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RESEARCH ARTICLE Open Access

Noise filtering tradeoffs in spatial gradient
sensing and cell polarization response
Ching-Shan Chou1, Lee Bardwell3, Qing Nie2† and Tau-Mu Yi3,4*†

Abstract

Background: Cells sense chemical spatial gradients and respond by polarizing internal components. This process
can be disrupted by gradient noise caused by fluctuations in chemical concentration.

Results: We investigated how external gradient noise affects spatial sensing and response focusing on noise-
filtering and the resultant tradeoffs. First, using a coarse-grained mathematical model of gradient-sensing and cell
polarity, we characterized three negative consequences of noise: Inhibition of the extent of polarization,
degradation of directional accuracy, and production of a noisy output polarization. Next, we explored filtering
strategies and discovered that a combination of positive feedback, multiple signaling stages, and time-averaging
produced good results. There was an important tradeoff, however, because filtering resulted in slower polarization.
Simulations demonstrated that a two-stage filter-amplifier resulted in a balanced outcome. Then, we analyzed the
effect of noise on a mechanistic model of yeast cell polarization in response to gradients of mating pheromone.
This analysis showed that yeast cells likely also combine the above three filtering mechanisms into a filter-amplifier
structure to achieve impressive spatial-noise tolerance, but with the consequence of a slow response time. Further
investigation of the amplifier architecture revealed two positive feedback loops, a fast inner and a slow outer, both
of which contributed to noise-tolerant polarization. This model also made specific predictions about how
orientation performance depended upon the ratio between the gradient slope (signal) and the noise variance. To
test these predictions, we performed microfluidics experiments measuring the ability of yeast cells to orient to
shallow gradients of mating pheromone. The results of these experiments agreed well with the modeling
predictions, demonstrating that yeast cells can sense gradients shallower than 0.1% μm-1, approximately a single
receptor-ligand molecule difference between front and back, on par with motile eukaryotic cells.

Conclusions: Spatial noise impedes the extent, accuracy, and smoothness of cell polarization. A combined filtering
strategy implemented by a filter-amplifier architecture with slow dynamics was effective. Modeling and
experimental data suggest that yeast cells employ these elaborate mechanisms to filter gradient noise resulting in
a slow but relatively accurate polarization response.

Keywords: Noise/gradient-sensing/G-protein/cell, polarity/yeast mating

Background
Cells sense and respond to external cues in a noisy
environment [1]. These stimuli include light, nutrients,
repellents, etc. Cells must filter the signal from noise,
process the relevant information, and then mount the
appropriate response (e.g. moving, making a projection).
For chemical signals such as an attractant, a cell

measures not only the absolute concentration but also
the changes in concentration with respect to time or
space [2,3]. Noise fluctuations impede the accurate
assessment of these signal changes [4].
In bacterial chemotaxis, motile bacteria cells choose

the appropriate direction to move by sampling the con-
centration of attractant at different time points, calculat-
ing the temporal difference, and deciding to run in a
straight path or to change direction. Berg and Purcell
[5] identified diffusive noise (i.e. the fluctuating numbers
of ligand molecules diffusing into the vicinity of the cell)
as a critical challenge for this system. Several authors
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[5-7] have determined the properties of an optimal filter
for separating signal from noise in temporal sensing.
A different challenge is faced by larger cells that use

spatial rather than temporal information to orient to
chemical gradients. Examples of such cells include hun-
gry ameoba, patrolling neutrophils, swimming sperm,
growing neurons, metastasizing tumor cells, and mating
yeast. Spatial sensing entails measuring a difference in
the concentration of an external cue between the front
and back of the cell. Based on this information, the sen-
sing cell decides whether or not to polarize in the direc-
tion of the gradient. Noise in the gradient, caused by
Brownian motion, and convection, etc., can provide a
substantial challenge to spatial sensing and response
(Figure 1A).
Cell polarization refers to the behavior in which a cell

responds to an internal or external cue [8,9] by localiz-
ing components that were previously uniformly distribu-
ted. One key aspect of polarization is the amplification
needed to convert a shallow external gradient into a
steeper internal gradient [10-12]; this allows the cell to
respond decisively even to weak or shallow gradients.
The danger is that the system may amplify noise instead
of signal [13]. Three important properties of effective
oriented polarization are tight localization (amplifica-
tion), directional accuracy (tracking the gradient source),
and noise-free output (smoothness) (Figure 1A).
Chemotaxis (moving towards or away from a gradient)

involves gradient-sensing, polarization, and further
mechanical events, such as the formation of lamellipodia
at the leading edge. However, not all cells that sense
gradients and respond by polarization are chemotactic.
For example, haploid cells of the yeast S. cerevisiae,
which are non-motile, can sense an external gradient of
mating pheromone and grow a mating projection
toward the source; this phenomenon is known as che-
motropism. Thus, yeast cells represent pure spatial sen-
sors: they do not move. As with chemotaxing cells, the
initial response of yeast cells to a pheromone gradient is
polarization, as evidenced by the large number of pro-
teins that localize to the site of the incipient mating pro-
jection [14,15]. Much of the machinery that regulates
this process is well-conserved in eukaryotes from yeast
to humans, and includes both a heterotrimeric G-pro-
tein and the small G-protein Cdc42 [9,16].
Recently, Endres and Wingren [17] have extended the

previous theoretical framework [5,6] to encompass spa-
tial sensing. They calculated the ability of an immobile
sphere to measure a chemical gradient. They showed
good agreement between their theory and recent mea-
surements of the gradient-sensing of Dictyostelium cells
[2], which are motile. In the study of Dictyostelium, van
Haastert and Postma [2] derived an expression for the
signal-to-noise ratio (SNR) of sensing a chemical

gradient in terms of the slope of the gradient, receptor
affinity, integration time, and intracellular noise. In addi-
tion, Rappel and Levine [18] used Monte Carlo simula-
tions to estimate receptor-ligand binding noise, a second
important noise source, and then applied this noise
input to two chemotaxis models. They demonstrated
that this noise limited chemotactic efficiency. In a sec-
ond paper, Fuller et al. [19] further developed an infor-
mation theoretic measure of chemotactic performance
[20] and compared experimental data using Dictyoste-
lium cells to their theoretical bounds showing that at
higher concentrations and gradient slopes chemotaxis
performance was suboptimal. It is important to note
that the above studies focused on chemotactic cells and
measured performance by the chemotactic index.
There have been a number of recent results on bud-

