG ) and of the material model 
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Figure 9.5: Marginal contribution (at 0 0N = ) of each random parameter to the total 
variability of the rate of debonding propagation as a function of the load intensity. 



260 

 

parameter ( 11
fE ) to the total variability of ( ,1,[0, 0]) /i

ad a dN . These contributions are 

plotted as a function of the applied load, normalized with respect to the maximum load 

that the composite beam can take before the disbond front starts propagating unstably 

(see Appendix F). Figure 9.5 indicates that the contribution of ( ,1,0)iC  to the total 

variability of ( ,1,[0, 0]) /i
ad a dN  is negligible and therefore can be replaced by its mean 

value ( ,1,0)
( ,1,0) 0.04i
i

C
E C µ⎡ ⎤ = =⎣ ⎦  during the subsequent analyses. Similarly, ( ,1,0)i

CG  

contributes less than 10% to the total variance of ( ,1,[0, 0]) /i
ad a dN  within the load range 

of interest in fatigue-driven damage growth analyses (i.e., for load levels not 

exceeding 50% of the critical/maximum load). Due to this fact, it will be challenging 

to update the PDF of ( ,1,0)i
CG  through the proposed recursive Bayesian updating 

scheme. Furthermore, Figure 9.5 also suggests that the contributions of 11
fE  and ( ,1,0)in  

are directly and inversely proportional to the load level intensity, respectively; an 

expected result since the higher the load intensity the higher the tendency to have a 

sudden and unstable propagation of the debonding front. (i.e., a mode of propagation 

which is not controlled by the fatigue damage parameters ( ,1,0)iC , ( ,1,0)in , and ( ,1,0)i
CG ). 

9.2.5. NDE technique detection capability and measurement accuracy 

The detection capability of a given NDE technique is probabilistically 

characterized through its probability of detection (POD) curve, while the measurement 

accuracy is quantified by using a sizing model. An exhaustive discussion of these two 

important aspects of a given NDE technique is provided in Chapter 3 and in Section 
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8.3.1 of Chapter 8, where the POD curve model proposed by Berens (1989) and the 

damage size measurement model used by Zhang and Mahadevan (2001) are presented 

and discussed. The POD curve model proposed by Berens is expressed as 

 ( ) ( )
( , ) ( , ) ( , , )
0 1

( , ) ( , ) ( , , )
0 1

ln
( , , )

ln
1,2 and 1

1

i j i j i j p
a

i j i j i j p
a

a
i j p

a a

ePOD a i j
e

α α

α α

⎡ ⎤− + ⎢ ⎥⎣ ⎦

⎡ ⎤− + ⎢ ⎥⎣ ⎦
= = =
+

 (9.21) 

where the values of the model parameters, ( , )
0
i jα  and ( , )

1
i jα , are estimated through 

logistic regression analysis (Kutner, 2004). These estimates are denoted as ( , )
0ˆ i jα  and 

( , )
1ˆ i jα , and, for the particular application example presented in this section, they are 

assigned the following values: (1,1) (2,1)
0 0 0ˆ ˆ ˆ 0.3α α α= = =  and (1,1) (2,1)

1 1 1ˆ ˆ ˆ 2.0α α α= = = . 

The substitution of these two estimates into Equation (9.21) generates the POD curve 

shown in Figure 9.6 . 
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Figure 9.6: POD curve model found in the literature (Berens, 1989) and used in the 
application examples presented in Section 9.2 and Section 9.3.  
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Once damage is detected (D) and its extent measured, it is natural to question the 

accuracy of that NDE measurement conditional on the actual (but unknown) damage 

size. This accuracy is herein quantified through the linear damage-size measurement 

model reported in Figure 9.7 and expressed as  

 ( ) ( )( , , ) ( , , ) ( , , ) ( , ) ( , ) ( , , )
0 1, + + 1,2 and 1i j p i j p i j p i j i j i j p

m a a a ijA A a D a i jβ β ε= = = =  (9.22) 

where ( , , )i j p
aA  and ( , , )i j p

mA  are respectively the actual and measured damage sizes for 

damage location i, damage mechanism j, and inspection time pt . The quantity ( , , )i j p
aa  

denotes the value of the actual damage size for the particular ( ), ,i j p  combination 

considered. The two terms ( , )
0

i jβ  and ( , )
1

i jβ  are the coefficients of the (assumed) linear 
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Figure 9.7: Damage size measurement model (Zhang and Mahadevan, 2001). 
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model accounting for the systematic measurement errors. Finally, ( )0,∼
ijij N εε σ  

represents the random measurement error Gaussian distributed with zero-mean and 

standard deviation 
ijε

σ , herein assumed — for the sake of simplicity — to be constant 

and independent of ( , , )i j p
aa  (Zhang and Mahadevan, 2001). The estimates (obtained 

from linear regression analysis; Seber and Lee, 2003) for ( , )
0

i jβ , ( , )
1

i jβ , and 

( , , )
ijm a

i j p
A A εσ σ=  are denoted as ( , )

0
ˆ i jβ , ( , )

1̂
i jβ  and ˆ

ijε
σ , and — for the particular application 

example discussed here — are assumed to be equal to: (1,1) (2,1)
0 0 0

ˆ ˆ ˆ 1.5mmβ β β= = =− , 

(1,1) (2,1)
1 1 1

ˆ ˆ ˆ 1.2β β β= = = , and 
11 21

ˆ ˆ ˆ 1.0mmε ε εσ σ σ= = = . 

9.2.6. Underlying (true) debonding evolution trajectories, assumed NDE 

inspection opportunities, and random NDE measurement generation 

In order to be able to apply the proposed prognosis framework to the 

benchmark structure shown in Figure 9.2, two underlying (true) debonding 

propagation trajectories (i.e., one at each damage location) must be generated. These 

two trajectories are generated by numerically integrating the system of ODEs 

introduced earlier in Equation (9.6) with a given pair of initial debonding lengths 

( (1,1,0)
,true 6.0aa mm= , (2,1,0)

,true 7.0aa mm= ), a given set of true material and damage evolution 

parameters (as listed above), and a randomly generated loading time history according 

to the procedure discussed in Section 9.2.1. The pair of underlying (true) propagation 

trajectories, together with the initial debonding lengths and the (assumed) true values 

of material and damage evolution model parameters, is shown in Figure 9.8. 
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Figure 9.8: Underlying (true) debonding propagation trajectories at damage location 1 
and damage location 2, generated by numerically integrating Equation (9.6) with a 

given pair of initial debonding lengths ( (1,1,0)
,true 6.0aa mm= , (2,1,0)

,true 7.0aa mm= ) and a given 
set of true material and damage evolution parameters (as listed above). 

 

The two debonding propagation trajectories, (1,1, )
,true

N
aa  and (2,1, )

,true
N

aa  (with 

0 120,000N≤ ≤  cycles), depicted in Figure 9.8 are then used to randomly generate 

NDE measurements, (1,1, )
m

pA and (2,1, )
m

pA , at evenly spaced intervals. In this specific 

application example, a total of forty-eight NDE inspections (evenly spaced every 

2,500 load cyclesN∆ = ) are considered and, at each NDE inspection opportunity, 

two different scenarios are envisioned. In the first scenario, five statistically 

independent NDE measurements are taken and processed using the proposed Bayesian 

inference scheme. In the second scenario, ten statistically independent NDE 

measurements are considered and used to repeatedly compute the posterior PDFs of 
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A p
a  and damΘ p . Furthermore, the two sets of (randomly generated) measurements are 

mutually statistically independent. The procedure to generate a single NDE 

measurement corresponding to damage location i, damage mechanism j, at time pN  

(i.e., the inspection time at which the true underlying damage size is denoted by 

( , , )
,true
i j p

aa ) can be summarized as follows: 

1) Generate a random number, 1u , from a uniform distribution between 0 and 1 

— i.e., ( )1 ~ 0,1u U ; 

2) If ( )( , , )
,true
i j p

au POD a≥  then set 
( , , )

,true 0
i j p

a
ma =  (i.e., damage not detected); 

3) If ( )( , , )
,true
i j p

au POD a<  (i.e., damage detected) generate another random number, 

2u , from a Normal distribution with mean 
2

( , ) ( , ) ( , , )
0 1 ,true

ˆ ˆ+i j i j i j p
u aaµ β β=  and 

standard deviation 
2 iju εσ σ=  — i.e., ( )( , ) ( , ) ( , , )

2 0 1 ,true
ˆ ˆ~ + ,

ij

i j i j i j p
au N a εβ β σ . Then set 

( , , )
,true

2

i j p
a
ma u= . 

The same procedure is repeated to generate a whole series of statistically independent 

NDE measurements for any ( ), ,i j p  combination. 

9.2.7. Bayesian updating results 

This section presents a selection of the Bayesian updating results obtained 

through the proposed recursive Bayesian inference scheme presented in Chapter 3. 

Within this scheme, the debonding extents, (1,1, )p
aA and (2,1, )p

aA , and the damage 

evolution model parameters, ( ,1, )i pn  and ( ,1, )i p
CG  ( )with 1,2i= , are simultaneously 



266 

 

updated after each NDE inspection. The Bayesian updating results presented herein 

cover the time window 0 85,000N≤ ≤  load cycles and therefore, since the time 

between two subsequent NDE inspections is set to be equal to 2,500 cyclesN∆ = , a 

total of thirty-five NDE inspections are involved in this specific numerical example. 

Figure 9.9 reports the posterior marginal PDFs of the debonding extents (1,1, )p
aA  

(top row) and (2,1, )p
aA  (bottom row) computed after the NDE inspections at times 

0 0 cyclesN = , 14 35,000 cyclesN = , and 34 85,000 cyclesN =  — i.e., immediately 

0 0 CyclesN = 14 35,000 CyclesN = 34 85,000 CyclesN =

0 0 CyclesN = 14 35,000 CyclesN = 34 85,000 CyclesN =

(1,1, )Posterior PDF of debonding length  (  = 0, 14, 34) at damage location 1 (i.e., 1)p
aA p i=

(2,1, )Posterior PDF of debonding length  (  = 0, 14, 34) at damage location 2 (i.e., 2)p
aA p i=

0 0 CyclesN = 14 35,000 CyclesN = 34 85,000 CyclesN =

0 0 CyclesN = 14 35,000 CyclesN = 34 85,000 CyclesN =

(1,1, )Posterior PDF of debonding length  (  = 0, 14, 34) at damage location 1 (i.e., 1)p
aA p i=

(2,1, )Posterior PDF of debonding length  (  = 0, 14, 34) at damage location 2 (i.e., 2)p
aA p i=

 

Figure 9.9: Posterior marginal PDFs of debonding lengths at damage location 1 and 
damage location 2 after three (selected) NDE inspections at times 0 0 cyclesN = , 

14 35,000 cyclesN = , and 34 85,000 cyclesN = . 
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after the first, fifteenth, and thirty-fifth inspections. These results were obtained by 

assigning to (1,1,0)
aA  and (2,1,0)

aA  the same initial prior PDF used in Chapter 8, namely 

the scaled Beta distribution shown in Figure 8.9. Similarly to the results obtained in 

Chapter 8, Figure 9.9 also indicates that a larger set of NDE measurements allows for 

a better collocation/centering of the computed posterior marginal PDFs of (1,1, )p
aA  and 

(2,1, )p
aA  on the true debonding lengths (1,1, )

,true
p

aa  and (2,1, )
,true

p
aa , respectively. 

With focus on the Bayesian updating results for the two pairs of damage 

evolution model parameters, ( ,1, )i pn  and ( ,1, )i p
CG  ( )with 1,2i= , it is observed (see 

Cycles Cycles Cycles
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(1,1,0)Damage Parameter n (1,1,14)Damage Parameter n (1,1,34)Damage Parameter n  
Figure 9.10: Posterior marginal PDFs of damage parameter ( ,1, )i pn  at damage location 
1 ( 1i = ) and damage location 2 ( 2i = ) after three (selected) NDE inspections at times 

0 0 cyclesN = , 14 35,000 cyclesN = , and 34 85,000 cyclesN = . 
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Figure 9.10) that the posterior marginal PDFs of ( ,1, )i pn  ( )with 0,14, 34p=  correctly 

converge towards the true values of the parameters, (1,1)
true 2.8n =  and (1,1)

true 3.0n = , at both 

damage locations. However, the rate of convergence is sensibly slower than the one 

observed in the previous application example in Chapter 8; a fact which can be 

explained by the explicit consideration of loading uncertainty and by the lager number 

of damage evolution parameters involved in the debonding propagation phase. On the 

other hand, the proposed recursive Bayesian updating scheme is not able to reduce the  

uncertainty associated with the other damage model evolution parameter, the critical 

(1,1, ) (1,1)
,truePosterior PDF of critical fracture energy  (  = 0, 14, 34) at damage location 1, 1.2 /p

C CG p G N mm=
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Figure 9.11: Posterior marginal PDFs of critical fracture energy, ( ,1, )i p
CG , at damage 

location 1 ( 1i = ) and damage location 2 ( 2i = ) after three (selected) NDE inspections 
at times 0 0 cyclesN = , 14 35,000 cyclesN = , and 34 85,000 cyclesN = . 
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fracture energy of the adhesive interface ( ,1, )i p
CG  ( )with 1,2i= ; a direct consequence of 

the results discussed earlier in Section 9.2.4 and shown in Figure 9.5. Finally, it is 

worth emphasizing that, also in this second case study presented in the thesis, the 

damage propagation law is considered in a deterministic fashion and only the damage 

evolution parameters are treated as random variables. A more general analysis 

approach would also consider uncertain the damage propagation model; a case that 

could be handled using Bayesian model class selection (Ching and Chen, 2007). 

9.3. Validation of proposed recursive Bayesian inference and probabilistic 

damage evolution analysis steps using experimental fatigue test data 

In this section a set of experimental fatigue test data available in the literature 

(Virkler et al., 1979) is used to provide a first experimental validation of the proposed 

damage prognosis framework, with special emphasis on the recursive Bayesian 

inference scheme and the probabilistic damage evolution analysis step. The dataset 

used consists of 68 crack propagation trajectories, each of them containing 164 

measurement points, obtained from fatigue tests performed on center-cracked 2024-T3 

aluminum plates. All the specimens tested had the same geometry: length 

558.80L mm= , width 152.40w mm= , thickness 2.54t mm= , and a center crack of 

initial length 02 18.00aa mm= . The tests were performed at room temperature and 

under load control using a sinusoidal input at 20 Hz  producing a constant stress range 

of 48.28 MPaσ∆ =  with a stress ratio equal to min max 0.2Rσ σ σ= = . The 68 crack 

propagation trajectories, together with a simple scheme of the test specimen geometry, 



270 

 

are provided in Figure 9.12. Among these 68 trajectories, two sample trajectories are 

selected and are conveniently highlighted in Figure 9.12: Sample trajectory #1 

(already selected by Ostergaard and Hillberry, 1983) and Sample trajectory #2. These 

2 trajectories, similarly to the approach followed in Section 8.4 of Chapter 8 and in 

Section 9.2.6 of the current chapter, will later be used as true underlying crack 

propagation paths in the application of the proposed damage prognosis framework. 
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Figure 9.12: Crack propagation trajectories obtained from fatigue tests performed on 
center-cracked aluminum plates (Virkler et al., 1979). 

 

Kotulski (1998) curve fitted each of the 68 crack propagation trajectories 

obtained by Virkler with the well-known Paris law (Paris and Erdogan, 1963): 
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 ( )mda C K
dN
= ∆  (9.23) 

where /da dN , expressed in /mm cycle , represents the rate of crack propagation; C 

and m are the material constants to be determined by curve fitting each of the 

experimental trajectory with Equation (9.23); the quantity K∆ , expressed in 

3/ 2MN mm⋅ , denotes the range of the stress intensity factor at the crack-tip within a 

given load cycle and can be mathematically expressed as 

 aK a F
w

π σ
⎛ ⎞⎟⎜∆ = ∆ ⎟⎜ ⎟⎜⎝ ⎠

 (9.24) 

where the geometric correction factor ( )/F a w  takes the form 

 1 , 0.85
cos

a aF
w wa

w
π

⎛ ⎞⎟⎜ = ≤⎟⎜ ⎟⎜⎝ ⎠ ⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (9.25) 

and, according to Sanford (2003), this secant approximation for ( )/F a w , proposed by 

Fedderson (1966), well matches the more exact result for ( )/F a w , proposed by 

Brown and Srawley (1966) and based on previous research by Isida (1966). The curve 

fitting of each of the 68 trajectories in Figure 9.12 can be performed through linear 

regression analysis by conveniently recasting Equation (9.23) in the following form: 

 ( ) ( )ln ln lnda C m K
dN

⎛ ⎞⎟⎜ = + ⋅ ∆⎟⎜ ⎟⎜⎝ ⎠
 (9.26) 

The results obtained by fitting (through simple linear regression analysis; Seber and 

Lee, 2003) the two sample trajectories highlighted in Figure 9.12 with Equation (9.26) 
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are shown in Figure 9.13 and Figure 9.14. The estimated Paris law parameters (C and 

m), obtained from these two independent linear regressions, will later be used as true 

values of the damage evolution model parameter to verify and validate the proposed 

recursive Bayesian inference scheme and assess its robustness and effectiveness. The 

straight-line regression of the sample trajectory #1 (Ostergaard and Hillberry, 1983), 

shown in Figure 9.13, yielded to #1
trueln 26.7949C =−  and #1

true 2.9855m = . On the other 

hand, the linear regression analysis on the experimental data point belonging to the 

sample trajectory #2, shown in Figure 9.14, led to #2
trueln 26.7528C =−  and 

#2
true 2.9358m = . 
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Figure 9.13: Linear regression on data points from experimental sample trajectory #1. 
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Figure 9.14: Linear regression on data points from experimental sample trajectory #2. 
 

