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Thermal Effects in Intense Laser-Plasma
Interactions

B. A. Shadwick∗†, G. M. Tarkenton† and E. H. Esarey∗

∗Center for Beam Physics, Ernest Orlando Lawrence Berkeley National Laboratory, University of
California, Berkeley, CA 94720

†Institute for Advanced Physics, Suite 199, 10875 US Hwy 285, Conifer, CO 80433

Abstract. We present an overview of a new warm fluid model that incorporates leading-order
kinetic corrections to the cold fluid model without making any near-equilibrium assumptions. In
the quasi-static limit we obtain analytical expressions for the momentum spread and show excellent
agreement with solutions of the full time-dependant equations. It is shown that over a large range of
initial plasma temperatures, the fields are relatively insensitive to the pressure force. We discussion
implications of this work for model validation.

A WARM FLUID MODEL

We have recently derived a warm fluid model [1] that treats thewidth of the phase-
space distribution asymptotically. This model is particularly appropriate for studying
the interaction of a short, intense laser pulse with a cold, collisionless plasma. By
exploiting the assumption of small momentum spread, we construct a closed set of
moment equations without appealing to a collisional closure. In this model, the phase
space distribution is characterized by the moments

n(r, t)=
∫

d3p f (r,p, t),

P(r, t)=
1
n

∫

d3p p f (r,p, t), (1)

Πi j(r, t)=
1
n

∫

d3p
(

pi −Pi

)(

p j −Pj

)

f (r,p, t).

Evolution equations for the moments are derived starting from the Hamiltonian formu-
lation of the Vlasov–Maxwell equations:

∂t f = { f ,H } , ∂tE = {E ,H } , and ∂tB = {B ,H } . (2)

whereH is the Hamiltonian

H = mc2
∫

d3rd3p γ f +
1

8π

∫

d3r
(

|E|2 + |B|2
)

, (3)

and{· , ·} is the non-canonical Poisson bracket. We preform a reduction on the Vlasov–
Maxwell bracket to yield a bracket involving only the moments by assuming that all



functionals off can be written as functionals of the moments. Using the chainrule, the
bracket is transformed to an expression involving only moments. The Hamiltonian is
then approximated using the small momentum-spread assumption and the equations of
motion for the moments are obtained from the reduced bracketin the usual way.

The moment bracket is naturally closed and satisfies the Jacobi identity and hence the
reduced theory is Hamiltonian. One can show that all Casimirsof the full system map to
Casimirs of the moment system. The definition of the moments (1) does not completely
determinef ; many distinct distribution functions can lead to the same values for the
moments. By working to lowest order inΠ, the equations of motion areindependent
of the precise form of the distribution function. Therefore, this theory represents a
broad class of possible forms forf . In all cases, the Hamiltonian structure of the
Vlasov equation is preserved by the moment system. Hence, this theory can be seen
as maximally preserving the phase-space structure of the Vlasov system. Moreover, this
model is an asymptotic approximation to the Vlasov–Maxwellsystem withT/mc2 as
the control parameter. Thus, from this model, we obtain asymptotic approximations to
solutions of the full Vlasov–Maxwell equations.

The moments satisfy

∂tn+∇ ·nu = 0,

∂tP+u ·∇P = q
(

E+
u
c
×B

)

−
1
n

∇ ·p , (4)

∂tΠi j +uk∂kΠi j =−Πik∂ juk −Π jk∂iuk +
pki

n

(

∂kp j −∂ jpk

)

+
pk j

n

(

∂kpi −∂ipk

)

,

whereγ0 = (1+P2/m2c2)1/2, pi = Pi +qAi/c is the canonical momentum,

uk =
Pk

γ0m

(

1−
Πii

2γ2
0 m2c2 +

3
2

Pi Πi j Pj

γ4
0 m4c4

)

−
ΠkiPi

γ3
0 m3c2 , (5)

andpi j = n/(γ0m)
[

δik −Pi Pk/(γ2
0 m2c2)

]

Πk j is the pressure tensor. Since this model is
collisionless, the pressure is not forced to be isotropic and, in general,pi j has significant
off-diagonal terms. Note, due to thermal inertia, the fluid advection velocityu is not
simply P/(γ0m) nor is it, in general, parallel toP. The fieldsE andB are determined
Maxwell’s equations from the plasma currentj = qnu. The corresponding evolution
equations are given by∂tE = {E ,H } and∂tB = {B ,H }.

