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Shot-Noise Seeded Microbunching Instability:
Second-Order Correction to the Gain Function

Marco Venturini
Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720

Abstract

We determine the second-order correction to the gain function of the microbunching instability in single-pass systems
of interest for the next generation of light sources. The calculation applies to the case where the instability is seeded
by shot noise. We examine an analytically treatable model of beam dynamics where collective forces are active only
in non-dispersive sections of the linac. We find that the second order term can augment the linear gain significantly
while affecting the spectrum of the overall gain only marginally. The weight of the second-order correction relative to
the linear gain is found to scale quadratically with respect to R56. The qualitative behavior predicted by the model
is consistent with exact numerical solutions of the Vlasov equations for realistic lattices.

Key words:
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1. Introduction

The microbunching instability can be an impor-
tant factor limiting beam quality and hence perfor-
mance of FEL-based 4th generation light sources
[1–8]. The drive linac for a single-pass FEL acts as
a noise amplifier for density modulations present
in the beam at injection. The noise amplification
results from collective effects (mostly longitudinal
space-charge) and the non-zero dispersion generated
by the magnetic chicanes used for bunch compres-
sion. The gain function for this instability is fairly
broadband and delimited at small wavelengths by
phase-space mixing due to finite beam energy spread
and transverse emittance.

An estimate of the gain function through a chi-
cane for a 1D model of beam and simplified dynam-
ics was first reported in [2]. Further refinements have
allowed for account of a finite transverse emittance
and a more comprehensive inclusion of collective ef-
fects [3,4]. The analysis in the latter references is

limited to the linear approximation, where ‘linear’
means first order with respect to the strength the
interparticle forces. The analysis in [2] includes non-
linearities but takes into consideration only a sin-
gle initial sinusoidal perturbation to the beam den-
sity. For typical 4th generation light-source param-
eters nonlinear corrections to the gain function for
single sinusoidal modes are usually irrelevant. How-
ever, nonlinear corrections can be important if the
spectrum of the perturbation is broad band. We
came across this realization in our studies of the mi-
crobunching instability using a recently developed
Vlasov solver [9,8,10]. We have been interested in
characterizing the effect of shot noise, the fluctua-
tions in the beam density due to the granularity of
the elementary charge. Under certain conditions we
found that amplification of shot-noise could be a few
times larger than predicted by linear theory.

Because of its nonlinear nature an accurate mod-
elling of this phenomenon requires recourse to nu-
merical methods. However, we can gain useful in-
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sight by considering a simplified but analytically
treatable model of beam dynamics. The model we
discuss in this paper is similar to that considered in
[2] but is extended to include the case of instabil-
ities seeded by density perturbations with uniform
power spectrum.

The possibility that the gain function for the
microbunching instability can be enhanced by non-
linearities is easier illustrated by considering the
presence of just two modes in the noise spectrum,
say with wavenumbers k1 and k2. Assuming that
the beam has a gaussian energy spread with rms
relative energy σδ linear theory indicates that the
amplitude of a mode with wavenumber k is expo-
nentially suppressed at high frequency by a factor
exp(−C2k2R2

56σ
2
δ/2) where R56 is the entry of the

transfer matrix relating longitudinal slippage to
energy deviation and C is the compression fac-
tor through the dispersion region. Suppose that
CkR56σδ À 1 for both k = k1 and k = k2. Linear
theory would predict an effectively complete damp-
ing of both modes. However, second-order coupling
generates harmonics with wavenumbers k1 + k2

and k1 − k2. If k1 and k2 are sufficiently close that
C|k1 − k2|R56σδ is of the order of unity the mode
with frequency k1 − k2 will escape exponential at-
tenuation and can appear in the bunch spectrum
at the end of the dispersive region. A more detailed
discussion of this simple two-harmonic model is
sketched in Sec. 3. An estimate of the gain func-
tion through second order for perturbations with
uniform power spectrum is worked out in Sec. 4. A
discussion of a numerical example follows in Sec. 5.