9.3.1. Initial prior PDFs of crack length, 0
aa , and damage evolution model 

parameters, 0
damΘ , at time =0 0 cyclesN  

The whole recursive Bayesian inference scheme proposed in this thesis, as any 

other Bayesian inference procedure, needs to be provided with the initial prior 

distributions of the crack length, 0
aa , and the damage evolution model parameters, 

0
damΘ , at time 0 0 cyclesN = . These two initial prior PDFs are denoted as ( )0

0

a
aA

f a′  and, 

( )0
dam

0
damf ′

Θ
θ  respectively; furthermore, 0

aa  and 0
damΘ  are reasonably considered to be 
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statistically independent at time 0 0 cyclesN =  (see Chapters 2 and 3). The initial 

crack length, 0
aa , is assumed to be distributed according to the scaled Beta distribution 

defined as 

 ( )0

0 0
0 1 , , , 0

a

a a
aA

a af a Beta w
w w w

α β
⎛ ⎞⎟⎜′ ⎟= ≤ ≤⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (9.27) 

in which 152.4w mm=  denotes the width of the center-cracked aluminum plate, while 

( )( )0 , ,aBeta a w α β  indicates the Beta PDF expressed as 

 
( )

110 0 0 01, , 1 , 0 1
,

a a a aa a a aBeta
w B w w w

βα

α β
α β

−− ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟= − ≤ ≤⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (9.28) 

with the term ( ),B α β  representing the Beta function defined earlier in Equation (9.5). 

( ) ( )0
0 0

0

1 / , 2, 20

0   and  152.4

a
a aA

a

f a Beta a w
w

a w w mm

′ =

≤ ≤ =

( ) ( )0
0 0
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0   and  152.4

a
a aA

a

f a Beta a w
w

a w w mm

′ =

≤ ≤ =

 
Figure 9.15: Initial prior PDF of crack length at time 0 0 cyclesN = . 
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On the other hand, the damage evolution model parameter vector, immediately 

after the NDE inspection at time pN , is herein defined as { }T

dam ln ,p p pC mΘ = . 

Consequently, the corresponding prior and posterior joint PDFs, at time pN , are 

denoted by ( ) ( )
dam

dam ln ,
ln ,p p p

p p p
C m

f f C m′ ′=
Θ

θ  and ( ) ( )
dam

dam ln ,
ln ,p p p

p p p
C m

f f C m′′ ′′=
Θ

θ , 

respectively. Furthermore, at time 0 0 cyclesN = , these two joint PDFs are logically 

rewritten as ( ) ( )0 0 0
dam

0 0 0
dam ln ,

ln ,
C m

f f C m′ ′=
Θ

θ  and ( ) ( )0 0 0
dam

0 0 0
dam ln ,

ln ,
C m

f f C m′′ ′′=
Θ

θ , 

respectively. Based on Kotulski’s work (1998), the random variable 0lnC  is 

considered to be normally distributed with mean 0
0

ln
ln 26.155

C
E C µ⎡ ⎤= =−⎢ ⎥⎣ ⎦  and 

variance 0
0 2

ln
ln 0.939

C
Var C σ⎡ ⎤= =⎢ ⎥⎣ ⎦ ; similarly, also the variable 0m  was found to 

follow a Normal distribution with mean 0
0 2.874

m
E m µ⎡ ⎤= =⎢ ⎥⎣ ⎦  and variance 

0
0 2 0.0274

m
Var m σ⎡ ⎤= =⎢ ⎥⎣ ⎦ . Herein, 0lnC  and 0m  are assumed to be jointly Normal with 

mean vector defined as ( ){ } { }0
dam

T T0 0 0
dam Ln , 26.155, 2.874E E C E m

Θ
Θ µ ⎡ ⎤⎡ ⎤ ⎡ ⎤= = = −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦  

and covariance matrix given by 

 

0 0 0 0 0

0 0 0
dam

0 0 0 0 0

2
ln ln , ln

2ln ,
ln , ln

0.939 0.8 0.939 0.0274

0.8 0.939 0.0274 0.0274
0.939 0.1282
0.1282 0.0274

C C m C m

C m
C m C m m

Θ
Σ Σ

σ ρ σ σ

ρ σ σ σ

⎡ ⎤⋅ ⋅⎢ ⎥= = ⎢ ⎥⋅ ⋅⎢ ⎥⎣ ⎦
⎡ ⎤− ⋅⎢ ⎥= ⎢ ⎥− ⋅⎢ ⎥⎣ ⎦
⎡ ⎤−⎢ ⎥= ⎢ ⎥−⎣ ⎦

 (9.29) 

where 0 0ln ,
0.8

C m
ρ =−  represents the assumed correlation coefficient between 0lnC  
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and 0m . Furthermore, within this specific application of the proposed damage 

prognosis framework, the damage evolution model parameter vector, 0
damΘ , is 

transformed as ( )0
dam

0 0
dam Θ

Z Φ Θ µ= −  

 ( )0
dam

0 0
dam Θ

Z Φ Θ µ= −  (9.30) 

where the random vector { }T0
1 2Z Z=Z  denotes the transformed damage evolution 

model parameter vector, used in the analyses, and where the 2 2×  matrix Φ  is 

defined as 

 [ ]1 2

0.1212 0.8788
0.8788 0.1212

Φ Φ Φ
⎡ ⎤
⎢ ⎥= = ⎢ ⎥−⎣ ⎦

 (9.31) 

with 1Φ  and 2Φ  representing the eigenvectors of the covariance matrix 0
damΘ

Σ . 

Equation (9.30) is a linear transformation of the random vector 0
damΘ  and therefore the 

two random variables 0
1Z  and 0

2Z  are also jointly Normal with zero mean (i.e., 

0µ =
Z

0 ) and covariance matrix, 0Z
Σ , equal to 

 0 0
dam

0
1T

0
2

0 0.0076 0
0 0.75280

Var Z

Var ZZ Θ
Σ Φ Σ Φ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
 (9.32) 

The prior joint PDF of 0Z  is herein denoted by ( )0
0f ′

Z
z  and is shown in Figure 9.16 

and Figure 9.17. Furthermore, the forward and backward transformations, after the NDE 

inspection at time 0pN N≥ , can be written as ( )0
dam

dam
p p

Θ
Z Φ Θ µ= −  and 
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0
dam

1
dam
p p µ−= +

Θ
Θ Φ Z , respectively. Applying Equation (9.30) to the true damage 

evolution model parameters, #1
trueln 26.7949C =−  and #1

true 2.9855m =  (reported in 

Figure 9.13 and obtained from the linear regression analysis on the experimental data 

points of the sample trajectory #1 depicted in Figure 9.12), lead to the following pair 

of transformed values, collected in #1
truez  and shown in Figure 9.16: 

 0
dam

#1 #1
1,true#1 true

true #1 #1
2,true true

0.02039ln
0.57583

z C
z m

µ
⎡ ⎤⎧ ⎫ ⎛ ⎞ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎟⎪ ⎪ ⎪ ⎪⎜⎢ ⎥⎟= = − =⎜⎨ ⎬ ⎨ ⎬⎟⎢ ⎥⎜ ⎟⎪ ⎪ ⎪ ⎪⎜ −⎝ ⎠ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎪ ⎪⎩ ⎭ ⎣ ⎦

Θ
z Φ  (9.33) 

#1
trueln 26.7949C =− #1

true 2.9855m =

#1
1,true 0.02039Z = #1

2,true 0.57583Z =−

#1 #1
true trueln ,C m⎡ ⎤⎣ ⎦

#1 #1
1,true 2,true,Z Z⎡ ⎤⎣ ⎦

#1
trueln 26.7949C =− #1

true 2.9855m =

#1
1,true 0.02039Z = #1

2,true 0.57583Z =−

#1 #1
true trueln ,C m⎡ ⎤⎣ ⎦

#1 #1
1,true 2,true,Z Z⎡ ⎤⎣ ⎦

 
Figure 9.16: Initial prior PDFs of 0

damΘ  and 0Z , together with the true values of the 

damage evolution model parameters, { }#1 #1
dam true trueln ,true C m=Θ  and { }#1 #1 #1

true 1,true 2,true,Z Z=Z , 
obtained from linear regression analysis on the data points of the sample trajectory #1 

(see Figure 9.12 and Figure 9.13). 
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Similarly, if Equation (9.30) is used to transform the other pair of true damage 

evolution model parameters, #2
trueln 26.7528C =−  and #2

true 2.9358m =  (obtained from 

the linear regression analysis on the experimental data points of the sample trajectory 

#2), the following result for #2
trueZ , shown in Equation (9.34) below as well as in Figure 

9.17, is obtained: 

 0
dam

#2 #2
1,true#2 true

true #2 #2
2,true true

0.01817ln
0.53281

Z C
Z m Θ

Z Φ µ
⎡ ⎤⎧ ⎫ ⎛ ⎞ ⎧ ⎫⎪ ⎪ −⎪ ⎪⎟⎪ ⎪ ⎪ ⎪⎜⎢ ⎥⎟= = − =⎜⎨ ⎬ ⎨ ⎬⎟⎢ ⎥⎜ ⎟⎪ ⎪ ⎪ ⎪⎜ −⎝ ⎠ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎪ ⎪⎩ ⎭ ⎣ ⎦

 (9.34) 

#2
trueln 26.7528C =− #2

true 2.9358m =

#2
1,true 0.01817Z =− #2

2,true 0.53281Z =−

#2 #2
true trueln ,C m⎡ ⎤⎣ ⎦

#2 #2
1,true 2,true,Z Z⎡ ⎤⎣ ⎦

#2
trueln 26.7528C =− #2

true 2.9358m =

#2
1,true 0.01817Z =− #2

2,true 0.53281Z =−

#2 #2
true trueln ,C m⎡ ⎤⎣ ⎦

#2 #2
1,true 2,true,Z Z⎡ ⎤⎣ ⎦

 
Figure 9.17: Initial prior PDFs of 0

damΘ  and 0Z , together with the true values of the 

damage evolution model parameters, { }#2 #2
dam true trueln ,true C m=Θ  and { }#2 #2 #2

true 1,true 2,true,Z Z=Z , 
obtained from linear regression analysis on the data points of the sample trajectory #2 

(see Figure 9.12 and Figure 9.14). 
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9.3.2. NDE technique detection capability and measurement accuracy 

In this third application example, the detection capability of a given NDE 

technique is probabilistically characterized through the POD curve model proposed by 

Berens (1989) and reported in Equation (9.21). The values of the POD model 

parameters used in this specific application example are: (1,1) (2,1)
0 0 0ˆ ˆ ˆ 0.3α α α= = =  and 

(1,1) (2,1)
1 1 1ˆ ˆ ˆ 2.0α α α= = = . The use of these parameters in Equation (9.21) generates the 

POD curve shown in Figure 9.6. On the other hand, the measurement accuracy of the 

NDE technique envisioned for this third case study is provided by the linear sizing 

model (Zhang and Mahadevan, 2001) shown in Figure 8.3 of Chapter 8. The values of 

the sizing model parameters used subsequently are: (1,1) (2,1)
0 0 0

ˆ ˆ ˆ 1.5mmβ β β= = =− , 

(1,1) (2,1)
1 1 1

ˆ ˆ ˆ 1.2β β β= = = , and 
11 21

ˆ ˆ ˆ 2.0mmε ε εσ σ σ= = = . 

9.3.3. Underlying (true) crack propagation trajectories, assumed NDE 

inspection opportunities, and random NDE measurements generation 

As already anticipated at the beginning of Section 9.3, among the 65 crack 

propagation trajectories provided by Virkler et al. (1979), two sample paths are 

selected and used as underlying (true) crack propagation processes in order to verify 

and validate the proposed prognosis framework. These two sample trajectories and 

their corresponding damage evolution model parameters (obtained from curve fitting 

the Paris law equation to the experimental data points) are provided in Figures 9.12, 

9.13, and 9.14. These two trajectories, are then used to randomly generate NDE 

measurements, m
pA , at evenly spaced intervals. In this specific application example, a 
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total of forty-one NDE inspections — evenly spaced every 5,000 load cyclesN∆ =  

and covering the loading window [ ]0 200,000  load cycles  — are used to monitor the 

crack propagation process identified by the sample trajectory #1, while fifty-one NDE 

inspections — evenly spaced every 5,000 load cyclesN∆ =  and covering the loading 

window [ ]0 250,000  load cycles  — are employed to track the crack propagation 

process associated with the sample trajectory #2. 

At each NDE inspection opportunity, three different scenarios are envisioned. 

In the first scenario, five statistically independent NDE measurements are taken and 

processed using the proposed Bayesian inference scheme; an example is shown in 

Figure 9.18. In the second scenario, ten statistically independent NDE measurements 

 
Figure 9.18: Random realization of NDE measurements associated with the sample 

trajectory #1; 5 NDE measurements at each of the forty-one inspection opportunities. 
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are considered. Lastly, in the third scenario, twenty statistically independent NDE 

measurements are considered and used to repeatedly compute the posterior PDFs of 

p
aA  and damΘ p . Furthermore, the three sets of measurements (randomly generated 

according to the procedure discussed in Section 9.2.6) are mutually statistically 

independent. 

9.3.4. Probabilistic crack propagation analysis 

The NDE measurements collected are used to provide the posterior conditional 

PDF of the crack length, p
aA , as well as the joint posterior PDF of the damage 

evolution parameters, damΘ p  or (equivalently) ( )0
dam

dam
p p

Θ
Z Φ Θ µ= − . These two 

posterior PDFs are herein denoted as ( )
a dam

a damp p
p p

A
f a

Θ
θ′′  and ( )

dam
damp
pf ′′ =

Θ
θ  

( )ln ,
ln ,p p

p p
C m

f C m′′ , respectively. After each NDE inspection at time pN  (with 

0,1, 2, ...p = ), the crack propagation process is modeled and simulated using the Paris 

law equation already introduced at the beginning of Section 9.3. This ordinary 

differential equation can now be conveniently rewritten as 

 ( ) ( )
[ , ]

[ , ] , 0,1, 2, ...

pmp N p
a p N

p
p p

a a

d a C K
N N pdN

a a

⎧⎪⎪ = ∆⎪ ≥ =⎨⎪⎪ =⎪⎩

 (9.35) 

where [ , ]p N
aa  denotes the predicted crack length at time pN N≥ ; [ , ]p N

ad a dN , 

expressed in /mm cycle , represents the rate of crack propagation at time pN N≥ ; p
aa  

indicates the value of [ , ]p N
aa  at pN N=  (i.e., the value for the crack length at current 
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time, immediately after the last NDE inspection); a
pa  is a particular realization of a

pA  

according to the posterior PDF ( )p
a

p
aA

f a′′ ; pC  and pm  are the two damage evolution 

parameters sampled from ( ) ( )
dam

dam ln ,
ln ,p p p

p p p
C m

f f C m′′ ′′=
Θ

θ ; finally, the quantity 

[ , ]p NK∆ , expressed in 3/ 2MN mm⋅ , denotes the range of the stress intensity factor at 

the crack-tip within a given load cycle and can be mathematically expressed as 

 
[ , ]

[ , ]
[ , ]

p N
p N a

p N a
aK a F

w
π σ

⎛ ⎞⎟⎜ ⎟∆ = ∆ ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (9.36) 

where 48.28 MPaσ∆ =  is the constant stress range used during the fatigue tests 

performed by Virkler et al. (1979) and ( )[ , ] /p N
aF a w  characterizes the geometric 

correction factor that takes the following form: 

 
[ , ] [ , ]

[ , ]

1 , 0.85

cos

p N p N
a a

p N
a

a aF
w wa

w
π

⎛ ⎞⎟⎜ ⎟= ≤⎜ ⎟⎜ ⎟⎜ ⎛ ⎞⎝ ⎠ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (9.37) 

Equation (9.35) is integrated numerically between current load cycle pN  and (future) 

load cycle q
p pN N q N= + ∆  (with 1, 2, ...,q q= ) to provide the conditional joint PDF 

( ) ( )[ , ] [ , ]
a mat a a adam dam

[ , ] [ , ]
a mat dam a a dam a, , , ,

, , , ,p q p p p q p p
p q p p p q p p

A A
f f a a

A Θ Θ A IM Θ
a θ θ a im θ=  appearing at 

the beginning of the third analytical step of the proposed damage prognosis 

methodology, namely probabilistic damage evolution analysis (see Figure 9.1). It is 

worth mentioning that, within this particular application example, the random vector 

matΘ  is not defined and therefore is never involved in the computations. Even more 
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importantly, since the quantities 48.28 MPaσ∆ =  and min max 0.2Rσ σ σ= =  are 

assumed to be known and fixed/constant, no load uncertainty is considered in the crack 

propagation process. In light of these considerations, the conditional joint PDF 

( )[ , ]
a adam

[ , ]
a dam a,

,p q p p
p q p p

A A
f a a

Θ
θ  can be expressed as 

 ( ) ( )[ , ]
a adam

[ , ] [ , ] [ , ]
a dam a a,

,p q p p
p q p p p q p q

aA A
f a a a

Θ
θ aδ= −  (9.38) 

where ( )iδ  is the Dirac Delta and the term [ , ]p q
aa  represents the outcome from the 

numerical integration of Equation (9.35), between current load cycle pN  and (future) 

load cycle q
p pN N q N= + ∆ , for a given realization of dam dam

p p=Θ θ  and a a
p pA a= , i.e., 

( ) ( )[ , ] [ , ] [ , ]
dam a a dam a, ,p q p q p p p q p p

a aa a a A aθ θ= = . The result obtained in Equation (9.38) is 

then used to compute the conditional PDF ( )[ , ]
a dam

[ , ]
a damp q p

p q p
A

f a
Θ

θ  through the total 

probability theorem as 

 ( ) ( ) ( )[ , ]
a adam dam

[ , ]
a

[ , ] [ , ] [ , ]
a dam a a dam ap q p p p

p q

p q p p q p q p p p
aA A

A

f a a a f a da
Θ Θ

θ θδ ′′= −∫  (9.39) 

9.3.5. Bayesian updating results associated with sample trajectory #1 

This section presents a selected set of the Bayesian updating results obtained 

by applying the proposed damage prognosis framework (and in particular the proposed 

Bayesian inference scheme and probabilistic damage evolution analysis step) to the 

assumed underlying crack propagation path identified by the sample trajectory #1 (see 

Figure 9.12 at the beginning of Section 9.3). Figure 9.19 and Figure 9.20 report the 
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posterior marginal PDFs of the damage evolution model parameters, 1
pZ  and 2

pZ , 

respectively. Additionally, Figure 9.21 reports the posterior joint probabilistic 

characterization of the aforementioned quantities — i.e., the posterior joint PDF of the 

damage evolution model parameter vector, pZ , defined as { }T

1 2
p p pZ Z=Z .  