ding, a yeast polarization behavior that is directed
toward an internal cue, the bud scar. One focus has
been on the positive feedback loops necessary for bud-
ding. Lew and colleagues have demonstrated the impor-
tance of the scaffold protein Bem1 [21,22] which
participates in what has been termed the inner positive
feedback loop [23]. Li, Altschuler and colleagues have
investigated the role of actin-mediated endo/exocytosis
directed by Cdc42 on polarized behavior [24,25], which
represents a second outer positive feedback loop. In this
paper, the emphasis is on the mating response and the
polarization response to an external cue.
Another important branch of the mating pathway is the

MAPK (mitogen-activated protein kinase) signaling sys-
tem [26,27]. After G-protein activation, free Gbg recruits
the scaffold protein Ste5, which tethers the members of
the MAPK cascade to the membrane. As a result, the
MAPKs Fus3 and Kss1 become activated. They phos-
phorylate the trancription factor Ste12 triggering the
mating transcriptional program inducing the production
of morphology proteins such Fus1 [28], and the directed
transport of mating proteins to the projection.
Here, we investigated how gradient noise affects spa-

tial sensing and response; we used a generic model as a
basis for numerical analysis, and then a yeast mechanis-
tic model along with experiments to support our points.
We focused on cell polarity and the challenge of ampli-
fying a shallow, noisy input gradient to produce a tightly
localized, directionally accurate, and relatively noise-free
output polarization. We explored various noise filtering
strategies and their tradeoffs in both gradient-sensing
and the polarization response. We performed detailed
simulations that characterized in a more quantitative
fashion the balancing of the tradeoffs, and carried out
microfluidics experiments that produced data consistent
with the simulations. We concluded that yeast cells
combine different noise filtering approaches resulting in
a slow but accurate polarization response.
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Figure 1 Effects of spatial noise on cell polarity. (A) Diagram showing input chemical gradient [L] without noise (left) and with noise (right)
plotted against axial length z. Polarity response is represented by localization of the red species. Spatial input noise makes sensing and
responding to the gradient more difficult affecting the extent, directional accuracy, and smoothness of the output polarization. (B) Spatial noise
inhibits cell polarity. Increasing the magnitude of the noise (s2 = noise variance; Lslp = 0.1 μm-1) caused a decrease in polarity of the no-positive-
feedback model (NPF) in 1D simulations. The time-average of the polarity variable a (ā) with respect to z is depicted. The dashed gray line
indicates response in the absence of input noise. (C) Spatial noise causes inaccurate polarization. In 2D simulations of the positive feedback
model (PF), the directional accuracy was measured by comparing the response peak of polarization variable a to the direction of the input
gradient. Increasing noise caused an inaccurate directional response. For each noise value, the left graph is a blue-to-red heat map representing
the value of the variable a, and the right graph plots the same data as a versus the arc length θ. (D) Increasing the gradient slope (Lslp) for a
fixed noise strength (s = 0.1) improved polarization in the NPF model. The extent of polarization (ā at front) increased with steeper gradients.
The dashed gray line represents the polarization in the absence of input noise. (E) Plot of polarization versus signal-to-noise ratio. For simulations
of the NPF model, the y-axis represents the āf values normalized by subtracting 1. The x-axis represents the signal-to-noise ratio

Lslp

σ
using a log-

scale. Data is grouped into symbols according to Lslp values as shown by the key.
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Results
Description of the generic model
Gradient-sensing and polarization response have been
proposed to require the functions of several interacting
modules [29]. These modules include a sensing module
for gradient-sensing per se, an amplification module for
amplifying a shallow external gradient into a steep inter-
nal gradient in which protein components are tightly
localized at the front of the cell, and an adaptation mod-
ule that allows the cell to sense and respond appropri-
ately over a wide range of average concentrations of the
external stimulus. We have previously developed a gen-
eral, coarse-grained mathematical model of gradient-
sensing and polarization response that allowed us to
explore the interactions and tradeoffs among these mod-
ules, as well as to investigate the roles of ultrasensitivity,
positive feedback, diffusion rates, multi-stage amplifica-
tion, and other factors in the absence of noise [12].
Because of its abstract nature, the model applies to
many different gradient-sensing scenarios, e.g. it applies
just as well to neutrophil chemotaxis as it does to yeast
mating. In this section we describe this model, and its
extension to cover noisy inputs.
The equations for the general model are

∂a
∂t

= Ds∇2
s a +

k0

1 + u−q
+

k1

1 + (pa)−h
− k2a − k3ba (1� 1)

db
dt

= k4(ã − kss)b (1� 2)

ã =

∫
s a ds
∫

s ds

p =
1

1 + (βu)−q

The key variables in this model are a and b. Variable
a represents the concentration of a membrane-bound
protein whose polarization is a marker for the cell’s
response to the gradient. Variable b implements negative
feedback regulation, as described further below. Equa-
tion 1-1 is written as a partial derivative because we are
concerned with how a changes in both time and space.
It consists of five terms that are added together. We will
consider these terms in these equations individually.
The first term describes the diffusion of a, with Ds

being the diffusion coefficient within the membrane.
The second term, which we will refer to as the ‘input

ultrasensitivity’ term, describes the rate of change of a
that depends on the external input signal u. The para-
meter k0 is a constant (i.e. fixed parameter) that deter-
mines the maximum value the input ultrasensitivity

