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Abstract

Using the Birth-Death Process to Infer Changes in the Pattern of Lineage Gain and Loss

by

Nathaniel Malachi Hallinan

Doctor of Philosophy in Integrative Biology

University of California, Berkeley

Professor David Lindberg, Chair

The birth-death process has been used to study the evolution of a wide variety of biological
entities from genes to species. Much recent work has turned to detecting changes in the
patterns of lineage splitting by comparing data to birth-death models in which the parameters
vary between lineages or over time. Here, I develop methods to investigate how the birth-
death process varies under three very different circumstances: changes in the pattern of
taxon diversification through time; the effect of whole genome duplications on the pattern
of chromosome gain and loss; and changes in the pattern of gene gain and loss on branches
of a taxon tree. For all three cases I apply my methods to some real data.

For the last fifteen years researchers have studied the distribution of branching times of a
phylogeny of extant taxa in order to detect temporal changes in the process of diversification.
Theoretical work on this subject has been based on different implementations of the birth-
death process and has proceeded along three basic lines: the comparison of actual branching
times to a birth-death process; the inference of the effects of different birth-death processes
on the distribution of branching times; and the derivation of analytical results that describe
various aspects of different birth-death processes. In chapter 2 I make contributions to all
three lines of research for the reconstructed time variable birth-death process.

Previous work had shown how to calculate the distributions of number of lineages and
branching times for a reconstructed constant rate birth-death process that started with one
or two reconstructed lineages at some time or ended with some number of lineages in the
present. In chapter 2 I expand that work to include any time variable birth-death process
that starts with any number of reconstructed lineages and/or ends with any number of
reconstructed lineages at any time. I also introduce the discrete time birth-death process
which operates as an efficient and accurate numerical solution to any time-variable birth
death process and allows for the analytical incorporation of sampling and mass extinctions.
Furthermore, I show how to simulate random trees under any of these models.

In order to compare phylogenetic trees to these models, I use these methods to calculate
two statistics that describe the fit of a set of branching times to any time variable birth-
death model: the maximum likelihood, which can be compared to the distribution of the
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maximum likelihood for a random sample of trees or to that the maximum likelihood of other
birth-death models using the Akaike Information Criterion; and the Komolgorov-Smirnov
test, which is based on the fact that the branching times should be independently and
identically distributed under many time variable birth-death models. I also demonstrate two
new methods for visualizing the distribution of branching times: the lineage through time
null plot uses a heat map to show the distribution of the number of lineages at different
times; and the waiting time null plot does the same for waiting times between branching
times. These plots can be used either to see how different time variable birth-death processes
affect these distributions or to compare a data set to any time variable birth-death process.
I use all these methods to analyze two data sets of reconstructed taxon branching times.

The study of paleopolyploidies requires the comparison of multiple whole genome
sequences. If researchers could identify the branch of a phylogeny on which a whole genome
duplication occurred, before sequencing the genomes of multiple taxa, then they could select
taxa that would give them a better picture of that whole genome duplication. In chapter 3
I describe a likelihood model in which the number of chromosomes in a genome evolves
according to a Markov process with three stochastic rates: a rate of chromosome duplication
and a rate of chromosome loss that are proportional to the number of chromosomes in the
genome; and a rate of whole genome duplication that is constant. I implemented software
that calculates the maximum likelihood under this model for a phylogeny of taxa in which
the chromosome counts are known. I compared the maximum likelihoods of a model in
which the genome duplication rate varies to one in which it is fixed at zero using the Akaike
information criterion, in order to determine if a model with whole genome duplications is a
good fit for the data. Once it has been determined that the data does fit the model, we infer
the phylogenetic position of paleopolyploidies by using this model to calculate the posterior
probability that a whole genome duplication occurred on each branch of the taxon tree. I
applied this model to a phylogeny of 125 molluscan taxa and inferred three places on that
phylogeny where it is very likely that a whole genome duplication occurred: a single branch
within the Hypsogastropoda; one of two branches at the base of the Stylommatophora; and
one or two branches near the base of Cephalopoda.

Thanks to the wealth of readily available comparative genomic data, it has become
apparent that gene family expansion and contraction is critical for the evolution of organisms.
Several researchers have developed likelihood methods that use counts of genes in gene
families from a number of taxa to deduce on which branches of the phylogenetic tree there
has been an unusual amount of gene duplication or gene loss in that gene family. Gene family
counts are readily available, but there is a great deal of information in the gene family tree
that is unavailable when using gene counts alone. In chapter 4, I develop a method that uses
the gene family tree to infer changes in the process of gene gain and loss on a taxonomic
tree. This method relies on calculating the probability of a gene tree given a taxon tree and
a set of birth-death parameters by which that gene tree evolves on the taxon tree. I use
a reversible-jump MCMC to sample from the joint posterior distribution of a set of birth-
death parameters and assignments of those parameters to the branches of a taxon tree given
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a gene tree and a taxon tree. Different assignments are compared using Bayes factors. I use
simulations to show that this method has much more power than a method which relies only
on counts of gene family members to determine if a gene family evolved by a different process
on a pair of taxon branches, and whether that difference is a consequence of differences in
the birth rate or the death rate.

In section 4.5 I expand my method to include uncertainty in the gene tree topology, by
using a set of gene alignments as my data rather than the fully resolved gene tree. Under this
implementation I calculate the probability of those sequences given the gene tree, in addition
to the probability of the gene tree given the taxon tree. I modify the reversible-jump MCMC
so that it now samples from the posterior distribution of the nucleotide evolution parameters
and the gene trees, in addition to the birth-death parameters and their assignments to the
branches of the taxon tree. I demonstrate the use of this method on two real gene families
found in the Bilateria. I found that a clade of 46 protein tyrosine kinase genes from three
taxa is characterized by an increase in the gene duplication rate on the branch leading
to Caenorhabditis elegans. Furthermore, a separate analysis of all the posterior hox genes
from nine taxa implies that their evolution has been characterized by massive gene loss
throughout the Bilateria with a lower rate of turn over in the chordates and at the base of
the deuterostomes than is found in the protostomes or in the echinoderms.
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Chapter 1

Variation in the Process of Lineage
Gain and Loss

1.1 The Birth-Death Process

My obsession with the birth-death process began in the mid-90s. My roommate was in New
York at the time, and so I spent a night alone drinking beer and watching the Highlander
Director’s Cut. I started wondering how the Highlander, who had only been around for
a few hundred years, could possibly beat the bad ass Kurgan, who had been around for
thousands. It struck me that actually the Kurgan’s age was a severe disadvantage. If each of
them had a constant stochastic rate of getting their head chopped off, then the Kurgan had
a much higher probability of losing his head before 1985 than the Highlander did even if the
Kurgan’s stochastic death rate was much smaller, because the Kurgan had to survive for so
much longer. I took this insight added a birth rate and spent that night and the following
weekend deriving a number of results for the constant rate birth-death process.

The birth-death process is a continuous time Markov process with two stochastic rates
birth and death that describe the size dynamics of a population. Each individual in a
population has an instantaneous probability of producing another individual, λ, and an
instantaneous probability of dying, µ. Once an individual dies it is lost forever. Therefore,
the stochastic rate for a population to gain or lose an individual is directly proportional
to the number of individuals in the population, and once a population reaches zero, it is
extinct forever. It is not difficult to derive many basic results from this process, such as: the
probability of a single individual producing N individuals after time t; the probability of a
population going extinct after time t, even as t approaches infinity; the expected number of
individuals after time t in a population starting with N individuals; the probability of an
individual reproducing M times before they die; and many more.

Of course most of this work had already been done by the time my parents were born.
Yule (1925) first introduced a continuous rate pure birth model, in which µ is zero and λ
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is constant, and calculated the probabilities of a single lineage producing n lineages at time
t and the expected number of lineages at time t among several other results. Feller (1939)
added lineage loss at a constant rate to the process, and calculated the expectation under
the birth-death process and the probability of n lineages leaving N descendants at time t
under the pure birth process. Finally, Kendall (1948) derived basic results for any birth-
death process in which the values of λ and µ varied with time, including the distribution of
the number of lineages descended from a single lineage at time t, the probability of a lineage
being lost by time t, the distribution of the amount of time before a lineage is lost, and the
distribution of the total number of births that have taken place.

The birth-death process makes sense as a model for many different types of biological
lineages. The fundamental principal of the birth-death process is that at each instant each
lineage has a probability of reproducing and a probability of dying that is independent of
every other lineage. That is intuitively appealing for the literal birth and death of individuals
in populations, for the speciation and extinction of species, for the duplication and loss of
genes and for a plethora of other biological systems. Although it is certainly untrue that the
probability of birth or death is the same for all lineages at all times, the model is still useful.
The constant rate birth-death process can be used as a null hypothethis against which to test
for differences between lineages in their propensity to diverge and disappear. Furthermore,
it is possible to construct an unending number of birth-death processes in which the birth
and death rates are not constant in order to determine what possible changes in the process
of diversification could account for a set of observations.

1.1.1 The Birth-Death Process and Macroevolution

From its beginning the birth-death process was used to model the diversity of taxa. Yule
(1925) first introduced the pure birth process in order to explain the distribution of numbers
of species among genera. He found that the data did in fact fit the model very well. Raup
et al. (1973) reinvigorated the use of the birth-death process in biology, when they used it
as a null model for the diversity of taxa through time, so that it could be contrasted with
theories that sought specific mechanisms to explain fluctuations in diversity. They found
that changes in the number of fossil lineages within clades did not appear to differ from
what one would expect under this null model.

Thompson (1975) expanded the probabilities that could be calculated under the birth-
death process from those simply involving counts of lineages to the probabilities of full
phylogenies. Among other results, he showed how to calculate the density of a phylogenetic
tree with branching times. This was shown to be a reasonable approach by Nee et al.
(1992), when they compared multiple distributions to the branching times of a real bird
phylogeny and concluded the birth-death process was the best. Nee et al. (1994b) made a
major break through with the introduction of the reconstructed birth-death process. The
reconstructed birth-death process assumes that all the lineages observed survived to the
present, and thus allows for the analysis of molecular phylogenies, which include only extant

2



taxa. Nee et al. (1994a,b) showed how to analyze real phylogenies under the reconstructed
birth-death process using lineage through time plots and estimate the birth-death parameters
by maximum likelihood. In addition to being used to analyze already derived phylogenies,
the birth-death process has also been used as a prior in the inference of ultrametric tree
topologies and branching times (Rannala and Yang 1996; Huelsenbeck et al. 2002).

1.1.2 The Birth-Death Process and Gene Family Evolution

The birth-death process has been employed not only to explain taxonomic diversity but also
to explain the diversity of gene sequences. Early in the study of gene evolution it was believed
that genes evolved through a process of duplication and slow divergence, but starting in the
1970s the paradigm of concerted evolution came to dominate the field of molecular evolution
(see Nei and Rooney 2005). However, a slew of phylogenetic studies since the 90s indicated
that in fact most genes evolve via a branching process similar to taxon lineages (Ota and Nei
1994; Nei et al. 1997; Annilo et al. 2006). Several loci that were previously thought to evolve
by concerted evolution turned out instead to just be evolving very slowly (Nei et al. 2000;
Piontkivska et al. 2002). This implied that the birth-death process would be an appropriate
model for gene diversification, and Karev et al. (2002) showed that it did a good job of
explaining the power law distribution of domain family size. Furthermore, Reed and Hughes
(2004) showed that a birth-death process with exponentially distributed time of origin could
also explain the power law distribution of gene family size.

Since these initial suggestions that the birth-death process might be useful in analyzing
gene family evolution, there has been an explosion of studies and published methods that do
just that. Lynch and Conery (2003) used the birth-death process to estimates rates of gene
duplication and turn over from gene counts and concluded that gene family size is based on
a steady state process. Gu and Zhang (2004) devised a birth-death model of gene family
size to calculate the distance between pairs of genomes based on gene family content and
used it to reconstruct a tree of life by neighbor joining. Cotton and Page (2005) estimated
birth-death parameters from trees of human gene families using methods similar to those
found in Nee et al. (1994b). Hahn et al. (2005) showed how to use the birth-death process to
infer branches of a taxon tree on which an exceptionally large number of gene duplications
occurred by analyzing the number of gene family members in different taxa. Csűrös and
Miklós (2006) described and implemented a model that included stochastic rates for birth,
death and horizontal gene transfer and could reconstruct the gene content at the nodes of a
taxon tree based on the gene content of the taxa represented by the tips of that tree. Cohen
and Pupko (2010) also used a model that included birth, death and horizontal transfer to
infer the posterior probability of the number of gains and losses along a branch of the taxon
tree from the number of genes at the tips. Iwasaki and Takagi (2007) used a similar model
to reconstruct ancestral gene content but did not include horizontal transfer and allowed
the birth-death rates to vary between the branches of the taxon tree. Arvestad et al. (2003,
2009) showed how to calculate the probability of a fully resolved gene tree or a particular
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reconciliation of a gene tree given a taxon tree and a set of birth-death parameters, and used
that probability as a prior in order to infer a gene tree (Åkerborg et al. 2009).

1.2 Variation in Evolutionary Rates

I came to be obsessed with varying evolutionary rates through more standard academic
pathways. As an undergraduate, I simply could not believe that evolutionary processes
operated the same during adaptive radiations as they do in the descendants of those
radiations. As my intellectual world expanded I learned about a growing literature focused
on inferring changes in the rate of character evolution. Most of these methods work by
comparing a model in which a set of stochastic rates describing the evolution of a character
are the same throughout a taxonomic tree to a model in which those rates differ between one
or more clade and the rest of the tree (e.g. Pagel 1994; O’Meara et al. 2006). In retrospect
it seems inevitable that these two obsessions should merge in my mind, as it is apparent
that these types of methods could be extended to incorporate variation in the birth-death
process. Indeed many researchers are already working on doing just that.

1.2.1 Variable Rates of Taxon Diversification

There is a great deal of evidence that the process of diversification varies among taxon
clades. Many but not all are based on comparing the balance of real phylogenies to a
random branching null model, of which the constant rate birth-death process is a special
case. In the initial study to demonstrate this fact Guyer and Slowinski (1991) looked at
the frequency of each of the three possible unlabeled topologies for a five species clade
in three large cladograms and found that the most imbalanced topology occurred much
more than we would expect under a random branching process. Since then several more
complete studies have been done. Savolainen et al. (2002) found that for a large number
of molecular phylogenetic trees the branches immediately descended from the shorter of
two sister branches were shorter than the branches descended from the longer of those two
sister branches, implying that the time between speciations was in fact heritable. Blum
and Francois (2006) showed that the values for measures of imbalance found in trees from
Treebase were significantly higher than the values found under a random branching process.
Heard (1996) ran simulations in which the speciation rate varied in a heritable manor and
found that simulations with a higher rate of speciation rate evolution did in fact produce
more imbalanced trees.

A number of methods have now been developed that rely on the birth-death process to
detect clades with abnormal diversity. Magallon and Sanderson (2001) calculated a value of
λ for a whole clade assuming that µ was zero, and then attempted to identify especially large
or small monophyletic groups within that clade by calculating the two tailed probability that
each subclade would be as large or small as it is given that value for λ. Sims and McConway
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(2003) and McConway and Sims (2004) contrasted the diversity in pairs of sister clades by
comparing the χ2 distribution to the maximum likelihood ratio between a model in which
both clades had different birth-death parameters and a model in which those parameters
were the same. Moore et al. (2004) recognized that a clade could appear more diverse than
its sister clade because of a shift of diversification processes within that clade rather than at
its base, so for any clade they calculated the same likelihood ratio as Sims and McConway
(2003) for it and its sister clade and for the two basal clades within it. They then calculated
the difference between these ratios for every clade in a phylogeny and compared it to the
distribution of that statistic on a set of randomly generated trees under a pure birth process
to determine if any clades were diversifying at an abnormal rate.

Another set of methods use modifications of the birth-death process to infer correlations
between the state of a biological character and the process of diversification. Ree (2005)
calculated the correlation between a binary trait and the branching process by simulating
multiple random assignments of states to the branches of the tree, averaging the maximum
likelihood estimates of λ under a pure birth process over those simulations, and then
comparing the difference between these rates to the same statistic averaged over the same
tree topology with branch lengths randomly assigned from a pure birth process. Maddison
et al. (2007) showed how to calculate the probability of a phylogeny and the distribution
of a binary character on the tips of that phylogeny given that λ and µ are dependent on
the state of that character and compared the maximum likelihood calculated under this
model to a maximum likelihood in which the birth-death rates are constant throughout the
tree in order to determine if the character affected the branching pattern. Paradis (2005)
calculated the correlation between the branching pattern and a continuous character by first
determining the maximum likelihood reconstruction of the character on the phylogeny under
Brownian motion and then calculating the probability of the phylogeny under a pure birth
process in which λ/(1−λ) was linearly related to the value of the character. FitzJohn (2010)
generalized the calculation of the probability of any number of continuous characters and
a phylogeny given that the birth-death parameters are any function of the character state
and time and that the character evolves by any diffusion process. He used this to detect
correlations between a character and the diversification process by comparing the likelihood
ratio of any pair of nested models to the χ2 distribution.

The process of taxon diversification varies not just along the branches of a phylogeny,
but also varies as a function of time. Changes in diversification with time may be a result
of underlying changes in a subclade of the studied taxa the effects of which can be seen
when studying the whole group, interactions among lineages such as competition that may
limit diversification as the number of species increases, environmental changes that can affect
every member of a clade at once, or many other processes that I have yet to think of. This
has been shown to be true for fossil Bilateria by Foote (1993), who looked at the fossil history
of Blastoidea and several trilobite clades and found that diversification rates tended to be
high early and then decrease with time. Using only extant species counts, Strathmann and
Slatkin (1983) showed that the distribution of the number of species among phyla can only

5



be explained by models in which the birth-death parameters vary through time or with the
number of taxa.

Two complementary methods compare the distribution of branching-times to a constant
rate birth-death process in order to infer temporal variation in diversification. Nee et al.
(1994b) introduced the lineage through time plot in which the log of the number of lineages
is plotted against time. The shape of this curve can be compared to what we would expect to
see under a constant rate birth-death process, to see if the data fits the assumptions. Pybus
and Harvey (2000) described a statistic, γ, which, assuming that there is no extinction, should
be greater than zero if λ increases towards the present and less than zero if it decreases. The
significance of a particular value of γ can be inferred by determining the distribution of that
statistic on a large number of simulated trees. Many researchers have used these methods to
demonstrate that diversification has varied with time for a number of diverse lineages (e.g.
Purvis et al. 1995; Harmon et al. 2003; Shaw et al. 2003; Kadereit et al. 2004; Rüber and
Zardoya 2005; Turgeon et al. 2005).

Several methods have been developed in which the maximum likelihood of a set of data
is calculated under a constant rate birth death process and under a birth death process
that varies with time, and these likelihoods are then compared by the Akaike Information
Criterion (Akaike 1974). Paradis (1997) calculated the likelihoods of a set of branching times
under a constant rate pure birth model and two different time variable pure birth models.
He provided analytical solutions for the maximum likelihoods, but he made a mathematical
error which was corrected by Nee (2001). Rabosky (2006a) introduced a group of methods
in which the probability of a set of branching times is calculated under a constant rate birth
death model and under a model in which the birth-death parameters vary at specific times.
He also made an error in calculating this second probability which is corrected in chapter 2.
Rabosky (2006b) and Rabosky and Lovette (2008a,b) have calculated the likelihoods for a
number of other time variable birth-death models, which allows for the testing of specific
hypothethes about the origins of temporal changes in the diversification process. Several
studies using these methods have shown that diversification rates do vary with time (Dolman
and Hugall 2008; Steeman et al. 2009; Burbrink and Pyron 2010; Valente et al. 2010).

1.2.2 Variable Rates of Gene Family Diversification

There is also substantial evidence that the diversification process for gene families is not
uniform. Karev et al. (2003, 2004) showed that the distribution of domain family and gene
family sizes were best described by a model in which the rate of gene family growth was
not directly proportional to the number of genes, but instead varied with the square of
the number of family members. This implies large gene families expand at a higher per
lineage rate than small gene families, which the authors suggested may be a consequence
of differential selection pressures acting on gene family size. Furthermore, Cotton and Page
(2006) demonstrated that human gene family trees are more imbalanced than taxon trees or
what we would expect under a constant rate birth-death process, implying that the rates of
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gene family diversification evolve on the gene tree. Cotton and Page (2005) also concluded
that the diversification process for gene families has not been constant through time.

The diversification of gene families, unlike taxa, can also differ between the branches of
the taxon tree on which they evolve, and there is much evidence that they do so. Lynch and
Conery (2003) use a model based on the birth-death process to estimate diversification rates
from gene counts in a number of taxa, and identified significant interspecies differences in
rates. Iwasaki and Takagi (2007) used a birth-death model of gene counts with rate variation
between branches of the taxon tree to show that rates differ between lineages throughout the
tree of life. Using the method described by Hahn et al. (2005) multiple studies have shown
that there is a great deal of variation in the rate of gene turn over between taxon lineages
and in rates of expansion and loss between different gene families, that are taxon lineage
specific (see Demuth and Hahn 2009).

1.3 Summary of the Chapters

In this paper I develop three different methods to detect changes in the rate of the gain and
loss of biological elements using the birth death process. These methods focus on different
types of systems - taxa, chromosomes and gene families - different causes of variation -
time, genome duplication, branches of the taxon tree - and different ways of interpreting the
results - visualizations, frequentist and Bayesian. However, all revolve around calculating
the probability of some data under different implementations of a birth-death process to
compare models, and all overlap to some degree in the equations that are used to make
those calculations.

In chapter 2, I generalize the reconstructed birth-death process to account for any time
variable set of birth-death parameters and any assumptions about the number of taxa at
any time. I show how to calculate the distributions of numbers of taxa and waiting times
under this process and the density of a set of branching times. I also introduce a simple
numerical solution to any time variable process that allows one to incorporate sampling and
mass extinctions. It is easy to calculate the inverse of these probabilities using this numerical
solution, and thus find quantiles and take random samples.

In the latter part of chapter 2 I introduce several methods to determine how well a set
of branching times fits any time variable birth-death model. The distribution of lineages
through time or waiting times through time can be plotted against their expected quantiles
through time for any time variable distribution, which allows one to readily recognize
violations of a model. I also implement the calculation of the maximum likelihood under
any time variable process, and echo the method of Rabosky (2006a), in which models are
compared using the AIC. Finally, I compare a real data set to a number of models using
all these methods and conclude that this sort of model fitting should only be done in the
context of hypothethis testing, as multiple crazy models can all fit the data well.

In chapter 3 I model the evolution of chromosome numbers on the branches of a taxonomic
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tree using the birth-death process in order to infer the phylogenetic location of whole genome
duplications. Rather than considering cases in which the birth-death parameters take on
different values at different times, I introduce an additional parameter, the stochastic rate
of genome doubling. Under this model I assume that there is an instantaneous probability
that every chromosome in a genome would duplicate at once. I use a maximum likelihood
implementation of this model to analyze the evolution of chromosome numbers on a tree
of 125 molluscan taxa, and conclude that it is a much better fit for the data than a model
in which the stochastic rate of genome doubling is zero. I then calculate the posterior
probability of genome doubling on each branch and infer that there are three branches
where it is very likely that a paleopolyploidy occurred.

In chapter 4 I use a reversible-jump Markov Chain Monte Carlo (MCMC) method to
determine if the birth-death process for gene family evolution differs between the branches
of the taxon tree. Unlike all previous methods I consider not just the counts of gene family
members in the extant taxa, but instead consider the whole gene tree. I calculate the
probability of a gene tree based on a taxon tree using the method of Arvestad et al. (2003,
2009) and sum over all possible sets of birth-death parameters and estimate Bayes factors
with the MCMC. In section 4.2 I rederive the probability of the gene tree using equations
from chapter 2, and in section 4.3 I describe the implementation of the reversible jump
MCMC. In section 4.4 I use simulations to compare my method to one which only considers
gene counts and conclude that mine has much greater power both to detect differences and
distinguish between changes in the rate of gene duplication and changes in the rate of gene
loss, at least when the true gene tree topology is known.

In section 4.5 I use my method to analyze the evolution of two real gene families, a
clade of protein tyrosine kinase genes (PTK) and the bilaterian posterior hox. Since for
any real gene family the true gene tree is unknown, I sum over the uncertainty in the gene
tree topology by having the MCMC search among the birth-death parameters, the gene tree
and the gene sequence evolution parameters based on the probability of the gene sequence
alignments given those parameters and the taxon tree. So that my target distribution is the
joint posterior density of all those parameters given the gene sequence and the taxon tree. I
conclude that the structure of the PTK gene family tree is a consequence of an increase in
the duplication rate on the lineage leading to Caenorhabditis elegans. On the other hand,
the posterior hox gene tree is characterized by gene loss throughout the Bilateria, although
the rate of turn over is lower in the chordates and at the base of the deuterostomes than it
is in the protostomes or the echinoderms.

Enjoy!
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Chapter 2

The Reconstructed Time Variable
Birth-Death Process

2.1 Introduction

In recent years, interest in using phylogenies of extant taxa to infer macroevolutionary
patterns has grown to fill a niche created by an explosion in the number of molecular
phylogenies. In the past such questions were the strict purview of paleontologists, but the
development of statistical methods that rely on the shapes of phylogenies of extant taxa has
allowed neontologists to investigate macroevolution as well. There are currently methods
available that allow researchers to ask whether diversification rates differ between clades
(e.g. Agapow and Purvis 2002; McConway and Sims 2004; Moore and Donoghue 2007), are
correlated with biological characters (e.g. Maddison et al. 2007; Paradis 2005), or vary over
time (e.g. Nee et al. 1994b; Rabosky 2006a). This paper is primarily concerned with the last
of these question.

Most of these methods for investigating tree shape rely on the birth-death process as
a null model of lineage diversification. The birth-death process is a venerable stochastic
process in which each lineage splits in two at some probabilistic rate and dies at some
probabilistic rate (Kendall 1948). If one assumes that these rates do not vary, then it serves
as a reasonable null model to test for changes in the rate of diversification. This model was
first applied to macroevolutionary data by Yule (1925), who showed that a process with no
extinction was a good fit for the distribution of species among genera. Raup et al. (1973)
used a constant rate birth-death model in order to show that the fluctuations over time in
the number of fossil lineages within clades did not depart from a null expectation. Nee et al.
(1994b) applied the birth-death process to phylogenies of extant taxa by introducing the
reconstructed birth-death process and the lineage through time plot. They demonstrated
how to compare branching time data to a birth-death model using both maximum likelihood
and visual inspection.
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Since this original work, methods that test the fit of a set of branching times to a birth-
death process using a single statistic have proliferated. Paradis (1997) gave a method based
on survival models for detecting changes in the diversification rate, assuming there is no
extinction; he made a mathematical error that was corrected by Nee (2001). Pybus and
Harvey (2000) originated a test for the fit of branching times to a pure birth process based
on the closeness of the nodes to the root. This method can not only determine if a data
set fits a pure birth process but can also distinguish whether the branching times occur
unexpectedly early or late. Rabosky (2006a,b) and Rabosky and Lovette (2008b) provided
methods for calculating the likelihood of a set of branching times under a number of different
time variable birth-death models, and suggest that the fit of these models to the data should
be compared using the Akaike Information Criterion (Akaike 1974).

Lineage through time plots in which the log of the number of reconstructed lineages is
plotted against time have also become quite popular. These plots are usually just compared
to a plot of the expected number of lineages over time under some birth-death process.
Deviance from the expectations are described without any reference to the quantiles of the
distribution. Rabosky and Lovette (2008a) and Crisp and Cook (2009) have visualized
the distribution of the number of lineages through time for several time variable birth-death
processes by simulating many trees and plotting all their lineage through time plots together.

Mathematical work to describe the distributions of numbers of lineages and branching
times under both the regular and the reconstructed birth-death process has also proliferated.
Aldous and Popovic (2005) investigated the critical branching process, in which the origin
of a clade is evenly distributed between the infinite past and the present, for a birth-death
process in which the splitting rate and the loss rate are equal and constant. They calculated
a number of different probabilities including the distributions of the number of lineages and
the number of extinct lineages over time. Gernhard (2008a) calculated the distribution of
branching times under the constant rate birth-death process. Stadler (2008) calculated the
expectation of the nth reconstructed branching time given random taxon sampling and the
distribution of the number of lineages over time for the constant rate birth-death process.
All of these models assume that there were one or two reconstructed lineages at some time
in the past or that there were some number of lineages in the present and that the rates of
lineage gain and loss did not vary with time.

Here I make the reconstructed birth-death process general for any time variable birth-
death process and any set of assumptions about how many reconstructed lineages there are.
That is to say I characterize reconstructed processes for which one assumes that there are n
reconstructed lineages at time t no matter what value n and t have. I show how to calculate
the distribution of the number of reconstructed lineages over time, the distribution and
density for the waiting times between branching events and the density of a set of branching
times for all these processes. I also show how to simulate trees. Furthermore, I introduce
the discrete time birth-death process which can serve as a practical and flexible numerical
solution for the calculation of these probabilities and their inverses, and allows us to easily
incorporate random sampling and mass extinctions.
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I also introduce a pair of graphical methods for investigating the temporal distribution of
branching times in a phylogeny for any birth-death process, which rely on the analytical
solutions described in this paper. In the null lineage through time plot the two-tailed
distribution of the number of lineages is plotted over time. This plot can be compared
to an actual lineage through time plot or observed alone in order to see what effect different
time variable birth-death processes have on the distribution of lineages through time. The
second method, the null waiting times plot, involves the distribution of the time between
branching times, which can be plotted against real data or investigated on its own.

I have developed the telos software package for the R statistical programming language
(R Development Core Team 2010) based on the ape package (Paradis et al. 2004) in order
to implement these calculations and plotting tools.

2.2 Time Variable Birth-Death Process

2.2.1 Definitions

The birth-death process is a continuous time Markov process that describes the growth of
a group of lineages. At any given time under this process each lineage has a probability
of splitting into two lineages, λ, and a probability of of being lost, µ. I will define the
constant rate birth-death process (CRBD) as one in which λ and µ remain constant for the
duration of the process. The Yule process is a special case of the CRBD in which µ is zero.
This paper will concern itself mainly with the time variable birth-death process (TVBD)
for which λ and µ can vary with time, but at any time they are the same for all lineages.
This is equivalent to the generalized birth-death process introduced by Kendall (1948). The
CRBD is a special case of the TVBD. For most of this paper I will explore the reconstructed
time variable birth-death process (RTVBD), a modification of the TVBD in which we only
concern ourselves with those lineages that survive to some time when they are observed -
usually the present (Nee et al. 1994b). I will also demonstrate the utility of the discrete
time birth-death process (DTBD), a special case of the TVBD in which time is divided into
several intervals within which λ and µ are constant but between which λ and µ may vary.
This paper does not deal with birth-death processes for which λ and µ differ between lineages
alive at the same time.

We will begin by describing the TVBD in such a way that time is divided into several
intervals. Let tj be the amount of time before the present for any integer j, such that t0=0,
and tk > tj > ti > 0 (Figure 2.1). We will define λ(tj) as the per lineage rate of lineage
splitting at time tj and µ(tj) as the per lineage rate of lineage loss at time tj . Furthermore,
let Ni be the number of lineages at time ti, nij be the number of reconstructed lineages at
time tj that survive to time ti, and nj be the number of reconstructed lineages at time tj
that survive to the present, so that nii = Ni and n0

j = nj (Figure 2.1). It is apparent that

nij ≥n
i
k and njk≥n

i
k.

11



Figure 2.1: The definitions of variables for the time variable birth-death process.
A random phylogenetic tree with ten terminal lineages is shown plotted on a time
axis. Time is proceeding backwards such that larger times precede older times, and
tk > tj > ti > 0. Lineages that survive to the present are marked in red, those that
survive to ti but die before the present are marked in green and the rest are marked
in black. The top plot shows the number of lineages in this clade that are alive at
any time. The red line is the number of reconstructed lineages that survive to the
present; the green line is the number of reconstructed lineages that survive to time
ti; and the black line is the total number of lineages. Values of N , the total number
of lineages, n, the total number of lineages that survive to the present, and ni, the
number of lineages that survive to time ti are marked at times tk, tj , ti and 0.
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Let Ei(tj) be the probability that one taxon at time tj does not leave any descendants
at time ti. So that:

Ei(tj) ≡ P (Ni=0∣Nj =1)

We can now establish the fundamental relationship between Nj and nij by recognizing that
the only way for there to be nij lineages alive at time tj that survived to time ti if there were
Nj lineages at time tj, is if Nj−nij of them were lost by time ti and nij survived.

P (nij ∣Nj) = (
Nj

nij
)(1−Ei(tj))

nij(Ei(tj))
Nj−nij (2.1)

Let Bi(tj) be the probability that a single lineage at time tj which survives to time ti
leaves multiple descendant lineages at time ti.

Bi(tj) ≡ P (Ni>1∣nij =1)

We will also define Bi(tk, tj) as the probability that a single lineage at time tk that survives
to time ti will leave more than one lineage at time tj that survive to time ti.

Bi(tk, tj) ≡ P (nij >1∣nik=1)

We can clearly see that Bi(tk, tk)=0, Bi(ti)=0, Bi(tk, ti) = Bi(tk) and that:

1−Bi(tk, tj) = P (nij =1∣nik=1)

=
P (Ni=1∣nik=1)

P (Ni=1∣nij =1)

=
1−Bi(tk)

1−Bi(tj)
(2.2)

We know from Kendall (1948, eq. 8) that, when Ni is greater than zero:

P (Ni∣Nj =1) = (1−Ei(tj))(1−ηtj)(ηtj)
Ni−1

for some function ηtj . It is easy to see that ηtj is equivalent to Bi(tj) by comparing the
probability of one lineage at time tj leaving a single lineage at time ti to the probability of
a single reconstructed lineage at time tj leaving a single lineage at time ti.

Bi(tj) = 1−P (Ni=1∣nij =1)

= 1−
P (Ni=1∣Nj =1)

P (nij =1∣Nj =1)

= 1−
(1−Ei(tj))(1−ηtj)

1−Ei(tj)

= ηtj
(2.3)
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Therefore within our context the probability mass of Ni lineages is best described as:

P (Ni∣Nj =1) = (1−Ei(tj))(1−Bi(tj))(Bi(tj))
Ni−1 (2.4)

Kendall (1948) derived a series of equations for the birth death process when λ and µ
are constant that will apply under the CRBD.

Ei(tj) = au(tj − ti) (2.5)

Bi(tj) = u(tj − ti) (2.6)

where

u(t) ≡
exp(rt)−1

exp(rt) − a
(2.7)

when λ does not equal µ, and

u(t) ≡
λt

λt + 1
(2.8)

when it does, r ≡ λ − µ and a ≡ µ/λ. This is a common reparameterization in which a is
unitless and amounts to a shape parameter, while the absolute value of r is essentially a
scaling parameter.

2.2.2 The Birth-Death Process Divided into Time Intervals

Kendall (1948) gives general solutions for Bi(tk) and Ei(tk) for the TVBD that are dependent
on the values of λ and µ and involve integrating a complicated equation. Here we will derive
a set of equations for Bi(tk) and Ei(tk) for any TVBD by dividing time into two intervals
at tj. These equations depend only on the values of B and E within those intervals, Bi(tj),
Bj(tk), Ei(tj) and Ej(tk), without regard to what the values of λ and µ are within those
intervals.

We can calculate Ei(tk) for this process by recognizing that a lineage alive at tk will
leave no descendant lineages at time ti so long as none of its descendants at time tj have any
descendants of their own at time ti.

Ei(tk) =
∞

∑
Nj=0

P (Nj ∣Nk=1)P (Ni=0∣Nj)

= Ej(tk) +
∞

∑
Nj=1

(1−Ej(tk))(1−Bj(tk))(Bj(tk))
Nj−1(Ei(tj))

Nj

= Ej(tk) +
Ei(tj)(1−Ej(tk))(1−Bj(tk))

1−Bj(tk)Ei(tj)
(2.9)

With some rearranging this yields the generally useful relationship:

1−Ei(tk) =
(1−Ej(tk))(1−Ei(tj))

1−Bj(tk)Ei(tj)
(2.10)
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In order to derive a general equation for Bi(tk) that is divided into two periods we must
first derive a function for Bi(tk, tj). We can calculate this probability by summing over all
possible values of Nj and substituting in (2.4) and (2.1), and then using (2.10) to simplify
the equation.

1 −Bi(tk, tj) = P (nij =1∣nik=1)

=
∑
∞
Nj=1P (nij =1∣Nj)P (Nj ∣Nk=1)

P (nik=1∣Nk=1)

= (1−Bj(tk))
(1−Ei(tj))(1−Ej(tk))

1−Ei(tk)

∞

∑
Nj=1

Nj(Ei(tj)Bj(tk))
Nj−1

=
(1−Bj(tk))

1−Bj(tk)Ei(tj)
(2.11)

We can now calculate Bi(tk) by rearranging (2.2) and then substituting in (2.11).