2. The model

We consider a model of linac consisting of a
straight section of length Ls followed by a disper-
sive region with the bunch compressor. We denote
with s0 the arclength coordinate at the start of the
straight section and s1 = s0 + Ls the coordinate at
the start of the dispersive region. In the numerical
examples we discuss in Sec. 5 the dispersive region
will consist of two chicanes but in the analytical
calculation one need not be specific regarding the
layout of the magnetic compressor as our results
will depend only on R56 at the observation point.
A simplifying assumption is to include only the ef-
fect of collective forces in the straight channel while
neglecting those originating within the dispersive
region. This is not unreasonable as in practical

cases the contribution from the latter tends indeed
to be smaller but this assumption will lead to some
underestimate of microbunching. We also assume a
2D (longitudinal) model of beam phase space ne-
glecting the dynamical effects due to a finite trans-
verse emittance. However, this does not add further
simplification as a finite beam transverse emittance
plays a role in the dynamics of microbunching only
if collective effects in the dispersive region are ac-
counted for. The transverse beam size enters into
the model only through determination of the longi-
tudinal electric field due to space-charge.

At the start of the straight section s = s0 the
beam has a gaussian density in energy

f(z, δ; s0) = Nbρ(z; s0)
e−[δ−h0z]2/2σ2

δ√
2πσδ

, (1)

with rms relative energy spread σδ. In the above
equation Nb is the number of particles in the
bunch, h0 is the initial energy chirp. The beam
density is (on average) a flat top with length Lb,
i.e. ρ(z) consists of a uniform part ρ0 = 1/Lb

plus a random zero-average perturbation. The nor-
malization is

∫ Lb/2

−Lb/2
ρ(z; s0)dz = 1. We will de-

note the linear particle density as nb = Nb/Lb.
We assume periodic boundary conditions and
write the longitudinal density as a Fourier se-
ries ρ(z; s0) =

∑∞
n=−∞ ρ̃n(s0)eiknz with ρ̃n(s0) =

L−1
b

∫ Lb/2

−Lb/2
e−iknzρ(z; s0)dz and wavenumbers kn =

2πn/Lb. Assuming ultrarelativistic dynamics (rel-
ativistic factor γ À 1) the longitudinal density
ρ(z) can be regarded as ’frozen’ as the beam trav-
els through the straight section between s0 and
s1. By the time the beam reaches the entry of the
dispersive region at s1 the random perturbations
in the charge density have generated the following
z-dependent relative energy modulation

g(z) =
∞∑

n=−∞
g̃neiknz (2)

with

g̃n = −e2NbLs

mcγ
Z(kn)ρ̃n(s0) (3)

where γ is the relativistic factor of the beam at s =
s1 and Z(kn) is an impedance per unit length de-
scribing the collective forces.

For the impedance we assume the model of longi-
tudinal space charge [11,7,12]:
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Z(k) =
iZ0

πγ∗rb

1− ξK1(ξ)
ξ

∣∣∣∣
ξ=krb/γ∗

, (4)

where Z0 = (ε0c)−1 ' 120π Ω is the vacuum
impedance and K1 the modified Bessel function.
This model applies to a beam with uniform trans-
verse density and circular cross section of radius
rb. A more accurate modelling would require inte-
grating (4) with respect to energy to account for
possible acceleration through the straight section.
In the following we will content ourselves with using
the space charge impedance in the form (4) with
relativistic factor γ chosen to be an effective value
γ = γ∗, between the values of γ before and after
acceleration.

3. One and two-harmonic perturbation of
initial beam density

Here we are interested in the Fourier spectrum
of the beam longitudinal density evolving from an
initial beam charge density seeded with one or two
sinusoidal perturbations.

As the beam travels through the straight section
from s0 to s1 the density function in the longitudinal
phase space evolves to f(z, δ; s1) = f(z, δ−g(z); s0),
where f(z, δ; s0) is given by Eq. (1). 1 Next, as the
beam travels into the dispersion region s > s1 the
density evolves to f(z, δ; s) = f(z−R56δ, δ; s1). We
can then compute ρ(z; s) =

∫∞
−∞ dδf(z, δ; s) and

find for s > s1

ρ(z; s)'C
∑

n 6=0

ρ̃neiCknze−(R56Ckn)2/2

+
Cρ0√

2π

∞∫

−∞
dte−[t−g(zC−R56tC)]2/2, (5)

where C = 1/(1− h1R56) is the compression factor
and to keep notation compact we have introduced
the scaled quantities R56 = R56σδ, and g(z) =
g(z)/σδ. In cases of interest the first term on the
RHS is generally small and will be neglected in our
analysis.