term can take. The fractional part of the term, which

can be rewritten
uq

1 + uq
, has a minimum value of 0

(which it will obtain when there is no input, when u =
0) and a maximal value of 1 (which it will approach,
when the magnitude of the input is much greater than
1). The parameter q determines the cooperativity, or
ultrasensitivity, of the response to input, with q = 1 indi-
cating a non-cooperative, Michaelian, hyperbolic
response, and q > 1 indicating a more sigmoidal, switch-
like response. If q is large, then the input u need not be
that much larger than 1 for the fractional part of the
term to approach its maximum value of 1. One mechan-
istic interpretation of the input ultrasensitivity term is
that the fractional component represents a saturatable
ligand-receptor binding isotherm, and k0 represents the
downstream signaling activity of ligand-bound receptors.
However, the input ultrasensitivity term can also be
interpreted more abstractly as a Hill function that
describes the dose-response profile of an entire signaling
cascade.
The third term in Equation 1-1 describes the posi-

tive feedback loop, with a positively regulating its own
rate of change. This term will approach its maximum
value of k1 when the product pa is much greater than
1, or when pa is greater than 1 and the Hill coeffi-
cient h is large. The expression p represents an input-
dependent Hill term in the positive feedback loop; it
assumes values between 0 and 1 depending upon the
level of input. Because p is equal to zero when input
u is zero, p prevents the positive feedback loop from
“locking in” the absence of input. Previously [12], we
showed that making the positive feedback input-
dependent reduced the multi-stability at high positive
feedback gains (i.e. getting stuck in one direction),
thus improving the ability to track a gradient direc-
tional change.
The fourth term in Equation 1-1, -k2a, describes the

simple first order decay of a, due to, for example, bulk
protein degradation. Finally, the fifth term, -k3ba,
describes the action of the global negative feedback reg-
ulator b, with parameter k3 specifying the strength of
the feedback. A simple interpretation of this term is that
when a molecule of b collides with a molecule of a, this
may result in the inactivation of that molecule of a. The
negative regulator b may be a specific protease, or a
phosphatase that dephosphorylates and thereby inacti-
vates a, etc. Unlike a, the spatial distribution of b does
not respond to the gradient; in other words, the excita-
tion is local and the inhibition is global. It is also impor-
tant that the amount of b per cell is a variable that
depends upon the difference between the current
amount of a and a target level kss (Equation 1-2); this is
integral feedback control [12,27].
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The parameter ã is the average value of a integrated
over the cell surface and tends to kss at steady-state
because of the integral feedback. The integral feedback
ensures robust adaptation to the level of input so that
the total amount of a at steady-state is constant regard-
less of the input magnitude.
To summarize, the model contains two amplification

terms that give rise to the polarization, as well as an
integral negative feedback loop [30] to regulate the
polarization. The two generic amplification mechanisms
are an ultrasensitive dependence on the input u (k0
term), and a positive feedback loop (k1 term). With
respect to the production of a, the parameters k0 and k1
modulate the balance between the input ultrasensitivity
term and the positive feedback term. Both are formu-
lated using a Hill expression; the Hill coefficients q and
h were typically chosen in a range that allowed polariza-
tion in the absence of noise for a given gradient slope
Lslp [12]. When we performed parametric analysis on k0
and k1, we identified two distinct dynamical regimes: A
low positive feedback regime corresponding to ultrasen-
sitive amplification and a high positive feedback regime
corresponding to positive feedback amplification (see
Fig. S1, Additional file 1). Thus, we focused on two ver-
sions of the model: One in which ultrasensitivity was
dominant and one in which positive feedback was domi-
nant. The default value for the other ki parameters was
1; more model details are provided in Additional file 1.
In the second half of the paper, we relate the generic

model to a more detailed mechanistic model of yeast
cell polarity. In the generic simulations we examined
some stereotypical situations. For example, we explored
cases of extreme ultrasensitivity or extreme positive
feedback. As a result, the values of some parameters
were large, e.g. for high ultrasensitivity, the Hill coeffi-
cient q = 1000 was used. In practice, such a term could
be implemented by a cascade of three reactions, each
possessing a Hill cooperativity parameter of 10 [12].
We adopted a Langevin approach [1,31] to modeling

external gradient noise: u(x, t) = u’(x, t) + h(x, t), where
the input u is the sum of a deterministic static gradient
input u’ and a stochastic noise term h, with position
denoted by x and time by t. We used either normal or
log-normal white noise; the log-normal expression was
adopted for high noise values to prevent negative input
values (see Methods).
We employed both “one-dimensional” (axisymmetric)

and “two-dimensional” (circle) simulations; the two pro-
duced equivalent results and were used interchangeably.
The 1D simulations represented a sphere because of
symmetry considerations and more readily depicted the
extent of polarization along the axial direction. The 2D
simulations were necessary for determining the polariza-
tion direction relative to the gradient direction when

not correctly aligned. More complex geometries were
beyond the scope of this paper.

Input noise inhibits the extent, accuracy, and smoothness
of polarization
We first examined how spatial gradient noise affected
the extent of polarization (Figure 1A). This was mea-
sured by the value of a at the front of the cell (af corre-
sponds to the average value of a at the axial position z
= 1 in Figure 1B). The integral feedback ensures that
the spatial average ã~1, and thus greater amplification
and tighter localization result in a larger af. The magni-
tude of the noise was adjusted by changing its variance
s2. In the ultrasensitive model with no-positive-feedback
(NPF, k0 = 10 and k1 = 0), we observed that there was a
progressive loss of polarization as we increased s from
0.01 to 1. At s = 0.01, af ~ 2, whereas at s = 1, polari-
zation was nearly abolished, af ~ 1 (Figure 1B).
We next tested models with positive feedback (PF, k0

