
UC San Diego
Technical Reports

Title
Extensions to the Multi-Installment Algorithm: Affine Costs and Output 
Data Transfers

Permalink
https://escholarship.org/uc/item/8v45k6hs

Authors
Yang, Yang
Casanova, Henri

Publication Date
2003-07-16
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8v45k6hs
https://escholarship.org
http://www.cdlib.org/


Extensions to the Multi-Installment Algorithm:

Affine Costs and Output Data Transfers

Yang Yang1 Henri Casanova 1;2

1 Department of Computer Science and Engineering
2 San Diego Supercomputer Center

University of California at San Diego

Abstract

Divisible workload applications occur in many fields of science and engineering. Although these ap-

plication can be easily parallelized in a master-worker fashion, they pose several scheduling challenges.

Previously proposed scheduling algorithms either distribute work to processors in a single round of

work allocation or in multiple rounds. Multi-round algorithms can achieve better overlap of computa-

tion and communication but are more difficult to analyze. Consequently, a number of open questions

still remain for multi-round scheduling. In this paper we improve on the seminal “multi-installment”

algorithm proposed by Bharadwaj. et al. for homogeneous star networks. Their work suffers from two

important limitations: (i) communication and computation latencies are assumed to be negligible; and

(ii) size of application output data is assumed to be negligible. These two limitations strongly restrict

the applicability of multi-installment to real-world platforms and applications. In this paper we remove

both limitations.

1 Introduction

Scheduling the tasks of a parallel application onto a distributed computing platform is key for achiev-

ing high performance and is a well-known challenging problem. Application that consist of of indepen-

dent tasks with no synchronizations and no inter-task communications arise in many fields of science

and engineering. A possible model for independent tasks is one for which the number of tasks and the

task sizes, i.e. their computational costs, are pre-determined. In this case, the scheduling problem is

akin to bin packing and several heuristics have been proposed [17, 3]. Another model is one in which

the number of tasks and the task sizes can be chosen arbitrarily, that is the application workload can be

arbitrarily divided. In practice, this model is an approximation of an application that consists of large

numbers of identical, low-granularity computations.

This divisible workload scenario arises in many application domains [19, 12, 27, 13, 25]. Divisible

workload applications are amenable to straightforward master-worker parallel execution and can thus

be easily deployed on computing platforms ranging from commodity clusters to computation grids [28].

Divisible workload scheduling is challenging due to the overhead involved when starting tasks. This

overhead is due to: (i) the time to transfer application input/output data to/from each compute resource;

and (ii) the possible latency involved when initiating a computation and/or a transfer. There are two types

of approaches for scheduling a divisible workload. One can divide the workload in as many chunks as

1



the number of processors and dispatch these chunks in a single round of allocation. This scheme is

simple to design and implement, but suffers from poor overlap of communication and computation. The

alternative to alleviate this problem is to dispatch the workload in multiple rounds, with each worker

being allocated a chunk of the workload at each round. While single-round approaches have been studied

throughly [34, 32, 19, 31, 28, 2, 22, 8], multi-round algorithms are significantly more difficult to analyze

and thus fewer results are available. In this paper we focus on multi-round algorithms.

The “multi-installment” algorithm in [9] is essentially the only previously proposed multi-round al-

gorithm. It operates only on homogeneous platforms, which are the focus of this paper (we proposed a

multi-round algorithm for heterogeneous platforms in [33]). A severe limitation of the multi-installment

algorithm is that it assumes a linear cost model, by which a computation or communication task takes a

time exactly proportional to the task size. In other words, the multi-installment approach does not con-

sider latencies associated with communication or computation, which is unrealistic for most real-world

platforms and applications. In this paper, we consider an affine cost model that incorporates latencies.

Although this model has been used for single-round algorithms [15, 11, 8], it is an open question to

determine a closed-form schedule analogous to the “multi-installment” schedule for affine costs.

Another limitation of previous work on multi-round divisible workload scheduling is that only input

data transfers are considered. Although solutions for single-round scheduling with output data transfer

have been proposed [31], the incorporation of output data transfers in multi-round scheduling is still an

open question.

Our contribution in this paper addresses these two questions and is as follows:

1. We obtain closed-form solutions to the multi-installment scheduling problem on homogeneous

platforms with affine cost models both for communication and computation. Our solutions are

analogous to but more general than those in [10]: we give a new form of the recursion on chunk

sizes, which enables the use of generating functions to solve the scheduling problem even in the

presence of latencies.

2. Building on our first solution, we obtain solutions to multi-installment scheduling for a homoge-

neous platform when both input and output data transfers are considered, while still using affine

cost models for communication and computation.

This paper is organized as follows. In Section 2 we discuss relevant related work in detail. Section 3

describes our models for the application and the computing platform. Section 4 presents our closed-form

solutions for multi-round divisible load scheduling on homogeneous platforms with affine cost models.

Section 5 extends the result in Section 4 to incorporate output data transfers. Section 6 concludes the

paper.

2 Related Work

Divisible workload scheduling algorithms fall into two categories: single-round algorithms and multi-

round algorithm. We first describe previous work on single-round algorithms as many results are avail-

able and are indicative of the kind of result that one could hope to achieve in the context of multi-round

algorithms. Early work on single-round algorithms focused on developing the fundamental recursion

relations that make it possible to compute chunk sizes inductively [34, 35, 5]. These works used a purely

linear cost model (i.e. no latencies) and studied a variety of homogeneous platform topologies including

linear arrays, buses, stars, and trees. Building on these initial accomplishments closed-form solutions to

the scheduling problems for homogeneous platforms have been developed for buses and trees [4], linear

arrays [30], 3-D mesh [18], and hypercubes [29]. A number of works have also studied the asymptotic

2



performance behavior as the number of processors tends to infinity on linear networks [22, 30], buses

and trees [4], rings and 2-D meshes [14], and 3-D meshes [18]. A few works have focused on develop-

ing optimal schedules for heterogeneous platforms, namely computing an optimal ordering of compute

resources [26, 9, 8]. In this work we focus on star topologies as they are the most relevant to current

practice. We only consider homogeneous platforms in this paper (see our work in [33] on multi-round

scheduling for heterogeneous platforms).

