
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Characterizing and Leveraging Processor Variability in Mobile Devices for Energy Efficiency

Permalink
https://escholarship.org/uc/item/8w20c9qr

Author
Chandrashekhar, Roshni

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8w20c9qr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Characterizing and Leveraging Processor Variability in Mobile Devices for Energy
Efficiency

A thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Computer Science

by

Roshni Chandrashekhar

Committee in charge:

Yuvraj Agarwal, Chair
Rajesh Gupta
Puneet Gupta
Geoffrey Voelker

2013

Copyright

Roshni Chandrashekhar, 2013

All rights reserved.

The Thesis of Roshni Chandrashekhar is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

iii

DEDICATION

To Amma, Appa and Chetan, it’s time for another adventure.

iv

EPIGRAPH

Nothing begins, and nothings ends,
That is not paid with moan,

For we are born in other’s pain,
And perish in our own.

– Francis Thompson, Daisy, 1893

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Abstract of the Thesis . xii

Chapter 1 Introduction . 1
1.1 Motivation . 2
1.2 Thesis Organization . 4

Chapter 2 Related Work . 6
2.1 A fluid hardware-software interface . 6
2.2 Sources of Variability . 7
2.3 Characterization of Variability . 8
2.4 Adapting for Variability . 9
2.5 Energy Savings on Mobile Devices . 12

2.5.1 Instrumentation . 12
2.5.2 Adapting for Energy Efficiency . 13

Chapter 3 Experimental Infrastructure . 15
3.1 Measurement System . 15

3.1.1 Hardware . 16
3.1.2 Software . 18

3.2 Measurement Parameters . 19
3.3 Experiment Workflow . 23

3.3.1 Eliminating Measurement Errors . 25

Chapter 4 Processor Power Variability in Mobile Devices 27
4.1 CPU Subsystem Variability . 27

4.1.1 Applications . 27
4.1.2 Observed Variability . 28

4.2 Impact of Ambient Temperature . 32

vi

4.3 Discussion . 35

Chapter 5 The Case for Software Adaptability . 40
5.1 Application . 40
5.2 Potential for Adaptation . 44

5.2.1 Sample Scenarios . 46

Chapter 6 Implications, Future Work and
Conclusion . 52

6.1 Implications . 52
6.1.1 Instrumentation . 52
6.1.2 Variability-Aware Adaptation . 53
6.1.3 Service Provider Adoption . 53
6.1.4 Potential User Interactions . 54

6.2 Future Work . 54
6.2.1 More Adaptive Applications . 54
6.2.2 Analyzing Graceful Degradation . 55

6.3 Conclusion . 55

Appendix A Additional Figures and Observations . 57
A.1 Power Measurements For 8 Channels . 57
A.2 Run to Run Variation . 58
A.3 Encodings and Processor Frequencies . 59
A.4 Calculation of Margin of Error . 60

Appendix B Other Workflow Details . 61
B.1 NSF Demo Documentation . 61

B.1.1 Software Packages . 61
B.1.2 Workflow . 61

B.2 ADB Commands . 62
B.3 Video Quality Measurements . 63

B.3.1 Using ffmpeg . 63
B.3.2 BVQM . 64

Bibliography . 65

vii

LIST OF FIGURES

Figure 1.1. Circuit variability as predicted by ITRS . 3

Figure 2.1. Sleep Power Variability in ARM Cortex M3 Microprocessors 9

Figure 2.2. Power variability in DRAMS with identical hardware specifications
manufactured by different vendors . 10

Figure 2.3. Power variability in Intel i5-540M Processors at 2.53GHz. 11

Figure 3.1. Experiment Infrastructure Overview . 17

Figure 3.2. WQEPM Web UI Screenshot . 20

Figure 4.1. Power Usage Across Devices for LINPACK 31

Figure 4.2. Power Usage Across Devices for Whetstone 31

Figure 4.3. Power Usage Across Devices for Dhrystone 32

Figure 4.4. Total Power across devics for CPU Intensive Applications 33

Figure 4.5. Effect of Temperature on Device Variability - CPU-intensive Bench-
marks . 35

Figure 4.6. Effect of Temperature on Device Variability - Video Playback . . . 37

Figure 4.7. Idle Power Consumption Across Devices . 38

Figure 5.1. Power versus PSNR for a high resolution video 43

Figure 5.2. Power versus PSNR for a medium resolution video 44

Figure 5.3. Comparing Power versus PSNR for two frame resolutions: Scenario
1 . 47

Figure 5.4. Comparing Power versus PSNR for two frame resolutions: Scenario
2 . 48

Figure 5.5. Power versus Frame Resolution for the Tea House video 50

Figure A.1. Power Measurements for 8 Channels for the Lowest Power Device 57

Figure A.2. Power Measurements for 8 Channels for the Highest Power Device 58

viii

Figure A.3. Run to run variation . 59

Figure A.4. Encodings and Phone Processor Frequencies 60

ix

LIST OF TABLES

Table 3.1. Snapdragon MSM8660 Mobile Development Platform (MDP) 16

Table 3.2. Power Measurement Points . 22

Table 4.1. Device Variability at 192MHz . 29

Table 4.2. Per-Channel Variability at 192MHz . 30

Table 4.3. Device Variability at 1.5GHz . 30

Table 4.4. Per-Channel Variability at 1.5GHz . 30

Table 4.5. Device variability at 1.5GHz at different temperature ranges for
CPU-intensive benchmarks . 36

Table 4.6. Device variability at 1.5GHz at different temperature ranges for
video playback . 36

Table 5.1. Video Details . 42

Table 5.2. Processor power variability for video playback at different frame
resolutions at 1.5GHz . 45

Table 5.3. Difference between playing CIF and QCIF frame resolutions for
different encodings . 49

x

ACKNOWLEDGEMENTS

I thank Doctor Yuvraj Agarwal for his support as my advisor, guide, and the chair

of my committee. His encouragement to focus on building the concrete from the abstract

and his patience through the arduous terrains of proprietary information serve as the

pillars for this work.

I also acknowledge Professor Rajesh Gupta for introducing me to the Variability

Expeditions, and Professor Puneet Gupta who has been one of the biggest supporters of

my project, and was always available to run things by despite his other commitments and

remote location.

I thank Kiran Rudramani, Fred Bontemps and the other members of the Qual-

comm Innovation Center Inc. for all the help with the infrastructure and devices, as well

as the answers to my persistent questions. For help with Video Quality Measurements, I

thank Aashish Pant, one of Puneet’s former students and Margaret Pinson, a Co-Chair of

the HDTV project in the Video Quality Experts Group (VQEG).

I would also like to thank Professor Geoff Voelker, who’s been a wonderful

mentor through my journey at grad school, and was always available for advice and help

on all fronts.

For always being on my side, putting up with my insanity, and for sticking up for

me through thick and thin, I thank my fabulous five, Manoj, Amal, Mukanth, Venmathi

and Rakesh.

xi

ABSTRACT OF THE THESIS

Characterizing and Leveraging Processor Variability in Mobile Devices for Energy
Efficiency

by

Roshni Chandrashekhar

Master of Science in Computer Science

University of California, San Diego, 2013

Yuvraj Agarwal, Chair

As semiconductor manufacturers build smaller components, circuits and chips at

that scale become less reliable and more expensive to produce, and no longer conform

to the rigid hardware specifications usually expected of them. While traditionally, the

onus of handling variability has been on the hardware manufacturers, there has been

a recent push towards embracing device variability, especially in software, rather than

hiding it by increasing guardbands applied to chip designs. Our work takes a higher-level

software systems approach to previous studies of embedded sensing systems made in this

regard and extends them to mobile devices, mainly smartphones, which are the current

xii

generation of general purpose computing devices.

We begin by measuring and characterizing processor power variability in mobile

devices through fine-grained power measurements on a suitably instrumented platform.

We observe variation in processor power consumption ranging from 6% to 15% across

smartphones that are manufactured to be identical. This variability, if harnessed properly,

could convert into improvements in battery lifetime of 30 to 70 minutes. In this thesis, we

also make the case for adaptive software that can leverage information about patterns of

variability observed across devices for improved energy efficiency. Using video playback

with different tunable parameters as a motivating example, we discuss the trade-off

between quality of service and energy usage an the role device variability can play in

these trade-offs and find that it is possible for us to proactively choose the encoding and

frame resolution parameters to use for video playback, resulting in estimated energy

savings of 3-15% which translates to improved battery lifetime of an hour.

xiii

Chapter 1

Introduction

Computer systems have been reaping the benefits of Moore’s Law driven scaling

of the semiconductor manufacturing processes for the last three decades. However, we are

now beginning to see dramatically deteriorating effects of material properties on the active

and leakage power, which in turn, results in increased variability across components. For

now, dealing with this problem was limited to hardware manufacturers who respond with

increasing guardbands applied to microelectronic chip designs, thereby continuing to

conform to the outward appearance of a rigid hardware specification. However, as this

problem continues to scale with shrinking critical dimensions of chip designs, the cost of

maintaining the facade of a rigid specification through precise control over manufacturing

quality has translated into exponentially increasing costs of fabrication and equipment.

This variability in microelectronic manufacturing manifests itself in many forms,

such as variation in the threshold voltages of transistors in a chip, which in turn affects

the power consumption and the maximum operating frequency of the resulting chips.

Besides the primary source of semiconductor manufacturing, variability may also mani-

fest through some other secondary factors or sources like the environment or operating

conditions, total energy capacity of batteries, transistor aging and multi-sourcing of parts

with identical hardware specification from different vendors [6, 45]. With this knowledge

of variability in process manufacturing, we intend to explore, analyze and characterize

1

2

the processor power variability in mobile devices, which are rapidly becoming the most

prominent general purpose computing platforms. The next few sections will present the

underlying motivation for this thesis and the issues addressed through this work.

1.1 Motivation

The NSF Variability Expedition [1] makes the case for observing hardware vari-

ability across devices, due to wear-out over time or changing environmental parameters

like temperature and exposing such observed behavior to the software stack so as to

save the expense of manufacturing hardware that meets rigid specifications. It has been

observed that this conformity is more expensive than allowing diversity to flourish, and

the Expedition envisions a future where embracing the diversity of devices and hardware

components to within the boundaries of the software stack makes for more robust and

power-saving computing devices.

Gupta et. al. [16] present the basic motivation for a flexible hardware-software

stack that can take advantage of a relaxed hardware design. The authors also advocate the

case for underdesigned hardware in the light of increasing variability in manufacturing

and the expenses borne out of such variability in the form of the proposed Underdesigned

and Opportunistic (UnO) computing machines. The ITRS predictions [22] of circuit

variability in Figure 1.1 show that the trend is set to continue even further, thus laying

the ground for underdesigned hardware that can be used in combination with a flexible

software stack to dynamically adapt to variability. While the primary motivating factor

for exploring and analyzing variability has been limited to hardware manufacturing, in

this thesis, we approach variability through a higher level systems perspective by the

detailed characterization of variability in power consumption across multiple mobile

devices and mechanisms to harness this variation for improving device battery life.