1−Bi(tk) =
(1−Bj(tk))(1−Bi(tj))

1−Bj(tk)Ei(tj)
(2.12)

2.2.3 Sampling and Mass Extinctions

Sampling can have a large effect on the distribution of branching times in a phylogeny
(Slatkin and Hudson 1991; Cusimano and Renner 2010). Furthermore, it is likely that
almost all real phylogenies represent a sample of the extant diversity for a clade. Therefore
we should account for the effects of random sampling in the estimation of the distribution of
branching times. We can easily calculate this using the methods we have already established
by imagining that there is a very brief discrete period starting at time t<0 immediately before
t0 during which the chance of lineage splitting is zero, so that B0(t<0)= 0 and E0(t<0)= 1−p,
where p is the probability of an extant lineage being sampled. In this way we model sampling
as if the unsampled lineages died immediately before the present (Nee et al. 1994b). Under
these circumstances we can use (2.12) and (2.10) to find the values of B0(tj) and E0(tj)
respectively.

1 −B0(tj) =
1 −B<

0(tj)

1 − (1 − p)B<
0(tj)

(2.13)

1 −E0(tj) =
p(1 −E<

0 (tj))

1 − (1 − p)B<
0(tj)

(2.14)

where B<
0(tj) is the probability of one reconstructed lineage at time tj leaving more that one

lineage in the present before sampling, and E<
0 (tj) is the probability of one lineage at time

tj leaving no lineages in the present before sampling. These values can be calculated as we

15



Figure 2.2: The definitions of variables for the discrete time birth-death process.
For any two times tj and tj−1, tj−1 < tj and the values of the lineage splitting rate
and the lineage loss rate between them are constant and referred to as λj and µj
respectively.

would calculate B0(tj) and E0(tj) if there were no sampling. Special cases of these same
equations were derived by Yang and Rannala (1997) and Stadler (2010) for the CRBD.

A similar method can be used to study the effects of mass extinctions on the distribution
of reconstructed lineages and waiting times. Essentially, mass extinctions are sampling events
that happened at some time in the past. If a mass extinction happened at time tj, then we
can imagine that it happened over a very brief period between t<j and t>j , such that B>

j (t
<
j )=0

and E>
j (t

<
j ) = 1−p, where p is the probability of a lineage surviving the mass extinction.

Therefore we can calculate Bi(tk) and Ei(tk) using (2.12) and (2.10) respectively.

1 −Bi(tk) =
(1 −B<

j (tk))(1 −Bi(t>j ))

1 −B<
j (tk)(1 − p(1 −Ei(t

>
j )))

(2.15)

1 −Ei(tk) =
p(1 −E<

j (tk))(1 −Ei(t
>
j ))

1 −B<
j (tk)(1 − p(1 −Ei(t

>
j )))

(2.16)

Once again B<
j (tk), Bi(t>j ), E

<
j (tk) and Ei(t>j ) can each be calculated as you would calculate

Bj(tk), Bi(tj), Ej(tk) and Ei(tj) if there were no mass extinction. In that case under the
CRBD we get these relationships.

1 −Bi(tk) =
1 − u(tk − ti)

p + (1 − p) exp(r(tj−ti))+a
exp(r(tk−ti))+a

(2.17)

1 −Ei(tk) =
p(1 − au(tk − ti))

p + (1 − p) exp(r(tj−ti))+a
exp(r(tk−ti))+a

(2.18)

2.2.4 Discrete Time Birth-Death Process

I will now describe the DTBD, for which time will be divided into a series of time intervals,
as in subsection 2.2.2, but now λ and µ will be constant within each interval. We will derive
readily useful formulas for Bi(tj) and Ei(tj) that will apply under this process. Between any
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times ti and ti−1, the birth rate and the death rate will not change and they will be referred
to as λi and µi respectively (Figure 2.2). As λ and µ are constant within these intervals we
can use (2.5) and (2.6) to derive functions that apply within this interval.

Ei−1(ti) = aiui (2.19)

Bi−1(ti) = ui (2.20)

where

ui ≡
exp(ri(ti − ti−1))−1

exp(ri(ti − ti−1)) − ai
(2.21)

when λi does not equal µi, and

ui ≡
λi(ti − ti−1)

λi(ti − ti−1)+1
(2.22)

when it does, ri ≡ λi − µi and ai ≡ µi/λi.
We can use these equations and our previous results to derive a general equation for

Ei(tk) under the DTBD that is dependent only on the values of λ and µ during the periods
between tk and ti by separating the calculation of Ei(tk) into the period between tk−1 and
tk and the interval between tk−1 and ti by using (2.10) and then substituting in (2.19) and
(2.20).

1−Ei(tk) =
(1−Ei(tk−1))(1−Ek−1(tk))

1−Bk−1(tk)Ei(tk−1)

= (1−Ei(tk−1))
1−akuk

1−ukEi(tk−1)
(2.23)

We can then proceed by separating Ei(tk−1) into two intervals in the same manor and continue
with each subsequent interval until we have reached the last time period between ti and ti+1.

1−Ei(tk) =
k

∏
j=i+1

1−ajuj
1−ujEi(tj−1)

(2.24)

It is also possible to derive a general equation for Bi(tk) that is dependent only on the
values of λ and µ during the periods between tk and ti by using (2.12) and substituting in
(2.20).

1−Bi(tk) =
(1−Bi(tk−1))(1−Bk−1(tk))

1−Bk−1(tk)Ei(tk−1)

= (1−Bi(tk−1))
1−uk

1−ukEi(tk−1)
(2.25)

We can then proceed to subdivide each subsequent period in the same way as we did for
Ei(tk).

1−Bi(tk) =
k

∏
j=i+1

1−uj
1−ujEi(tj−1)

(2.26)
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These simple equations can be used to examine models of lineage diversification in which
the parameters of the birth death process changed at a specific time, or as a numerical
solution to any TVBD. Kendall (1948) provided equations for B0(tj) and E0(tj) that would
work for continuously varying values of λ and µ. Making these calculations requires solving
two integrals. These integrals can be solved analytically for some TVBDs with continuously
varying parameters, but for many others one must use numerical integration. The DTBD
laid out here suggests an obvious alternative numerical solution that is not computationally
burdensome. The period of time over which the parameters vary can be broken down into
many discrete intervals. Appropriate values for λ and µ can be calculated for each of those
intervals given the equations we have for those parameters. We can then treat each period
as if λ and µ are constant for its duration and use (2.26) and (2.24) to calculate B0(tj)
and E0(tj) respectively. This method has two advantages over Kendall’s. First it fits into
the framework that we have already established and thus does not require a great deal of
additional analysis. Second it is easy to solve for tj when given B0(tj), a property which we
put to use in calculating random branching times and quantiles for waiting times.

2.2.5 The Inverse of B0 under the Discrete Time Birth-Death
Process

Once we know B0(tj) it is easy to calculate tj under the DTBD. The first step is to calculate
B0(ti) for every time ti at the beginning of each constant parameter time period. Then we
should identify tj−1, such that tj−1 is the beginning of the earliest constant parameter time
period for which B0(tj−1) < B0(tj). We now know that tj must have occurred during the
constant parameter time period before tj−1, so that λj and µj are equal to those constants
during that period. We can now solve (2.25) for uj:

uj =
B0(tj, tj−1)

1 −E0(tj−1)(1 −B0(tj, tj−1))
(2.27)

and finally we can calculate tj by solving (2.21) when λj does not equal µj:

tj = log(
1 − ajuj
1 − uj

) /rj + tj−1 (2.28)

or by solving (2.22) when it does:

tj = (
uj

1 − uj
) /λj + tj−1 (2.29)

2.2.6 A general relationship between B0 and E0

We can use the DTBD to derive a general relationship between Bk(ti) and Ek(ti). Let us
imagine that a TVBD operates between tk and ti, in that case we can divide that period
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into q intervals of length (tk − ti)/q and treat the process as a DTBD, so that tk = ti+q. In
that case we find from (2.24) and (2.26) that:

1 −Ek(ti)

1 −Bk(ti)
=

i+q

∏
j=i+1

1 − ajuj
1 − uj

= exp(

i+q

∑
j=i+1

rj(tj − tj−1)) (2.30)

We can see that as q approaches infinity.

1 −Ek(ti)

1 −Bk(ti)
= exp(∫

tk

ti
r(tj)dtj) (2.31)

Kendall (1948, eq. 13) provided this same equation and the agreement confirms our analysis.

2.2.7 The Derivatives of B0 and E0

We can also calculate the derivative of B0(tj) by tj for any TVBD by choosing some time
tj−1 such that λ and µ do not change between tj and tj−1. Then we can take the derivative
of (2.25).

∂B0(tj)

∂tj
=

(1−B0(tj−1))(1−E0(tj−1))

(1−ujE0(tj−1))2
∂uj
∂tj

=
(1−B0(tj−1))(1−E0(tj−1))

(1−ujE0(tj−1))2
λj(1−uj)(1−ajuj)

= λ(tj)(1−E0(tj))(1−B0(tj)) (2.32)

We can also calculate the partial derivative of B0(tk, tj) by taking the derivative of (2.2).

∂B0(tk, tj)

∂tk
=

1

1 −B0(tj)

∂B0(tk)

∂tk

= λ(tk)(1−E0(tk))(1−B0(tk, tj)) (2.33)

To calculate the derivative of E0(tj) by tj we can now simply take the derivative of (2.23).

∂E0(tj)

∂tj
=

(1−E0(tj−1))(a−E0(tj−1))

(1−ujE0(tj−1))2
∂uj
∂tj

= λ(tj)(1 −E0(tj))(a −E0(tj)) (2.34)

It is apparent that all these equations will hold true even as tj−1 approaches tj, and thus
they are appropriate for any TVBD. It should be noted that these derivatives are different
from those provided by Kendall (1948) for ∂B0(tj)/∂t0 and ∂E0(tj)/∂t0, although they will
be identical when λ and µ are constant. One interesting thing to note is that E0(tj) will
actually decrease as tj increases if E0(tj) is greater than a.
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Figure 2.3: Random lineage through time plots under three different assumptions
about the number of reconstructed lineages. a) Random lineage through time plots
generated under Assumption 1 in which we assume that there are ten reconstructed
lineages one time unit before the present. b) Random lineage through time plots
generated under Assumption 2 in which we assume that there are forty lineages in
the present. c) Random lineage through time plots generated under Assumption 3
in which we assume that there are ten reconstructed lineages one time unit before
the present and forty lineages in the present.

2.3 Distribution of Reconstructed Lineages

In contrast to the regular birth-death process, the reconstructed birth-death process is based
on the use of molecular phylogenies. Molecular phylogenies only contain lineages that have
extant members. Thus for calculating the probabilities of the reconstructed process, we must
assume that all the lineages we infer existed at any time, survived until the present. Nee
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et al. (1994b) calculated the basic results for that process, formulas that allow us to calculate
the probability mass of a number of lineages at some time in the past, given that there was
one lineage at some time before then. Here I will produce some more general results that will
allow one to calculate the probability mass and expectation for the number of reconstructed
lineages at some time, given that there were some known number of lineages at any other
time during the process.

I will calculate the probability of a given number of reconstructed lineages under three
different sets of assumptions. Under Assumption 1 the number of reconstructed lineages is
known at some time before the time we are concerned with (Figure 2.3a); under strict
Assumption 1 we know the timing of the last common ancestor for a clade. Under
Assumption 2 the number of reconstructed lineages is known at some time after the time we
are concerned with (Figure 2.3b); under strict Assumption 2 we know the number of lineages
alive in the present. Under Assumption 3 the number of reconstructed lineages is known
both before and after the time we are concerned with (Figure 2.3c); under strict Assumption
3 we know the timing of the last common ancestor for a clade and the number of lineages
alive in the present. Our results from the previous section in which the birth-death process
was separated into different time intervals, make these calculations trivial.

2.3.1 Reconstructing Birth-Death from the Past

The simplest way to approach the birth-death process is to start at some time when you
know the state of the process, and investigate how the process unfolds as we proceed forward
in time. This was the approach taken by Kendall (1948) and Nee et al. (1994b), and it is
the approach that I will begin with. Nee et al. (1994b) calculated the probability mass of
the number of reconstructed lineages at tj given that there was one reconstructed lineage
at tk. Here I will rederive that function and extend that result so that we can calculate the
probability mass for a process that starts with any number of reconstructed lineages at tk.
To do this, I must first calculate P (nj ∣Nk = 1), the probability that one lineage at time tk
will leave exactly nj lineages at time tj that survive to the present. I will sum over all the
possible values of Nj, the number of lineages at time tj that are descended from our single
lineage at time tk, substitute in (2.1) and (2.4) and use (2.11) to simplify the notation.

P (nj ∣Nk=1) =
∞

∑
Nj=nj

P (Nj ∣Nk=1)P (nj ∣Nj)

= (1−Ej(tk))(1−Bj(tk))(1−E0(tj))
nj

∞

∑
Nj=0

(
Nj

nj
)(Bj(tk))

Nj−1(E0(tj))
Nj−nj

=
(1−E0(tk))(1−Bj(tk))

1−Bj(tk)E0(tj)
(1 −

1−Bj(tk)

1−Bj(tk)E0(tj)
)

nj−1

= (1−E0(tk))(1−B0(tk, tj))(B0(tk, tj))
nj−1 (2.35)
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Now it is trivial to calculate P (nj ∣nk=1), as it is the same as P (nj ∣Nk=1), except that it
assumes that the lineage alive at tk survives to t0. I can then substitute in (2.1) and (2.35)
to complete the derivation.

P (nj ∣nk=1) =
P (nj ∣Nk=1)

P (nk=1∣Nk=1)

= (1−B0(tk, tj))(B0(tk, tj))
nj−1 (2.36)

This is the same as equation 9 in Nee et al. (1994b), although I derived it in a different way.
We can make (2.36) more general by considering the case in which nk is greater than

1. First we must introduce another term, Skj, the set of all possible s, where s is an
arrangement of the nj reconstructed lineages among the nk reconstructed lineages that they
are descended from, such that s is an nk-tuple, (s1, s2, s3, ...snk), and sa is the number of
reconstructed lineages at time tj that descended from the ath of the initial nk lineages. In
that case Skj ≡ {s ∶ ∣s∣=nk, sa ∈N∗ and ∑

nk
a=1 sa=nj} . In order to determine the size of Skj, we

must recognize that each of the initial nk lineages has at least one descendant at tj; therefore
we need to ask how many ways the other nj−nk descendant lineages can be distributed among
nk ancestral lineages and ∣Skj ∣ = (

nj−1
nk−1

). We can calculate the probability of any particular
s, an arrangement of numbers of descendant lineages among the initial nk, as the product
of the probabilities that each of the initial nk left sa, the appropriate number of descendant
lineages at tj. We can then calculate P (nj ∣nk) by summing these probabilities over all s in
Skj to account for all the possible arrangements.

P (nj ∣nk) = ∑
s∈Skj

nk

∏
a=1

P (nj =sa∣nk=1)

= ∑
s∈Skj

nk

∏
a=1

(1−B0(tk, tj))(B0(tk, tj))
sa−1

= ∑
s∈Skj

(1−B0(tk, tj))
nk(B0(tk, tj))∑

nk
a=1 sa−nk

= (
nj−1

nk−1
)(1−B0(tk, tj))

nk(B0(tk, tj))
nj−nk (2.37)

This is a negative binomial distribution with nj targeted successes and the probability of
success being B0(tk, tj), so it is trivial to calculate the expectation and variance of nj given
nk. Feller (1939) derived this same equation for the pure birth process.

2.3.2 Reconstructing Birth-Death from the Past and the Present

Next we will examine the case in which the number of lineages alive at ti that survived to
the present is known, and the number of lineages alive at time tk that survived to the present
is known, and we want to look at the distribution of lineages between those two times by
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investigating the probability of having nj reconstructed lineages at time tj. We can calculate
this value as the probability that nk lineages leave nj lineages and that nj lineages leave ni
lineages given that nk lineages leave ni lineages. We can then substitute in (2.37) and use
(2.2) to simplify the notation.

P (nj ∣nk, ni) =
P (nj ∣nk)P (ni∣nj)

P (ni∣nk)

= (
ni−nk
nj−nk

)(
B0(tk)−B0(tj)

B0(tk)−B0(ti)
)

nj−nk

(
B0(tj)−B0(ti)

B0(tk)−B0(ti)
)

ni−nj

= (
ni−nk
nj−nk

)(1−
B0(tj, ti)

B0(tk, ti)
)

nj−nk

(
B0(tj, ti)

B0(tk, ti)
)

ni−nj

(2.38)

It is interesting that this probability does not depend on the actual number of lineages, but
instead on the change in the number of lineages since time tk. The probability mass of this
process is a binomial distribution with ni−nk trials, ni−nj successes and probability of success
B0(tj, ti)/B0(tk, ti) so it is easy to calculate the expectation and the variance. Stadler (2008)
and Rannala (1997) both provided versions of this formula, but only for the CRBD and the
specific cases in which ti=0 and nk is either one or two. Their results were the same as mine
despite using very different derivations.

The probability of ni, given nk and nj is dependent only on nj, and thus the probability
mass of this process can be calculated using (2.37). Furthermore the probability of nk,
given nj and ni, will depend only on nj. I will now demonstrate how we can solve for this
probability.

2.3.3 Reconstructing Birth-Death from the Present

Once we have observed some lineages at some time in the past that survived to the present
it would be useful to know the probability that a given number of ancestral lineages were
alive at some time before our observation (Figure 2.3b). We can calculate the probability of
nk given nj, based on the probability of nj given nk.

P (nk∣nj) =
P (nj ∣nk)P (nk)

P (nj)

The problem is figuring out how to calculate P (nk), the prior probability of their being nk
reconstructed lineages at time tk. Two approaches have commonly been used in the past.
Under the first approach, the number of reconstructed lineages is considered to be one at
some specific time in the past (Stadler 2008). This is simply a special case of Assumption
3 and the probability densities can be calculated using (2.38) and substituting 1 for nk.
However, this approach requires you to assume that there is one lineage at some time and
that assumption leads to many problems. The second approach assumes that there is one
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reconstructed lineage at some time in the past that is uniformly distributed between zero
and infinity (Aldous and Popovic 2005; Gernhard 2008a; Stadler 2008). This relieves us of
the assumption that there is one lineage at a specific time. However, although it is true that
any extant clade being investigated has a single reconstructed ancestral lineage stretching
back to infinity, or at least to the origin of life, this same lineage also has countless other
lineages that have branched off it before the origin of the clade in question. Therefore we
can not use the birth-death process to predict the number of lineages within our clade that
are descended from this truly ancient lineage, because we have lost those earlier diverging
clades by deciding to investigate only our clade, not through a random death process.

Another approach is to recognize that once our clade has diverged from its extant sister
clade it will follow the birth-death process. Therefore, if we can calculate the probability of
the sister clade splitting off at a given time we can use that to reconstruct the birth-death
process from the present into the past. I will define v1 as the time at which the extant sister
clade diverged from the clade we are examining, after which our clade can be considered a
single reconstructed lineage. The distribution of v1 will vary with time, because in order
for our lineage to split from its sister lineage two things must happen. First the lineages
must split with probability λ(v1), which will vary with time. Second the sister lineage must
survive to the present, which will happen with probability 1−E0(v1), assuming that the same
parameters that govern our clade also govern its sister clade. If we assume that clades have
split off from our lineage at this rate going back to the beginning of time, we can just take
our sister clade as a random draw from all these clades. Therefore we can calculate the prior
probability density v1 at any particular time as:

f(v1) =
λ(v1)(1−E0(v1))

∫

∞

0
λ(tj)(1−E0(tj))dtj

(2.39)

This is an improper prior unless B0(∞)<1, as it will not integrate to 1 (Berger 1980).
Once we have made this calculation we can calculate the probability density for v1

assuming that there are a given number of taxa at some time tj after v1.

f(v1∣nj) =
P (nj ∣n>v1)f(v1)

∫

∞

tj
P (nj ∣n

>
v1)f(v1)dv1

=
λ(v1)(1−E0(v1))(1−B0(v1, tj))(B0(v1, tj))nj−1dv1

∫

∞

tj
λ(v1)(1−E0(v1))(1−B0(v1, tj))(B0(v1, tj))

nj−1

= nj
(B0(v1, tj))nj−1

(B0(∞, tj))nj
∂B0(v1, tj)

∂v1
(2.40)

where n>v1 is the number of reconstructed lineages immediately after v1, which must by
definition be one. The equation derived for the density of the time of origin by Gernhard

24



(2008a,b) is a special case of this equation in which λ and µ are constant, tj =0 and B0(∞)=1,
and equation 3 in Aldous and Popovic (2005) is a special case of this formula in which λ=µ=1
and tj =0. These authors assumed that the time at which there was one lineage, which may
or may not have survived to the present, was uniformly distributed between the present
and infinity, while I assumed that the time at which there was one reconstructed lineage
was distributed according to the probability its sister lineage arising and surviving to the
present. It is apparent from the calculations why these two assumptions should produce the
same result.

We can also use this equation to calculate the cumulative distribution of v1 given some
number of reconstructed lineages at some time.

F (v1∣ni) = ∫
v1

ti
f(v1=tj ∣ni)∂tj

= ∫

v1

ti
ni

(B0(tj, ti))ni−1

(B0(∞, ti))ni
∂B0(tj, ti)

= (
B0(v1, ti)

B0(∞, ti)
)

ni

(2.41)

Gernhard (2008a) also provided an alternative version of this equation for the special case
in which λ and µ are constant, tj =0 and B0(∞)=1.

Once we know v1 it is easy to calculated the probability of having nj reconstructed taxa,
as P (nj ∣ni, v1) is the same as P (nj ∣ni, n>v1). We can use this to calculate P (nj ∣ni), the
probability that you will have nj reconstructed lineages given that you have ni at some time
after that by integrating over all the possible values of v1.

P (nj ∣ni) = ∫
∞

tj
P (nj ∣ni, v1)f(v1∣ni)dv1

= ni(
ni−1

nj−1
)∫

∞

tj
(1−

B0(tj, ti)

B0(v1, ti)
)

nj−1

(
B0(tj, ti)

B0(v1, ti)
)

ni−nj
(B0(v1, ti))ni−1

(B0(∞, ti))ni
∂B0(v1, ti)

= (
ni
nj

)(
B0(tj, ti)

B0(∞, ti))
)

ni−nj

(1−
B0(tj, ti)

B0(∞, ti)
)

nj

(2.42)

Now we have calculated a probability density for predicting the number of reconstructed
lineages going backwards in time that is based on a reasonable prior, and produces pretty
equations. This is a binomial distribution with ni trials, ni−nj successes and probability of
success B0(tj, ti)/B0(∞, ti).

One interesting thing to note is that under this distribution unlike all the others, zero
reconstructed lineages means something intelligible. There will be zero reconstructed lineages
before the studied lineages split from their sister clade. At the time that the two clades
diverge, the process will go from zero to one reconstructed lineages. In fact when we compare
(2.38) and (2.42) we see that P (nj ∣ni)=P (nj ∣n∞ = 0, ni).
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To evaluate (2.42) we must determine the value of B0(∞). The limit of ui as ti approaches
infinity is 1 if ai is less than 1, and 1/ai if it is greater. Therefore so long as the limit of
ai is less than 1 as ti approaches ∞, B0(∞) will equal 1. Furthermore if a is constant and
greater than 1, then B0(∞) will equal 1/a, and we can see from (2.25) that if a is constant
and greater than 1 at all times before some time tj, then:

1−B0(∞) =
(a−1)(1−B0(tj))

a−E0(tj)

However, if limti→∞ a(ti) > 1 and a(ti) varies with time, then we must use numerical
integration of the equations found in Kendall (1948) to solve for B0(∞). From an abstract
position we can assume that limtj→∞ a(tj) is in fact less than 1, because if it is not, then
limtj→∞E0(tj)=1, and it makes no sense to talk about reconstructed lineages that we know
have to be extinct. In other words, because we know that life is very old and very diverse,
the speciation rate must have exceeded the extinction rate for most of that time. However,
from a practical perspective, if we want our solutions to the equations that involve B0(∞)

to be correct, we must either solve for B0(∞) or explicitly define some time before which a
is less than 1.

2.4 Distribution of Branching Times

Comparing the distribution of lineage counts over time under different implementations of
the birth-death process can be informative. However, to explore the relationship between
individual trees and a particular model of lineage diversification we must look at how the
number of lineages at all times relate to each other and not just to the number of lineages at
the start or the end of the process. To do so we must investigate the waiting times between
reconstructed lineage splitting events.

2.4.1 Cumulative Distribution of Waiting Times

I will define vn as the time before the present that the clade in question went from n−1 to
n reconstructed lineages. I will define nvn as the number of lineages at time vn, therefore
ni = nvn if ti = vn. However, vn is the instant that the number of lineages changes, so that
there are a different number of lineages if you approach vn from the future or the past. I
will define n<i as the number of reconstructed lineages immediately before ti, and n>i as the
number of lineages immediately after ti, therefore n<i = n

>
i = ni, if no lineages are added at

time ti, but n<i + 1 = n>i = n if ti = vn. Following Nee et al. (1994b) we see that if we have n
reconstructed lineages at vn, the probability that the next speciation event occurs after vn+1
is the probability that there have been no more reconstructed lineages left by time vn+1. We
will use this to calculate the distribution of the waiting time between vn and vn+1.
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If we proceed forward from some starting time at which we know the number of
reconstructed lineages we can calculate the distribution of each subsequent waiting time
based only on the branching time at the start of that wait, because once we know the
number of lineages at that time, then the distribution of lineages at subsequent times will be
independent of the number of lineages before that time. Under this circumstance we should
calculate the distribution of waiting times between vn and vn+1 using (2.37).

F (vn+1∣vn) = F (vn+1∣n
>
vn) = P (n<vn+1 ∣n

>
vn) = (1 −B0(vn, vn+1))

n (2.43)

This is the same as equation 16 in Nee et al. (1994b).
We can also proceed backwards in time from some time when we know the number of

lineages, calculating the cumulative distribution for each successive waiting time. In that
case the distribution of waiting times between vn and vn+1 will depend only on vn+1 and we
should use (2.42).

1 − F (vn∣vn+1) = 1 − F (vn∣n
<
vn+1) = P (n>vn ∣n

<
vn+1) = (1 −

B0(vn, vn+1)

B0(∞, vn+1)
)

n

(2.44)

When B0(∞) is one, the probability that the waiting time between vn and vn+1 is as long as
it is will be the same whether one knows vn or vn+1

If we want to look at the distribution of waiting times between two times when we know
the number of reconstructed lineages, then there are two options available to us. We can
either proceed forward from the earlier of those two times or backwards from the later one.
Here I will calculate the distribution of waiting times between vn and vn+1 for the former
case, so that I will assume that we know vn and the number of lineages at some later time,
ti. I will use (2.38) to make this calculation.

F (vn+1∣vn, ni) = F (vn+1∣n
>
vn , ni) = P (n<vn+1 ∣n

>
vn , ni) = (

B0(vn+1, ti)

B0(vn, ti)
)

ni−n

(2.45)

2.4.2 Density of Waiting Times

We can now calculate the probability densities for these waiting times by taking the
derivatives of the cumulative distributions for each case. This is easy to do when we recognize
that B0(tk) and B0(ti) are not affected by the value of tj, as changes in the timing of tj
do not affect the values of λ or µ at any time. This allows us to calculate the probability
density for the waiting time after a lineage splitting event that occurred at some time. First
I will calculate this density using Assumption 1 by assuming that we know vn and taking
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the derivative of (2.43).

f(vn+1∣vn) =
∂F (vn+1∣vn)

∂vn+1

= n
(1−B0(vn))n

(1−B0(vn+1))n+1
∂B0(vn+1)

∂vn+1

= nλ(vn+1)(1−E0(vn+1))(1−B0(vn, vn+1))
n (2.46)

If we use Assumption 2 and assume that we know vn+1 then we take the derivative of (2.44).

f(vn∣vn+1) =
∂F (vn∣vn+1)

∂vn

= n
1

B0(∞, vn+1)
(1−

B0(vn, vn+1)

B0(∞, vn+1)
)

n−1
∂B0(vn, vn+1)

∂vn

= nλ(vn)(1−E0(vn))
1−B0(vn, vn+1)

B0(∞, vn+1)
(1−

B0(vn, vn+1)

B0(∞, vn+1)
)

n−1

(2.47)

We can of course also calculate the probability density for the waiting time when we know
the timing of the lineage splitting event at the start of that period and we know the number
of lineages at some later time by taking the derivative of (2.45).

f(vn+1∣vn, ni) =
∂F (vn+1∣vn, ni)

∂vn+1

= (ni − n)
(B0(vn+1, ti))ni−n−1

(B0(vn, ti))ni−n
∂B0(vn+1, ti)

∂vn+1

= (ni − n)λ(vn+1)(1−E0(vn+1))
1−B0(vn+1, ti)

B0(vn+1, ti)
(
B0(vn+1, ti)

B0(vn, ti)
)

ni−n

(2.48)

2.4.3 Density of a Set of Branching Times

Once we have calculated the probability densities for the timing of each lineage splitting
event we can calculate the probability of the set of branching times for our entire clade by
multiplying the densities of each event. We will define V (tk, tj) as the set of branching times
for our clade between tk and tj, therefor V (∞, t0) is the set of all branching times for our
clade. Furthermore we will define β(V (tk, tj)) as the product of the slope of B0(v, tj) for all
v in V (tk, tj).

β(V (tk, tj)) ≡ ∏
v∈V (tk,tj)

∂B0(v, tj)

∂v

= ∏
v∈V (tk,tj)

λ(v)(1 −B0(v, tj))(1 −E0(v)) (2.49)
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As a first step we will use Assumption 1 to calculate the probability of a set of branching
times after tk, given the number of reconstructed lineages at tk. Here we must include the
density of the first branching time after tk given the number of reconstructed lineages at
that time, the density of every other branching time given the branching time before it and
the cumulative probability that there are no more lineage splits between the last branching
time and time t0.

f(V (tk, t0)∣nk) = P (n0∣n
>
vn0

)f(vnk+1∣nk)
n0−1

∏
m=nk+1

f(vm+1∣vm)

=
(n0−1)!

(nk−1)!
(1−B0(tk))

nkβ(V (tk, t0)) (2.50)

Equation 20 in Nee et al. (1994b) is the special case of this equation in which nk=2. Rabosky
(2006a) attempted to derive this equation for the DTBD, but failed to account for the effect
that changes in µ would have on the loss of unobserved lineages.

We can also calculate the likelihood of a set of branching times before some time ti
given that we know the number of reconstructed lineages at ti using Assumption 2. This
calculation will include all the branching times before ti back to the most recent common
ancestor. The product must include the density of the last branching time given the number
of taxa at ti, and the densities of all the other branching times, given the branching time
after them.

f(V (∞, ti)∣ni) = f(vni ∣ni)
ni−1

∏
m=2

f(vm∣vm+1)

= ni!
(1−B0(v2, ti))B0(∞, v2)

(B0(∞, ti))ni
β(V (∞, ti)) (2.51)

Gernhard (2008a) calculated this equation for the special case in which λ and µ are constant,
ti=0 and B0(∞)=1.

Finally we can calculate the probability of a set of branching times between two times
when we assume that we know the number of lineages at both those times using Assumption
3 in the same way as Assumption 1, except we do not have to include the probability that
another lineage split did not occur after the last lineage split, as that is an assumption of
the model.

f(V (tk, ti)∣nk, ni) = f(vnk+1∣nk, ni)
ni−1

∏
m=nk+1

f(vm+1∣vm, ni)

= (ni − nk)!
β(V (tk, ti))

(B0(tk, ti))ni−nk
(2.52)

Gernhard (2008a) provides a version of this equation for the special case in which λ and
µ are constant, ti = 0 and nk = 1. We can see from this equation that under Assumption
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3, the branching times will be independent and identically distributed by the definition of
independence.

It is highly informative to consider how our assumptions about the number of taxa affect
our calculation of the probability of a set of branching times. To do so we will compare the
probability of the branching times when we assume we know the number of lineages at the
beginning and the end of the process to those when we know only one of those. For example
the relationship between the probability density under Assumption 1 and Assumption 3 can
be described as follows.

f(V (tk, t0)∣nk) = P (n0∣nk)f(V (tk, t0)∣nk, n0)

The probability density under Assumption 3 is the same as that under Assumption 1, except
that it does not include the probability of going from nk reconstructed lineages to n0 lineages
in the present, as it assumes that this is true. It is critical for a researcher using this
assumption to be aware of this fact. If one tried to fit values of λ and µ to a data set using
this assumption, those values would be based solely on the distribution of taxa between
endpoints, and under those values it may be highly unlikely that one would go from nk
reconstructed lineages at the beginning of the process to n0 lineages in the present. As a
consequence of these key differences, if you integrate the probability densities over all the
possible branching times for Assumption 3, you get one, but for Assumption 1 the integral
is the probability that reconstructed lineages at time tk would produce n0 lineages.

We can also examine the relationship between the probability density of a set of branching
times under Assumption 2 and Assumption 3.

f(V (∞, ti)∣ni) = f(v2∣ni)f(V (v2, ti)∣v2, ni)

Where:

f(v2∣ni) =
∂F (v2∣ni)

∂v2
= −

∂P (nv2 <2∣ni)

∂v2
Assuming that we know the timing of the first lineage split, changes the dimensionality
of the probability density. If we do not assume that we know when the last common
ancestor occurred, the probability density will be divided by a unit of time to account for this
additional uncertainty. This change in the probability is the probability that the first lineage
split would occur when it did, given the number of reconstructed taxa at ti. Integrating this
probability density over all the possible values for the branching times and the origin under
Assumption 1 will also produce a probability of 1, as it did under assumption 3.

We can see from (2.51) that v2 is not distributed the same as v for the other lineage
splits under Assumption 2, and thus the values of v will not be independently distributed.
However, if we also consider the distribution of v1 we see that:

f(V (∞, ti), v1∣ni) = f(v1∣v2)f(V (∞, ti)∣ni)

= ni!
β(V (∞, ti) ∪ v1)

(B0(∞, ti))ni
(2.53)
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Thus v for all the branching times and v1 are together all independently and identically
distributed. Thus it would be informative if one could include v1, the time that the clade in
question diverged from its extant sister clade, in a calculation of the probability of a set of
branching times under Assumption 2.

I implemented these calculations in two R functions, ml.bd and calc.like.bd. calc.like.bd
can calculate the probability of a set of branching times given any set of parameter values and
assumptions about the number of reconstructed lineages. ml.bd determines the maximum
likelihood and the maximum likelihood parameter values for any set of free parameters for a
set of branching times. When tj is a free parameter and it separates two discrete periods with
different sets of diversification rates, then each branching time will form a local maximum
for tj. Therefore, when one of the free parameters is tj, the maximum likelihood value for
that parameter is found through an exhaustive search of the branching times. All other
parameters are fit using the nlminb function from the R base package (R Development Core
Team 2010).

2.4.4 Waiting Times Independent of Number of Lineages

It is difficult to investigate the distribution of waiting times for a set of parameters without
a tree to which we can compare them. The waiting times I have calculated so far depend on
knowing the number of lineages and the timing of the branching time that precedes the wait;
therefore one must have a tree with a set of known branching times that can constrain both
the time and the number of lineages. It would be useful not only to know the probability of
the wait after a duplication to produce a known number of reconstructed lineages at a known
time, but also of the waiting period from some time until the next lineage split independent
of how many lineages there are at that time.

We can calculate the probability that a lineage split did not occur over some period of
time by summing the probability that the number of reconstructed lineages is the same at
the beginning and end of that period over every possible number of reconstructed lineages.
Below I show these formulas under all assumptions.

Assumption 1:

P (V (tj, ti)=∅∣nk) =
∞

∑
nj=nk

P (ni=nj ∣nj)P (nj ∣nk)

= (1+
B0(tj)−B0(ti)

1−B0(tk)
)

−nk

(2.54)
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Assumption 2:

P (V (tk, tj)=∅∣ni) =
ni

∑
nj=0

P (nk=nj ∣nj)P (nj ∣ni)

= (1−
B0(tk)−B0(tj)

B0(∞)−B0(ti)
)

ni

(2.55)

Assumption 3:

P (V (tk, tj)=∅∣nl, ni) =
ni

∑
nk=nl

P (nj =nk∣nk, ni)P (nk∣nl, ni)

= (1−
B0(tk)−B0(tj)

B0(tl)−B0(ti)
)

ni−nl

(2.56)

All these functions are exponentially distributed with respect to the number of
reconstructed lineages that we assume we know. Furthermore they all depend on the
difference between B0 at the beginning and B0 at the end of our time period and have
a great deal in common in general. They will all prove very useful when we investigate the
effects of different parameter values without regard to an actual tree.

2.4.5 Simulating Trees

Now that we have calculated the cumulative probability for waiting times under a TVBD
with any set of assumptions about the number of reconstructed lineages at various times
in the process it is trivial to generate a random tree under such a process. Varying the
parameters with time will affect the branching times of a tree under a birth-death process,
but it will have no effect on the topology (Thompson 1975; Sanderson and Bharathan 1993).
Therefore we can simulate a tree by generating a random set of branching times using the
method described below, then randomly choosing pairs of clades to combine into new clades
and assigning the branching times to those clades in the reverse of the order that the clades
are combined.

