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ARTICLE OPEN

Ecological networking of cystic fibrosis lung infections
Robert A Quinn1,6, Katrine Whiteson2, Yan Wei Lim1, Jiangchao Zhao3,7, Douglas Conrad4, John J LiPuma3, Forest Rohwer1

and Stefanie Widder5,8

In the context of a polymicrobial infection, treating a specific pathogen poses challenges because of unknown consequences on
other members of the community. The presence of ecological interactions between microbes can change their physiology and
response to treatment. For example, in the cystic fibrosis lung polymicrobial infection, antimicrobial susceptibility testing on clinical
isolates is often not predictive of antibiotic efficacy. Novel approaches are needed to identify the interrelationships within the
microbial community to better predict treatment outcomes. Here we used an ecological networking approach on the cystic fibrosis
lung microbiome characterized using 16S rRNA gene sequencing and metagenomics. This analysis showed that the community is
separated into three interaction groups: Gram-positive anaerobes, Pseudomonas aeruginosa, and Staphylococcus aureus. The
P. aeruginosa and S. aureus groups both anti-correlate with the anaerobic group, indicating a functional antagonism. When patients
are clinically stable, these major groupings were also stable, however, during exacerbation, these communities fragment.
Co-occurrence networking of functional modules annotated from metagenomics data supports that the underlying taxonomic
structure is driven by differences in the core metabolism of the groups. Topological analysis of the functional network identified the
non-mevalonate pathway of isoprenoid biosynthesis as a keystone for the microbial community, which can be targeted with the
antibiotic fosmidomycin. This study uses ecological theory to identify novel treatment approaches against a polymicrobial disease
with more predictable outcomes.

npj Biofilms and Microbiomes  (2016) 2:4 ; doi:10.1038/s41522-016-0002-1

INTRODUCTION
Many infections are polymicrobial in nature. Complex assem-
blages of bacteria, fungi, and viruses are the norm in cutaneous
infections and many chronic diseases of the digestive system, the
oral cavity, and the airways. This is exemplified in the inherited
multi-system disorder cystic fibrosis (CF), where a complex
community of microbes colonizes the lungs, adapts to the
lung environment, and develops an ecological community of
organisms interacting with each other and the host.1–3 Treatment
approaches to polymicrobial infections do not differ much from
single pathogen infections, where isolates of the infected area are
obtained and then screened for antibiotic resistance to determine
which drugs are chosen for therapy. This approach discounts
that the isolated strains exist in an ecological community,
characterized by interdependencies and competition between
its constituents. Not surprisingly, the physiology and antimicrobial
susceptibility of isolates in vitro does not always translate to the
complex infection in vivo, where the drugs are meant to act.4

Synergisms, antagonisms, and complex community dynamics all
occur in these systems, complicating treatment efforts against
particular pathogens.5 New approaches with a greater likelihood
of treatment success are required that target a microbiome
collectively, taking into account its physiology and community
structure.

A community ecology approach to CF has been proposed since
the understanding that the lungs contain a more diverse microbial
community than that revealed by routine culturing methods.6–9

Lung microbiome studies have provided detailed insight into the
microbial diversity of CF lung infections,7, 10–13 however, clinical
practice has not changed significantly in light of this broadly
accepted understanding. Models of microbiome dynamics are
needed to aid in clinical translation of microbial ecology findings
from the laboratory. The Climax and Attack Model (CAM) was first
proposed to bring together our increasing knowledge about CF
lung microbial diversity and community ecology.1 The model was
originally focused on CF pulmonary exacerbations (CFPE), which
are events of acute disease where patients present to clinicians
with increased symptoms requiring more aggressive treatment.14

These events often result in hospitalization and greatly increase
patient morbidity and health care costs.15 The CAM is founded on
empirical evidence showing that similar bacterial communities
exist during CFPE and times of stable disease;16–19 thus, it focuses
on functional changes in community activity. It proposes that
microbial functional behavior changes as patients develop an
unstable community associated with CFPE, and is based on
fundamental properties of classical ecology, including the
existence of alternative stable states within an ecosystem.20–23

Recently, a study attempted to test the CAM by growing the CF
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microbial community from clinical samples in an environment
mimicking the CF lung and monitoring microbial physiology.24

It demonstrated that functional changes in core community
physiology do occur during the development of a CFPE,
characterized by an increase in microbial fermentation. Further
investigations into the drivers of CF microbiome dynamics and
their relationship to the CAM will allow for better translation of an
ecological understanding of CF microbiology into novel treat-
ments for lung infections.
Bacterial ribosomal RNA gene sequencing (16S rRNA) has

provided a detailed catalog of microbial taxa in CF lungs.6, 7, 12

Longitudinal studies through CFPE have shown mixed results,
some studies describe significant changes in microbial profiles
associated with disease state,18, 19, 24–26 and others do not.27, 28

Metagenomic sequencing has been less commonly employed, but
is an even more powerful approach, as it allows for more detailed
taxonomic information along with functional annotations.29, 30

Although these methods are useful for analyzing the structure and
function of microbial communities, translating high-throughput
sequencing data into predictive models with clinical relevance
requires tools to identify patterns in the data relevant to
disease. Aiming beyond purely compositional markers, microbial
community structure can be predicted by network analysis.31–33