While these works all used a purely linear model, the work in [15] was one of the first to model a

fixed latency associated to network communication via an affine model, which is more realistic and has

since then been used in [31, 24]. The work in [11] models an affine cost for computation, which is

also more realistic. The introduction of affine costs renders the problem of scheduling on heterogeneous

platforms much more complex. Results are available for special cases in which the platform is only

partially heterogeneous [8]. For the most general heterogeneous platform, one must resort to Linear

Programming [20]. In this work we consider affine costs both for computation and communication.

Building on these numerous results, authors have reported on practical implementation and experi-

mental results obtained with one-round algorithms [19, 12, 28]. However, in spite of the known lim-

itation of one-round algorithms, namely poor overlap of computation with communication, work on

multi-round algorithms is rather scarce. Proposed approaches belong in three categories: (i) those that

focus on minimizing application makespan by improving overlap of communication with computation;

(ii) those that focus on minimizing application makespan in the presence of performance prediction er-

rors; and (iii) those that focus on maximizing steady-state application performance. This work belongs

to the first category, but we review all three categories below.

The first multi-round algorithm for minimizing application makespan with no performance prediction

errors is the “multi-installment” approach proposed in [10] and little progress has been made in that

area since then. Multi-installment consists in dispatching chunks of workload to compute resources in

multiple rounds. The algorithm starts with small chunks and increases the chunk size to achieve effective

overlap of communication and computation. In this paper we directly improve on the results in [10] for

homogeneous platforms by considering latencies associated to computation and communication and by

accounting for transfer of output data. Considering latencies raises the question of the optimal number

of rounds, which we have addressed in [33]. In this paper we assume, as in [10], that the number of

rounds is fixed (i.e. provided as an input parameter to the scheduling algorithm).

Multi-round algorithms for divisible workload that account for significant performance prediction

errors, either due to shared computing platforms or to non-deterministic applications, were proposed

in [21, 24]. Instead of increasing chunk size throughout application execution, these approaches start

with large chunks and decrease chunk size throughout application execution, and dispatch chunks to

compute resources in a greedy fashion, in order to avoid the “wait for the last task” problem. The major

disadvantage is that these algorithms can lead to very poor overall of computation with communication.

In [36] we have proposed an approach that first increases and then decreases chunk size throughout ap-

plication execution to achieve both effective overlap of computation with communication and robustness

to performance prediction errors. In this paper we assume zero performance prediction errors.

Finally, multi-round algorithms have also been developed to maximize steady-state application per-

formance, that is the asymptotic amounts of computation performed per time unit [1, 6, 7]. Consequently

these algorithms use identical rounds and the schedules are periodic. In this work we are solely con-

cerned with minimizing application makespan.

3



3 Models

3.1 Application

We consider applications that consist of a workload W
total

(i.e. an amount of computation to perform)

that is continuously divisible: the scheduler can decide how big a chunk of the workload to give out

to a processor. We assume that the amount of input application data needed for processing a chunk

is proportional to the amount of workload for that chunk. It is a common assumption in the divisible

workload literature to ignore transfer of output application data. The works in [31, 2] takes into account

output data transfers but uses a single-round approach. The multi-round algorithm in [1] models output

but only considers steady-state application performance. We ignore transfers of output data in Section 4

and incorporate them in Section 5.

3.2 Computing Platform

We assume a star topology, depicted in Figure 1, used in a master/worker fashion with N worker

processes running on N processors. The master sends out chunks to workers over a network. We assume

that the master uses its network connection in an sequential fashion: it does not send chunks to workers

simultaneously. This is a common assumption and is justified either by the master’s implementation, or

by the properties of the network links (e. g. a LAN). Throughout this paper we assume a homogeneous

star topology. We assume that workers can receive data from the network and perform computation

simultaneously (corresponding to the ”with front-end” model in [10]).

Network

Link

Worker

Master

Figure 1. Computing platform model.

Consider a portion of the total workload, 
hunk � W

total

, which is to be processed on a worker. We

model the time required for a worker to perform the computation, T

omp

, as

T


omp

= � +


hunk

S

; (1)

where � is a fixed overhead, in seconds, for starting a computation (e. g. for starting a remote process),

and S is the computational speed of the worker in units of workload performed per second. Computation,

including the � overhead, can be overlapped with communication.

4



We model the time spent for the master to send 
hunk units of workload to a worker, T

omm

, as:

T


omm

= � +


hunk

B

; (2)

where � is the overhead, in seconds, incurred by the master to initiate a data transfer to a worker (e. g.

pre-process application input data and/or initiate a TCP connection); and B is the data transfer rate to

workers, in units of workload per second. We assume that the � + 
hunk=B portion of the transfer is

not overlappable with other data transfer.

Choosing � and � as zero or non-zero makes the computation and communication cost models linear

or affine. Based on our experience with actual software [16], we deem � to be fundamental for realistic

modeling. But to the best of our knowledge, only [11] has modeled this latency in the context of divisible

load scheduling (only for a one-round algorithm).