The selected crack propagation trajectory is monitored from initial time 

0 0 cyclesN =  up to final time 40 200,000 cyclesN =  through a series of 41 NDE 

inspections, evenly spaced every 5,000N∆ =  cycles. After each of these 41 NDE 

Figure 9.19: Posterior marginal PDF of damage parameter 1
pZ  after six (selected) 

NDE inspections, evenly spaced every 40,000 cyclesN∆ = ; results obtained from the 
application of the proposed damage prognosis framework to the sample trajectory #1. 
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inspections, the posterior PDFs of crack length ( p
aA ) and damage evolution model 

parameters ( 1
pZ  and 2

pZ ) are recursively computed through the proposed recursive 

Bayesian inference scheme. Six, out of these 41 inspection times, are selected and the 

corresponding posterior PDFs (computed at each of these six inspection times) are 

reported in the figures below. Focusing on the Bayesian updating results for the two 

damage evolution model parameters involved in this particular application example, it 

is observed that only the uncertainty associated with 1
pZ  is progressively reduced. On 

Figure 9.20: Posterior marginal PDF of damage parameter 2
pZ  after six (selected) 

NDE inspections, evenly spaced every 40,000 cyclesN∆ = ; results obtained from the 
application of the proposed damage prognosis framework to the sample trajectory #1. 
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the other hand, the posterior marginal PDF of 2
pZ  never changes substantially during 

the 41 Bayesian updating operations performed between 0 0 cyclesN =  and 

40 200,000 cyclesN = . This fact can be explained by analyzing Equations (9.30) and 

(9.31) in Section 9.3.1. These equations indicate that 1
pZ  preserves almost 90% of the 

uncertainty related to pm , while 2
pZ  retains almost 90% of the uncertainty 

associated with ln pC . As a direct consequence, stating that the marginal PDF of 2
pZ  

#1 #1
1,true 2,true,Z Z⎡ ⎤⎣ ⎦
#1 #1

1,true 2,true,Z Z⎡ ⎤⎣ ⎦

 

Figure 9.21: Posterior joint PDF of damage parameters 1
pZ  and 2

pZ  after six (selected) 
NDE inspections, evenly spaced every 40,000 cyclesN∆ = ; results obtained from the 
application of the proposed damage prognosis framework to the sample trajectory #1 

with 20 NDE measurements collected at each NDE inspection opportunity. 
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cannot be updated (through the proposed Bayesian updating scheme) is essentially 

equivalent to affirm that the damage evolution model parameter ln pC  does not 

contribute significantly to the variability of the crack propagation process and 

therefore its PDF is not sensitive to the Bayesian updating procedure. This is the exact 

same result already encountered in Section 9.2.4 where the effect screening performed 

on the Forman’s model parameters (see Figure 9.5) indicated that the contribution of 

the damage parameter C could have been neglected during the whole damage 

prognosis process. In more detail, Equations (9.40) and (9.41) quantify, in terms of 

variance reduction and for the specific case in which MS 20pn =  ( 1,2,...,41p= ), the 

benefit provided by the proposed recursive Bayesian updating scheme. Equation (9.40) 

indicates that the variance of 40
1Z , at time 40 200,000N =  cycles, is about 16% of its 

initial variance at time 0 0N =  cycles — i.e., the variance reported earlier in Equation 

(9.32). On the other hand, Equation (9.41) shows that the variance of 40
2Z  is reduced 

by less than 10%. 

 
( )

( )
( )40

1 40 MS 1 MS

0
1 0 1

200,000 cycles, 20 20
0.16

0 cycles

p pVar Z N n Var Z n

Var Z N Var Z

⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= ≅⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (9.40) 

 
( )

( )
( )40

2 40 MS 2 MS

0
2 0 2

200,000 cycles, 20 20
0.93

0 cycles

p pVar Z N n Var Z n

Var Z N Var Z

⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= ≅⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (9.41) 

Finally, Figure 9.22 reports the posterior marginal PDF of the crack length, 

p
aA , computed immediately after the NDE inspections at 0 0N = , 8 40,000N = , 
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16 80,000N = , 24 120,000N = , 32 160,000N = , and 40 200,000N =  cycles. Similarly to 

Figure 9.19 and Figure 9.20, also in this case, three different NDE inspection scenarios 

are considered and reported in Figure 9.22, namely MS 5pn = , MS 10pn = , and MS 20pn =  

(with 1,2,...,41p= ). The benefit, in terms of uncertainty reduction, provided by the 

larger number of NDE measurements collected at each NDE inspection opportunity is 

evident; furthermore, a larger set of NDE measurements allows for a better 

collocation/centering of the computed posterior marginal PDF at any given time. 

 

 
Figure 9.22: Posterior marginal PDF of crack length p

aA  after six (selected) NDE 
inspections, evenly spaced every 40,000 cyclesN∆ = ; results obtained from the 

application of the proposed damage prognosis framework to the sample trajectory #1. 



289 

 

9.3.6. Bayesian updating results associated with sample trajectory #2 

Similarly to Section 9.3.5, a selected set of the Bayesian updating results 

obtained by applying the proposed damage prognosis framework to the assumed 

underlying crack propagation path identified by the sample trajectory #2 (see Figure 

9.12 at the beginning of Section ) is hereafter presented and discussed. This second 

sample trajectory represents a more challenging scenario for the proposed damage 

prognosis methodology since the values of the associated underlying (true) damage 

evolution model parameters, #2
trueln 26.7528C =−  and #2

true 2.9358m = , fall in the tail of 

the assigned initial prior joint PDF ( ) ( )0 0 0
dam

0 0 0
dam ln ,

ln ,
C m

f f C m′ ′=
Θ

θ  (see Figure 9.17). 

This second crack propagation trajectory is monitored from initial time 0 0 cyclesN =  

up to final time 50 250,000 cyclesN =  through a series of 51 NDE inspections, evenly 

spaced every 5,000N∆ =  cycles. After each of these 51 NDE inspections, the 

posterior PDFs of crack length ( p
aA ) and damage evolution model parameters ( 1

pZ  and 

2
pZ ) are recursively computed through the proposed recursive Bayesian inference 

scheme. Six, out of these 51 inspection times, are selected and the corresponding 

posterior PDFs (computed at each of these six inspection times) are reported in the 

following figures. Figure 9.23 and Figure 9.24 report the posterior marginal PDFs of 

the damage evolution model parameters, 1
pZ  and 2

pZ , respectively. Figure 9.25 shows 

the posterior marginal PDF of the crack length, p
aA , computed immediately after the 

NDE inspections at 0 0N = , 10 50,000N = , 20 100,000N = , 30 150,000N = , 
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40 200,000N = , and 50 250,000N =  cycles., As already discussed in Section 9.3.5, 

also in this case three different NDE inspection scenarios are considered, namely 

MS 5pn = , MS 10pn = , and MS 20pn =  (with 1,2,...,51p= ). The benefit, in terms of 

uncertainty reduction, provided by the larger number of NDE measurements collected 

at each NDE inspection opportunity is also evident in this second case; furthermore, a 

larger set of NDE measurements allows for a better collocation/centering of the 

computed posterior marginal PDF of p
aA  at any given inspection time. 

Figure 9.23: Posterior marginal PDF of damage parameter 1
pZ  after six (selected) 

NDE inspections, evenly spaced every 50,000 cyclesN∆ = ; results obtained from the 
application of the proposed damage prognosis framework to the sample trajectory #2. 
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Figure 9.24: Posterior marginal PDF of damage parameter 2
pZ  after six (selected) 

NDE inspections, evenly spaced every 50,000 cyclesN∆ = ; results obtained from the 
application of the proposed damage prognosis framework to the sample trajectory #2. 

 

It is worth mentioning that all the Bayesian updating results provided in 

Sections 9.3.5 and 9.3.6 are obtained by processing a single realization of the NDE 

measurements at each inspection opportunity. Therefore, it would be of great interest 

studying the statistical variability of the Bayesian inference results by considering a 

whole ensemble of NDE inspection results at each inspection opportunity. This 

consideration applies also to the subsequent sections where the most probable crack 

propagation trajectories and their prediction bands are derived and discussed. 
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Figure 9.25: Posterior marginal PDF of crack length p

aA  after six (selected) NDE 
inspections, evenly spaced every 50,000 cyclesN∆ = ; results obtained from the 

application of the proposed damage prognosis framework to the sample trajectory #2. 
 

9.3.7. Prediction intervals associated with the continuous monitoring of the 

sample damage evolution trajectory #1 

After each of the 41 NDE inspections (evenly spaced every 5,000N∆ =  

cycles) envisioned for the continuous monitoring of the selected sample trajectory #1, 

the posterior PDF of the crack length p
aA , denoted as ( )p

a

p
aA

f a′′ , and the posterior joint 

PDF of the damage evolution model parameter vector { }1 2,p p pZ Z=Z , symbolized by 
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( )p
pf

Z
z′′ , are recursively updated through the proposed Bayesian inference scheme 

which uses the NDE measurements collected during the inspection opportunity. The 

posterior (unconditional) PDF ( )p
a

p
aA

f a′′  is computed by using the total probability 

theorem as 

 

( ) ( ) ( )

( ) ( )

a a

dam

1 2a 1 2

1 2

a a

a 1 2 1 2 1 2,,
, ,

p pp p

p

p pp p p

p p

p p p p p
A A

p p p p p p p
Z ZA Z Z

Z Z

f a f a f d

f a z z f z z dz dz

′′ ′′ ′′=

′′ ′′=

∫

∫ ∫

ZZ
Θ

z z z

 (9.42) 

or equivalently, according to the notation used throughout this section, as 

 

( ) ( ) ( )

( ) ( )

a dama dam

dam

a

a a dam dam dam

a ln ,ln ,
ln

ln , ln , ln

p pp p

p

p pp p p

p p

p p p p p
A A

p p p p p p p
C mA C m

C m

f a f a f d

f a C m f C m d C d m

′′ ′′ ′′=

′′ ′′=

∫

∫ ∫

ΘΘ
Θ

θ θ θ

 (9.43) 

where the joint PDF ( )
dam

damp
pf

Θ
θ′′  is defined as ( ) ( )

dam
dam ln ,

ln ,p p p
p p p

C m
f f C m
Θ

θ′′ ′′=  and, 

during the practical application of the proposed prognosis framework to this specific 

application example, is computed by mapping ( )p
pf

Z
z′′  into the physical parameter 

space dam
pΘ  through the linear transformation 0

dam

1
dam
p p µ−= +

Θ
Θ Φ Z  presented earlier. 

The crack propagation analysis at time pN  thus depends on the three random 

variables p
aA , 1

pZ , and 2
pZ ; or, in an equivalent way, on p

aA , ln pC , and pm . The 

most probable crack propagation trajectory can therefore be computed by solving 

Equation (9.35) for the corresponding modal values of the three random variables 

involved. This approach is herein referred to as Maximum a posteriori probability 
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(MAP) criterion and uses the modal values of p
aA , 1

pZ , and 2
pZ  based on their 

corresponding posterior marginal PDFs computed at time pN : ( )p
a

p
aA

f a′′ , ( )
1

1p
p

Z
f z′′ , and 

( )
2

2p
p

Z
f z′′ . Alternatively, the expected values of p

aA , 1
pZ , and 2

pZ  could be used in 

place of the modal values. The result obtained from the numerical integration of 

Equation (9.35) according to this alternative approach would provide the expected 

(i.e., average) crack propagation trajectory. For the case in which the posterior PDFs 

of p
aA , 1

pZ , and 2
pZ  are unimodal and symmetric with respect to their modal values, 

the two approaches aforementioned would lead to the same result — i.e., the MAP 

crack propagation trajectory would coincide with the expected propagation path. 

Together with the MAP and/or the expected crack propagation trajectory, it is 

also possible to provide prediction intervals (or prediction bands) of ( )1 %α−  

confidence level for the crack propagation predictions. This result is achieved by 

defining ( )1 / 3 %α−  probability intervals for each of the three random variables 

involved in the propagation process as shown in the two Equations below: 

 ( ) [ ],min ,max ,min ,max, : 1 , 1,2
3

p p p p p
i i i i i iz z P z Z z P E iα⎡ ⎤≤ ≤ = = − =⎢ ⎥⎣ ⎦  (9.44) 

 ( ) [ ],min ,max ,min ,max 3, : 1
3

p p p p p
a a a a aa a P a A a P E α⎡ ⎤≤ ≤ = = −⎢ ⎥⎣ ⎦  (9.45) 

According to this procedure, the three pairs of values ( )1,min 1,max,p pz z , ( )2,min 2,max,p pz z , and 

( ),min ,max,p p
a aa a , satisfy the two conditions shown below: 
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 ( ) [ ]
,max

,min

1 , 1,2
3

p
i

p
i

p
i

z
p p

i i iZ
z

f z dz P E iα′′ = = − =∫  (9.46) 

 ( ) [ ]
,max

,min

3 1
3

p
a

p
a

p
a

a
p p
a aA

a

f a da P E α′′ = = −∫  (9.47) 

Furthermore, by making use of Bonferroni inequality (Seber and Lee, 2003), the 

confidence level for the simultaneous event defined by { }1 2 3E E E E∩ ∩  can be 

expressed as 

 [ ] ( )1 2 3 1 3 1
3

P E E E α α
⎛ ⎞⎟⎜∩ ∩ ≥ − = −⎟⎜ ⎟⎜⎝ ⎠

 (9.48) 

In this specific numerical application, the value of α  is set as 0.1α=  and therefore the 

simultaneous prediction interval exhibits a confidence level of at least 90%. The least 

and most critical combinations, in terms of rate of crack propagation, of the values 

( )1,min 1,max,p pz z , ( )2,min 2,max,p pz z , and ( ),min ,max,p p
a aa a  are then used in the damage 

propagation law reported in Equation (9.35) to provide the prediction bands, with 90% 

level of confidence, shown in figures 9.26 through 9.29. 

Figure 9.26 shows the MAP crack propagation predictions (dashed red line) 

and the corresponding 90% prediction bands (light-yellow patches) computed using 5 

NDE measurements at each inspection opportunity (i.e., MS 5, 0,1, ..., 40pn p= = ). 

MAP predictions and their corresponding prediction bands are updated after each 

NDE inspection (i.e., every 5,000N∆ =  cycles in this specific application example); 

however, for illustration and demonstration purposes and to facilitate the interpretation 
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of figures 9.26 through 9.29, these predictions are recursively updated every 20,000 

cycles (i.e., every four NDE inspections). The MAP crack propagation prediction and 

its corresponding prediction band between 0 0N =  cycles and 4 20,000N =  cycles are 

computed by making use of the posterior PDF of 0
aA , ( )0

0

a
aA

f a′′ , and the initial prior 

joint PDF of 0Z , ( )0
0f

Z
z′′ . The predictions, between 4 20,000N =  cycles and 

8 40,000N =  cycles, are instead based on the posterior PDF of 4
aA , ( )4

4

a
aA

f a′′ , and the 

posterior joint PDF of 4Z , ( )4
4f

Z
z′′ . This process is repeated up to 40 200,000N =  

cycles. 

 

Figure 9.26: MAP crack propagation predictions and corresponding 90% prediction 
intervals for sample trajectory #1, obtained by using 5 NDE measurements at each 
NDE inspection opportunity. Predictions recursively updated every 20,000 cycles. 
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Figure 9.27 and Figure 9.28 present the same type of results, associated to the 

pseudo-continuous NDE monitoring of the sample trajectory #1 and computed for the 

case in which MS 10pn =  and MS 20pn =  (with 0,1, ..., 40p= ), respectively. These two 

additional sets of results indicate that a larger number of NDE measurements 

substantially improves the MAP crack propagation predictions and, at the same time, 

helps to provide tighter prediction bands. 