With over 480 million devices sold in 2011, smartphones are now more than

3

Figure 1.1. Circuit variability as predicted by the ITRS [22], showing that performance
will stagnate even though variability in power consumption will continue to grow over
the years.

just a rapidly growing market [39]. A majority of the world’s population is using

smartphones as the new general purpose computing machines, and a direct impact of

the study of variability and of a fluid hardware-software stack on the lives of people can

be more evident in this narrower setting. It is for this reason that this thesis seeks to

build upon previous work in characterizing variability in embedded devices [42] [2] by

extending the study to general purpose smartphone platform, to understand the nature of

hardware variability in these processors, including how applications could take advantage

of information about the presence of such variability. The expectation is that the same

motivation that suggests the idea of a more robust, reliable and responsive machines

also applies to mobile devices. The rest of this thesis focusses on smartphones as

representative mobile devices that may be affected by process manufacturing variability.

4

1.2 Thesis Organization

This thesis is organized into the following sections:

Exploring the nature of processor power variability across mobile devices: Before

we move on to software adaptability, it is important to verify that there is in fact mea-

surable variability across devices, and characterize this variability with reasons for the

observed differences. We observe a ∼6-15% variability in processor power in mobile

devices.

Observing the effect of temperature on processor power variability across mobile

devices: Temperature is usually a good indicator of power usage of a device and vice-

versa. Thus, we seek to show that the cross-device variability of smartphones increases

with an increase in ambient temperature. We observe an increase in processor power

variability on mobile devices to ∼22-23% at significantly warmer ambient temperatures.

Making the case for adapting software to address mobile device processor power

variability: Once we have established that there is significant variability across devices,

we seek to demonstrate how a specific application could be adapted to use the informa-

tion obtained by monitoring the device and how such parameter measurement-based

decisions could themselves vary across devices, resulting in lower energy consumption

across all devices. We use a canonical example of video playback, which is a common

application on mobile devices to show how variability-aware adaptation can improve

energy efficiency.

In the forthcoming chapters, we go on to illustrate our efforts in the exploration

and characterization of variability in mobile devices (here, smartphones). Work related

to the project we have undertaken is covered in Chapter 2. In Chapter 3 we discuss

5

the infrastructure, testbed and the experimental setup. The characterization of observed

variability in the experiments is discussed in Chapter 4. In Chapter 5 we make the case for

adapting software with variability-aware information with results of a proof-of-concept

application. Lastly, Chapter 6 discusses the implications of the observed processor power

variability across multiple smartphones and the adaptability of software to this variability,

followed by a summarization of our results, as well as a discussion on future work.

Chapter 2

Related Work

Before we begin analyzing processor power variability across mobile devices, it is

important to understand the reasons for variability and previous work in characterization

of variability. In this chapter we discuss the work done along a few dimensions that

intersect with our research, comprising of the push to expose hardware variability, creating

an adaptive software stack and the extensive research to reduce the power consumption

of smart phones from the perspective adapting applications for energy efficiency.

2.1 A fluid hardware-software interface

In some early work on exposing the hardware differences, Wang et. al. [41] advo-

cate a common model to read hardware accelerator values through software. In a way,

this creates a level of indirection over which applications interact with the hardware only

through software. While not necessarily advocating exposing of the hardware variability,

their case made for a more flexible hardware-software interface is endorsed by the vision

of the variability expedition Gupta et. al. [16]. The authors also mention that hardware

manufacturing conforming to rigid parametrized specifications is becoming expensive

and a fluid hardware-software interface could lead to more robust systems. Gupta et.

al. [16] envision Underdesigned and Opportunistic (UnO) computing machines that

would provide a unified way of addressing variations due to manufacturing and ambient

6

7

operating conditions. These machines would be instrumented with inexpensive moni-

toring methods for hardware signatures to variation-aware operating system adaptation

mechanisms.

Our research explores the UnO space, particularly with respect to smartphones.

We expect that handling variability of hardware specification at run-time that would result

in the selection of a different execution strategy in an UnO machine could result in power

savings, and our work focusses on providing a proof of concept for such decision making

for smartphone platforms.

2.2 Sources of Variability

Gupta et. al.[16] summarize the major sources of variability as follows:

Semiconductor Manufacturing Factors: Considerable literature has already focussed

on the difficulties of conforming to rigid hardware specifications stemming from unpre-

dictability of circuit designs [22]. The International Technology Roadmap for Semicon-

ductors (ITRS) highlights power/performance variability and reliability management in

the next decade as a red brick (i.e., a problem with no known solutions) for design of

computing hardware. As an example, Dighe et. al. [10] show within-die performance

variation of more than 25% at 0.8V in a recent experimental Intel processor. As already

explained earlier, shrinking dimensions for chip design increase the variability and high-

light a need for fine-grained control of these devices.

Environmental Factors: The environment in which a device operates can be affected

by different environmental factors like humidity and ambient temperature. However, the

ambient operating conditions of a device could also be defined by the location of a device

and its usage scenarios. Each of these contribute to device variability. For example, in

the automotive industry, operating temperatures vary from 30◦C to 175◦C resulting in

8

large power deviations [26].

Effects Due To Aging: Circuit aging, either through wires or transistors in integrated

circuits suffering wear-out leads to system power and performance changes over time

of usage. Some physical mechanisms eventually resulting in circuit aging include bias

temperature instability (where threshold voltage of transistors degrade over time), hot

carrier injection (where transistor threshold voltage degrades on switching), and electro-

migration (where the wire width shrinks as more current passes through it).

Vendor Differences: Almost all hardware manufacturing currently involves multi-

sourcing of parts with identical specification from different vendors. This is because

single vendor sourcing is difficult for the scale at which hardware manufacturing oper-

ates. These multi-sourced components also lead to substantial differences in power and

performance as shown in Figure 2.2.

2.3 Characterization of Variability

While the work in Section 2.1 is motivated partially by theoretical predictions of

variability in the future, it is also important to analyze the nature of variability in devices

currently being used empirically. Wanner et. al. [42] explain the observed variability in

embedded sensors using multiple instances Atmel SAM3U microcontroller. Figure 2.1

shows the sleep power variability across temperature for five instances of an off-the-shelf

ARM Cortex M3 processor. Wanner et. al. [42] observe a 14x variation in leakage power

and a 10% variation in active power of the embedded sensors.

Similarly, Gottscho et. al. [15] observe variations of upto 12.29% for idle power

within a single model of double dual rate third generation (DDR3) dual inline memory

modules (DIMMS). Hanson et. al. [17] observe a 2x variability in active power across

9

Figure 2.1. Sleep power variability across temperature for five instances of an ARM
Cortex M3 processor [42].

identical DRAMS from different vendors, as shown in Figure 2.2.

In work that inspires our research Balaji et. al. [2] instrument Intel Core i5-540M

laptop processors that are marketed in the same frequency bins, and thus presumed to

be identical, and observes power variation ranging from 7% to 17% across different

applications and configuration options, as shown in Figure 2.3. We also adopt a similar

method of instrumenting smartphone platorms to measure the power consumed, focussing

on characterizing the processor power variability across these devices.

2.4 Adapting for Variability

Writing software that reacts to hardware changes has always been one of the

focal points of energy-saving techniques. For example, Choi et. al. [8] leverage spatial

10

Figure 2.2. Power variability in DRAMS with identical hardware specifications manu-
factured by different vendors [17].

and temporal heat slacks to reduce on chip temperatures by dynamically changing the

workload with operating system support. Thus, one of the most promising ways to reduce

the negative effects of variability seems to be to write software that adapts to it. One

such adaptation technique is to use the majority opinion while reading from hardware

components as in Zhou et. al. [46]. This however, is not practical for general purpose

computing machines where the goal seems to be to fit more into less space rather than

provide redundancy in hardware to obtain accuracy. Thus, Pant et. al. [35] lay the ground

for characterizing the hardware using hardware signatures to modify the algorithm used

in the software layer accordingly. This resulted in a significant reduction in overdesign

and an increase in overall quality of their observed application. One point to note here

is that Pant et. al. [35] use video quality as their proof-of-concept application, which is

also going to be the case in ensuing chapters of this work.

11

Figure 2.3. Power consumption of six Intel Core i5-540M processors for SPEC CPU
2006 benchmark 2.53GHz. Power variation ranges from 12% to 17% [2].

Wanner et. al. [43], similarly measure and characterize leakage power variability

in current microprocessors and showed that variability-unaware estimates of power could

leave upto 61% of the power untapped in long running embedded sensing systems and

variability-aware duty cycling can lead to a 7.1x improvement in sensing quality for a

fixed desired lifetime of their test sensor systems. Whereas many of these projects have

been about the study of and software adaptation in smaller devices like sensors [43], it is

clear that as feature sizes reduce for regular general purpose computing devices like the

personal computer and the smartphone, the concerns over exposing hardware variability

and writing software that can adapt to it will directly impact energy savings on these

machines. A push in this direction comes from handling different hardware components

of a general purpose computing machine and writing software to adapt to the variability in

these components individually. Bathen et. al. [4] propose a hardware-assisted variability

aware memory virtualization layer that allows programmers or applications to partition

their address space into regions with different power, performance and fault-tolerance

guarantees. Building on this work, Bathen et. al. [5] propose ViPZonE, a variability-

aware software stack that allows developers to indicate to the OS the expected dominant

usage patterns (write or read) as well as level of utilization (high, medium, or low)

12

through high-level APIs. Our research focusses on laying the foundation for similar work

in software adaptation for smartphone devices, since it presents the next level of scale for

embedded systems and such devices are becoming pervasive.

2.5 Energy Savings on Mobile Devices

A large volume of literature has been dedicated to energy savings on mobile

devices given the express desire of users for longevity of battery lifetime. However, in

this section, we only discuss the work that has been done in measuring, monitoring and

conserving energy on mobile devices specifically from the perspective of addressing

variability. We also explain the concepts that can be extended into our work on power

variability in smartphones.

2.5.1 Instrumentation

An important goal of the variability expedition [1] has been to instrument and

monitor power values and other parameters of the underlying hardware components

that exhibit variation. This task is considerably harder in mobile devices which must

meet the dual needs of users who wish to multi-task on their phones with long battery

lives and manufacturers who would need extra sensors and power to monitor hardware

parameters like frequency, temperature and power. In an earlier effort to improve battery

lifetime of mobile devices, Flinn et. al. [13] combined hardware provided information

with program modelling to produce an energy profile, much like the hardware signatures

discussed in Pant et. al. [35]. In another approach, Oliver et. al. [33] presents an

Energy Emulation Toolkit that allows application developers to evaluate the energy

consumption requirements of their applications against real user energy traces. Oliver

et. al. [33] also suggests the classification of users based on their charging patterns

to determine what underlying algorithm an application must use. We suggest that a

13

similar classification be made for devices that would allow applications to choose what

quality of service to provide to users based on some power consumption values or other

sensor parameters. While this thesis only focusses on instrumentation to obtain fine-

grained power measurements for the CPU subsystem, other platforms choose to address

energy effiency in embedded systems by dynamically selecting the most energy efficient

hardware components that meet specific requirements in sensing delity, computational

load, storage media, and network bandwidth [30].