Suppose the initial perturbation to the beam den-
sity consists of a single sinusoidal perturbation with
wavenumber k = km generating an energy modula-
tion g(z) = A sin(kz) by the time the beam reaches
the beginning of the dispersion region. The integral

1 It is also understood that the chirp coefficient in f(z, δ; s1)
is h1, generally different from h0.

in the second term in the RHS of (5) can be repre-
sented as a Fourier series yielding [2]

ρ(z; s) = Cρ0[1 + 2
∞∑

n=1

Jn(nα)e−n2β2/2 cos(nCkz)],

where Jn is the Bessel function, β = CkR56 and
α = Aβ. The above formula shows generation of an
infinite spectrum of harmonics. However, for large
k, or β À 1, higher order harmonics are effectively
suppressed and only the n = 1 harmonic is signif-
icant. In cases of interest it is usually α ¿ 1 and
therefore ρ(z; s) ' Cρ0[1 + Aβe−β2/2 cos(Ckz)].

Now, suppose that the initial perturbation con-
sists of two harmonics with wavenumbers k and k′

and same amplitude g(z) = A sin(kz) + A sin(k′z).
Through second order in A:
∞∫

−∞
dte−(t−g)2/2 =

√
2π −

∞∫

−∞
te−t2/2gdt

+
1
2

∞∫

−∞
(t2 − 1)e−t2/2g2dt +O(g3).

(6)

The resulting first-order term for ρ(z; s) reads
Cρ0A[exp(−β2/2) cos(Ckz)+exp(−β′2/2) cos(Ckz′)],
where β = CkR56 and β′ = Ck′R56, and follows
from linear superposition of the first-order single-
harmonic spectra. As for the second-order term we
have

A2

4
[(2β)2e−(2β)2/2 cos(2Ckz)

+ (2β′)2e−(2β′)2)/2 cos(2Ckz′)

+ (β + β′)2e−(β+β′)2/2 cos[C(k + k′)z]

+ (β − β′)2e−(β−β′)2/2 cos[C(k − k′)z]. (7)

Observe that if β À 1 and β′ À 1 the first-order
terms as well the first three terms in the expression
(7) are exponentially small while the last term in (7)
can be significant if β − β′ is of the order of unity.
We conclude that that perturbation harmonics that
would individually be first-order suppressed can still
contribute to the low-frequency region of the spec-
trum through nonlinear coupling.

4. Amplification of Shot Noise

We now consider the case of a beam density per-
turbation with broad spectrum. More specifically,
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we are interested in the evolution of the fluctua-
tions in the initial beam density due to the granular-
ity of the elementary charge (shot noise). The noise
(see Appendix A) is delta-correlated, 〈[ρ(z, s0) −
ρ0][ρ(z′, s0)− ρ0]〉 = (NbLb)−1δ(z− z′) yielding the
uniform power spectrum, 〈ρ̃nρ̃m〉1/2 = δnmρ̃, where
ρ̃ ≡ (Lb

√
Nb)−1 = ρ0/

√
Nb. In the above expres-

sions 〈·〉 represents averaging over realizations of the
the noise.

Having determined the Fourier coefficients of the
beam density ρ(z; s) at s

ρ̃n(s) =
C

Lb

Lb/2C∫

−Lb/2C

e−iCknzρ(z; s)dz (8)

we define the amplification (or gain) function for the
microbunching as the ratio

G(kn) =
〈|ρ̃n(s)|2〉1/2

Cρ0

/
ρ̃

ρ0
. (9)

In the definition (8) notice the presence of the com-
pression factor C, inserted in order to express our
results in terms of the wavenumbers before compres-
sion. It also accounts for compression of the bunch
length to Lb/C.

In preparation for the calculation of the gain
function through second order we write ρ(z; s) '
ρ(0)(z; s) + ρ(1)(z; s) + ρ(2)(z; s) as the sum of a
zero-order term (which will be irrelevant for us) and
the first-order ρ(1)(z; s) and second-order ρ(2)(z; s)
terms

ρ(1) =−Cρ0√
2π

∞∫

−∞
te−t2/2g(zC −R56tC)dt, (10)

ρ(2) =
Cρ0

2
√

2π

∞∫

−∞
(t2 − 1)e−t2/2g2(zC −R56tC)dt.