Finally, Figure 9.29 compares the two sets of results corresponding to MS 5pn =  

and MS 20pn =  (with 0,1, ..., 40p= ). This comparison emphasizes, one more time, the 

clear benefit provided by a larger set of NDE measurements. It is indeed straightforward 

 

Figure 9.27: MAP crack propagation predictions and corresponding 90% prediction 
intervals for sample trajectory #1, obtained by using 10 NDE measurements at each 
NDE inspection opportunity. Predictions recursively updated every 20,000 cycles. 
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to observe from Figure 9.29 how the prediction bands corresponding to the case 

MS 20pn =  (with 0,1, ..., 40p= ) are always tighter than their counterparts (i.e., the 

prediction intervals computed using 5 NDE measurements at each inspection 

opportunity). More specifically for this particular example, at the eleven instants of time 

( )20,000pN +  cycles — with ( )5,000pN p= ×  cycles and 0, 4,8, ..., 40p=  — the 

prediction bands obtained by making use of 5 NDE measurements at each inspection 

opportunity are on average ~1.70 times wider than those derived for the case in which 

20 NDE measurements are collected and processed at each inspection opportunity, i.e., 

MS 20pn =  (with 0,1, ..., 40p= ). Furthermore, the maximum gain is determined as 

 

Figure 9.28: MAP crack propagation predictions and corresponding 90% prediction 
intervals for sample trajectory #1, obtained by using 20 NDE measurements at each 
NDE inspection opportunity. Predictions recursively updated every 20,000 cycles. 
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( ) ( )
( ) ( )

[ ,4] [ ,4]
, MS , MS

[ ,4] [ ,4]
, MS , MS

5 5
max 2.60, 0, 4,8, ..., 40

20 20

p p p p
a upper a lower

p p p pp
a upper a lower

a n a n
p

a n a n

⎛ ⎞= − = ⎟⎜ ⎟⎜ ≅ =⎟⎜ ⎟⎜ ⎟= − =⎜⎝ ⎠
 (9.49) 

where ( )[ ,4]
,
p

a uppera i  and ( )[ ,4]
,
p

a lowera i  are the upper and lower bounds (at time 

4 5,000q
p p pN N q N N= + ∆ = + ×  cycles) for the 90% prediction intervals computed 

at time pN . The two terms at the numerator correspond to the case MS 5pn =  (with 

0,1, ..., 40p= ), while the other two terms at the denominator refer to MS 20pn =  (with 

0,1, ..., 40p= ). As can also be inferred from Figure 9.29, this maximum gain (in terms 

 

Figure 9.29: Comparison between two sets of 90% prediction intervals for sample 
trajectory #1. Yellow patches: prediction bands obtained by using 5 NDE 

measurements at each inspection opportunity. Green patches: prediction bands 
obtained by using 20 NDE measurements at each inspection opportunity. Predictions 

recursively updated every 20,000 cycles for illustration purposes. 
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of bandwidth reduction of the prediction intervals) is obtained at time 16 20,000N + =  

( )5,000 16 20,000 100,000× + =  cycles. At that instant of time the prediction band 

obtained by making use of 5 NDE measurements at each inspection opportunity is about 

2.60 times wider than the corresponding counterpart, derived for the case in which 20 

NDE measurements are collected and processed at each inspection opportunity 

9.3.8. Prediction intervals associated with the continuous monitoring of the 

sample damage evolution trajectory #2 

The selected sample trajectory #2, is monitored through 51 NDE inspections 

(evenly spaced every 5,000N∆ =  cycles) between time 0 0N =  cycles and time 

50 250,000N =  cycles. After each of these 51 NDE inspections, the posterior PDF of 

the crack length p
aA , denoted as ( )p

a

p
aA

f a′′ , and the posterior joint PDF of the damage 

evolution model parameter vector { }1 2,p p pZ Z=Z , symbolized by ( )p
pf

Z
z′′ , are 

recursively updated through the proposed Bayesian inference scheme. This recursive 

updating process uses the NDE measurements collected at each inspection opportunity 

and therefore, for the specific case presented herein, it uses either 5, 10, or 20 NDE 

measurements at each of the 51 inspection opportunities envisioned. The posterior 

(unconditional) PDF ( )p
a

p
aA

f a′′ , computed by taking advantage of the total probability 

theorem as already shown in Equations (9.42) and (9.43), is then used together with 

( )p
pf

Z
z′′  to provide the MAP crack propagation predictions and their corresponding 

prediction intervals (or prediction bands). These intervals, with a confidence level of 
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( )1 %α− , are computed according to the procedure outlined in Section 9.3.7. The 

results obtained by applying this procedure to the NDE monitoring of the sample 

trajectory #2 are summarized in figures 9.30 through 9.33. The predictions, between 

( )5,000 1pN p= ⋅ −  cycles and 1 20,000p pN N+ = +  cycles (with 0,1, ..., 50p= ), are 

based on the posterior PDF of p
aA , denoted as ( )p

a

p
aA

f a′′ , and the posterior joint PDF of  

pZ , represented by ( )p
pf

Z
z′′ . Furthermore, as it was done in Section 9.3.7, even 

though MAP crack propagation predictions and their corresponding prediction bands 

are updated after each NDE inspection (i.e., every 5,000 cycles in this specific 

 

Figure 9.30: MAP crack propagation predictions and corresponding 90% prediction 
intervals for sample trajectory #2, obtained by using 5 NDE measurements at each 
NDE inspection opportunity. Predictions recursively updated every 20,000 cycles. 
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application example), they are recursively updated only every 20,000 cycles (i.e., 

every four NDE inspections) in the subsequent figures. Again, this choice is 

exclusively intended for illustration and demonstration purposes and it also facilitates 

the interpretation of figures 9.30 through 9.33. More specifically for this particular 

example, at the eleven instants of time ( )20,000pN +  cycles — with ( )5,000pN p= ×  

cycles and 0, 4,8, ..., 40p=  — the prediction bands obtained by making use of 5 NDE 

measurements at each inspection opportunity are on average ~1.60 times wider than 

those derived for the case in which 20 NDE measurements are collected and processed 

at each inspection opportunity, i.e., MS 20pn =  (with 0,1, ..., 40p= ). Furthermore, 

 

 

Figure 9.31: MAP crack propagation predictions and corresponding 90% prediction 
intervals for sample trajectory #2, obtained by using 10 NDE measurements at each 
NDE inspection opportunity. Predictions recursively updated every 20,000 cycles. 
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using the same notation introduced in Section 9.3.7, the maximum gain (provided by 

the larger number of NDE measurements) is determined as 

 
( ) ( )
( ) ( )

[ , 4] [0, ] [ , 4] [0, ]
, MS , MS

[ , 4] [0, ] [ , 4] [0, ]
, MS , MS

5 5
max 1.75, 0, 4,8, ..., 40

20 20

p p p p p p
a upper a lower

p p p p p pp
a upper a lower

a n a n
p

a n a n

+ +

+ +

⎛ ⎞= − = ⎟⎜ ⎟⎜ ≅ =⎟⎜ ⎟⎜ ⎟= − =⎜⎝ ⎠
 (9.50) 

and it is obtained at time 44 20,000N + =  ( )5,000 44 20,000 240,000× + =  cycles. At 

that instant of time the prediction band obtained by making use of 5 NDE measurements 

at each inspection opportunity is about 1.75 times wider than the corresponding 

counterpart, derived for the case in which 20 NDE measurements are collected and 

processed at each inspection opportunity. 

 

Figure 9.32: MAP crack propagation predictions and corresponding 90% prediction 
intervals for sample trajectory #2, obtained by using 20 NDE measurements at each 
NDE inspection opportunity. Predictions recursively updated every 20,000 cycles. 
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Figure 9.33: Comparison between two sets of 90% prediction intervals for sample 
trajectory #2. Yellow patches: prediction bands obtained by using 5 NDE 

measurements at each inspection opportunity. Green patches: prediction bands 
obtained by using 20 NDE measurements at each inspection opportunity. Predictions 

recursively updated every 20,000 cycles for illustration purposes. 
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CHAPTER 10 

 

CONCLUSIONS AND FUTURE WORK 

10.1. Summary of the research work performed 

The research work presented in this thesis is focused on the development of a 

novel and comprehensive reliability-based damage prognosis framework for time-

dependent reliability assessment and remaining fatigue life prediction of bonded 

composite structures used in the aerospace field. Among these structures, unmanned 

aerial vehicles (UAVs) represent a typical example of how extensively light-weight 

composite materials can be used in aircrafts and aerospace systems in general. Various 

damage mechanisms (e.g., debonding, inter-ply delamination, fiber breakage, and 

matrix cracking) can initiate and invisibly propagate to catastrophic levels in the most 

damage-sensitive UAV primary structural components, such as the wings, the tail 

stabilizers, and the fuselage. Furthermore, the absence of an onboard pilot on this type 

of vehicles and their operating environments (e.g., military zones) lead to higher levels 
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of damage tolerance in the airframe. Therefore, as a direct consequence, there is the 

need of providing an effective structural monitoring through continuous (online) and 

periodic (on ground) non destructive evaluation (NDE) inspections. 

As a result of the considerations outlined above, the first seven chapters of this 

thesis address the applicability of the proposed damage prognosis framework to a 

composite UAV wing whose skin-to-spar adhesive joints are recognized as one of the 

most critical and fatigue-sensitive sub-components of the entire aircraft. The proposed 

framework repeatedly uses processed NDE results (i.e., results after NDE sensor data 

processing) to recursively provide an updated probabilistic characterization of the 

current structural integrity. This updated information is then used as starting point to 

perform all the subsequent analysis steps, part of the methodology, and predict the 

time-dependent reliability index of the structural system as fatigue-driven damage 

progresses. The final results, obtained from the application of the proposed damage 

prognosis framework, can be used as a rational and objective basis for updating the 

remaining service life of the monitored structural system as well as the maintenance 

program, thereby optimizing the overall life-cycle cost of the structure. This last 

objective represents the ultimate goal of an integrated structural health monitoring and 

damage prognosis (SHM-DP) methodology. The target results aforementioned are 

herein achieved through five analytical steps: (1) Bayesian inference analysis, (2) 

probabilistic load hazard analysis, (3) probabilistic structural response analysis, (4) 

probabilistic flutter & limit cycle oscillation (LCO) analyses, and (5) damage 

prognosis analysis. The major sources of uncertainty in each of these five analytical 
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steps of the proposed framework have been explicitly and rigorously accounted for 

throughout this thesis. Furthermore, all these steps are carefully integrated into the 

framework by making use of the total probability theorem — i.e., the probabilistic tool 

allowing for the uncertainty propagation process through the various analysis steps 

mentioned above. 

In Chapters 8 and 9 the proposed damage prognosis framework is generalized 

to other structural systems and is exercised, verified, and validated through three 

numerical applications, with increasing levels of complexity. Additionally, in Chapter 

8, the effectiveness and robustness of the framework is assessed through a series of 

comparative and parametric studies. In these two chapters, the five analytical steps 

presented in Chapters 3 through 7 are generalized and re-designated as: (1) Bayesian 

inference analysis, (2) probabilistic load hazard analysis, (3) probabilistic damage 

evolution analysis, (4) probabilistic global performance analysis, and (5) damage 

prognosis analysis. Step 1 (i.e., Bayesian inference) and Step 5 (i.e., damage 

prognosis) are identical to the corresponding steps discussed and analyzed in Chapter 

3 and Chapter 7, respectively. On the other hand, in this generalized version of the 

proposed framework, Step 2 (i.e., probabilistic load hazard analysis) accommodates 

the probabilistic characterization of different loading scenarios (i.e., not only 

maneuver-induced and turbulence-induced loads as undertaken in Chapter 4). Step 3, 

namely probabilistic damage evolution analysis, is nearly identical to its counterpart 

described in Chapter 5, but it now uses different loading information (due to the 

changes in Step 2). Finally, Step 4 (i.e., probabilistic global performance analysis) 
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allows for the consideration of a broader spectrum of global performance 

measures/metrics (i.e., not only flutter and limit cycle oscillation velocities as 

originally presented in Chapter 6). 

The numerical application presented in Chapter 8 and the first one of Chapter 

9, use a simple benchmark structure consisting of a simply supported composite beam 

made out of two identical unidirectional laminated composite adherends with solid 

rectangular cross section. These two adherends are bonded together through an 

idealized (but imperfect) zero-thickness adhesive interface/layer that is recognized as 

the unique damageable sub-component of the composite beam. The debonding process 

along the adhesive interface is considered as the only damage mechanism evolving in 

time and is assumed to be driven by a dynamic concentrated load applied at the beam 

midspan. Furthermore, two debonding fronts, propagating from the two end supports 

(i.e., from the beam ends) towards the beam midspan, are considered in the application 

examples provided. In Chapter 8, the damage propagation process along the adhesive 

interface is postulated to follow an exponential law, while in Chapter 9, a damage 

propagation model (Forman’s model) based on linear elastic fracture mechanics 

(LEFM) principles is successfully used within the proposed framework. In the third 

numerical application, a set of experimental fatigue test data, obtained from the 

literature, is used to provide a first experimental validation of the proposed damage 

prognosis framework, with special emphasis on the recursive Bayesian inference 

scheme and the probabilistic damage evolution analysis step. The dataset used consists 
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of 68 crack propagation trajectories obtained from a series of fatigue tests performed 

on center-cracked 2024-T3 aluminum plates.  

The three benchmark applications provided in chapters 8 and 9 of the thesis, 

and briefly recalled above, allowed for: 

(i) Verifying and validating the proposed recursive Bayesian inference scheme 

used to update both damage extents and damage evolution model parameters, 

with the measured damage sizes representing an indicator of the stage of 

formation of a particular failure mechanism; 

(ii) Illustrating the use of the proposed probabilistic load characterization and 

superposition analysis, thoroughly discussed in Chapter 4 and in Section 8.3.2 

in Chapter 8; 

(iii) Evaluating the computational cost of the probabilistic damage propagation 

analysis step and the approximations introduced by the proposed simplifying 

assumptions introduced in the numerical implementation of the proposed 

damage prognosis framework (see Chapter 9); 

(iv) Assessing the correctness and effectiveness of the proposed local and global 

component failure criteria, used in the component reliability analyses and 

thoroughly analyzed in Chapter 7 and Chapter 8; 

(v) Quantifying the precision and confidence levels of the damage prognosis 

results obtained by making use of the enhanced state-of-the-art expressions for 

the uni-modal bounds of the probabilities of system failure and false-call, 

defined and derived in Chapter 7 and Chapter 8. 
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(vi) Validating the proposed recursive Bayesian inference scheme and the 

probabilistic damage evolution analysis step with a large dataset of 

experimental fatigue test data obtained from the literature. 

The success of combined SHM-DP methodologies, aimed at providing an 

optimal structural health management over the entire service life of a given structural, 

mechanical, aerospace, or automotive system, can be quantified through different 

measures such as (i) total cost reduction to the owner, (ii) reduction in the number of 

maintenance-hours per operational hour, (iii) reduction in system downtime, (iv) 

extension of system service life, and (v) enhancement of system reliability. Under this 

perspective, the damage prognosis framework proposed in this research work 

constitutes an essential tool to accomplish these objectives through a condition-based 

and cost-efficient maintenance that uses real-time NDE data, collected during the 

regular operation of the system, to prioritize and optimize maintenance resources, i.e., 

to perform maintenance only upon the evidence of need. 

10.2. Summary of major findings and novel contributions 

The field of SHM-DP for civil, mechanical, and aerospace structures and 

infrastructures is a complex and multidisciplinary emerging research field. Technical 

expertise and advanced knowledge from different engineering fields must be 

synergically combined together in order to be able to successfully deploy an efficient 

and robust SHM-DP system. Under this perspective, the proposed reliability-based 

damage prognosis methodology developed and analyzed in this thesis, represents an 

advanced and flexible analysis tool rigorously integrating in a meaningful and 
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powerful manner (i) probabilistic treatment of (local) NDE inspection results, (ii) 

recursive Bayesian inference, (iii) damage evolution prediction, (iv) state-of-the-art 

component and system reliability analyses, and (v) decision making for optimal life-

cycle cost management.  

The principal contributions and the major findings of this research work are 

summarized below: 

(i) The proposed framework is formulated to allow direct consideration of the 

uncertainties related to: NDE detection and measurement capabilities, material 

model parameters, damage evolution model parameters, and future operational 

loads. Modeling uncertainties could also be included in the framework; 

however, this topic is not included in this thesis. 

(ii) The proposed recursive Bayesian inference scheme is capable of repeatedly 

updating the joint probability distribution functions (PDFs) of damage sizes 

and damage evolution model parameters. This updating operation is performed 

in a simultaneous fashion every time new NDE results become available and 

are incorporated into the framework. This research work shows the consistent 

benefits provided by a full recursive updating scheme (i.e., when the PDFs of 

both, damage sizes and damage evolution model parameters, are 

simultaneously updated) as opposed to a partial recursive Bayesian updating 

scheme (i.e., an updating scheme in which only the joint PDF of the damage 

sizes is updated). These benefits can be quantified in terms of uncertainty 

reduction in the posterior PDFs of damage sizes and damage evolution model 
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parameters, computed through the proposed updating scheme presented in 

Chapter 3. Additionally, the discrepancy between the predicted (based on the 

posterior PDFs) and the true values of the variables/parameters of interest can 

also be used to qualitatively evaluate the advantages offered by a full updating 

scheme. This proposed Bayesian updating approach permits to remain in touch 

with reality by exploiting the data collected from an envisioned continuous 

NDE monitoring system. Using this Bayesian framework, an initial probability 

model of a given set of engineering quantities (i.e., damage sizes and/or 

damage evolution model parameters) can be tuned into reality by processing 

observational information. 

(iii) The proposed recursive Bayesian inference scheme can incorporate various 

NDE detection and sizing capabilities, from the least capable to continuous 

resolution NDE techniques. The least capable NDE technique provides only 

binary outputs (i.e., either damage detected or damage not detected) whereas a 

continuous resolution NDE technique, once damage is detected, can also 

quantify its extent. This quantification is affected by systematic and random 

measurement errors that need to be accounted for by using a so-called damage 

size measurement model (sometimes referred to as sizing model). A linear 

damage size measurement model, available in the literature, was used 

throughout this thesis; however, as discussed in Chapter 3, other damage size 

measurement models can be used and easily incorporated within the proposed 

Bayesian updating scheme. The observations made in this paragraph 
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demonstrate the versatility and the flexibility of the proposed recursive 

Bayesian inference scheme. 

(iv) When a large amount of NDE results becomes available, the posterior PDFs of 

damage sizes and damage evolution model parameters, obtained from the 

proposed Bayesian updating scheme, are no longer influenced by the particular 

choice of the initial prior PDFs of damage sizes and damage evolution model 

parameters (i.e., those PDFs assigned at the beginning of the damage prognosis 

analyses on the basis of engineering judgment). A brief comparison study 

validating this statement is provided in Section 8.5.2 in Chapter 8.  

(v) The influence of the number of NDE measurements and their precision 

(quantified through the standard deviation of the random measurement error) 

on the variance of the posterior PDF of the damage sizes is investigated in 

Section 8.5.3 in Chapter 8. As more and more data are collected, the variance 

of the posterior marginal PDFs of the damage sizes tend to become 

proportional to the inverse of the number of measurements. 

(vi) Within the proposed component reliability analyses, introduced and thoroughly 

discussed in Chapter 7, various failure and false-call criteria are proposed by 

considering both, local and global, component level failures. Among  them, the 

local component failure criterion, based on the level-of-safety (LOS) 

formulation with single NDE inspection opportunity, was recalled in Chapter 7 

and, together with its dual counterpart (i.e., the false call event at the local 

component level based on the LOS formulation with single NDE inspection 
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opportunity), was efficiently incorporated in the proposed damage prognosis 

framework. This fact shows that results and theoretical developments from 

previous research work can be embedded into the proposed analysis 

framework. 

(vii) The criteria for local component failure and false-call, based on the LOS 

formulation with single NDE inspection opportunity, are extended to the more 

general case in which multiple NDE inspection opportunities can be 

envisioned. Expressions for the probability of failure and false-call, associated 

with this failure and false-call criteria/events, are provided in Chapter 7. 

(viii) Three distinct criteria for the probability of failure and two distinct criteria for 

the probability of false-call (at the overall system level) are provided in the 

discussion of the proposed system reliability analyses (see Section 7.5 in 

Chapter 7). Brief comparison studies analyzing the tightness of the proposed 

lower and upper uni-modal bounds are provided in Chapter 8. 