2.5.2 Adapting for Energy Efficiency

Once you have data about power or energy consumption and other parameters,

one must go about adapting software on the phone to save energy consumed, and thereby

extend battery lives of the devices. Paek et. al. [34] do this by determining when to turn

on the GPS based on a pre-determined level of location accuracy that can be expected

based on where the user is located. For example, in urban areas, GPS is generally less

accurate, so it suffices to turn it on only to achieve that accuracy. Cheng et. al. [7]

achieve about 14 to 20% energy savings with their proposed Quality Adaptive Backlight

Scaling scheme that determines when to dim the backlight in devices equipped with a

TFT (Thin Film Transistor) LCD (Liquid Crystal Display). The trade-off here is that

a dimming backlight affects the brightness of a video and the backlight scaling should

still meet some preset quality requirements. Mohapatra et. al. [31] optimize network

usage of mobile devices and explore the trade-off between quality of service and energy

savings. Lee et. al. [27] analyze the energy consumption of different video encodings

in handheld devices. Martins et. al. [29] allow each individual user to determine what

quality they would like for an application like audio/video or navigation and present

energy profiles for the different configurations available for these applications. For

example, for their navigation application, they present the user with options ranging from

14

the least power-consuming choice of displaying only a list of directions from source to

destination to the highest power-consuming choice of enabling real-time turn-by-turn

navigation with voice instructions.

In work well ahead of its time, one pioneering system for adapting applications

for energy efficiency on mobile devices was demonstrated by Flinn et. al. [12] in their

Odyssey system where they modify the Linux operating system to predict future energy

demands from measurements of past usage, and notifying applications to adapt when

there is substantial mismatch between predicted demand and available energy. Their

system extended battery life by around 30%.

As is rather evident from many of these adaptive applications, they all leverage

some configuration options of the application and tune some parameter to provide

appropriate quality of service to the user as well as longer battery lives by saving energy

consumed. In our work, we make the case for adaptive software by using video playback

as our proof-of-concept application, as has been adopted by [7] [13] [29] [31] since video

playback has a measurable, agreed-upon quality metric as well as tunable configuration

parameters that will be discussed in Chapter 5. We suggest that variability in smartphones

be dealt with as yet another tunable parameter by which we can beget considerable energy

savings by making wise decisions about the state of our software applications.

Chapter 3

Experimental Infrastructure

An important aspect of experimental research is the infrastructural support re-

quired to be setup before conducting the experiment. With respect to our work, before

we make observations about processor power variability in mobile devices, we need

to explain the infrastructure we used to obtain our measurements and the experimental

workflow. In this chapter, we describe the instrumentation setup we used for our exper-

iments to explore the nature of mobile device variability to observe and record power

measurements for individual system components.1

3.1 Measurement System

The basic infrastructure for our analysis is provided by Qualcomm, consisting of

the hardware for instrumentation and the software to obtain data from the instrumented

device. A complete overview of the setup is shown in Figure 3.1, and is described below.

1Some of the content described in this chapter may seem abstract or superficial since specific details are
covered under a Non-Disclosure Agreement with Qualcomm. If you can request access to that information
under a similar agreement, then you may refer to the WQEPM User Guide [38] for more information on
the WQEPM application.

15

16

3.1.1 Hardware

For our analysis on smartphones, Qualcomm has provided five devices belonging

to the Snapdragon MSM8660 Mobile Development Platform (MDP). Each device runs the

Android Operating System (Ice Cream Sandwich, Android 4.0.3). The details about these

devices are listed in Table 3.1. These devices are labelled Dev1-5 in future references.

Table 3.1. Device information for the Snapdragon MSM8660 Mobile Development
Platform (MDP). [37]

Processor MSM8660 with asynchronous dual-core central
processing unit (CPU) cores at 1.5GHz each

Graphics Adreno 220 graphics processing unit (GPU)
Display 3.61” WVGA capacitive multi touch screen
Video 1080 high-definition video recording and play-

back up to 30 frames per second
Stereoscopic 3D playback via HDMI output

Camera/Camcorder 13 megapixel main camera w/ LED Flash
1 megapixel front camera

Audio Dolby 5.1 audio
Memory 1GB LPDDR2 RAM

16GB on-board flash
External SD slot with 8GB SDHC card included

Connectivity 802.11 a/b/g/n Wi-Fi, Bluetooth, GPS, FM
Keys Dual stage camera shutter with half press

Volume/zoom +/- switches (context dependent)
Power on/off key
HW reset (recessed)
OS-specific soft keys

Connectors USB OTG micro connector with USB charging
HDMI type D connector
3.5mm audio jack
Micro SD external slot

Qualcomm also provided a National River Technologies (NRT) MiniBoard that

allows us to monitor and measure the current and/or power supplied to specific system

components in the smartphones. This NRT MiniBoard shall henceforth be referred to as

the Debug Board. As shown in Figure 3.1, the Debug Board acts as the interface between

17

Figure 3.1. Infrastructure diagram for the setup used to monitor and record power
measurements for each phone. [38]

our MSM8660 device and the software to extract measurement data from the device. Not

shown in the figure, however is the actual layout. The Debug Board has a specific slot for

the phone and the connector acts as the battery emulator for the phone. The Debug Board

is connected to a host PC that runs the monitoring software via a USB connector. The

phone is also directly connected to the host PC so as to use the Android Debug Bridge

(ADB) [20] to run scripts and applications on the smartphone.

18

3.1.2 Software

A large part of the setup shown in Figure 3.1 resides on the host PC, typically

a Windows machine. Qualcomm has provided an application called the Web-based

Qualcomm Embedded Power Monitor (WQEPM), which allows us to monitor power

channels on the target device, here the smartphone, via scripts running on an independent

host PC, so that we have no overhead of measurement on the device itself. This application

when launched connects to the Debug Board and monitors the target device. To obtain

any information from this device one needs to use a browser based client UI or write a

client script to specify the components to be measured. WQEPM writes all its values to

an SQLite database from which our scripts can then extract information.

Figure 3.2 shows a screenshot of the WQEPM Web User Interface to interact

with the Debug Board. The legend on the right indicates the power measurement points

or channels being monitored. While this UI allows a user of the WQEPM software to

view the data being extracted from the Debug Board graphically, it also allows the user

to export this data once the monitoring has been stopped as a CSV file, which supports

extensive scripting. The window on top of the browser is the WQEPM monitoring setup

that connects the Debug Board with target information. For our experiments however,

the process to get information from the Debug Board is handled directly by scripting

access to the SQLite database, and the graph visualization is not used to observe device

power variability.

Another important software component we use is the Android Debug Bridge

(ADB) [20]. ADB allows us to connect directly to the smartphone and automate the

running of applications on the phone without needing a user to interfere and start/stop

an application. ADB also provides a Linux-based shell to read, update or modify phone

parameters such as maximum and minimum operating frequency, which frequency

19

governor to use, what cores to use, etc. which we will use extensively in our experiments

as described in Section 3.3 subsequently.

3.2 Measurement Parameters

The instrumentation provided by the Debug Board allows us to monitor and record

power and/or current supply values for 32 different power measurement points or channels.

The broad categories for these channels are Audio, Camera, Core, Display, Memory and

some miscellaneous channels. A comprehensive list of these power measurement points

is described in Table 3.2. While it is tempting to be able to draw fine-grained power

measurements from all the specified channels, our goal to explore power variability

in processors across mobile devices does not require such measurements, nor do the

applications we use stress all these channels.

For the purposes of exploring processor power variability, of the various power

measurement points or channels, we focus on one particular channel for Internal Memory

and three different Core channels – the two Scorpion processor Cores on the device and

a Digital Core which handles peripheral components of the CPU subsystem2. The reason

for this choice is two-fold. First, we focus on device power variability based on a subset

of system components. For our project, we only focus on processor core variability. For

our desired granularity of components, we shortlisted around eight channels as prescribed

by correspondence with Qualcomm. Second, even the subset of power measurement

points we considered for our focus of system components can be narrowed down further

based on the actual contribution of those various channels to the total power usage of

that subsystem. In our case after we considered 8 channels or power measurement points

that were likely to impact the CPU subsystem, we then dropped the ones that made no

2This information was obtained from personal correspondence with Qualcomm. For more information
on the channels measured, please see Appendeix A.1.

20

Figure 3.2. This figure shows a screenshot of the WQEPM UI to interact with the Debug
Board. The legend on the right indicates the power measurement points or channels
being monitored. While this UI allows a user of the WQEPM software to view the data
being extracted from the Debug Board graphically, it also allows the user to export this
data once the monitoring has been stopped. The window on top of the browser is the
WQEPM Monitoring setup that connects the Debug Board with target information.

21

22

or minimal contribution signified by a constant low power value collected and reported

by WQEPM. The granularity and density of power measurements we obtain from the

different channels gives us a detailed view of the processor power variability across

mobile devices, which will be discussed in Chapter 4.

Table 3.2. This table provides a comprehensive list of all the power measurement points
available on the MSM8660 MDP. [38]

Category Power Rail
Name

Description of Functions Covered By
Power Measurement Point

Audio
VREG S3B Audio DSP
VDDD CDC IO Audio Codec I/O
CDC VDDC Codec Analog
CDC VDDA Codec Digital (VREG L5)

Camera
VREG LVS0A Camera I/O
VREG L25A Camera (digital)
VREG L15A Camera (Analog)

Core
VREG S0B Scorpion Core 0
VREG S1B Scorpion Core 1
VREG S1A MSM8660 Digital Core

Display
OLED ELVDD Active-Matrix Organic Light-Emitting

Diode (AMOLED) Electrolumines-
cence Virtual Fourier Filter

OLED VDD3 AMOLED I/O
OLED VCI AMOLED Memory

I/O
VREG L5A TS Touchscreen
VREG S3A PX3 MSM I/O Pad 3
VREG L5A PX2 MSM8660 I/O Pad 2
VREG L4B Haptics

Memory
VREG L14A Micro SD
VREG S0A MSM8660 Internal Memory
VREG L5B eMMC power supply line for internal

flash

23

Table 3.2. – continued
Category Power Rail

Name
Description of Functions Covered By
Power Measurement Point

VDD2 ISM MSM8660 Internal Stacked Module
(Voltage Domain 2)

VDDPX1 LPDDR2 DRAM - input receiver power supply,
I/O power supply, MSM power for I/O
pad group 1 - External Bus Interface
and System Management Interrupt

Misc
VDD1 LPDDR2 DRAM Voltage Domain 1
VREG LVS0B eMMC power supply line for host in-

terface
VDD1 ISM MSM8660 Internal Stacked Module

(Voltage Domain 1)
VDD2 LPDDr2 DRAM Voltage Domain 2
VREG L16A Phase Lock Loops, HDMI, Camera Se-

rial Interface 2/4
Modem

VREG L13A COMBO DAC, SVIDEO, BBRX
Sensor

ALS VDDA Ambient Light Sensor
Total Power

VPH PWR Main Power Supply (3.3 - 4.2V)
Video

VREG HDMI 5V HDMI HPD, HDMI LVL

3.3 Experiment Workflow

Before we explain the actual experiment, it is important to establish our experi-

ment workflow using the infrastructure just described in Section 3.1 above. A typical

experiment follows this procedure:

For each device:

1. Stop mpdecision process.

24

2. Turn off core 1 of the two Scorpion cores, labelled Core0 and Core1.

3. Set CPU frequency governor to userspace.

4. Set CPU frequency to some specific frequency (usually between 192MHz and

1.5GHz).