4 Affine Cost Models for Multi-installment

The multi-installment algorithm introduced in [10] only considers linear cost models. In this section

we evolve the multi-installment approach so that it can account for affine cost models for communication

and computation. In Section 4.1 we first revisit the multi-installment approach with a purely linear cost

model to obtain a new and more uniform recursion on chunk sizes than that given in [10]. In Section 4.2

we then extend this recursion to use affine cost models.

4.1 Linear Cost Models

We denote by T

total

the amount of time to process W
total

units of workload on a single worker. Let

M be the total number of rounds, which is given as a parameter and not computed by the algorithm.

Figure 2 depicts the computation of the workload on 5 workers in 3 rounds, i.e. with 15 chunks of

workload. Chunk transfers from the master are shown in Gray boxes whereas chunk computations are

shown in white boxes. For technical reasons, as in [10], we number the chunks in the reverse order in

which they are allocated to workers: the last chunk is numbered 0, the worker receiving the last chunk

is numbered 0, and the last round is also numbered 0. The goal of the algorithm is to ensure that all

workers finish computing at the same time and that the workers be as utilized as possible.

With a linear cost model, the time to transfer the ith chunk of workload, of size 
hunk
i

, to a worker

is given as:

T


omm

i

= 
hunk

i

=B = 
hunk

i

=S � S=B = g

i

=R;

where R is the computation-communication ratio of the platform, and g
i

is the computation time of the

chunk on a worker.

We can now derive a recursion on the chunk computation times. In order for both the network and the

workers to be kept as busy as possible, each worker must compute a chunk in exactly the time required

for all the next N chunks to be sent to the workers [10]. This can be easily written as:

g

i

= (g

i�1

+ g

i�2

+ g

i�3

+ � � �+ g

i�N

)=R:

For example, in Figure 2, we can write that while worker 2 computes chunk 7 (from time A to time B)

chunks 6 to 2 must be sent to workers 1, 0, 4, 3, and 2 as: g
7

= (g

6

+ g

5

+ � � � + g

2

)=R. Note that the

above equation is only valid for i � N . For i < N the same idea works modulo a small modification:

g

i

= (g

i�1

+ g

i�2

+ g

i�3

+ � � �+ g

i�N

)=R + g

0

;

5



worker 0

worker 1

worker 2

worker 3

worker 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A B

Figure 2. Illustration of the chunk recursion with no latencies.

where we let g
i

= 0 for i < 0. These recursive relations are analogous in spirit to the g
i+1

= (1+1=R)g

i

used in [10] but will allow us to incorporate affine costs in Section 4.2. We summarize our recursion as:

8 i � N g

i

= (g

i�1

+ g

i�2

+ g

i�3

+ � � �+ g

i�N

)=R; (3)

8 0 � i < N g

i

= (g

i�1

+ g

i�2

+ g

i�3

+ � � �+ g

i�N

)=R+ g

0

; (4)

8 i < 0 g

i

= 0: (5)

Note that g
i

values for i � MN are ignored since we use only M rounds. However, we do not set

them to 0 in order to keep the g
i

series infinite, which allows us to use generating functions to solve the

recursion. Let G(x) be the generating function for the g
i

series:

G(x) =

1

X

i=0

g

i

x

i (also commonly noted as [x

i

℄G(x) = g

i

)

Multiplying Eq.3 by xi gives:

8 i � N g

i

x

i

=

 

i�1

X

j=i�N

g

j

x

i

!

=R =

 

x

i�1

X

j=0

g

j

x

i�1

� x

N+1

i�N�1

X

j=0

g

j

x

i�N�1

!

=R:

(6)

Note that items out of range (i.e., with i < 0) in the equation above do not matter because we have

g

i

= 0 for i < 0. Similarly, multiplying Eq.4 by xi leads to:

8 0 � i < N g

i

x

i

=

 

x

i�1

X

j=0

g

j

x

i�1

� x

N+1

i�N�1

X

j=0

g

j

x

i�N�1

!

=R + g

0

x

i

: (7)

6



Summing Eq. 6 and Eq. 7 for all i � 0 gives:

G(x) =

1

X

i=0

g

i

x

i

=

1

X

i=N

g

i

x

i

+

N�1

X

i=0

g

i

x

i

= (

1

X

i=0

(x

i�1

X

j=0

g

j

x

i�1

� x

N+1

i�N�1

X

j=0

g

j

x

i�N�1

))=R + g

0

N�1

X

i=0

x

i

= (x

1

X

i=0

i�1

X

j=0

g

j

x

i�1

� x

N+1

1

X

i=0

i�N�1

X

j=0

g

j

x

i�N�1

)=R + g

0

N�1

X

i=0

x

i

= (

xG(x)

1� x

�

x

N+1

G(x)

1� x

)=R + g

0

1� x

N

1� x

:

The last step is due to the well-known generating function property:

g

i

= [x

i

℄G(x)) [x

n

℄

G(x)

1� x

=

n

X

i=0

g

i

:

Finally we obtain:

G(x) = g

0

(1� x

N

)

(1� x)� x(1� x

N

)=R

: (8)

The standard Rational Expansion method can be used here to determine the coefficients of G(x) [23].