(ix) The proposed failure criteria mentioned in parts (vii) and (viii) provide 

mathematical expressions for the limit state functions (at both component and 

system level) to be used when sample representations of the PDFs involved in 

the analyses are used. This is a very crucial point because it essentially states 

that the proposed framework can be readily adopted when Markov Chain 

Monte Carlo (MCMC) methods are used. 
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10.3. Recommendations for future research work 

Based on the research work performed and presented in this thesis, several 

research topics and potential new research outlets in need of future work have been 

identified and hereafter summarized: 

(i) The benchmark applications presented in this thesis, although enclosing the 

essential ingredients to mathematically engage all the five analytical steps 

of the proposed damage prognosis framework, do not involve any 

aerodynamic load modeling or fluid-structure interaction (FSI) response 

analysis. In the near future this research task must be undertaken to further 

verify and validate the proposed damage prognosis framework. 

(ii) The results obtained from the application examples presented in Chapter 8 

and Chapter 9 use a single realization of the NDE measurements at each 

inspection opportunity. Therefore, it is of interest studying the statistical 

variability of Bayesian inference, damage evolution, global performance, 

and component and system reliability analysis results. This objective is 

accomplished by generating an ensemble of NDE inspection results at each 

inspection opportunity, applying the proposed framework for each of these 

realizations (as described in Chapter 8 and Chapter 9), and evaluating the 

statistics of the response quantities of interest, such as lower and upper 

bounds of the probabilities of failure and false-call, across the ensemble of 

NDE measurements. 
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(iii) The overall computational feasibility, consistency, and robustness of the 

proposed damage prognosis framework need to be verified within the use 

of advanced MCMC methods. These methods use sample representations 

of all the random quantities involved in the uncertainty quantification and 

propagation process throughout the proposed framework. Their use is 

strongly recommended when dealing with a high-dimensional parameter 

space which, for the specific topic discussed in this thesis, translates into a 

large number of damage locations, damage mechanisms, as well as 

multiple material model and damage evolution model parameters. 

(iv) The third analysis step of the proposed framework, namely damage 

evolution analysis, must be further verified by analyzing a fully coupled 

multi-site fatigue damage growth process. An example of a benchmark 

structure that could be used to verify and validate the third step of the 

proposed methodology under these more general and complicated 

constraints is provided in Appendix G. 

(v) The use of mechanics-based damage models, calibrated and validated 

through experimental fatigue test data, can also be considered in future 

research work. The potential use of cohesive zone models (CZMs) to 

simulate fatigue-driven damage evolution processes along the adhesive 

joints of composite bonded structures was briefly discussed in Chapter 2 

and Chapter 5. These types of models are embedded in the full finite 
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element model of the structure which is then used to derive more 

computationally efficient surrogate models. 

(vi) Including impact-induced damage in the proposed framework represents 

another step to be considered in future research. This addition can be 

readily included within the proposed recursive Bayesian updating scheme; 

however, more research is needed in order to have an overall efficient 

embedment of this new feature. The damage evolution and global 

performance analysis steps represent a crucial part of the framework to be 

thoroughly investigated when impact-induced damage is considered. 

Including impact-induced damage as additional source of damage initiation 

will lead to consider adaptive response surface methods within the 

proposed probabilistic damage evolution and probabilistic global 

performance analysis steps. These methods are intended to provide 

computationally efficient surrogate models that can be adapted as new 

damage locations and/or damage mechanisms randomly form during the 

structure service life. 

(vii) Integrating local NDE and global SHM data into the recursive Bayesian 

inference scheme will render the proposed damage prognosis framework 

even more robust and suitable for a broader range of applications 

(especially critical civil structures and infrastructures). 

(viii) Finally, in the near future, the proposed framework can be extended, 

verified, and validated through its application to more realistic and 
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complex structural systems such as a realistic composite UAV wing, 

offshore platforms, and composite wind turbine blades. Furthermore, 

operational loads and extreme load events — such as earthquakes, 

tsunamis, and hurricanes — should be simultaneously considered (in a 

multi-hazard analysis fashion) in future work. 
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APPENDIX A 

 

DERIVATION OF THE PROBABILITY OF 

LOCAL COMPONENT FAILURE, [ , ]
L,F p q

ijP ⎡ ⎤⎢ ⎥⎣ ⎦ , 

ACCORDING TO THE LEVEL-OF-SAFETY 

FORMULATION WITH SINGLE NDE 

INSPECTION OPPORTUNITY 

According to the local component failure event, [ , ]
L,F p q

ij , based on the level-of-

safety (LOS) formulation with single NDE inspection opportunity at time q
pt  (as 

introduced and discussed in Chapter 7), for a given/fixed value of the actual damage 

size ( , ,[ , ]) ( , ,[ , ])i j p q i j p q
a aA a= , and under the constraint ( , ,[ , ])i j p q ij

a ca a≥ , the conditional 

modal probability of local component failure, [ , ] ( , ,[ , ])
L,F p q i j p q

ij aP a⎡ ⎤
⎢ ⎥⎣ ⎦ , can be written as 

 
( ) ( ){ }[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

L,

( , ,[ , ]) ( , ,[ , ])

F p q i j p q i j p q ij i j p q ij i j p q
ij a a c m c a

i j p q ij i j p q
m c a

P a P A a A a a

P A a a

⎡ ⎤⎡ ⎤= ≥ ∩ <⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= <⎢ ⎥⎣ ⎦

 (A1) 
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Using now the total probability theorem (TPT) and the definitions of probability of 

detection (POD) and probability of non detection (PND) provided in Equations (3.1) 

and (3.3) in Chapter 3, Equation (A1) can be rewritten as 

 
( )

( )

[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L,

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

F ,

, 1

p q i j p q i j p q ij i j p q i j p q
ij a m c a a

i j p q ij i j p q i j p q
m c a a

P a P A a a D POD a

P A a a ND POD a

⎡ ⎤ ⎡ ⎤= < +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤< −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (A2) 

where D represents the detection event defined as { }( , ,[ , ]) 0i j p q
mD a >  and ND denotes 

its complement (i.e., non-detection event) defined as { }( , ,[ , ]) 0i j p q
mND a = . 

Additionally, by noticing that ( , ,[ , ]) ( , ,[ , ]) , 1i j p q ij i j p q
m c aP A a a ND⎡ ⎤< =⎢ ⎥⎣ ⎦ , Equation (A2) can 

be simplified to 

 { } ( )[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L,F 1 1 ,p q i j p q i j p q ij i j p q i j p q

ij a m c a aP a P A a a D POD a⎡ ⎤ ⎡ ⎤= − − <⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (A3) 

By recalling Equations (3.8) and (3.9) to express the conditional probability 

( , ,[ , ]) ( , ,[ , ]) ,i j p q ij i j p q
m c aP A a a D⎡ ⎤<⎢ ⎥⎣ ⎦ , the above equation used to compute [ , ] ( , ,[ , ])

L,F p q i j p q
ij aP a⎡ ⎤

⎢ ⎥⎣ ⎦  

can be further simplified to 

( ) ( )
m a

[ , ] ( , ,[ , ]) ( , ,[ , ]) (i, j,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L, A |A

0

ˆ ˆF 1 1 , ,
ij
c

ij

a
p q i j p q i j p q p q i j p q i j p q
ij a m m aP a a da POD aεϕ µ σ

+

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎡ ⎤ ⎜ ⎟= − −⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟⎢ ⎥⎟⎜⎝ ⎠⎣ ⎦
∫  (A4) 

where, by making use again of Equation (3.9) from Chapter 3, the integral between 0+ 

and ij
ca  of the function ( )m a

( , ,[ , ]) ( , ,[ , ])
A |Aˆ ˆ, ,

ij

i j p q i j p q
ma εϕ µ σ  can be expressed as 
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( )( , , [ , ]) ( , , [ , ]) ( , , [ , ])

0

( , , [ , ]) ( , , [ , ]) ( , ,

( , , [ , ])

ˆ ˆ, ,

ˆ ˆ ˆ

ˆ ˆ
1

ˆ

ˆ

ij
c

ijm a

m a m a m a

ij ij

m a

ij

a
i j p q i j p q i j p q

m mA A

ij i j p q i j p q i j
c A A A A A A

i j p q
A A

a da

a

ε

ε ε

ε

ϕ µ σ

µ µ µ

σ σ

µ

σ

+

=

⎛ ⎞ ⎛ ⎞− ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟Φ −Φ − Φ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠= −⎛ ⎞⎟⎜ ⎟⎜ ⎟Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∫
[ , ])

( , , [ , ])

ˆ

ˆ

ˆ

ij

m a

ij

p q ij
c

i j p q
A A

a

ε

ε

σ

µ

σ

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟⎜ ⎟Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (A5) 

By noticing that the conditional mean ( , , [ , ])ˆ
m a

i j p q
A A
µ  can be expressed as 

( , , [ , ]) ( , ) ( , ) ( , ,[ , ])
0 1

ˆ ˆˆ
m a

i j p q i j i j i j p q
aA A

aµ β β= + , the above equation is rewritten as 

 

( )( , , [ , ]) ( , , [ , ]) ( , , [ , ])

0

( , ) ( , ) ( , ,[ , ])
0 1

( , ,[ , ]) ( , ) (
0 1

( , ) ( , ) ( , ,[ , ])
0 1

ˆ ˆ, ,

ˆ ˆ

ˆ
ˆ ˆ ˆ1 1 ; ,

ˆ ˆ
ˆ

ij
c

ijm a

ij

ij

a
i j p q i j p q i j p q

m mA A

i j i j i j p q ij
a c

i j p q i j
a

i j i j i j p q
a

a da

a a

a
a

ε

ε

ε

ϕ µ σ

β β
σ

ψ β β
β β

σ

+

=

⎛ ⎞⎟+ −⎜ ⎟⎜Φ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠− = −⎛ ⎞⎟+⎜ ⎟⎜Φ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∫

( ), ) ˆ,
ij

i j
εσ

 (A6) 

Finally, by substituting the result from Equation (A6) in Equation (A4), the 

conditional modal probability of failure, [ , ] ( , ,[ , ])
L,F p q i j p q

ij aP a⎡ ⎤
⎢ ⎥⎣ ⎦  (with ( , ,[ , ])i j p q ij

a ca a≥ ), can 

be expressed as 

 ( ) ( )[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ) ( , ) ( , ,[ , ])
L, 0 1

ˆ ˆ ˆ ˆF 1 ; , ,
ij

p q i j p q i j p q i j i j i j p q
ij a a aP a a POD aεψ β β σ⎡ ⎤= −⎢ ⎥⎣ ⎦  (A7) 

And, by taking advantage of the TPT, the unconditional modal failure probability is 

then computed as shown in Equation (A8) below: 
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( )

( ) ( ) ( ) ( )

( , ,[ , ])

( , ,[ , ]) ( , ,[ , ])

[ , ]
L,

+
[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L,

0
+

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

F

F

ˆ1

i j p q
a

i j p q i j p q
a a

ij
c

p q
ij

p q i j p q i j p q i j p q
ij a a aA

ij i j p q i j p q i j p q i j p q
c a a a aA A

a

P

P a f a da

F a a POD a f a daψ

∞

⎡ ⎤=⎢ ⎥⎣ ⎦
⎡ ⎤ =⎢ ⎥⎣ ⎦

⎡ ⎤− −⎢ ⎥⎣ ⎦

∫

( ) ( ) ( )( , ,[ , ])

+
[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
L,

ˆF i j p q
a

ij
c

p q i j p q i j p q i j p q i j p q
ij a a a aA

a

P a POD a f a daψ

∞

∞

=

⎡ ⎤ −⎢ ⎥⎣ ⎦

∫

∫

 (A8) 
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APPENDIX B 

 

DERIVATION OF THE PROBABILITY OF 

LOCAL COMPONENT FALSE-CALL, 

[ , ]
 L,

p q
ijP ⎡ ⎤⎢ ⎥⎣ ⎦F , ACCORDING TO THE LEVEL-OF-

SAFETY FORMULATION WITH SINGLE 

NDE INSPECTION OPPORTUNITY 

According to the local component false-call event, [ , ]
 L,

p q
ijF , based on the level-

of-safety (LOS) formulation with single NDE inspection opportunity at time q
pt  (as 

introduced and discussed in Chapter 7) for a given value of the actual damage size 

( , ,[ , ]) ( , ,[ , ])i j p q i j p q
a aA a= , and under the condition ( , ,[ , ])i j p q ij

a ca a< , the conditional probability 

of having a false-call (or false-alarm), [ , ] ( , ,[ , ])
 L,

p q i j p q
ij aP a⎡ ⎤

⎢ ⎥⎣ ⎦F , can be written as 

 
( ) ( ){ }[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

 L,

( , ,[ , ]) ( , ,[ , ])

p q i j p q i j p q ij i j p q ij i j p q
ij a a c m c a

i j p q ij i j p q
m c a

P a P A a A a a

P A a a

⎡ ⎤⎡ ⎤= < ∩ ≥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= ≥⎢ ⎥⎣ ⎦

F
 (B1) 
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Using the TPT and the definitions of POD and PND given in Equations (3.1) and (3.3) 

in Chapter 3, Equation (B1) can be rewritten as 

 

( )
( )

[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
 L,

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

( , ,[ , ]) ( , ,[ , ])

,

, 1

,

p q i j p q i j p q ij i j p q i j p q
ij a m c a a

i j p q ij i j p q i j p q
m c a a

i j p q ij i j p q
m c a

P a P A a a D POD a

P A a a ND POD a

P A a a D POD a

⎡ ⎤ ⎡ ⎤= ≥ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤≥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= ≥⎢ ⎥⎣ ⎦

F

( )( , ,[ , ])i j p q
a

 (B2) 

where D represents the detection event defined as { }( , ,[ , ]) 0i j p q
mD a >  and ND denotes 

its complement (i.e., non-detection event) defined as { }( , ,[ , ]) 0i j p q
mND a = . Employing 

Equations (3.8) and (3.9) to express the probability ( , ,[ , ]) ( , ,[ , ]) ,i j p q ij i j p q
m c aP A a a D⎡ ⎤≥⎢ ⎥⎣ ⎦ , the 

above equation further simplifies to 

 ( ) ( )
m a

[ , ] ( , ,[ , ]) ( , ,[ , ]) (i, j,[ , ]) ( , ,[ , ]) ( , ,[ , ])
 L, A |Aˆ ˆ, ,

ij
ij
c

p q i j p q i j p q p q i j p q i j p q
ij a m m a

a

P a a da POD aεϕ µ σ
+∞⎛ ⎞⎟⎜ ⎟⎡ ⎤ ⎜ ⎟= ⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟⎟⎜⎝ ⎠
∫F  (B3) 

where, by recalling again Equation (3.9) from Chapter 3, the integral between ij
ca  and 

+∞  of the function ( )m a

( , ,[ , ]) ( , ,[ , ])
A |Aˆ ˆ, ,

ij

i j p q i j p q
ma εϕ µ σ  can be expressed as 

 

( )m a

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])
A |A

( , , [ , ]) ( , , [ , ])

( , , [ , ]) (

ˆ ˆ, ,

ˆ ˆ
1

ˆ ˆ

ˆ ˆ

ˆ

ij
ij
c

m a m a

ij ij

m a m a

ij

i j p q i j p q i j p q
m m

a

ij i j p q i j p q ij
c cA A A A

i j p q
A A A A

a da

a a

ε

ε ε

ε

ϕ µ σ

µ µ

σ σ

µ µ

σ

+∞

=

⎛ ⎞ ⎛ ⎞− −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟−Φ Φ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠=⎛ ⎞⎟⎜ ⎟⎜ ⎟Φ Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∫

( )

, , [ , ])

( , ,[ , ]) ( , ) ( , )
0 1

ˆ

ˆ ˆ ˆ ˆ; , ,

ij

ij

i j p q

i j p q i j i j
aa

ε

ε

σ

ψ β β σ

=⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (B4) 
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Lastly, by substituting the final result of Equation (B4) into Equation (B3), the 

conditional modal probability of false-call, [ , ] ( , ,[ , ])
 L,

p q i j p q
ij aP a⎡ ⎤

⎢ ⎥⎣ ⎦F  (with ( , ,[ , ])i j p q ij
a ca a< ), 

can be expressed as 

 ( ) ( )[ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ) ( , ) ( , ,[ , ])
 L, 0 1

ˆ ˆ ˆ ˆ; , ,
ij

p q i j p q i j p q i j i j i j p q
ij a a aP a a POD aεψ β β σ⎡ ⎤=⎢ ⎥⎣ ⎦F  (B5) 

and the unconditional modal probability of false-call is then computed, by taking 

advantage of the TPT, as shown in Equation (B6) below: 

 

( )

( ) ( )

( ) ( )

( , ,[ , ])

( , ,[ , ])

+
[ , ] [ , ] ( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

 L,  L,
0

( , ,[ , ]) ( , ,[ , ]) ( , ,[ , ])

0

( , ,[ , ]) ( , ,[ , ])

1

ˆ

i j p q
a

ij
c

i j p q
a

p q p q i j p q i j p q i j p q
ij ij a a aA

a
i j p q i j p q i j p q

a a aA

i j p q i j p q
a a

P P a f a da

a f a da

a POD a f

ψ

ψ

∞
⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= −⎢ ⎥⎣ ⎦

=

∫

∫

F F

( )( , ,[ , ])
( , ,[ , ]) ( , ,[ , ])

0

ij
c

i j p q
a

a
i j p q i j p q

a aA
a da∫

 (B6) 
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APPENDIX C 

 

DERIVATION OF LOWER AND UPPER UNI-

MODAL BOUNDS TO THE PROBABILITY 

OF SYSTEM FAILURE, [ , ]
sysF p qP ⎡ ⎤⎢ ⎥⎣ ⎦ , 

ACCORDING TO THE LEVEL-OF-SAFETY 

FORMULATION WITH AN ASSUMED 

SINGLE NDE INSPECTION OPPORTUNITY 

The expression for the failure event [ , ]
sysF p q , provided in Equations (7.36) and 