Using graph-topological arguments, such networks can be used to
predict keystone species, members of the community that have a
disproportionate influence on the overall community structure
regardless of their abundance.34 Furthermore, networks enable
the link between community structure and observed host
phenotypes.35, 36 This approach to a pathogenic microbiome
focuses on the ecological interdependencies within the microbial
ecosystem, generates testable hypotheses on novel targets for
treatment, and provides a global view of polymicrobial infection
to identify its potential weak points. Application of network
analysis to high-throughput sequencing data is a valuable means
of analyzing complex data sets to better facilitate their translation
to a clinical setting.
Here we use co-occurrence networking analysis of taxonomic

and functional annotations of DNA sequence data from the CF
lung microbiome to investigate its ecological structure as inferred
across many patients. With attention to keystone species and
pathways, the networking approach revealed that the structure of
the microbial community reflects the Climax and Attack Model.
In addition, metagenomic reads from keystone pathways were

mapped back to their bacterium of origin to reveal the drivers of
pathways crucial to overall community structure. This analysis
revealed a novel drug target for CF and which bacteria it is likely
to affect. We conclude that the CAM model is separated not only
taxonomically, but also metabolically, based on amino acids or
sugars as the principle carbon source. This study demonstrates the
utility of networking approaches to identify the structure in
microbial communities and how the detection of keystone
features can reveal functional and taxonomic weak points as
targets for polymicrobial infections.

RESULTS
Structure of the CF lung microbiome
To gain insight into the microbial community structure in CF lungs,
we created a co-occurrence network37 (referred to as ‘OTU
(operational taxonomic unit) network’) from previously published
16S rRNA gene microbiome data from 6 patients collected over
10 years.38 This data set represents a decade long longitudinal
study of how the microbial communities of a CF lung infection
change. Our OTU network was used to visualize the interrelation-
ships within the CF lung as disease progresses. The data set was
queried for co-presence or absence patterns between particular
microbes. For every statistically significant event (p < 0.01, correla-
tion >|0.2|), an edge between them was accepted. The topology of
the inferred network (nodes = 22, edges = 56) revealed three main
clusters that are separated by anti-correlations, but displayed only
positive correlations within the cluster (Fig. 1).
The first cluster is a complex group of 17 positively interacting

operational taxonomic units (OTUs, binned at 97 % sequence
identity) comprised of mostly Gram-positive anaerobes, including
Prevotella and Parvimonas, and Gram-negative anaerobes,
such as Veillonella, Porphyromonas and Fusobacterium (Fig. 1).
Also contained in this group were the facultative anaerobes
Streptococcus, Granulicatella and Rothia, the obligately fermenta-
tive Gemella, and a satellite subgroup containing members of the
Pasteurellaceae and Neisseria. Except for this satellite, common
among these group members is a core anaerobic physiology
representing a functionally adapted cluster with similar
metabolism. The other two significant clusters were much smaller,
one containing Pseudomonas as a singleton, and the other,
Staphylococcus, Halocella and Bogoriella. The latter two groups
displayed anti-correlations with the first anaerobic group.
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Fig. 1 Co-occurrence network inferred from the SparCC algorithm applied to 16S rRNA gene data of 126 CF sputum samples. Co-occurrence
and anti-occurrence of taxa is denoted with grey lines and red lines, respectively. Nodes are sized by their degree closeness centrality (cc) and
colored by increasing clustering coefficient (increasing from olive to green to blue). The major taxa clustering strongly support the CAM
hypothesis, stating that the CF community splits into two differently pathogenic subgroups: Attack Community members such as
Streptococcus, Veillonella and Porphyromonas, and the Climax Community dominated by Pseudomonas and Staphylococcus
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Pseudomonas displayed negative correlations against specifically
Gemella, Streptococcus, Porphyromonas and Prevotella, while the
Staphylococcus group negatively interacts only with Porphyromonas.
Predicted keystone bacterial OTUs were primarily anaerobes
including Streptococcus spp., Prevotella, Veillonella, Fusobacterium
and Gemella when both positive (Table 1) and negative
interactions were included in the prediction (Supplementary
Table S1).37

Pseudomonas aeruginosa and Staphylococcus aureus interactions
There is much evidence in the literature that P. aeruginosa
negatively interacts with S. aureus,39–42 however, we did not
observe a connection between these organisms in the OTU
network. Thus, we experimentally investigated the competition
between these two species by co-culturing CF isolates together in

a CF-lung like environment and comparing that to a P. aeruginosa
and Escherichia coli co-culture as a control (an interaction known
to exhibit less antagonism43, 44). After equilibration and incubation
of a single P. aeruginosa strain with three strains of methicillin-
sensitive and three strains of methicillin-resistant S. aureus
together, P. aeruginosa was consistently recovered whereas only
one S. aureus strain survived, further supporting the negative
interactions between these two bacteria (Supplementary Fig. S1).
In comparison, an incubation of P. aeruginosa and E. coli resulted
in growth and recovery of both strains (Supplementary Fig. S1).