5. Start WQEPM and connect to the required target.

6. Run script (in Perl) for experiment.

7. Stop WQEPM to unlock the database.

8. Run script to extract data collected.

For our experiments to measure variability, we must be able to record processor power

by keeping as many factors constant as possible. That is the reasoning behind Steps 2 to

4. Some applications may use both cores, while some may not. To test variability across

a single core, we restrict our applications to use only Core0 and thus turn off Core1 by

stopping the mpdecision process that handles frequency scaling and core allocation. The

MSM8660 devices come programmed to run at specific frequencies ranging between

192MHz and 1.5GHz. Setting them at one specific frequency allows us to assert that we

are analyzing variability that is not induced by each device running at its own frequency

and Step 1 and 3 allow us to turn off dynamic voltage frequency scaling. Steps 1 to 4

can all be achieved through ADB as mentioned in Section 3.1.23. The process for Step

5 is described in the WQEPM User Guide [38]. Step 5 usually involves running the

application that we would like to obtain power measurements for over the MSM8660

MDP. In order to extract the data measured from the SQLite database, we need to ensure

that no other process is holding the database lock and therefore, we need to stop the

3Some of the actual ADB commands used are shown in Appendix B.2

25

WQEPM monitor which locks the database when monitoring channels even if it is not

writing to the database.

When we have collected data across all devices, we can then analyze them

to characterize variability across devices. Unless otherwise specified, all our future

experiments undergo 10 runs on each device, and the static supply voltage for each

channel or power measurement point is 1.1V.

3.3.1 Eliminating Measurement Errors

We have taken special care to ensure that the variation in values observed does not

manifest due to measurement errors. We perform multiple runs of the same experiments

on all the devices. Each experiment runs ten times on each device. All the devices start

in the same state. We reboot the devices and wait for two minutes until after reboot to

start the experiment, when the ADB shell top command always has the top process itself

listed as the highest user of the CPU. Between runs, the device is given a sleep period

ranging from 30 to 40s, so that intermediate setup and teardown does not interfere with

application power measurements. These additional experimental runs are included in our

results and are part of the standard deviation.

For the results that will be discussed in Chapter 4 for CPU-intensive benchmarks,

the standard deviation is always less than ±2% of the total power at normal temperatures

and less than ± 4% at warmer temperatures (around 50◦C). Therefore, for a confidence

interval of 95%, our margin of errors for a particular device are within ±1.2% of the

total power at normal temperatures and within ±2.4% of the total power at warmer

temperatures. The highest observed standard deviation across individual channels (here,

Internal Memory) is around ±6% and the margin of error for this is within ±3.7% of the

power measured for that channel. For more details on the calculation of these margins

of error, please refer to the Appendix A.4. As our results in Chapter 4 will show, the

26

standard deviation is not high enough to be interfering with our results for measured

variation.

Chapter 4

Processor Power Variability in Mobile
Devices

With our experimental infrastructure in place, we now explain the benchmark ap-

plications we used to measure and monitor the processor power or CPU subsystem power

variability across mobile devices. We characterize the observed variability, including a

discussion on the potential reasons for our observations. We also present results for the

effect of temperature on the observed device processor power variability.

4.1 CPU Subsystem Variability

4.1.1 Applications

For our first experiment, we consider CPU-intensive application benchmarks.

Since the devices run on the Android operating system, applications for some of these

benchmarks are already available to us [28]. While some of these applications can be used

to measure the performance of a device in their own way (floating point operations per

second(FLOPS), etc.), we only use these applications because they are known to stress

the CPU subsystem. Unless otherwise specified, the devices are labelled Dev1-5. We are

interested in the power consumed while running these benchmarks and not particularly

about the performance results. The applications we consider for this experiment are:

27

28

1. LINPACK: In its most basic form, this standard CPU benchmark measures the

number of floating point operations per second to see how fast a computer solves a

dense n x n system of linear equations Ax = b [11].

2. Whetstone: This is also another standard CPU performance benchmark mainly to

measure floating point arithmetic performance [9].

3. Dhrystone: This is similar to Whetstone except that it is designed to measure

integer arithmetic performance over a typical mix of applications that can be

contained in small memory subsystems [44].

4.1.2 Observed Variability

As shown in Table 4.1 and Table 4.3, we observe about 15% maximum variability

across devices for processor power consumption when the devices run at 192MHz and

between 6% to 10% maximum variability when the devices run at 1.5GHz, where the

two frequencies are two ends of the available frequency spectrum for these devices. Thus,

there is observed variability ranging from 6% to 15% across our test smartphones for

these CPU-intensive applications. Assuming an average battery lifetime of 8 hours1 for a

smartphone [18], this provides the scope for power savings ranging from half an hour to

70 minutes.

An overview of the variability observed across the devices when the CPU-

intensive applications are run at 192MHz and 1.5GHz is shown in Table 4.1 and Table 4.3

respectively. A more elaborate view of the processor power variability when the devices

run CPU-intensive applications along with a breakdown along three channels – Scorpion

Core0, the Digital Core and Internal Memory for devices at 1.5GHz is shown in Figures

4.1, 4.2 and 4.3. Figure 4.1, Figure 4.2, Figure 4.3 show the absolute and normalized

1Assuming continuous phone usage, the iPhone5 is guaranteed to last for 8 hours on 3G.

29

Table 4.1. A tabular representation of the maximum and minimum power consumption
across devices for CPU-intensive applications at 192MHz. The table shows the total
variation observed across the devices for these specific applications as a percentage of
the least power consumption.

Application Maximum Power
Consumption
(mW)

Minimum Power
Consumption
(mW)

Maximum
Device
Variability

LINPACK 225.77 195.15 15.69%
Whetstone 235.61 203.75 15.64%
Dhrystone 226.35 195.40 15.84%

power usage when the devices run the LINPACK, Whetstone and Dhrystone benchmarks

respectively. The graphs on the left show the absolute values of power supplied to the

three channels in mW, while the graphs on the right show the same values normalized

to the first device. The normalized values show us the variability across devices as a

percentage of power consumed by one device (always set to Dev1). Dev4, depicted by the

straight line hatch, always uses the least power, whereas Dev5 almost always consumes

the highest total power due to the highest power contributions from its core0 and internal

memory. From the normalized graphs, we also observe that the Internal Memory and

Core0 seem to supplement each other’s contributions to overall device variability, i.e.,

the ordering of devices based on the power variability is the same for Core0 and Internal

Memory. The digital core, on the other hand, complements them, as the ordering of

devices by Digital Core power is different from that of Core0 or Internal Memory. This

is also asserted by Table 4.2 and Table 4.4, which shows that the power variability across

the devices on a per-channel level are much higher than the overall processor power

variability, since the the devices with the minimum and maximum power vary across the

power measurement points.

To better understand this discrepancy in channel contribution, we present another

view of the total power variability for CPU-intensive applications in Figure 4.4. Figure

30

Table 4.2. The percentage of power variability on a per-channel level for three channels:
Core0, Digital Core and Internal Memory when the devices ran at 192MHz. These values
are significantly higher than overall power variability because the ordering of the highest
and lowest power devices does not remain the same across channels.

Application Scorpion Core 0 Digital Core Internal Memory

LINPACK 24.75% 20.23% 47.48%
Whetstone 17.59% 21.34% 44.89%
Dhrystone 28.75% 20.00% 46.46%

Table 4.3. A tabular representation of the maximum and minimum power consumption
across devices for CPU-intensive applications at 1.5GHz. The table shows the total
variation observed across the devices for these specific applications as a percentage of
the least power consumption.

Application Maximum Power
Consumption
(mW)

Minimum Power
Consumption
(mW)

Maximum
Device
Variability

LINPACK 742.44 675.78 10.03%
Whetstone 881.70 827.83 6.51%
Dhrystone 650.10 588.44 10.48%

Table 4.4. The percentage of power variability on a per-channel level for three channels:
Core0, Digital Core and Internal Memory when the devices ran at 1.5GHz. These values
are significantly higher than overall power variability because the ordering of the highest
and lowest power devices does not remain the same across channels.

Application Scorpion Core 0 Digital Core Internal Memory

LINPACK 14.90% 9.70% 44.48%
Whetstone 8.13% 9.92% 30.18%
Dhrystone 21.46% 9.56% 40.22%

31

Figure 4.1. Power usage across devices for LINPACK, one of the CPU-intensive appli-
cations, showing power used by three channels: Core0, the Digital Core and the Internal
Memory. The last column shows the total processor power. The two graphs show absolute
and normalized power respectively. The devices were running at 1.5GHz.

Figure 4.2. Power usage across devices for Whetstone, one of the CPU-intensive
applications, showing power used by three channels: Core0, the Digital Core and the
Internal Memory. The last column shows the total processor power. The two graphs show
absolute and normalized power respectively. The devices were running at 1.5GHz.

4.4 (a) shows the total power for all devices as a sum of the contributions of the power to

the various channels normalized to a percentage contribution of the total processor power.

This shows us that the contributions from the various channels does not differ by a very

significant amount and thus, we may be able to express these contributions as a fraction

of the total power. It can be observed from Figure 4.4 (a) that, for each application, it

is possible to express the total power, Ptotal , as an equation with constant contributing

factors:

Ptotal = Pcore0 + PDigitalCore + PInternalMemory

32

Figure 4.3. Power usage across devices for Dhrystone, one of the CPU-intensive appli-
cations, showing power used by three channels: Core0, the Digital Core and the Internal
Memory. The last column shows the total processor power. The two graphs show absolute
and normalized power respectively. The devices were running at 1.5GHz.

Ptotal = C1 ∗Ptotal +C2 ∗Ptotal +C3 ∗Ptotal

where C1, C2, C3 are constants that determine the contribution to overall device variability

as the values for Pcore0, PDigitalCore and PInternalMemory vary by device. This endorses our

argument about device variability in smartphone processors being amplified by inherent

system component variability.

Figure 4.4 (b) shows the absolute contribution of the three power measurement

points to the total power. The variability across the devices, even at the per-channel

level is quite clear even though the relative contributions to the total power for these

different channels remains almost the same. As explained earlier through Tables 4.2 and

4.4, the per channel variability is actually higher than the overall device variability, since

in many devices, when the Core0 and Internal Memory contribute towards increasing

the processor power variability across the devices whereas the digital core contributes to

variability in the reverse direction.

4.2 Impact of Ambient Temperature

As mentioned in Section 2.2 and by Wanner et. al. [42] in their work on embedded

devices, device variability can be amplified by ambient temperature. In this section we

33

Figure 4.4. (a) Shows the relative contributions of the measured channels to the total
power, on a scale normalized to 1 to indicate fractional contributions. (b) Shows the
variability across the devices in terms of total processor power with absolute values of
contributions from the three channels: Core0, Digital Core and Internal Memory. The
devices were running at 1.5GHz. In both figures, each bar in the group of 5 represents a
test device, Dev1-5 in that order.