(7.37) in Chapter 7, can be rewritten (using set theory language) as 

 [ , ] [ , ] [ , ]
sys local globalF F Fp q p q p q∪  (C1) 

where the two sub-events, [ , ]
localF p q  and [ , ]

globalF p q , in Equation (C1) are introduced for the 

sake of conciseness and are defined as 
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[0, ] ( , [0, ]) [0, ] ( , [0, ])
L DM L DM

[ , ] [ , ] ( , , [ , ])
local L,1 1 1 1

F F
p i p p i pn n n n

p q p q i j p q ij
ij m ci j i j

A a
= = = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎪ ⎪⎟ ⎟⎜ ⎜⎪ ⎪⎢ ⎥ ⎢ ⎥⎟ ⎟∪ ∪ ∩ ∩ ∩ <⎜ ⎜⎨ ⎬⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎟ ⎟⎪ ⎪⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
 (C2) 

 

[0, ] ( , [0, ])
G L DM

[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , , [ , ])
global G,1 1 1

( , , [ , ])
1 1 1

F F
p i p

p i p

n n n
p q p q i j p q ij

r m cr i j

n n
i j p q ij

m ci j

A a

E A a

= = =

= =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞⎪ ⎪⎟⎜⎪ ⎪⎟ ⎢ ⎥⎜ ⎟∪ ∩ ∩ ∩ <⎜⎟⎨ ⎬⎜ ⎟⎟ ⎢ ⎥⎜⎟⎜ ⎟⎪ ⎪⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎡ ⎤⎛ ⎞⎪ ⎟⎜⎢ ⎥⎟∩ ∩ ∩ <⎜⎨ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

⎫⎪⎪ ⎪⎪ ⎪⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

 (C3) 

The probability of the failure event [ , ]
sysF p q  can therefore be computed by (i) viewing 

[ , ]
sysF p q  as a series system with two reliability components ( [ , ]

localF p q  and [ , ]
globalF p q ) and (ii) 

combining lower bounds with lower bounds (i.e., [ , ]
localF p q

lowP ⎡ ⎤⎢ ⎥⎣ ⎦  and [ , ]
globalF p q

lowP ⎡ ⎤⎢ ⎥⎣ ⎦ ) and 

upper bounds with upper bounds (i.e., [ , ]
localF p q

upP ⎡ ⎤⎢ ⎥⎣ ⎦  and [ , ]
globalF p q

upP ⎡ ⎤⎢ ⎥⎣ ⎦ ) of the probabilities 

associated with the two sub-events [ , ]
localF p q  and [ , ]

globalF p q  defined above. Following this 

approach, Equation (7.38) in Chapter 7 can be retrieved:  

 ( ) ( )[ , ] [ , ] [ , ] [ , ] [ , ]
local global sys local globalmax F , F F min 1, F Fp q p q p q p q p q

low low up upP P P P P⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤≤ ≤ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (C4) 

Thus, in light of these considerations, this appendix shows the step-by-step derivations 

to obtain lower and upper uni-modal bounds for the two sub-events [ , ]
localF p q  and [ , ]

globalF p q . 

As a first step, in order to compute lower and upper uni-modal bounds for 

[ , ]
localF p qP ⎡ ⎤⎢ ⎥⎣ ⎦ , the sub-events [ , ]

L,F p q
ij  and ( , , [ , ])i j p q ij

m cA a< , in Equation (C2), are reordered in 

the following (equivalent) way 
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[0, ] ( , [0, ])
L DM [ , ]

L, 21 1
F

p i pn n
p q
iji j

E
= =

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤∪ ∪ ∩⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
 (C5) 

where the event 2E  is introduced for the sake of clarity and is defined as 

 
[0, ] ( , [0, ])
L DM

( , , [ , ])
2 1 1

p i pn n
i j p q ij

m ci j
E A a

= =

⎛ ⎞⎟⎜ ⎟∩ ∩ <⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (C6) 

Equation (C5) thus represents a series system formed by the union of A
pn  parallel sub-

systems, [ , ]
L, 2F p q

ij E⎡ ⎤∩⎢ ⎥⎣ ⎦ , with A
pn  defined as 

[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑ . The probabilities 

associated with each of the A
pn  events [ , ]

L, 2F p q
ij E⎡ ⎤∩⎢ ⎥⎣ ⎦  can be expressed as 

 

( )

( )

[ , ] ( , , [ , ]) ( , , [ , ]) ( , , [ , ])
L, 2 3 3

( , , [ , ]) ( , , [ , ]) ( , , [ , ])
3

( , , [ , ]) (

F p q i j p q ij i j p q ij ij i j p q ij ij
ij m c a c a c

i j p q ij i j p q ij i j p q ij ij
m c a c a c

i j p q ij i
m c a

P E P A a A a E P A a E

P A a A a P A a E

P A a A

⎡ ⎤⎡ ⎤ ⎡ ⎤∩ = < ≥ ∩ ⋅ ≥ ∩⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= < ≥ ⋅ ≥ ∩⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

< ∩
=

( ), , [ , ])
( , , [ , ])

3( , , [ , ])

[ , ]
L, [ , ]

L, 3[ , ]
L,

F
F

F

j p q ij
c i j p q ij ij

a ci j p q ij
a c

p q
ij p q ij

ijp q
ij

a
P A a E

P A a

P
P E

P

⎡ ⎤≥⎢ ⎥⎣ ⎦ ⎡ ⎤⋅ ≥ ∩⎢ ⎥⎣ ⎦⎡ ⎤≥⎢ ⎥⎣ ⎦
⎡ ⎤⎢ ⎥⎣ ⎦ ⎡ ⎤= ⋅ ∩⎢ ⎥⎣ ⎦⎡ ⎤⎢ ⎥⎣ ⎦

 (C7) 

where the event 3
ijE  is defined as  

 ( ) ( )
[0, ] ( , [0, ])
L DM

( , , [ , ])
3 1 1

, , ,
p l pn n

ij l m p q lm
m cl m

E A a l m i j
= =

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟∩ ∩ < ∀ ≠⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 (C8) 

Using Equation (C7) and the results reported by Fréchet (1935), it is now possible to 

provide a mathematical expression for lower and upper uni-modal bounds to the 

probability [ , ]
L, 2F p q

ijP E⎡ ⎤∩⎢ ⎥⎣ ⎦  as 
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 ( )
[ , ]

L,[ , ] [ , ] *
L, 2 L, A[ , ]

L,

F
F max 0, F 1

F

p q
ijp q p q p

ij ij ijp q
ij

P
P E P P n

P

⎡ ⎤⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤∩ ≥ ⋅ + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎡ ⎤⎢ ⎥⎣ ⎦
 (C9) 

 ( )
[ , ]

L,[ , ] [ , ] **
L, 2 L,[ , ]

L,

F
F min F ,

F

p q
ijp q p q

ij ij ijp q
ij

P
P E P P

P

⎡ ⎤⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤∩ ≤ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎡ ⎤⎢ ⎥⎣ ⎦
 (C10) 

where the mathematical relations for the two probabilities *
ijP  and **

ijP  are shown 

below in Equations (C11) and (C12), respectively. 

 ( )
[0, ] ( ,[0, ])
L DM

* ( , , [ , ])

1 1

1
p l pn n

l m p q lm
ij m c il jm

l m

P P A a δ δ
= =

⎡ ⎤= < −⎣ ⎦∑ ∑  (C11) 

 ( ) ( ) ( )** ( , , [ , ])

,
min , , ,l m p q lm

ij m cl m
P P A a l m i j⎡ ⎤= < ∀ ≠⎣ ⎦  (C12) 

with ilδ  and jmδ , in Equation (C11), being the Kronecker delta, i.e., 

 
1 if 1 if

and
0 if 0 ifil jm

i l j m
i l j m

δ δ
⎧ ⎧= =⎪ ⎪⎪ ⎪= =⎨ ⎨⎪ ⎪≠ ≠⎪ ⎪⎩ ⎩

 (C13) 

Finally, lower and upper uni-modal bounds for the probability [ , ]
localF p qP ⎡ ⎤⎢ ⎥⎣ ⎦ , with the event 

[ , ]
localF p q  defined earlier in Equation (C2), can be easily obtained by combining the results 

from Equations (C9) and (C10) with the well-known uni-modal bounds of a series 

system. These lower and upper uni-modal bounds are denoted as [ , ]
localF p q

lowP ⎡ ⎤⎢ ⎥⎣ ⎦  and 

[ , ]
localF p q

upP ⎡ ⎤⎢ ⎥⎣ ⎦ , respectively, and their mathematical expressions are provided in Equations 

(C14) and (C15). 
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 ( )[ , ] [ , ] [ , ] *
local L, L, A,

F max max 0, F 1p q p q p q p
low ij ij iji j

P R P P n⎡ ⎤⎡ ⎤⎡ ⎤= ⋅ + − +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (C14) 

 ( )
[0, ] ( , [0, ])
L DM

[ , ] [ , ] [ , ] **
local L, L,

1 1

F min 1, min F ,
p i pn n

p q p q p q
up ij ij ij

i j

P R P P
= =

⎛ ⎞⎟⎜ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎟⎜= ⋅ ⎟⎢ ⎥⎜⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎟⎣ ⎦⎣ ⎦ ⎟⎜⎝ ⎠
∑ ∑  (C15) 

On the other hand, the event [ , ]
globalF p q  can be viewed as a parallel system composed of 

A 1pn +  sub-components, with A
pn  defined as 

[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑ . Its first sub-

component, identified by the event 1E  in Equation (C3), can be viewed as a series 

system and lower and upper uni-modal bounds for the probability associated with this 

event can be expressed as 

 ( )
G

[ , ] [ , ]
G, 1 G,

1

max F min 1, F
n

p q p q
r rr

r

P P E P
=

⎛ ⎞⎟⎜⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎟≤ ≤ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎜⎣ ⎦ ⎣ ⎦ ⎟⎜⎝ ⎠
∑  (C16) 

A result that can now be used to provide lower and upper uni-modal bounds (i.e., 

[ , ]
globalF p q

lowP ⎡ ⎤⎢ ⎥⎣ ⎦  and [ , ]
globalF p q

upP ⎡ ⎤⎢ ⎥⎣ ⎦ ) for the probability of the event [ , ]
globalF p q . The mathematical 

expressions for these bounds are provided by Fréchet (1935) and their 

particularization, for the specific problem studied herein, is provided in Equations 

(C17) and (C18). 

 ( )
[0, ] ( , [0, ])
L DM

[ , ] [ , ] ( , , [ , ])
global G, A

1 1

F max 0, max F
p i pn n

p q p q i j p q ij p
low r m cr i j

P P P A a n
= =

⎛ ⎞⎟⎜ ⎡ ⎤⎡ ⎤ ⎟⎡ ⎤⎜= + < − ⎟⎜⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎟⎣ ⎦ ⎣ ⎦ ⎟⎜⎝ ⎠
∑ ∑  (C17) 

 ( )
G

[ , ] [ , ] ( , , [ , ])
global G, ,

1

F min 1, F , min
n

p q p q i j p q ij
up r m ci j

r

P P P A a
=

⎛ ⎞⎟⎜ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎟= <⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎜⎣ ⎦ ⎣ ⎦ ⎟⎜⎝ ⎠∑  (C18) 
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It is worth noting that, Equations (C17) and (C18) remain valid when the global 

component failure probabilities [ , ]
G,F⎡ ⎤⎢ ⎥⎣ ⎦

p q
rP  are replaced by [ , ]

G,F⎡ ⎤⎢ ⎥⎣ ⎦
p q
rP . 
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APPENDIX D 

 

DERIVATION OF LOWER AND UPPER UNI-

MODAL BOUNDS TO THE PROBABILITY 

OF FALSE-CALL, [ , ]
 sys

p qP ⎡ ⎤⎢ ⎥⎣ ⎦F , ACCORDING TO 

THE LEVEL-OF-SAFETY FORMULATION 

WITH AN ASSUMED SINGLE NDE 

INSPECTION OPPORTUNITY 

The expression for the false-call event [ , ]
sys

p qF , provided in Equation (7.48) in 

Chapter 7, clearly represents a combination of series and parallel systems and can be 

rearranged (using set theory language) as 

 

[0, ] ( , [0, ]) [0, ] ( , [0, ])
GL DM L DM

[ , ] ( , , [ , ]) [ , ] [ , ]
 sys L, G,1 1 1 1 1

[ , ]
local

F F

FC

p i p p i p nn n n n
p q i j p q ij p q p q

m c ij ri j i j r

p q

r

A a
= = = = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎛ ⎞⎪ ⎪⎟ ⎟⎜ ⎜⎪ ⎪ ⎟⎢ ⎥ ⎢ ⎥ ⎜⎟ ⎟∪ ∪ ≥ ∩ ∩ ∩ ∩ ∩⎜ ⎜ ⎟⎨ ⎬ ⎜⎟ ⎟⎢ ⎥ ⎢ ⎥ ⎟⎜ ⎜ ⎟⎜⎟ ⎟⎪ ⎪⎜ ⎜ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∩ ∩

F

G
[ , ]

G,1
F

n
p q
r=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 (D1) 
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where the events [ , ]
L,F p q

ij  (with [0, ]
L1, , pi n= …  and ( , [0, ])

DM1, , i pj n= … ) and [ , ]
G,F p q

r  (with 

G1, ,r n…= ) represent the complement of the failure events [ , ]
L,F p q

ij  and [ , ]
G,F p q

r , 

respectively. The event [ , ]
localFC p q , in Equation (D1), would represent the false-call event 

(at the overall system level) when only the local reliability components (or local 

failure modes) are considered. The probability of this event, herein denoted as 

[ , ]
localFC p qP ⎡ ⎤⎢ ⎥⎣ ⎦ , can be computed as 

 

[0, ] ( , [0, ]) [0, ] ( , [0, ])
L DM L DM

[0, ] ( , [0,
L DM

[ , ] ( , ,[ , ]) ( , ,[ , ])
local 1 1 1 1

1 1

FC
p i p p i p

p i p

n n n n
p q i j p q ij i j p q ij

m c a ci j i j

n n

i j

P P A a A a

P

= = = =

= =

⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎟ ⎟⎢ ⎥⎪ ⎪ ⎪ ⎪⎜ ⎜⎡ ⎤ ⎟ ⎟= ∪ ∪ ≥ ∩ ∩ < ×⎜ ⎜⎨ ⎬ ⎨ ⎬⎢ ⎥⎟ ⎟⎢ ⎥ ⎜ ⎜⎣ ⎦ ⎟ ⎟⎪ ⎪ ⎪ ⎪⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

∩ ∩
])

( , ,[ , ])

4 5 5

i j p q ij
a cA a

P E E P E

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜⎢ ⎥⎟<⎜⎨ ⎬⎟⎢ ⎥⎜ ⎟⎪ ⎪⎜⎝ ⎠⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

⎡ ⎤ ⎡ ⎤= ×⎢ ⎥ ⎣ ⎦⎣ ⎦

 (D2) 

where the two events 4E  and 5E  are introduced for the sake of conciseness, and event 

4E  in Equation (D2) can be viewed as the failure event of a series system with 

[0, ]
L ( , [0, ])

A DM1

pnp i p
i

n n
=

=∑  components. Thus, similarly to Equation (7.34) in Chapter 7, 

lower and upper uni-modal bounds for 4 5P E E⎡ ⎤⎢ ⎥⎣ ⎦  can be obtained by employing 

assumption (iii) about the damage size measurement model used in this work (see 

Chapter 3) together with the definition of the false-call event 

( ) ( ){ }[ , ] ( , ,[ , ]) ( , ,[ , ])
 L,

p q i j p q ij i j p q ij
ij a c m cA a A a< ∩ ≥F . The results, obtained according to this 

approach, are shown in Equations (D3) and (D4) below: 
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( )
( )

( )( , ,[ , ])

( , ,[ , ])
4 5 2,

( , ,[ , ]) ( , ,[ , ])

,

[ , ]
 L,

,

[ , ]
 L,

[ , ],
L,

max

max

max

max
1 F

i j p q
a

i j p q ij
m ci j

i j p q ij i j p q ij
m c a ci j

p q
ij

iji j
cA

p q
ij

p qi j
ij

P E E P A a E

P A a A a

P

F a

P

P

⎡ ⎤ ⎡ ⎤≥ ≥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤≥ ≥ <⎢ ⎥⎣ ⎦

⎛ ⎞⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎟⎣ ⎦⎜ ⎟≥ ⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎡ ⎤⎢ ⎥⎣ ⎦≥ ⎡ ⎤− ⎢ ⎥⎣ ⎦

F

F⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (D3) 

 

[0, ] ( , [0, ])
L DM

[0, ] ( , [0, ])
L DM

( , ,[ , ])
4 5 2

1 1

( , ,[ , ]) ( , ,[ , ])

1 1

min 1,

min 1,
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m c
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F
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 (D4) 

The second term on the right-hand-side of Equation (D2) — i.e., 5P E⎡ ⎤⎣ ⎦  — can be 

viewed as a parallel system for which the narrowest lower and upper uni-modal 

bounds (Fréchet, 1935) are expressed as 

 ( ) ( ) ( )( )
[0, ] ( , [0, ])
L DM

( , ,[ , ]) ( , ,[ , ])A 5
,1 1

max 0, 1 min
p i p

i j p q i j p q
a a

n n
ij p ij
c cA Ai ji j

F a n P E F a
= =

⎛ ⎞⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎟⎜ ⎡ ⎤− − ≤ ≤⎟⎜ ⎢ ⎥ ⎣ ⎦⎟⎜ ⎟⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (D5) 

or, by making use of the equivalence ( )( , ,[ , ])
[ , ]
L,1 Fi j p q

a

ij p q
c ijA

F a P ⎡ ⎤= − ⎢ ⎥⎣ ⎦ , as 



337 

 

 ( ) ( ) ( )
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[ , ] [ , ]
L, A 5 L,

,1 1

max 0, 1 F 1 min 1 F
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P n P E P
= =
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∑ ∑  (D6) 

where A
pn  denotes the dimension of the damage size vector (see Chapter 3), which can 

vary (increase) in time. Substituting the results of Equations (D3), (D4) and (D6) into 

Equation (D2) (multiplying lower bound with lower bound and upper bound with 

upper bound) yields to the lower and upper uni-modal bounds of [ , ]
localFC p qP ⎡ ⎤⎢ ⎥⎣ ⎦  provided 

in Equations (D7) and (D8).  