The first step in generating a random tree is to establish a set of assumptions about the
number of taxa. One could choose from the three strict assumptions or a relaxed version
of those three with any set of assumptions about the number of taxa at any time. We
have already established in subsection 2.4.3 that under Assumption 3 the branching times
are independent and identically distributed. Furthermore we can see from (2.52) that the
density of each branching time is:

f(v∣nk, ni) = λ(v)
(1−E0(v))(1−B0(v, ti))

B0(tk, ti)
(2.57)
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We can now obtain the cumulative distribution of any branching time by integrating this
equation.

F (v∣nk, ni) = ∫
v

ti
λ(tj)

(1−E0(tj))(1−B0(tj, ti))

B0(tk, ti)
∂tj

=
B0(v, ti)

B0(tk, ti)
(2.58)

We see that under Assumption 3, B0(v) for any reconstructed lineage split should be
uniformly distributed between B0(ti) and B0(tk). Modifying Felsenstein (2004, pg. 570)
and Hartmann et al. (2010) we generate ni−nk random branching times between times ti
and tk by generating ni−nk uniform random numbers between B0(tk) and B0(ti). We should
then order those numbers and treat them as B0(v) for our random branching times, and
then use those to calculate the values of all v. For the DTBD we can calculate the inverse of
B0(v) using the methods described in subsection 2.2.5. For some other TVBDs the inverse
of B0(v) can be calculated by solving the integrals in Kendall (1948) and calculating their
inverse.

In this way we can calculate random branching times between two known numbers of
reconstructed lineages for any time variable birth-death process in a very straight forward
way. However, we established in subsection 2.4.3 that under Assumption 2 the branching
times will not be independently distributed, but all the branching times together with v1
will be independently and identically distributed, such that all the values of B0(v) will be
uniformly distributed between B0(ti) and B0(∞). So, in order to simulate a set of branching
times for a process that ends with ni reconstructed lineages, we should generate ni values
from the uniform distribution between B0(ti) and B0(∞), and treat the highest value as
B0(v1) and the other ni−1 values as B0(v) for the branching times of our tree.

In order to simulate branching times for a tree starting with nk reconstructed lineages,
we must first establish the number of lineages at the end of the process. Given (2.37), we
can do this by taking ∆n, a random draw from the negative binomial distribution with nk
targeted successes and probability of failure B0(tk). We can then assume that n0=∆n + nk,
and generate the ∆n branching times, as we did for Assumption 3.

I have implemented all these procedures in the simulate.tree function in the R package
telos. Figure 2.3 shows lineage through time plots for several random trees generated under
each assumption.

2.5 Visualizing Distributions for the Time Variable

Birth-Death Process

The equations presented in sections 2.2, 2.3 and 2.4 allow us to easily calculate the probability
mass for any number of reconstructed lineages and the cumulative probability for the waiting
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times at any time given a set of birth-death parameters and any set of assumptions about the
number of reconstructed lineages at any other time. I have implemented two plotting tools in
the R package telos, that will allow us to create a visual representation of these distributions.
The plot.LT.null function plots lineage through time null plots that show several quantiles
for the number of reconstructed lineages as a function of time. The plot.WT.notree.null
function plots several quantiles for the waiting time until the next reconstructed lineage
split as a function of the time at which that waiting period starts. These tools have two
obvious uses: to compare different sets of parameter values in order to see what effect those
parameters have on the expected distribution; or to compare lineage through time plots for
real phylogenies to the actual distribution, in order to see if there are significantly more or
less lineages than we would expect at any time, or if the waiting times are excessively long
or short.

2.5.1 How Varying Parameters Affects Distribution of
Reconstructed Lineages

In order to demonstrate the utility of this method let us investigate how varying the
parameters of the CRBD affects the distribution of lineage numbers for all three assumptions
about the number of lineages. The number of taxa at the beginning and end of a process
has a large effect on the appearance of the distribution. Therefore, we will constrain our
parameter values so that for a process starting with ten reconstructed lineages we will expect
to have forty lineages after one unit of time. This leaves us with one free parameter, we will
vary the shape parameter, a, and use it to choose the scaling parameter r. The maximum
likelihood values of λ and µ for a reconstructed process starting at time tk with nk lineages
and ending at time tj with nj are found when nj/nk = 1 − B0(tk, tj). Furthermore the
expectation of a process starting with nk reconstructed lineages and using these maximum
likelihood parameters for λ and µ will be nj . For a CRBD that ends at the present, we can
use (2.6) and (2.7) to solve for r for a given a, nk and n0, when a does not equal one.

r = log ((1 − a)
n0

nk
+ a) /tk

When a does equal one, we can use (2.8) to solve for λ directly.

λ = (
n0

nk
− 1) /tk

This will allow us to calculate the maximum likelihood value for λ and µ given a for a process
starting with ten reconstructed lineages one time unit before the present and expected to
reach forty lineages in the present.

These parameter values can in turn be used to calculate the probability masses and
expectations of the number of reconstructed lineages at any time for this process. Figure 2.4
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Figure 2.4: Effects of varying the shape parameter, a, on the distribution of
reconstructed lineages over time, if we assume that we know the number of
reconstructed lineages in the past. We assume that there were ten reconstructed
lineages one time unit before the present. We varied r between plots, so that the
expected number of lineages in the present would stay 40 as we varied a. The colored
areas show two-tailed percentiles of the distribution at each time and the dashed line
is the expectation.

shows plots of these probabilities, called lineage through time null plots, for values of a
ranging from 0.1 to 1.3, assuming that we have ten reconstructed lineages one time unit
before the present. It should be noted that the expectation of this process at any time can
only be 40 for values of a less than 4/3. All of these plots have an expectation of 40 at
the end of the process as they should. Furthermore, for all the plots the variance increases
as we move towards the present and away from the time at which we know the number
of reconstructed lineages. Comparing these plots allows us to see that as a increases the
curvature of the expectation and any given quantile become more positive with respect to
time, as originally described by Nee et al. (1994b). In the most extreme case, when a = 1.3,
a concave or even flat log lineage through time plot is highly unlikely.

We can also look at he effects of varying the parameters using either Assumption 2 or
3. Figure 2.5 shows the plots of the lineage through time null plots for the same parameter
values as in Figure 2.4, but assuming that there are forty lineages in the present while the
number of lineages at all times in the past are free to vary. Figure 2.6 shows the same
plots but assuming both that there are forty lineages in the present and that there are
ten reconstructed lineages one time unit before the present. Both of these plots show the
same increase in curvature for higher values of a that we saw in the situation in which
we assumed ten reconstructed lineages in the past. We also see, not surprisingly that the
variance increases as we move away from the times when we know the number of lineages.
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Figure 2.5: Effects of varying the shape parameter, a, on the distribution of
reconstructed lineages over time, if we assume that we know the number of lineages
in the present. We assume that there are forty lineages in the present. We varied
r between plots, so that the expected number of reconstructed lineages one time
unit before the present would remain ten as we varied a. The colored areas show
two-tailed percentiles of the distribution at each time and the dashed line is the
expectation.

Figure 2.6: Effects of varying the shape parameter, a, on the distribution of
reconstructed lineages over time, if we assume that we know the number of
reconstructed lineages in the present and the past. We assume that there were
ten reconstructed lineages one time unit before the present and forty lineages in the
present. We varied r between plots, so that the expected number of lineages in the
present would stay forty for a process starting with ten reconstructed lineages as we
varied a. The colored areas show two-tailed percentiles of the distribution at each
time and the dashed line is the expectation.

36



2.5.2 How Varying Parameters Affects Distribution of Waiting
Times

Researchers have used lineage through time plots for the last fifteen years in order to
investigate the distribution of branching times. However, lineage through time plots are
highly autocorrelated, and this can lead to misleading interpretations of data. For example a
single period during which the number of lineages increases rapidly may lead to unexpectedly
high numbers of lineages at all subsequent times. Similarly calculating the cumulative
probability of a number of lineages, as we did for the null plots in the previous section,
will not be appropriate for any random tree at any given time. Trees that start with few
lineages early will tend to have few lineages late and those that start with many will tend
to be in the upper percentiles later in the process. We do not expect the number of lineages
to go careening back and forth between the highest and the lowest percentiles, but rather to
generally stay along a given course.

Observing the distribution of waiting times, instead of lineages will alleviate this problem.
Waiting times for a given tree will not be distributed independently of each other, but they
also will not be autocorrelated. Furthermore, they provide us with much of the information
that we expect to extract from a lineage through time plot. Shorter waiting times lead
to faster increases in the number of lineages. Waiting times that decrease as we approach
the present will create convex lineage through time plots. In essence waiting times are the
inverse of the slope of a lineage through time plot. Later I will introduce a graphical tool
that allows us to compare waiting times for a specific tree with known branching times
to their distribution under the birth death process. Here we will use the equations from
subsection 2.4.4 to infer the effects of different parameter values on waiting times without
reference to a specific tree.

Figure 2.7 shows the distribution of waiting times as a function of time using the same
parameter values as we used in Figure 2.4, and assuming that we start with ten reconstructed
lineages. The colors show the two-tailed quantiles, and the solid line shows the present, after
which time the process would end and no more new lineages would be observed. The y-axis
is cube root transformed, as it will be for all the waiting time plots in this paper, in order to
reduce the skew in the distribution. Under all sets of parameter values the branching times
decrease as we approach the present. Under the processes with larger as the waiting times
decrease more, so that in the process for which a is 1.3 we have the longest waiting times
observed in any of the plots at the beginning of the process and the shortest waiting times
at the end.

Figure 2.8 shows the distribution of waiting times as a function of time using the same
parameter values as we used in Figure 2.7, but assuming that we end with forty reconstructed
lineages in the present. Unlike Figure 2.7 there is no line showing the present, because under
Assumption 2 we calculate the probabilities of our waiting times going backwards in time
from the end of the period, and so those distributions are not constrained by any hard end
point as they are under Assumption 1. Other than that these plots are essentially the same
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Figure 2.7: Effects of varying the shape parameter, a, on the distribution of waiting
times over time, if we assume that we know the number of reconstructed lineages in
the past. We assume that there were ten reconstructed lineages one time unit before
the present. We varied r between plots, so that the expected number of lineages
in the present would stay 40 as we varied a. The colored areas show two-tailed
percentiles of the distribution at each time and the solid line represents the present.

Figure 2.8: Effects of varying the shape parameter, a, on the distribution of waiting
times over time, if we assume that we know the number of lineages in the present.
We assume that there were forty lineages in the present. We varied r between plots,
so that the expected number of lineages in the present would remain forty as we
varied a for a process starting with ten reconstructed lineages. The colored areas
show two-tailed percentiles of the distribution at each time.

as in Figure 2.7, although the large waiting times at the most ancient times are even more
exaggerated when a is 1.3. This is because under Assumption 2 we include the possibility
that there is only one lineage or that we may be at a time before the sister clade broke off.
There will be no more reconstructed lineage splits preceding the time at which there is one
lineage, and so the waiting times will be infinite.
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2.5.3 Distributions under the Discrete Time Birth-Death Process

The formulas given in this paper, not only allow us to plot lineage through time null
distributions for the CRBD with a variety of assumptions about the number of reconstructed
lineages but also for situations in which the birth-death parameters vary as a function of
time. Under the DTBD this is a very straight forward calculation given our ability to
calculate B0(tj) using (2.26), E0(tj) using (2.24), and the probability densities and masses
for numbers of reconstructed lineages and waiting times demonstrated in section 2.3 and
section 2.4.

Figure 2.9a shows the parameter values for a DTBD in which we start with 10
reconstructed lineages one unit of time before the present, and 0.5 units of time after the
start of the process r switches from a negative value to a positive value. Figure 2.9c and e
show the lineage through time null plot and the waiting time null plot for this same process.
Over most of the time that the process proceeds the waiting times decline slowly leading to
a slight positive curvature in the lineage through time null plot. However, immediately prior
to the change in r, the waiting times increase greatly, leading to a sharp downward turn and
an overall concave appearance in the lineage through time plot and a net increase in waiting
times over the entire process.

Figure 2.9b also shows the parameter values for a DTBD, only now r switches from
negative to positive 0.5 time units before the present, and Figure 2.9d and f show the
lineage through time null plot and the waiting time null plot. Not surprisingly there is a
sharp decrease in the waiting times immediately before 0.5 time units, which leads to an
immediate increase in the slope of the lineage through time null plot.

In both cases the waiting times have large shifts immediately before the shift in r, because
the x-axis of these plots is the time at which the waiting period starts. Thus waiting periods
closer to the shift in r have less time until r changes and thus a greater chance of ending
after r has changed, when a new set of birth death parameters control the waiting times.

2.5.4 Sampling and Mass Extinctions

We can also use the results from subsection 2.2.3 to calculate these distributions when
there is taxon sampling or a mass extinction. In order to observe the effects of sampling
independently of the large effect it has on the expectation of the number of taxa at the
end of the process, we held a and the expected number of sampled lineages at t0 constant,
while we varied the number of lineages sampled, by adjusting r. The lineage through time
null plots generated by these processes are shown in Figure 2.10a and the waiting time null
plots in Figure 2.10b. As the fraction of extant lineages sampled decreases the slope of the
waiting time plots becomes less negative with shorter waiting times in the past and longer
waiting times in the present. As a consequence the curvature of the log lineage through
time plots decreases, even appearing concave when 90% of lineages are not sampled. A
similar phenomenon was originaly described by Slatkin and Hudson (1991) in the context of
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Figure 2.9: Effects of changing r half way through the process on the distribution
of reconstructed lineages and waiting times through time. Under Model 1 a = 0.5
before 0.5 time units and a=2 after 0.5 time units. Under Model 2 a=2 before 0.5
time units and a = 0.5 after 0.5 time units. In both cases values of r are chosen,
such that a process that starts with 10 reconstructed lineages one unit of time in
the present is expected to have 40 lineages in the present. The values of λ and µ
over time for a) Model 1 and b) Model 2. The distribution of reconstructed lineages
over time starting with 10 reconstructed lineages one unit before the present for c)
Model 1 and d) Model 2. The distribution of waiting times over time starting with
10 reconstructed lineages one unit before the present for e) Model 1 and f) Model 2.
The colored areas show two-tailed percentiles of the distribution at each time, the
dashed line is the expectation and the solid line represents the present.
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Figure 2.10: Effects of random sampling among extant lineages on the distribution
of reconstructed lineages and waiting times over time, when a and the expected
number of lineages at t0 are held constant. Each pair of plots has a different
fraction of lineages sampled at the end of the process: (a,e) 100%; (b,f) 70%; (c,g)
50%; (d,h) 10%. For each pair of plots λ and µ were chosen such that a = 0.8
and ten reconstructed lineages one time unit before the present are expected to
produce forty samlped lineages in the present. (a,b,c,d) Distribution of number of
reconstructed lineages through time as the fraction of lineages sampled decreases for
a process starting with ten reconstructed lineages one time unit before the present
and expected to end with forty sampled lineages in the present. Fewer lineages
sampled results in more reconstructed lineages at all times between the start of
the process and the present, so that the curvature of the plot decreases. (e,f,g,h)
Distribution of waiting times through time as the fraction of lineages sampled
decreases for a process starting with ten reconstructed lineages one time unit before
the present and expected to end with forty sampled lineages in the present. Fewer
lineages sampled results in shorter waiting times early in the process and longer
waiting times closer to the present. The colored areas show two-tailed percentiles of
the distribution at each time, the dashed line is the expectation and the solid line is
the present.
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poulation biology.
We can also easily observe the effects of a mass extinction. Figure 2.11 shows null lineage

through time and waiting time plots, in which λ and µ are constant for the duration except
at 0.5 units of time, when there is a 50% chance of any lineage going extinct. As you can
see there is an increase in the slope at the time of the mass extinction, and a rapid decrease
in the branching times immediately before the mass extinction. Furthermore, the slope of
the waiting times is more negative after the mass extinction than it was before. These plots
look a lot like the plots in which the value of r increased at 0.5 time units (Figure 2.9d and
f). It is difficult to distinguish the effects of a mass extinction from those of an increasing
diversification rate using only data from extant lineages.

2.5.5 Continuously (and Discontinuously) Varying Parameters

Several authors have proposed models for lineage through time plots in which the values of λ
and µ do not change in an instant, but instead vary continuously over some period of time.
We can use the DTBD to approximate the distributions of number of reconstructed lineages
through time and waiting times through time for any TVBD.

First we will examine lineage through time null plots for some common models with
continuously varying birth-death parameters. Rabosky and Lovette (2008a) proposed
time variable models to describe the concave lineage through time plots seen in adaptive
radiations. Under SPVAR the speciation rate decreases exponentially as we approach the
present, so that λ(t)=λ(0) exp(kt), and under EXVAR the extinction rate starts at zero at
time tk and increases exponentially toward some asymptote, as we approach the present, so
that µ(t)=µ∗(1−exp(k(t − tk))). Here we will investigate two versions of these processes in
which r(t)=r(0) exp(kt), by studying versions of SPVAR in which µ is zero, and versions of
EXVAR in which λ is equal to µ∗. I generated parameter values for several processes under
both SPVAR and EXVAR that start with ten reconstructed lineages one time unit before
the present and are expected to have forty lineages in the present. I chose several values,
from 1 to 15, for the ratio between r at the start of this process and r at the end. Maximum
likelihood values for λ(0) and µ∗ were derived for each case using the ml.bd function in the
R telos package.

Figure 2.12 shows several lineage through time null plots and waiting time null plots
generated under the SPVAR processes described above. We see that for processes with large
increases in r, the waiting times increases steadily as we approach the present (Figure 2.12c);
we have not seen this under any other model. Furthermore the waiting time plots take on
a distinctly convex shape with large ratios. As a consequence, the curvature of the lineage
through time plots is smaller for processes with larger changes in r (Figure 2.12a). In
comparison to SPVAR, changing the ratio between the r at the end and the beginning
has little effect on the distribution of lineages and waiting times under the EXVAR model
(Figure 2.13). There is a slight increase in curvature of the lineage through time plot and
a slight decrease in the slope of the waiting times plot as the ratio increases, but this
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Figure 2.11: Effects of a mass extinction on the distribution of reconstructed
lineages and waiting times over time. Distributions were generated with a constant λ
and µ and 50% of lineages were removed 0.5 time units before the present. a was held
at 0.5 and r was chosen, such that the expected number of lineages in the present is
forty for a process that starts with ten reconstructed lineages one time unit before
the present. a) The diversification rates used in this process and the timing and
magnitude of the sampling event. b) The distribution of reconstructed lineages for a
process starting with 10 reconstructed lineages one time unit before the present. c)
The distribution of waiting times for a process starting with 10 reconstructed lineages
one time unit before the present. The colored areas show two-tailed percentiles of
the distribution at each time, the dashed line is the expectation and the solid line is
the present.
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Figure 2.12: Effects of SPVAR birth-death parameters on the distribution of
reconstructed lineages and waiting times over time. These figures show the
distributions under four different birth-death models in which µ = 0 and λ =

λ(0) exp(kt). The ratio between r(1) and r(0) is exp(k) and was fixed at a different
number for each model: (a,e,i) 1; (b,f,j) 2; (c,g,k) 5; (d,h,l) 15. λ was chosen such that
a process starting with ten reconstructed lineages one time unit before the present is
expected to have forty lineages in the present. (a,b,c,d) The values of λ and µ over
time for each model. (e,f,g,h) The distribution of reconstructed lineages over time for
each model starting with 10 reconstructed lineages one unit before the present. The
dashed line is the expectation. (i,j,k,l) The distribution of waiting times over time
for each model starting with 10 reconstructed lineages one unit before the present.
The colored areas show two-tailed percentiles of the distribution at each time.
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Figure 2.13: Effects of EXVAR birth-death parameters on the distribution of
reconstructed lineages and waiting times over time. These figures show the
distributions under four different birth-death models in which λ is constant and
µ =λ(1 − exp(k(t − 1))). The ratio between r(1) and r(0) is exp(k) and was fixed
at a different number for each model: (a,e,i) 1; (b,f,j) 2; (c,g,k) 5; (d,h,l) 15. λ was
chosen such that a process starting with ten reconstructed lineages one time unit
before the present is expected to have forty lineages in the present. (a,b,c,d) The
values of λ and µ over time for each model. (e,f,g,h) The distribution of reconstructed
lineages over time for each model starting with 10 reconstructed lineages one unit
before the present. The dashed line is the expectation. (i,j,k,l) The distribution
of waiting times over time for each model starting with 10 reconstructed lineages
one unit before the present. The colored areas show two-tailed percentiles of the
distribution at each time.
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effect looks essentially no different from increasing the value of a. These results imply that
concave lineage through time plots may be caused by decreasing speciation rates, but not
by increasing rates of extinction as originally suggested by Rabosky and Lovette (2008a).

This method also makes it easy to combine continuously varying parameters for one
period of time with sampling and constant parameters at other times. Figure 2.14
demonstrates what we might expect to happen, if the survivors of a mass extinction
diversified in order to fill the niches left by those lineages who were not so lucky. In these
plots there is no expected diversification and a turn over rate of 1.3 lineages per time unit for
the first 1/3 of a time unit, then there is a mass extinction in which only one in 15 lineages
survives. After the extinction the speciation rate rises instantly and then declines according
to the SPVAR model until after another third of a time unit, after that point the parameters
remain unchanged until the present. The parameters of SPVAR were chosen using the ml.bd
function, such that λ and the expected diversity have returned to their pre-mass extinction
levels at the time that the diversification rate returns to zero. This leaves a distinct pattern
in which very few reconstructed lineages survive before the mass extinction, after which the
plot becomes concave until settling down into a more constant slope (Figure 2.14b). We also
see that the waiting times start out very large and then decline rapidly as we approach the
mass extinction, they then increase steadily as λ declines and finally decrease over the last
third of a time unit as λ returns to its original value (Figure 2.14c).

2.6 Testing the Fit of a Real Tree to a Birth-Death

Model

So far I have developed several methods that allow us to explore the distribution of lineages
and branching times under any TVBD. Ultimately the purpose of any analytical tool in
science is the exploration of real data. Here we will investigate two real phylogenies, that
have previously been used to analyze branching times.

The first tree is an ultrametric tree of 69 Australian agamid lizards from Harmon et al.
(2003). The phylogeny was reconstructed by maximum likelihood using about 1800 base pairs
of mitochondrial DNA and the branch lengths were made ultrametric using non-parametric
rate smoothing (Sanderson 2003). This phylogeny was also analyzed in Rabosky (2006a) for
temporal variation in birth death parameters. Following Rabosky (2006a) I scaled all the
branch lengths so that the basal lineage split occurred 30 million years ago (MYA) (Hugall
and Lee 2004).

The second tree is of 26 Plethodon salamander species from Highton and Larson (1979).
This tree was constructed using UPGMA on a matrix of electrophoretic genetic distances and
immunological distances between proteins. I scaled the branch lengths so that the divergence
time of the two basal lineages was 42 MYA (Highton and Larson 1979). The authors made
some inferences about the rate of speciation based on the distribution of branching times.
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Figure 2.14: Effects of a complex scenario including a mass extinction and the
recovery from it on the distribution of reconstructed lineages over time. These figures
show the distributions under a complex time variable birth-death model in which µ
is unchanged for the entire process and λ is equal to µ for the entire process except
from 2/3 to 1/3 of a time unit before the present, so that during those times the
number of lineages is not expected to change. 2/3 of a time unit before the present
93.3% of lineages die from a mass extinction. Immediately after the mass extinction
λ jumps and then declines exponentially for 1/3 of a time unit until it returns to µ,
during that time λ=µ exp(k ∗ (t − 1/3)). k was chosen such that a process starting
with ten reconstructed lineages one time unit before the present is expected to have
forty lineages in the present. a) The values of λ and µ over time. b) The distribution
of reconstructed lineages over time starting with 10 reconstructed lineages one unit
before the present. The dashed line is the expectation. c) The distribution of waiting
times over time starting with 10 reconstructed lineages one unit before the present.
The colored areas show two-tailed percentiles of the distribution at each time.
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This same tree was also analyzed in Nee et al. (1994a) and Nee et al. (1995) using the
reconstructed birth-death process.

2.6.1 Quantitative Statistics

We can test the fit of a birth-death model to a set of branching times by calculating a
single statistic, and then comparing that statistic to its distribution under the model. I
will start by comparing these two data sets to a CRBD, as a null model of no variation in
the diversification rates. I will do so for all three strict Assumptions about the number of
lineages for sake of comparison. I used the maximum likelihood values for λ and µ under
each Assumption, which I estimated those values using the equations from subsection 2.4.3
implemented in the ml.bd function from the telos R package. The maximum likelihood
parameter values will probably generate better fit statistics than other parameter values
and thus are less likely to reject the null hypothethis and represent a conservative test for
rejection of the null hypothethis. Furthermore if this data really was generated by a CRBD
then the maximum likelihood values are probably close to the actual values that the data
was generated under.

One possible statistic is the maximum likelihood value itself. In order to derive an
approximation of the distribution of this statistic under the model, one could simulate
branching times under the CRBD (subsection 2.4.5) and compare the likelihoods of those
simulations to the maximum likelihood for the actual branching times. For each real
phylogeny I simulated 1000 sets of branching times with the same depth and the same
number of terminal lineages as the tree using the parameters derived under the appropriate
assumption. This actually represents the distribution under Assumption 3 although
conditioned on the maximum likelihood parameter values from each respective assumption.
One could use either of the other Assumptions to generate a distribution, but the depth of the
tree and the number of terminal lineages probably have the largest effect on the likelihood
and thus may drown out the signal of the distribution of lineages during the process. I
then calculated the likelihood for the simulated branching times using the parameters under
which they were simulated, and compared them to the maximum likelihood of the actual
branching times. I rejected the birth-death process if more than 95% of the simulations
had a likelihood larger than the actual data. This test is further biased towards accepting
the model as the actual data was given the benefit of using its ML parameters, while the
simulations are stuck with the parameter values they were simulated with.

A second possible statistic stems from the fact that B0(v) for all the branching times
will be uniformly distributed under Assumptions 3. This will allow us to use a Kolmogorov-
Smirnov test to determine if the data fits the model, by comparing all the B0(v) as calculated
using our maximum likelihood parameter values to the appropriate uniform distribution. The
distribution of the D statistic, derived from this test, has already been calculated, so it is
unnecessary to simulate trees. I calculated this statistic and its two tailed p-value for each
tree using the maximum likelihood parameter values from each assumption. This method
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Table 2.1: Birth-death maximum likelihoods parameter values, maximum
likelihoods and statistical results for the Agamid phylogeny. The maximum
likelihood birth rate (λ) and death rate (µ) are both in units of events/lineage/million
years. p(simulation) is the fraction of 1000 simulations using the ML values for λ
and µ that had likelihoods less than the actual data. D is the D statistic from the
Komolgorov-Smirnov test and p (KS) is the two tailed p-value for this statistic.

Assumption 1 Assumption 2 Assumption 3
λ 0.07349 0.07458 1.529×10−7

µ 0 0 0.03094
Log Likelihood -19.956 -18.325 -7.789
p (simulation) 0.004 <0.001 0.485
D 0.22919 0.23221 0.11520
p (KS) 0.002 0.001 0.336

could also be applied to Assumption 2, if the time at which the clade in question diverged
from its extant sister clade was included in the data set.

For the Agamid tree maximum likelihood analyses under Assumption 1 and Assumption
2 generated similar parameter values (Table 2.1). Under both assumptions the estimate
for µ was zero, and the estimates for λ differed by less than 1.5%. On the other hand
under Assumption 3 the estimate of µ is more than 270 thousand times as great as λ. I
consider the parameter estimates under Assumption 3 to be unrealistic, as the probability
of one lineage at the base of this tree surviving to the present is less than 5×10−7, and
the probability of two reconstructed lineages at the base of this tree giving rise to more
than 2 lineages in the present is less than 10−6. Thus, unless we accept the highly unlikely
proposal that this is one lineage of millions that produced 69 extant lineages, when the
vast majority died, we must seek some other explanation. In fact the poor match between
the parameter estimates under Assumption 3 and reality is indicative of these branching
times not fitting the birth-death process. Indeed the simulated branching times had higher
likelihoods than the actual branching times in 996 out of a thousand times for Assumption 1
and a thousand out of a thousand times for Assumption 2, and the Komolgorov-Smirnof test
strongly rejected the CRBD under Assumptions 2 (p=0.002) and 3 (p=0.001) parameters .
I could not reject the birth-death process under Assumption 3 by comparing the maximum
likelihood to simulations or using the Komolgorov-Smirnov test, but given the extremely
unrealistic parameters used for comparison these tests can not really be considered valid.

Estimates of λ for the Plethodon tree differed by less than 8% between all three
assumptions (Table 2.2). Estimates of µ were more variable. I estimated µ as 72% of λ
under Assumption 2, greater than 80% of λ under Assumption 1, and equal to λ under
Assuption 3. Nee et al. (1995) also found that the maximum likelihood estimate of a was
close to one for this phylogeny. We were unable to reject the CRBD for the Plethodon tree
under any set of assumptions by comparing the maximum likelihood to the likelihood of
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Table 2.2: Birth-death maximum likelihoods parameter values, maximum
likelihoods and statistical results for the Plethodon phylogeny under all three strict
assumptions. The maximum likelihood birth rate (λ) and death rate (µ) are
both in units of events/lineage/million years. p(simulation) is the fraction of 1000
simulations using the ML values for λ and µ that had likelihoods less than the actual
data. D is the D statistic from the Komolgorov-Smirnov test and p (KS) is the two
tailed p-value for this statistic.

Assumption 1 Assumption 2 Assumption 3
λ 0.15108 0.14099 0.14039
µ 0.12599 0.10087 0.14039
Log Likelihood -25.442 -25.384 -21.569
p (simulation) 0.423 0.465 0.461
D 0.14750 0.13918 0.14193
p (KS) 0.621 0.690 0.667

simulations or using the Komolgorov-Smirnov test.

2.6.2 Visual Evaluations

Visual inspection is the primary method of analyzing lineage through time plots. The
analyses described in the previous section give a good description of the fit of an entire data
set to a model, but there is much information to be gained from visual inspection, which is
lost in a single statistic. Here I will describe some tools to aid in the visual interpretation of
lineage through time plots that are based on the distributions described in section 2.5. The
first tool is the most obvious one, a comparison between the actual number of lineages at
any given time and the distribution of those lineages under the birth-death process.

Figure 2.15 a, b and c show the distributions of the number of lineages over time under
all three assumptions conditioned on the maximum likelihood parameters for the Agamid
tree under each assumption. The lineage through time plot for the Agamid tree has been
added to each plot for comparison. Under Assumption 1, the number of lineages exceed the
99th percentile of the distribution for most of the time that the data is analyzed. Under
Assumptions 2, the number of lineages falls within the 95th percentile for most of the duration
of the tree. However, the number of lineages does exceed the 99th percentile near the present.
Under Assumption 3 the number of lineages never falls outside the 95th percentile. However,
I have already stated that the maximum likelihood parameters under Assumption 3 are
unrealistic, so I also compared the actual lineage through time plot to the distribution of
the number of species under Assumption 3 using the maximum likelihood parameters that I
derived under Assumption 1 (Figure 2.15d). In this case the number of lineages stayed within
the 95th percentile until near the present when it exceeded the 99th, as under Assumption
2.
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Figure 2.15: Comparison of the number of reconstructed lineages through time
and waiting times between reconstructed lineage splits for a phylogeny of Australian
agamids to their distribution under the rate constant birth-death process. (a through
d) The lineage through time plot (solid line) for the Agamid phylogeny plotted
against the distribution of number of lineages through time. (e through h) The
waiting times (cross hairs) for the Agamid phylogeny plotted against the distribution
of waiting times through time. Each plot uses a different assumption about the
number of reconstructed lineages and the maximum likelihoods derived under that
same assumption for (a and e) strict Assumption 1, (b and f) strict Assumption 2,
and (c and g) strict Assumption 3; with the exception of plots (d and h) that used
the assumptions of strict Assumption 3 and the maximum likelihood parameters
derived under strict Assumption 1. The colored areas show two-tailed percentiles of
the distribution at each time and the dashed line is the expectation.

These plots do help us to visualize the relationship between the actual lineage through
time plot and the birth-death process, but they seem to be missing something fundamental
to the relationship. For example it is not clear from Figure 2.15a why these are the maximum
likelihood values, when a different set of parameter values would certainly increase the two-
tailed p-values for the number of Agamid lineages under Assumption 1. Furthermore, under
Assumption 2 the number of lineages moves from the bottom 5th percentile to the top 5th.
Although being at either of these percentiles is acceptable at any given time, going from
one to the other seems unlikely. It is important to remember that our maximum likelihood
parameter values are based on the waiting times not the number of lineages. Waiting times
are better expressed as the inverse of the slope of the lineage through time plots and over
most of their durations the slope of our actual lineage through time plots and the expectation
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under the birth death process do match up.
In order to explore this relationship we should compare our actual waiting times to the

distribution of waiting times under the birth-death process. We could compare waiting
times from a real phylogeny to the plots of waiting times as a function of time, which I
introduced in subsection 2.4.4. However, when comparing the distribution of waiting times
to an actual phylogeny we know not only the timing of the lineage split, but also the number
of reconstructed lineages at that time. Therefore, we can calculate the distribution of each
waiting time under the birth-death process using (2.43), (2.44) or (2.45) depending on what
assumptions we make about the number of lineages. We can then plot certain quantiles of
this distribution and compare those to our actual waiting times. I have implemented this
plot in plot.wt.null and the calculation of the quantiles in q.wt.null for the telos R package.

Figure 2.15 e to h show these plots of waiting times juxtaposed against their distribution
under the birth death process for the Agamid tree. These plots are similar to those introduced
in subsection 2.4.4, except here the distribution is based on the number of reconstructed
lineages at that time. Figure 2.15 e, f and g show the distribution under Assumptions 1, 2 and
3 respectively using the maximum likelihood parameters under the appropriate assumption,
while Figure 2.15h shows the distribution under Assumption 3 using the maximum likelihood
parameters from Assumption 1. The crosses show the actual waiting times from our tree.
These plots clearly demonstrate the relationship between the actual data and the maximum
likelihood parameters better than the distribution of the number of taxa at any time.
Approximately half of the points fall inside the 50th percentile and the vast majority are
inside the 95th and the 99th percentiles. Thus we can see how the maximum likelihood
parameter values are a good fit.

However, what really makes these plots informative is that we can see where the actual
data fails to fit the model distribution. Under Assumptions 1 and 2 the waiting times are
expected to decrease as we approach the present, but the actual branching times do not
(Figure 2.15 e and f). Thus more unexpectedly small waiting times are found early and
unexpectedly large waiting times are found late. Under Assumption 3 the waiting times are
not expected to decrease very much at all and thus excessively high and low waiting times
are found throughout (Figure 2.15 g and h). Furthermore, although slightly more than half
fall within the 50th percentile under all assumptions, more branching times fall outside the
95th and 99th percentile than we would expect.

There are four waiting times between 22.2 and 19.7 million years ago (MYA) that are
excessively short. These include two waiting times of length zero at 19.7 MYA that appear
as only a single cross. These are a consequence of a polytomy involving four lineages at
the base of a clade. The authors do not state the origin of this polytomy (Harmon et al.
2003). We will assume for the purpose of this analysis that this is a hard polytomy and that
the waiting times are actually zero, although it may in fact be a soft polytomy which would
affect our analysis. The period between 22.2 and 19.7 MYA is associated with the large jump
in reconstructed lineages that we observed in the lineage through time plots. Assuming that
these waiting times are in fact accurate this probably represents a period of excessively high
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speciation. Therefor an appropriate model should incorporate a high speciation rate during
this period.

Under Assumptions 1 and 2 we see excessively long branching times near to the present
(Figure 2.15 e and f). This may imply that a model with decreasing speciation rate, such as
SPVAR may be more appropriate. On the other hand under Assumption 3 the branching
times appear excessively long in the distant past (Figure 2.15 g and h). This is in keeping with
the the overall pattern we see of decreasing expected branching times under Assumptions 1
and 2, and more constant branching times under Assumption 3. In fact we see many of the
largest waiting times before 20 MYA as we would expect under Assumption 1 or 2, thus the
best model may be one that starts with a normal set of rates then has a dramatic increase
in the rate of speciation which declines as time goes on. Another possibility is that, as the
longest and shortest waiting times are found early, the accuracy of the reconstructed times
decreases the further back in time we go leading to increased variance in the past.