34

explore whether this really is the case in mobile devices with respect to processor

variability. We consider the CPU-intensive applications discussed in Section 4.1.1 as

well as Video Playback, the details for which will be covered in Chapter 5.

The workflow is as discussed in Section 3.3, with one minor addition: when

testing warmer ambient temperatures, we use a space heater 2 to raise the ambient

temperature significantly more (between 50◦C and 55◦C) than the normal temperatures

(room temperatures between 27◦C and 33◦C)3. We choose these significantly different

temperature ranges for two reasons. First, our experiments often run for half an hour on a

single device. Continuously operating these devices with applications that stress the CPU

subsystem will heat up the phone by a few degrees as we near the end of our experiment

4. Second, small changes in temperature will not necessarily show any differences in

variability since hardware devices are designed to handle these small variations and we

would be unable to distinguish between variability caused by changes in temperature and

variability observed through experimental error.

Figure 4.5 shows two sets of values for each device. The bottom set shows the

total processor power across devices per application (Linpack, Whetstone and Dhrystone)

at normal temperature ranges of ∼27◦C to 33◦C. The top set shows the total processor

power across devices for the same applications at significantly warmer temperatures

of ∼50◦C to 55◦C. As shown in Table 4.5, the device processor power variability is

amplified from a range of ∼6-10% to 14-17% for the CPU-intensive benchmarks.

Similarly, Figure 4.6 shows that the variability across devices is significantly

amplified by warmer ambient conditions for a video playback application as well. Without

discussing the details of the actual application run (which will be explained shortly in

2We thank Jennifer Folkestad and CNS for the heater.
3Since we do not use sophisticated equipment to maintain temperature, we keep our temperature ranges

significantly different to analyze changes in device processor power variability.
4We observe that the power increases slightly for run to run variation because of this temperature

change in Section A.2

35

Normal
Ambient
Temperature

Warm
Ambient
Temperature

Warm
Ambient
TemperatureNormal

Ambient
Temperature

Figure 4.5. This figure shows the effect of increased ambient temperatures on processor
power variability when the phones run cpu-intensive applications like Linpack, Whetstone
and Dhrystone at 1.5GHz. We observe that the variability across devices is amplified at
warmer ambient temperature ranges of 50◦C to 55◦C compared to the variability observed
at normal temperature ranges of 27◦C to 33◦C.

Chapter 5), it is evident that processor power variability across the devices is amplified

from around 13% at normal temperatures to ∼22-23% at warmer temperatures, as

summarized in Table 4.6.

4.3 Discussion

In this section, we provide explanations for the observed variations from the

previous sections, and discuss a few points of importance when understanding the results.

In Figure 4.4, we observed that the per-channel power variability across devices differ by

channel. Table 4.2 echoes this result, and shows the per channel variability across devices

for the different CPU-intensive benchmark applications. We observe that the values for

per-channel power variability across devices are significantly higher than the overall

36

Table 4.5. This table shows the processor power variability across the devices when they
run CPU-intensive benchmarks (like LINPACK, Whetstone and Dhrystone) at a normal
temperature range of∼27◦C to 33◦C and a warmer temperature range of∼50◦C to 55◦C.

Application Maximum Device
Variability (Normal
Temperature)

Maximum Device
Variability (Warm
Temperature)

LINPACK 10.03% 16.81%
Whetstone 6.51% 14.52%
Dhrystone 10.48% 17.58%

Table 4.6. This table shows the processor power variability across the devices when they
play a video with three different encoding formats (3gp, H.264 and Webm) at a normal
temperature range of ∼27◦C to 33◦C and a warmer temperature range of ∼50◦C and
55◦C.

Video Encoding Format Maximum Device
Variability (Normal
Temperature)

Maximum Device
Variability (Warm
Temperature)

3gp 13.31% 23.14%
H.264 13.64% 23.64%
Webm 13.58% 22.73%

processor power variability observed in Table 4.1. The same observation can be made

from Table 4.4 as compared to Table 4.3 for the devices running at 1.5GHz. We believe

that the reason for the larger differences at a per-channel level not being manifested in

overall processor power variability is because the devices that consume the highest and

lowest power at a per-channel level are not the same. For example, for Core0 at 1.5GHz,

Dev5 is the highest power device and Dev2 is the lowest power device. However, for

the DigitalCore, Dev1 is the highest power device and Dev4 is the lowest power device.

While Core0 and the Digital Core complement each other’s power contributions, the

combined effect of the high values for Core0 and Internal Memory always render Dev5

as the high power device similarly render Dev4 the lowest power device.

We also observe that the variability at 1.5GHz is actually less than that at 192MHz.

37

Warm Ambient
Temperature

Normal Ambient
Temperature

Figure 4.6. This figure shows the effect of increased ambient temperatures on processor
power variability when the phones play three different encodings of the same video (3gp,
H.264 and Webm) at the same frame resolution at 1.5GHz. We observe that the variability
across devices is amplified at warmer ambient temperatures.

This could be because all the devices consume far less power at 192MHz and therefore,

any small changes across devices are amplified when expressed as a percentage of the

original lower power. At 1.5GHz, all the devices operate at a significantly higher power,

even in idle as shown in Figure 4.7. Another reason for this could be that the dominance

of leakage power is more prominent at 192MHz at which the power consumed by the

system components is definitely lower than that at 1.5GHz. In our experiments comparing

the devices at different frequencies, we have only scaled the frequency and the voltage to

the components is assumed to be the same since the configuration file does not specify

different voltage values at different frequencies.

We observe that there is significant variability even when there are no specific

applications running on the devices and the phones are in an idle state. Figure 4.7 shows

38

Figure 4.7. The graphs show the absolute and normalized idle power usage across
devices for three channels: Core0, the Digital Core and the Internal Memory, and the
total processor power, with the devices running at 1.5GHz.

the absolute and normalized idle power usage across devices for three channels: Core0,

the Digital Core and the Internal Memory, and the total processor power, with the devices

running at 1.5GHz. Figure 4.7 (a) has absolute values and Figure 4.7 (b) has values

normalized to Dev1. The figure also shows the idle-power values for the three channels:

Core0, the Digital Core and the Internal Memory. We observe in Figure 4.7, the idle

channel power is a significant contributor to the overall processor power variability.

In an idle state, the processor power across the devices varies by about 11.57%. The

processor power variability actually decreases when we run applications for a similar

reason as the higher variability observed at 192MHz. The values of idle processor power

are significantly smaller than the values of processor power when the devices are in

operation.

Another observation to be made is that since we were running CPU-intensive

benchmark applications, Core0 is the major contributor to the total power of the devices.

We will observe in Chapter 5 when we discuss video playback that the digital core,

which is responsible for peripheral components of the CPU subsystem, becomes a major

contributor to the total power, while also increasing the variability observed.

We know that power is proportional to temperature, so it is expected that a device

39

requires more power to operate at higher temperatures. However, we observe that this

increase in the power consumed at higher temperature is also different across the five

devices. As mentioned earlier, this could be because the contribution to total power from

the leakage power is a dominant factor at higher temperatures and is responsible for the

increased variability. We observe larger differences across the processor power at warmer

temperature ranges of ∼50◦C to 55◦C, compared to the differences observed at normal

temparture ranges of ∼27◦C to 33◦C. The increase in variability at higher temperatures

could also be because the variability across the idle operating power of the devices also

increases, and as we have previously noted, it is a contributor to the overall variability of

processor power across devices.

Chapter 5

The Case for Software Adaptability

Now that we have established that there is significant variability across smart-

phone processors, we expect that we should be able to provide a proof of concept of an

application that can adapt to this variability for the benefit of the device user and/or a

service provider. One such application popularly applied in literature is video playback

as mentioned in Section 2.5.2 since it is known to have many tunable parameters. The

workflow for our experiments remains the same as in Section 3.3.

5.1 Application

We play a video encoded in three different formats (3gp, H.264 and Webm/VP81)

on each device 2. In order to provide more choice in quality and power consumption, we

also play the same videos at two or three different frame resolutions: 4CIF (704x576),

CIF(352x288) and QCIF(176x144)3. For the purposes of our analysis we use one video

across encodings and frame resolutions. Each frame resolution had its own raw video

which we used to measure the quality of the videos of various encodings. The frame rate

of encoding depends on the video selected and we keep the bit-rate constant in order to

1In this thesis, we will use Webm or VP8 interchangeably.
2These are among the only supported Android media formats. [21]
3These particular resolutions are chosen for two reasons. First, the 3gp wrapper only supports these

resolutions and multiples thereof. Second, most well-known raw video sequences are only of these
resolutions or VGA, which is not 3gp supported

40

41

maintain a constant file size across encodings. File sizes are kept constant for a particular

video at a particular frame resolution. 4 The accepted standard for measuring the quality

of a video is PSNR [32] [40]. We do this using the BVQM software [25] that compares

the YUV format raw files obtained from each encoding to the original to generate a PSNR

value. A higher PSNR is a better quality. More details about the process of encoding

the videos from the raw files and obtaining a PSNR value are explained in the Appendix

Section B.3.

For the purposes of our research, we used three different videos so that any

observations we made and scenarios of adaptation we discussed could be applied across

multiple videos or our hypothesis proved incorrect, and some videos did not provide any

scope for adaptation or power savings. The details and specifications of the three videos

are given in Table 5.1. The first video is a 19s long video containing a set of people

ice-skating and is one of the well-known video sequences popularly used in video-related

research. The second and third videos were obtained from the ITS supported Consumer

Digital Video Library (CDVL) and can only be used for research and development. Each

video has been edited to meet the ITS Video Quality Experts Group (VQEG) Multimedia

Test Plan.

We present graphical results for two sets of runs: the first where we play Ice at

4CIF resolution, for which the total processor power across devices is shown in Figure

5.1 and second, where we play Ice at CIF resolution, for which the total processor power

across devices is shown in Figure 5.2. The large difference in power between the CIF and

4CIF videos is because the 4CIF video has a significantly larger size and frame resolution.

While the general ordering of the devices for any encoding based on power consumption

does not change, it is still possible to alter the choice of which encoding to use for video

4This helps us assert that choosing a different video encoding will bear no additional network cost to a
Service Provider or user.

42

Table 5.1. This table describes the details of the three different videos we will discuss in
Chapter 5.

Ice [14]
Description Group of people ice-skating at a rink, with two in

the foreground. Among the well known sequences
used for video-related research.

Available Formats 4CIF (704x576, progressive)
CIF (352x288, progressive)
QCIF (176x144, progresive)

Chroma Sampling 4:2:2
Coding Complexity Moderate
Origin and Quality Unknown
Run Time 0:19
Copyright Restriction None
NightStreet [24]
Description Night shot driving down street with camera held

at an angle, showing bright lights on buildings and
trees. Edited according to VQEG Multimedia Test
Plan.

Available Formats CIF (352x288, progressive)
QCIF (176x144, progresive)

Chroma Sampling 4:2:2
Coding Complexity Moderate
Origin and Quality Original-Excellent
Run Time 0:12
Copyright Restriction Research and Development
TeaHouse [24]
Description Interior of the Dushanbe Tea House, no scene cuts.