(11)

4.1. Linear Gain

From (8), (10) and (2) we find

ρ̃(1)
n (s) = iCρ0(R56Ckn)e−(CknR56)

2/2g̃n, (12)

which leads to the first-order gain function

G(1)(kn) =
〈|ρ̃(1)

n (s)|2〉1/2

Cρ̃

=
e2nbLs

mcγ
Z(kn)R56Ckne−(CknR56)

2/2, (13)

having made use of

〈|g̃n|2〉1/2 =
e2NbLs

mcγ
|Z(kn)|ρ̃. (14)

Specialized to the impedance (4) the gain reads

G(1) =
4ILs

IAγrb

1− ξnK1(ξn)
γ∗ξn

R56Ckne−(R56Ckn)2/2,

(15)

where ξn = knrb/γ∗, I = ecnb is the peak current
before compression, and IA = ec/re ' 17 kA the
Alfvén current, where re is the electron classical ra-
dius.

4.2. 2nd-Order Correction to Gain

Evaluation of the FT of the second-order term of
the density function (11) yields

ρ̃(2)
n (s) =−Cρ0

2
(R56Ckn)2e−(CknR56)

2/2
∞∑

m=−∞
g̃mg̃n−m.

(16)

To determine the gain function we need 〈ρ̃n(s)ρ̃∗m(s)〉.
Through second order (n, m 6= 0)

〈ρ̃n(s)ρ̃∗m(s)〉= 〈ρ̃(1)
n (s)ρ̃(1)∗

m (s)〉+ 〈ρ̃(1)
n (s)ρ̃(2)∗

m (s)〉
+ 〈ρ̃(2)

n (s)ρ̃(1)∗
m (s)〉+ 〈ρ̃(2)

n (s)ρ̃(2)∗
m (s)〉.

The first term on the RHS of the above equation
vanishes for n 6= m and for n = m was calculated in
Eq. (13). The second and third terms vanish. As for
the fourth term:

〈ρ̃(2)
n (s)ρ̃(2)∗

m (s)〉 ∝ 〈
∑

p

g̃pg̃n−p

∑

`

g̃∗` g̃∗m−`〉

= δnm

∑
p

〈|g̃p|2〉〈|g̃n−p|2〉. (17)

Having made use of (14) we can then write

〈|ρ̃(2)
n (s)|2〉= [G(1)(kn)]2C2

[
e2NbLs

2mcγ

]2

(R56Ckn)2 ρ̃4

×
∑

p |Z(kp)|2|Z(kn − kp)|2
|Z(kn)|2 . (18)

We replace the mode summation over the
impedance with an integral
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∑
p

|Z(kp)|2|Z(kp − kn)|2 ' Lb

2π

(
Z0

πγ∗rb

)4
γ∗
rb
F(ξn),

where the function F(ξ) is defined as F(ξ) =
F+(ξ) + F−(ξ) with

F±(ξn) =

∞∫

0

[
1− ξK1(ξ)

ξ

]2

×
[
1− |ξ ± ξn|)K1(|ξ ± ξn|)

|ξ ± ξn|
]2

dξ.

F(ξ) is about constant over the interval [−∞, 1]
where F(ξ) ' 0.11. We conclude

〈|ρ̃n(s)|2〉= [G(1)(kn)]2C2ρ̃2

[
1 +

2
πnb

(
ILs

IArbγγ∗

)2

× (R56Ckn)2
γ∗
rb

ξ2
nF(ξn)

[1− ξnK1(ξn)]2

]
, (19)

yielding the following second-order accurate gain
function [see Eq. (9)]

G(kn) = G(1)(kn)

[
1 +

2
πnb

(
ILs

IArbγγ∗

)2

× (R56Ckn)2
γ∗
rb

ξ2
nF(ξn)

[1− ξnK1(ξn)]2

]1/2

. (20)

5. Numerical Example

The gain function for the microbunching insta-
bility including nonlinear effects can be calculated
by numerical solution of the Vlasov equation gov-
erning the evolution of the beam density function
in phase space. In a Vlasov solver the beam den-
sity in phase space is represented on a grid. Shot
noise is modelled by adding a random perturbation
to a smooth initial beam density with an amplitude
chosen so as to reproduce the expected shot-noise
fluctuations present in the actual electron beam [8].
The main goal in this section is to provide an inde-
pendent check of the analytical calculation of Sec. 4
by comparison against the numerical solutions ob-
tained with a Vlasov solver [9,8,10]. We consider two
case studies.