Function of the CF lung microbiome
To identify the functional structure of the CF community we
analyzed an abundance matrix of KEGG modules from twelve
previously published and seven new CF metagenomes with
co-occurrence networking (‘functional network’). These sputum
samples represented all disease conditions, but were from a
different patient cohort than the taxonomic analysis. The
co-occurrence functional network consisted of seven clusters with
more than two nodes (nodes = 50, edges = 79). We then ranked
the functional modules (nodes N) according to whether they
had the properties of a keystone37 based on co-occurrence
(Supplementary Table S3). This unsupervised method makes use
of topological network properties of the co-occurrence network. In
detail, it profiles every node for its node degree (number of
interactions), closeness centrality (distance to all other nodes),45

and its clustering coefficient (embedment with local neighbors).
Then all nodes are ranked by the mean of the three measures
shown in Table 2 and the mean rank of all possible hierarchical
rankings is used for pinpointing taxa and functions most
important to the community. A similar approach to identifying
important metabolic functions has been developed by Roume et
al.46 To compare the two concepts of keystone pathways and key
functionalities we adapted the Roume et al.46 method to
correlation and metagenomic data and compared the results
obtained. The ten highest-ranking metabolic modules that were
identified as keystones in the functional network are shown in
Table 2, and Supplementary Table S3 displays those key
functionalities identified as ‘load points’ via the Roume et al.46

method. Nine of the 13 keystone KEGG modules identified from
the co-occurrence method were also found to have positive load
scores according to Roume et al.46 (Supplementary Table S3).
Predicted keystone pathways in the functional network were

also subjected to read mapping from genes in these pathways to

Table 1. Predicted keystoneness of OTUs in taxa co-occurrence NWs
based on data by Zhao et al.38

OTU k Closeness
centrality (cc)

Clustering
coefficient (clust)

Keystone
rank

Streptococcus.1 3.7 0.17 0.45 1

Prevotella 3.25 0.14 0.5 2

Streptococcus 3.75 0.14 0.36 3

Veillonella 2.8 0.13 0.86 3

Fusobacterium 2.7 0.13 0.67 4

Gemella 4 0.1 0.29 5

Granulicatella 2.75 0.1 0.5 6

Bogoriella.1 1.75 0.08 0.67 7

Halocella 1.3 0.07 1 8

Prevotella.2 1 0.14 – 9

Bogoriella 2.25 0.08 0.22 10

Pseudomonas 3 0.06 0.1 11

Bordatella 1 0.06 – 12

Prevotella.7 1 0.08 – 13

The prediction is based on three measures, tabled as mean values,
calculated across five inferred co-occurrence NWs (the B, E, T, R and overall
network). The mean rank over all possible scoring hierarchies is reported

Table 2. Predicted keystoneness of KEGG module pathways from CF metagenomes

Module MO k Closeness centrality (cc) Clustering coefficient (clust) Keystone rank

Putrescine transport M00300 7 0.052 0.43 1

Glutamate/aspartate transport M00230 9 0.052 0.31 2

Histidine transport M00226 8 0.052 0.25 3

Tyrosine biosynthesis M00025 5 0.052 0.7 4

Pentose phosphate pathway (oxidative phase) M00006 7 0.053 0.095 5

Ornithine biosynthesis M00028 9 0.051 0.33 6

Type VI secretion system M00334 5 0.051 0.5 7

Microcin C transport M00349 6 0.051 0.33 7

Putative sugar transport M00197 3 0.052 0.34 7

C5 isoprenoid biosynthesis (non-mevalonate) M00096 5 0.051 0.8 8

Maltose/maltodextrin transport M00194 4 0.051 1 8

Dipeptide transport M00324 4 0.051 0.83 9

Pentose phosphate cycle M00004 4 0.052 0.17 10

The prediction is based on three measures, the mean rank over all possible scoring hierarchies is reported
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their bacterium of origin using BLAST (according to the NCBI
taxonomy database). This resulted in a phylogenetic overview of
taxa with the genetic potential to express keystone metabolic
pathways relevant for the entire community structure (Fig. 2).
Three of the keystone pathways were involved with the
biosynthesis of amino acids, particularly ornithine and tyrosine.
Mapping reads to these keystone pathways demonstrated
that tyrosine biosynthesis is evenly distributed throughout
the community members, but ornithine biosynthesis is
mostly associated with Pseudomonas, Stenotrophomonas, and
Achromobacter (Fig. 2). Another common group of pathways with
the properties of a keystone species were those devoted to the
transport of amino acids and putrescine. Reads from the
putrescine transport pathway mostly mapped to Climax Commu-
nity members including Pseudomonas, Stenotrophomonas and
Achromobacter. In contrast to the amino acid metabolism
keystones, the keystone pathways for maltose/maltodextrin
transport and putative sugar transport did not map to Climax

Community members (Fig. 2). Reads to this pathway shared
sequence homology with Streptococcus. It must be noted that the
read mapping method utilized in this study cannot account for
horizontally transferred genes, where the taxonomic assignment
of a read does not match its genetic background.