Edited according to VQEG Multimedia Test Plan.
Available Formats CIF (352x288, progressive)

QCIF (176x144, progresive)
Chroma Sampling 4:2:2
Coding Complexity Moderate
Origin and Quality Original-Good
Run Time 0:12
Copyright Restriction Research and Development

43

Figure 5.1. The figure shows Power versus PSNR for the playback of the Ice video with
Frame Resolution 704x576. We observe that there is significant variability across devices
at a particular encoding, denoted by a PSNR value for that encoding.

playback based on a specific power upper bound, as will be explained in the following

section, using a comparison of the results we just presented for 4CIF and CIF resolutions.

A summary of the processor power variability across devices for the different

frame resolutions is shown in Table 5.2. The purpose of the table is just to illustrate that

the observations from Chapter 4 also hold for our new application scenario. A point to

note here is that while the variability changes based on the frame resolution, the difference

between processor power used for two different encodings on one device remains almost

the same. This implies that any variability we do observe is not application-encoding

induced, but device-induced.

44

Figure 5.2. The figure shows Power versus PSNR for the playback of the Ice video with
Frame Resolution 352x288. We observe that there is significant variability across devices
at a particular encoding, denoted by a PSNR value for that encoding.

5.2 Potential for Adaptation

An important goal of the NSF Variability Expedition [1] has been to be able to

leverage hardware variability by exposing it to the software to facilitate decision making

for applications. This is the key principle expressed in the vision for UnO machines [16].

Therefore, in this section we will discuss some scenarios where it is possible for a service

provider facilitating video playback on a device to adapt encodings and frame resolutions

based on the knowledge of processor power variability across the devices for the benefit

of the user.

If a service provider were to approach variability as a decision making parameter,

we would need to consider two user requirements:

An upper bound for power consumption: Either the user or the service provider

45

Table 5.2. This table summarizes the processor power variability observed when we play
the Ice video on the devices at three different frame resolutions, where each video is
played in three different encoding formats. The devices run at 1.5GHz.

Encoding Maximum
Variability at
QCIF

Maximum
Variability at
CIF

Maximum
Variability at
4CIF

3gp 13.31% 14.10% 12.38%
H.264 13.64% 13.63% 11.95%
Webm 13.58% 17.64% 10.68%

should be able to specify an upper bound for the allowed energy consumption on the

phone. Typically, a user would specify this in the only parameter of utmost importance

to him/her, how long he/she would like the desired battery lifetime of the device to be.

A service provider may want to restrict the power drawn on a user’s phone so that the

user gets desirable quality of service and they retain customers. Such a power goal is met

when the phone draws power less than a specified value.

An acceptable quality lower bound: Different users have different assumptions about

quality of service expected from certain applications. Thus, a user must be allowed to

specify what their acceptable quality limits are. For video playback, any video that plays

at a better quality than this will be acceptable to the user. For now, we measure quality

by PSNR as expressed above. However, besides the objective PSNR measurement, we

could also use higher frame resolution to be a more desired quality for video playback.

In an argument very similar to ours, Martins et. al. [29] create an abstraction

called Application Modes where power savings are achieved through graceful degradation.

Developers create different modes for an application by selecting sets of functionalities

that entail different application behaviors, as perceived by the user, in exchange for

reduced energy consumption. Graceful degradation is achieved through various ways:

different settings, different algorithms, even different programs. We use the same argu-

46

ment that the user must decide a preference for a trade-off between the two goals listed

above, since it may not always be possible to meet both.

We must thus target those encodings that reside in that sweet spot at the intersec-

tion of the area of a power versus PSNR graph under the quality and power bounds. This

allows us to reason about the trade-offs between quality and energy consumption. Figure

5.3 and Figure 5.4 shows the power versus PSNR values for both the high and medium

resolution video, which differ only in size and quality. We will now use these figures to

illustrate how we would meet the two requirements once obtained from the user.

5.2.1 Sample Scenarios

In this section, we will discuss some scenarios where we could leverage device

variability for energy efficiency.

Scenario 1: Figure 5.3 plots the power versus PSNR values for devices playing

the Ice video in three different encoding formats at two different frame resolutions.

Clearly, the 4CIF frame resolution is qualitatively and quantitatively better than the CIF

frame resolution videos. However, the graph does show that the quality and power values

overlap, thus providing the service provider with a wider range of choices to offer to the

user. Consider, for example, that the user sets a power goal of 430mW as shown by the

gray dotted line in the figure. If a service provider could equip themselves with a video

tuned to these different encodings and frame resolutions, for Dev4, we would be able

to play the best available quality, with the highest frame resolution – here, the Ice video

encoded in the H.264 format at a 4CIF resolution.

However, all the other devices would only be able to play the video encoded

using the H.264 encoding format at a much lower frame resolution – here, CIF. While

this would result in subjective viewing differences, it would considerably save power on

Dev1-3 and Dev5 (between 12-13% power savings) while also meeting the power goal

47

Target Goal = 430mW

Figure 5.3. When we analyze the two Power versus PSNR plots above together, we can
make a choice between frame resolution and encoding for a preferred quality and power
goal. In this scenario, with a power goal of 430mW, we find that we can offer the best
quality within that goal to Dev4 with an H.264 encoding video at a high frame resolution,
while the video used for other devices differs in encoding, quality and frame resolution.

set by the user which would have disallowed Dev1-3 and Dev5 from playing any videos

that exceeded the user-set power goal of 430mW. This is in line with the idea of graceful

degradation where the application decides to compromise on the quality of service in

order to meet a particular requirement specified by the user.

Scenario 2: Now, let us assume, for the purposes of this analysis, that service

providers currently use a static setting for all users. The popular encoding to use is

VP8/Webm since it is supposed to provide optimal compression. Let us assume then that

service providers statically select the Webm encoding format at a CIF frame resolution,

irrespective of what kind of device the user may use to connect to the service. Assume

the user now has a power goal of 400mW. Figure 5.4 indicates the power goal as a gray

48

Target Goal = 400mW

Figure 5.4. When we analyze the two Power versus PSNR plots above together, we
can make a choice between frame resolution and encoding for a preferred quality and
power goal. In this scenario, with a power goal of 400mW, we find that Dev2-4 can
benefit from a higher quality video encoding format while the other devices would have
to compromise on quality and frame resolution.

dotted line while showing the power values for playing Ice in three different encoding

formats at two different frame resolutions.

With a power goal of 400mW, it is possible to encode Dev2-4 using the H.264 en-

coding format and play a better quality video than the original static choice of Webm/VP8

and thus save around 3% in power consumed5, which is a win-win situation for the user

and provider. Dev1 and Dev5, on the other hand, in a non-static decision-making envi-

ronment would have to compromise on their quality to a large extent, and play a video of

poorer encoding format and reduced frame resolution further to reduce power consump-

tion to meet the goal, which is still graceful degradation, as opposed to returning an error

53% of power savings is equivalent, on an average, to about 15 minutes of battery lifetime, which is
significant for the user, especially when the application in question only plays a 19s video.

49

Table 5.3. Difference between playing CIF and QCIF frame resolutions for different
encodings, expressed as a percentage of the lower of values of power consumed at each
device for a particular encoding. In scenario 3, we discuss how these values can be used
by service providers to determine what encoding format and frame resolution to play a
video in for a particular device.

Encoding
Format

Dev1 (%) Dev2 (%) Dev3 (%) Dev4 (%) Dev5 (%)

3gp 1.12 0.36 1.17 0.001 3.36
H.264 0.95 0.30 0.91 0.018 2.18
vp8 2.85 4.44 4.44 5.36 3.58

to the user saying the video they requested could not be played within their power goals.

One other example of embracing diversity shown in Figure 5.4 is the fact that Dev3 can

play Webm at a lower frame resolution for almost the same power that Dev4 can play

3gp at a much higher frame resolution. If this were known to a service provider, it may

be the case that they decide to play the video encoded in 3gp at 4CIF on Dev4 and in

Webm at CIF on Dev3 while both devices would then have a similar battery lifetime.

Scenario 3: For this scenario, we consider the NightStreet video played on all

the devices running at 1.5GHz, at two different frame resolutions, CIF and QCIF, and

in three different encoding formats encoded at a constant frame and bit rate. Table 5.3

shows the differences between the power used by the phone processors during QCIF and

CIF playback. Based on the values in the table, we can make a general rule such that

if the difference between playing CIF over QCIF exceeds 3%, we will recommend to

the service provider to supply the user with a QCIF format of the video, otherwise, it is

safe to play the CIF video. Thus, for some devices and encodings (Dev 1 to 4, 3gp and

H.264), we suggest to the user that playing the CIF frame resolution would result in better

subjective video quality with a higher frame resolution and not that great of a power

loss as compared to playing the same video at the same encoding with the QCIF frame

resolution. Thus, we can provide an improved quality for a reasonable increase in power

50

Figure 5.5. This figure shows the total processor power for the devices when they play
the Tea House video in three different encoding formats, 3gp, H.264 and Webm and two
different frame resolutions, QCIF(176x144) and CIF(352x288). The devices operate at
1.5GHz. There is barely any difference in power across the frame resolution.

draw. On the other hand, for Dev5, it seems like a bad idea to be playing the 3gp encoding

at a CIF resolution since the power wasted by playing CIF would not be worth the cost

to the phone of playing at that higher resolution. Similarly, it would be recommended

to play a CIF frame resolution for the Webm video on Dev1 since it is below the 3%

cutoff whereas for all the other devices, it would be recommended to play a QCIF frame

resolution for the Webm video. Similar such cut-offs can be algorithmically determined

for the Ice video, that could result in upto 30% power savings when playing the video at

a drastically lower frame resolution6. One downside with this kind of decision-making

however is that service providers or device manufacturers would need to provide some

kind of representative data on the different kinds of devices one could encounter.

6If we performed a similar analysis on the data for playing Ice at CIF and 4CIF frame resolutions, we
find around 30% savings by playing a lower frame resolution.

51

Scenario 4: This idea of leveraging variability based on the differences across

frame resolutions however, does not apply uniformly to all types of videos. Consider, for

example, the TeaHouse video. It is a rather static video of a tea room, where a lot of the

consecutive frames are very similar to each other. There is barely any difference in the

processor power across the devices for the two different frame resolutions and making

a dynamic choice is unlikely to provide any energy savings. This is an example of a

situation where we are unable to reap any benefits from the processor power variability

across the devices.

Chapter 6

Implications, Future Work and
Conclusion

Having characterized processor power variability in Chapter 4 and discussed in

detail some sample scenarios where we can try to leverage power variability for energy

efficiency, in this chapter, we sum up our findings by explaining what we believe are

some of the implications of our work, how this work could be expanded upon in the

future and finally, conclude by summarizing our results and observations.

6.1 Implications

6.1.1 Instrumentation

As Martins et. al. [29] aptly state, energy profiling and forecasting is one of the

key challenges of adapting applications on mobile devices for energy efficiency. An

important aspect of such profiling is instrumentation – to obtain appropriate information

from the devices at the right granularity in real-time in order to make dynamic adaptive

decisions. While this thesis as well as recent work by Balaji et. al. [2] have extensively

used equipment provided by hardware manufacturers for measurement and debugging,

it is important to be able to classify devices on a power scale based on sensor readings.