One must find the N + 1 roots �
i

, 0 � i < N , of Q(x) = R(1 � x) � x(1 � x

N

), the denominator

polynomial. G(x) can then be rewritten as:

G(x) = g

0

N

X

i=0

�

i

1� x=�

i

= g

0

N

X

i=0

�

i

1� �

i

x

;

where the �
i

can be computed as in [23]. Note that in the general case when Q(x) has roots of degree

higher than 1 we must resort to the more complex General Rational Expansion theorem [23] to compute

the power series for G(x). However, in Appendix A we prove that: (i) when R 6= N , Q(x) has only

roots of degree 1; and (ii) when R = N , Q(x) has only one root of degree higher than 1, which is root

x = 1 with degree 2. Consequently, when R 6= N we can compute the �
i

coefficients above with the

simple Rational Expansion method given in [23]. When R = N the solution using the General Rational

Expansion theorem is straightforward as there is only one root of degree higher than 1. One can then

derive an expression for the g
i

series as:

g

i

= [x

i

℄G(x) = g

0

N

X

j=0

�

j

�

i

j

: (9)

Each chunk size turns out to be a linear combination of N geometric series. To compute g
0

one can just

write that all the g
i

’s must sum up to T
total

:

T

total

= g

0

NM�1

X

i=0

N

X

j=0

�

j

�

i

j

; which gives g

0

= T

total

=(

N

X

j=0

�

j

1� �

NM

j

1� �

j

): (10)

Note that we do not use the “binomial expansion” method used in [10] because, strictly speaking, it

does not provide a closed-form solution.

7



worker 0

worker 1

worker 2

worker 3

worker 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A B

nLat

g/R

cLat

Figure 3. Illustration of the chunk recursion with latencies.

4.2 Affine Cost Model

We now incorporate the � and � latencies defined in Section 3. Figure 3 depicts the same execution

as that on Figure 2. Equations 3, 4, and 5 are easily rewritten as:

8 i � N � + g

i

= (g

i�1

+ g

i�2

+ g

i�3

+ � � �+ g

i�N

)=R +N � � (11)

8 0 � i < N � + g

i

= (g

i�1

+ g

i�2

+ g

i�3

+ � � �+ g

i�N

)=R + i� � + g

0

+ � (12)

8 i < 0 g

i

= 0 (13)

For example, in Figure 3, we can write that while worker 2 computes chunk 7 (from time A to time B)

chunks 6 to 2 must be sent to workers 1, 0, 4, 3, and 2 as: � + g

7

= (g

6

+ g

5

+ � � �+ g

2

)=R + N � �,

which is Eq. 11 above.

As in Section 4.1, we can multiply Equations 11 and 12 and sum over all i to compute G(x), the

8



generating function associated to series g
i

:

G(x) =

1

X

i=0

g

i

x

i

=

1

X

i=N

g

i

x

i

+

N�1

X

i=0

g

i

x

i

=

1

X

i=0

 

x

i�1

X

j=0

g

j

x

i�1

� x

N+1

i�N�1

X

j=0

g

j

x

i�N�1

!

=R

+(N � � � �)

1

X

i=0

x

i

+ (g

0

+ ��N � �)

N�1

X

i=0

x

i

+ �

N�1

X

i=0

ix

i

=

x� x

N+1

(1� x)R

G(x) +

N � � � �

1� x

+ (g

0

+ ��N � �)

1� x

N

1� x

+

�

1� x

�

x(1� x

N�1

)

1� x

� (N � 1)x

N

�

;

which leads to the following generating function:

G(x) =

(g

0

+ ��N � �)(1� x

N

) + (N � � � �) + �(

x(1�x

N�1

)

1�x

� (N � 1)x

N

)

(1� x)� x(1� x

N

)=R

: (14)

In fact, this generating function is related to that in the linear cost model case:

G(x) = g

0

G

0

(x) +

�� x

N

+ �(x+ x

2

+ x

3

+ ::: + x

N

)

(1� x)� x(1� x

N

)=R

= g

0

G

0

(x) +G

00

(x);

where G
0

(x) is the generating function derived in Section 4.1, and G
00

(x) is a generating function with

the same denominator as G
0

(x).

As in Section 4.1, the Rational Expansion method [23] (or the General Rational Expansion theorem

in the case R = N ) can be used to compute the power series for G(x) given the roots of the denominator

polynomial Q(x). Let �
j

, j = 0; : : : ; N , be the roots of Q(x) and let �
j

= 1=�

j

be their inverses. One

can now obtain the series g
i

as:

g

i

= [x

i

℄G(x) = g

0

N

X

j=0

�

j

�

i

j

+

N

X

j=0

�

j

�

i

j

; (15)

where the �
j

and the �
j

series can be computed respectively for G0 and for G00 as in [23]. Here also each

chunk size is a linear combination of N geometric series.

To compute g
0

one can just write that all the g
i

’s must sum up to T
total

:

T

total

=

NM�1

X

i=0

g

i

= g

0

N

X

j=0

�

j

1� �

NM

j

1� �

j

+

N

X

j=0

�

j

1� �

NM

j

1� �

j

;

which gives: g

0

=

T

total

�

N

X

j=0

�

j

1� �

NM

j

1� �

j

N

X

j=0

�

j

1� �

NM

j

1� �

j

: (16)

9



worker 0

worker 1

worker 2

worker 3

worker 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

worker 2

worker 0

worker 1

worker 3

worker 4

14

13

12

11

10 0

1

2

3

4

5

9

6

8

7

Figure 4. Flipping the input­only schedule to get an output­only schedule.

Based on the g
i

series one can then easily compute the chunk sizes 
hunk
i

since 
hunk
i

= g

i

�S. This

completes our derivation of a closed-form solution for multi-installment scheduling on a homogeneous

platform with affine costs for both computation and communication, which is a direct improvement over

the work in [10]. This was achieved by rewriting the classical chunk size induction relations in a form

that is more uniform and more tractable than those developed in previous work.