WARM QUASI-STATIC RESPONSE

While in general (4) appear only amenable to numerical solution, if one assumes the
plasma response to be quasi-static [2] then considerable analytical progress can be made.
We assume that the plasma is underdense (k ≫ kp) and that the laser is non-evolving
(i.e., the propagation distance is a fraction of the depletion length). We consider the
case of a plasma that is initially in thermal equilibrium with a low temperature (such
as a laser-produced channel),i.e., the plasma is initially taken to be isotropic with a
temperature on the order of 10 to 20 eV [3–5] and to have negligible bulk motion. Thus



we have the initial conditionΠi j = mT0δi j implying Πi j/(m2c2) ∼ 10−5, allowing us
to safely neglect the force due to pressure in the momentum equation. Additionally, one
can show that in the quasi-static limit,px = O(Π), which implies we can ignore the
terms involving pressure in theΠ equations of motion. In this limit,Π is driven by the
cold, quasi-static fields. Using these approximations and transforming to the comoving
coordinates,(t,z) 7→ (t,ξ = t − z/c), the momentum spread equations become

(1−βz)∂ξ Πxx = 0,

(1−βz)∂ξ Πxz = Πxx ∂ξ βx +Πxz ∂ξ βz, (6)

(1−βz)∂ξ Πzz = 2Πzx ∂ξ βx +2Πzz ∂ξ βz,

whereβ = u/c. These equations can be solved analytically to give

Πxx = mT0,

Πxz = mT0
βx

1−βz
= mT0

n
n0

βx, (7)

Πzz = mT0
1+β 2

x

(1−βz)2 = mT0

(

n
n0

)2

(1+β 2
x ).

To compare our results with the traditional relativistic thermodynamic approach,
we force the pressure to be isotropic (as would be the case in collision-dominate

fluid). We then havepi j = δi j nT/γ0 andΠi j = mT
[

δi j +Pi Pj/(m2c2)
]

. These assump-

tions lead to a simple adiabatic equation of state. ForN momentum degrees of free-
dom,T (γ0/n)2/N = constant, and this implies

Πi j = mT0

(

n
n0γ0

)2/N(

δi j +
Pi Pj

m2c2

)

, (8)

wheren0 andT0 are, respectively, the unperturbed density and temperature.
Figure 1 shows (a) the density wave, and (d) the longitudinalelectric field driven by

a resonant Gaussian laser pulse with frequencyω0 = 20ωp and dimensionless vector
potentiala0 = 1 computed using the cold quasi-static model. Fig. 1(b) shows the behav-
ior of Π for an initial temperature of 15 eV and (c) shows the corresponding pressure.
The behavior ofΠzz is in qualitative agreement with the thermodynamics of an adiabatic
process. This solution exhibits significant anisotropy in the momentum spread and little
“heating.” Consequently, in this regime, self-trapping of electrons in the wake (leading
to dark current) should not be important. Thus, provided theinitial plasma temperature
is sufficiently small, it should be possible to operate a laser-plasma accelerator without
excessive dark current, even at large wake amplitude. Shownin Fig. 1(e) are the compo-
nentsΠ from (8), i.e., with the assumption that the pressure is isotropic, while Fig. 1(f)
shows the isotropic pressure. The clear differences between these results indicate that
the assumption of local equilibrium is not justified for thiscase and, indeed, leads to
mis-characterization of phase space. In particular, comparing Fig. 1(c) with Fig. 1(f)
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FIGURE 1. Quasi-static plasma response to a resonant Gaussian laser pulse with frequencyω0 = 20ωp
and dimensionless vector potentiala0 = 1: (a) density modulation; (b)Πi j from (7); (c)pi j corresponding
to Π in (a); (d) longitudinal electric field; (e)Πi j from (8), assuming an isotropic pressure; and (f) pressure
assuming isotropy.
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FIGURE 2. Comparison of the quasi-static solutions to numerical solutions of the full time-dependant
equations for the parameters of Fig. 1: (a)(n − nQS)/n0; and (b) (Πzz − ΠQS

zz)/m. The initial plasma
temperature was 15 eV.

we see that the isotropy assumption overstates the transverse force and understates the
longitudinal force.

Figure 2 shows a comparison of the quasi-static results withsolutions of the full
time-dependent equations. The warm-fluid equations where solved for the parameters
of Fig. 1. After the wake was fully-developed, the vector potential,Ax, was recovered
from By and the quasi-static equations where then solved usingAx as the driver. Shown



in Fig. 2(a) is the difference in quasi-static and time-dependant density while Fig. 2(b)
shows the difference in longitudinal momentum spread. Overall we see the agreement
is quite good. That the difference in the predictions for thelongitudinal momentum
spread is much larger than the difference in the densities suggests the quasi-static model
somewhat under-predicts heating within the laser.