Community structure shift during CFPE
The CAM predicts that a taxa shift in the microbial community
induces a change in the dominant metabolic processes that is
associated with CFPE. We tested this hypothesis by applying
network analysis to the long-term 16S rRNA gene sputum
microbiome data set38 separated according to the BETR clinical
state categories (‘BETR network’). We obtained four taxa networks,
namely one for each clinical state; these are ‘baseline B’,
‘exacerbation E’, ‘treatment T’ and ‘recovery R’ (Fig. 3). To profile
the degree of community organization throughout the BETR
network, we calculated the network fragmentation F that
evaluates the formation of topologically independent clusters in

Fig. 2 Functional co-occurrence network inferred from the SparCC algorithm applied to KEGG Module abundances from CF sputum
metagenomes. Nodes are sized based on their degree of closeness centrality and colored by their number of interactions, where increasing ‘k’
is redder. Edges are sized and colored by the strength of the co-occurrence. Results of the read mapping are highlighted for particular
keystone pathways in the network according to the lettering (A–J). The taxonomic distribution of reads to the KEGG module genes is shown
as bar graphs of the relative abundance of assigned reads. The relative abundance of taxa from the MG-RAST output of all reads in the pooled
metagenomes is shown as a reference
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the graph. A higher F comes from an interaction network with
more disconnected clusters relative to the number of nodes.32 The
co-occurrence patterns changed through different clinical states,
resulting in increased F of the community during E and R
(FB = 0.48, FE = 0.68, FT = 0.53, FR = 0.63). T is a singular condition
due to increased antibiotic administration and a biased response
of the microbial community. The increased community fragmen-
tation during E (and less so in R) is likely caused by an internal
restructuring event. Due to the findings of the different core
physiologies between the climax and attack communities (Fig. 2)
we hypothesize that a microbial metabolism driven drop in pH
may be the driver of this restructuring. We subsequently
demonstrated that a CF isolate of P. aeruginosa favors higher
pH, indicating that the climax community is likely the elevated pH
group (Supplementary Fig. S2).
For further support, we evaluated the abundance of Climax and

Attack community members across the BETR states in all samples.
The original OTU network was used to assign the observed taxa to
either of the two communities according to the topological
clustering of the graph (Climax communities are the Pseudomonas
and Staphylococcus clusters, Attack community is the anaerobic
cluster). In Fig. 4, we plotted the normalized abundance of Climax
and Attack communities through the B, E, T and R states and
tested within clinical state differences with the Student’s t-test and
across clinical state differences with a Tukey’s test of a one-way
ANOVA. The Climax community members were statistically more
abundant during all clinical states except for exacerbation, where
the attack community increased in its relative abundance to equal
the level of the Climax members (Fig. 4, B p < 0.001, T p < 0.001,
R p < 0.001, Bonferroni corrected significance p = 0.0125).
Across disease states the Attack community was significantly
higher during E compared to T and R states, but not B
(E-T p = 4.5 × 10−6, E-R p = 0.004). The Climax community was
significantly more abundant during the T state than B or E
(T-B p = 0.014, T-E p = 0.0011).

Non-mevalonate pathway of isoprenoid biosynthesis as a novel
drug target
In addition to revealing the important core metabolic pathways
of the CF lung microbiome, our functional networking identified
that C-5 isoprenoid biosynthesis (non-mevalonate pathway)

also had elevated keystone properties (Table 2) from both the
co-occurrence method (Table 2) and that of Roume et al.46

(Supplementary Table S3). Phylogenetic read mapping of the
non-mevalonate pathway genes, including the fosmidomycin
target dxr, identified a community of bacteria that treatment with
fosmidomycin would likely affect directly. The non-mevalonate
pathway genes mostly belonged to Rothia, but also mapped to
Pseudomonas, Stenotrophomonas, Achromobacter, Escherichia and
the anaerobes Fusobacterium, Veillonella and Lactobacillus (Fig. 5).
Thus, we hypothesize that fosmidomycin would be a powerful
treatment against Rothia spp. and these other bacteria. Although
abundant in the metagenomes, none of the reads mapped to
Streptococcus or Staphylococcus, indicating fosmidomycin treat-
ment is not likely to affect these bacteria. This is supported by
studies that have shown that these two genera utilize the
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mammalian mevalonate type of isoprenoid synthesis pathway; an
uncommon pathway within the Bacteria.47, 48 Furthermore, based
on the interactions in the functional network topology (Fig. 2),
the use of fosmidomycin in CF could also impact other pathways,
as it is positively connected to the maltose/maltodextrin transport
and heme biosynthesis. Thus, disrupting isoprenoid synthesis may
also inhibit these pathways. Streptococcus was the major genus
that encoded this sugar transport pathway, indicating that
although fosmidomycin may not have a direct effect on these
bacteria because they do not encode dxr genes, it may indirectly
rely on the non-mevalonate pathway or bacteria that use it,
making it susceptible, regardless.
To illustrate the percolation of the fosmidmoycin-related effects

and predict the reorganization of the CF microbiome after
treatment, we implemented a quantitative Lotka-Volterra model.49

We first established the microbial metacommunity50 that includes
relevant taxa from the entire patient cohort, building on the
co-occurrence network of the CF taxa (Fig. 1). Fosmidomycin-
sensitive taxa (based on the functional read mapping of the
non-mevalonate pathway, Fig. 5) were initially removed and the
total number of lost organisms recorded. The analysis indicates
that the interaction prevalence within the airway microbiome
shapes the mean success rate of fosmidomycin treatment
(Supplementary Fig. S3A). We hypothesize that as strong
interactions increase, potential competitive processes dominate
microbiome dynamics, the community composition declines and

fosmidomycin percolation decreases. Fosmidomycin percolation
(PF) reaches on average 18.3 % (max = 40 %) of the microbial
community assessed in a microbiome with 5 % interaction
prevalence (Supplementary Fig. S3B). These results suggest that
the success of fosmidomycin treatment in targeting potentially
unsusceptible organisms of the microbiome crucially depends on
the interaction structure of the airway microbiota in the individual
patient.