5 Incorporating Output Data Transfers

In this section, we derive solutions for multi-installment scheduling when output data transfers are

considered. In Section 4 we have discussed situations in which chunks of input data are sent to the

workers and no output is received. The other extreme is when no input data is sent but output data is

sent by each worker back the the master at each round. The latter case can just be seen as “flipping” the

chunk orders in the former case. This is illustrated in Figure 4.

When both input and output data are transfered between the master and the workers, the schedule is

a combination of the above two scenarios, as depicted in Figure 5. In the first round, the master sends

a chunk of input data to each worker. Then, the master sends a new chunk of input to the first worker

just before this worker finishes computing its current chunk. Immediately afterwards the master receives

output from the first worker. This ensures that network utilization is maximized. The same process

continues for all workers until the last round. In the last round, each worker returns output data to the

master. Note that in this scenario we assume that workers are able to compute and transfer at the same

time, but only one transfer (either input or output) can take place on the link at one time: we assume a

single communication channel.

We first develop our solution with linear cost models in Section 5.1 and extend to affine costs in

Section 5.3.

5.1 Linear Cost Models

As in Section 4 we denote by g
i

the computation time of the ith chunk of workload on a worker. With

a linear cost model, we model the time to transfer the ith chunk of workload to a worker, T
input

i

, and the

time to transfer the output of the computation of this chunk, T
output

i

, as:

T

input

i

= g

i

=R and T

output

i

= g

i

=R

0

;

where R is the computation-communication ratio for the platform (i.e., B=S) and R

0 is the effective

communication ratio for output transfers (i.e., R0

= R� Æ where Æ is the number of bytes of output data

10



input data

output data

worker 0

worker 4

worker 1

worker 3

worker 27

B

14

1

13

212

3

11

4

10

9

5

8

6

ATime

0

Figure 5. Schedule with both input and output.

generated for each byte of input data for the target application).

We can now derive equations for the recursion on chunk sizes as was done in Section 4.1. The compute

time of each chunk is equal to the sum of the input transfer times for the N subsequent workers, plus the

the sum of the output transfer times for the N previous workers. This can be written as:

g

i

=

i�1

X

j=i�N

g

j

=R +

i+N

X

j=i+1

g

j

=R

0

For example, one can see in Figure 5 that the compute time for chunk 7 is equal to the sum of the input

transfer times for chunks 2 to 6, plus the sum of the output transfer times for chunks 8 to 12. The above

equation is true for N � i < MN . As in Section 4.1 a modification is needed for the last round. In the

last round, the network channel between the master and the workers remains idle between the transfer

of output back to the master for the N th chunk and for the (N � 1)

th chunk. Let � denote the duration

of this idle time, which is illustrated as the time interval between times A and times B in Figure 5. For

the last round, i.e. for 0 � i < N one can then write:

g

i

=

i�1

X

j=i�N

g

j

=R +

i+N

X

j=i+1

g

j

=R

0

+�:

For out-of range i, we just let g
i

= 0. We can summarize our recursion as:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

8 N � i < MN g

i

=

i�1

X

j=i�N

g

j

=R +

i+N

X

j=i+1

g

j

=R

0

8 0 � i < N g

i

=

i�1

X

j=i�N

g

j

=R +

i+N

X

j=i+1

g

j

=R

0

+�

8 i �MN or i < 0 g

i

= 0:

(17)

Our goal is to solve this recursion. Although we have employed generating functions to solve the

recursion in Section 4, there is a key difference here. The g
i

series in Section 4 was an infinite series,

with the computation of g
i

requiring only values of g
j

for j < i, which made it possible to ignore g
i

11



values for i � MN . For the above recursion however, the computation of g
i

involves g
j

values for j < i

and for j > i. This requires to set g
i

values to 0 for i � MN , which makes the g
i

series finite and thus

precludes the use of generating functions. The alternative, given that the g
i

series is finite, is to express

the above recursion as a set of MN linear equations:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�RR

0

R R R R R RR

0

R

0

�RR

0

R R R R R RR

0

R

0

R

0

�RR

0

R R R R R RR

0

R

0

R

0

R

0

�RR

0

R R R R R RR

0

R

0

R

0

R

0

R

0

�RR

0

R R R R R RR

0

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R R R

�

�

�

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R

R

0

R

0

R

0

R

0

R

0

�RR

0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

g

0

g

1

g

2

g

3

g

4

g

5

g

6

�

�

�

g

MN�6

g

MN�5

g

MN�4

g

MN�3

g

MN�2

g

MN�1

�

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0

0

0

0

0

0

0

�

�

�

0

0

0

0

0

0

1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

N workers

N workers

N
w

o
rk

ers

or

CG = A (18)

with

G = [g

0

; g

1

; g

2

; � � �; g

MN�1

;�℄

0

:

The chunk sizes can then be computed as the solution of the linear system in Eq. 18. Note that the last

row of matrix C corresponds to the normalization condition that the chunks must add up to the total

workload.

5.2 Analysis of Results

We wish to gain some understanding of the property of the solution to the linear system identified

in the previous section. More specifically, we wish to obtain at least empirical answers to these two

questions: (i) under which conditions are all workers utilized? and (ii) what is the asymptotic application

makespan when N !1?

The first question is equivalent to: under which conditions are all components of G in Eq. 18 positive?

Or, equivalently, under which conditions is the right-most column of C�1 strictly positive? Providing

an analytical answer seems intractable. Instead, we turn to trying to determine the condition for full

platform utilization empirically. For instance, in a simplified situation in which R = R

0, for N = 10

and M = 5, if R > 18:4955 then G > 0, whereas if R � 18:4955, G 6> 0. In this specific instance,

R

�

= 18:4955 seems to be a threshold for full platform utilization. We plotted such empirical R� values

for N = 5 � 10 and M = 1 � 20 in Figure 6.