In Case study A we use the simplified model of
dynamics underlying the analytical calculation re-
ported in the previous sections. Collective effects
(i.e. longitudinal space charge) are active only in the
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100
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in

R56=6.8 cm

linear gain

Fig. 1. Case study A (collective effects are active only in
the straight section trailing the dispersive region of the lat-
tice, as in the analytical model we have considered). The
figure shows the microbunching gain function starting from
shot noise as calculated by solving the Vlasov equation nu-
merically (gray lines) and from theory (dashed lines). For
an intermediate value of R56 (top picture) the linear theory
adequately reproduces the gain computed numerically. For
larger R56 (bottom picture) the second-order correct gain
function gives a more accurate estimates than linear theory.

straight section preceding the dispersive region with
the bunch compressor.

Case study B is for a more realistic setting where
collective effects (including coherent synchrotron ra-
diation, CSR) are active also in the dispersive region
of the lattice.

In both cases the dispersive region spanning about
30 m length consists of two adjacent and identical 4-
dipole chicanes. The transfer matrix entry R56 varies
from zero to 6.8 cm by the end of the first chicane
and to 13.6 cm by the end of the second. The beam
energy chirp is tuned so as to result in compression
factors C = 1.88 and C = 16.2 by the end of the
first and the second chicane respectively. The initial
peak current is I = 43 A corresponding to Nb =
2.15 × 109 electrons over a length Lb = 2.4 mm or
nb = 9× 1011 particles/m linear density.

The beam energy in the bunch compressor is
240 MeV. In Case study B the beam energy in the
straight section varies from 41 to 240 MeV over
a distance of Ls = 48 m. In Case study A the
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Fig. 2. Case study B (collective effects are active in both the
straight section and the dispersive region of the lattice). At
an intermediate R56 (top picture) linear theory provides a
good approximation for the gain as determined numerically
(gray line) but for larger R56 at the end of the second chicane
(bottom picture) the actual gain is significantly larger.

beam energy is kept constant though the lattice
at 240 MeV with length of the straight section
Ls = 83.6 m chosen so that the peak value of the
linear gain through the first chicane (about 100)
is comparable to that of Case study B. The initial
energy spread in both cases is 5 keV corresponding
to σδ = 2.1× 10−5 at E = 240 MeV.

The results of our calculation are shown in Fig. 1
and Fig. 2 for Case study A and B respectively.
The gray curves represent the gain of the mi-
crobunching instability as determined numerically
using the Vlasov solver. The gain is determined as
|ρ̃(s)n|/(Cρ̃), i.e. the ratio between the amplitude
|ρ̃(s)n| of the Fourier mode of order n calculated
from the beam density at s (for a single realization of
the random perturbation) and the expected ampli-
tude of the modes ρ̃ = 〈|ρ̃n(s0)|2〉1/2 = (Lb

√
Nb)−1

at the start of the straight section s0. As in Eq. (9)
the factor C normalizes the result to account for
compression. The top an bottom pictures show the
gain calculated when the beam exits the first and
second chicane respectively.

The gain curves determined numerically by solv-
ing the Vlasov equation are contrasted to the gain

curves from linear theory. In Fig. 1 we also make
a comparison with the second-order accurate gain
given by Eq. (20). Notice that the gain functions
are plotted as functions of the inverse of the ‘com-
pressed’ wavelength λ−1 = Ck/2π, relative to the
local density spectrum at s.

Linear theory appears to track quite well the gain
calculated numerically through the first chicane
while underestimating the gain at the exit of the
second chicane. In Fig. 1 the second-order correct
gain function is seen to give a better approximation,
although arguably it could be slightly overestimat-
ing the gain, a possible indication that higher-order
contributions may non be completely negligible.

In Case study B, (where account of collective ef-
fects is included in the dispersive region as well) not
only the linear gain is larger (about a factor two in
peak value) but the relative importance of the non-
linear corrections is also higher compared to Case
study A. From Fig.2 we observe that the peak value
of the gain calculated from the numerical solutions
of the Vlasov equation is about an order of magni-
tude larger than the gain predicted by linear the-
ory. Notice that in this picture we did not report
the 2nd-order correction to the gain as the simplified
model underlying the analytical formula does not
properly describe the physical system considered for
Case study B. The linear gain reported in Fig.2 was
calculated using the theory outlined in [3,4,8] with
inclusion of CSR in the bends.

6. Conclusions

Our main result is a demonstration that higher
order contributions to the microbunching gain func-
tion beyond the linear approximation may be im-
portant when the noise present in the beam density
at injection has a broad spectrum – as is the case for
the beam density fluctuations stemming form shot
noise.