In contrast to the Agamids, the Plethodon phylogeny matches up well with the
distributions of reconstructed lineages and waiting times that we would expect under the
CRBD (Figure 2.16). This conforms well with the quantitative statistics that we evaluated
in the previous section. The one exception is the wait between approximately 5.5 and 13.5
million years ago, when there are 11 reconstructed lineages. This wait is excessively long (one
tailed 0.008 < p < 0.02 for all assumptions) and leads to a subsequent drop in the expected
waiting times. This observation is in contrast to the original authors who thought that
the fast increase in the number of lineages near the present was remarkable (Highton and
Larson 1979); we found this increase was well within the boundaries of our model. Nee et al.
(1994a) did recognize that this fast increase was appropriate under the birth-death model,
but also failed to recognize that the previous waiting time was excessively long. Overall this
excessively long waiting time is probably not a violation that we need to be concerned with.

2.6.3 Comparing Models

One of the advantages of the methods described in this paper is that we are capable of
calculating likelihoods and distributions for a variety of TVBD parameters. This allows us
to compare how well different models fit the data. All the methods discussed in the previous
two sections can be brought to bear on this question. We can compare the maximum
likelihoods of the different models using the Akaike Information Criterion (AIC). The AIC is
twice the negative log of the maximum likelihood plus twice the number of free parameters,
and models with lower AICs are considered better fits for the data (Akaike 1974). We
can also calculate the Komolgorov-Smirnov D statistic for the fit of B0(v) to a uniform
distribution. The p-value for this test can not be trusted, as the distribution was chosen to
fit the data, but it can be used to compare one distribution to another. We could also use
the visual evaluations described above and compare the number of lineages and the waiting
times between lineage splits to the expected distributions under different sets of parameter
values. It is important to note that one can not make comparisons between different sets of
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Figure 2.16: Comparison of the number of reconstructed lineages through time and
waiting times between reconstructed lineage splits for a phylogeny of Plethodons
to the distribution of those values under the rate constant birth-death process. a
through d) The lineage through time plot (solid line) for the Plethodon phylogeny
plotted against the distribution of number of lineages through time. e through h)
The waiting times (cross hairs) for the Plethodon phylogeny plotted against the
distribution of waiting times through time. Each plot uses a different assumption
about the number of reconstructed lineages and the maximum likelihoods derived
under that same assumption for a and e) strict Assumption 1, b and f) strict
Assumption 2, and c and g) strict Assumption 3; with the exception of plots d and
h that used the assumptions of strict Assumption 3 and the maximum likelihood
parameters derived under strict Assumption 1. The colored areas show two-tailed
percentiles of the distribution at each time and the dashed line is the expectation.

assumptions about the number of lineages, instead a given assumption is a precondition of
any analysis. Here I will use strict Assumption 2 for all the models.

In order to investigate the effectiveness of this type of analysis, I have tested several
different models to see how well they fit the branching times for the Agamid tree using
Assumption 2 (Table 2.3). No one should do this type of mass testing of models in order
to identify the processes that have generated a set of branching times. The purpose of
this exercise is not to identify by what process the Agamids diversified, instead I did these
analyses in order to show that a variety of TVBDs can be fit to a data set and to investigate
how each models fits that data. In the future other researchers could use these same methods
to investigate a hypothethis that they have a strong a priori reason to believe.

I investigated several models that would classify as DTBDs. The first model, BD1, is the
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Table 2.3: Time Variable Birth-Death Models Used for Comparison

Model Parameters
Time

Period
Splitting

Rate
Loss
Rate

BD1 λ, µ ∞ to 0 λ µ

BD21 λ2, µ2, λ1, µ1, t1 ∞ to t1 λ2 µ2

t1 to 0 λ1 µ1

BD321 λ3, µ3, λ2, µ2, ∞ to t2 λ3 µ3

λ1, µ1, t2, t1 t2 to t1 λ2 µ2

t1 to 0 λ1 µ1

BD121 λ2, µ2, λ1, µ1, ∞ to t2 λ1 µ1

t2, t1 t2 to t1 λ2 µ2

t1 to 0 λ1 µ1

Y1 λ ∞ to 0 λ 0

Y21 λ2, λ1, t1 ∞ to t1 λ2 0

t1 to 0 λ1 0

Y321 λ3, λ2, λ1, t2, t1 ∞ to t2 λ3 0
t2 to t1 λ2 0

t1 to 0 λ1 0

Y121 λ2, λ1,t2, t1 ∞ to t2 λ1 0
t2 to t1 λ2 0

t1 to 0 λ1 0

BDS0 λ, µ, p ∞ to 0 λ µ

0 0 1−p

BDS1 λ, µ, p, t1 ∞ to t1 λ µ
t1 0 1−p

t1 to 0 λ µ

SPVAR1 λ0, µ, k ∞ to 0 λ0ekt µ

SPVAR2 λ2, µ2, λ0, µ1, ∞ to t1 λ2 µ2

k, t1 t1 to 0 λ0ekt µ1

55



CRBD, which we already compared to the Agamid tree. I also evaluated a DTBD, BD21,
with two time periods each with parameters independent of the other, and a third DTBD,
BD321, with three time periods with independent parameters. A fourth DTBD, BD121, has
three time periods but λ and µ from the first time period are equal to λ and µ from the
third, so that only the parameter values from the middle period are independent. I also
included four other DTBDs, Y1, Y21, Y321 and Y121, which are the same as the respective
models above, except that µ is constrained to be zero.

In order to demonstrate how these methods can be used to investigate a larger variety of
models, I also included four models with either sampling or continuously varying parameter
values. BDS0 is a CRBD, however there is a free parameter, p, that determines the fraction of
lineages randomly sampled for our study. BDS1 is the same as BDS0, except the time at which
the sampling occurred is also allowed to vary, so that it represents a mass extinction. SPVAR1

is the same as the SPVAR model described before, in which λ decreases exponentially as we
approach the present (Rabosky and Lovette 2008a). Under SPVAR2 we divide the process
into two time periods. During the first time period the parameters are constant, while during
the second λ changes according to SPVAR.

Parameter values for all models were fit by maximum likelihood using the ml.bd function
from the R telos package. The maximum likelihood value was used to calculate the AIC
and the maximum likelihood parameter values were used to calculate the D statistic and
make the null lineage through time plot and the null waiting times plot. I should reiterate
here that this is an exercise to investigate how models fit the data not to discover which
model fits the data best. The haphazard choice of models used here is not appropriate for a
hypothethis test.

Table 2.4 shows the maximum likelihood, AIC and D statistic for each model. There are
two patterns that immediately emerge from these numbers. The first is that the CRBD and
Yule processes are poor fits for the data as judged by their low maximum likelihoods and
high AICs and Ds. The second observation is that just about any model with time variable
parameters leads to a large improvement in the fit of the model to the data. This suggests
that users of these methods should be cautious in choosing their models, as any randomly
chosen model may be a good fit. Model choice should be hypothethis driven. I will now use
plotting tools to show how each of these models fits the data.

BD1 is the CRBD and it produces reasonable parameter values with a µ equal to zero
(Figure 2.17a). The other three DTBDs predict unbelievably high values for both λ and µ,
especially BD321 under which λ and µ are both over 12 events/lineage/million years (ELMY)
for most of the duration of the process (Figure 2.17b,c,d). These parameter values lead to
impressive contortions of the lineage through time null plots (Figure 2.17 e through h), that
allow the model to be closely fit to the data (Figure 2.17 i through l). The unrealistic
parameter values in combination with the over tuned null plots make me highly skeptical
about the use of these models. These models produce the lowest AICs (Table 2.4), but I
would recommend against using them to analyze any data set unless they are supported by
an explicit a priori hypothethis and even then one may want to constrain the parameter
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Figure 2.17: Maximum likelihood parameters and lineage through time and waiting
time null plots for each of the four DTBD models for the Agamid phylogeny. These
plots use the strict Assumption 2 for (a, e and i) BD1, (b, f and j) BD21, (c, g and k)
BD321, or (d, h and l) BD121 (see Table 2.3). (a through d) The maximum likelihood
values of λ and µ over time for each DTBD. (e through h) The lineage through time
plot for the Agamid tree (solid line) compared to the distribution of reconstructed
lineages over time for each model. (i through l) The waiting times (cross hairs) of
the Agamid phylogeny compared to their distribution over time for each model. The
colored areas show two-tailed percentiles of the distribution at each time and the
dashed line is the expectation.
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Table 2.4: Maximum likelihood, Akaike information criterion and Komolgorov-
Smirnov D for the Agamid phylogeny when compared to multiple different models

Model
Log

Likelihood
AIC KS D

BD1 -18.33 40.65 0.19583
BD21 -4.33 18.65 0.06528
BD321 -0.39 16.77 0.0631
BD121 -4.68 21.36 0.06203
Y1 -18.33 38.65 0.19583
Y21 -7.75 21.50 0.09256
Y321 -3.93 17.85 0.06881
Y121 -7.25 22.49 0.12919
BS0 -7.18 20.36 0.06181
BS1 -6.56 21.13 0.05487
SPVAR1 -7.10 20.20 0.06332
SPVAR2 -4.26 20.53 0.0647

values further.
The fit of the four Yule models, Y1, Y21, Y321 and Y121 is more believable than for those

models in which µ is also allowed to vary (Figure 2.18). The parameter values are more
reasonable (Figure 2.18 a through d), and we can see that in general these models support a
λ that decreases in time leading to an overall concave shape for the log lineage through time
plots (Figure 2.18 e through h). Furthermore the contortions of the null waiting time plots
are not too extreme (Figure 2.18 i through l). Yet these models are able to produce AICs
almost as low as the AICs under the models in which µ also varies (Table 2.4). I would still
caution against using these models without an explicit hypothethis. As we have seen any
model with time variable parameters can lead to a huge improvement in fit, so the success
of these models does not necessarily indicate that they are appropriate. Finally it does not
seem realistic to constrain µ to be zero, it is highly unlikely that no lineages died during this
process. A model in which µ is free to vary but remains constant with time may be more
realistic.

The maximum likelihood parameter values for BDS0 are not substantially different from
those for BDS1 (Figure 2.19 a and b). The lineage sampling event under BDS1 occurred just
137 thousand years ago, at the time of the last lineage split. Slightly more lineages were
sampled under BDS1, and the values of both λ and µ were lower, although r, the difference
between them, was essentially unchanged. Both models fit the data well in comparison to
the other TVBDs (Table 2.4 and Figure 2.19 c through f). The waiting time null plots are
concave and the log lineage through time null plots are convex, matching the patterns seen
in the actual phylogeny. It seems more reasonable to include a sampling factor in an analysis
than the time variable parameters discussed before. All real phylogenies represent only a
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Figure 2.18: Maximum likelihood parameters and lineage through time and waiting
time null plots for each of four discrete time Yule models. These plots use the strict
Assumption 2 for (a, e and i) Y1, (b, f and j) Y21, (c, g and k) Y321, or (d, h and l)
Y121 (see Table 2.3). (a through d) The maximum likelihood values of λ and µ over
time for each DTBD. (e through h) The lineage through time plot for the Agamid
tree (solid line) compared to the distribution of reconstructed lineages over time for
each model. (i through l) The waiting times (cross hairs) of the Agamid phylogeny
compared to their distribution over time for each model. The colored areas show
two-tailed percentiles of the distribution at each time and the dashed line is the
expectation.
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Figure 2.19: Maximum likelihood parameters and lineage through time and waiting
time null plots for each of two CRBD models with lineage sampling. These plots use
the strict Assumption 2 for (a, c and e) BDS0 or (b, d and f) BDS1 (see Table 2.3).
(a through d) The maximum likelihood values of λ and µ over time and the timing
and magnitude of the sampling event for each TVBD. (e through h) The lineage
through time plot for the Agamid tree (solid line) compared to the distribution of
reconstructed lineages over time for each model. (i through l) The waiting times
(cross hairs) of the Agamid phylogeny compared to their distribution over time for
each model. The colored areas show two-tailed percentiles of the distribution at each
time and the dashed line is the expectation.
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Figure 2.20: Maximum likelihood parameters and lineage through time and waiting
time null plots for each of two SPVAR models. These plots use the strict Assumption
2 for (a, c and e) SPVAR1 or (b, d and f) SPVAR2 (see Table 2.3). (a through d)
The maximum likelihood values of λ and µ over time for each TVBD. (e through
h) The lineage through time plot for the Agamid tree (solid line) compared to the
distribution of reconstructed lineages over time for each model. (i through l) The
waiting times (cross hairs) of the Agamid phylogeny compared to their distribution
over time for each model. The colored areas show two-tailed percentiles of the
distribution at each time and the dashed line is the expectation.

sampling of the extant taxa and the effects of that sampling should be considered. It is
possible that these trees represent only 10% of the extant diversity in this clade; however,
the authors stated that this phylogeny represented 87% ofthe extant diversity in the clade
(Harmon et al. 2003), so sampling alone is unlikely to explain the pattern we see here.
Another possibility is that this sampling could actually represent a recent mass extinction
in this clade, although without further evidence such a conclusion is tenuous at best.

The maximum likelihood parameter values for SPVAR1 projected a µ of zero and a λ
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that started at about 0.32 ELMY and declined exponentially to about 0.03 ELMY in the
present (Figure 2.20a). SPVAR2 started with λ at almost 2 ELMY and then stayed at that
level until about 5 MYA when it shot up to about 4 ELMY and then rapidly declined to
about 0.03 ELMY in the present (Figure 2.20b). Both models are good fits for the Agamid
phylogeny (Table 2.4 and Figure 2.20 c to f). The null lineage through time plots are concave.
The null waiting times plot for SPVAR1 is mostly flat but has a slight negative slope and
a slight positive curvature, matching the data reasonably well. The initial constant λ value
under SPVAR2 leads to a steady decrease in the waiting times; after the λ increases there is
a bump in the null waiting times plot that clings tightly to the data points. There is no solid
a priori reason to go around fitting SPVAR models to data sets. It produces concave log
lineage through time plots, but this alone is not sufficient to justify its use, as other models
can produce concave plots as well. However, if one has good reasons to suspect an adaptive
radiation, then it is a reasonable model to consider.

2.7 Discussion

I have shown how to calculate the density, cumulative distribution and quantiles of numbers
of reconstructed lineages and waiting times between reconstructed branching events for any
time variable birth-death process. I also showed how to generate a random set of branching
times under this process. Furthermore I showed how to calculate all these values so long
as we assume that we know the number of reconstructed lineages at any time, no matter
how many reconstructed lineages there are at that time. I have defined the discrete time
birth-death process and shown how it can be used as a simple numerical solution to any
birth-death process in which the birth-death parameters vary with time. Finally I developed
a number of tools to explore the effects of different parameters on a time variable birth-death
process, and to compare actual data to such a process.

The discrete time birth-death process is one in which the parameters of the model are
constant over periods of time and then change instantaneously at certain times. Kendall
(1948) provided a set of equations that describe any time variable birth death process. He
based those equations around the variables Bj(0) and Ej(0), which he called ηtj and ξtj
respectively, and provided general formulas to solve for those variables. However, he did
not discus the discrete time process or attempt to solve Bj(0) or Ej(0) for that process.
Rabosky (2006a) did attempt to derive the probability of a set of branching times under
the discrete time birth-death process. However, he failed to account for the way in which
subsequent changes in λ and µ would affect the probability of a lineage being lost and in
turn affect the waiting time. Thus his equations are only appropriate under the Yule model
when the probability of a lineage being lost is always zero.

One of the greatest advantages of the discrete time birth-death process over previous
implementations of the TVBD is its great flexibility. It can work as a simple and accurate
numerical solution to any time variable birth-death process. A numerical solution to these
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equations is not always necessary as for some time variable processes the equations given by
Kendall (1948) for Bj(0) and Ej(0) can be solved analytically. Even if the equations can
not be solved analytically, we could generate a numerical solution to Kendall’s equations.
However, the discrete time birth-death process has two distinct advantages. It fits into
a frame work that I have already established and thus requires no additional calculations
or programming and it is trivial to solve for the inverse. Solving for the inverse of these
functions is critical for simulating trees and calculating quantiles, and would be difficult for
numerical solutions to Kendall’s equations.

The discrete time birth-death process can also be used to incorporate random taxon
sampling or mass extinctions into an analysis. Stadler (2008) gave some formulas for random
sampling when we know the exact number of lineages sampled. Yang and Rannala (1997)
and Stadler (2010) gave formulas for random sampling under the CRBD, when starting
with one lineage. My results are appropriate for any TVBD and any assumption about the
number of lineages at any time. In reality most sampling is non-random and tends to be
biased towards incorporating at least one member of all the extant subclades. This leads
to a higher retention rate for deeper nodes, which may decrease the curvature of lineage
through time plots more than random sampling (Cusimano and Renner 2010). As far as
I am aware this is the first attempt to analytically incorporate mass extinctions into the
birth-death process. Previous attempts have done so only through simulation (e.g. Crisp
and Cook 2009).

I have generalized all the calculations for the reconstructed birth-death process, so that
they can be made for any time variable process with any set of assumptions about the number
of reconstructed lineages at any time. Nee et al. (1994b) provided versions of several of these
equations that work for any time variable birth-death process, but only when we assume
that there were one or two lineages at some time in the past. Stadler (2008) calculated the
distribution of the number of lineages when we know the number of lineages at some time
both before and after the time in question, but only for those cases in which λ and µ are
constant and the process starts with one or two lineages and ends in the present. Aldous
and Popovic (2005) and Stadler (2008) both provided equations for the density of the time
of origin for our process, equivalent to my (2.39). However, both limited their results to the
rate constant birth-death process when we know the number of lineages in the present. It
is interesting that I got the same results as Aldous and Popovic (2005) and Stadler (2008)
for this density, as we made different assumptions about the nature of the origin. These
authors assumed that there was one lineage evenly distributed between the present and the
infinite past, and that the process started at this point. I assumed that the divergence of
the analyzed clade from its extant sister clade was distributed according to the probability
of a lineage arising at any time from a single lineage and surviving to the present, and
that the reconstructed process would begin after this point. The fact that such different
assumptions lead to the same conclusions serves as further justification of that conclusion.
My interpretation of the origin corresponds to an actual event, the divergence of the studied
clade from its extant sister clade, therefore researchers could gather these data and include
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them in their analyses. Stadler (2008) also attempted to calculate the distribution of the
number of reconstructed lineages at some time when we know the number of lineages in the
present, and she provided the integral found in (2.42), but she was unable to solve it.

Until now I have left open ended the question of which assumption about the number of
lineages is appropriate for an analysis. The simple answer is that it depends on the question
a researcher is asking. If you want to know about the distribution of lineages or branching
times for taxa before the Mesozoic, then you should use Assumption 2 with the number of
lineages fixed at the end of the Paleozoic. On the other hand if you want to know about the
distribution of clade sizes for clades that started in the Eocene, then you should use strict
Assumption 1 starting in the Eocene. So what about a researcher who has a phylogeny and
just wants to analyze the distribution of lineages through time for that phylogeny. In some
ways it seems that Assumption 3 best captures the intent of the researcher in this situation,
as it asks about the distribution of reconstructed lineages without being concerned with the
size of the clade or its time of origin. However, as we saw in subsection 2.6.1, this lack of
concern can lead to extremely unrealistic parameter estimates. So we should probably limit
ourselves to Assumption 1 or 2, at least for parameter estimation, while Assumption 3 can
still be used for model comparison. In the past most researchers used Assumption 1, because
it was the only option available to them, but I believe that most researchers are studying
clades of a given size more so than clades with a most recent common ancestor at a given
time. Therefore, in most cases Assumption 2 better represents the state of the researchers
knowledge at the beginning of an analysis and thus is the more appropriate assumption.

I have used the discrete time birth-death process to show how to simulate trees under
any time variable birth-death process and any set of assumptions about the number of
reconstructed lineages at different times. It is trivial to simulate trees of a given depth with
an unknown number of species for any process by simply running the process forward until
the tree is of the desired length. We can accomplish this same result using Assumption 1,
but this is not a great improvement over previously existing methods. Felsenstein (2004)
showed how to simulate trees of a given length and a given number of final taxa for a
constant rate birth-death model based on the work of Rannala (1997). Here I essentially
expanded that result to incorporate a time variable process using Assumption 3 and the
discrete time process. Several authors have described a method of simulating trees with a
known number of terminal lineages and an unknown length by running the process forward
until they achieved the appropriate number of lineages (see Rambaut 2002; Harmon et al.
2008). However Hartmann et al. (2010) showed that this method produces a biased set
of branch lengths if µ is greater than zero. They also provided a set of highly inefficient
methods for simulating trees of a given size that will work for any birth-death process, and
an efficient method for simulating such trees under the constant rate birth-death process.
I have expanded this efficient method to include the time variable birth-death process by
using Assumption 2 and the discrete time process. However, it would still be necessary
to use their inefficient method for any situation in which the rate of splitting or loss varied
between lineages. It should be noted that under the time variable process there is a difference
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between simulating a tree that starts at a certain time and a tree that ends at a certain time,
as the relative timing of the birth-death parameters will differ. The method described by
me is appropriate for the case in which the process ends at a certain time; Hartmann et al.’s
(2010) inefficient method should be used for the time variable process that starts at a certain
time. However, it seems like processes that end at a certain time are more relevant, as all
real phylogenies end in the present.

I developed a method of comparing different time variable birth-death models to an actual
phylogeny using a likelihood score based on the work of Rabosky (2006a,b) and Rabosky and
Lovette (2008b). However, I expanded that work to include any time variable birth-death
model, sampling and mass extinctions using the discrete time process. I also showed how
to make those calculations for any assumption about the number of reconstructed lineages.
Furthermore, I corrected the calculation of the likelihood under the discrete time process
(Rabosky 2006a).

I innovated a pair of complementary visual tools, the lineage through time null plot and
the waiting times null plot, for investigating the effects of different time variable birth-death
models, and for comparing them to real phylogenies. These tools have a distinct advantage
over the likelihood methods in that the likelihood methods provide only a single statistic for
the comparison of real data to a model, while these two null plots allow an investigator to
see where and how their data departs from the predictions of a model. The lineage through
time null plot allows a researcher to see not just if the branching times of their phylogeny has
diverged from the expectation of a birth-death model but how significant that divergence is.
In the last few years several authors have simulated a number of phylogenies under a specific
time variable model and overlaid the lineage through time plots for these simulations in order
to get a rough idea of what lineage through time plots one should expect from such a model
(Rabosky and Lovette 2008a; Crisp and Cook 2009). With the lineage through time null plot
it is unnecessary to generate these simulations and it is easier to visualize the distribution.
As far as I am aware the waiting times null plot is the first attempt to visualize waiting
times. It is much easier to identify when exactly violations of the model occur using waiting
time plots than lineage through time plots, as the waiting times are not autocorrelated.

It is easy to infer the effects of different TVBD models using the lineage through time
null plots. I quickly confirmed the results of many previous researchers about the effects of
different TVBD models on the curvature of lineage through time plots. My lineage through
time null plots reinforced the observations of Nee et al. (1994a) that lineage through time
plots have more positive curvature when the lineage loss rate is higher (Figures 2.4, 2.5
and 2.6), and more negative curvature when the sampling rate is lower (Figure 2.10). I
also demonstrated that lineage through time plots have more negative curvature when the
lineage gain rate decreases with time (Figures 2.9 and 2.12), but more positive curvature when
the lineage loss rate increases with time (Figure 2.13), as originally suggested by Rabosky
(2006a). Furthermore, I made the additional, although probably obvious, observation that
lineage through time plots have more positive curvature when the lineage gain rate increases
with time (Figure 2.9). On the other hand, I found that mass extinctions alone can not
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explain an anti-sigmoidal distribution of lineages through time (Figure 2.11), in contrast to
the conclusions of Crisp and Cook (2009). Such a complex curve would probably require a
more complex model. It should be noted that although any of these phenomena can affect the
curvatures of lineage through time plots, there is a wide range of fairly reasonable curvatures
under any TVBD model; thus the importance of comparing real data to a distribution and
not just the expectation.

It is unlikely that the CRBD is a completely accurate representation of organismal
diversification. However, it is a good null model for investigating changes in the rate of lineage
loss or gain. As the CRBD assumes that there are no changes in the rate of diversification,
we can interpret clear violations of that model as evidence that rates have in fact changed.
We can also use a time variable model to see what effects we would expect certain biological
phenomena to have on the shape of phylogenetic trees.

Rates of diversification can vary either temporally or phylogenetically. Phylogenetic
changes are usually a consequence of changes in an organisms biology and they lead to
clades with rates of diversification that differ from those of their relatives. Researchers
must use both topological and branch length data to investigate such processes, and several
methods have been developed recently to identify phylogenies with phylogenetically varying
rates of diversification (see Agapow and Purvis 2002; McConway and Sims 2004; Moore
and Donoghue 2007) and to detect correlations between diversification rates and biological
characters (see Maddison et al. 2007; Paradis 2005). On the other hand, temporally
varying diversification rates tend to be a consequence of changes in the environment that
lead to shifts in the diversification process in a number of lineages simultaneously or
of macroevolutionary interactions between lineages such as competition. The study of
temporal shifts in diversification rates only requires timing data as the topology will be
unaffected (Thompson 1975; Sanderson and Bharathan 1993); however, it would be difficult
to distinguish phylogenetic shifts from purely temporal shifts using only temporal data,
as phylogenetic shifts will lead to temporal shifts as well. Furthermore, shifts that affect
every lineage in a clade simultaneously may also have a phylogenetic pattern, such as when
increased speciation in one lineage leads to increased extinction in its close relatives or
when a mass extinction affects organisms differently depending on their heritable biological
characters. The methods described in this paper assume that their is no phylogenetic effect
on diversification rates; this is probably not the case (Savolainen et al. 2002; Blum and
Francois 2006). However, even for changes in the pattern of diversification that have a
phylogenetic component attempting to identify the temporal signal of this change can be
informative.

Estimates of µ for phylogenies under the birth-death process have a large variance (Nee
et al. 1994a,b). Rabosky (2010) suggested that estimates of µ may not just be poor but
positively biased by phylogenetic variation in diversification rates. We saw in subsection 2.6.3
that allowing µ to vary between different periods can lead to extremely unrealistic maximum
likelihood estimates. One solution to the problem of µ estimation is to use the Yule model
and assume that your estimate of λ, the lineage splitting rate, is in fact r, the diversification
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rate (Paradis 1997). However, this can lead to poor estimates of the diversification rate (Nee
2001). We have seen from our own results that high µ values alone can lead to concave
lineage through time plots without requiring any temporal shifts in parameters, as originally
pointed out in Nee et al. (1994b). A more practical approach is to attempt to fit a birth-
death model using a number of different reasonable values for µ, rather than relying on a
single estimate.

One potential risk of the tools described in this paper and available through the R package
telos, as well as those made available in LASER (Rabosky 2006b) is that researchers can
easily test the fit of many models to their data. Without some sort of a priori hypothethis
about what models one might expect, it is not appropriate to go around testing multiple
hypotheses and simply picking the best fit (see Freckleton 2009). Some authors have already
done this using LASER (e.g. Valente et al. 2010). On the other hand others have provided
good examples of how to use these models to test a clearly stated hypothethis about
diversification (e.g. Steeman et al. 2009; Egan and Crandall 2008). Furthermore, some
authors have used many models to show that in general diversification is slowing down or
speeding up without committing to any one model (e.g. Burbrink and Pyron 2010; Dolman
and Hugall 2008). In such a case Bayesian model averaging (see Link and Barker 2006)
would probably be more appropriate than AIC. Of course an increase or decrease in the
rate of diversification could also be identified through simple visual inspection. It may be
reasonable to compare multiple models in order to see weather the data fits the CRBD.
However, there are many simpler tests that can determine the same thing, such as the
gamma statistic (Pybus and Harvey 2000) and the tests described in subsection 2.6.1 and
subsection 2.6.2. Rabosky (2006a) showed that his test for changes in the diversification
rate was more powerful than the gamma statistic. A comparison between type I and II error
for all these tests would be helpful in determining the best way to test for violations of the
constant rate birth-death process.

It goes without saying that the interpretations of branching time data using these methods
depend heavily on the accuracy of the data. In any phylogeny both the topology and the
branch lengths may be improperly estimated. The amount of difference between genetic
sequences found in the terminals of phylogenetic trees provides some information about the
relative length of branches (Hillis et al. 1996); but rates of sequence evolution vary between
lineages and so, much of that information is lost (Gillespie 1994). How exactly to recover
that information is a matter of great debate. One option available to researchers is to use
an estimate of the branching times that incorporates some measure of error (see Drummond
et al. 2002). It would be easy to incorporate error into the visual methods described in
this paper. Furthermore, it is possible to use these methods without scaling the branches in
absolute time, for many purposes a relative scaling will suffice.

The equations and methods found in this paper serve as a broad generalization of previous
work done on the description of the time variable and reconstructed birth-death processes.
Furthermore the application of the discrete time birth-death process as a numerical solution
to any time variable process makes it relatively straight forward and easy to implement
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these methods. Future research can use these tools both to explore data and to deduce how
different time variable processes affect the distribution of branching times on a phylogeny.
With the implementation of these methods in the telos R package other researchers should
be able to benefit from the incites they provide and the flexibility that they allow.
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Chapter 3

Comparative Analysis of Chromosome
Counts Infers Three Paleopolyploidies
in the Mollusca

3.1 Introduction

Polyploidy has long been recognized as an important mechanism of genetic evolution (Taylor
and Raes 2004), and over the last decade, as full genome sequences have become available,
a great deal of research has been invested into the analysis of whole genome duplications
(e.g. Semon and Wolfe 2007; Byrne and Blanc 2006). Polyploid species and individuals are
common in plants (Wendel 2000); evidence is accumulating that whole genome duplications
also occur in the opisthokonts and have played an important role in the evolution of their
genomes (Vandepoele et al. 2004; McLysaght et al. 2002; Wolfe 2004). In contrast to
other modes of genome evolution, polyploidy events affect the entire genome at once. By
duplicating every gene in the genome a large amount of redundant genetic information is
created, which can be used as raw material for evolutionary innovations (Ohno 1967; Haldane
1932). It has been suggested that in several cases the modification of this raw material has
been important in the evolution of key innovations, such as glucose fermentation in yeast
(Piskur 2001) and the immune system of vertebrates (Kasahara 2007).

Despite the large effort put into the analysis of genome duplications, the identification
and confirmation of such duplications, especially ancient ones, has proved problematic.
To conclusively demonstrate a paleopolyploidy event, several complete genomes must be
sequenced both from taxa that are directly descended from the original polyploid individual
and from their relatives that diverged shortly before the whole genome duplication (Wong
et al. 2002; Woods et al. 2005). Even to identify likely cases of paleopolyploidy large numbers
of genes must be sequenced in several related taxa (Blanc and Wolfe 2004; Spring 1997).
Although getting cheaper by the day, such sequencing is still costly in terms of lab time and
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Figure 3.1: An ideal sampling of three taxa for investigating the genome duplication
indicated by the dash. By selecting one taxon each from clades A, B and C the
investigator would minimize the amount of shared history either before or after the
event and thus have the best chance of accurately reconstructing the effects of the
duplication on the genome.

materials (Ansorge 2009).
In order to study any evolutionary transition it is best to identify lineages that diverged

as shortly before and after the evolutionary event as possible (Figure 3.1). Information
regarding the exact state of the organism before and after the transition is lost as time
passes. By choosing taxa that diverged shortly after such an event the amount of shared
information loss is minimized, and researchers are better able to reconstruct the genome
of the organism immediately after duplication. Similarly, choosing taxa that diverged as
shortly before an event as possible allows us to more accurately reconstruct the state of the
organism before undergoing the transition.

It would be beneficial to identify the exact phylogenetic position of a whole genome
duplication, before embarking on a course of research into the effects of paleopolyploidy. In
the past these events have initially been identified haphazardly as an unintended consequence
of a more general investigation into the genomes of the organisms in question (Wolfe and
Shields 1997; Lundin 1993). Furthermore the identification of the branch on which the
duplication has actually occurred can only be achieved through the unguided sequencing of
the relatives of these taxa (e.g. Irvine et al. 2002). This approach is highly inefficient for
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the study of individual genome duplications, and untenable for a program of research into
genome duplications in general.

Here we demonstrate a method for identifying the phylogenetic position of genome
duplications using only chromosome counts and a well resolved phylogeny. A genome
duplication will double the number of chromosomes in a genome. If the rate of aneuploidy
fixation is sufficiently low relative to the amount of time since the duplication occurred,
then this doubling should leave a signal that will be detectable in the extant descendants
of the original polyploid organism. Indeed Ohno (1970) originally proposed that there was
a whole genome duplication in a vertebrate ancestor based on placental mammals having
genomes two to tree times as large as Ciona intestinalis. By using karyotypic data we are
able to increase taxon sampling in order to accurately identify the branches on which the
duplication occurred and thus guide the selection of taxa for genome sequencing.

We used the birth death process as a null model for the distribution of chromosome
numbers among taxa. The birth death process is a stochastic model often used to compare
the numbers of genes in gene families between organisms (Novozhilov et al. 2006; Lynch and
Conery 2003; Hahn et al. 2005). Under this process the rate of chromosome duplication or
loss is proportional to the number of chromosomes in the genome. We developed a second
model in which the number of chromosomes could double in a single stochastic event in
addition to evolving by the birth death process. The maximum likelihoods were calculated
under each model and used to compare the fit of the data to the models. Furthermore
the likelihoods calculated under the duplication model were used to calculate the posterior
probability that a duplication occurred on each branch of the tree. By using a likelihood
model we were able to compare the background rate of change in chromosome number by the
birth-death process to doublings caused by whole genome duplications on certain branches.
Mayrose et al. (2010) recently published a similar likelihood method that assumed that
genomes added or lost chromosomes at a constant rate or at a rate linearly related to the
number of chromosomes in the genome.

We demonstrate the utility of our model on a phylogeny of Molluscan taxa. Mollusca
is a large and disparate clade with members that play an important role in marine and
terrestrial ecosystems. Furthermore they are one of the most diverse groups within the
Lophotrochozoa, the least studied of the three major clades of Bilaterian animals. Currently
genomics studies in Mollusca are still in their infancy; only one mollusc genome has so
far been sequenced (Chapman et al. 2007). Natural polyploid species of molluscs have
been recognized for decades (e.g. Patterson 1969; Goldman et al. 1983), but as of yet no
hypotheses of paleopolyploidy have been proposed. By determining which molluscan clades
are polyploid we can help to guide future research into mollusc genomics. Here we identify
several potential candidates.
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3.2 Methods

3.2.1 Phylogeny

No single phylogenetic study included all the taxa in our analysis, so we used phylogenies
from several different papers to piece together a tree for the Mollusca, and pruned taxa for
which we did not have chromosome data. For the relationship among molluscan classes we
used Haszprunar (2000). The internal structure of the Polyplacophora (Okusu et al. 2003),
the Bivalvia (Giribet and Wheeler 2002), and the Cephalopoda (Lindgren et al. 2004) were
each derived from separate papers. We used the phylogeny found in Ponder and Lindberg
(1997) for the relationships among the major clades of gastropods. Barker (2001) provided
the back bone for the phylogeny within the Heterobranchia, while Wade et al. (2006) filled in
the more detailed relationships among the pulmonate families. We took Wägele et al. (2008)
to be the basis for our branching patterns within the Opisthobranchia, and used Colgan
et al. (2007) to add families that were not found in Wägele et al. (2008) to our tree.

For any likelihood model used to analyze phylogenetic data the probability of a transition
along a branch depends on the length of that branch, and any rates used in such models are
proportional to the units of branch length. We assumed that under our null model rates of
chromosome duplication and loss are constant with respect to time and therefore the branch
lengths for our tree should be in years between speciation events. We deduced the timing of
each node in our tree by identifying the first appearance for each of the terminal taxa in our
study as well as for larger clades containing one or more of these taxa. For most taxa we
used the earliest fossil found in the Paleobiology Database, however we used dates found in
Nishiguchi and Mapes (2008) for the cephalopods, and in Solem and Yochelson (1979) and
Zilch (1959-1960) for the pulmonates. Every node was fixed at the oldest date for the first
appearance of any of its descendants.

This method resulted in several branches of length zero. We could not assign a length to
a terminal branch if it lead to one of two sister taxa with no fossil record, nor to an internal
branch if one of the two clades immediately descended from it had a longer fossil history than
the internal branch’s sister clade. For example imagine a tree with two sister taxa and their
closest relative. If one of the sister taxa has an older fossil record than either of the other
two taxa, then both nodes will be forced down to the same time, at the first appearance of
the oldest taxon. This is likely to be a consequence of the incompleteness of the fossil record,
and not to represent the actual time between lineage splitting events. Therefore we assumed
each node had to precede both its daughter nodes by at least some minimum number of
years. Three trees were constructed with zero length branches expanded to 104, 105 and 106

years; we will refer to these as Tree-104, Tree-105 and Tree-106 respectively.
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3.2.2 Chromosome Number

Chromosome counts were derived from the literature. The majority of data for Bivalves
and Gastropods were found in Thiriot-Quievreux (2002, 2003). Additional data was found
by searching Biosis for keywords “Karyo* or Chromosome* or Cytolog*” and taxonomic
data“Mollusc”. When we had chromosome number data for multiple species within a
terminal taxon we used the mode for that taxon (White 1973). If there were multiple
modes, we used the mode closest to the median, and if there were two modes equal distance
from the median, we chose one at random.