SHORT PULSE EXAMPLES

We now turn to solutions of the full time-dependent equations. Figure 3 shows the fields
and bulk plasma motion for initial plasma temperatures of 15eV, 150 eV, 1500 eV
and 15 keV. For this range of initial temperatures, the only noticeable effect on the
plasma response is a slight phase shift [most easily seen comparing Fig. 3(a) and
Fig. 3(d)]. In the low amplitude case, this phase-shift agrees with the Bohm-Gross [6]
dispersion relation modified by the effects of thermal inertial [7]. The corresponding
longitudinal momentum spread,Πzz, is shown in Fig. 4. Except for the overall scale
the variousΠzz curves are nearly identical. The reason for this is clear; even for an
initial plasma temperature of 15 keV, the pressure force is negligible and the field are
essentially unchanged from the those of the cold plasma. Additionally the non-linear
terms inΠ are also negligible, leaving the equation of motion forΠi j effectively scale-
invariant with respect to the initial temperature.
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FIGURE 3. Fields and bulk plasma motion obtained by solving (4) numerically for the parameters of
Fig. 1. Initial plasma temperature: (a) 15 eV; (b) 150 eV; (c)1500 eV; and (d) 15 keV. Fields shown
at ωp t = 120.
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FIGURE 4. Longitudinal momentum spread,Πzz/m, obtained by solving (4) numerically for the pa-
rameters of Fig. 1. Initial plasma temperature: (a) 15 eV; (b) 150 eV; (c) 1500 eV; and (d) 15 keV. Results
are shown atωp t = 120.

DISCUSSION

We saw in Fig. 3 that the bulk plasma response,i.e., the density wave and longitudinal
electric field, were relatively unchanged over a large rangeof initial plasma tempera-
tures. This is part of a larger observation that typically isoverlooked: The low-order
moments of the distribution function and, in particular, the electric and magnetic fields
in the Vlasov–Maxwell system are largelyinsensitive to the details of phase-space. In
part this is due to the fields coupling to lowest order moments. In addition, even at
large temperatures, the pressure force is small compared tothe laser and wake fields.
Large-scale aspects of phase space do indeed affect the bulkfields; a trapped particle
bunch of high charge will clearly alter the wake field, but thewake will nonetheless be
rather insensitive to the particle distribution within thebunch. On the other hand, the
microscopic details of phase-space directly affect important phenomena such as particle
trapping [8]. In the context of code “Validation and Verification” (a theme of the compu-
tational working group at this workshop), the implication of these observations is clear:
When attempting to model kinetic effects in a plasma, (via PIC or by other means), it
is inappropriate to use the quality of the macroscopic fieldsas an overall indication of
the faithfulness with which phase-space is reproduced. Thewarm fluid, with its asymp-
totic relation to the full Vlasov–Maxwell system, providesanalytical expressions for the
moments of the phase-space distribution in a parameter regime that is of direct inter-
est to the current (and future) generation of laser-plasma experiments. As such it is an
excellent “benchmark” for numerical kinetic models such asPIC.

In the case of large mean-free-path,i.e., negligible two-particle correlations, the



Vlasov equation has a firm theoretical foundation. It enjoysa rigorous derivation from
the exactN-particle distribution (the Klimontovich distribution [9]) and thus is an exact
consequence of the Lorentz force. Consequently, one expects, in the appropriate regime,
any discrepancy between experimental results and simulation models to be the result of
1) measurement uncertainty and 2) numerical artifacts in the simulation model. Given
this, comparing large scale simulation codes to asymptoticsolutions of the Vlasov
equation is a necessary step to assess the impact of the latter. The former can be
understood by performing sensitivity scans.

CONCLUSIONS

We have developed a warm, relativistic, fluid theory consistent with representing the
kinetic distribution function by second-order moments. This model has a number of
interesting features: thermal inertia results in no simplerelationship between the average
momentum and the advection velocity; the thermodynamics islargely non-relativistic
even though the average momentum can be arbitrarily large; and there are no near-
equilibrium assumptions. In the quasi-static case we have shown that there is extremely
good agreement with the full model.

We have examined the plasma response to a short, intense pulse and found little
heating within the laser pulse. There is qualitative agreement with thermodynamic
arguments for an adiabatic process:Πzz increases where the plasma is compressed and
decreases where the plasma is rarified. Moreover, even for very large initial temperature,
the density and longitudinal electric field are nearly identical to the cold case.
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