DISCUSSION
The concept of the keystone originates in community ecology34

and identifies a species with disproportionate impact on
the community relative to its abundance. Here we applied
this keystone concept to microbial abundance data. We also
propose the concept of a keystone pathway, upon which the
overall community structure and function disproportionately,
relies. A similar concept for identifying important enzymes in
causal metabolic networks has been proposed by Rahman and
Schomberg et al.51 So-called ‘choke points’ are characterized by
high betweenness centrality (the number of shortest paths that
pass through this node) relative to node degree (number of direct
interactions) and point to single enzymes that carry out
fundamental metabolic conversions in bacteria. Similarly, Roume
et al.46 analyzed metabolic networks to infer key enzymatic
pathways (‘load points’) in microbial communities of biological
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wastewater treatment plants. To compare the two concepts of
keystone pathways46 we adapted the Roume et al.46 method to
our correlation and metagenomic data and compared the results
obtained. There was strong congruence between the keystone
and ‘load points’ pathways identified, indicating that our methods
are in agreement previously established approaches.
The progression of CF lung disease is driven by changes in

patients’ clinical state, including stable disease (baseline, B), CFPE
(E), times of active treatment (T), and recovery from a CFPE (R)
(Zhao et al.38). The CAM associates these as alternative steady
states, similar to those in classical ecology.21 The causes of phase
shifts between these states is unknown, but hypothesized to be
due to changes in microbiome physiological processes and/or
antibiotic treatment.1 The topology of the OTU network demon-
strates that obligate anaerobes are important to the overall
community and supports the CAM (Fig. 6). Recent studies of the
CF microbiome have identified some anaerobes as important to
the pathogenesis of CF lung disease, but they remain a poorly
understood group of CF-associated microbes.24, 52, 53 Anaerobes
and fermentation have been associated with exacerbations of
CF.24, 52, 54 Fermentative growth by anaerobes lowers the pH of
the extracellular environment due to the excretion of acidic
fermentation products. This is likely to expand and favor the
growth of other fermentative bacteria that are tolerant and thrive
in lower pH, such as Lactobacillus, Prevotella, and Veillonella, or
facultatively fermentative bacteria, such as Streptococcus, Rothia
and Granulicatella.55–58 We hypothesize that this pH-based
positive feedback loop explains the tight association of anaerobes
in the co-occurrence network and may be a driver of shifts
between the CAM steady states (Fig. 6). Indeed, the pH of CF lung
secretions has been measured as low as 2.9,59 is lower than those
of healthy controls (exhaled breath condensate average pH: CF =
5.88 and non-CF = 6.15,48), and is lower during exacerbation.60, 61

P. aeruginosa, however, including strains recovered from CF lungs,
does not grow well below pH 562 (Supplementary Fig. S2). Thus,
our interpretation of the network topology is that the contrasting
physiology of the major bacterial clusters drives the overall
structure. The anti-correlation of Pseudomonas and the anaerobes
(Fig. 1) is an important example. Fermentative anaerobes create
microenvironments favorable for their growth to continue, while

simultaneously making these environments less suitable for
P. aeruginosa. A similar pH driven phenomenon has been
observed in oral microbial communities,56 indicating that core
changes in microbial physiology may be a major driver of
alternative steady state flux in many polymicrobial systems.
An alternative explanation for the OTU network structure is

varying antimicrobial resistance between the two clusters.
P. aeruginosa is known to be highly resistant to CF antimicrobial
therapy,63 while CF anaerobes are known to differ greatly in their
degree of antibiotic resistance.52 The anti-occurrence between
Pseudomonas and the anaerobes may reflect the presence of
antibiotic pressure on the microbial community. Pseudomonas’s
relative abundance would increase in this situation due to the
killing of anaerobic bacteria, which are less resistant to the
therapy, explaining the co-occurrence patterns. Another
alternative explanation is spatial heterogeneity of microbial
distributions in the lung.64

Pseudomonas is notorious for the production of antimicrobial
products, including quinolones, phenazines, and rhamnolipids.65–70

These molecules may contribute to negative interactions with the
anaerobic group; however, some of these antimicrobials are
known to be especially effective against S. aureus,39–42 with whom
a negative correlation was not observed. In laboratory cultures,
P. aeruginosa readily kills S. aureus,40–42 although these species
show some synergy in in vitro co-culture models.71 The absence
of a negative interaction in the OTU network network between
these bacteria shows that competitive interactions between
P. aeruginosa and S. aureus are more complex in the lung
environment than that of dual species interactions in the
laboratory; even when environmental conditions are made similar
to the lung. Clearly, microbial interactions are complicated in
natural communities, due to the impact of a multitude of other
microbes and host factors.72