3.2.3 Phylogenetic Signal

One should only evaluate data phylogenetically, when that data has a strong phylogenetic
signal; that is to say closely related taxa are more similar to each other than would be
expected at random. In order to test for signal we randomized the data among the tips
9999 times and calculated the number of steps for the randomized data sets using ordered
parsimony and a parsimony model for which the cost for going from m chromosomes to
n chromosomes along a branch is the absolute value of ln(n)− ln(m). Under this second
parsimony model the cost of adding or loosing chromosomes is proportional to the number
of chromosomes in the genome (as it is under the birth-death process) but it still retains
the quality of an ordered parsimony model that the cost of going from state x to state z
equals the cost of going from state x to state y plus the cost of going from state y to state z,
when y is intermediate in value between x and z. We compared the number of steps for our
randomized data sets to the number of steps for our actual data. One should expect fewer
steps under either parsimony model for a data set with high phylogenetic signal than for a
random data set, as there should be fewer steps between closely related individuals.

3.2.4 Likelihood Model

For our null hypothesis we assumed that each chromosome has an equal probability of
duplicating or splitting and an equal probability of being lost at any time. Thus there
is a constant duplication rate, λ, and loss rate, µ, for each chromosome in the genome. On
any branch of the taxon tree the time constant birth-death process operates and we can
use (2.37) and (2.20) to calculate the probability that

○

ni chromosomes at the beginning of

branch i of the taxon tree will leave
⋆

Ni chromosomes at the end of that branch, assuming
that all

○

ni chromosomes survive to the end of that branch.

P (N0∣
○

ni, λ, µ) = (

⋆

Ni−1
○

ni−1
)(1−u(ti))

○
ni(u(ti))

⋆

Ni−
○
ni (3.1)

Where ti is the length of branch i and we can use (2.7) or (2.8) to solve for u(ti).
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Using this result we can now calculate the probability that
○

Ni chromosomes at the

beginning of the branch leave
⋆

Ni chromosomes at the end of branch i, allowing for the
possibility that any of the initial chromosomes could be lost. In this case

○

ni is the number of

chromosomes in the initial group of
○

Ni chromosomes that give rise to the
⋆

Ni chromosomes at

the end of the process. The other
○

Ni−
○

ni chromosomes are lost. There are (
○

Ni
○
ni
) different ways to

arrange
○

Ni−
○

ni lost chromosomes among
○

Ni initial chromosomes. Therefore, we can calculate
this probability by summing over all the possible numbers of surviving chromosomes.
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(3.2)

This equation is equivalent to the one given by Bailey (1964, pg. 94) and Foote et al.
(1999), although it takes a different form and here we provided an alternative derivation.
We can assume that all the chromosomes were not lost on any branch of the tree, so that

the transition probability between any two states
○

Ni and
⋆

Ni is the probability of going from
○

Ni to
⋆

Ni chromosomes along branch i of length ti, given that
⋆

Ni is greater than one.

P (
⋆

Ni∣
○

Ni,
⋆

Ni>0, λ, µ) =
P (

⋆

Ni∣
○

Ni, λ, µ)

1 − (E(ti))
○

Ni
(3.3)

We used this equation to calculate the probability of a set of chromosome counts at the
tips of a phylogeny conditioned on a particular value for λ, µ and the number of chromosomes
at the root. We calculated the likelihood for the entire tree by proceeding down from the
tips of the tree to the root and marginalizing over all the possible states at the internal nodes
(Felsenstein 1973, 1981), such that we calculated the probability of the data above branch i

given
○

Ni by summing over all the possible values of
⋆

Ni.

P (Ci∣
○

Ni) =
∞

∑
⋆

Ni=1

pi(
⋆

Ni∣
○

Ni)P (C+
i ∣

⋆

Ni)P (C−
i ∣

⋆

Ni) (3.4)

where pi(
⋆

Ni∣
○

Ni) = P (
⋆

Ni∣
○

Ni,
⋆

Ni > 0, λ, µ), Ci are the chromosome counts on the tips above
branch i and C+

i and C−
i are the chromosome counts on the tips above each of the branches

descended from branch i. Each of those descendant branches will obviously start with
⋆

Ni

chromosomes and so the probability of the data above them can in turn be calculated
with (3.4). As there are an infinite number of possible states at each internal node we
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excluded from our calculation those internal states that were far outside the range of observed
chromosome counts.

We added whole genome duplications to this model by assuming that they occur at some
constant rate, δ. We will call the number of genome duplications that happened on branch

i, Di. The transition probability of going from
○

Ni to
⋆

Ni chromosomes along a branch with
no full genome duplications is simply the transition probability from the birth-death process
times the probability that no genome duplication occurred.

P (
⋆

Ni,Di=0∣
○

Ni,
⋆

Ni>0, λ, µ, δ) = exp(−δti)P (
⋆

Ni∣
○

Ni,
⋆

Ni>0, λ, µ) (3.5)

In order to calculate the transition probability of going from
○

Ni to
⋆

Ni chromosomes along
a branch with one full genome duplication, we divide the branch into two discrete time
periods at the time of the duplication, tδ. In that case the number of chromosomes before
a duplication is Nδ and the time between the start of the branch and the duplication is
ti− tδ; after the duplication, there will be 2Nδ chromosomes. We can calculate the transition
probability by summing over all the possible values of Nδ and integrating over tδ from zero
to ti.

P (
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= δ exp(−δti)∫
ti

0
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Ni∣2Nδ,
⋆

Ni>0, λ, µ)dtδ (3.6)

We calculated this integral using numerical integration, breaking each branch into sections
and assuming that the duplication happened in the middle of that section. We used three
sections, as we found that three sections yielded the same results as ten sections. We
calculated the sum by treating the duplication event as an internal node and limiting the
number of possible states as above.

Thus we can calculate the likelihood of specific values of λ, µ and δ conditioned on the
numbers of chromosomes at the root, except we now calculate the transition probability as

pi(
⋆
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○

Ni) = P (
⋆

Ni∣
○

Ni,
⋆

Ni>0, λ, µ, γ), where:
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Ni>0, λ, µ, δ) + P (
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Ni,Di=1∣
○

Ni,
⋆

Ni>0, λ, µ, δ) (3.7)

This excludes the possibility of multiple duplications on any branch, which is in general very
small. These calculations were performed using the program GDCN 1.0.

3.2.5 Model Comparison

We compared three different models by fitting the parameters of those models to our data
set by maximum likelihood. The “equilibrium” model is the simplest model, it assumes
that λ = µ and that δ = 0. In order to show that our data is better explained by including
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whole genome duplications we compared the equilibrium model to a “duplication” model in
which δ is allowed to take values greater than 0. It is possible that the superior fit of the
duplication model is a consequence of a strong tendency for the number of chromosomes
to increase rather than to paleopolyploidy events. To account for this possibility we also
compared these two models to the “trend” model which allows λ and µ to take different
values, but assumes that δ =0. We examined all three models on all three trees in order to
assure that no set of branch lengths was unduly affecting our conclusions.

Our calculation of the likelihood is conditioned on the number of chromosomes at the
root. We do not know the actual number of chromosomes in the common ancestor of all
molluscs, but there are several ways to estimate our likelihood without knowing this value.
One way is to assume that the prior probability of any chromosome count is the same, and
to calculate the likelihood as the sum of the likelihoods for every possible chromosome count
at the root (Pagel 1999). This method would place undo weight on chromosome counts that
are in fact highly unlikely to be the true chromosome count, and would favor hypotheses
that are robust to assumptions about the ancestral chromosome count, even though there is
no a priori reason to do so. For other types of discrete characters the equilibrium frequencies
of the character states under the model are commonly used as priors for the root of the
tree (Maddison and Maddison 2007), but the birth death process has an infinite number of
possible states and thus the equilibrium frequencies for each state are either 0 or 1 depending
on the values of λ and µ and the starting state. We could also assign a complex prior to
the states at the root, but we have no basis for doing so without a phylogenetic analysis
of chromosome number in non-molluscan Lophotrochozoa. A fourth possibility is to treat
the ancestral chromosome count as another parameter to be set by our maximum likelihood
search. For most of our analyses we settled on this approach. In order to justify it, we
initially calculated maximum likelihoods conditioned on a range of ancestral chromosome
values from 1 to 80. By comparing a large range of ancestral mollusc chromosome counts
we could see how strongly our model supported the maximum likelihood reconstruction of
the root, and be certain that our model choice was not overly biased by our reconstruction
of the ancestral chromosome count.

The maximum likelihoods for all models under all sets of root values were used to calculate
the Akaike Information Criterion (AIC) for those models. The AIC is defined as twice the
number of parameters in the model minus twice the maximum likelihood. The AICs of the
different models were compared in order to select the best fit model for the data. Models
that fit the data better should have lower AICs (Akaike 1974).

3.2.6 Identifying Branches with Duplications

The ultimate purpose of this exercise was to identify branches on which it is likely that a
full genome duplication occurred. In order to accomplish this we calculated the posterior
probability that there was a duplication on each branch of the tree. For each branch, i,
we used the maximum likelihood values of λ, µ, δ and the ancestral chromosome count, to

76



calculated two likelihoods: Lδi , in which pi(
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and the posterior probability of a duplication on that branch will be P (Di = 1∣C,λ,µ, γ) =
Lδi /(L

δ
i +L

0
i ). These values were calculated for all three trees, using the maximum likelihood

values for λ, µ, δ and the root.

3.2.7 Simulations and Model Fit

It is important to show not just that one of these models fit the data better than another,
but that these models provide a reasonable description of the data themselves. In order
to do make this comparison, maximum likelihood values of λ, µ and δ for our data set
were derived for the duplication and the equilibrium models on Tree-106 conditioned on
the maximum likelihood count of ancestral chromosomes. Approximately 1000 data sets
were then simulated using each set of maximum likelihood parameters and starting with the
maximum likelihood number of chromosomes at the root. Maximum likelihoods were then
calculated for each of these data sets under the models used to generate the data. These
maximum likelihoods were used as statistics to reject the hypothesis that the actual data
was generated by this model. Failure to reject this hypothesis was taken to indicate that
the model was a reasonable approximation of the actual process by which the real data were
generated.

The duplication model has one more free parameter than the equilibrium model, as the
equilibrium model can be considered a special case of the duplication model in which δ =0.
Thus twice the difference between the logs of the maximum likelihoods for these models
should correspond to a chi-squared distribution with one degree of freedom. We tested the
fit of this statistic to the chi-squared distribution by calculating maximum likelihoods using
both the equilibrium model and the duplication model for each of the data sets simulated
under the equilibrium model. Twice the difference between the logs of these likelihoods was
calculated and compared to a one tailed chi-squared distribution with one degree of freedom
by a quantile-quantile plot.

We especially wanted to show that the birth-death process was an appropriate model for
the background rate of chromosome number evolution independently of any whole genome
duplications. First we simulated 1000 data sets using maximum likelihood values for the
root count, λ, µ and δ but we also placed one duplication at random on a minimum length
branch. Then we simulated another 1000 data sets on Tree-106 starting with 15 chromosomes
and using the maximum likelihood values of λ and µ calculated under the duplication model.
However, under these simulations, whole genome duplications did not occur at random, but
instead always occurred on the branches for which our actual data showed a high posterior
probability of a whole genome duplication. We calculated maximum likelihoods using the
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duplication model and compared those likelihoods to the one calculated for our actual data
in order to reject the use of the birth-death process for our background rate of chromosome
evolution.

3.3 Results

3.3.1 Phylogeny, Chromosome Counts and Signal

The topology for the phylogeny we used is shown in Figure 3.2a. Most traditional Molluscan
clades are monophyletic in this tree, but both Caenogastropoda and Sigmurethra are
paraphyletic. Figure 3.2b shows the same tree with the branch lengths scaled to match
the branch lengths we derived from paleontological data. 69 of 123 internal branches had
length zero, as a consequence of basal branching taxa in a clade having a more recent fossil
record than a taxon nested well within that clade, and 6 of 125 terminal branches had
length zero, because two sister taxa had no fossil record. Zero length branches are shown as
polytomies.

We obtained chromosome counts for 997 species of Mollusca from 125 terminal taxa
including members of all five major extant classes (Polyplacophora, Bivalvia, Cephalopoda,
Scaphopoda and Gastropoda). We used the mode of the chromosome number for each
terminal clade in our phylogenetic analysis (Table A.1). In most cases all the chromosome
counts in each terminal clustered around the modes, but several clades have members
with highly divergent counts. Within the Anomoidea, Loliginidae, Viviparoidea, Thiaridae,
Anclidae, and Planorbidae there are species with chromosome counts two times the mode
for the entire clade implying recent polyploidies. In the Planorbidae genus Bulinus there
are species with three and even four times the mode of the clade. Furthermore within
the Unionoida, Cardioidea, Turbinoidea, Cerithiidae, Pleuroceridae, Littorinidae, Muricidae,
Conoidea, and Succineidae there are species with chromosome counts approximately half of
the mode. Most of these clades are nested in larger clades with modes similar to their own.

Chromosome number has very high phylogenetic signal among the molluscan taxa
studied, as demonstrated by two different parsimony statistics we derived from our data
set and compared to the same statistics calculated for data sets generated by randomizing
our data over the tips of the trees. Our data set had 250 steps for ordered parsimony
and 13.36148 steps for our weighted step matrix. Both these values were highly significant
(p<<0.0001), as they were less than the equivalent value for any of our 9999 randomized
data sets. Furthermore the parsimony scores for our randomized data sets fell between 558
and 749 steps for the ordered parsimony and between 27.47879 and 37.12357 steps for the
weighted parsimony, implying that the actual p-value is much lower. Thus there is a very
clear phylogenetic pattern to the distribution of our data on the tree.

78



Figure 3.2: a) The cladogram of the Mollusca used in this study. Several clades
important to this study are identified with brackets. b) The phylogeny of Molluscan
taxa used in this study. The topology of this tree is the same as the tree in Figure a),
but here branch lengths are shown in millions of years as derived from the fossil record
using the Paleobiology Database. Zero length branches are shown as polytomies.
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Table 3.1: Maximum likelihood parameter values for all three models and sets of
branch lengths. All rates are in units of Events/Chromosome/Billion Years.

Branch
Lengths

Model AIC
Root
Count

λ+µ λ−µ δ

Tree-106
Equilibrium 364.540 17 5.0359 0* 0*
Trend 366.504 16 4.9772 0.06851 0*
Duplication 357.508 15 3.0555 0* 0.12304

Tree-105
Equilibrium 366.792 17 5.2310 0* 0*
Trend 368.719 20 5.4529 -0.34818 0*
Duplication 361.744 15 3.4038 0* 0.11661

Tree-104
Equilibrium 369.134 17 5.2577 0* 0*
Trend 371.043 20 5.4787 -0.34931 0*
Duplication 364.529 15 3.6157 0* 0.10860

* Rate is assumption of model, not set by Maximum Likelihood.

Figure 3.3: The Akaike Information Criterion (AIC) for each of three models
of chromosome number evolution to chromosome counts found in extant Mollusc
families. Each figure shows the AICs for all three models conditioned on the number
of chromosomes found in the last common ancestor of all Mollusca for a given set of
branch lengths.

3.3.2 Model Choice

The duplication model achieved its maximum likelihood at 15 ancestral chromosomes for all
three trees while the equilibrium model achieved its maximum likelihood at 17 (Table 3.1).
For both these models likelihoods fell off precipitously for all trees when conditioned on
ancestral chromosome counts that differed from their maximum likelihood chromosome
count by more than 2 (Figure 3.3). The trend model reached its maximum likelihood
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at chromosome counts between 16 and 20 for the three different trees, and while the
likelihoods decreased precipitously for lower ancestral chromosome counts, they decreased
more gradually for higher counts.

The AIC was much lower for the duplication model than it was for the equilibrium model
when conditioned on ancestral chromosome counts near the maximum for all four trees
(Figure 3.3). Although the equilibrium model did have a lower AIC than the duplication
model when conditioned on ancestral chromosome counts that are far from their maxima,
these ancestral chromosome counts are themselves poorly supported by either model. When
the ancestral chromosome count was treated as an additional maximum likelihood parameter
the AIC was lower for the duplication model than it was for the equilibrium model for all
sets of branch lengths by at least 4.6 and as much as 7.0 (Table 3.1). It is reasonable to
conclude that the duplication model is a much better fit for the data than the equilibrium
model.

The duplication model had much lower AICs than the trend model when the ancestral
chromosome count was fit by maximum likelihood for all sets of branch lengths (Table 3.1);
the difference between AICs ranged from 6.51 for Tree-104 to 9.00 for Tree-106. The
equilibrium model also had lower AICs than the trend model, when the ancestral chromosome
count was fit by maximum likelihood, although the differences were all less than 2 (Table 3.1).
However, the trend model achieved relatively high maximum likelihoods over a much larger
range of ancestral chromosome counts, and when conditioned on more extreme chromosome
counts it had lower AICs than either of the other two models (Figure 3.3). Nevertheless, the
duplication model is clearly a better fit for the data as its AICs were so much lower for all
four trees when the ancestral chromosome counts were fit by maximum likelihood.

There was little variation in the maximum likelihood estimates of parameter values
between the three sets of branch lengths (Table 3.1). Maximum likelihood estimates for
the total rate of change for the birth-death process were much smaller under the duplication
model than under the other two models, because under the duplication model a great deal
of the change in chromosome numbers can be accounted for by whole genome duplications.
The estimate of net change in chromosome number under the trend model was slightly
positive for tree-106; the estimate of net change was negative for the other two trees, but
still only represented 6.4% of the total rate. Our estimates of the whole genome duplication
rate under the duplication model ranged from 0.109 duplications/billion years for Tree-104

to 0.123 duplications/billion years for Tree-106. It should be noted that this is the whole
genome duplication rate we would expect per lineage, not over the whole tree, thus we
observed several whole genome duplications in a clade with a 530 million year history.

3.3.3 Branches with Duplications

Three branches had posterior probabilities of whole genome duplications greater than 0.67 for
at least one set of branch lengths when conditioned on their maximum likelihood parameter
values. These included the branch at the base of the Coleoidea, a branch within the
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Figure 3.4: The phylogeny of all the terminal taxa in the Hypsogastropoda using
the branch lengths from Tree-106 showing the posterior probability of a whole
Genome Duplication (WGD) on each branch. The Capulidae-Neogastropoda branch
is marked, as it has a very high posterior probability of a WGD, while all the other
branches have essentially none. Support for a WGD on the Capulidae-Neogastropoda
branch is greater than 0.999 for all sets of branch lengths.

Stylommatophora at the base of a clade containing the Sigmurethra and the Orthurethra,
and a branch within the Hypsogastropoda at the base of an unnamed clade. Several branches
phylogenetically close to these well supported branches also showed some support for a whole
genome duplication (Figures 3.4, 3.5 and 3.6). No other branch had a posterior probability
greater than 0.03 for any of the trees.

The branch within the Hypsogastropoda at the base of a clade sister to the Strombidae
and containing the Neogastropoda and several families of Littorinimorpha - hereafter to be
referred to as the Capulidae-Neogastropoda branch - had posterior probabilities of a whole
genome duplication greater than 0.999 for all three trees (Figure 3.4). This is extremely
strong support for an evolutionary scenario in which the number of chromosomes doubled
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Figure 3.5: Posterior probabilities for a whole genome duplication on two branches
near the base of the Stylommatophora. a) The phylogeny of all the terminal taxa in a
clade containing the Stylommatophora, the Systellommatophora and the Ellobiidae
using the branch lengths from Tree-106 showing the posterior probability of a
whole Genome Duplication (WGD) on each branch. The Stylommatophora branch
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and the Sigmurethra-Orthurethra branch are marked, as they have a relatively high
posterior probability of a WGD, while all the other branches have essentially none.
b) A bar plot showing the posterior probability of a whole genome duplication on
either of these branches as well as on each of these branches individually under each
of the three different sets of branch lengths. Support for a WGD on the Sigmurethra-
Orthurethra branch as well as on either of the two branches decreases as the minimum
branch length decreases, while support for a WGD on the Stylommatophora branch
increases.

on this branch.
We calculated the posterior probability for a whole genome duplication on a branch

within the Stylommatophora at the base of a clade containing the Sigmurethra and the
Orthurethra of 0.881 for Tree-106 (Figure 3.5). On the other hand Tree-105 had much less
support for a duplication on this branch (posterior probability=0.389), and Tree-104 had even
less (posterior probability=0.043). Tree-104 and Tree-105 alternatively showed some support
(posterior probabilities 0.520 and 0.374 respectively) for a whole genome duplication on
the branch at the base of the Stylommatophora, while Tree-106 supported a whole genome
duplication on this branch more weekly (posterior probability=0.074). There was no support
for whole genome duplications occurring on both these branches; the posterior probability
was less than 1x10−9 for all sets of branch lengths. The Sigmurethra-Orthurethra branch has
a minimum branch length; as a consequence the likelihood of a duplication on this branch
was less on trees with smaller minimum branch lengths. This greatly decreased the support
for a doubling on this branch and instead compensated in part by increasing the support for
a doubling on the ancestral stylommatophoran branch, which is 80 million years long and
thus much more likely to have a whole genome duplication on it. This appears to be an
effect of our branch lengths, thus the analysis on Tree-106, which is less effected by branch
lengths, is the most reasonable one and it is likely that a paleopolyploidy event occurred on
the Sigmurethra-Orthurethra branch.

The data clearly supported at least one paleopolyploidy event in the Cephalopods, but
it was difficult to distinguish whether there were one or two whole genome duplications and
the exact branch on which they occurred (Figure 3.6a). All three sets of branch lengths
had a posterior probability of a whole genome duplication on the Coleoidea branch between
0.675 and 0.687 and on the Decapodiformes branch between 0.288 and 0.303 (Figure 3.6b),
with weak support for duplications occurring on both of the branches (posterior probability
between 0.030 and 0.046), meaning that the posterior probability that a whole genome
duplication occurred on one of these branches was greater than 0.93 for all three sets of
branch lengths. These trees also had posterior probabilities less than 0.09 that a whole
genome duplication occurred either at the base of the Cephalopods or on the Nautilidae
branch with an overall posterior probability between 0.078 and 0.091 that a whole genome
duplication occurred on more than one branch in this clade.
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Figure 3.6: Posterior probabilities for a whole genome duplication on branches
within the Cephalopoda. a) The phylogeny of all the terminal taxa in the
Cephalopoda with Gastropoda and Scaphopoda included as an outgroup using the
branch lengths from Tree-106 showing the posterior probability of a whole Genome
Duplication (WGD) on each branch. Two branches with relatively high posterior
probability of a WGD are labeled above the branch. b) A bar plot showing the
posterior probability of a whole genome duplication on various branches in the
phylogeny. The dark bars show the posterior probability of a WGD on the specified
branch or branches. The light bars show the posterior probability that there were
WGDs on any pair of branches in the Cephalopoda including the specified branch
or branches. The posterior probability is shown by the large bar for Tree-105, by the
lower error bar for Tree-104, and by the upper error bar for Tree-106. Support for a
WGD somewhere in this clade is strong, but the exact location is not clear. There
is little variation between the different sets of branch lengths.
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3.3.4 Simulations to Evaluate Model Fit

We ran 1000 simulations on Tree-106 under the equilibrium model starting with 17
chromosomes using the maximum likelihood value of λ calculated for our actual data set.
When evaluated under the equilibrium model, 160 of these simulations had maximum
likelihoods lower than our data set, implying that we can not reject this model as an
explanation for our data (p=0.160). We also calculated the maximum likelihood for all
simulated data sets under the duplication model, and used that value to calculate a log
likelihood ratio. The largest log likelihood ratio for our simulated data sets was 5.506 and
the likelihood ratio for over 96% of our simulations was less than 0.001, while the likelihood
ratio for our actual data was 18.064. Thus we can strongly reject our null hypothesis in
favor of our alternative hypothesis of genome duplications (p<<0.001). Comparing the log
likelihood ratios of our simulated data to a one tailed chi-squared distribution with one
degree of freedom indicates that the chi-squared distribution is an extremely conservative
basis upon which to estimate the level of significance for rejecting our null hypothesis.

We also ran 1000 simulations on Tree-106 under the duplication model using the
maximum likelihood parameter values for a process conditioned on 15 ancestral mollusc
chromosomes. When evaluated under the duplication model 40 of these simulations had
maximum likelihoods less than our actual data, indicating that we can also tentatively reject
our alternative hypothesis as a fit for our model (p=0.040).

However, the major reason that the simulations had higher maximum likelihoods than
the actual data is that one of the reconstructed genome duplications from our actual data
appears to have occurred on a minimum length branched. Given the estimated value for
δ of 0.123 whole genome duplications/ billion years, the probability of a whole genome
duplication on so short a branch is approximately 1.23 x 10−4. Thus any data set with a
duplication on a minimum length branch will obviously have a lower maximum likelihood
than one without. Given this estimated value of gamma we would expect whole genome
duplications to occur on a minimum length branch in 0.943% of our simulations, and indeed
they actually did occur in only 9 of our simulations. Since the vast majority of our simulations
did not have a duplication on a minimum length branch we would expect them to have
higher likelihoods than our actual data. To confirm this we did 1000 simulations in which at
least one duplication occurred on a minimum length branch using the maximum likelihood
parameters from the duplication model, 166 had a maximum likelihood lower than our data
set, indicating that we can not reject the birth-death process as a model for the background
rate of chromosome change.

In order to get a better idea of the fit of our data to the birth death process as
the background rate of chromosome change, we ran 1000 simulations starting with 15
chromosomes on Tree-106 with maximum likelihood values for λ, as found under the
duplication model, in which duplications always occurred on the Capulidae-Neogastropoda
branch, the Coleoidea branch, and the Sigmurethra-Orthurethra branch, and nowhere else.
When these simulations were evaluated under the duplication model, 25.1% of the data sets
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simulated with the deduced set of whole genome duplications had maximum likelihoods less
than our actual data set. Thus we could not reject the birth death process as a model for
our background rate of chromosome evolution.

3.4 Discussion

We developed a likelihood model based on the birth-death process that allows us to
predict the phylogenetic position of paleopolyploidy events through comparative analysis
of chromosome counts in extant species. We applied this model to a data set of chromosome
counts in molluscan taxa and found that a model in which the total number of chromosomes
occasionally doubled explained our data much better than a model in which chromosome
counts only evolved via the birth-death process (Figure 3.3). We identified three potential
instances of paleopolyploidy within the Mollusca (Figures 3.4, 3.5 and 3.6). In one case we
could clearly identify the branch on which the whole genome duplication occurred; in the
other two cases we could narrow down the position of the whole genome duplication to one
of two branches. Based on the assumptions inherent to our model, support for whole genome
duplications within the Mollusca in general and in these three clades in particular is very
strong.

Comparative analysis of chromosome counts suggests that a whole genome duplication
occurred in the common ancestor of a clade containing the Capulidae, the Ranellidae, the
Cypraeidae and the Neogastropoda after their divergence from the Strombidae and the other
hypsogastropod families included in our analysis (Figure 3.4). This paleopolyploidy event
was strongly supported by all three sets of branch lengths (posterior probability>0.999)
and there was no support for a whole genome duplication on any other branch in the
Hypsogastropoda. Our interpretation of the fossil record indicates that this whole genome
duplication occurred at some point between the beginning of the Jurassic (203 MYA)
when the first Strombidae fossils appear and the lower Cretaceous (155 MYA) when the
Neogastropoda initially radiated.

We identified another likely whole genome duplication early in the history of the
Stylommatophora: either at the beginning of the Cenozoic (65 MYA) in the common
ancestor of the Sigmurethra and the Orthurethra after they diverged from the Succineidae;
or in the common ancestor of all the Stylommatophora after they diverged from the
other Pulmonates in the lower Cretaceous (138 MYA) and before they radiated at the
beginning of the Cenozoic (65 MYA) (Figure 3.5a). We could not establish a length for
the Sigmurethra-Orthurethra branch or many of the branches immediately descended from
it, as several extant Stylommatophoran families appear at the beginning of the Cenozoic
and the phylogenetic position of Stylommatophora fossils appearing before then is uncertain
(Solem and Yochelson 1979; Zilch 1959-1960) (Figure 3.2); we treated each of these branches
as one branch of minimum lengths within a relatively fast radiation. As a consequence,
support for a paleopolyploidy event on the Sigmurethra-Orthurethra branch decreased for
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shorter minimum branch lengths, as the posterior probability of a whole genome duplication
is proportional to the length of the branch. There was a concomitant increase in the posterior
probability on the Stylommatophora branch, but it was not sufficient to compensate for the
decrease on the Sigmurethra-Orthurethra branch, thus total support for a whole genome
duplication on either of these branches decreased with shorter minimum branch lengths
(Figure 3.5b). As the length of the Sigmurethra-Orthurethra branch affects the posterior
probability of both branches and the maximum support on the Sigmurethra-Orthurethra
branch is higher than the maximum support for the Stylommatophora branch, we conclude
that the lack of support for whole genome duplications on the Sigmurethra-Orthurethra
branch is in fact an artifact of our method of assigning branch lengths, and that it is
more reasonable to conclude that a whole genome duplication occurred there than on
the Stylommatophora branch. It should be noted that the number of chromosomes was
highly variable among the Succineidae species that we have data for (Table A.1), thus
it is possible that selecting a different chromosome number to represent the Succineidae
would lead to different conclusions about the location of the paleopolyploidy event. A
well resolved phylogeny of the Succineidae should be used in order to better reconstruct the
number of chromosomes in their last common ancestor, but such a phylogeny is not currently
available. Vinogradov (2000) detected a general tendency to large genome sizes in terrestrial
pulmonates. However as his analysis was not phylogenetic, the signal may be a consequence
of large chromosome counts in the Stylommatophora.

Our data suggested that a third whole genome duplication occurred within the
Cephalopoda, although the exact location of this paleopolyploidy event is not clearly
reconstructed (Figure 3.6a). All sets of branch lengths support a duplication in the common
ancestor of the Coleoidea after they diverged from the Nautilidae in the lower Ordovician
(490 MYA) but before the Decapodiformes split from the Octopoda in the Carboniferous
(300 MYA). On the other hand they also show some support for a duplication occurring
in the common ancestor of the Decapodiformes after they split from the Octopoda, but
before the Sepiidae and the Loliginidae split in the lower Jurassic (200 MYA). There is
also some support for multiple whole genome duplications within the Cephalopoda either on
both these branches or on some combination of these branches and other branches within
the Cephalopoda (Figure 3.6b). Inspection of chromosome counts within the Cephalopoda
implies another scenario. The Octopoda have 30 chromosomes in their haploid genome on
the other hand the Sepiidae and the Loliginidae both have 46. Given that we reconstructed
15 chromosomes in the ancestral Mollusc, this implies that the Octopoda are tetraploid,
while the Decapodiformes are hexaploid. Our model does not account for changes in ploidy
other than doublings and thus would be limited to identifying tetraploids and octoploids.
The hexaploid Decapodiformes likely caused the uncertainty in reconstructing the whole
genome duplication within the Cephalopoda. Although variation in chromosome counts
within both the Sepiidae and the Loliginidae is overall very low, we have data for one species
in each family with many more chromosomes than the mode (Table A.1), thus it is possible
that the ancestral Decapodiformes had many more chromosomes than are shown by our
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data, which would increase support for a whole genome duplication on the Decapodiformes
branch. Increasing the taxon sampling on each of our terminal branches would allow us to
better reconstruct the ancestral chromosome counts at the tips and reduce the length of the
terminal branches. However, there are no extant taxa that branch off of any of the internal
branches within our cephalopod phylogeny, and so we can not break up any of the long
internal branches.

It has been suggested that whole genome duplications can lead to large morphological
and physiological innovations, as redundancy eases the constraints on genes throughout
the genome (Ohno 1967; Haldane 1932). Indeed the Stylommatophora, the Coleoidea
and the Decapodiformes are all characterized by a number of important morphological
synapomorphies. The Stylommatophora are the dominant group of land snails and slugs
and are characterized by a long pedal gland placed beneath a membrane and retractile
tentacles (Mordan and Wade 2008). The Coleoidea in particular represent a large jump
in morphological complexity, as they are characterized by an internalized shell, a muscular
mantle for locomotion, chromatophores, ink sacs, an eye lens and complex morphologically
distinct arms (Nishiguchi and Mapes 2008). The Decapodiformes are a large group with
a diversity of body forms and ecologies and are characterized by having two of there
arms modified as tentacles and highly complex suckers (Nishiguchi and Mapes 2008). A
paleopolyploidy event may have contributed to any or all of these innovations. On the
other hand, the Capulidae-Neogastropoda clade is unnamed and has not been recognized for
any major innovations. The Neogastropoda are a large and diverse clade found within this
group, and according to our estimates the whole genome duplication may have preceded the
radiation of the neogastropods by only a short time, and so may have played a major role
in their evolution.

Although this is the first suggestion of paleopolyploidy in the Mollusca that we are aware
of, it is not a surprising finding, as more recent polyploidies have long been recognized in
many species of Molluscs. Several polyploid species have been identified in the wild (e.g.
Patterson and Burch 1978; Barsiene et al. 1996; Park 2008) and in at least one case the
origin of a polyploidy has been analyzed karyologically (Goldman et al. 1983). Polyploidy
has also been artificially induced in several species of commercial molluscs (e.g. Beaumont
and Fairbrother 1991; Le Pennec et al. 2007; Yang and Guo 2006). Furthermore, polyploidy
is common in the somatic tissue of many Molluscs (Tokmakova et al. 2006; Tabakova et al.
2005; Anisimov et al. 1995). Within several of the terminal taxa in our analysis, we recognized
members with approximately twice the number of chromosomes as the mode for that family;
these are probably also a consequence of more recent whole genome duplications. We could
expand our analysis to include these events by using a more refined phylogeny with genera
or species at the tips, instead of the terminal taxa we used.

Overall we observed a strong phylogenetic signal in mollusc chromosome number with
no tendency for the number of chromosomes to increase or decrease. Some researchers
had previously noticed that taxonomic groups within the Mollusca tended to have similar
numbers of chromosomes (Patterson and Burch 1978; Nakamura 1985), as our analysis
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confirmed (p<<0.001). Many researches have observed a tendency for chromosome numbers
to either increase (e.g. Patterson and Burch 1978) or decrease (e.g. Butot and Kiauta 1969;
AHMED 1976). Maximum likelihood analysis of our data set suggested that the rate of
chromosome addition was less than the rate of chromosome loss for two sets of branch lengths
and greater for the third set. However, in no case was the trend greater than 6.4% of the total
rate. Furthermore a likelihood model in which the chromosome numbers were expected to
stay stable was a better fit for our data than one in which the chromosome loss and addition
rates were allowed to vary independently and thus create a trend, although the whole genome
duplications could be construed as representing a positive trend. We also observed that
several families contained species with approximately one half the number of chromosomes
as the mode. In contrast to doubling, there is no known biological mechanism to halve
the number of chromosomes. It is possible that shortly after a whole genome duplication
some lineages shed the redundant half of their genome, or that the half chromosome counts
actually represent the primitive state for these families and the larger chromosome counts
are actually derived as a consequence of a whole genome duplication. However, both these
scenarios are contradicted by the fact that these terminals are nested in larger clades in
which the other terminals have modes similar to their own. A more intensive phylogenetic
analysis of Nucella also determined that the half chromosome count in N. lapillus is the
derived state (Collins et al. 1996). This phenomenon bears further investigation.

We used the birth-death process as a null-model and as a model for the background
rate of change in chromosome numbers. This seems an appropriate model as aneuploidy is
usually a consequence of nondisjunction; thus both gains and losses are likely to occur at
approximately equal rates for any random chromosome. Furthermore, as the birth-death
process assumes equal rates of change, it is an appropriate null model for detecting variation
in such rates. From a practical stand point the birth-death model allows us to calculate
transition probabilities for meristic data using relatively few parameters. However, there are
several ways in which the evolution of chromosomes does not reflect the birth-death process.
Selective and mechanical constraints will place both upper and lower bounds on the process
of chromosome number evolution (Roth et al. 1994), while the birth-death process will allow
the chromosome numbers to vary from zero to infinity. Also it is highly unlikely that rates
of chromosome duplication and loss would remain constant through 500 million years of
evolution; especially after whole genome duplications, when duplicate chromosomes would
likely be lost, as they would be redundant and thus not protected by natural selection (Lynch
and Conery 2000, 2003). It would be nice to use a more complex model that accounts for
some of these possibilities, but transition probabilities are very difficult to calculate under
such models. Nevertheless, we were unable to reject the birth-death process as a model for
the back-ground rates of chromosome evolution in our data set by comparing its maximum
likelihood to the maximum likelihoods of 1000 simulations with whole genome duplications
on the same branches on which we deduced duplications occurred from our actual data and
1000 simulations with random duplications, in which at least one occurred on a minimum
length branch. Thus, the birth death process is a sufficient approximation of the background
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rate of chromosome number evolution for our data set.
Mayrose et al. (2010) described a similar method to deduce the phylogenetic location

of paleopolyploidies, and used a maximum likelihood implementation of it to analyze
chromosome counts from several plant taxa. Rather than analytically calculating the
probability of a transition under a birth-death process, they established a rate matrix and
approximated the exponent of that rate matrix to calculate the transition probabilities. Thus
they had to limit the number of possible states, but as a consequence were able to easily
use a number of models. They used models in which the rate of increase and decrease were
independent of the number of chromosomes and models in which those rates were linearly
related to the number of chromosomes; the birth-death process is a specific case of the latter
model. They found that the models with constant rate were a slightly better fit for the
data. They were also able to include rates for genome doubling, genome halving and genome
increasing by 50%. As they used a rate matrix, they were able to integrate over al possible
timings of a genome duplication and include the possibility of multiple duplications on a
single branch, while we used numerical integration to make our calculations. Finally they
were able to exclude the possibility of reaching zero chromosomes from their models, while
we merely assumed that the process did not reach zero chromosomes on any branch in the
phylogeny. They compared models using the AIC and calculated the posterior probability
of a duplication on any branch of the tree in the same manor that we did.