A second-order correct theory for the gain func-
tion can be easily worked out for a simplified model
of beam dynamics where energy modulations in the
phase space of a relativistic beam are generated in
nondispersive regions of the lattice. The analytical
formula we have derived shows that the relative im-
portance of the second order correction to the gain
function scales quadratically with R56 suggesting
that decreasing R56 could be a way to keep the non-
linear enhancement of the gain under control if this
is found to be unacceptably large.
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Appendix A. Statistics of Shot Noise

Consider a subdivision of the beam length Lb

into N intervals of length ∆z = Lb/N . Denote
with Nj the population of electrons in the interval
z ∈ ∆z[j−1, j]. The occupation number Nj is a ran-
dom process obeying the Poisson statistics, which
can be modelled as Nj = 〈∆N〉+ 〈∆N〉1/2ηj , where
the average number of electrons 〈∆N〉 = 〈Nj〉 in
a interval ∆z is 〈∆N〉 = Nb(∆z/Lb) and ηj is
a univariate normal random process with vanish-
ing average and variance equal to unity 〈ηj〉 = 0,
〈ηiηj〉 = δij . The last equation expresses the as-
sumed lack of correlation in the fluctuations of the
number of electrons populating different intervals.
From Nbρz(zj ; s0)∆z = Nj it follows ρz(zj ; s0) =
ρ0

[
1 + ηj/〈∆N〉1/2

]
. For j 6= j′ we have for the

correlation 〈[ρz(zj ; s0) − ρ0][ρz(zj′ ; s0) − ρ0]〉 =
δjj′ρ

2
0/〈∆N〉 = (NbLb)−1(δjj′/∆z). In the limit

∆z → 0 the Kronecker is replaced by a Dirac delta
(δjj′/∆z) → δ(z − z′).

References

[1] M. Borland, Y. Chae, P. Emma, J. Lewellen, V.
Bharadwaj, W. Fawley, P. Krejcik, C. Limborg, S.
Milton, H.-D. Nuhn, R. Soliday, and M. Woodley, Nucl.
Instrum. Methods Phys. Res., Sect. A 483, 268 (2002).

[2] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl.
Instrum. Methods Phys. Res., Sect. A 483, 516 (2002).

[3] S. Heifets, G. Stupakov, and S. Krinsky, Phys. Rev. ST
Accel. Beams 5, 064401 (2002).

[4] Z. Huang and K.-J. Kim, Phys. Rev. ST Accel. Beams
5, 074401 (2002).

[5] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl.
Instrum. Methods Phys. Res., Sect. A 528, 355 (2004)

[6] T. Shaftan and Z. Huang, Phys. Rev. ST Accel. Beams
7, 080702 (2004).

[7] Z. Huang, M. Borland, P. Emma, J. Wu, C. Limborg, G.
Stupakov, and J. Welch, Phys. Rev. ST Accel. Beams
7, 074401 (2004).

[8] M. Venturini, Phys. Rev. ST Accel. Beams 10, 104401
(2007).

[9] M. Venturini, R. Warnock, and A. Zholents, Phys. Rev.
ST Accel. Beams 10, 054403 (2007).

[10] M. Venturini and A. Zholents, Modeling Microbunching
from Shot Noise Using Vlasov Solvers, to appear in
NIM-A.

[11] J. Rosenzweig, C. Pellegrini, L. Serafini, C. Ternieden,
and G. Travish, Nucl. Instrum. Methods Phys. Res.,
Sect. A 393, 376 (1997).

[12] M. Venturini, Phys. Rev. ST Accel. Beams 11, 034401
(2008)

DISCLAIMER

This document was prepared as an account of work
sponsored by the United States Government. While
this document is believed to contain correct
information, neither the United States Government
nor any agency thereof, nor The Regents of the
University of California, nor any of their
employees, makes any warranty, express or implied,
or assumes any legal responsibility for the
accuracy, completeness,or usefulness of any
information, apparatus, product, or process
disclosed, or represents that its use would
not infringe privately owned rights. Reference
herein to any specific commercial product,
process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement,
recommendation, or favoring by the United States
Government or any agency thereof, or The Regents
of the University of California. The views and
opinions of authors expressed herein do not
necessarily state or reflect those of the
United States Government or any agency thereof,
or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National
Laboratory is an equal opportunity employer.

7