It is interesting to note that the threshold value R

� depends on the number of rounds M . This is

different from multi-installment with no output data transfers, where the threshold is strictlyR > N [10].

From Figure 6 we also see that for each N , the threshold gradually approaches 2N as M increases.

Consequently, R > 2N seems to be a valid condition for full platform utilization for applications with

R = R

0. In other experiments not reported here in which R 6= R

0, we found a similar empirical

condition: R +R

0

> 4N . We leave an analytical development of these bounds for future work.

We also take an empirical approach to answer question (ii) above. Figure 7 plots the components of

G for N = 10, M = 50, and R = 20. These results are similar to those obtained for other values.

One can see that as M increases the application makespan decreases exponentially and tends to T
total

=N

as M ! 1. This is due to the fact that for large M , the first N and the last N chunks make up

12



0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

M

R
*

threshold R* as N=5−−10, M=2−−20

N=5
N=6
N=7
N=8
N=9
N=10

Figure 6. R� threshold values for full platform utilization, N = 5 � 10, M = 1 � 20.

0 10 20 30 40 50 60 70 80 90
0.1

0.12

0.14

0.16
N=10 M=1...90 R=20

the makespan approaches W/N as M increases

Figure 7. Asymptotic trend of makespan as M !1

an insignificant fraction of the total workload, meaning that the time spent transferring these chunks

approaches 0.

5.3 Affine Cost Models

We use exactly the same approach as in Section 5.1. With an affine cost model the time to transfer the

i

th chunk of workload to a worker, T
input

i

, and the time to transfer the output of the computation of this

chunk, T
output

i

, as computed as:

T

input

i

= � + g

i

=R and T

output

i

= �

0

+ g

i

=R

0

;

where � 0 is the network latency incurred for transfer output data (which may conceivably be different

from �). Also, the time to compute the ith chunk, T

omp

i

, is:

T


omp

i

= � + g

i

:

13



One can then rewrite Eq. 17 as:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

8 0 � i < N g

i

+ � =

i�1

X

j=i�N

g

j

=R +

i+N

X

j=i+1

g

j

=R

0

+N�

0

+ i�

8 N � i < (M � 1)N g

i

+ � =

i�1

X

j=i�N

g

j

=R +

i+N

X

j=i+1

g

j

=R

0

+N(� + �

0

)

8 (M � 1)N � i < MN g

i

+ � =

i�1

X

j=i�N

g

j

=R +

i+N

X

j=i+1

g

j

=R

0

+�+N� + (MN � 1� i)�

0

8 i �MN or i < 0 g

i

= 0

� is exactly as it was defined in Section 5.1. As in Section 5.1 we can solve the above recursion with a

set of linear equations:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�RR

0

R R R R R RR

0

R

0

�RR

0

R R R R R RR

0

R

0

R

0

�RR

0

R R R R R RR

0

R

0

R

0

R

0

�RR

0

R R R R R RR

0

R

0

R

0

R

0

R

0

�RR

0

R R R R R RR

0

R

0

R

0

R

0

R

0

R

0

�RRR R R R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R R R

�

�

�

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R R R

R R

0

R

0

R

0

R

0

�RR

0

R R

R

0

R

0

R

0

R

0

R

0

�RR

0

R

R

0

R

0

R

0

R

0

R

0

�RR

0

1 1 1 � � � 1 1 1 1 1 1 1 1 1 1 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

g

0

g

1

g

2

g

3

g

4

g

5

g

6

�

�

�

g

MN�6

g

MN�5

g

MN�4

g

MN�3

g

MN�2

g

MN�1

�

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

= �RR

0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

N�

0

� �

N�

0

+ � � �

N�

0

+ 2� � �

N�

0

+ 3� � �

N�

0

+ 4� � �

�

�

�

�

�

4�

0

+N� � �

3�

0

+N� � �

2�

0

+N� � �

�

0

+N� � �

N� � �

T

total

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

N workers

N workers

N
w

o
rk

ers
N

w
o

rk
ers

or

C

0

G

0

= A

0

;

where

G

0

= [g

0

; g

1

; g

2

; � � �; g

MN�1

;�℄

0

:

5.4 An Open Question: Dual Channels

Consider the case when we allow the sending channel and receiving channel to work independently,

that is, a worker sends back results at the same time that the next worker receives its input. The final

schedule depends on which activity occupies the link longer, sending or receiving. The schedule is then

determined by this activity and is similar to one of the two extreme cases mentioned in Section 5.1. When

transfers of input data take longer, the schedule is approximately determined by Eq. 3 and is depicted

on Figure 8(a); when transfers of output data take longer, the schedule is approximately determined

by Eq. 17 and depicted on Figure 8(b). However, in both cases, the beginning and the end of the

application execution are more complicated. A question worthy of investigation would be that of the

division between the two cases. We leave this for future work.

6 Conclusion

In this paper we have presented multi-round algorithms for scheduling divisible workload on homo-

geneous star networks. We set out to answer two open questions: (i) Given a number of rounds, is it

possible to obtained a schedule analogous to the ones given in [9] for homogeneous platform, but with

14



input data

output data

7

worker 0

worker 1

worker 2

worker 3

worker 4

A B

0

14

1

13

212

3

11

4

10

9

5

8

6

(a) When input data transfers take longer, the

schedule is determined by the input recursion

equations – Eq. 3.

input data

output data

7

worker 0

worker 1

worker 2

worker 3

worker 4

A B

0

14

1

13

212

3

11

4

10

9

5

8

6

(b) When output data transfers take longer, the

schedule is determined by the output recursion

equations – Eq. 17.