= 1 and k1 = 10) using 2D simulations in which the cell
was represented as a circle. In this manner, we could
assess directional accuracy by calculating the cosine of
the angle θ of the polarity peak with respect to the gra-
dient direction; cos(θ) is a typical index of mating pro-
jection directional accuracy [32] with cos(θ) = 1
indicating perfectly accurate polarization and cos(θ) = 0
indicating completely random polarization.
Indeed, the positive feedback models produced greater

polarization than the NPF models. For each simulation,
the polarization is depicted both on a circle color-coded
for a values, and via a plot of a versus arc length. As
before, increasing the noise resulted in a polarization
decrease indicated by the shallower peak, but in addi-
tion, for s = 1, the peak was not aligned with the gradi-
ent direction indicating a loss of polarization accuracy
(Figure 1C). Thus, the directional accuracy of polariza-
tion was affected by the noise.
Third, we calculated the output noise in the simula-

tions. In Figure 1B, using the NPF model (Lslp = 0.1 μm-

1), we found that increasing the input noise led to an
increase in output noise as expected. Figure 1B depicts
the spatial variations in a. There was also an increase in
the temporal variance, which we measured as the stan-
dard deviation sout in af as a function of the input noise
magnitude for four s values: (s, sout) = (0.01, 0.001),
(0.1, 0.1), (1.0, 0.18), (10, 0.23). Thus not surprisingly,
increasing the input noise led to an increase in output
noise.
It was not the magnitude of the noise alone that mat-

tered, but the magnitude of the noise with respect to
the slope of the gradient. We explored three values of
the slope in the NPF model and monitored the extent
of polarization for a fixed noise value (Figure 1D). Polar-
ization increased as we increased the slope. For a given
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ratio of gradient slope to noise magnitude the extent of
polarization was roughly equivalent (Figure 1E, Table S2
in Additional file 1). This result supports the gradient
slope dependence of the signal-to-noise ratio (SNR)
derived by van Haastert and Postma [2] and others
[17,19,33]. In addition, there was approximately a linear
relationship between af and log(SNR). However, it
should be noted that the equivalence deviated at larger
slope values (e.g. Lslp = 0.3 μm-1), which produced
higher than expected polarization values. One interpre-
tation is that the effect of noise on polarization was
reduced because less amplification was needed to con-
vert a steep external gradient into the internal
polarization.
Finally, we addressed the question of how the quality

of polarization varied as we changed the amplification in
the models. In the NPF model, increasing the Hill coef-
ficient q resulted in larger values of af, but bigger q also
increased the output noise, i.e., both signal and noise
were amplified (Table S3, Additional file 1). In the PF
model, increasing the positive feedback gain via the
parameter h, resulted in an increase in the polarization
extent af, but reduced the directional accuracy cos(θ)
(Table S3, Additional file 1). Thus, varying a parameter
can improve one aspect of polarization but detrimentally
affect another. Ultimately, one would like to combine
the various elements of polarization - extent, accuracy
and smoothness - to derive a single measure of polariza-
tion quality.

Noise filtering strategies
It is critical for a cell to operate robustly in a noisy
environment. In this section we explored filtering strate-
gies for attenuating noise during cell polarization. Pre-
vious work focused on noise reduction in non-spatial
systems [13,23,34,35], whereas we focused on filtering
spatial input noise for a spatial response. Positive feed-
back can create switch-like behavior in both non-spatial
and spatial systems, and this bistability can make a sys-
tem more robust to noise by locking the output to a
particular value [36,37]. Here we tested the effect of
positive feedback on our model of cell polarization. The
gain of the positive feedback was adjusted through the
parameters k1 and h in the positive feedback term. In
simulations with Lslp = 0.01 μm-1, and for s = 0.1, 1, 10,
we observed that increasing the positive feedback gain
resulted in enhanced polarization at higher noise values
(Figure 2A).
As noted in the previous section, higher positive feed-

back at large noise values can reduce directional accu-
racy, and we wished to combine polarization extent and
direction into a single measure to assess more quantita-
tively the benefits of positive feedback. One possible
measure is to normalize af to 0 by subtracting kss (the

value of ã at steady-state = 1), and then to multiply this
number by cos(θ) to represent the component in the
direction of the gradient: anorm

f = (af − 1) cos(θ); the lar-
ger this value indicates better polarization in the correct
direction. Using this measure for one set of input condi-
tions (Table S3, Additional file 1), we observed that high
positive feedback (h = 8, anorm

f = 0.81) did indeed signifi-
cantly outperform low positive feedback (h = 2,
anorm

f = 0.07).
A second strategy is to use multiple stages in the sig-

naling pathway in which an early part of the pathway (e.
g. first stage) acts as a filter for a later part of the path-
way (e.g. second stage) [38]; Iglesias noted that this
architecture is common in technological systems. We
tested an arrangement in which the no-positive-feedback
(NPF) module acts as a filter for a second stage positive
feedback (PF) module, which is responsible for the
amplification. We denoted this architecture as a filter-
amplifier. We observed that the noise decreased after
the filtering as a function of the integration time of the
module [39]. As a result, the two-stage models were
able to handle the noise better than the single stage
models with the same parameters (Figure 2B), showing
greater polarization extent.
Time-averaging is perhaps the best known approach

to filtering noise [13,34,39,40]. Using the two-stage
model, we scaled the rate constants 10-fold larger (fas-
ter) or smaller (slower). At the slower speeds, there was
better and more accurate polarization (Figure 2C). Two
factors contributed to this effect. First, the noise after
the first-stage showed the expected reduction in noise
variance from slower averaging [13]. In addition, the
positive feedback in the second stage was more effective
and accurate at the slower speeds. As a result, there was
a significant combined effect.
Finally, we explored whether increasing the surface

diffusion could “smooth” the output. Indeed, for higher
diffusion values, the response was less noisy. However,
there was a cost in terms of reduced polarization (Fig.
S2, Additional file 1).

Tradeoff between noise filtering and response speed
Each noise-filtering strategy improved the accuracy and
extent of polarization in the presence of spatial noise,
but at what cost? From systems theory one expects a
tradeoff with the speed of the system because a slower
frequency response profile would cutoff the higher fre-
quency noise [41,42]. We wished to examine this trade-
off in greater detail.
To assess response speed, we performed simulations

in which we applied the gradient without noise and
measured the time for the output to settle to within 5%
of the steady-state value, and then we switched the
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gradient direction and measured the settling time for
the directional change. A slower response resulted in a
longer settling time ts after both the initial and switched
gradient.
Indeed, each of the noise-filtering strategies resulted in

a slower response time (Figure 3A). Time-averaging is
achieved by slowing the system down which will slow
the response. The positive feedback system (PF, ts =
26.1 s) was slower than the system without positive
feedback system (NPF, ts = 3.2 s). Adding an additional
stage to create a two-module cascade resulted in a sum-
mation of the response times. Interestingly, adding an
NPF module in front of a PF module resulted in a big
improvement in polarization in the presence of spatial
input noise (Figure 2B) with the cost of a relatively
modest increase in the response time (NPF + PF, ts =
28.8 s) compared to PF alone.
We then explored these tradeoffs in greater quantita-