There are biases to consider in the context of our results that
are important for any 16S rRNA gene microbiome study of the CF
lung. For example, not all of the dominant CF pathogens
(e.g., Burkholderia) were present in the patients analyzed in this
study. The interactions and network position of bacteria not
present in these patients is, therefore, unknown. Larger studies
incorporating a more comprehensive assessment of the
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co-occurrences and interactions of all major CF pathogens should
be completed to include all significant community members and
determine if the structure of the CAM is maintained with a more
diverse microbiome. Biases of PCR amplification and DNA
extraction that apply to any microbiome study also apply here,
potentially confounding some interactions inferred.38, 73, 74

The functional network demonstrated that pathways involved
in the transport, breakdown and synthesis of amino acids coupled
with nitrogenous waste detoxification were keystones for the CF
microbial community. The need to synthesize particular amino
acids is surprising, as CF sputum is known to be rich in in these
compounds,75, 76 but this may indicate heterogeneity in the
availability of particular amino acids, a trait previously observed.42

Transport of amino acids likely reflects their metabolism as a
principle carbon source, where histidine transport, dipeptide
transport, and glutamate/aspartate transport reflect the import of
free amino acids and their subsequent metabolism. Putrescine is
also an indicator of amino acid catabolism and nitrogenous waste
management. This compound is a common byproduct of amino
acid metabolism and is also produced from arginine and ornithine
breakdown. Ornithine, a non-essential amino acid, is an important
metabolite in the urea cycle. We hypothesize that the keystone
importance of synthesizing putrescine and ornithine represents
nitrogenous waste management by the lung microbiome.
Amino acids are known to be a principle carbon source for CF
pathogens42, 75–78 and their metabolism has been shown to
accumulate waste products such as ammonia.30 The results of the
read mapping of these pathways supports the idea that amino
acid metabolism is a fundamental property of the Climax
Community (Pseudomonas, Achromobacter, Stenotrophomonas
and other classic pathogens). Elevated levels of ammonia have
been observed in airway secretions of CF patients and have been
shown to contribute to the raising of lung pH, which is normally
acidic.60, 79 We hypothesize that ammonia production contributes
to a stabilization of lung mucus pH for the Climax Community and
is a fundamentally important compound for maintaining the
stability and community structure of the CF microbial ecosystem.
Other keystone pathways were devoted to the transport and

metabolism of sugars and mapped mostly to Streptococcus spp.
Thus, these bacteria may have a fundamentally different carbon
source compared to Pseudomonas. Sugar fermentation results in
the production of small organic acids that have the opposite effect
on the lung environmental pH than ammonia production. Thus,
the functional networking in this study indicates that the CF
microbial community is partitioned by carbon source. The Climax
Community utilizes amino acids, producing ammonia, whereas the
Attack Community ferments sugars, producing acids (Fig. 6).
Fermentation by Streptococcus and anaerobic bacteria has been
demonstrated before in CF lung secretions.24, 54 This hypothesis is
supported by a recent study showing that anaerobic bacteria, first
metabolize the sugar component of the mucin polypeptide in CF
mucus, before P. aeruginosa can subsequently break down its
amino acid component.80

In light of our results above, we propose that the increased
community structure fragmentation observed during exacerbation
is due to the differential effects of the core catabolism of the two
communities revealed from our functional read mapping.
Ammonia production from amino acid breakdown maintains the
community at a stable pH, but sugar fermentation by anaerobes,
such as Streptococcus, disrupts this stable state by lowering the pH
of the lung below that favorable for the growth of Climax
Community members, such as Pseudomonas30 (Fig. 6).
Furthermore, analysis of the abundance of Climax and Attack
community members in the OTU network revealed that the
relative abundance of the Attack community members increased
during times of exacerbation. These results strongly support the
CAM hypotheses, whereby the Climax community is significantly
more abundant in all states except for exacerbation, and during

treatment, the Attack community is greatly reduced. In support of
this model a recent microbiome study showed that patients with a
P. aeruginosa as their most dominant taxon had a decreased
P. aeruginosa abundance at exacerbation.19

Finally, an interesting keystone pathway was the non-
mevalonate pathway of isoprenoid biosynthesis. This pathway is
essential for the synthesis of the basic isoprenoid precursors
isopentenyl pyrophosphate and dimethylallyl pyrophosphate.47, 81

Such precursors can be synthesized into a highly diverse group
of compounds including those important for respiration
(ubiquinones) and secondary metabolite production.81 Moreover,
the respective isoprenoids are produced by unique enzymes
indicating the pathway has the inherent characteristics of a ‘choke
point’.51 Importantly, the enzymes of this pathway are distinct
from those of the mammalian mevalonate pathway of isoprenoid
synthesis, and have therefore been proposed as novel drug
targets.82 The identification of this pathway as a significant
keystone indicates it is similarly a strong drug target for CF lung
infections. Drugs targeting this pathway, such as fosmidomycin,83

could directly inhibit the synthesis of isoprenoids and indirectly
disrupt the overall community function. Fosmidomycin has mostly
been used as an antimalarial,84 only rarely being employed as an
antibacterial,85 but attention is growing around the potential for
this drug and others to be developed as a new line of antibacterial
treatments.86

The finding of the non-mevalonate pathway as a keystone in
the CF polymicrobial infection and an antibiotic that targets
enzymes in the pathway demonstrates the utility of a functional
networking approach to identify novel drug targets against
polymicrobial communities. Furthermore, understanding the
microbial community interdependencies makes it possible to
predict the indirect consequences of a new drug as it further
percolates its effect across the microbiota. Finding new ways to
treat chronic infections with already approved medicines is very
desirable in light of the high prevalence of antibiotic resistant
pathogens worldwide.