We used a mix of maximum likelihood and Bayesian methods in our analysis. Parameter
values were fit by maximum likelihood, and the maximum likelihood values were used to
compare models. However, we calculated the posterior probability of a duplication on
each branch, as in a Bayesian analysis, but when conditioned on the maximum likelihood
parameter values. This is similar to the method used by Pagel (1999) to reconstruct the
state of discrete characters at the nodes of a phylogeny and by Yang (1994) and Nielsen and
Yang (1998) to determine in which evolutionary rate category different nucleotides belonged.
In this analysis the posterior probability for a whole genome duplication is a measure of our
confidence that the number of chromosomes doubled at that location in the phylogeny within
the context of our model given our observed chromosome counts (see Ellison 2004).

Branch lengths are critical to any phylogenetic method that relies on probabilistic models
of character change, as changes on short branches will be considered less probable than
changes on long branches (e.g. Diaz-Uriarte and Garland 1998; Mayrose et al. 2004). In
this study we used a set of branch lengths derived exclusively from the fossil record. This
provided us with a set of branch lengths based entirely on time. We were lucky to be studying
a group with a relatively strong fossil history. Nevertheless, the fossil record is incomplete
and can only supply minimum ages for nodes; it may be more accurate to include data from
molecular branch lengths as well (see Rambaut and Bromham 1998; Drummond et al. 2006;
Sanderson 2003), but this data was not available to us. Although these branch lengths are
imperfect they provide a strong general outline for the major features of the tree, such as
the relatively long terminal branches. We ended up with several zero length branches as a
consequence of the incomplete fossil record and created three different sets of branch lengths
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with those zero length branches expanded by different amounts. All three sets of branch
lengths had essentially the same results, only disagreeing on the exact location of the whole
genome duplication in the Stylommatophora.

It is possible that the events we identified within our phylogeny are not in fact whole
genome duplications. They may represent large increases in chromosome number that
were not actual doublings. However, if this were the case, then the posterior probabilities
would likely be diffusely spread over several branches, whereas in our analysis the posterior
probabilities are quite strong on individual branches. In fact the one situation in which the
distribution of the posterior probabilities is more diffuse, in the Cephalopods, is likely a
consequence of a different process operating on the genome. Even if these events do actually
involve an exact doubling in the number of chromosomes, they are not necessarily whole
genome duplications. To confirm that these instances are in fact paleopolyploidy events will
require intensive analysis of whole genome sequences (e.g. Wong et al. 2002; Woods et al.
2005).

This method could also be applied to infer the phylogenetic position of paleopolyploidies
in other taxa. As long as the background rate of chromosome number evolution is low
enough relative to the time spans involved, it should be possible to detect a whole genome
duplication from comparative analysis of chromosome counts. However, background rates
of change in chromosome number may be particularly low in gastropods (Chambers 1987);
in other taxa the background rate may drown out the signal of whole genome duplications.
It would also be possible to apply this method to counts of gene family members or large
syntenic regions, which we would also expect to double after a whole genome duplication.
Much support for paleopolyploidy has come from the identification of repeated syntenic
regions (e.g. Holland et al. 1994; Abi-Rached et al. 2002; Wong et al. 2002). To better detect
the signal of whole genome duplication, one should simultaneously analyze counts for some
combination of multiple regions, multiple gene families and chromosomes.

This study only represents the first step in the study of molluscan paleopolyploidies.
This analysis can help to guide future researchers in the selection of molluscan taxa for
whole genome sequencing (Figure 3.1). The study of whole genome duplications requires
multiple genome sequences (Wong et al. 2002; Woods et al. 2005). Currently Lottia gigantea
is the only mollusc for which a whole genome sequence is available (Chapman et al. 2007).
In the future researchers interested in paleopolyploidy in the Mollusca should select taxa
that diverged shortly after and shortly before the genome duplications we have identified
(Figure 3.1). Researchers interested in paleopolyploidy in non-molluscan taxa could use the
methods that we have developed in this paper to guide them in their selection of taxa for
whole genome sequencing by identifying branches on which the number of chromosomes or
members of gene families have doubled.
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Chapter 4

Using the Gene Phylogeny to Detect
Changes in Gene Duplication and
Loss Rates on a Taxon Phylogeny

4.1 Introduction

Gene families are clades of related genes. Some gene families are found in only a single
taxon while some are found in every taxon in the tree of life. In any given genome a gene
family may consist of only a single gene or as many as hundreds. Gene family diversity
is created by two basic processes, gene duplication and taxon speciation. Genes can be
duplicated within a genome either through tandem duplication, duplications of large pieces of
chromosomes or even whole chromosomes and through the integration of reverse transcribed
mDNA sequences; all the descendants of one copy of a gene created by a duplication are
paralogous to all the descendants of the other copy (Fitch 1970). When two taxon lineages
diverge each gene in the genome of their last common ancestor also diverges into two lineages,
one in each descendant taxon lineage; two genes with a single common ancestor in the most
recent common ancestor of the genomes in which they are found are called orthologous
(Fitch 1970). Orthologs are by definition always found in different genomes. On the other
hand all members of a gene family in a single genome are by definition paralogs, but not
all paralogs are found in the same genome. Paralogs may occur in different genomes if the
most recent common ancestor of those genomes had a pair of paralogous genes, A and B.
After undergoing a speciation each of those paralogs would be passed on to both descendant
lineages, the descendants of A in one taxon lineage would be orthologous to the descendants
of A in the other taxon lineage and paralogous to all the descendants of B in either taxon
lineage.

Ohno (1967, 1970) proposed that changes in the size of gene families are extremely
important for the evolution of organisms throughout the tree of life, but only recently, as a
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number of fully sequenced genomes have become available, has the evidence accumulated to
support that view (Lynch and Conery 2003; Taylor and Raes 2004). Several gene families
have expanded in a single taxon clade in which they have come to fill a new biological role
(Nei and Rooney 2005; Taylor and Raes 2004; Lespinet et al. 2002). Furthermore rates of
gene loss are better correlated with expression levels and the severity of knock out mutations
than are rates of nucleotide substitution (Krylov et al. 2003). Therefore, it is important to
develop methods that allow us to test for different rates of gene lineage gain and loss in
order to identify gene families that have undergone major changes in evolutionary patterns
and to confirm correlations between gene gains and losses and other biological or ecological
changes.

Several methods have been developed that use the birth-death process to calculate the
likelihood of different rates of gene duplications and losses on branches of a taxon phylogeny
given counts of gene family members in different taxa as data. Lynch and Conery (2003)
used the birth-death process to estimates rates of gene gain and loss from gene counts and
identified significant interspecies differences in those rates. Hahn et al. (2005) showed how
to use gene counts to calculate the likelihood of a set of birth death parameters for which λ
and µ are equal and infer branches of a taxon tree on which an exceptionally large number of
gene duplications occurred in a given gene family. They developed a program to execute this
model (De Bie et al. 2006), and using that software have detected a great deal of variation
in the rate of gene turn over between taxon lineages and taxon lineage specific differences
in the rates of expansion and loss between different gene families (Demuth and Hahn 2009).
Iwasaki and Takagi (2007) developed a birth-death model of gene count evolution with rate
variation between branches which could calculate the likelihood of ancestral gene content
reconstructions at the nodes of a taxon phylogeny; and they showed that birth-death rates
differ between lineages. Cohen and Pupko (2010) have developed a likelihood model based
on gene counts that includes parameters for birth, death and horizontal transfer between
taxon lineages; and can calculate the posterior probability of the number of gains and losses
along a branch of the taxon tree.

It would be ideal if we could include not only gene counts but also the gene tree in our
analysis of gene gain and loss. The gene tree contains much information that is lost in gene
counts especially regarding the number of reconstructed gene lineages present at the internal
nodes of the taxon tree. Analyses done with gene counts alone have difficulty distinguishing
whether differences in gene content between two sister taxa are a consequence of gene loss
in the lineage with fewer genes or gene gains in the lineage with more genes. However, the
pattern of orthologous gene relationships should improve our ability to infer ancestral gene
content and thus distinguish gene gains from gene losses, as well as more accurately infer
birth-death parameters. In fact, when we compare a gene tree and a taxon tree we can
often infer several gene lineages that must have been lost. This inference of lost lineages
is possible when we analyze a gene phylogeny, but not when we only use gene counts, and
should greatly improve our ability to estimate µ.

In order to compare a gene tree to a taxon tree one must first generate a reconciliation,
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a hypothethis about where on the taxon tree the internal nodes of the gene tree occurred.
For any particular reconciliation, the nodes of the gene tree that separate paralogous genes
occurred on branches of the taxon tree, while those nodes that separate orthologous genes
occurred at internal nodes of the taxon tree. The term reconciliation was originally defined
by Goodman et al. (1979), who provided an algorithm for inferring the maximum parsimony
reconciliation, that is to say the reconciliation with the fewest number of gene duplications
and losses. They also noted that incongruence between a gene tree and a taxon tree may
be from an incorrect gene phylogeny, and suggested that the number of gene duplications
and losses should be added to the number of nucleotide changes when inferring a gene tree
by parsimony. Page (1994) pointed out that the gene tree-species tree problem is the same
as the host-parasite problem and the taxon tree-area cladogram problem in biogeography
and described a parsimony algorithms for comparing the fit of trees. Page and Charleston
(1997) suggested that the number of gene duplications and losses inferred from a maximum
parsimony reconciliation of multiple gene trees be used as an optimality criterion for inferring
the best taxon tree. They also distinguish between paralogous splits that we can be certain
happened because of multiple paralogs in a single genome, as oppose to those that we can
only infer as a consequence of incongruity between the gene tree and the taxon tree, which
may actually be a consequence of either of those trees being incorrect. Cotton and Page
(2005) made an interesting use of the maximum parsimony reconciliation, in which they
constrained timing of potentially orthologous nodes of many gene trees to the appropriate
branches of the taxon tree and used those dates for rate smoothing. By comparing the
distribution of node times in those gene trees to simulated gene trees they concluded that
birth-death rates have not been constant through time.

Most modern methods of phylogenetic statistical analysis rely on likelihood calculations
that allow us to incorporate much of the uncertainty in parameter estimation, phylogeny
estimation and character reconstruction into an analysis in either a Bayesian or maximum
likelihood context. To incorporate a reconciliation into an analysis of the birth-death
process we would have to calculate the probability of a reconciliation given a taxon tree
and a set of birth death parameters. Arvestad, Lagergren and their collaborators have
shown how to calculate the probability of a reconciliation (Arvestad et al. 2003, 2009),
calculate the probability of a gene tree by summing over all possible reconciliations,
calculate the maximum likelihood reconciliation and sample from the distribution of possible
reconciliations (Arvestad et al. 2004, 2009). They have used their models to infer a gene tree
based on a gene sequence alignment and a taxon tree either by summing over all possible
reconciliations for each gene tree topology (Arvestad et al. 2004) or by considering the
reconciliation a nuisance parameter and juxtaposing the distance between gene nodes in the
reconciliation and the number of nucleotide changes along that branch with a relaxed clock
(Åkerborg et al. 2009). They have also used their model to infer the posterior probability
that a given node in a gene tree is in fact orthologous (Arvestad et al. 2003; Sennblad and
Lagergren 2009).

In order to infer differences in the birth-death process between branches of a taxon tree I
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implemented a reversible-jump Markov Chain Monte Carlo (MCMC) analysis to estimate the
posterior probability of a particular assignment of birth-death parameters to the branches
of a taxon tree given the taxon tree and a gene tree. An assignment is the particular
combination of taxon branches with the same birth-death rates. I essentially used the same
model as (Arvestad et al. 2009) to calculate the probability of a gene tree given a taxon tree
and a set of birth-death parameters by summing over every possible reconciliation, except
that I dealt with the prior distribution of genes at the root differently. I treated the number
of reconstructed gene lineages at the root and the values of the birth-death rates as nuisance
parameters and summed over them in the MCMC. In section 4.2 I derive the probability
of a gene tree given a taxon tree using a different method than (Arvestad et al. 2009), and
a different prior for the root. In section 4.3 I describe the reversible-jump MCMC used to
estimate the posterior probability of rate assignments to the branches of the taxon tree.

I wanted to demonstrate that a model which relied on a gene tree had more power to
detect differences in the birth-death process than did a model which used only gene counts as
data. Therefore I simulated a number of gene trees on a very simple taxon tree using a wide
range of birth-death parameters and analyzed them for differences in the birth-death rate
using both the gene tree model around which this paper is based and a gene count model.
The gene count model calculated the probability of a particular set of gene counts in the
same way as Hahn et al. (2005). However, I evaluated the likelihoods using a reversible-jump
MCMC that closely matched the one used to evaluate the gene tree model, and I included the
parameter space in which λ and µ are not equal. In section 4.4 I describe these simulations,
their analyses and the results.

Phylogenies of real gene families rarely have a fully resolved topology. Therefore, it is
important to consider the uncertainty in the topology reconstruction, when evaluating the
distribution of birth-death rates. I accomplished this by including the gene tree topology as
a nuisance parameter in my reversible-jump MCMC. Rather than calculate the probability of
the gene tree given the birth-death parameters and the taxon tree, I calculated the probability
of the gene sequences, such that the probability of the gene sequences given the gene tree
was calculated in the usual way and the prior distribution of the gene tree topology was
calculated from the taxon tree and the birth-death parameters. Thus, in estimating the
posterior distribution of the assignment of birth-death rates to the branches of the taxon
tree, I summed over the uncertainty in the gene tree topology. In section 4.5, I describe
how this calculation was made as well as analyses I did on two real gene families, a clade of
protein tyrosine kinase genes found in nematodes, fruit flies and humans, and the posterior
hox genes from nine bilaterian taxa.
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4.2 Model

4.2.1 Definitions

Definition of the Trees

The goal here is to calculate the probability that a phylogeny of genes, G0, evolved on a given
phylogeny of taxa, T0, given a set of birth-death parameters that apply to the evolution of
G0 on each branch of T0. Each tree has a topology and may or may not have a set of branch
lengths; furthermore, every gene that defines the terminals of G0 has been found in some
taxon that defines the terminals of T0. We assume that all the genes in G0 are monophyletic
with respect to the other genes found in the taxa of T0. Let T be any subtree of T0 and G
be any subtree of G0.

Let g be some point anywhere on G0. γ is any element of G0, and any G has three types
of elements: branches,

→

γ; nodes,
⊛

γ; and tips,
×

γ (Figure 4.1a). A fourth type of element is
called a connector

⋆

γi and can be either a tip or a node. Each γ is a set of points, g, on the
gene tree. For any given branch,

→

γi, the last point in the branch is referred to as
⋆

gi, and the
first point is

○

gi; at the end of that branch is a connector
⋆

γi. For any internal branch
→

γi there
are two descendant branches,

→

γi+ and
→

γi− , and the connector at the end of the branch is a
node,

⊛

γi. Each node is a set of only three points the last point of the branch immediately
preceding it and the first point of each of its descendant branches,

⊛

γi={
⋆

gi,
○

gi+ ,
○

gi−}. Therefore
we see that

→

γi ∩
⊛

γi ={
⋆

gi}, and
→

γi+ ∩
⊛

γi ={
○

gi+}. Furthermore the connector at the end of any
terminal branch,

→

γi, is a tip,
×

γi, which has only one element the last point in
→

γi, so that
×

γi = {
⋆

gi}. I will also define
→

γr as the root of the gene tree, so that
⊛

γr is the basal node of
the gene tree. We can see how these elements are sufficient to describe the entire gene tree,

so that G0 = {All γ}. Furthermore
→

G is the set of all the branches in G,
⊛

G is the set of all

the nodes in G,
×

G is the set of all the tips in G, and
⋆

G is the set of all the connectors in G,

so that
⋆

G =
⊛

G ∪
×

G and G =
→

G ∪
⋆

G. G(γ) is the subtree of G0 above γ, including γ, so that
G0=G(

→

γr).
The taxon tree, T0, has the same descriptors as the gene tree (Figure 4.1b). t is any point

on T0. τ is an element of T0:
→

τ is any branch in T0,
⊛

τ is any node in T0,
×

τ is any tip in T0,
and

⋆

τ is any connector in T0. An internal branch
→

τi has two descendant branches,
→

τi+ and
→

τi− , and a node at its terminal end,
⊛

τi. The last point on branch
→

τi is
⋆

ti and the first point

on the branch is
○

ti, and
⊛

τi={
⋆

ti,
○

ti+ ,
○

ti−}.
→

T is the set of all the branches in T ,
⊛

T is the set of

all the nodes in T ,
×

T is the set of all the tips in T , and
⋆

T =
⊛

T ∪
×

T .
→

τr is the root of the taxon
tree and

⊛

τr is the basal node. T (τ) is the subtree of T0 above τ including τ .

Definition of a Reconciliation

Although we know at what point the terminals of G0 occurred on T0, we do not know where
exactly all the other gs occurred (Figure 4.2). We will call a particular set of assumptions
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Figure 4.1: The definition of the elements for a) a gene tree, G(
→

γi), and b) a taxon
tree tree, T (

→

τ i). See text for a description of the various elements. The branches
→

γi,
→

γj ,
→

γk,
→

τ i,
→

τ j and
→

τ k were all named arbitrarily, but the name for every other
element of either phylogeny is necessitated by the topology and the names of the
other elements.

about where each γ occurred on T0 a reconciliation, ρ, and we will define ρ(g) as the t where
g occurred for reconciliation ρ. ρ(γ) is the set of all the elements in T0 through which γ
passes under reconciliation ρ, ρ(γ)={τ ∶ t ∈ τ, t = ρ(g), g ∈ γ}. Finally ρ(G) is the set of all
the ρ(γ) for every element in G, ρ(G)={ρ(γ) ∶ γ ∈ G}, thus ρ(G0) is a sufficient description
of an entire reconciliation. The reconciliations of the tips of the gene tree are taken as data
and thus are fixed for all reconciliations, such that ρi(

×

γ) = ρj(
×

γ) for any particular
×

γ if ρi
and ρj are different reconciliations.

We will only concern ourselves with the branch lengths of the taxon tree, and assume
that the lengths of the gene tree have no effect on our reconciliation. A more precise way to
say it is that no matter where exactly a particular point of the gene tree lies along a single
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Figure 4.2: Alternative reconciliations of the nodes and branches of a given taxon
tree and gene tree and the reconciliations of their tips. a) The taxon tree, T0, with

branch labels to the left of each branch, and a gene tree, G(
→

γj), with branch labels to
the right of each branch. The tip reconciliations that define the relationship between
the trees are shown in table form. b and c) Two possible reconciliations of these trees
based on the reconciliation between the tips of the trees. The gene tree is shown
within the taxon tree. Labels for nodes and branches of the taxon tree are shown to
the left of each element and labels for the branches of the gene tree are shown to the
right of each branch. The tips of the taxon tree are not labeled and are presumed
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to occur at the ends of the terminal branches. Nodes of the taxon tree are shaded
gray. The reconciliations of all the elements of the gene tree are shown in table
form. The reconciliations of the tips of the gene tree do not vary. b) The maximum
parsimony reconciliation in which each node of the gene tree occurs in the most
recent element of the taxon tree that it could possibly occur. c) An alternative

reconciliation in which
⊛

γj− occurs on
→

τ i and
⊛

γj occurs on
→

τ r.

branch of the taxon tree the probability of a reconciliation will be the same; P (ρ(g)= t1)=
P (ρ(g)=t2), if {t1, t2} ⊂

→

τ . It is possible to use a similar method to calculate the probability
of the reconciliation in which we do not consider this to be true, but instead calculate the
probability of the reconciliation of a node of the gene tree to each point along the node of
a taxon tree separately (Arvestad et al. 2003, 2009). Calculating the probability of each of
these reconciliations separately would allow us to compare the number of nucleotide changes
along a branch of the gene tree to the time at which it occurred on the taxon tree, which
is presumably an approximation of the true time (Åkerborg et al. 2009). However, it is
computationally much more burdensome, as it requires that the timing of each node of the
taxon tree be treated as an independent parameter. Under our method we calculate only
the probability that {

→

τ}=ρ(
⊛

γ), and not that t=ρ(
⋆

g), where:

P ({
→

τ}=ρ(
⊛

γi)) = ∫
t∈
→
τ
P (t=ρ(

⋆

gi))∂t

Possible Reconciliations

We will define R as the set of every possible ρ, and R(γ) as the set of all elements of the
taxon tree in which γ could be found, R(γ)≡⋃ρ∈R ρ(γ). Any particular element of the gene
tree can not be found on every element in the taxon tree. In particular we know that γ
could not be found on any subtree of T0 where any of the terminals descended from γ are

not found in the terminals of that subtree, so that R(γ)⊆{τ ∶ ⋃ρ(
×

G(γ)) ⊆
×

T (τ)}. In other
words any particular element of G0 must have occurred in a common ancestor of all the taxa
in which the descendants of that element were found. There is a hierarchy of dependence for
the reconciliations of the different types of elements (Figure 4.2): the reconciliations of the

tips of a gene tree, ρ(
×

G), are considered part of the data; the reconciliations of the nodes

of a gene tree, ρ(
⊛

G), are restricted to certain elements of the taxon tree by ρ(
×

G); and the

reconciliations of the branches of a gene tree, ρ(
⊛

G), are completely determined by ρ(
⊛

G).

Therefore ρ(
⋆

G) is a sufficient description of an entire reconciliation.
Under any particular reconciliation each node in the gene tree,

⊛

γ, may be either
orthologous or paralogous (Figure 4.2). When a gene is duplicated within a genome during
the evolution of a lineage, it creates a paralogous node in the gene tree. A

⊛

γ is considered
paralogous on a

→

τ if ρ(
⊛

γ)={
→

τ}. As with all elements, a
⊛

γ can only be paralogous in a common
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Figure 4.3: Different reconciliations of the tips of a gene tree constrain the
possible reconciliations available to the nodes of that tree. Each figure shows a
maximum parsimony reconciliation of a three terminal gene tree, G(

→

γj), on a three
terminal taxon tree, when we assume different reconciliations for the tips. The
reconciliations of the tips of the gene tree and the possible reconciliations of a node

of the gene tree,
⊛

γj , are described below each plot.
⊛

γj can only be orthologous

on taxon node
⊛

τ i in figure a); in all the other figures
⊛

γj must be a paralogous
divergence, although it could fall on multiple branches. Labels for nodes and
branches of the taxon tree are shown to the left of each element and labels for
the branches of the gene tree are shown to the right of each branch. The tips
of the taxon tree are not labeled and are presumed to occur at the ends of the
terminal branches. Nodes of the taxon tree are shaded gray. a) The descendants

of each basal branch descended from
⊛

γj are found in a different descendant

clade from
⊛

τ i, so that
⊛

γj can be found in that node or in any of the branches

101



below it. b) All the tips descended from
⊛

γj are found in
×

τ i+ , so that
⊛

γj can be

found in
→

τ i+ or in any of the branches below it. c) The tips descended from
⊛

γj are

all found in
×

τ i+ and
×

τ i− , but the descendants of
⊛

γj− are also found in both
×

τ i+ and
×

τ i− . Therefore
⊛

γj can be found only in
→

τ i and the the branch below it. d) The tips

descended from
⊛

γj are found in
×

τk as well as the descendants of
→

τ i. These tips are

arranged such that
⊛

γj can only be found in
→

τ r and not
⊛

τ r.

ancestor of all the taxa in which its descendant genes are found. On the other hand, when two
lineages diverge in the taxon tree from a speciation, they create an orthologous divergence
in every lineage of the gene tree present at that time, such that one of the two new gene
lineages is passed on in one of the descendant taxon lineages created by the the speciation
and the other new gene lineage is passed on in the other descendant of the speciation. We
consider a

⊛

γ orthologous in a
⊛

τi for a particular reconciliation if
⊛

τi ∈ ρ(
⊛

γ); in such a case
ρ(

⊛

γ) = {
⊛

τi,
→

τi,
→

τi+ ,
→

τi−}. Any given
⊛

γ can only be orthologous in the one
⊛

τ that is the most
recent common ancestor of all the taxa in which its descendant genes are found; and can only
be orthologous in even that one node if that

⊛

γ creates two clades, one of which has all of its
descendants in T (

→

τi+) and the other of which has all its descendants in T (
→

τi−) (Figure 4.3).

R(
⊛

γj) ∩
⊛

T0 = {
⊛

τi ∶⋃ρ(
×

G(
→

γj+)) ⊆
×

T (
→

τi+),⋃ρ(
×

G(
→

γj−)) ⊆
×

T (
→

τi−)}

∪ {
⊛

τi ∶⋃ρ(
×

G(
→

γj+)) ⊆
×

T (
→

τi−),⋃ρ(
×

G(
→

γj−)) ⊆
×

T (
→

τi+)}

If a node of the gene tree can be found in any element of the taxon tree, then it can be
found in any branch of the taxon tree that is ancestral to that element, but not in any node
ancestral to that element.

Every connector in the gene tree,
⋆

γ, has a most recent element of the taxon tree on which
all of its points can be reconciled (Figures 4.2b and 4.3); we will call that element ρMRC(

⋆

γ).
For every tip of the gene tree ρMRC(

×

γ) is obviously the tip of the taxon tree in which that
that gene was found. For a node of the gene tree ρMRC(

⊛

γ) can either be a node of the taxon
tree in which it is orthologous or a branch of the taxon tree, if it can not be orthologous.

An individual branch of the gene tree,
→

γ, can be found in any number of elements of the
taxon tree. Imagine that a lineage of the gene tree is present during a speciation in the taxon
tree, so that it is split into two descendant lineages, one in each of the taxon lineages created
by the speciation. If one of these gene lineages is completely lost, then there will be only a
single lineage in the reconstructed gene tree spanning the branch of the taxon tree before
the speciation, the node of the taxon tree that represents the speciation and the branch of
the taxon tree in which the gene lineage survives. In this way, a branch of the gene tree can
theoretically pass through many consecutive elements of the taxon tree.

In order for a branch of a gene tree,
→

γj, to be present in a given branch of the taxon
tree,

→

τi, it need only be true that all the descendants of
→

γj are found in the descendants of
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Figure 4.4: Different ways in which a branch of the gene tree can be reconstructed
in a node of a taxon tree. Labels for nodes and branches of the taxon tree are shown
to the left of each element and labels for the branches of the gene tree are shown
to the right of each branch. The tips of the taxon tree are not labeled and are
presumed to occur at the ends of the terminal branches. Nodes of the taxon tree are

shaded gray. The elements of the taxon tree immediately surrounding
⊛

τ i in which
→

γj is reconciled are listed below the figure. a)
→

γj ends in an orthologous gene split

in
⊛

τ i. b)
→

γj starts in an orthologous gene split in
⊛

τ i. c)
→

γj passes through
⊛

τ i as it
goes from

→

τ i to
→

τ i+

→

τi. However, in order for
→

γj to be present in a given node of the taxon tree,
⊛

τi, one of two
things must also be true (Figure 4.4).

→

γj may be found in
⊛

τi, if
⊛

γj, the node at the end of
→

γj, is orthologous in
⊛

τi; we have already discussed what conditions must be met in order for
this to be a possibility.

→

γj could also be present in
⊛

τi if it passed from that node into one
of its descendant branches, either

→

τi+ or
→

τi− ; we have also already discussed what must be
true in order for

→

γj to be found in a given branch of the taxon tree. These conditions can
be summarized as so:

R(
→

γj) ∩
⊛

T0 ={
⊛

τi ∶⋃ρ(
×

G(
→

γj+)) ⊆
×

T (
→

τi+)} ∪ {
⊛

τi ∶⋃ρ(
×

G(
→

γj+)) ⊆
×

T (
→

τi−)}

∩ {
⊛

τi ∶⋃ρ(
×

G(
→

γj−)) ⊆
×

T (
→

τi−)} ∪ {
⊛

τi ∶⋃ρ(
×

G(
→

γj−)) ⊆
×

T (
→

τi+)}

If a branch of the gene tree can be found in any element of the taxon tree, then it can be
found in any other element of the taxon tree that is ancestral to that element.

If for a particular reconstruction
→

γ starts in
→

τi and passes through
⊛

τi into
→

τi+ , then
{
→

τi,
⊛

τi,
→

τi+} ⊆ ρ(
→

γ) (Figure 4.4c). On the other hand if
→

γ has its base in a reconstructed
orthologous gene split in

⊛

τi and continues on in
→

τi+ , then {
⊛

τi,
→

τi+} ⊆ ρ(
→

γ), but
→

τi ∉ ρ(
→

γ)
(Figure 4.4b). Furthermore, if

→

γ is found in
→

τi and ends in an orthologous gene node at
⊛

τi, then {
⊛

τi,
→

τi}⊆ρ(
→

γ), but {
→

τi+ ,
→

τi−}⊆ρC(
→

γ) (Figure 4.4a). Therefore, if
→

γ is found at the end
of

→

τi, then {
→

τi,
⊛

τi} ⊆ ρ(
→

γ), whether it continues through into a descendant taxon lineage or
ends in an orthologous gene node at

⊛

τi (Figure 4.4a and c); and if
→

γ is found at the beginning
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Figure 4.5: Moving nodes of the gene from their maximum parsimony reconciliation
position increases the number of events necessary to explain the evolution of the
gene tree. All three plots show the same gene tree and taxon tree with the same
reconciliation of the gene tree tips, but each plot shows an alternative reconciliation
of the gene tree nodes. Labels for nodes and branches of the taxon tree are shown to
the left of each element and labels for the branches of the gene tree are shown to the
right of each branch. The tips of the taxon tree are not labeled and are presumed to
occur at the ends of the terminal branches. Nodes of the taxon tree are shaded gray.
Gene lineages which did not survive to the present but we can infer must have been
present at some time and then lost are shown as dashed lines. The reconciliations
of the nodes are shown in text form below each tree. a) The maximum likelihood
reconciliation, we can infer at minimum one gene duplication and one gene loss. b)
⊛

γj+ has been moved down to
→

τ i from a paralogous position on
→

τ i+ . This increases

the number of inferred gene losses by one. c)
⊛

γj has been moved down to
→

τ r from

an orthologous position on
⊛

τ r. This increases the number of inferred gene losses by
two and the number of gene duplications by one.

of
→

τi+ , then {
⊛

τi,
→

τi+} ⊆ ρ(
→

γ), whether
→

γ survived through from an ancestral taxon lineage or
starts in an orthologous gene node at

⊛

τi (Figure 4.4b and c).

Maximum Parsimony Reconciliation

If we were to compare reconciliations using maximum parsimony as an optimum criterion
it is clear which reconciliation would be best (Goodman et al. 1979) (Figure 4.5). Every
potentially orthologous gene node would be found as an ortholog in the most recent common
ancestor of all the taxa within which the descendants of the gene node were found. Gene
nodes which can not be orthologous would be found in the branch immediately ancestral to
that most recent common ancestor. Branches would obviously be spread between the nodes
that define them. Any other reconciliation would be worse as it would add unnecessary
events. If a node is found on a branch that is not the most recent possible, then there will
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have to be additional deaths of gene lineages because as a branch of the gene tree passes
through an additional node of the taxon tree, a gene lineage must die in the taxon clade
in which the reconstructed gene lineage is not found. Thus if ρ is the maximum parsimony
reconciliation, then ρMRC(

⋆

γ)∈ρ(
⋆

γ) for every
⋆

γ.

Number of Reconstructed Lineages

A value of particular interest is the number of reconstructed lineages in a gene subtree
that are alive at a certain point on the taxon tree under a given reconciliation. I will
call the number of lineages in tree G(γj) alive at the end of taxon branch

→

τi that survive
to the present,

⋆

ni(γj), and the number alive at the start of that branch
○

ni(γj). So that
⋆

ni(γj) = ∣{g ∶ g ∈⋃G(γj), ρ(g)=
⋆

ti}∣, and
○

ni(γj) = ∣{g ∶ g ∈⋃G(γj), ρ(g)=
○

ti}∣. Furthermore, I

will call the number of tips in G(γj) alive in the present
×

n0(γj), so that
×

n0(γj) = ∣
×

G(γj)∣.

I will also introduce a term
⋆

Ni(γ), the number of gene lineages descended from γ, that
are reconstructed or not and that are alive at the end of taxon branch τi. This value has
no equivalent relationship to elements of the gene tree as the gene tree only consists of

reconstructed lineages; however we can be certain that
⋆

Ni(γ)≥
⋆

ni(γ).
It is also important to know the minimum and maximum values that

⋆

ni(γj) can take.
At any point on the taxon tree in which γj could be reconstructed

⋆

ni(γj), can be no greater
than

×

n0(γj); if it were, then some lineages would have to be lost between that time and the
present and that is impossible for reconstructed lineages. I will call the minimum number of
reconstructed lineages descended from

→

γj present at
⋆

ti,
⋆

nmin
i (γj). If

→

γj could be reconstructed

at any element descended from
⋆

ti then the node at the end of
→

γj could also have occurred

on that later element, and so there may still be as few as one gene lineage at
⋆

ti. On the
other hand, if

→

γj could not be reconstructed at
⊛

τi, then
⊛

γj must also occur before
⊛

τi, and
so

→

γj must have at least two descendants at the end of
→

τi. Furthermore, if the descendant

branches from
→

γj must also have more than one descendant each at
⋆

ti, then
→

γj can have
no fewer descendants, than the sum of the minimum number of descendants of each of its
descendant branches.

⋆

nmin
i (γj) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if
⊛

τi ∈ R(
→

γj)
⋆

nmin
i (γj+) +

⋆

nmin
i (γj−) if

⊛

τi ∉ R(
→

γj)

Equivalent Trees

The taxon tree is a labeled phylogeny, meaning that each tip of the tree is different from every
other tip, so that two trees with the same topology can be different if the distribution of their
tip labels are different and no two different subtrees of the same tree can be equivalent as they
must have different labels. In contrast to a labeled phylogeny, in an unlabeled phylogeny, all
tips are only distinguished by their topology, so that all trees and subtrees of any one tree
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with the same topology are equivalent to each other. The gene tree falls somewhere between
a labeled and an unlabeled phylogeny, so that we might call it “semi-labeled”. Not every tip
of the gene tree is completely different from every other tip, but at the same time not every
tip is the same. Tips of the gene tree are only equivalent if they are found in the same tip
of the taxon tree. Trees can also be distinguished from each other by their topology. Thus,
different subtrees can be equivalent if they have the same topology and their terminals were
found in the same terminals of the taxon tree.

We can determine if two subtrees of the gene tree are equivalent using these simple rules.
Tips of the gene tree are equivalent if the genes that define those tips were found in the same
taxon, G(

×

γi) ≅G(
×

γj) ↔ ρ(
×

γi) = ρ(
×

γj). Trees that start in a node are equivalent if each of
the clades descendant from one of those nodes are equivalent to one of the clades descended
from the other node,

G(
⊛

γi)≅G(
⊛

γj)↔ G(
→

γi+)≅G(
→

γj+) and G(
→

γi−)≅G(
→

γj−)

or G(
→

γi+)≅G(
→

γj−) and G(
→

γi−)≅G(
→

γj+)

Of course trees descended from a branch are equivalent if the trees descended from their
connectors are equivalent, G(

→

γi) ≅G(
→

γj) ↔ G(
⋆

γi) ≅G(
⋆

γj). It goes without saying that a
subtree is equivalent to itself.