For example, it was clear from our experiments that Dev4 was a low power device, and

52

53

with appropriate instrumentation, we may be able to provide the user of Dev4 much

better quality at no cost to his device, while maintaining some average battery lifetime

goal. An avenue of study would be to instrument the phones with some kind of energy

sensor that would allow application service providers to bin a phone based on its average

power draw. This function of procuring power measurements from the phone is currently

performed by our Debug Board, and if the hardware manufacturers could instrument

the phone with a way to measure these values without building sophisticated external

hardware attachments, it would certainly incentivize applications to embrace the diversity

in devices.

6.1.2 Variability-Aware Adaptation

By factoring in user preferences for an acceptable lower quality limit and an

acceptable battery drain or power usage upper limit, it is possible to make different video

playback decisions in terms of encoding format, frame resolution, and bit rate, for some

videos such that these decisions differ across devices. This is thus an example of the

case where applications can embrace the diversity of devices and still provide quality of

service to the user.

6.1.3 Service Provider Adoption

While advocating for user-interactive control of their battery lifetime, it becomes

important to specify what arrangements service providers may need in order to write,

develop and use such applications. In the scenarios we discussed in Section 5.2.1, it was

possible for service providers to make decisions to save phone energy or improve quality

with a small set of encoding formats and frame resolutions. It will be challenging however

to assess how well such tunable parameters scale. However, since many video-based

service providers already provide on-the-fly real-time bit-rate changes, it may not be that

54

hard to spread adoption of variability-aware video playback.

6.1.4 Potential User Interactions

Given the fact that we are dealing with variability in smartphones, it would be

important to predict some cases where this kind of variability aware energy efficiency

would directly impact a real-world user of the technology. Here are some examples.

When a user buys a new phone, the manufacturer may recommend he/she visit their

website (since they already do that) to enable some settings that would allow them to

identify the user’s phone and facilitate energy savings on the user’s phone when he/she

is running some specific types of applications with a low impact on his/her perceived

quality of the application on his/her phone.

Based on the differences in variability we observed caused by ambient temperature

changes in Section 4.2, we can envision another scenario. If a user was watching a video

outside on a warm day, they may experience a particular quality of service. Now, if

they were to watch the same video in an indoor, climate-controlled environment at much

cooler temperatures, they may perceive much better quality of service with minimal

battery drain, i.e., no compromise on any power goals the user may have set.

6.2 Future Work

6.2.1 More Adaptive Applications

While the foundation for our results on observed variability was based on running

standard benchmarks, and the adaptation explained using a proof-of-concept application,

it will be interesting to see if there are other applications that could also leverage processor

power variability in mobile devices for energy efficiency. Flinn et. al. [12] demonstrated

their energy efficiency ideas using speech recognition and navigation applications as

well as the web browser application. Martins et. al. [29] also demonstrate subjective

55

differences in application behavior using navigation and audio-visual playback. Another

application that can make dynamic adaptive algorithmic decisions for energy efficiency

is file compression [3]. Thus, some of these applications should be tested to leverage

processor power variability in mobile devices.

6.2.2 Analyzing Graceful Degradation

With the scenarios discussed in Section 5.2.1, we only presented a proof-of-

concept for energy savings by dynamic decision making. In order to handle degraded

quality of service gracefully, we must devise an algorithm for deciding when to drop the

user’s quality preference over their power preference. One way to do this may be to try

and assign a composite power-quality metric to each device and application such that

the decision over the trade-off between quality and power is determined by the priority

preferences of the user. We must also provide some way for the user or the service

provider to specify a power goal or specify a general power difference cut-off as we

discussed in Scenario 2 in Section 5.2.

6.3 Conclusion

As semiconductor manufacturers build smaller components, circuits and chips at

that scale become less reliable and more expensive to produce, and no longer conform

to the rigid hardware specifications usually expected of them. While the scope of

this behavior has previously been limited to hardware manufacturers, a push has now

been made to embrace device variability rather than hide it by increasing gaurdbands

applied to chip designs. Our work uses a software-systems approach to analyze and

characterize processor power variability in mobile devices, since mobile devices have

replaced personal computers and laptops as the next generation of general purpose

computing devices.

56

Using smartphones as representative mobile devices, we have explored the nature

of processor power variability in these devices, and in the process presented results for the

significance of such variability. In our analysis and characterization of processor power

variability, we observed processor power variability across smartphones in the range 6%-

15% at different frequencies of operation, which could mean upto 70 minutes of improved

battery lifetime. We characterize this variability as a factor of contributions from the

processor core, the digital core and the internal memory and discuss the significance

of idle power variability. We also test that processor power variability across mobile

devices is amplified with increasing temperatures. We observe that the processor power

variability across devices that were all operating at 1.5GHz, is amplified from a range of

6%-10% at normal temperatures (27◦C to 33◦C) to 14%-17% at warmer temperatures

(50◦C to 55◦C) for the CPU-intensive benchmarks we used.

We also present a proof-of-concept application to leverage the observed patterns

of variability as a case of adapting software to deal with variability in smartphones or

mobile devices. By setting a power goal and/or a quality goal, it is possible for us to

proactively choose the encoding, and some other tunable parameters to use for video

playback, resulting in potential energy savings of 3%-13% or an improved battery lifetime

of an hour over the average expected 8 hours.

Appendix A

Additional Figures and Observations

A.1 Power Measurements For 8 Channels

Figure A.1. Power measurements for 8 channels for the device that consumes the
least power for most channels. For most channels, the values are too low to make any
contribution to the total variability in processor power.

We observe from Figures A.1 and A.2 that the power consumed by channels like

Core1 and IO Pad 1-3 are too low to contribute to the overall processor power variability

57

58

Figure A.2. Power measurements for 8 channels for the device that consumes the
most power for most channels. For most channels, the values are too low to make any
contribution to the total variability in processor power.

and are relatively the same across devices. The two figures show the power consumption

measured for 8 rails in terms of the current for the device that consumes the least and

most power for most of the channels. The Total Power channel is a rail provided by the

WQEPM software. However, it does not actually give us the sum of the power to various

channels, and may be irrelevant because the Debug Board acts as a battery emulator and

the Total Power rail draws its measurements from the battery power. For IO Pad3, the

values are of the order 0.3mA and thus are not visible in the figures.

A.2 Run to Run Variation

Figure A.3 shows that for most applications, the power consumption on the device

increases over time, most likely because the phone temperature increases slightly over

time when the phone is repeatedly used.

59

Figure A.3. Run to run variation across 10 runs on the devices running LINPACK and
Dhrystone.

A.3 Encodings and Processor Frequencies

In some of our initial experiments, it was observed that vp8 would aggressively

draw power at high frequencies but would be much more conservative at lower frequen-

cies. There appears to be some kind of point of inflexion after which vp8 can play

videos smoothly at higher power as opposed to the choppy blocks it displays at lower

frequencies. This inflexion is shown in the second graph in Figure A.4. The first graph

shows us the reason for this is the much larger increase in core0 current supply to vp8

videos than to other encodings. While irrelevant to our discussion on device variability, it

seemed like an interesting observation.

60

Figure A.4. The current supplied is plotted against the frequency of the processor to
show the trend for each encoding as frequency changes.

A.4 Calculation of Margin of Error

Let P be the total power and the standard deviation, σ be s% of the total power.

We know that the number of runs for our experiment, n is 10.

For a confidence interval of 95%, z∗ = 1.96, and the margin of error is

m = z∗σ√
n

m = 1.96∗s∗P√
10

For our CPU-intensive benchmarks at normal ambient temperatures, we observed

a maximum standard deviation of about 2% of the total power, and if s = 0.02, the margin

of error, m = 0.012P, which is 1.2% of the total power. Similarly, at warmer ambient

temperatures, we observe a maximum standard deviation of 4% of the total power. Here,

s = 0.04, and m = 0.024P. The margin of error is 2.4% of the total power.

Consider the maximum variability we observed in Table 4.2 for Internal Memory.

The maximum standard deviation was 6% of the power measured for the Internal Memory

channel. The margin of error here is 3.7% of that power.

Appendix B

Other Workflow Details

B.1 NSF Demo Documentation

Last fall, we prepared a demonstration for the NSF Variability Expedition review.

This section lists the packages needed and the workflow to recreate such a demonstration

in the future. The setup was meant to show by very short runs across two devices that

there was observable variability across the two devices.

B.1.1 Software Packages

The demo will only work on a Windows machine since the debug board is not

supported on non-Windows systems. The following software packages are required on

any system that wishes to setup the demo: the NRT MiniBoard driver, VisualC++ for

WQEPM, the Android USB Driver with modifications to support the MSM8660 phones,

SQLite3, ActiveState Perl with CSV support and Boomslang (matplotlib, and associated

dependencies) for supporting a graphical view.

B.1.2 Workflow

The workflow has already been scripted and the script will be made available on

request.

61

62

1. Start WQEPM and start the browser with the default URL associated with WQEPM.

2. Run the script to start monitoring the channels specified. Channel IDs are obtained

from the WQEPM configuration file.

3. Run the experiments you would like to test. Keep them short, since the monitoring

script times out.

4. Stop WQEPM to be release the database lock.

5. Extract data for that test, obtain average current for the channels being monitored,

plot the values and display the graph.

6. Repeat this for a second device connected to a second debug board, and display the

two graphs together to observe the channel-wise variability across the two devices.

B.2 ADB Commands

This is a list of some of the ADB commands that we used to control the frequency

and core usage on the devices.

Turning Core 1 Off:

adb stop mpdecision

adb shell echo 0 /sys/devices/system/cpu/cpu1/online

Setting Frequency:

adb shell echo userspace > \

/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

adb shell echo 192000 > \

/sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq

63

adb shell echo 192000 > \

/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

B.3 Video Quality Measurements

As mentioned in Section 5.1, we measure video quality in terms of a PSNR value

by first encoding the raw video in the formats we plan to use and comparing the decoded

raw video output from these videos with the original raw video.

B.3.1 Using ffmpeg

We used ffmpeg to encode and decode the videos. A standard ffmpeg encoding

command to ensure constant bit-rate, which in turns ensures constant file size looks like

this:

ffmpeg -r 29.97 -i ntia_tea4-qcif_original.avi -r 29.97 \

-s 176x144 -c:v libvpx -preset medium -b:v 500k -minrate 500k \

-maxrate 500k -bufsize 500k -pass 1 -an -f webm /dev/null \

&& ffmpeg -r 29.97 -i ntia_tea4-qcif_original.avi \

-s 176x144 -r 29.97 -c:v libvpx -preset medium -b:v 500k \

-minrate 500k -maxrate 500k -bufsize 500k -pass 2 \

-an ntia_tea4-qcif_webm.webm

We use a 2 pass encoding procedure, and set constant frame rate using the −r option and

the required video codec using c : v. Here, libvpx indicates that we are using vp8 or the

webm encoding format. −s indicates the frame resolution. [36] The frame rate depends

on the video selected and we keep the bit-rate constant in order to maintain a constant file

size across different encodings. The bit-rate is chosen based on receommendations from

64

YouTube support on appropriate bit rates for specific frame resolutions. [19] A standard

decoding command to obtain the raw video looks like this:

ffmpeg -i ntia_tea4-qcif_webm.webm \

-f rawvideo ntia_tea4-qcif_webm.yuv

B.3.2 BVQM

We use the BVQM software [25] to compare these raw videos to obtain a PSNR

value. BVQM only accepts data of the format name scene hrc.yuv, where name and

scene are constant values for our purposes. We name our files name scene 3gp, etc and

compare the videos to name scene original.yuv obtained from [14] or [24]. For more

details on the use of the BVQM software, refer to the Batch Video Quality Metric User

Manual [23].