 ( ) ( )
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P = =
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F
 (D8) 

Finally, lower and upper uni-modal bounds for the parallel system in Equation (D1) 

defined as 
G

[ , ] [ , ] [ , ]
 sys local G,1

FC F
n

p q p q p q
rr=

⎛ ⎞⎟⎜∩ ∩ ⎟⎜ ⎟⎟⎜⎝ ⎠
F  are computed, according to Fréchet (1935), 

using the results provided above in Equations (D7) , and (D8). This approach leads to 

the final results shown in Equations (D9) and (D10) below. 

 ( )
G
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1
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n

p q p q p q
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P P P n
=
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P P P⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤≤ −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
F  (D10) 
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APPENDIX E 

 

CLOSED-FORM SOLUTION FOR THE 

MIDSPAN COMPLIANCE OF A SIMPLY 

SUPPORTED COMPOSITE BEAM WITH 

TWO DEBONDING FRONTS AND A STATIC 

CONCENTRATED LOAD APPLIED AT 

MIDSPAN 

Consider the simply-supported composite beam shown in Figure E.1. The 

beam is composed of two unidirectional laminated composite adherends, of equal 

rectangular cross section (b h× ), bonded together by an idealized (and imperfect) 

zero-thickness adhesive layer. This layer is characterized by two disbonds (starting 

from the two beam ends) of length 1a  and 2a , respectively. As a direct consequence, 

the moment of inertia of the whole beam cross section (i.e., considering both 

adherends) can be expressed as follows: 
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3 3

(0) 1 1 2 22 0  and 0
12 6
b h b hI x a x a= = ≤ ≤ ≤ ≤  (E1) 

 
( )3 3

( ) (0) 1 1 2 2

2
4 4  and 

12 6
b h b hI I a x L a x L∞ = = = ≤ ≤ ≤ ≤  (E2) 

Figure E.1: Simply-supported composite beam with two debonding fronts and 
subjected to a static concentrated static load (P) applied at its midspan. 

. 
 

The beam is subjected to a concentrated static load (P) applied at its midspan and the 

corresponding midspan deflection (function of the load intensity as well as of the two 

debonding lengths 1a  and 2a ) is denoted as w. By using the principle of virtual work, 

it is possible to find an expression for w as a function of P, 1a , 2a , and the other beam 

properties (i.e., beam cross section, beam span, 2L, and elastic flexural modulus of the 

adherends, 11
fE ).  

According to the principle of virtual work, a dummy load (Q) is applied at the 

point where the deflection needs to be evaluated. Although the dummy load Q can 

have any value/magnitude, typically a unit load is used; therefore, as a direct 

consequence, the equivalence between external and internal virtual work can be 

expressed as 

1 2(2 )L a a− −
2L

1a

,P w
disbond disbond

2a

adhesive layer

b

composite beam
cross-section

( )25 3
b h

mm
× =
×

11

composite adherends
flexural modulus: fE

1x 2x( )0 , 1,2ix L i≤ ≤ =

3

density of laminated
composite adhedends:

1.50 /V gr cmρ =

total beam mass:
56.25totM gr=
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( ) ( ) ( )
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1 2

1 1 2 2
11 1 11 20 0

1
L L

P P
Q Qf f

M x M x
Q w w M x dx M x dx

E I x E I x
⋅ = ⋅ = +∫ ∫  (E3) 

where ( )1QM x  and ( )2QM x  are the bending moments generated by the unit dummy 

load Q, while ( )1PM x  and ( )2PM x  are the bending moments produced by the real load 

P. From simple equilibrium equations, it is easy to verify how (for the beam structure 

shown in Figure E.1) the bending moments QM  and PM  have the following 

relationships: 

 
( )

( )

1
1 1

2
2 2

0
2

0
2

Q

Q

xM x x L

xM x x L

= ≤ ≤

= ≤ ≤
 (E4) 
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= ≤ ≤

= ≤ ≤
 (E5) 

Taking into account these two Equations, together with Equations (E1) and (E2), it is 

possible to rewrite Equation (E3) as 

 

1

1

2

2

1 1 1 1
1 1

11 (0) 11 ( )0

2 2 2 2
2 2

11 (0) 11 ( )0

1 1
2 2 2 2

1 1
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f f
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E I E I
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E I E I

∞

∞

= + +

+

∫ ∫

∫ ∫
 (E6) 

and then obtain the following result: 
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Finally, the beam compliance (defined in this specific case as the ratio between the 

midspan displacement and the applied load) can be expressed as 

 ( ) ( )3 3 3
1 2

1 2 3
11

2 3
,

8 f

L a awC a a
P E bh

+ +
= =  (E8) 

As a final check, by setting 1 2 0a a= = , the well-known results for a simply supported 

Euler-Bernoulli beam are recovered: 
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APPENDIX F 

 

AN OVERVIEW OF THE ENERGY 

FORMULATION IN LINEAR ELASTIC 

FRACTURE MECHANICS 

This appendix is intended to provide a brief overview of the energy 

formulation in Linear Elastic Fracture Mechanics (LEFM) and apply some of the 

fundamental results to study the debonding propagation along the adhesive interface of 

a simply supported composite beam with two debonding fronts subjected to a 

concentrated load applied at its midspan (i.e., the same benchmark structure used in 

Appendix E). The results obtained in this Appendix will then be generalized in 

Appendix G to study a more complicated structure: a two-span composite beam 

characterized by four debonding fronts and subjected to two concentrated loads 

applied at each of the two midspan locations (see Figure G.1 in Appendix G). 

In LEFM, the total potential energy, ( )Aπ , of an arbitrary cracked/damaged 

body (characterized by a linear elastic material) under a given state of deformation 

(induced by the external loads) can be expressed as (Sanford, 2003) 
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 ( ) ( ) ( ) ( )extU W SA A A Aπ = − +  (F1) 

where, ( )U A  represents the internal elastic strain energy, ( )extW A  the work done by 

the external forces, and ( )S A  the surface energy dissipated to create the cracks (or in 

a more general way the current state of damage). The vector  { }T, 1, ,i AA i nA …= =  

denotes the (new) area, inside the elastic body, created by each of the An  cracks. 

Figure F.1 is an illustration of this concept for the case of a linear elastic body with a 

single crack. 

In order for the cracked body to be in equilibrium (either stable or unstable), 

the first variation of the total potential energy must be equal to zero, i.e. 

 ( ) ( ) ( ) ( ) ( ) 0extU W S AA A A A A Aδ π δ δ δ π δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + =∇ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (F2) 

A=axb

b

,
2
wP

,
2
wP

a

A=axb

b

,
2
wP

,
2
wP

a

 

Figure F.1: Illustration of a 3-D linear elastic body with a single edge crack generating 
a new surface (internal to the body) of area equal to A = a x b. 
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where the gradient operator, A∇ , is defined as 
1 2

, , ,
AnA A AA …

⎧ ⎫⎪ ⎪∂ ∂ ∂⎪ ⎪∇ ⎨ ⎬⎪ ⎪∂ ∂ ∂⎪ ⎪⎩ ⎭
. Since 

Equation (F2) must be satisfied for any possible variation Aδ  (with the obvious 

constraint that 0, 1, ,i AA i n…δ ≥ = ), it is straightforward to rewrite the equilibrium 

condition as 

 ( ) ( ) ( ) ( ) 0extU W SA AA A A Aπ⎡ ⎤ ⎡ ⎤∇ =∇ − + =⎣ ⎦ ⎣ ⎦  (F3) 

By defining the nA-dimensional row vector ( )G A  as ( ) ( )SAG A A⎡ ⎤∇ ⎣ ⎦ , from 

Equation (F3) it is then possible to obtain the following relationship: 

 ( ) ( ) ( )extW UAG A A A⎡ ⎤=∇ −⎣ ⎦  (F4) 

where the ith component of ith — i.e., ( )iG A  — represents the strain energy release 

rated (SERR) at the tip of the ith crack. Consequently, as a logical extension, the vector 

( )G A  is hereafter referred to as the SERR vector. Under a gradually increasing 

external loading, the first component of the SERR vector ( )G A  (e.g., the jth 

component) reaching the condition ( ) crit
j jG GA ≥  — with crit

jG  being the critical 

fracture energy of the material at the jth damage location and for that particular mode 

of fracture induced by the external loading — would imply the propagation (either 

stable or unstable) of the jth crack. Furthermore, for a linear elastic continuum under a 

constant load, it is known that ( ) ( )2extW UA AA A⎡ ⎤ ⎡ ⎤∇ = ∇⎣ ⎦ ⎣ ⎦  and therefore Equation 

(F4) can be rewritten as 
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 ( ) ( ) ( ) ( )extW U UA AG A A A A⎡ ⎤ ⎡ ⎤=∇ − =∇⎣ ⎦ ⎣ ⎦  (F5) 

On the other hand, for a system under constant displacement (normally referred to as 

fixed grip in LEFM applications) the work done by the external forces is zero (i.e., 

( ) 0extWA A⎡ ⎤∇ =⎣ ⎦ ) and therefore, Equation (F4) can be simplified as 

 ( ) ( )U⎡ ⎤=−∇ ⎣ ⎦AG A A  (F6) 

The vector Equations (F5) and (F6) can be rewritten for each crack location as shown 

below in Equations (F7) and (F8), respectively: 

 ( ) ( ) ( ) ( ) 1, ,i ext A
i i i

G W U U i n
A A A

A A A A …∂ ∂ ∂= − = =
∂ ∂ ∂

 (F7) 

 ( ) ( ) 1, ,i A
i

G U i n
A

A A …∂=− =
∂

 (F8) 

For simple systems subjected to a unique external load, such as the elastic body shown 

in Figure F.1 or the simply supported composite beam with two debonding fronts 

shown in Figure F.2, it is possible to express the SERR vector as a function of (i) the 

applied external load, ( )P A , and (ii) the compliance, ( )C A , of the structure; with the 

compliance defined as the ratio between the displacement ( )w A , at the location where 

the load is applied, and the magnitude of the applied load itself, ( )P A : 

 ( ) ( )
( )

w
C

P
A

A
A

=  (F9) 

Under constant/fixed load conditions, Equation (F5) can, in fact, be rewritten as 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2

1
2

1 1
2 2

G U P w

P C P C

A A

A A

A A A A

A A A A

⎡ ⎤⎡ ⎤ ⎢ ⎥=∇ =∇⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤⎢ ⎥=∇ = ∇ ⎣ ⎦⎢ ⎥⎣ ⎦

 (F10) 

whereas under fixed displacement/grip conditions (during which the applied load is 

clearly a function of the vector A ), Equation (F6) can be recast as  

 

( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )

( ) ( )
2

2 2
2

1
2

1 1 1
2 2 2

G U P w

Cw
w P C

C C

A A

A
A A

A A A A

AA
A A A

A A

⎡ ⎤⎡ ⎤ ⎢ ⎥=−∇ =−∇⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤∇⎢ ⎥ ⎣ ⎦ ⎡ ⎤=−∇ = = ∇⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 (F11) 

which is identical to the result obtained in Equation (F10). In other words, the 

equilibrium equation — and, as a direct consequence, also the critical load at which 

the onset of crack propagation will occur — is invariant with respect to the loading 

conditions (i.e., either fixed load or fixed grip). However, these two different loading 

conditions have an important influence on the stability of the crack propagation 

process (Sanford, 2003) — an argument beyond the scope of this Appendix and 

therefore not discussed herein. 

As an illustrative example, consider the simply supported composite beam 

shown in Figure F.2. The beam is made out of two identical unidirectional composite 

laminates (adherends) bonded together. In this case, it is possible to express the (new) 

area created by each of the two disbonds as a function of the disbond lengths as 

 { } { }T T
1 2 1 2, ,A A b a aA= =  (F12) 
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Figure F.2: Simply-supported composite beam with two debonding fronts and 
subjected to a static concentrated static load (P) applied at its midspan. 
 

where b denotes the width of the beam (assumed to be constant along the entire span 

of the beam). By taking advantage of the chain rule of differentiation, the result for the 

SERR from either Equations (F10) or (F11), can therefore be rewritten  as 

 ( ) ( ) ( )
2

1
2

P
G C

b a

a
a a⎡ ⎤= ∇ ⎣ ⎦  (F13) 

By recalling the expression for the beam midspan compliance (see Appendix E), 

defined as the ratio between the midspan transversal displacement (w) and the applied 

load (P), and expressed as 

 ( ) ( ) ( )3 3 3
1 2

1 2 3
11

2 3
,

8 f

L a a
C C a a

E b h
A

+ +
= =  (F14) 

it is possible to compute the SERR vector, ( )G A ,as 

 ( ) ( ) ( ) ( ) ( ){ }
2 2 2 2 2

1 2
1 1 2 22 3 2 3

11 11

1 9 9, ,
2 16 16f f

P P a P aG C G a G a
b E b h E b ha

a
a a

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤= ∇ = =⎨ ⎬⎣ ⎦ ⎪ ⎪⎪ ⎪⎩ ⎭
 (F15) 

It is worth noting that for this simple case the relationship for the SERR at a given 

damage location only involves the disbond length at that particular location — i.e., 

1 2(2 )L a a− −
2L

1a

,P w
disbond disbond

2a

adhesive layer

b

composite beam
cross-section

( )25 3
b h

mm
× =
×

11

composite adherends
flexural modulus: fE

1x 2x( )0 , 1,2ix L i≤ ≤ =

3

density of laminated
composite adhedends:

1.50 /V gr cmρ =

total beam mass:
56.25totM gr=
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( ) ( )1 1 2 1 1,G a a G a=  and ( ) ( )2 1 2 2 2,G a a G a= . This type of result can be explained by 

noticing that the beam structure considered in this simple illustrative example is 

statically determined and therefore the value of bending moment at any cross-section 

of the beam — i.e., the only internal action needed to compute the elastic strain energy 

( )U A  — is independent of the two disbond lengths a1 and a2. 

To provide more engineering insight into the formulation and results presented 

thus far, consider a simple linear elastic structural system characterized by a single 

initial crack (of area A) and a single external driving force (P); for instance, the simply 

supported composite beam shown in Figure F.2, now characterized by a single/unique 

debonding front (i.e., at either the left- or right-end of the beam, but not at both). For 

such a simple system more insight on the crack propagation process (and the energy 

dissipated during this process) can be gained by considering two hypothetical 

experiments. In the first experiment, suppose that the external concentrate load — 

applied at the beam midspan — is kept constant (i.e., fixed load) and that, under this 

constant load of intensity 1P , the disbond propagates from A  to A A+∆  and the 

midspan deflection increases (due to the higher beam compliance) from 1w  to 

2 1w w w= +∆ . Instead, in the second experiment, suppose that the midspand 

deflection is kept constant (i.e., fixed grip) and that, under this constant deflection, 1w , 

the disbond propagates from A  to A A+∆  whereas the applied load at the beam 

midspan decreases from 1P  to 2 1P P P= +∆  (with P∆  being a negative value). Both 
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experiments are schematically represented in Figure F.3-a and Figure F.3-b, 

respectively. 

O
w1 w2

B C

From A
to A+∆A

P1

O
w1 w2

B C

From A
to A+∆A

P1

O
w1

C

B

From A
to A+∆A

P2

P1

O
w1

C

B

From A
to A+∆A

P2

P1

(a) (b) 

Figure F.3: Illustrative force-displacement diagrams to conceptually explain the 
energy dissipation (identified by the green triangles in the plots) during the crack 

propagation process in an idealized single-degree-of-freedom structure with a unique 
crack and a unique external action. (a) Fixed load, (b) Fixed displacement. 
 

Referring to the constant load experiment shown in Figure F.3-a, it is possible 

to rewrite the equilibrium condition expressed in Equation (F2) as 

 ( ) ( ) ( ) ( ) ( ) ( ) 0ext extU W S U A W A S A⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆ −∆ +∆ =∆ −∆ +∆ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦A A A  (F16) 

where the finite variation of the internal strain energy, ( )U A⎡ ⎤∆ ⎣ ⎦ , can be expressed as 

 
( ) ( ) ( )

( ) ( )

( )
2 1

1 2 1 1
1 1
2 2

U A U A A U A
Area O w C Area O w B

P w w P w

⎡ ⎤∆ = +∆ −⎣ ⎦
= −

= − = ∆

 (F17) 
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while the work done by the constant external load is equal to 

 ( ) ( ) ( )1 2 1 2extW A Area w w CB P w U A⎡ ⎤ ⎡ ⎤∆ = = ∆ = ∆⎣ ⎦ ⎣ ⎦  (F18) 

Therefore, the finite variation of the surface energy, ( )S A⎡ ⎤∆ ⎣ ⎦ , can be written as 

 ( ) ( ) ( ) ( ) ( )1
1
2extS A W A U A U A P w Area OCB⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆ =∆ −∆ =∆ = ∆ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (F19) 

In other words, half of the work done by the external force is used to increase the 

internal strain energy, while the other half is dissipated through the propagation of the 

crack. Finally, as a last step, the SERR can be expressed as a function of the finite 

variation in the beam compliance as  

 ( )
( ) 2 22 1 2 1

1 1 1
1 1 1
2 2 2

U A w w C C CG A P P P
A A A A

⎡ ⎤∆ − − ∆⎣ ⎦= = = =
∆ ∆ ∆ ∆

 (F20) 

and, by taking the limit as 0A∆ → , Equation (F10) can be retrieved.  