Figure 8. Two possible schedules for a dual­channel network.

more realistic affine cost models for computation and communication? and (ii) is it possible to obtain

such closed-form solution while accounting for non-negligible output transfer time? Our contributions

were as follows. First, building on the work in [9], we have developed new closed-form solution for

multi-installment scheduling on homogeneous platform with affine cost models. This was achieved via

a new formulation of the well-known chunk size recursion and using generating functions. Second, we

gave chunk size recursions for the scheduling problem with output data transfers. We solved these recur-

sions via sets of linear equations. We also gave an empirical analysis of the conditions for full platform

utilization.

A corollary of using affine cost models is that there is a clear trade-off for multi-round scheduling: on

the one hand dividing the workload into small chunks (i.e. many rounds) makes it possible to overlap

communication with computation effectively; on the other hand dividing the workload into large chunks

(i.e. few rounds) reduces the overhead due to latencies, and thus the overall makespan. This implies that

there is an optimal number of rounds for multi-round scheduling, but determining this number of rounds

is an open question. In [33] we have proposed UMR, a heuristical multi-round algorithm that tolerates

latencies and computes an approximately optimal number of rounds under a some restrictions. In future

work we will compare the efficacy of the new multi-installment algorithm developed in this paper with

that of UMR on homogeneous platforms.

Acknowledgments

The authors would like to thank Dr. Mo from the Dept. of Mathematical and Statistical Sciences,

University of Alberta, Canada for his help with the proof in Appendix A.

A On the degree of the roots of Q(x)

In Section 4.1 and 4.2 we have mentioned that a condition for using the partial fraction and rational

expansion method for computing the generating functions was that the denominator polynomial, Q(x),

has only roots of degree 1. If it were not the case we would have to use the more involved General

15



Rational Expansion Theorem [23] to convert the generating function to power series. We prove here

that:

(i) if R 6= N all roots of Q(x) are of degree 1; and

(ii) if R = N the only root of Q(x) with degree higher than 1 is x = 1, with degree 2.

Since x = 1 is clearly a root we can rewrite Q(x) as:

Q(x) = (1� x)P (x); where P (x) = (R� x� x

2

� x

3

� :::� x

N

): (19)

Proof of (i) – Let us assume that R 6= N . In this case, the root x = 1 has degree 1 since it is not a root

of P (x). We now focus on proving that P (x) has only roots of degree 1. Assume that P (x) has a root �

(which is 6= 1) of degree d > 1. Then one can write:

P (x) = (x� �)

d

F (x)

One can then compute the derivative of P (x) as:

P

0

(x) = (x� �)

d�1

(F

0

(x) + (x� �)F (x));

which shows that � must also be a root of P 0

(x). One can compute P 0

(x) with Eq. 19 as:

P

0

(x) = �(1 + 2x+ 3x

2

+ 4x

3

::::+Nx

N�1

): (20)

Therefore, � satisfies the following two equations:

R� �� �

2

� �

3

� :::� �

N

= 0 (21)

1 + 2�+ 3�

2

+ 4�

3

:::: +N�

N�1

= 0 (22)

Multiplying Eq. 22 by (1� �) gives:

1 + � + �

2

+ :::+ �

N�1

�N�

N

= 0; (23)

which one can then add to Eq. 21 to obtain:

� =

�

R + 1

N + 1

�

1

N

: (24)

Multiplying Eq. 23 by �, and add to Eq. 21, we have:

� =

�

R

N

�

(

1

N+1

)

(25)

From Eqs. 24, 25, we get:
�

R

N

�

N

=

�

R + 1

N + 1

�

N+1

: (26)

We now show that Eq. 26 implies R = N . Consider the function f(x) defined as:

f(x) = (N ln(x)� (N + 1) ln(x + 1))� (N ln(N)� (N + 1) ln(N + 1)):

16



Clearly Eq. 26 is equivalent to f(R) = 0. The derivative of f(x) is:

f

0

(x) =

N � x

x(x + 1)

;

which is positive on the interval (�1; N), zero at x = N , and negative on the interval (N;+1).

Therefore, f(x) reaches its maximum at x = N . Since f(N) = 0, the only real root of f(x) is x = N .

Consequently, f(R) = 0 implies that R = N , which is a contradiction. As a result Eq. 21 and Eq. 22

cannot hold simultaneously, showing that P (x) cannot have a root of degree higher than 1. This com-

pletes the proof that all roots of Q(x) are or degree 1.

Proof of (ii) – Assume that R = N . As in the proof for (i) let us assume that P (x) has a root � of degree

d > 1. Then we know that � is a root of P (x) and of P 0

(x). From Eq. 24 one obtains � = 1

(

1

N

). Now, if

� = 1 then P 0

(�) 6= 0. And thus � is not a root of P 0

(x), which is a contradiction. If � 6= 1 then

P (�) = R �

�(1� �

N

)

1� �

= R�

1

(

1

N

)

(1� 1

(

1

N

)

N

)

1� 1

(

1

N

)

= R 6= 0;

which shows that � is not a root of P (x), which is a contradiction. Therefore, P (x) has no root of degree

higher than 1. Therefore, the only root of Q(x) that has a degree higher than 1 is the root x = 1 and its

degree is 2.

Based on (i) and (ii) we conclude that when R 6= N , Q(x) cannot have roots with degree higher than 1;

and that when R = N , the only root of Q(x) with degree higher than 1 is x = 1, with degree 2.

References

[1] D. Altilar and Y. Paker. An optimal scheduling algorithm for parallel video processing. In Pro-

ceedings of the IEEE International Conference on Multimedia Computing and Systems, 1998.