tive detail. We investigated different speeds for the

models, compared two stages versus one stage, and
examined the filter-amplifier structure of the NPF+PF
model. A common feature of the noise-filtering strate-
gies was that an improvement in polarization resulted in
a slower system response, although the nature of this
tradeoff varied. The positive feedback model exhibited
superior polarization but was slower than the no posi-
tive feedback model containing similar parameter values
(Figure 3B, NPF versus PF); a two-stage system per-
formed better but was slower than a one-stage system
(Figure 3B, NPF versus NPF+NPF or PF versus NPF
+PF); and taking a model and scaling the parameters to
a slower speed resulted in much improved polarization
(Figure 3B, NPF+PF versus NPF(slow)+PF(slow)). From
these simulations, we observed that the best combina-
tion was the NPF filter followed by the positive feedback
because the filter did not add too much time delay while
removing a significant amount of noise. As a result, the
NPF+PF filter-amplifier model produced good
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polarization at low SNR with a response time in the
same range as the single-stage model structures.

Modeling the yeast polarization response to gradient
noise
We previously [11,12] constructed a spatial model of
yeast cell polarization (Additional file 1). Here, we tested
the ability of this model to filter input noise and polar-
ize in the correct direction. The model contains many
features described for the generic model that would help
filter noise. First, the system consists of two stages: The
heterotrimeric G-protein cycle represents the first stage
which then feeds into the Cdc42 cycle, the second stage.
Second, there are two positive feedback loops, an inner
fast loop involving the scaffold protein Bem1 and the

small G-protein Cdc42, and an outer slower loop invol-
ving polarized synthesis of receptor [23,24]. Finally, the
system is slow compared to other G-protein systems
such as visual phototransduction [43]. The model is pre-
sented below:

∂[R]
∂t

= D∇2
s [R] − kRL[L][R] + kRLm[RL]

−kRd0[R] + pskRs

(2� 1)

∂[RL]
∂t

= D∇2
s [RL] + kRL[L][R] − kRLm[RL] − kRd1[RL] (2� 2)

∂[G]
∂t

= D∇2
s [G] − kGa[RL][G] + kG1[Gd][Gbg] (2� 3)
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switched the gradient direction. Response time is defined as the time it takes the simulation to settle to within 95% of the steady-state value.
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∂[Ga]
∂t

= D∇2
s [Ga] + kGa[RL][G] − kGd[Ga] (2� 4)

∂[Gbg]
∂t

= D∇2
s [Gbg] + kGa[RL][G] − kG1[Gd][Gbg] (2� 5)

∂[Gd]
∂t

= D∇2
s [Gd] + kGd[Ga] − kG1[Gd][Gbg] (2� 6)

∂[C24m]
dt

= D∇2
s [C24m] + k24cm0(Gbg∗

n)[C24c]

+ k24cm1(B1∗)[C24c] − k24mc[C24m]

− k24d[Cla4a][C24m]

(2� 7)

∂[C42]
dt

= D∇2
s [C42] − k42a[C24m][C42] + k42d[C42a] (2� 8)

∂[C42a]
dt

= D∇2
s [C42a] + k42a[C24m][C42] − k42d[C42a] (2� 9)

∂[B1m]
dt

= D∇2
s [B1m] + kB1cm[C42a][B1c] − kB1mc[B1m] (2� 10)

d[C1a4a]
dt

= kCla4a(C42a∗
t ) − kCla4d[Cla4a] (2� 11)

Equations 2-1 to 2-6 represent the heterotrimeric G-
protein cycle (first stage). Receptor (R) binds ligand (L)
to form the activated receptor-ligand complex (RL).
This complex catalyzes the production of active G-pro-
tein, both Ga-GTP (Ga) and free Gbg (Gbg). Equations
2-7 to 2-11 represent the Cdc42 cycle (second stage).
The inner positive feedback loop is mediated by Bem1-
Cdc24-Cdc42 in Equations 2-7 to 2-10: Cdc24 is the
activator of Cdc42, and active Cdc42 (C42a) binds the
scaffold protein Bem1 on the membrane (B1m), which
recruits more Cdc24 (C24m) to a particular location.
There is a second slower outer positive feedback loop in
which active Cdc42 organizes the actin cytoskeleton to
direct transport of new proteins to the mating projec-
tion. The key protein affected by this polarized transport
is receptor which is endocytosed and exocytosed during
the pheromone treatment. Thus, we represented the
outer positive feedback loop by the polarized synthesis
term ps, which depends on the fractional activation of
Cdc42 (i.e. active Cdc42 at position x over the spatial
average of active Cdc42) at different positions on the
membrane:

ps =
[C42a]
C42a∗

t
, if C42a∗

t > 0, else ps = 1

More detailed justifications for the model equations
and parameters are provided in Additional file 1.

We wished to estimate the noise variance s2 for the
ligand a-factor in simulations of this model. Yeast cells
contain approximately 10,000 receptors evenly distribu-
ted over the surface of a sphere with radius 2 μm [44].
In the simulations, each grid point at which the noise
was applied represented approximately the neighbor-
hood around a single receptor. From the theory [6], we
obtained an estimate of the noise level in our simula-
tions of the yeast system to be s ~ 1.3 to 4.1 (Additional
file 1). Although we primarily addressed external ligand-
diffusion noise, in Additional file 1, we investigated the
combined effect of ligand-diffusion noise and receptor-
ligand binding noise (Table S4). The latter contributes
significantly to variations in the level of receptor-ligand
complex [18,33,45]. In this paper the goal was to focus
on “external” noise and the limitations imposed by this
noise.
As demonstrated in the previous section, we would

expect that a filtering stage would improve polarization
and that the filtering is better at slower speeds. We
tested the model at a 10-fold faster speed and a 10-fold
slower speed for the heterotrimeric G-protein cycle with
a gradient slope of Lslp = 0.01 nM μm-1 (Lmid = 10 nM,
concentration at cell midpoint) and s = 1. Directional
accuracy in 2D simulations was assessed by calculating
cos(θ), θ = angle between the gradient and polarization
direction. In Figure 3C, slowing the speed of the hetero-
trimeric G-protein portion of the model improved pro-
jection accuracy from cos(θ) = 0.06 (fast) to 0.62
(normal) to 0.99 (slow). Thus, we demonstrated how
slowing the first stage creates a better filter for the sec-
ond stage amplifier resulting in more accurate
polarization.