4.2.2 The Probability of a Gene Being Lost

The first step in calculating the probability of a gene tree evolving on a taxon tree is to
calculate the probability that a single gene present at some point on the taxon tree left no

descendants in the sampled taxa. We will define
⋆

Ei(ti) as the probability that a single gene
lineage alive at ti on

→

τi will have no descendants alive at
⋆

ti. Furthermore we will define
E0(ti) as the probability that a gene at ti will leave no descendants in any of the terminals
of T0; E0(ti) is the same as the probability that no descendant genes were found in the tips
of T (

→

τi), because we are assuming that there is no horizontal transfer of genes, so that a
gene at ti could not leave descendants at any point of T0 that is not descended from ti. The
reasoning behind (2.10) assumes only that a TVBD applies between tk and tj and that all
lineages alive at time tj will have the same probability of being lost by time ti. Therefore:

1 −E0(ti) =
(1 −E0(

⋆

ti))(1 −
⋆

Ei(ti))

1 −
⋆

Bi(ti)E0(
⋆

ti)
(4.1)

where
⋆

Bi(ti) is the probability of one reconstructed lineage at ti leaving more than one
lineage at

⋆

ti. If we assume that a CRBD operates on each branch of the taxon tree, then

we can use (2.19) and (2.20) to calculate
⋆

Ei(ti) and
⋆

Bi(ti) respectively. We could of course
also use the DTBD to solve for these values under any TVBD.
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When
⋆

τi ⊂
×

T0 then E0(
⋆

tj) = 0, but when
⋆

τi ⊂
⊛

T0 then E0(
⋆

tj) can not be calculated so
easily. The probability that a single gene lineage present at the end of some internal branch
on the taxon tree,

⋆

ti, is not found in any of the terminals of the taxon tree is the probability
that the gene was lost in both descendant lineages.

E0(
⋆

ti) = E0(
○

ti+) ×E0(
○

ti−) (4.2)

Once we know E0(
⋆

ti), we can use (4.1) to calculate E0(ti) for any ti in
→

τi. Furthermore,
○

ti+
and

○

ti− will at the base of
→

τi+ and
→

τi− respectively, and so we can calculate the probability of
a lineage being lost from either of those points using (4.1). Therefor, we can calculate E0(t)
for any t by starting at the tips of the taxon tree and proceeding backwards down the tree,
using (4.1) to calculate the values of E0 for the points at the base of the branches and (4.2)
to calculate E0 for the points at the end of each internal branch.

4.2.3 Probability of a Reconciliation

The next step is to show how to calculate the probability of a gene tree and a given
reconciliation of that tree on the taxon tree. As I mentioned before, it is possible to calculate
this probability assuming that the paralogous nodes of the gene tree occurred at specific
times along the branches of the gene tree (Arvestad et al. 2009), which would be useful for
comparing the amount of genetic change in the genes to the actual time that has elapsed
(Åkerborg et al. 2009). However, here I will focus only on the branch of the taxon tree on
which a certain gene node occurred, not on the exact time along that branch. I will show
how to calculate certain elements of this probability. These elements could be combined into
the total probability of a reconciliation fairly easily, but I will not show how to make that
calculation here, as we are uninterested in that probability. These elements will instead be
used in the next section to show how to calculate the probability of a gene tree summed over
all possible reconstructions.

Probability Mass of Reconstructed Gene Lineages at a Taxon Node

Let us imagine a reconciliation of G0 on T0 in which a given
→

γ is present at the base of
some branch on the taxon tree

→

τi+ . We want to know the probability that
→

γ left
⋆

ni+(
→

γ)
reconstructed lineages at the end of

→

τi+ . We can see that (2.35), (2.36) and (2.11) will apply
along

→

τi+ so long as a TVBD operates between the times when we count the number of
reconstructed lineages, even if the TVBD does not operate between the end of that branch
and the time at which we observe the lineages. Therefore, we can use (2.36) to calculate
the probability that a single reconstructed gene lineage alive at the base of

→

τi+ will leave
⋆

ni+
reconstructed lineages at the end of that branch.

P (
⋆

ni+(
→

γ)∣{
⊛

τi,
→

τi+} ⊆ ρ(
→

γ)) = (1 −B0(
○

ti+ ,
⋆

ti+))(B0(
○

ti+ ,
⋆

ti+))
⋆
ni+(

→
γ)−1 (4.3)
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We can then use (2.11) to calculate B0(
○

ti+ ,
⋆

ti+).

B0(
○

ti,
⋆

ti) =

⋆

Bi(
○

ti)(1 −E0(
⋆

ti))

1 −
⋆

Bi(
○

ti)E0(
⋆

ti)
(4.4)

If we assume that a CRBD operates on each branch, then we can calculate
⋆

Bi(
○

ti) using
(2.20) and we can calculate E0(

⋆

ti) using the method described in subsection 4.2.2.

Probability of a Gene Topology on a Taxon Branch

The probability in section 4.2.3 does not solve the entire probability for the portion of a
gene tree reconstructed on a branch of the taxon tree. We not only need to calculate the
probability of a single gene lineage leaving a certain number of reconstructed lineages at
some later time, but also the probability of the branching pattern for that portion of the
tree. The probability that a node with n descendant lineages splits into two clades with m
and n−m lineages is the same for any positive value of m less than n (Slowinski and Guyer
1993). Therefore the probability of any particular split between lineages for a given node of
size n is 1/(n−1), when the two descendant gene lineages are distinguished from each other.

P (
⋆

ni(
→

γj+)∣
⋆

ni(
⊛

γj), ρ(
⊛

γj)=
→

τi) =
1

⋆

ni(
⊛

γj) − 1
(4.5)

We can multiply together this probability for each node and (4.3) in order to calculate the

probability of the portion of the gene tree starting with one lineage at
○

ti and ending at
⋆

ti.

Probability of a Reconciliation at a Taxon Node

If we have a reconstructed gene lineage at some point ti in the middle of a branch
→

τi, then
we know that that lineage will still be present at the instant immediately after ti, as it must
survive from then until the present. However, if that same lineage is present at the base
in a node

⋆

ti, then there are two points immediately after that point,
○

ti+ and
○

ti− . It need
not survive from the base of both those branches until the present; it only has to survive
in one in order to be observed. For a reconciliation in which {

→

τi,
⊛

τi} ⊆ ρ(
→

γj), if
⊛

τi ∈ ρ(
⊛

γj),
then

⊛

γj is an orthologous divergence and its descendants must survive to the present in the
descendants of

→

τi+ and
→

τi− . On the other hand if
→

τi+ ∈ρ(
→

γj), then its descendants will survive
in the descendants of

→

τi+ , but not the descendants of
→

τi− ; the opposite would obviously be
true if

→

τi− ∈ρ(
→

γj).
For a given

→

γ that occurs at a
⊛

τi we can calculate the probability of
⊛

γ being an orthologous
duplication at

⊛

τi as the probability that it survived in both descendant lineages, given that
it survived in at least one (Figure 4.4a).

P (
⊛

τi ∈ ρ(
⊛

γ)∣{
→

τi,
⊛

τi} ⊆ ρ(
→

γ)) =
(1 −E0(

○

ti+))(1 −E0(
○

ti−))

(1 −E0(
⋆

ti))
(4.6)
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On the other hand, if we have a
→

γ that occurs at a
⊛

τi, we can calculate the probability that
it would survive in the descendants of

→

τi+ but not the descendants of
→

τi− , and thus not form
a node in the reconstructed gene tree (Figure 4.4c), as:

P (
→

τi+ ∈ ρ(
→

γ)∣{
→

τi,
⊛

τi} ⊆ ρ(
→

γ)) =
(1 −E0(

○

ti+))E0(
○

ti−)

(1 −E0(
⋆

ti))
(4.7)

It is obvious how we can reverse this equation for the case in which
→

γ survived in the
descendants of

→

τi− but not the descendants of
→

τi+ .

4.2.4 Probability of a Gene Tree

We now have enough information to calculate the probability of the entire reconstructed
gene tree given the species tree by summing over all the possible reconstructions.

P (G0∣T0) = ∑
ρ∈R

P (ρ(G0)∣T0)

However, summing over each individual reconstruction would be computationally
burdensome. Instead here I will demonstrate a more efficient way of calculating that sum.

Probability of a Gene Tree Starting at the Base of a Branch of the Taxon Tree

We will start with a reconstructed gene lineage that is present at the base of a branch of the
taxon tree. In order to calculate the probability of the gene tree descended from this lineage,
we can sum the probability of this gene tree evolving with a certain number of reconstructed
lineages at the end of this branch over all the possible numbers of lineages at the end of the
branch. We already determined the maximum and minimum number of descendant lineages
at the end of a branch in section 4.2.1.

P (G(
→

γj)∣{
⊛

τi,
→

τi+}⊆ρ(
→

γj)) =

×
n0(

→
γj)

∑
m=

⋆
nmin
i+
(
→
γj)

P (G(
→

γj),
⋆

ni+(
→

γj)=m∣{
⊛

τi,
→

τi+}⊆ρ(
→

γj)) (4.8)

The probability that a gene subtree, G(
→

γj), which starts with a single lineage at the
base of

→

τi+ , will evolve with
⋆

ni+(
→

γj) reconstructed lineages at the end of the branch can
then be broken down into the probability of the gene tree evolving given that there were
⋆

ni+(
→

γj) reconstructed lineages at the end of
→

τi+ , and the probability of their being
⋆

ni+(
→

γj)
reconstructed lineages at the end of

→

τi+ .

P (G(
→

γj),
⋆

ni+(
→

γj)∣{
⊛

τi,
→

τi+}⊆ρ(
→

γj))

= P (G(
→

γj)∣
⋆

ni+(
→

γj),
→

τi+ ∈ρ(
→

γj))P (
⋆

ni+(
→

γj)∣{
⊛

τi,
→

τi+}⊆ρ(
→

γj)) (4.9)
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We can calculate the probability of their being
⋆

ni+(
→

γj) reconstructed lineages at the end
of

→

τi+ using (4.3). The probability of the gene tree evolving given that there were
⋆

ni+(
→

γj)
reconstructed lineages at the end of

→

τi+ does not depend on where exactly
→

γj started on the
branch only that it is on the branch, because we have already determined the number of
lineages at the end of

→

τi+ , so all that affects the portion of the probability on that branch
is the topology of the gene tree, which will not be affected by the amount of time that has
passed.

If we know that a gene lineage
→

γj is present in
→

τi and has left a single reconstructed
lineage at the end of that branch, then that single lineage is also

→

γj and we can assume that
it was present in

⋆

τi, the element at the end of
→

τi. On the other hand if we know that a gene
lineage

→

γj was present in
→

τi and has left more than one reconstructed lineage at the end of
that branch, then we know that

⊛

γj must also have occurred in
→

τi and that it will have the
same number of descendant lineages at

⊛

τi, as
→

γj has. Therefore:

P (G(
→

γj)∣
⋆

ni(
→

γj),
→

τi ∈ρ(
→

γj)) =

⎧⎪⎪
⎨
⎪⎪⎩

P (G(
→

γj)∣{
⋆

τi,
→

τi}⊆ρ(
→

γj)) if
⋆

ni(
→

γj)=1

P (G(
⊛

γj)∣
⋆

ni(
⊛

γj), ρ(
⊛

γj)={
→

τi}) if
⋆

ni(
→

γj)>1
(4.10)

I will show how to calculate the probability of a gene tree starting at the end of a taxon tree
branch in section 4.2.4.

We can calculate the probability of a gene tree descended from a node G(
⊛

γj) given that
the node is found on

→

τi and has
⋆

ni(
⊛

γj) reconstructed lineages descended from it at
⊛

τi, by
summing over all the possible number of descendant lineages at

⊛

τi left by each of the branches
descended from

⊛

γj. The number of lineages descended from
⊛

γj+ and
⊛

γj− must sum to
⋆

ni(
⊛

γj),
furthermore neither branch can have fewer than one descendant or more descendants than
it has descendant genes in the present.

P (G(
⊛

γj)∣
⋆

ni(
⊛

γj), ρ(
⊛

γj)={
→

τi}) =
ω(

⊛
γj ,

⋆
ni(

⊛
γj))

∑
⋆
ni(

→
γj+)=α(

⊛
γj ,

⋆
ni(

⊛
γj))

P (G(
⊛

γj),
⋆

ni(
→

γj+)∣
⋆

ni(
⊛

γj), ρ(
⊛

γj)={
→

τi}) (4.11)

where
α(

⊛

γj,
⋆

ni(
⊛

γj))≡max(
⋆

nmin
i (

→

γj+),
⋆

ni(
⊛

γj)−
×

n0(
→

γj−))

and
ω(

⊛

γj,
⋆

ni(
⊛

γj))≡min(
×

n0(
→

γj+),
⋆

ni(
⊛

γj) −
⋆

nmin
i (

→

γj−))

because not only are the values of
⋆

ni(
→

γj+) constrained by their own minimum and maximum
values, but they also can not be so small or so great that

⋆

ni(
→

γj−) does not fall between its
minimum and maximum given a value for

⋆

ni(
⊛

γj).
We can then brake each of these probabilities down into the probability that the gene

tree would evolve given the number of lineages descended from
→

γi+ and
→

γi− at
⊛

τi and the
probability that there would be that many lineages descended from

→

γi+ and
→

γi− given that
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⋆

ni(
⊛

γj) were descended from
⊛

γi.

P (G(
⊛

γj),
⋆

ni(
→

γj+)∣
⋆

ni(
⊛

γj), ρ(
⊛

γj)={
→

τi})

=P (G(
⊛

γj)∣
⋆

ni(
→

γj+),
⋆

ni(
→

γj−), ρ(
⊛

γj)={
→

τi})P (
⋆

ni(
→

γj+)∣
⋆

ni(
⊛

γj), ρ(
⊛

γj)={
→

τi}) (4.12)

Since
⋆

ni(
⊛

γj) =
⋆

ni(
→

γj+)+
⋆

ni(
→

γj−), knowing
⋆

ni(
⊛

γj) and
⋆

ni(
→

γj+) is the same as knowing
⋆

ni(
→

γj+)
and

⋆

ni(
→

γj−). We can calculate the second probability in this equation using (4.5).
The probability of the gene tree above node

⊛

γj which is found on taxon branch
→

τi when
we know the number of reconstructed lineages descended from

→

γj+ and
→

γj− at
⊛

τi, is the same
as probability that the gene tree above

→

γj+ and the gene tree above
→

γj− would evolve given
the number of reconstructed lineages they have at

⊛

τi. We must also include another factor
in this calculation, as the assignment of the two branches descended from

⊛

γj to
→

γj+ and
→

γj− is
arbitrary. The tree above

⊛

γj could have evolved no matter which of its descendant branches
evolved into G(

→

γj+) so long as the other descendant branch evolved into G(
→

γj−). Thus we
must multiply this probability by two in order to account for both possibilities. However, if
G(

→

γj+) and G(
→

γj−) are equivalent then we should not multiply by two as both descendant
branches have only one tree that they can evolve into. To account for this factor, I will
introduce the new term k(

⊛

γj), where:

k(
⊛

γj) ≡

⎧⎪⎪
⎨
⎪⎪⎩

1 if G(
→

γj+) ≅ G(
→

γj−)

2 if G(
→

γj+) /≅ G(
→

γj−)

We can now use this to calculate the probability.

P (G(
⊛

γj)∣
⋆

ni(
→

γj+),
⋆

ni(
→

γj−), ρ(
⊛

γj)={
→

τi})

= k(
⊛

γj)P (G(
→

γj+)∣
⋆

ni(
→

γj+),
→

τi ∈ρ(
→

γj+))P (G(
→

γj−)∣
⋆

ni(
→

γj−),
→

τi ∈ρ(
→

γj−)) (4.13)

These two probabilities can be solved using (4.10) creating a loop that will allow us to solve
for all the probabilities of gene nodes on a single branch of the taxon tree up to the node at
the end of that branch.

Probability of A Gene Tree Starting at the End of a Branch of the Taxon Tree

The probability of a gene tree starting at the end of a branch of the taxon tree depends on
what type of element is at the end of the taxon branch. If there is a node at the end of the
branch, then the gene lineage will survive on into at least one of the descendant lineages of
the taxon tree. On the other hand if there is a tip at the end of the branch of the taxon
tree, then the gene lineage has reached the present and must be a gene found in the taxon
that is represented by that tip of the taxon tree.

P (G(
→

γj)∣{
⋆

τi,
→

τi}⊆ρ(
→

γj)) =

⎧⎪⎪
⎨
⎪⎪⎩

P (G(
→

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj)) if
⋆

τi ∈
⊛

T0

P (G(
→

γj)∣{
×

τi,
→

τi}⊆ρ(
→

γj)) if
⋆

τi ∈
×

T0
(4.14)
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Calculating the probability of a gene subtree that has reached a terminal is trivial. If
the gene subtree consists of a single terminal lineage that ends with its tip in that tip of the
taxon tree, then we are certain that it would evolve as such. On the other hand, if a gene
tree has multiple tips or finishes in another tip of the taxon tree, then there is no way that
the gene tree could have evolved once we have reached the present. Therefor:

P (G(
→

γj)∣
×

τi ∈ρ(
→

γj)) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if
×

τi ∈ρ(
×

γj))

0 if
×

τi ∉ρ(
×

γj))
(4.15)

Thus we complete our calculation of a gene subtree evolving on the taxon tree.
Once a reconstructed gene lineage reaches a node of the taxon tree it will split into two

lineages, one in each of the descendant branches of the taxon tree. Then one of two things
can happen: both gene lineages can survive leaving an orthologous node in the gene tree;
or the gene lineage can go extinct in one of the descendant lineages of the taxon tree, so
that the original branch of the gene tree will continue on in the other descendant lineage of
the taxon tree. For any branch of an actual gene tree that could be reconciled to a given
node of the taxon tree only one of those options could have occurred, and we can determine
which one by using the rules established in section 4.2.1 (Figure 4.4). We can calculate the
probability of a gene tree given that the gene lineage at the base of the gene tree is reconciled
to the base of a node of the taxon tree by substituting in the probability that corresponds
to a possible reconciliation of the gene tree.

P (G(
→

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

P (G(
⊛

γj),
⊛

τi ∈ρ(
⊛

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj)) if
⊛

τi ∈R(
⊛

γj)

P (G(
→

γj),
→

τi+ ∈ρ(
→

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj)) if
→

τi+ ∈R(
→

γj)

P (G(
→

γj),
→

τi− ∈ρ(
→

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj)) if
→

τi− ∈R(
→

γj)

(4.16)

These options will cover all the possible ways that
→

γj could be reconciled to
⊛

τi and
→

τi
(Figure 4.4).

In order to calculate the probability that a lineage present at the base of
⊛

τi will leave
a reconstructed orthologous gene divergence at

⊛

τi and the gene subtree above
⊛

γj we should
separate it into the probability of the gene subtree above

⊛

γj given that
⊛

γj is orthologous in
⊛

τi and the probability that
⊛

γj is orthologous in
⊛

τi given that
→

γj is present at he base of
⊛

τi.

P (G(
⊛

γj),
⊛

τi ∈ρ(
⊛

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj)) = P (G(
⊛

γj)∣
⊛

τi ∈ρ(
⊛

γj))P (
⊛

τi ∈ρ(
⊛

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj)) (4.17)

The probability of the gene lineage forming a reconstructed orthologous node in the node
of the taxon tree can be calculated using (4.6). We can subdivide the probability of a gene
tree given that it starts as an orthologous node into the probabilities of the two subtrees
descended from the reconstructed node of the gene tree evolving in their respective clades of
the taxon tree.

P (G(
⊛

γj)∣
⊛

τi ∈ρ(
⊛

γj)) = P (G(
→

γj+)∣{
⊛

τi,
→

τi+}⊆ρ(
→

γj+))P (G(
→

γj−)∣{
⊛

τi,
→

τi−}⊆ρ(
→

γj−)) (4.18)
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Here I just arbitrarily defined G(
→

γj+) as the lineage of the gene tree that evolved T (
→

τi+) and
G(

→

γj−) as the lineage of the gene tree that evolved T (
→

τi−); their names are not relevant to
the calculation. Both of these probabilities can be solved using (4.8).

The probability a gene lineage at the base of a taxon tree node will pass through into
one of its descendant nodes and evolve into a given gene subtree can be broken down into
the probability of the subtree evolving in the one taxon lineage and the probability that a
gene lineage reconciled at the base of a taxon node would pass through into that branch of
the taxon tree.

P (G(
→

γj),
→

τi+ ∈ρ(
→

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj))

= P (G(
→

γj)∣{
⊛

τi,
→

τi+}⊆ρ(
→

γj))P (
→

τi+ ∈ρ(
→

γj)∣{
⊛

τi,
→

τi}⊆ρ(
→

γj)) (4.19)

These two probabilities can be solved for using (4.8) and (4.7). Thus completing the circle
and allowing us to pass on to another branch of the taxon tree.

Simplified Calculation

All of this reduces to a much simpler set of equations, as a number of probabilities cancel
out. Here I will show how to calculate Ψ(

⋆

γj,
→

τi) the probability of the gene tree above
→

γj
evolving, if we assume that there was one lineage at the beginning of

→

τi, but we do not
assume that lineage survives to the present. We can see that this value is closely related to
the probability of the gene tree if that lineage is reconstructed, which we calculated in the
previous two sections.

Ψ(
⋆

γj,
→

τi) =P (G(
→

γj)∣
○

Ni=1)

=P (G(
→

γj)∣
○

ni=1)P (
○

ni=1∣
○

Ni=1)

=P (G(
→

γj)∣{
⊛

τi,
→

τi+}⊆ ρ(
→

γj))(1 −E0(
○

ti)) (4.20)

I will now lay out an efficient method to calculate Ψ based on the derivations from the
previous two sections and assuming that the values of the birth-death parameters for the
evolution of the gene tree are constant on each branch of the taxon tree, even if they vary
between branches. Under this model we will call

→

λi the birth rate on
→

τi and
→

µi the death

rate on
→

τi. We will calculate Ψ(
⋆

γ,
→

τ) for every
⋆

γ ∈
⋆

G0, and for every
→

τ ∈
→

T0 ∩R(
⋆

γ).

Ψ(
⋆

γj,
→

τi) =
(1 −

→

ui)(1 −
→

ai
→

ui)

(1 −
→

uiE0(
⋆

ti))2

×
n0(

⋆
γj)

∑
m=

⋆
nmin
i (

⋆
γj)

Ψ(
⋆

γj,
→

τi,m) (4.21)

Where
→

ai=
→

µi/
→

λi and
→

ui is the probability of a single reconstructed lineage at the beginning
of

→

τi leaving more than one reconstructed lineage at the end of that branch, and can be
calculated using (2.21) or (2.22).
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Next we calculate Ψ(
⋆

γj,
→

τi,m) for each value of m between
⋆

nmin
i (

⋆

γj) and
×

n0(
⋆

γj).

Ψ(
⋆

γj,
→

τi,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if m = 1 and
×

τi ∈ R(
×

γj)

Ψ(
⋆

γj,
→

τi+)E(
○

ti−) if m = 1 and
→

τi+ ∈ R(
⋆

γj)

Ψ(
⋆

γj,
→

τi−)E(
○

ti+) if m = 1 and
→

τi− ∈ R(
⋆

γj)

Ψ(
⋆

γj+ ,
→

τi+)Ψ(
⋆

γj− ,
→

τi−) if m = 1 and
⊛

τi ∈ R(
⋆

γj)

ψ(
⊛

γj,
→

τi,m) if m > 1

(4.22)

And of course for every node of the gene tree we will calculate ψ(
⊛

γj,
→

τi, n) for every
possible value of n.

ψ(
⊛

γj,
→

τi, n) =
k(

⊛

γj)

n − 1

→

ui

1 −
→

uiE0(
⋆

ti)

ω(
⋆
γj ,n)

∑
m=α(

⋆
γj ,n)

Ψ(
⋆

γj+ ,
→

τi,m)Ψ(
⋆

γj− ,
→

τi, n −m) (4.23)

Where α(
⋆

γj, n) and ω(
⋆

γj, n) are calculated as in section 4.2.4.
This entire calculation is made most efficiently by doing a down pass of every branch

of the gene tree,
→

γj ∈
→

G0, such that we start with the terminal branches and finish with
the roots and the calculations for

→

γj+ and
→

γj− always precede
→

γj. For every
→

γj we make a
series of calculations for every branch of the taxon tree on which it could be reconstructed,
→

τi ∈
→

T0 ∩R(
→

γj), starting with the most recent branch and proceeding down to the root. For
every combination of

→

γj and
→

τi we calculate Ψ(
⋆

γj,
→

τi,
⋆

ni(
⋆

γj)) for every possible value of
⋆

ni(
⋆

γj)
and then Ψ(

⋆

γj,
→

τi). It will be possible to calculate ψ(
⋆

γj,
→

τi,
⋆

ni(
⋆

γj)) because we have already
calculated every possible Ψ(

⋆

γj+ ,
→

τi,
⋆

ni(
⋆

γj+)) and Ψ(
⋆

γj− ,
→

τi,
⋆

ni(
⋆

γj−)).

Probability of a Gene Tree at the Root of a Taxon Tree

So, I have shown how to calculate the probability of a gene tree once we have established
that it was rooted at some point on a taxon tree. However, in reality we only have a gene
tree and a taxon tree without any a priori information about where the gene tree actually
began evolving on the taxon tree. Therefore we must choose some distribution that describes
the relationship between the root of the gene tree and the root of the taxon tree.

The approach taken by Arvestad et al. (2003, 2004) was to assume that the node at the
root of the gene tree was orthologous on the node at the root of the taxon tree. Thus each
of the two basal clades of the gene tree start at the base of the two basal clades of the taxon
tree. This approach has two major problems. The first is that it does not allow us to analyze
gene trees for which the basal node could not be orthologous on the gene tree. These include
gene trees in which the genes were found only in members of one of the two basal clades of
taxa, and trees in which the minimum number of gene lineages at the the root node of the
taxon tree is greater than one. Furthermore, this approach violates the general principle of
the analysis in which we sum over all possible reconciliations and do not assume that just
because a reconstructed gene node can be orthologous it is orthologous.

114



Therefore we should allow nodes of the gene tree to be paralogous on the root of the
taxon tree. However, what the distribution of such nodes should be is not entirely clear.
On all the other branches of the taxon tree we were able to use the branch length and the
birth-death parameters to determine the probability of a single gene lineage producing a
given number of lineages along a branch of the taxon tree. However, the root of the taxon
tree is theoretically infinitely long and thus we can not determine when exactly the gene
tree started evolving, and thus we can not calculate the probability of a given number of
reconstructed lineages at the root.

One approach would be to gather a great deal of data about the position of the gene
tree root. This could include apparently orthologous genes from out group taxa, and the
sister group of paralogous genes from these same taxa. Genes from a number of nested out
group taxa that appeared to be orthologous would allow us to greatly increase our confidence
that any gene duplications in our gene tree occurred after our taxon tree diverged from its
closest living relative, and thus we would be able to put a maximum age for the root of the
gene tree. Similarly if our gene tree had a number of paralogous sister clades that were not
present in any out group taxa, then that would also increase our confidence that any gene
duplications in our gene tree occurred after our taxon tree diverged from its closest living
relative. However, such data is rarely available, and so we must turn to some distribution.

Åkerborg et al. (2009) assumed that the prior position for the root node of the gene tree
was uniformly distributed between the root node of the taxon tree and the infinite past.
This approach is similar to the one that I used for the distribution of reconstructed lineages
in subsection 2.3.3. However it is not practical for the model I use here, as I assume that the
birth-death parameters differ between the branches of the taxon tree, and so it is not clear
what parameters should be used on the root. The obvious approach is to assume that those
parameters are drawn from the prior distribution, but as there is no corroborating data one
would have to be very confident in their prior distribution. I am not.

Instead I used a flat prior for the distribution of number of reconstructed gene lineages
in the basal node of the taxon tree. Thus the topology of the gene tree on the root of the
taxon tree will affect the probability of the gene tree, but the number of gene lineages at the
basal node will not, except in their influence on the subsequent evolution of the gene tree.
In other words, if

→

γr is the root of the gene tree and
→

τr is the root of the taxon tree, then
P (

⋆

nr(
→

γr))=C, where C is some constant. The probability of the gene tree topology given
the number of reconstructed lineages at the root of the taxon tree, P (G0∣

⋆

nr(
→

γr),
→

τr ∈ρ(
→

γr)),
can be calculated using (4.10). It would be trivial to analytically sum over all the different
reconstructed numbers of gene lineages at the base of the taxon tree, but I treated it as
a free parameter in order to better investigate the distribution of this value and to study
its effects on the probability of the gene tree. It should be noted that although I placed
a flat prior on the number of genes at the root of the taxon tree, this value will be biased
towards its minimum by the rest of the likelihood calculation, because reconciliations in which

ρ(
⊛

γ) ∋ρMRC(
⊛

γ) for any
⊛

γ ∈
⊛

G0, will tend to have a higher likelihood than a reconciliation in
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which ρ(
⊛

γ) /∋ ρMRC(
⊛

γ) (see section 4.2.1).

Reconstructing Gene Lineages from the Root of the Taxon Tree

I have shown how to calculate the probability of a gene tree from a single gene lineage at
the root of a taxon tree which we know will survive to the present. Thus, we assume that at
least one descendant of this gene lineage will be found in at least one tip of the taxon tree.
In this sense, the gene lineage is reconstructed and this is certainly a proper assumption as
this gene tree has been drawn from the set of all gene trees that have members in the taxa
we are studying. However, this assumption may not be sufficiently restrictive to capture
the distribution of the actual set of gene trees from which our gene tree may be drawn.
In particular two more restrictive assumptions may often be appropriate when analyzing a
gene tree: we may assume that at least one descendant of all the reconstructed gene lineages
at the base of the taxon tree survived in at least one member of each of the basal taxon
clades; or even more restrictively, we may assume that at least one descendant of all the
reconstructed gene lineages at the base of the taxon tree survived in every taxon we studied.
Here I will show how to calculate the probability of these assumptions and how to use them
to correct the probability of the gene tree.

Let
×

Ti be some subset of all the tips in T0, so that
×

Ti⊆
×

T0. Furthermore let
×

n ×

Ti
(γ) be the

number of tips in G(γ) found in
×

Ti, so that
×

n ×

Ti
(γj) = ∣{

×

γ ∶
×

γ ∈
×

G(γj), ρMRC(
×

γ) ∈
×

Ti}∣. I will

also define E ×

Ti
(t) as the probability that a single gene lineage alive at time t on the taxon

tree has no descendants in any of the tips in
×

Ti, so that E ×

Ti
(t) =P (

×

n ×

Ti
(γj) = 0∣Nt(γj) = 1),

and E ×

T0

(t)=E0(t). In that case it is easy to solve for E ×

Ti
(t); prune all the tips not found in

×

Ti and calculate E0(t) for this reduced tree, as you would for the whole tree.
This calculation creates a situation that is unfamiliar to us so far. A gene lineage can

be reconstructed, meaning that it survives into some members of
×

T0 even if it has been lost

in every member of
×

Ti. Therefore we can calculate the probability of a reconstructed gene
lineage being lost in some set of tips. We can calculate the probability that a gene lineage
alive at the root of a taxon tree, which has survived to the present, has no descendants in
×

Ti from probabilities that we have already established as follows:

P (
×

n ×

Ti
(γ)=0∣

⋆

nr(γ)=1) = 1 − P (
×

n ×

Ti
(γ)>0∣

×

n0(γ)>0,
⋆

nr(γ)=1)

= 1 −
P (

×

n ×

Ti
(γ)>0∣

⋆

Nr(γ)=1)

P (
×

n0(γ)>0∣
⋆

Nr(γ)=1)

=
E ×

Ti
(
⋆

tr) −E0(
⋆

tr)

1 −E0(
⋆

tr)
(4.24)

I have already asserted that there can be more than one reconstructed gene lineage in the
root. Therefore in order for there to be no genes in some subset of the tips of the taxon tree,
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every gene lineage in the root must leave no descendants in those tips. It is easy to calculate
the probability that

⋆

nr(γ) reconstructed lineages alive at the end of the root
→

τr of the taxon

tree will leave no descendants in
×

Ti, because every one of those initial gene lineages must do

the same thing, leave some descendants in
×

T0, but none in
×

Ti.

P (
×

n ×

Ti
(γ)=0∣

⋆

nr(γ)=m) = [P (
×

n ×

Ti
(γ)=0∣

⋆

nr(γ)=1)]m (4.25)

We now have enough information to calculate the probability that
⋆

Nr lineages alive at
the basal node of the taxon tree all survive to the present and that at least one survives in
each of the basal clades of the taxon tree, T (

→

τr+) and T (
→

τr−). It is the probability that all
those lineages survive to the present and the probability that if those lineages survive to the
present they survive in both basal taxon clades.

P (
×

n ×

T (
→
τr+)

(γ)>0,
×

n ×

T (
→
τr+)

(γ)>0,
⋆

nr(γ)=
⋆

Nr(γ)∣
⋆

Nr(γ))

= [1 − ∑
→
τi∈{

→
τr+ ,

→
τr−}

P (
×

n ×

T (
→
τi)

(γ)=0∣
⋆

nr(γ))]P (
⋆

nr(γ)=
⋆

Nr(γ)∣
⋆

Nr(γ))

= (1 −E0(
⋆

tr))
⋆
nr(γ) − ∑

→
τi∈{

→
τr+ ,

→
τr−}

(E ×

T (
→
τi)

(
⋆

tr) −E0(
⋆

τr))
⋆
nr(γ) (4.26)

We do not have to consider the probability that the lineages do not survive in either clade
given that they survive to the present, because that is impossible.

We can also calculate the the probability that all the gene lineages alive at the taxon
root node survived to the present and that at least one lineage survived into every tip of the
taxon tree as the probability that all those lineages survived and the probability that there
were not any taxon tips without at least one gene lineage given that all those gene lineages
at the root survived to the present. We can calculate the probability that any set of tips of
the taxon tree had no genes, because I have already shown how to calculate that no genes
survived into any given set of taxon tips.

P ( ⋂
×
τi∈

×

T0

×

ni(γ)>0,
⋆

nr(γ)=
⋆

Nr(γ)∣
⋆

Nr(γ))

= [1 − P ( ⋃
×
τi∈

×

T0

×

ni(γ)=0∣
⋆

nr(γ))]P (
⋆

nr(γ)=
⋆

Nr(γ)∣
⋆

Nr(γ))

= [1 + ∑
×

Ti∈℘1(
×

T0)

(−1)
∣
×

Ti∣
P (

×

n ×

Ti
(γ)=0∣

⋆

nr(γ))](1 −E0(
⋆

tr))
⋆
nr(γ)

= ∑
×

Ti∈℘(
×

T0)

(−1)
∣
×

Ti∣
(E ×

Ti
(
⋆

tr) −E0(
⋆

tr))
⋆
nr(γ) (4.27)

It is important to note that the power set of
×

T0 includes both the empty set and a set of all

the tips in
×

T0. The probability of a gene lineage leaving no descendants in the empty set is
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always one, E∅(t)=1, as you can not find any genes if you do not look in any taxa. On the

other hand the probability that no genes survive in
×

T0 is E0(t), so that the last member in

this sum will be zero and we could exclude
×

T0 from the sum entirely. However, the equation
looks better if we leave it there.

I have now shown how to calculate the probability for three different assumptions about
how gene lineages alive at the base of a taxon tree survive to the present. Under the first
assumption, all the gene lineages survive to the present; under the second assumption they
all survive to the present and at least one survives in each of the basal lineages of the taxon
tree; and under the third assumption all the lineages survive and at least one survives in
every sampled taxon. We can calculate the probability of a gene tree conditioned on any of
these assumptions as follows:

P (G0∣
⋆

nr,Θ) =
P (G0,

⋆

nr∣
⋆

Nr=
⋆

nr)

P (Θ,
⋆

nr∣
⋆

Nr=
⋆

nr)

where Θ is the assumption about the survival of the gene lineages into the present. It goes
without saying that we should only use assumptions that hold true for our gene tree.

4.3 Bayesian Inference

The goal of this paper is to determine if the gene tree evolves at a different rate on different
branches of the taxon tree, and if so, how do the rates differ between branches. Our model
has three different types of parameters, gene duplication rates, gene loss rates, and the
number of reconstructed lineages at the base of the tree. We want to compare models in
which the assignment of rates to the various branches of the taxon tree differs. I will compare
the rate assignments using Bayesian inference in which I will estimate a likelihood for each
assignment that has been marginalized over all the possible values for every parameter of
that model (see Ellison 2004; Huelsenbeck et al. 2004). I will then compare the ratios of these
marginalized likelihoods, or Bayes factors, in order to determine the relative fit of each rate
assignment to the data (see Kass and Raftery 1995). As a byproduct, I will also estimate
the posterior distributions of the rate parameters on the different branches of the taxon tree
by marginalizing over all the other parameter values and rate assignments. The number of
reconstructed lineages at the base of the tree will be strictly a nuisance parameter, although
its posterior distribution will tell us something about how the model fits the data.

I will use a reversible-jump Markov Chain Monte Carlo method implementation of the
Metropolis-Hastings algorithm to estimate the posterior distribution of these values (Green
1995). Under this method each step in the chain consists of a rate assignment and a set of
parameter values. A new step is generated through a random modification of the previous
step, and a proposal ratio is calculated. A uniform random number is generated between
zero and one, and the new proposal is accepted if the proposal ratio is greater than that

118



random number. If the proposal ratio is less, then the proposal is rejected and we return to
the model and parameter values from the previous step. The proposal ratio is calculated,
such that at stationarity the rate assignments and their parameters will be sampled from
their posterior probability distribution.