[2] D. Altilar and Y. Paker. Optimal scheduling algorithms for communication constrained parallel

processing. In Proceedings of Europar’02, pages 197–206, 2002.

[3] D. Applegate and W. Cook. A computational study of the job-shop scheduling problem. 3:149–

156, 1991.

[4] Bataineh, Hsiung, and Robertazzi. Closed form solutions for bus and tree networks of processors

load sharing a divisible job. IEEE Transations on Computers, 43(10), 1994.

[5] S. Bataineh and T. Robertazzi. Bus-oriented load sharing for a network of sensor-driven processors.

IEEE transactions on systems,man and cyternetics, 21(5), 1991.

[6] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric allocation of

independent tasks on heterogeneous platforms. In Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS), June 2002.

[7] O. Beaumont, A. Legrand, and Y. Robert. The master-slave paradigm with heterogeneous proces-

sors. In Proceedings of Cluster’2001, pages 419–426. IEEE Press, 2001.

17



[8] O. Beaumont, A. Legrand, and Y. Robert. Optimal algorithms for scheduling divisible workloads

on heterogeneous systems. Technical Report 2002-36, Ecole Normale Superieure de Lyon, October

2002.

[9] Bharadwaj, Ghose, and Mani. Optimal sequencing and arrangement in single-level tree networks

with communication delays. IEEE transactions on parallel and distributed systems, 5(9), 1994.

[10] Bharadwaj, Ghose, and Mani. Multi-installment load distribution in tree networks with delays,.

IEEE Trans. on Aerospace and Electronc Systems, 31(2):555–567, 1995.

[11] Bharadwaj, Li, and Ko. On the influence of start-up costs in scheduling divisible loads on bus

networks. IEEE TPDS, 11(12):1288–1305, 2000.

[12] Bharadwaj and Ranganath. Theoretical and experimental study on large size image processing ap-

plications using divisible load paradigm on distributed bus networks. Image and Vision Computing,

20(13-14):917–1034, 2002.

[13] Blast webpage. http://http://www.ncbi.nlm.nih.gov/BLAST/.

[14] Blazewicz. Performance limits of a two-dimensional network of load sharing processors. Founda-

tions of computing and decision sciences, 21(1):3–15, 1996.

[15] Blazewicz and Drozdowski. Distributed processing of divisible jobs with communication startup

costs. Discrete Applied Mathematics, 76:21–41, 1997.

[16] H. Casanova and F. Berman. Parameter Sweeps on the Grid with APST, chapter 26. Wiley Pub-

lisher, Inc., 2002. F. Berman, G. Fox, and T. Hey, editors.

[17] E. Coffman. Computer and Job shop scheduling. Wiley, 1976.

[18] Drozdowski and Glazek. Scheduling divisible loads in a three-dimensional mesh of processors.

Parallel Computing, 25(4), 1999.

[19] Drozdowski and Wolniewicz. Experiments with scheduling divisible tasks in clusters of worksta-

tions. In Europar, pages 311–319, 2000.

[20] Drozdowski and Wolniewicz. Divisible load scheduling in systems with limited memory. Cluster

Computing, 6(1):19–29, 2003.

[21] S. Flynn Hummel. Factoring : a method for scheduling parallel loops. Communications of the

ACM, 35(8):90–101, August 1992.

[22] Ghose and Mani. Distributed computationa with communication delays: Asymptotic performance

analysis. JPDC, 23(3), 1994.

[23] P. Graham, Knuth. Concrete Mathmatics. Wiley, 1994.

[24] T. Hagerup. Allocating independent tasks to parallel processors: An experimental study. Journal

of Parallel and Distributed Computing, 47:185–197, 1997.

[25] Hmmer webpage. http://hmmer.wustl.edu/hmmer-html/.

18



[26] Kim, Jee, and Lee. Optimal load distribution for tree network processors. IEEE Transactions on

Aerospace and Electronic Systems, 32(2):607–611, 1996.

[27] Lee and Hamdia. Parallel image processing applications on a network of workstation. Parallel

Computing, 21:137–160, 1995.

[28] C. Lee and M. Hamdi. Parallel image processing applications on a network of workstations. Par-

allel Computing, 21:137–160, 1995.

[29] Li. Parallel processing of divisible loads on partitionable static interconnection networks. Cluster

Computing, 6(1):47–55, 2003.

[30] K. Li. Scheduling divisible tasks on heterogeneous linear arrays with applications to layered net-

works. In IPDPS, 2002.

[31] A. L. Rosenberg. Sharing partitionable workloads in heterogeneous nows: Greedier is not better.

In Proceedings of the 3rd IEEE International Conference on Cluster Computing (Cluster 2001),

pages 124–131, 2001.

[32] J. Sohn and T. Robertazzi. Optimal divisible job load sharing for bus networks. IEEE transactions

on Aerospace and Electronic systems, 32(1), 1996.

[33] Y. Yang and H. Casanova. Umr: A multi-round algorithm for scheduling divisible workloads.

In Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03),

Nice, France, April 2003. to appear.

[34] yuan-chien Cheng and Robertazzi. Distributed computation with communication delay. IEEE

transactions on aerospace and electronic systems, 24(6), 1988.

[35] yuan-chien Cheng and Robertazzi. Distributed computation for a tree-network with communication

delay. IEEE transactions on aerospace and electronic systems, 26(3), 1990.

[36] Y.Yang and H. Casanova. Rumr: Robust scheduling for divisible workloads. In Proceedings of

HPDC 2003, pages 114–123, 2003.

19