Both positive feedback loops are necessary for noise-
resistant polarization
From the simulations of the generic model, we expect
that positive feedback loops are necessary for potent
polarization in the presence of noise. The mechanistic
yeast model described above contains not one, but two
positive feedback loops, a slow outer and a fast inner
loop. Interlinked fast and slow positive feedback loops
can be beneficial for achieving both rapid induction of a
response and noise resistance [23]. One example was
the yeast budding behavior in which the Bem1 positive
feedback loop was fast and the Cdc42 actin loop was
slow. These simulations were non-spatial, and here we
explored spatial simulations in the context of cell polar-
ity directed by an external cue (spatial gradient). As
noted in the Background section, both positive feedback
loops have been characterized individually with respect
to budding [22,24], but their relative roles and how they
interact in the context of pheromone-induced polariza-
tion have not been explored in depth.
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We ran simulations in which the inner loop or the
outer loop was disrupted, and monitored the spatial
dynamics of active Cdc42 (C42a). First, we ran simula-
tions in which we removed the inner loop by setting h
= 0 for the Bem1 positive feedback term; there was a
total loss of polarization (Figure 4A, middle) with lower
levels of active Cdc42 on the membrane. Then, we ran
simulations in which the outer loop was eliminated by
setting the polarized synthesis of receptor to 0 (ps = 0).
In these simulations we observed multiple polarization

peaks around the cell that shifted position over the
course of 10 minutes (Figure 4A, right). In contrast, the
wild-type simulations displayed a single stable polariza-
tion peak (Figure 4A, left).
Experimentally, we monitored the spatial dynamics of

active Cdc42 using Ste20-GFP as a reporter [46] over a
10 minute time period. In wild-type cells, Ste20-GFP
localized to the front of the projection in a stable fash-
ion (Figure 4B, top). In a bem1-299Δ mutant [47], a C-
terminal truncation of Bem1 that does not bind Cdc24
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breaking the Cdc24-Cdc42-Bem1 positive feedback loop,
most Ste20-GFP was cytoplasmic indicating reduced
Cdc42 activity; the lack of polarization on the mem-
brane was in agreement with simulations. Then we
examined a bni1Δ mutant [48]; Bni1 is a formin [14]
that makes the actin cables necessary for polarized
synthesis and transport of proteins such as receptor to
the mating projection during the pheromone response.
These spatial dynamics are central to the outer positive
feedback loop in which polarized endocytosis and exocy-
tosis localizes cell components to the front. In the
absence of Bni1, newly synthesized protein is trans-
ported in an approximately isotropic fashion via the
other yeast formin Bnr1. Interestingly, bni1Δ cells exhib-
ited a dynamic polarization region that shifted position
over time (Figure 4B, bottom; Video S1, Additional file
2) as observed qualitatively in the simulations.
These results can be understood in terms of an initial

polarization induced by the inner Cdc42 positive feed-
back loop that was reinforced by the slower outer posi-
tive feedback loop. Indeed in the simulations, after the
initial polarization we observed a more gradual polariza-
tion of receptor and activated G-protein, which repre-
sented a slower amplification of the first stage
heterotrimeric G-protein cycle. Without this reinforce-
ment, the initial polarization was subject to disruption
by the noise and was unstable. This view is consistent
with the timing observed experimentally in which one
observes active Cdc42 polarization, which is followed by
receptor and G-protein polarization (Yi et al., data not
shown).

Shallowest gradient detected by yeast cells
In the absence of noise, the system is able to respond to
shallow gradients by increasing the amplification. In the
generic model, adjusting the positive feedback gain can
result in infinite amplification [10,12,49]. However, the
ability to sense and respond in the proper direction
depends on the signal-to-noise ratio. Thus, we used our
yeast model to predict the shallowest slope that could
result in directional sensing given the estimated amount
of ligand noise, and also to explore the extent direc-
tional sensing was limited by this noise.
We performed Monte Carlo simulations of the yeast

model at normal speed using different gradient slopes
(Lslp = 0.1, 0.01, and 0.001 nM μm-1, Lmid = 10 nM) and
s = 3 (Figure 5A). The results of the simulations
showed that the model was able to sense the gradient of
0.1% (Lslp/Lmid) μm

-1 with cos(θ) = 0.29 ± 0.14. For the
shallowest gradient (0.01% μm-1), the gradient sensing
and response was closer to random, cos(θ) = 0.19 ±
0.13.
We compared computer simulations to experiments

by examining projection direction of cells exposed to

microfluidically-generated gradients [50-52]. To maxi-
mize the number of responding cells we set Lmid = 20
nM in the experiments. We subjected cells to four gra-
dients: 1.5% μm-1, 0.5% μm-1, 0.05% μm-1, and 0.005%
μm-1. In Figure 5B, we observed that cells were able to
sense and respond to the 0.05% gradient (cos(θ) = 0.21
± 0.002) in agreement with the simulations and match-
ing the ability of motile eukaryotic cells like Dictyoste-
lium [2]. Interestingly, cells exhibited a directional
response even in the 0.005% gradient (cos(θ) = 0.08 ±
0.01), but it was less accurate and closer to random
than the response in the 0.05% gradient. For the steepest
gradient (1.5% μm-1), the accuracy was good (cos(θ) =
0.8) as expected. In addition to enabling higher signal-
to-noise, a very steep gradient slope could produce a
saturation response that made the system less sensitive
to noise. Overall, there was good agreement between
experiments and modeling (Figure 5C). The shallowest
gradient represents a single receptor-ligand molecule
difference between front and back, and this calculation
is consistent with previous estimates based on yeast gra-
dient-sensing at high concentrations of a-factor [52].
Thus, the experiments and simulations suggest that
external noise is likely to be a limiting factor in the abil-
ity of yeast cells to detect and respond to shallow spatial
gradients in a directionally accurate fashion.