Bibliography

[1] NSF Variability Expedition. http://variability.org.

[2] Bharathan Balaji, John McCullough, Rajesh K. Gupta, and Yuvraj Agarwal. Ac-
curate characterization of the variability in power consumption in modern mobile
processors. In Proceedings of the 2012 USENIX conference on Power-Aware Com-
puting and Systems, HotPower’12, pages 8–8, Berkeley, CA, USA, 2012. USENIX
Association.

[3] Kenneth Barr and Krste Asanović. Energy aware lossless data compression. In
Proceedings of the 1st international conference on Mobile systems, applications
and services, MobiSys ’03, pages 231–244, New York, NY, USA, 2003. ACM.

[4] Luis Angel D. Bathen, Nikil D. Dutt, Alex Nicolau, and Puneet Gupta. Vamv:
Variability-aware memory virtualization. In Wolfgang Rosenstiel and Lothar Thiele,
editors, DATE, pages 284–287. IEEE, 2012.

[5] Luis Angel D. Bathen, Mark Gottscho, Nikil Dutt, Alex Nicolau, and Puneet Gupta.
Vipzone: Os-level memory variability-driven physical address zoning for energy
savings. In Proceedings of the eighth IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, CODES+ISSS ’12, pages
33–42, New York, NY, USA, 2012. ACM.

[6] K.A. Bowman, S.G. Duvall, and J.D. Meindl. Impact of die-to-die and within-die
parameter fluctuations on the maximum clock frequency distribution for gigascale
integration. Solid-State Circuits, IEEE Journal of, 37(2):183–190, 2002.

[7] Liang Cheng, S. Mohapatra, M.E. Zarki, N. Dutt, and N. Venkatasubramanian.
A backlight optimization scheme for video playback on mobile devices. In Con-
sumer Communications and Networking Conference, 2006. CCNC 2006. 3rd IEEE,
volume 2, pages 833–837, 2006.

[8] Jeonghwan Choi, Chen-Yong Cher, Hubertus Franke, Henrdrik Hamann, Alan
Weger, and Pradip Bose. Thermal-aware task scheduling at the system software
level. In Proceedings of the 2007 international symposium on Low power electronics
and design, ISLPED ’07, pages 213–218, New York, NY, USA, 2007. ACM.

65

http://variability.org

66

[9] H J Curnow, B A Wichmann, and Tij Si. A synthetic benchmark. The Computer
Journal, 19:43–49, 1976.

[10] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman, J. Howard,
J. Tschanz, V. Erraguntla, N. Borkar, V. De, and S. Borkar. Within-die variation-
aware dynamic-voltage-frequency scaling core mapping and thread hopping for an
80-core processor. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2010 IEEE International, pages 174–175, 2010.

[11] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark:
Past, present, and future. concurrency and computation: Practice and experience.
Concurrency and Computation: Practice and Experience, 15:2003, 2003.

[12] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applica-
tions. SIGOPS Oper. Syst. Rev., 33(5):48–63, December 1999.

[13] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy
usage of mobile applications. In Proceedings of the Second IEEE Workshop on
Mobile Computer Systems and Applications, WMCSA ’99, pages 2–, Washington,
DC, USA, 1999. IEEE Computer Society.

[14] Xiph.Org Foundation. Sample Videos Collection. http://media.xiph.org/video/derf/.

[15] M. Gottscho, A.A. Kagalwalla, and P. Gupta. Power variability in contemporary
drams. Embedded Systems Letters, IEEE, 4(2):37–40, 2012.

[16] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R.K. Gupta, R. Kumar, S Mitra, A. Nico-
lau, T.S. Rosing, M.B. Srivastava, S. Swanson, and D Sylvester. Underdesigned
and opportunistic computing in presence of hardware variability. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 32(1):8–23, 2013.

[17] Juan Rubio Soraya Ghiasi Heather Hanson, Karthick Rajamani and Freeman Raw-
son. Benchmarking for power and performance.

[18] Apple Inc. iPhone Lithium-Polymer Batteries. http://www.apple.com/batteries/
iphone.html.

[19] Google Inc. Youtube Support - Advanced Encoding Settings. http://support.google.
com/youtube/bin/answer.py?hl=en&answer=1722171.

[20] Google Inc. and the Open Handset Alliance. Android Debug Bridge. http://
developer.android.com/tools/help/adb.html.

[21] Google Inc. and the Open Handset Alliance. Android Supported Media Formats.
http://developer.android.com/guide/appendix/media-formats.html.

http://media.xiph.org/video/derf/
http://www.apple.com/batteries/iphone.html
http://www.apple.com/batteries/iphone.html
http://support.google.com/youtube/bin/answer.py?hl=en&answer=1722171
http://support.google.com/youtube/bin/answer.py?hl=en&answer=1722171
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/guide/appendix/media-formats.html

67

[22] ITRS. The International Technology Roadmap for Semiconductors. http://public.
itrs.net/.

[23] ITS. Batch Video Quality Metric (BVQM) User’s Manual. http://www.its.bldrdoc.
gov/publications/2558.aspx.

[24] ITS. Consumer Digital Video Library. http://www.cdvl.org/.

[25] ITS. Institute for Telecommunication Sciences Technical Progress Report. http:
//www.its.bldrdoc.gov/publications/2676.aspx.

[26] R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, and M. Christopher. The
changing automotive environment: high-temperature electronics. Electronics Pack-
aging Manufacturing, IEEE Transactions on, 27(3):164–176, 2004.

[27] K. Lee, N. Dutt, and N. Venkatasubramanian. An experimental study on energy
consumption of video encryption for mobile handheld devices. In Multimedia and
Expo, 2005. ICME 2005. IEEE International Conference on, pages 1424–1427,
2005.

[28] Roy Longbottom. Android Benchmark Apps. http://www.roylongbottom.org.uk/
android%20benchmarks.htm.

[29] Marcelo Martins and Rodrigo Fonseca. Application modes: a narrow interface
for end-user power management in mobile devices. In Proceedings of the 14th
Workshop on Mobile Computing Systems and Applications, HotMobile ’13, pages
5:1–5:6, New York, NY, USA, 2013. ACM.

[30] Dustin McIntire, Thanos Stathopoulos, Sasank Reddy, Thomas Schmidt, and
William J. Kaiser. Energy-efficient sensing with the low power, energy aware
processing (leap) architecture. ACM Trans. Embed. Comput. Syst., 11(2):27:1–
27:36, July 2012.

[31] Shivajit Mohapatra, R. Cornea, Hyunok Oh, K. Lee, Minyoung Kim, N. Dutt,
R. Gupta, A. Nicolau, S. Shukla, and N. Venkatasubramanian. A cross-layer
approach for power-performance optimization in distributed mobile systems. In
Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International, pages 8 pp.–, 2005.

[32] A.K. Moorthy, Lark Kwon Choi, A.C. Bovik, and G. De Veciana. Video quality
assessment on mobile devices: Subjective, behavioral and objective studies. Selected
Topics in Signal Processing, IEEE Journal of, 6(6):652–671, 2012.

[33] Earl Oliver and Prof S. Keshav. Data driven smartphone energy level prediction.

http://public.itrs.net/
http://public.itrs.net/
http://www.its.bldrdoc.gov/publications/2558.aspx
http://www.its.bldrdoc.gov/publications/2558.aspx
http://www.cdvl.org/
http://www.its.bldrdoc.gov/publications/2676.aspx
http://www.its.bldrdoc.gov/publications/2676.aspx
http://www.roylongbottom.org.uk/android%20benchmarks.htm
http://www.roylongbottom.org.uk/android%20benchmarks.htm

68

[34] Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. Energy-efficient rate-
adaptive gps-based positioning for smartphones. In Proceedings of the 8th inter-
national conference on Mobile systems, applications, and services, MobiSys ’10,
pages 299–314, New York, NY, USA, 2010. ACM.

[35] A. Pant, P. Gupta, and M. van der Schaar. Appadapt: Opportunistic application
adaptation in presence of hardware variation. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 20(11):1986–1996, 2012.

[36] FFmpeg Project. FFMPEG Documentation. http://ffmpeg.org/ffmpeg.html.

[37] Qualcomm. Snapdragon Mobile Development Platform Legacy De-
vices. https://developer.qualcomm.com/mobile-development/development-devices/
snapdragon-mdp-legacy-devices.

[38] Qualcomm. WQEPM User Guide. Covered under NDA.

[39] Chris Taylor. Smartphone Sales Overtake PCs for the First Time. http://mashable.
com/2012/02/03/smartphone-sales-overtake-pcs/.

[40] Y. Wang. Survey of objective video quality measurements, 2006.

[41] Yunfeng Wang, Qiang Wu, and Wei Xie. Hardware-software co-design for dynamic
reconfigurable computing with collaborative supports of architecture and operating
system. In Computer Supported Cooperative Work in Design, 2007. CSCWD 2007.
11th International Conference on, pages 275–279, 2007.

[42] L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava. Hardware variability-
aware duty cycling for embedded sensors. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 21(6):1000–1012, 2013.

[43] L. Wanner, R. Balani, S. Zahedi, C. Apte, P. Gupta, and M. Srivastava. Variability-
aware duty cycle scheduling in long running embedded sensing systems. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, pages 1–6, 2011.

[44] Reinhold P. Weicker. Dhrystone: a synthetic systems programming benchmark.
Commun. ACM, 27(10):1013–1030, October 1984.

[45] Rui Zheng, J. Velamala, V. Reddy, V. Balakrishnan, E Mintarno, S Mitra, Srikanth
Krishnan, and Yu Cao. Circuit aging prediction for low-power operation. In Custom
Integrated Circuits Conference, 2009. CICC ’09. IEEE, pages 427–430, 2009.

[46] Jun Zhou, D. Kinniment, G. Russell, and A. Yakovlev. Adapting synchronizers
to the effects of on chip variability. In Asynchronous Circuits and Systems, 2008.
ASYNC ’08. 14th IEEE International Symposium on, pages 39–47, 2008.

http://ffmpeg.org/ffmpeg.html
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mdp-legacy-devices
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mdp-legacy-devices
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Related Work
	Experimental Infrastructure
	Processor Power Variability in Mobile Devices
	The Case for Software Adaptability
	Implications, Future Work and Conclusion
	Additional Figures and Observations
	Other Workflow Details
	Bibliography