CONCLUSIONS
More informed antibiotic treatments based on a priori under-
standing of their effect on a microbial community would result in
greater treatment efficacy. To understand the effects of targeting
particular pathogens, the underlying structure of a microbial
community must be discerned. Here we describe the CF lung
microbiome structure and function using ecological co-occurrence
networks to better understand the effects of potential antibiotic
perturbations. The community is partitioned into an anaerobic
group and classic CF pathogens, Pseudomonas and Staphylococcus.
We hypothesize that this structure is driven by the different
carbon sources of these groups and the contrasting effect of
their metabolism on the pH of the airway environment (Fig. 6).
In light of these findings, studies should focus on how simple
manipulations of pH may result in the maintenance of a stable CF
microbiome and avoidance of the community structure collapse
associated with exacerbation. In addition, fosmidomycin should
be explored as a novel drug to treat CF infections that may help
disrupt overall community interdependencies.

METHODS
Additional methodological information is included in the online Supple-
mentary material.

Patients and sample collection
Samples for this study had been previously collected for 16S rRNA gene
sequencing according to reference 38 and for metagenomics according
to Lim et al.29 and Whiteson et al.54 The clinical state of each patient was
classified at the time of sample collection as either at baseline (B),

Cystic fibrosis lung microbiome structure and function
RA Quinn et al.

8

npj Biofilms and Microbiomes (2017)  4 Published in partnership with Nanyang Technological University



exacerbation (E), during treatment (T) or during recovery from an
exacerbation (R) as described (20). All samples were collected in
compliance with the University of California Institutional Review Board
(HRPP 081500), San Diego State University Institutional Review Board
(SDSU IRB#2121), and the University of Michigan Institutional Review
Board requirements.

Data and co-occurrence networks
There were three different co-occurrence network approaches used for this
study, a ‘OTU network’ based on 16S rRNA gene data (Fig. 1), a ‘BETR
network’ (Fig. 3), which was the same data separated into clinical disease
states, and a ‘functional network’ based on metagenomics data (Fig. 2). For
the OTU network OTU abundance data generated on 126 sputum samples
from 6 different patients in a previously published study38 were rarified,
OTUs occurring in a single sputum sample only were removed and the
resulting 55 OTUs were further used for inferring one correlation network
across all BETR categories (Fig. 1). For the ‘BETR network’ the same data
was used, but 4 individual co-occurrence networks for each clinical
category were built (Fig. 3). For the ‘functional network’ metagenomic data
annotated at the level of KEGG metabolic modules using the HUMAnN
pipeline87 formed the basis of the network (Fig. 2). Data from the 12
454-metagenomes analyzed here were previously published in separate
manuscripts with different study objectives and outcomes.29, 30, 88 An
additional 7 ion torrent metagenomes were included to increase the
sample size representing the first publication of this data, except for a
targeted analysis of the abundance of a single pathway54 that is not
described in this study. These data were generated from 19 sputum
samples from 10 CF patients, using hypotonic lysis to isolate intact
microbial cells before extracting and sequencing the DNA (Supplementary
Table S2).29 Two different sequencing platforms were used to generate the
metagenomic data for networking analysis, the Ion Torrent platform and
454-pyrosequencing (samples with less than 10,000 pyrosequencing reads
were not analyzed, sequence read numbers available in Supplementary
Table S2). The larger Ion Torrent data were compared against a subset of
KEGG gene sequences from several hundred bacterial genomes that have
been observed in cystic fibrosis patients, while the 454 data were
compared against the entire 2011 KEGG database. The two sequencing
and analysis approaches had little influence on the overall data structure as
demonstrated by multidimensional scaling of an unsupervised random
forest proximity matrix performed in R (Supplementary Fig. S4). Modules
present in a single sample only were removed and the resulting 101 KEGG
modules (04b file from HUMAnN output) were used to infer the functional
network. Due to SparCC requirements, the normalized abundances in the
KEGG module output file 04b were adapted by multiplying by the same
number (the lowest number of reads in the data set).
For all three networking approaches we inferred co-occurrence

networks using the SparCC algorithm89 for calculating the correlation
strength and significance of all variables against all others (taxa or KEGG
modules, respectively). A co-occurrence event was considered for the
network, if the correlation > |0.2| and p-value⩽ 0.01. A subsequent
correction of FDR according to Benjamini-Hochberg corrected to
p-values⩽ 0.003.90

Network fragmentation
To determine the fragmentation pattern of the co-occurrence community,
we further simplified the networks and removed anti-correlation edges.
Fragmentation was calculated according to F=log(CL)/log(N), where CL is
the number of topological clusters in the graph and N the number of
nodes.32 F runs between 0 and 1, where the latter represents an entirely
unconnected graph. All analyses were performed in R.