Discussion
In this work, we performed mathematical modeling to
investigate the effects of input spatial noise on cell
polarization. Using a generic model of cell polarity, we
demonstrated that input noise impeded the extent, accu-
racy, and smoothness of polarization. A key determinant
was the ratio of the gradient slope (signal) to the noise
magnitude. Different modes of amplification (ultrasensi-
tive NPF versus positive feedback) exhibited different
sensitivities to noise. For example, in the NPF models, it
was possible to obtain accurate sensing but poor polari-
zation amplification, whereas models possessing strong
positive feedback produced potent polarization but inac-
curate directional sensing under high noise conditions.
We explored noise-filtering strategies including time-

averaging, multiple stages, and positive feedback, and
described the tradeoff between filtering and response
time. In the presence of noise, spatial amplification by
positive feedback produced better polarization than
amplification by an ultrasensitive mechanism. A good
strategy was having a filter stage followed by a positive
feedback stage, both possessing slow spatial dynamics.
Our model of yeast cell polarity possessed this structure
with the heterotrimeric G-protein cycle acting as the fil-
ter and the Cdc42 system acting as the amplifier resulting
in a slow two-module filter-amplifier architecture [38]. In
the future, it will be important to explore more input
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conditions, parameter values, and model structures by
simulation, as well as develop the theory explaining the
nature of the tradeoffs, and define hard constraints.
This work extends previous research on noise affecting

cellular chemotaxis [2,5,6,17], but in the context of a
pure spatial sensor that does not move. Cell polarization
and the amplification of a shallow external gradient to a
steeper internal gradient apply to both motile and immo-
tile cells. As we note (Additional file 1), there is a close
relationship between the chemotactic index and the cos
(θ) measure of polarity. In the future, we would like to
combine the different aspects of cell polarity - extent,
direction, and smoothness - into a single measure.
We examined the minimum gradient slope that could

be sensed by a spatial sensor in the presence of noise

and produce a directional polarization response. We
demonstrated that ligand noise places a severe limita-
tion on the accuracy of the cell projection. Importantly,
the key statistic was the ratio between the gradient
slope (signal) and the noise variance. Thus, the noise
places a limit on how shallow of a gradient a cell can
sense and respond to accurately. Indeed, we found that
wild-type yeast cells could project, albeit with imperfect
accuracy, in a 0.1% μm-1 gradient, which is close to the
limit determined from the modeling. This value com-
pares favorably to the chemical gradients that other
chemotactic systems such as Dictyostelium [2] and neu-
rons [33] can sense, and corresponds roughly to sensing
a single receptor-ligand molecule difference front versus
back.
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Figure 5 Directional accuracy in yeast model simulations and microfluidics experiments. (A) Simulations of yeast model at different
gradient slopes. Lslp = 0.1, 0.01, and 0.001 nM μm-1 (Lmid = 10 nM) and s = 3. Using the wild-type model, at least 20 Monte Carlo simulations
were performed as described above. The mean value of active Cdc42 is plotted, and the mean ± SEM of cos(θ) is also shown for each slope. (B)
Directional projection accuracy at different gradient slopes. Experiments were performed for 1.5% gradient, 0.5%, 0.05%, and 0.005% μm-1

gradients (Lslp/Lmid). Cells were counted in the middle two sections of the gradient where Lmid ~ 20 nM. Directional accuracy was measured in
terms of cos(θ), and the mean ± SEM is shown for n = 3 trials. (C) Plotting yeast mating projection directional accuracy as a function of gradient
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The ability to sense the direction of gradients as shal-
low as 0.1% μm-1 represents a challenging behavior. An
important physiological requirement, which is not expli-
citly modeled in this paper, is that the magnitude of
internal noise is small relative to external ligand noise,
so that internal stochasticity does not interfere with gra-
dient-sensing. One expectation is that there are large
numbers of proteins in the system to minimize random
reaction fluctuations. Indeed that is the case for the het-
erotrimeric G-protein cycle; there are approximately
10,000 receptors/cell as well as 10,000 G-protein subu-
nits per cell [44].
From an evolutionary perspective, this extremely sen-

sitive gradient-sensing may be useful when mating part-
ners are separated by long distances. For example,
assuming a point source emitting a 1 μM concentration
of a-factor at a rate of 1 × 10-8 ml/s (from a micropip-
ette or clump of cells), the concentration at 1 mm
would be ~10 nM with a slope of ~0.1% μm-1 [32].
Although an individual cell could not project this dis-
tance to a mating partner, the cell could undergo phero-
mone-gradient directed filamentous growth [53] so that
eventually one of its offspring could reach the source.
The work of Brandman et al. [23] highlighted the role

of interlocked positive feedback loops on noise attenua-
tion. Here we examined the implications in a spatial
model, and the simulations showed that both feedback
loops were necessary for proper polarization with the
inner loop acting as the primary amplifier and the outer
loop acting to maintain the polarization in a single loca-
tion on a slower time-scale. Thus, the basic message in
the spatial setting with interlocked positive feedback
loops is that they reinforce each other to achieve a
noise-tolerant polarization response.
Our results suggest the yeast cells have been opti-

mized for cell polarity in spatial gradients. From the
modeling we expect that a pure spatial sensor like yeast
should polarize slowly in order to filter external noise,
and we predict mutants that polarize faster should be
less accurate. Conversely, one expects that at slower
time scales the accuracy would be improved, and
indeed, projection accuracy improves over time [52].
In this research we did not include internal noise in

the simulations. The goal was to focus on the con-
straints placed by the external gradient noise. In the
future, we plan to explore the impact on cell polarity of
receptor-ligand binding noise, as well as internal signal-
ing noise. For the yeast model, we estimated that the
combination of external ligand noise and receptor-ligand
binding noise, which is expected to increase the total
noise on receptor-ligand (RL) levels, was still within the
magnitude of noise values studied here. It would be
interesting to compare the magnitude of the internal
noise versus the external noise, and the problems as

well as benefits created by this internal stochasticity on
cell polarity.
Finally, we would like to add improvements to the

yeast model for future research. In particular, it is
important to include missing dynamics such as MAPK
signaling [51,54,55]. It will be interesting to explore inte-
grating a spatial model of the MAPK pathway [56] with
the spatial dynamics of G-protein and Cdc42 signaling
in the current model.