Focusing on the constant displacement/deflection (i.e., fixed grip) experiment 

shown in Figure F.3-b, and noticing that ( ) 0extW A⎡ ⎤∆ =⎣ ⎦ , it is possible to rewrite the 

equilibrium condition expressed in Equation  as 

 ( ) ( ) ( ) ( ) ( ) 0extU W S U A S AA A A⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆ −∆ +∆ =∆ +∆ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (F21) 

where the finite variation of the internal strain energy, ( )U A⎡ ⎤∆ ⎣ ⎦ , can be expressed as 

 
( ) ( ) ( )

( ) ( ) ( )1 1 2 1 1
1
2

U A U A A U A

Area O w C Area O w B P P w

⎡ ⎤∆ = +∆ −⎣ ⎦

= − = −
 (F22) 
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and therefore, the variation in the surface energy can be written explicitly as 

 ( ) ( ) ( ) ( )2 1 1
1
2

S A U A P P w Area OCB⎡ ⎤ ⎡ ⎤∆ =−∆ = − =⎣ ⎦ ⎣ ⎦  (F23) 

In other words, the quantity ( )U A⎡ ⎤∆ ⎣ ⎦  is dissipated through the propagation of the 

crack. Finally, as done previously, the SERR can be expressed as a function of the 

finite variation in the beam compliance as  

 

 
( ) 2 2

2 1 1 1 2 1
1

1 2 1 2

1 1
2 2 2

U A P P w C C w CG w
A A A C C C C A

⎡ ⎤∆ − − ∆⎣ ⎦=− =− =− =
∆ ∆ ∆ ∆

 (F24) 

By noticing that ( ) 2
1 2 1 1 1C C C C C C= +∆ ≅ , Equation (F24) can be approximated 

with the following relationship 

 
2

21
12

1

1 1
2 2

w C CG P
C A A

∆ ∆≅ =
∆ ∆

 (F25) 

and, by taking the limit as 0A∆ → , Equation (F11) can be retrieved. 
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APPENDIX G 

 

DERIVATION OF THE STRAIN ENERGY 

RELEASE RATE VECTOR FOR A TWO-

SPAN COMPOSITE BEAM WITH 

MULTIPLE DEBONDING FRONTS 

Consider the continuous two-span composite beam shown in Figure G.1. The 

beam is composed of two unidirectional laminated composite adherends, of equal 

rectangular cross section (b h× ), bonded together by an idealized (and imperfect) 

zero-thickness adhesive layer characterized by four disbonds of lengths 1a , 2a , 3a  and 

4a , respectively. Furthermore, for the sake of simplicity, the bondline condition is 

herein treated as a binary state: it is considered either fully damaged (i.e., with 

complete loss of adhesive strength and tangential stiffness) or undamaged (i.e., in 

pristine condition with infinite tangential stiffness). In the first case, the two composite 

adherends (each of them with rectangular cross section b h× ) can freely slip without 

friction, whereas in the second one, it is possible to consider a monolithic beam cross 
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section of dimensions 2b h× . As a direct consequence, the moment of inertia of the 

whole beam cross section with a fully damaged adhesive interface can be expressed as 

 
3 3

1 1 3 1
(0)

2 2 4 2

0 , 2 2
2

0 , 2 212 6
x a L a x Lb h b hI
x a L a x L

⎧ ≤ ≤ − ≤ ≤⎪⎪= = ⎨⎪ ≤ ≤ − ≤ ≤⎪⎩
 (G1) 

while, in the case of a pristine adhesive interface, the cross sectional moment of inertia 

can be written as 

 
( )3 3

1 1 3
( ) 1

2 2 4

22
4 4

212 6
a x L ab h b hI I
a x L a∞

⎧ ≤ ≤ −⎪⎪= = = ⎨⎪ ≤ ≤ −⎪⎩
 (G2) 

These results can also be expressed as a function of the moment of inertia of the single 

composite adherend, 3 /12aI bh= , as (0) ( ) (0)2  and 4 8a aI I I I I∞= = = , respectively. 

 

Figure G.1: Two-span composite beam characterized by four debonding fronts and 
subjected to two concentrated static loads applied at each of the two midspan points. 

 

The beam is subjected to two concentrated static loads of identical intensity (P) 

applied at the midspan points of each of the two spans of the beam. Under these 

loading conditions and using Euler-Bernoulli beam theory, the scope of this appendix 

is computing the SERR vector already introduced in Appendix F and defined as 

2 4(2 )L a a− −4a

2,P wdisbond disbond

2a
b

composite beam
cross-section

b h×

11

composite adherends
flexural modulus: fE

2x ( )0 2 , 1,2ix L i≤ ≤ =

1,P w

1x

1 3(2 )L a a− −
L

1a 3a

disbond
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A BC
L L L
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 ( ) ( ) ( ) ( )extW U U⎡ ⎤ ⎡ ⎤=∇ − =∇⎣ ⎦ ⎣ ⎦A AG A A A A  (G3) 

where, for the specific case discussed herein, the damage size vector, A, is defined as 

{ } { }T T
1 2 3 4 1 2 3 4, , , , , ,A A A A b a a a a b= = =A a . Consequently, Equation (E3) can be 

rewritten as 

 ( ) ( )1 U
b

⎡ ⎤= ∇ ⎣ ⎦aG a a  (G4) 

where the SERR vector, ( )G a , can be computed through the following three substeps: 

(i) Computation of the vertical reactions at supports A, B, and C ( AR , BR , and CR ), 

(ii) Computation of the bending moment (M ) produced by the two external loads, and 

(iii) Computation of the (damage dependent) elastic strain energy ( )U a . 

Computation of the vertical reactions at supports A, B, and C 

The vertical reaction at support C is easily computed by recalling the principle 

of virtual work (already introduced and used in Appendix E) and by applying it twice 

to the auxiliary beams shown in Figures G.2 and G.3.  

Figure G.2: Auxiliary simply-supported composite beam used to compute the vertical 
displacement at midspan (i.e., at point C) due to the real external concentrated loads. 

2x1x

2 4(2 )L a a− −4a

Pdisbond disbond
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11
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flexural modulus: fE
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1 3(2 )L a a− −
L

1a 3a

disbond
adhesive layer

A BC
L L L

y

( )0 2 , 1,2ix L i≤ ≤ =
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Figure G.3: Auxiliary simply-supported composite beam used to compute the vertical 
displacement at midspan (i.e., at point C) due to a unit dummy load Q applied at C. 

 

With reference to Figure G.2, the vertical (i.e., along the y-direction) displacement at 

point C, due to the applied (real) concentrated loads, can be computed as follows: 

 

( )

( ) ( )

31

1 3

2 4

2 4

2 22 2

C 1 1 1 1
11 11 11 110 2

2 22 2

2 2 2 2
11 11 11 110 2

3 3 2 2
1 2 3 4

4 16 16 4

4 16 16 4

6 9 36

L aa L L
P

f f f f
a a a aa L L a

a L aL L

f f f f
a a a aa L L a

Px Px PLx PLxw dx dx dx dx
E I E I E I E I

Px Px PLx PLxdx dx dx dx
E I E I E I E I

a a L a a L

−

−

−

−

⎡
⎢=− + + + +⎢
⎢⎣

⎤
⎥+ + + ⎥
⎥⎦

+ − + +
=−

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

( )2 3
3 4

11

22
96 f

a

a a L
P

E I
+ +

 (G5) 

whereas, with reference to Figure G.3, the vertical (i.e., along the y-direction) 

displacement at point C, due to the applied dummy unit load QC, is equal to 

 

( )

( ) ( ) ( )

31

1 3

2 4

2 4

2 22 2 2
1

C 1 1 1
11 11 110 2

2 22 2 2

2 2 2
11 11 110 2

3 3 3 3 2 2 2 3
1 2 3 4 3 4 3 4

11

8 32 8

8 32 8

3 18 36 16
96

L aa L

f f f
a a aa L a

a L a L

f f f
a a aa L a

f
a

x x xw dx dx dx
E I E I E I

x x xdx dx dx
E I E I E I

a a a a L a a L a a L
E I

−

−

−

−

⎡
⎢=− + + +⎢
⎢⎣

⎤
⎥+ + ⎥
⎥⎦

+ + + − + + + +
=−

∫ ∫ ∫

∫ ∫ ∫  (G6) 
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To ensure zero-displacement at support C, as it is dictated by the beam configuration 

shown in Figure G.1, the condition ( ) ( )1
C C C 0Pw R w+ =  must be satisfied. This leads to 

the following expression for the vertical reaction at support C: 

 
( ) ( ) ( )

( ) ( ) ( )

3 3 2 2 2 3
1 2 3 4 3 4

C 3 3 3 3 2 2 2 3
1 2 3 4 3 4 3 4

6 9 36 22

3 18 36 16

a a L a a L a a L
R P

a a a a L a a L a a L

+ − + + + +
=

+ + + − + + + +
 (G7) 

If 3 4 0a a= = , Equation (G7) simplifies to 

 
( )
( )

3 3 3
1 2

C 3 3 3
1 2

6 22

3 16

a a L
R P

a a L

+ +
=

+ +
 (G8) 

and, by also setting 1 2 0a a= = , the well-known result for the middle-support reaction 

(support C according to the notation used in this Appendix) of a symmetric continuous 

two-span Euler-Bernoulli beam is retrieved: 

 C
11
8

R P=  (G9) 

The reactions at supports A and B ( AR  and BR ) can be computed through simple 

equilibrium equations and are equal to 

 
( ) ( ) ( )

( ) ( ) ( )

3 3 2 2 2 3
3 4 3 4 3 4

A B 3 3 3 3 2 2 2 3
1 2 3 4 3 4 3 4

6 27 36 10

6 36 72 32

a a L a a L a a L
R R P

a a a a L a a L a a L

+ − + + + +
= =

+ + + − + + + +
 (G10) 

If 3 4 0a a= = , Equation (G10) simplifies to 

 ( )
3

A B 3 3 3
1 2

5
3 16

LR R P
a a L

= =
+ +

 (G11) 
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and, by also setting 1 2 0a a= = , the well-known result for the end-support reactions 

of a symmetric continuous two-span Euler-Bernoulli beam is retrieved: 

 A B
5

16
R R P= =  (G12) 

Computation of the bending moment produced by the external loads 

Using the results obtained thus far, expressions for the bending moment 

produced by the external loads applied to the system shown in Figure G.1 can be 

easily derived through simple equilibrium considerations. The bending moment along 

the left span (i.e., between supports A and C) can be expressed as  

 ( )
( )

C
A 1 1 1

A-C 1
C

A 1 1 1 1

0
2

2
2

R
R x P x x L

M x
R

R x P x L PL x L x L

⎧⎪⎪ = − ≤ ≤⎪⎪⎪=⎨⎪⎪⎪ − − = − ≤ ≤⎪⎪⎩

 (G13) 

whereas the bending moment acting along the right span of the beam (i.e., between 

supports B and C) takes the following (symmetric) form: 

 ( )
( )

C
B 2 2 2

B-C 2
C

B 2 2 2 2

0
2

2
2

R
R x P x x L

M x
R

R x P x L PL x L x L

⎧⎪⎪ = − ≤ ≤⎪⎪⎪=⎨⎪⎪⎪ − − = − ≤ ≤⎪⎪⎩

 (G14) 

Both ( )A-C 1M x  and ( )B-C 2M x  are therefore functions of the level of damage 

quantified by the vector { }T
1 2 3 4, , ,a a a a=a . 
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Computation of the elastic strain energy ( )U a  

 

( )
31

1 3

2 4

2 4

2 22 2 2 2
A-C A-C A-C A-C

1 1 1 1
11 11 11 110 2

2 22 2 2 2
B-C B-C B-C B-C

2 2 2 2
11 11 11 110 2

4 16 16 4

4 16 16 4

L aa L L

f f f f
a a a aa L L a

a L aL L

f f f f
a a a aa L L a

M M M MU dx dx dx dx
E I E I E I E I

M M M Mdx dx dx dx
E I E I E I E I

−

−

−

−

= + + + +

+ + +

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

a

 (G15) 

The integration of Equation (G15), performed using Mathematica®, leads to the 

following result: 

 

( ) ( ) ( )( ) ( )( ){
( )( ) ( )

( ) ( )

( ) }

2
3 3 3 3 3 3 2 2
1 2 3 4 1 2 3 4

11

22 3 3 3 3
3 4 1 2 3 4 3 4 3 4

3 3 3 3 3 4 2 2
1 2 3 4 3 4

5 6
3 4

36 108

         27 4 4 3

         24 4 4 180

         144 28

f
U a

PU a a a a L a a a a
E I

L a a a a a a a a a a

L a a a a L a a

L a a L

a
aψ

= + + − + + +

⎡ ⎤+ + + + + − +⎢ ⎥⎣ ⎦

+ + + − +

+ + +

 (G16) 

where 

 ( ) ( ) ( ) ( )3 3 3 3 2 2 2 3
1 2 3 4 3 4 3 4192 3 18 36 16U a a a a L a a L a a Laψ ⎡ ⎤= + + + − + + + +⎢ ⎥⎣ ⎦  (G17) 

If 3 4 0a a= = , then { }T
1 2,a a=a  and Equation (G16) simplifies to 

 

( )

( )
( )

1

1

2

2

22 2 2
A-C A-C A-C

1 2 1 1 1
11 11 110

22 2 2
B-C B-C B-C

2 2 2
11 11 110

3 3 32 3
1 2
3 3 3

11 1 2

,
4 16 16

4 16 16

6 7
48 3 16

a L L

f f f
a a aa L

a L L

f f f
a a aa L

f
a

M M MU a a dx dx dx
E I E I E I

M M Mdx dx dx
E I E I E I

a a LP L
E I a a L

= + + +

+ +

+ +
=

+ +

∫ ∫ ∫

∫ ∫ ∫  (G18) 
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Computation of the strain energy release rate (SERR) vector ( )G a  

The SERR vector ( ) ( ) ( ) ( ) ( ){ } ( )1 2 3 4G G G G U b⎡ ⎤= =∇ ⎣ ⎦AG a a a a a a  can 

now be derived by taking the four partial derivatives of ( )U a  — derived previously in 

Equation (G16) — with respect to 1a , 2a , 3a , and 4a : 

 ( ) ( ) ( ) ( ) ( )
1 2 3 4

1 U U U U
b a a a a

⎧ ⎫∂ ∂ ∂ ∂⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

a a a a
G a  (G19) 

The expressions for the four components of ( )G a  are listed below: 

 ( ) ( ) ( )
( )

2(1)2 2
1

1
1 11

91 U
f

a U

U a PG
b a E b I

φ
ψ

⎡ ⎤∂ ⎢ ⎥= = ⎢ ⎥∂ ⎢ ⎥⎣ ⎦

a a
a

a
 (G20) 

 ( ) ( ) ( )
( )

2(2)2 2
2

2
2 11

91 U
f

a U

U a PG
b a E b I

φ
ψ

⎡ ⎤∂ ⎢ ⎥= = ⎢ ⎥∂ ⎢ ⎥⎣ ⎦

a a
a

a
 (G21) 

 ( ) ( ) ( )
( )

2(3)2

3
3 11

1 9 U
f

a U

U PG
b a E b I

φ
ψ

⎡ ⎤∂ ⎢ ⎥= = ⎢ ⎥∂ ⎢ ⎥⎣ ⎦

a a
a

a
 (G22) 

 ( ) ( ) ( )
( )

2(4)2

4
4 11

1 9 U
f

a U

U PG
b a E b I

φ
ψ

⎡ ⎤∂ ⎢ ⎥= = ⎢ ⎥∂ ⎢ ⎥⎣ ⎦

a a
a

a
 (G23) 

where 

 ( ) ( ) ( ) ( ) ( )(1) (2) 3 3 2 2 2 3
3 4 3 4 3 46 27 36 10U U a a L a a L a a La aφ φ= = + − + + + +  (G24) 

 
( ) ( ) ( ) ( )

( )

(3) 3 3 3 3 3 2 2
3 1 2 1 2 4 3 3 4

2 2 2 3 4
3 3 4 4 3

6 3 2 3

              18 2 22 12

U a a a L a a a a a a

L a a a a a L L

aφ ⎡ ⎤= + − + − + + +⎢ ⎥⎣ ⎦
+ − + −

 (G25) 
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( ) ( ) ( ) ( )

( )

(4) 3 3 3 3 3 2 2
4 1 2 1 2 3 4 3 4

2 2 2 3 4
3 3 4 4 3

6 3 2 3

              18 2 22 12

U a a a L a a a a a a

L a a a a a L L

aφ ⎡ ⎤= + − + − + + +⎢ ⎥⎣ ⎦
+ − + −

 (G26) 

If 3 4 0a a= = , then the SERR vector, ( )G a , reduces to 

 ( ) ( ) ( ) ( ){ } ( ) ( )
1 2 1 1 2 2 1 2

1 2

1, , ,
U U

a a G a a G a a
b a a

⎧ ⎫∂ ∂⎪ ⎪⎪ ⎪= = = ⎨ ⎬⎪ ⎪∂ ∂⎪ ⎪⎩ ⎭

a a
G a G  (G27) 

And, after some simple algebraic simplifications, each of its two components — i.e., 

( )1 1 2,G a a  and ( )2 1 2,G a a  — can be expressed as 

 ( ) ( ) ( )
( )

22 6
1 2 1

1 1 1 2 23 3 31 11 1 2

,1 75,
16 3 16

f
a

U a a aP LG G a a
b a E b I a a L

∂
= = =

∂ ⎡ ⎤+ +⎢ ⎥⎣ ⎦
a  (G28) 

 ( ) ( ) ( )
( )

22 6
1 2 2

2 2 1 2 23 3 32 11 1 2

,1 75,
16 3 16

f
a

U a a aP LG G a a
b a E b I a a L

∂
= = =

∂ ⎡ ⎤+ +⎢ ⎥⎣ ⎦
a  (G29) 

Equations (G20) through (G23), or Equations (G28) and (G29) for the simpler 

case in which 3 4 0a a= = , essentially state that the applied SERR at a given 

debonding front is a function of all the components of the damage size vector a and 

not only of the damage extent associated with that particular debonding front. As a 

direct consequence of this result, the fatigue-driven debonding propagation is a fully 

coupled process. For example, if the structural system shown in Figure G.1 is 

considered and Paris law (Paris and Erdogan, 1963) is used to simulate the debonding 

propagation process induced by the loading cycles, the system of (four) first-order 

ordinary differential governing this process can be written as 
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎡ ⎤⎪ ⎢ ⎥⎣ ⎦⎪⎪⎪⎪ = =⎪⎪⎪⎪⎪ = =⎪⎪⎪⎪ = =⎪⎪⎪⎪⎪ = =⎪⎪⎩

 (G30) 

where iC and im  (with 1,2,...4i= ) are the Paris law constants, [ , ]p t
ia  (with pt t≥  

1,2,...4i= ) represent the predicted debonding lengths at time pt t≥ , and p
ia  (with 

1,2,...4i= ) constitute the initial debonding lengths at initial time pt  (e.g., current time 

immediately after the last NDE inspection, as described in Chapters 5 and 8). 
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