Keystone prediction
Topological properties of co-occurrence networks can be used to profile
keystone constituents according to reference 37. These properties include
the node degree k, closeness centrality cc and the clustering coefficient
clust. We used the species BETR network to filter for a list of correlating
species. Then, we evaluated each species for the three topological
properties in every individual network (B, E, T, R) and calculated mean k
(<k>), mean cc (<cc>) and mean clust (<clust>). To profile keystone species
we ranked each species taking into account all six permutations of the
three properties. Networks excluding and including anti-correlations were
analyzed (Table 1, Supplementary Table S1, respectively). The metabolic

modules were similarly tested for their importance within the community
by querying the BETR network for the analysis.

Load point prediction
Load scores of all nodes in the metabolic co-occurrence network were
calculated according to Roume et al.:46

load scoren ¼
P

s≠n≠t σstðnÞð Þ=σstÞ
knP

e

;

where the score of node n is calculated from all shortest paths σ between
any node s and t in the graph that pass through node n, and is normalized
to the relative degree of node n. The relative degree is the ratio of the
number of edges of node n versus the total edge number e in the graph.
While in the original study connectivity-centered metabolic networks

that group enzymes by similar KOs as nodes and use metabolites as
undirected edges were analyzed, we performed the identification of load
points on co-occurrence networks of KEGG modules. In Roume et al.46

further prioritizing of the nodes is performed calculating relative
expression of genes from metatranscriptome data. Here, we summarize
the normalized read abundance of KEGG modules in metagenomic
samples as semi-quantitative information along with load score in
Supplementary Table S3.

Abundance shift
Sub-groups of species were formed according to topological properties of
the species OTU network. The network was split along negative correlation
into 2 groups designated Climax and Attack. The A group included the
Attack community members Prevotella, all Streptococcus OTUs, Veillonella,
Fusobacterium, Gemella, Granulicatella, and all other members of the
anaerobic cluster while the Climax group included Bogoriella.1, Halocella,
Bogoriella, Staphylococcus, and Pseudomonas. Relative abundances were
collected and analyzed for statistical differences within clinical state
(Student’s t-test, Bonferroni corrected) and across clinical states (Tukey’s
test of one-way ANOVA). All analyses were performed in R.

Functional read mapping
KEGG Modules predicted to have strong importance for the functional
network were selected for read mapping to the most closely related
organism of individual genes that made up the module. This read mapping
was done for 10 total pathways and compared to the taxonomic
distribution of the entire pooled metagenome, to get an impression of
the taxonomic distribution of particular pathways relative to the taxonomy
of the entire community. The read mapping was done on individual genes
in each pathway and then pooled for an overall pathway comparison. The
454-pyrosequencing and Ion Torrent metagenomes were pooled into two
separate fasta files and uploaded to the MG-RAST server separately, in
order to allow downloading of individual reads to genes of interest. The
complete taxonomic distribution of the entire data set was determined
using the lowest common ancestor feature of the MG-RAST pipeline.91

Each individual read mapping to a particular gene that made up a
keystone KEGG module of interest was retrieved using the MG-RAST
workbook feature. These reads were then collectively searched against the
GenBank database using BLAST. The top BLAST hit for each read was
extracted and its organism of origin determined from the NCBI taxonomy
database.

Fosmidomycin percolation
To assess how the application of fosmidomycin percolates throughout the
microbial community we implemented a generalized Lotka-Volterra ODE
model with the aim of quantifying the loss of taxa after treatment. The
CF metacommunity of microbial taxa85 was established from the
co-occurrence relationship inferred from the patient cohort. We repeatedly
subsampled on average 20 taxa and their interactions from the CF
metacommunity for obtaining individual patient microbiomes and
simulated the time evolution of the organisms until they reached
equilibrium. We assessed the percolation of fosmidomycin in communities
with 5 % interaction prevalence (Supplementary Fig. S3B). For assessing
the impact of interaction organization on fosmidomycin percolation
(Supplementary Fig. S3A), we conducted simulations for 900 microbiomes
with varying interaction prevalence (0–45%). For each prevalence bin,
we generated 10 realizations of the metacommunity and therefrom
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subsampled and simulated 10 individual microbiomes. The number of
drug related direct and indirect kills was recorded and normalized against
community size without treatment. Further details of the percolation
method are described in the online Supplementary methods.

Bacterial culture experiments
Strains used for this study were isolated from sputum samples at the
University of California at San Diego Center for Advanced Laboratory
Medicine. The co-culture experiments involved three methicillin sensitive
S. aureus strains (SaFLR01, SaFLR02, and SaFLR03), three methicillin
resistant S. aureus strains (MRSAFLR01, MRSAFLR02, and MRSAFLR03),
and an E. coli isolate (EcFLR01) all grown separately in co-culture with a
P. aeruginosa CF isolate (PAnmFLR01). After CFU equilibration, 25 μl of each
culture was added to 500 μl of artificial sputum medium (ASMRQ
formulation) and inoculated into non-heparinized glass capillary tubes
for growth (Fisher Scientific) (for method see Quinn et al.24). After 24 h
incubation at 37 °C the media was serially diluted in phosphate buffered
saline and unique colonies were counted on Todd Hewitt agar.
The P. aeruginosa, S. aureus and E. coli bacteria produced morphologically
unique colonies allowing for a determination of individual counts of each
species.
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