Conclusions
Below we outline the main conclusions of this paper:
Noise in the input spatial gradient inhibits three

aspects of cell polarization: Extent, directional accuracy,
and smoothness. The signal-to-noise ratio can be repre-
sented as the slope of the gradient to the magnitude of
the noise. This research represents the first attempt to
use simulations in a generic fashion to dissect these
effects more quantitatively.
There are three basic noise-filtering strategies: Positive

feedback, multiple stages, and time-averaging. We
explored the magnitude of their benefits individually
and in combination. A systematic analysis of noise-filter-
ing strategies has not previously been applied to the cell
polarity problem.
There was a fundamental tradeoff between noise-fil-

tering and the speed of the polarization response. A fil-
ter-amplifier structure in which an NPF stage is
followed by a PF stage did the best job of balancing this
tradeoff. In the context of cell polarity, we used simula-
tions to explore this tradeoff with respect to different
architectures, which was novel.
Our mechanistic model of yeast pheromone-induced

cell polarity revealed this filter-amplifier structure with
the heterotrimeric G-protein cycle system representing
the filter stage and the Cdc42 cycle representing the
amplifier stage.
The yeast system contains two positive feedback

loops and both are essential for robust polarization in
the presence of noise. Through simulations and experi-
ments we demonstrated that the inner loop (Cdc24-
Cdc42-Bem1) represents the principal amplifier stage.
The slow outer loop helps to maintain the polarization
in a single location by slow amplification of the first
stage. Thus, the two interlocking positive feedback
loops create a special dynamic that was not explored
in previous work investigating non-spatial models of
the system.
Finally, we showed how noise places limits on the

directional accuracy of polarization. Microfluidics
experiments demonstrated that yeast cells are able to
sense the direction of very shallow gradients albeit
imperfectly. The observed limits are close to those pre-
dicted from simulations of our model. The single
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receptor-ligand molecule spatial sensitivity is compar-
able to that of other eukaryotic gradient-sensing
systems.

Methods
PDE simulations and noise model
The external noise is assumed to be spatially uncorre-
lated, and so noise at each spatial point was generated
by selecting independent and identically distributed sta-
tionary random variables at a given time step. We used
either a normal or log-normal distribution with mean 0
and standard deviation s. The log-normal distribution
was used when s was large compared to Lmid to prevent
negative input values. The two distributions produced
approximately the same effect on polarization on control
simulations of the NPF model.
Because of computational discretization, noise was

added at each grid point on the cell surface at a speci-
fied time interval. We explored a range of spatial resolu-
tions (kx = 40 to 200 grid points) and temporal
resolutions (noise time step kt = 0.001 to 1 s) and found
only minor differences in control simulations. We chose
as the default values kx = 200 and kt = 0.01 s.
The solutions were typically observed at a time long

enough ("steady-state”) for all the variables at each spa-
tial point to reach an approximately invariant distribu-
tion. To estimate the stationary distribution from one
simulation, 10000 samples were taken over a time inter-
val of 100 s at each spatial point, and the mean and
standard deviation were calculated.

Mathematical models
The generic models and yeast mechanistic models were
derived from Chou et al. [12]. More details are provided
in Additional file 1.

Monte Carlo estimation of directional accuracy
To estimate statistically how the system behaves under
noise with respect to directional accuracy, we performed
Monte Carlo simulations, which is a repeated computa-
tion of the stochastic models. In this paper, the number
of the samplings in the Monte Carlo simulations ranged
from 20 to 40. Each sampling simulation was run until
the system reached an invariant distribution, and the
mean and variance were calculated over the solutions.
The polarization direction was calculated from the cen-
ter of mass of the polarized species (active Cdc42).

Strains
Standard methods for yeast genetic and molecular biol-
ogy techniques were performed [57]. The strain geno-
types are listed in Table S1. Yeast cells were cultured in
rich YPD media supplemented with adenine (YPAD).

Time-lapse imaging
To observe single cells, exponentially growing cells were
treated with 20 nM a-factor for 1 hour and then imaged
live every minute on concanavalin A treated slides for
10 min. The prepared slides were observed using a
Nikon ECLIPSE TE300 inverted microscope.

Microfluidics
As previously described, we used a standard Y-chamber
microfluidics device to generate the a-factor spatial gra-
dients [52]. The device was 800 μm in width, which was
divided into 8 regions. The cells were subjected to a-
factor gradients for 5 h, and for the projection direc-
tional accuracy measurements, cells located in the mid-
dle regions 4 and 5 were assessed (Lmid = 0.5·(Lmax +
Lmin), Lslp = 0.0025·(Lmax - Lmin) μm

-1).

Additional material

Additional file 1: Supplemental Material. This file contains Table S1
(Yeast strains), a description of the mathematical models, Figure S1
(Parametric analysis of k0 and k1), Table S2 (Effect of gradient slope versus
noise on polarization), Table S3 (Effects of noise on polarization quality), a
section estimating external gradient noise, Table S4 (Effects of ligand
diffusion noise (sL) and receptor-ligand binding noise (sRL) on projection
directional accuracy), a comparison of chemotactic index to cos(θ)
measure of directional accuracy, Table S5 (Effect of diffusion of the
polarized species on polarization), Figure S2 (Diffusion decreases noise in
polarization output and the extent of polarization), and Figure S3 (Image
of microfluidics gradient labeled with tracer dye).

Additional file 2: Video S1. Time-lapse video of STE20-GFP bni1Δ cells.
STE20-GFP bni1Δ cells were treated with 20 μM a-factor and imaged over
a 10 min period at 1 min intervals. The polarization of Ste20-GFP was not
maintained in a single location as observed in wild-type cells, but instead
shifted position. There were also multiple peaks of polarization.
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