Let A be any assignment of birth-death rates to the branches of the taxon tree, so that
A(λ) is a function that returns the set of taxon branches which have gene duplication rate
λ under that model, and A(µ) returns the set of taxon branches with µ for a gene loss rate.
We will call the original assignment before a proposal A0, and the original set of parameter
values z0. We generate a second proposal assignment A′ with a set of parameter values z′.
z0 is transformed to z′ using a set of random values y0. In contrast z′ can be transformed
into z0 using the set of values y′. In that case our MCMC will sample from the posterior
probability of assignments when our proposal ratio is:

P (G0∣A′, z′)P (A′)P (z′)f(A0, z0∣A′, z′)

P (G0∣A0, z0)P (A0)P (z0)f(A′, z′∣A0, z0)

where P (G0∣A0, z0) is the probability of the gene tree given the parameter values described
by A0 and z0, which I described how to calculate in section 4.2; P (A0) and P (z0) are the
prior probabilities of A0 and z0; and f(A0, z0∣A′, z′) is the probability density for proposing
A0 and z0 given that you start with A′ and z′ (see Waagepetersen and Sorensen 2001). We
can calculate the ratio between the proposal densities as follows:

f(A0, z0∣A′, z′)

f(A′, z′∣A0, z0)
=
P (A0∣A′)q(y′∣A′, z′,A0)

P (A′∣A0)q(y0∣A0, z0,A′)
∣
∂(z′, y′)

∂(z0, y0)
∣

Where P (A′∣A0) is the probability of generating model A′ if you start in A0; q(y0∣A0, z0,A′)

is the density of y0 given that you start in model A0 with parameters z0 and you propose
model A′; and ∣∂(z′, y′)/∂(z0, y0)∣ is the absolute value of the Jacobian of a vector of all the
parameters in z′ and all the random values in y′ with respect to a vector of z0 and y0. These
vectors must be of the same length, even though z′ and z0 may be of different sizes.

In the remainder of this section I will describe how new proposals were generated for each
of the parameters and the models, and I will show how the proposal ratio was calculated.
I have implemented these calculations in the Tree Reconciliation Using Likelihood (TRUL)
software package, using C++.

4.3.1 Root Proposals

The simplest proposal and hence the simplest acceptance ratio is for the number of
reconstructed lineages at the root of the tree. At the beginning of each step we decide
to vary

⋆

nr with probability cl. We will call the original number of lineages at the root
⋆

n0
r

and the proposed number of lineages
⋆

n′r. There is some maximum number of lineages by
which the number of lineages at the root can change, ∆

⋆

nr, which is set by the user. Of

119



course
⋆

nr could not change by so many lineages that it fell outside the range of possible
values. Therefore if ∆D

⋆

n0
r is the maximum amount by which the number of lineages before

we generate a new proposal could decrease and ∆I
⋆

n0
r is the maximum amount by which they

could increase, ∆D
⋆

n0
r =min(∆

⋆

nr,
⋆

n0
r −

⋆

nmin
r ) and ∆I

⋆

n0
r =min(∆

⋆

nr,
×

n0 −
⋆

n0
r).

In order to generate a proposal value for the number of lineages at the root we choose
an integer at random between

⋆

n0
r−∆D

⋆

n0
r and

⋆

n0
r+∆I

⋆

n0
r excluding

⋆

n0
r, and use that integer

as
⋆

n′r. Therefore, there are ∆D
⋆

n0
r+∆I

⋆

n0
r possible values for

⋆

n′r, and each of them is equally
likely to be chosen. In this case f(M ′, z′∣M0, z0) is actually a probability mass and equal to
cl/(∆D

⋆

n0
r+∆I

⋆

n0
r). No other parameters are changed, the assignments of rates to branches

remain the same, and the prior is flat for the number of lineages at the root (see section 4.2.4),
so the proposal ratio for a change from

⋆

n0
r to

⋆

n′r is:

P (G0∣
⋆

n′r)(∆D
⋆

n′r+∆I
⋆

n′r)

P (G0∣
⋆

n0
r)(∆D

⋆

n0
r+∆I

⋆

n0
r)

4.3.2 Rate Proposals

Proposals that just change a single rate work the same no matter which rate we choose to
modify. There can be as many different λs as there are branches on the taxon tree, or there
can be as few as one λ that is the same for every branch. There can be just as many or few µs.
We will call Λ0 the set of all the λs assigned to branches of the taxon tree under assignment
A0, and M0 the set of all the µs, so that Λ0 = {λ ∶ A0(λ) ≠ ∅} and M0 = {µ ∶ A0(µ) ≠ ∅}.
We will choose to modify a rate with probability cr and we choose one rate to modify from
Λ0 ∪M0 at random so that the probability of any rate being picked is 1/(∣Λ0∣ + ∣M0∣). The
assignment of rates to branches will not change between the original distribution and the
proposal distribution, so both of these values will remain the same and will cancel out in the
proposal ratio.

Once we have decided to modify a specific rate, all rates are modified in the same way.
Here I will describe how a λ is modified, but the same procedure applies to any µ. Let λ0 be
the original λ, and λ′ be the λ for the proposal distribution. There is some number chosen
by the user, which I will call Ξ. For each proposal we generate a random number, ξ0, from
the uniform distribution (−Ξ/2,Ξ/2), and use this number to transform λ0, so that λ′=λ0eξ

0

.
Thus the distribution of ξ0 given λ0 is ξ0/Ξ + 0.5, and we can calculate the density of ξ0 by
taking the derivative of this distribution, so that:

q(ξ0∣λ0) =
1

Ξ

To calculate the Jacobian we must be able to describe λ′ and ξ′ in terms of λ0 and ξ0,
where ξ′ is the value of ξ necessary to transform λ′ into λ0. We already know how to calculate
λ′ in terms of λ0 and ξ0. We must choose a ξ′, such that λ0=λ′eξ

′

. We can see that this will
be accomplished, when ξ′ = −ξ0 by substituting our equation for λ′ into our last equation.
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Thus we can calculate the Jacobian as so:

∂(λ′, ξ′)

∂(λ0, ξ0)
= ∣

∂λ′

∂λ0

∂λ′

∂ξ0
∂ξ′

∂λ0

∂ξ′

∂ξ0
∣ = ∣

eξ
0

λ′

0 −1
∣ = −eξ

0

The assignment and the other parameters do not change, so all that remains for us to
calculate the proposal ratio is the prior distribution of λ. I assumed an exponential prior
with expectation λ̂ for all rates, so that the prior probability density of any rate λ is:

P (λ) =
exp(−λ/λ̂)

λ̂

With this we can now calculate the proposal ratio for a proposal in which λ0 is replaced with
λ′:

P (G0∣λ′)

P (G0∣λ0)
exp(ξ0 +

λ0 − λ′

λ̂
)

4.3.3 Assignment Proposals

The last type of proposal is one in which the assignment of rates to the branches of the
taxon tree changes. There are two types of possible changes: two sets of branches with a
rate assigned to each set can be combined, so that together they only have one rate; or
one set of branches with one rate can be split into two. I will call call an assignment in
which there are x rates assigned to the various branches of the tree Ax, so that x= ∣Λ∣+∣M ∣.
Here we will consider a case in which an assignment with x rates, A0

x is transformed into
an assignment with x+1 rates, A′

x+1. I will call the rate that is modified by the proposal λ0

and the two new rates created by the proposal λ′1 and λ′2, A
0
x(λ

0)=A′
x+1(λ

′
1)∪A

′
x+1(λ

′
2) and

A′
x+1(λ

0)=A0
x(λ

′
1)=A

0
x(λ

′
1)=∅, where λ′1 <λ

′
2. All rates other than these three are assigned

to the same branches under both assignments, A0(λ)=A′(λ) for all λ ∉ {λ0, λ′1, λ
′
2}.

There is a critical value ΞA which is set by the users and is used to transform the rates.
Once we have chosen a rate, λ0, to reassign and distributed its branches to the rates λ′1 and
λ′2, we must give those rates values. A random number, ξ0A is generated from the uniform
distribution (0,ΞA), so that the probability density for generating ξ0A, when you are switching
from model A0

x to A′
x+1 is:

q(ξ0A∣A
0
x, λ

0,A′
x+1) =

1

ΞA

ξ0A is then used to generate the values for the two new rates, such that λ′1 = e
−ξAλ0 and

λ′2=e
ξAλ0. On the other hand, when we make a proposal that replaces model A′

x+1 with A0
x,

we take the harmonic mean of λ′1 and λ′2 as our new value for λ0. Thus we do not need to
generate a random value for the reverse proposal and the total number of random numbers
and transformed rates in each model is two. This allows us to calculate the Jacobian like so:

∂(λ′1, λ
′
2)

∂(λ0, ξ0A)
=

RRRRRRRRRRR

∂λ′1
∂λ0

∂λ′1
∂ξ0A

∂λ′2
∂λ0

∂λ′2
∂ξ0A

RRRRRRRRRRR

= ∣
e−ξA −e−ξAλ0

eξA eξAλ0
∣ = 2λ0
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In order to determine which rates to reassign we must first identify which rates can
in fact have their taxon branches either divided or combined with those of another rate.
Only rates which are assigned to more than one branch can have the taxon branches to
which they are assigned divided into two sets. Let L0 and L′ be the number of rates that
are assigned to more than one branch under assignments A0 and A′ respectively, so that
L0 = {λ∣ ∣A0(λ)∣ > 1}∪{µ∣ ∣A0(µ)∣ > 1}. Any rate found in L0 could have its taxon branches
subdivided. On the other hand, we can only combine the taxon branches assigned to two
rates in assignment A′

x+1 if the absolute value of the log of the ratio between those two rates
is less than 2ΞA, because if it were any larger, then the assignment generated by combining
their taxa could not generate A′

x+1 in a single step and so the probability density for the
reverse proposal would be zero. I will define D′ and D0 as the set of all the ordered pairs of
rates that could have their assigned taxon branches combined under assignments A′ and A0

respectively, so that

D′={(λ′1, λ
′
2)∣0<λ

′
2/λ

′
1<ΞA,{λ

′
1, λ

′
2} ⊆ Λ}∪{(µ′1, µ

′
2)∣0<µ

′
2/µ

′
1<ΞA,{µ

′
1, µ

′
2} ⊆M}

A proposal modifies the rate assignments with probability cA =1−c1−cr. If there are no
rates assigned to multiple branches, L0=∅, then it combines rates; if there are no rates which
can have their branches combined, D0 =∅, then it divides the branches associated with a
rate; and if neither L0 or D0 is empty then we divide branches or combine branches with a
50% probability. If we decide to divide the branches associated with a rate, then we choose
a rate, λ0, at random from L0. The branches associated with λ0 are assigned at random to
either λ′1 or λ′2, such that at least one branch is assigned to each rate. Therefore there are
2∣A

0
x(λ

0)∣−2 possible ways that the branches could be distributed, and we can calculate the
probability of generating assignment A′

x+1 from A0
x as:

P (A′
x+1∣A

0
x) =

cAφ(D0)

∣L0∣(2∣A0
x(λ

0)∣−2)

Where

φ(X) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if X = ∅

0.5 if X ≠ ∅

for any set X. On the other hand, if the branches associated with two rates are to be combined,
then a pair of rates is chosen at random from D′ and their branches are combined, so that
the probability of generating model A0

x from A′
x+1 is:

P (A0
x∣A

′
x+1) =

cAφ(L′)

∣D′∣

The priors for all the models are the same and the prior for the rates are exponential,
as discussed in the previous section, so we now have enough information to calculate the
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proposal ratio for a proposal that changed A0
x into A′

x+1.

P (G0∣A′
x+1, λ

′
1, λ

′
2)

P (G0∣A0
x, λ

0)

λ0ΞA

λ̂

∣L0∣(2∣A
0
x(λ

0)∣+1−4)

∣D′∣

φ(L′)

φ(D0)
exp(

λ0 − λ′1 − λ
′
2

λ̂
)

The inverse of this value is the proposal ratio for the reverse proposal in which A′
x+1 is

transformed into A0
x.

4.4 Comparison to Gene Count Model

Comparing the gene tree to the taxon tree should provide us with information about the
evolutionary processes that produced the gene tree. However, much of that information is
also contained in simple counts of genes in the extant taxa. Hahn et al. (2005) used gene
counts alone to deduce changes in the rate of gene gain and loss on branches of the taxon tree.
Although, computationally the analysis of a full gene tree is not much more cumbersome
than an analysis of gene counts alone, the additional burden of deducing the phylogeny of
the genes makes a full gene tree analysis much more time consuming. Yet this extra effort
may be worthwhile as the full gene tree may allow for both greater accuracy and precision
in the inference of the actual process that produced the gene tree. In particular the full
gene tree would allow us to better deduce trends in the evolution of gene numbers and to
distinguish changes in the gene loss rate from changes in the gene gain rate on branches of
the phylogeny.

In order to see how well the gene tree model performs in the estimation of birth-death
parameters and the detection of changes in those parameters, I simulated a number of gene
trees on a simple taxon tree using a variety of parameter values. I then analyzed those
trees using both the full gene tree model and a model that relies only on the gene counts
in each taxon. I used these results to compare models and to investigate the effectiveness
of each model on its own. Under the gene count model, the number of gene lineages at the
base of the tree is unknown, and treated as a nuisance parameter, as it is in the gene tree
model. However, the gene tree itself provides information about the number of gene lineages
at the root of the taxon tree. Thus the gene count model would be incapable of detecting an
increase in the number of chromosomes that occurred on every branch of the tree, while the
gene tree model could infer a trend. Therefore, I analyzed the gene count data in two ways:
first with a flat prior on the number of genes at the base of the tree and second assuming that
the number of genes at the root was the number used in the simulation. Even though one
could not know the actual number of genes at the base of the taxon tree without constructing
a gene tree, using both methods allowed me to separate the effects of gene number trend
detection from those caused by other differences between the models.
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4.4.1 Gene Count Model

The model I used for the analysis of gene counts is essentially the same as the one I used in
chapter 3 for the analysis of chromosome numbers with only a few modifications. I assumed
that δ was zero, as we are not studying whole genome duplications, and I allowed the birth-
death parameters to vary between branches.

I also changed the way that the calculation dealt with the fact that these lineages are
only from gene families that survived to the present. In chapter 3 I accounted for the
fact that every taxon had to have one chromosome by dividing the transition probability
on each branch by the probability that at least one chromosome at the beginning of that
branch survived to the end of that branch. Here I did not make that assumption, and

I used pi(
⋆

Ni∣
○

Ni) = P (
⋆

Ni∣
○

Ni,
→

λi,
→

µi) (3.2) to calculate the transition probability instead of

pi(
⋆

Ni∣
○

Ni) = P (
⋆

Ni∣
○

Ni,
⋆

Ni>0,
→

λi,
→

µi). To account for the fact that we are only investigating gene
trees for which we have found members in the studied taxa, I calculated similar probabilities
to those calculated in section 4.2.4 except I did not assume that all the lineages at the root
are reconstructed, as that is not an assumption of the gene count model.

The probability that at least one gene survives to the present is simply the probability
that the genes present at the root node are not all lost.

P (
×

n0 > 1∣
⋆

Nr) = 1−(E0(
⋆

tr))
⋆

Nr (4.28)

The probability that at least one gene survives in each of the basal taxon clades is the
probability that the genes present at the root node are not all lost in both those clades.

P (
×

n ×

T (
→
τr+)

>0,
×

n ×

T (
→
τr−)

>0∣
⋆

Nr) = (1−(E ×

T (
→
τr+)

(
⋆

tr))
⋆

Nr)(1−(E ×

T (
→
τr−)

(
⋆

tr))
⋆

Nr) (4.29)

Finally the probability that one gene survives in all the taxa is the probability that there
were not any taxon tips that the genes did not survive into.

P ( ⋂
×
τi∈

×

T0

×

n×
τi
>0∣

⋆

Nr) = ∑
×

Ti∈℘(
×

T0)

(−1)∣
×

Ti∣(E ×

Ti
(
⋆

τr))
⋆

Nr (4.30)

Any of these assumptions can be applied to the probability of a set of gene counts by dividing
the raw probability by the appropriate equation.

P (ρ(
×

G0)∣
⋆

Nr,Θ) =
P (ρ(

×

G0)∣
⋆

Nr)

P (Θ∣
⋆

Nr)

where Θ is an assumption about the genes surviving to the present.
In order to make the results of the gene count model directly comparable to those of

the gene tree model, I analyzed the gene tree model using a reversible-jump MCMC. The
gene count model has essentially the same parameters as the gene tree model, so I used
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the same priors and the same proposal distributions. However, there is one fundamental
difference between these two models; the lineages at the base of the gene tree model are all
reconstructed, while the lineages at the base of the gene count model could be lost before
the present. I gave a flat prior to both, which could potentially bias the analysis. However,
we see that if the ratio between the priors for any two non-reconstructed gene counts is one,

P (
⋆

Nr=a)/P (
⋆

Nr=b)=1, that the same holds true for two different numbers of reconstructed
lineages.

P (
⋆

nr=a)

P (
⋆

nr=b)
=
∑
∞
i=aP (

⋆

nr=a∣
⋆

Nr=i)P (
⋆

Nr=i)

∑
∞
j=bP (

⋆

nr=b∣
⋆

Nr=j)P (
⋆

Nr=j)
=
∑
∞
i=aP (

⋆

nr=a∣
⋆

Nr=i)

∑
∞
j=bP (

⋆

nr=b∣
⋆

Nr=j)
= 1

Therefore the two priors are in essence the same and should not affect the posterior
distribution.

This model has much in common with the one used by Hahn et al. (2005). In particular
the likelihoods calculated for a set of birth-death parameters would be the same with the
following exceptions: they assumed that λ=µ; they assumed that those rates were the same
on every branch of the tree; and they did not account for the fact that the gene families were
sampled from the set of all gene families that have not been lost. Furthermore they identified
branches with large differences in birth-death rates in a different way. They estimated a single
value for λ for all gene families, and used this value to calculate the likelihood for each gene
families given the distribution of gene counts on the tips of the tree. For those gene families
which were found to have significantly low likelihoods for their size, they individually varied
the value of λ for each branch in the taxon tree, and determined which branches lead to a
significant improvement in the likelihood. These methods obviously differ substantially from
my own despite their similarities. I made the changes that I did, so that the results could be
compared directly to the gene tree model. However, as a consequence, I can not be certain
that the method of Hahn et al. (2005) would not perform better than the one I used here.

4.4.2 Simulations

In order to investigate how these models analyze a gene family, I wanted to study a simple
case, so that it would be easy to distinguish what effect the different elements of the process
had on the analysis. So, I simulated a large number of gene trees under different sets of
parameter values, on the simplest possible taxon tree, and analyzed those simulations using
both the gene tree model and the gene count model. The simplest tree possible in which
there is a difference between birth-death rates on the different branches of the tree is a tree
with two tips and two branches connected at a root node. I arbitrarily chose a branch length
of 1.0 for both branches.

Simulations started with some number of genes at the root node. Every gene lineage split
into two lineages automatically at the root node, one lineage in each branch. Each lineage
was then simulated independently, such that a random number h1 was generated on the
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uniform distribution (0,1). A time t was then calculated as t= t0+log(h1)/(
→

λ +
→

µ), where t0
was the time at which the lineage diverged from its sister lineage. If t was greater than one,
then the lineage ended in the tip of the taxon tree and became a tip of the reconstructed
gene tree. If t was less than one, then a second random number h2 was generated on the
uniform distribution (0,1). If h2 was less than

→

µ/(
→

λ+
→

µ), then the lineage was lost; if it was
larger, then the lineage split into two, and the process was repeated for each of its daughter
lineages starting at time t. Trees in which at least one gene lineage did not survive in each
branch of the taxon tree were discarded. Gene lineages at the root of the tree that survived
to the present were randomly combined in order to complete the base of the gene tree.

I simulated trees under a number of different birth-death parameters. I varied the number
of genes at the roots at the start of the simulation and the expected number of genes in one
terminal of the taxon tree, while I held the expectation in the other tip constant at twenty
genes. I will call the branch with the the expectation of twenty genes at the end

→

τ1 and the
other branch

→

τ2. I held either
→

λ or
→

µ as the same on both branches, and held the death rate
on

→

τ1,
→

µ1, as either zero or 0.2, so that there were four possible rate assignments for every
set of expectations: Sλ0, in which

→

λ1 >
→

λ2 and
→

µ1 =
→

µ2 = 0; Sµ0, in which
→

λ1 =
→

λ2,
→

µ1 = 0 and
→

µ2 >0; Sλ2, in which
→

λ1 >
→

λ2 and
→

µ1 =
→

µ2 =0.2; and Sµ2, in which
→

λ1 =
→

λ2,
→

µ1 =0.2 and
→

µ2 >0.2.
The expected number of genes in a tip of the taxon tree can be calculated as:

ˆ×n×
τ =

exp(r)

1 − (E×
τ(

⋆

tr))
⋆

Nr

I used the nlminb function from the R statistical programming language, first to calculate
the appropriate value for

→

λ1 to achieve an expectation of twenty genes, given the number of
genes at the root and the appropriate value for

→

µ1. I then used the same method to calculate
the free parameter for

→

τ2. Table 4.1 shows all the combinations of genes at the root, expected
number of genes at the tip and the parameter values used to achieve those expectations. It
was impossible to generate an expectation lower than the number of genes at the root, if the
value of

→

µ2 was fixed too low, and so these simulations were excluded.
I simulated 100 trees under each set of parameter values.

4.4.3 Bayesian Analysis

Likelihood Models

I analyzed each simulated tree using the methodology described in section 4.3 and
subsection 4.4.1 under three different models of gene evolution: the gene tree model, the
gene count model, and the gene count model with the number of genes at the root fixed
at the actual number used for the simulation. For all three models I assumed that at least
one gene survived in each tip of the taxon tree, as that was a requirement of the simulation
procedure. I assumed that the prior for all the rates, λ̂, was 0.5 events/lineage/branch. Each
analysis was started at a set of parameter values drawn randomly from the priors.
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Table 4.1: The parameters used for the gene tree simulations.

⋆

Nr
×̂

n1
×̂

n2 Assignment
→

λ1
→
µ1

→

λ2
→
µ2

5 20 10 Sλ0 1.3863 0.0000 0.6931 0.0000
5 20 10 Sµ0 1.3863 0.0000 1.3863 0.6974
5 20 10 Sλ2 1.5863 0.2000 0.8931 0.2000
5 20 10 Sµ2 1.5863 0.2000 1.5863 0.9029
5 20 15 Sλ0 1.3863 0.0000 1.0986 0.0000
5 20 15 Sµ0 1.3863 0.0000 1.3863 0.2878
5 20 15 Sλ2 1.5863 0.2000 1.2986 0.2000
5 20 15 Sµ2 1.5863 0.2000 1.5863 0.4883
5 20 18 Sλ0 1.3863 0.0000 1.2809 0.0000
5 20 18 Sµ0 1.3863 0.0000 1.3863 0.1054
5 20 18 Sλ2 1.5863 0.2000 1.4809 0.2000
5 20 18 Sµ2 1.5863 0.2000 1.5863 0.3054

10 20 10 Sλ0 0.6931 0.0000 0.0000 0.0000
10 20 10 Sµ0 0.6931 0.0000 0.6931 0.6933
10 20 10 Sλ2 0.8931 0.2000 0.2000 0.2000
10 20 10 Sµ2 0.8931 0.2000 0.8931 0.8937
10 20 15 Sλ0 0.6931 0.0000 0.4055 0.0000
10 20 15 Sµ0 0.6931 0.0000 0.6931 0.2877
10 20 15 Sλ2 0.8931 0.2000 0.6055 0.2000
10 20 15 Sµ2 0.8931 0.2000 0.8931 0.4877
10 20 18 Sλ0 0.6931 0.0000 0.5878 0.0000
10 20 18 Sµ0 0.6931 0.0000 0.6931 0.1054
10 20 18 Sλ2 0.8931 0.2000 0.7878 0.2000
10 20 18 Sµ2 0.8931 0.2000 0.8931 0.3054
15 20 10 Sµ0 0.2877 0.0000 0.2877 0.6932
15 20 10 Sµ2 0.4877 0.2000 0.4877 0.8932
15 20 15 Sλ0 0.2877 0.0000 0.0000 0.0000
15 20 15 Sµ0 0.2877 0.0000 0.2877 0.2877
15 20 15 Sλ2 0.4877 0.2000 0.2000 0.2000
15 20 15 Sµ2 0.4877 0.2000 0.4877 0.4877
15 20 18 Sλ0 0.2877 0.0000 0.1823 0.0000
15 20 18 Sµ0 0.2877 0.0000 0.2877 0.1054
15 20 18 Sλ2 0.4877 0.2000 0.3823 0.2000
15 20 18 Sµ2 0.4877 0.2000 0.4877 0.3054
15 20 20 S0 0.2877 0.0000 0.2877 0.0000
15 20 20 S2 0.4877 0.2000 0.4877 0.2000
20 20 10 Sµ0 0.0000 0.0000 0.0000 0.6931
20 20 10 Sµ2 0.2000 0.2000 0.2000 0.8932
20 20 15 Sµ0 0.0000 0.0000 0.0000 0.2877
20 20 15 Sµ2 0.2000 0.2000 0.2000 0.4877
20 20 18 Sµ0 0.0000 0.0000 0.0000 0.1054
20 20 18 Sλ2 0.2000 0.2000 0.0946 0.2000
20 20 18 Sµ2 0.2000 0.2000 0.2000 0.3054
20 20 20 S0 0.0000 0.0000 0.0000 0.0000
20 20 20 S2 0.2000 0.2000 0.2000 0.2000
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MCMC

The settings for the MCMC were chosen, such that the acceptance rate was close to 50% for
all proposals. Most of the settings were the same for all three models tested. The frequency
with which each type of proposal was attempted were cr=0.1 for modifications of the number
of lineages at the root, cλ = 0.8 for modifications of the rate, and cA = 0.1 for modifications
of the model. Ξλ was set to log(16) and ΞA was set to log(2). The one parameter that did
vary between the different models was the maximum change in the number of lineages at
the root, ∆

⋆

nr. This value was obviously set to zero for the gene count model in which the
number of lineages at the base was held constant. ∆

⋆

nr was set to 1 for the gene tree model

and to 10 for the gene count model, as the variance on the posterior distribution of
⋆

Nr was
much higher for the gene count model than the gene tree model.

I ran two MCMC chains independently for each simulation and each model. The chains
were sampled from every 100 proposals and 1000 samples were taken from each chain. In
order to determine an appropriate value for burn in, the likelihoods of the samples were
plotted against sample number for the outputs from a large number of analyses covering
a range of initial parameters and model comparisons. All analyses appeared to enter
stationarity fairly quickly and so 100 samples were removed as a conservative burn-in. In
order to determine if the chains had indeed achieved stationarity the two independent chains
run for each tree were compared. The primary goal of this analysis was to determine how
well each assignment of birth-death parameters to the branches of the taxon tree fit the data.
Therefore for each pair of MCMC analyses I determined the fraction of samples for which
each chain was in each of the four possible assignments and constructed a contingency table
comparing the two different analyses. A χ2 value was calculated from the contingency table,
and for each set of 100 simulations and each model the calculated χ2 values were plotted
against the expected quantiles of χ2. Analyses that did not fit the χ2 distribution were
continued for another 1000 samples.

Interpreting Results

The point of these analyses was to compare how well the different models inferred the
assignments of the birth-death rates to the branches of the taxon tree. To do so I also had
to evaluate five nuisance parameters,

⋆

nr,
→

λ1,
→

λ2,
→

µ1 and
→

µ2. The proper evaluation of these
parameters was critical to the evaluation of the rate assignments. I took the samples of these
parameters in stationarity to be samples from the posterior distribution of these parameters,
and used those values to calculate summary statistics using the R statistical programming
language (R Development Core Team 2010). In this way the density of every particular
parameter value is proportional to the product of its prior density and its likelihood under
the model weighted by the posterior distributions of the other parameters in the model.

In order to evaluate how well the data supports each assignment of birth-death rates
to the branches of the taxon tree I calculated Bayes factors (Kass and Raftery 1995). The
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Bayes factor is a way of comparing how well two different hypotheses fit the data, and is
defined as the ratio between the probability of the data under the two different hypotheses:

BF (H1,H2) =
P (D∣H1)

P (D∣H2)

where D is the data and H1 and H2 are two alternative hypotheses. Values larger than one
support H1 and values less than one support H2. Bayes factors are often reported as log10

Bayes factors, so that BF10 = log10(BF ), and I will do so here. In this case values greater
than zero support H1 and those less than zero support H2. BF10 with an absolute value less
than 0.5 represent very week support for the appropriate model, between 0.5 and 1 represent
substantial support, greater than 1 is strong support and greater than 2 conclusive.

The fraction of times that a particular hypothethis is sampled during stationarity in a
reversible-jump MCMC is an estimate of the posterior probability of that hypothesis given
the data and the priors. In order to calculate the Bayes factor we must transform the
posterior probability of the hypothesis to the likelihood of the hypothesis by dividing by its
prior probability, so that:

BF (H1,H2) =
P (D∣H1)

P (D∣H2)
=
P (H1∣D)P (H2)

P (H2∣D)P (H1)

In this case I am interested in comparing hypotheses in which the same birth-death rates are
assigned to the two branches of the taxon tree to those in which different birth death rates
are assigned, so that I want to calculate BF10(

→

λ1 ≠
→

λ2,
→

λ1 =
→

λ2) and BF10(
→

µ1 ≠
→

µ2,
→

µ1 =
→

µ2).
The prior probabilities of each of these branch assignments are equal, so I calculated the
Bayes factor as the ratio between the number of times that each of these rate assignments
was sampled from the reversible-jump MCMC.

4.4.4 Results

MCMC Convergence

Comparisons of groups of 100 simulations to the χ2 distribution had three different results:
1) the entire group of simulations appeared to fit the distribution well; 2) almost all the
simulations fit the distribution well with a few outliers that had very large χ2 values; 3)
the entire set of simulations seemed to have unexpectedly high χ2 values. Investigation of
the outlier simulations indicated that these analyses failed to achieve convergence until after
the 100 sample burn-in. Both chains for each of these outliers were run for an additional
thousand samples and the last nine hundred samples were taken from each MCMC, leading
to convergence of independent chains for each sample.

All analyses under the gene count probability with variable numbers of gene lineages at
the root failed to converge in general, while all other analyses either appeared to converge
completely or all converged except one or two outliers. This general failure of the gene count
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analyses to converge seamed to be from both long burn ins and from too few samples taken,

as the flatness of the posterior distribution of
⋆

Nr lead to excessive autocorrelation between
samples. The gene count analyses of the simulations starting with five genes had to be run
for 4000 samples in order to achieve convergence with a burn-in of 1500. All the other gene
count analyses had to be run for 2000 samples with a burn-in of 500.

Parameter Estimation

The Gene Tree model does a much better job estimating the number of gene lineages at the
root of the taxon tree than the gene count model does (Figure 4.6). The posterior mean of
the number of reconstructed lineages at the root under the gene tree model is very close to
the actual number of gene lineages at the root for the vast majority of simulations. The only
exception is when the expected number of genes in one of the tips is less than the number of
gene lineages at the root; the posterior mean of

⋆

nr for these simulations is slightly less than
the actual number of lineages used. This may be a correct estimate, because the number
of reconstructed gene lineages may actually be less than the total number number of gene
lineages as a consequence of gene loss. It is also possible that the model is underestimating
the number of reconstructed lineages as a consequence of gene lineages that are lost in only
one taxon lineage obscuring the number of actual gene lineages at the root of the taxon tree
(see Figure 4.2c).

On the other hand, the gene count model is completely incapable of estimating the
number of lineages at the root, as it relies only on the number of gene lineages in the
terminal nodes and thus can not infer a trend in the number of gene lineages (Figure 4.6).
The posterior mean of the number of genes at the root for the gene count model is generally
slightly larger than the mean of the expected number of genes in the two tips. The among

simulation median of the posterior means for
⋆

Nr is unaffected by the actual number of genes
in the root, but increases as the expected number of genes in

×

τ2 increases. The among

simulation variance of the posterior mean for
⋆

Nr does increase as the number of genes at the
root decreases. This is to be expected, as I increased the birth-death parameters in order

to generate the same values for ˆ×n2 while decreasing
⋆

Nr, thus increasing the variance in
×

n2.
The assignment of birth-death parameters used had little effect on the the estimation of the
number of genes at the root, so long as the expected number of genes at the end of the
process was held constant.

The estimate of the number of gene lineages at the root of the taxon tree is not only
more accurate under the gene tree model than under the gene count model, but it is also
more precise. The size of any credibility interval is much larger for the gene count model.
This could be a consequence of the gene count model generally estimating larger values for
the number of gene lineages at the root. However the two-tailed 50% credibility interval
for the log of the number of gene lineages at he root is also much larger for the gene count
model (Figure 4.7). With no information to constrain the root, a large range of values are
reasonable under the gene count model.
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Figure 4.6: Posterior mean of the number of gene lineages at the root
of the taxon tree for each simulation as analyzed under both the gene tree
model and the gene count model. Each plot shows all the results for every
simulation with a given number of gene lineages at the root (solid line) and
a given expectation for the number of lineages at the tips of the tree (dashed
lines). Each bar and whisker shows the distribution of the posterior mean for
100 simulations with a particular rate assignment and analyzed under a given
model as described in the legend. The edge of the whiskers represents the most
extreme value within 1.5 times the interquartile distance of either quartile.
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and the dashed lines show the expected number of lineages at each of the tips of the
taxon tree.

Figure 4.7: The size of the two-tailed 50% credibility interval for the log of
the number of gene lineages at the root of the taxon tree for each simulation as
analyzed under both the Gene Tree Model and the Gene Count Model. The edge
of the whiskers represents the most extreme value within 1.5 times the interquartile
distance of either quartile.

The gene tree model and the gene count model with the root fixed both do a fairly
good job of estimating the birth-death parameters, while the regular gene count model fails
miserably (Figure 4.8). Both the gene tree model and the gene count model with the true

root do a good job of estimating
→

λ over a wide range of values. As the the true value of
→

λ increases, both models tend to underestimate the value, but are still fairly close to the
simulation value. This underestimation may be from the pull of the prior. On the other
hand, the gene count model is apparently incapable of distinguishing

→

λ from the prior when
it is not provided with the actual number of gene lineages at the root of the taxon tree. This
is not surprising, as I have already shown that this model does a poor job of estimating the
root and thus would be incapable of detecting any trends in the number of gene lineages.
The gene tree model does a fair job of estimating

→

µ, although the influence of the prior is
fairly strong as values of

→

µ below the prior tend to be overestimated and those greater than
the prior tend to be underestimated. The low estimates of the higher

→

µ2 values may also
be a consequence of the prior mean being marginalized over all the assignments of branch
rates, as the highest

→

µ2 values tend to be found in simulations where that value is much
larger than

→

µ1, and thus would be brought down by the portion of samples in which those
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Figure 4.8: The posterior means of the four birth-death rates for
the various simulations analyzed under each of the three gene evolution
models, as a function of the actual rates used in the simulations. Each
plot shows all the posterior means for a given rate as estimated under
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a specific model. Each box shows the distribution of the posterior means from a
number of different simulations that used the same or similar rates. Values for both
λs are combined into bins of size 0.1, and values for µ2 are combined into bins
of size 0.05, in order to improve visualization. The relative widths of the boxes
within each plot are proportional to the number of simulations that were used to
construct that box. The diagonal dashed line has slope one, and thus is where a well
performing analysis should estimate the rate. The horizontal dotted line is at the
prior expectation for the rate.

two rates are equal. Neither of the gene count models do a reasonable job of estimating µ,
although the model with a fixed root appears to do a slightly better job. Both appear to
be strongly influenced by the prior, and they both have a fairly large between simulation
variation in the estimate of large values for

→

µ2.

Comparison of Rate Assignments

The gene tree model can detect when the birth-death parameters differ between the two
branches of the taxon tree and distinguish which of the two birth-death parameters it is that
differs especially when the difference is large (Figures 4.9 and 4.10). Furthermore it rarely
suggests that the rates do differ when they are in fact the same. In contrast the power of the
gene count model to detect when the rates differed between branches was much smaller, and
it was totally incapable of distinguishing which birth-death parameter differed. Providing
the gene count model with information about the number of gene lineages at the root of
the taxon tree increased its power to detect a difference in rates somewhat, but still left it
impotent to determine which rate differed.

In order to see how well each assignment of rates to the branches of the taxon tree was
supported under each analysis of each simulation, I calculated log10 Bayes factors comparing
those assignment of rates in which the values of λ did vary between branches to those
in which they did not, BFλ = BF10(

→

λ1 ≠
→

λ2,
→

λ1 =
→

λ2), and comparing those assignment of
rates in which the values of µ did vary between branches to those in which they did not,

BFµ = BF10(
→

µ1 ≠
→

µ2,
→

µ1 =
→

µ2). ˆ×n1 is 20 for all these simulations, so that when ˆ×n2 is 20 all

the rates are the same on both branches, and as ˆ×n2 decreases below 20 the magnitude of the

difference between rates increases. Therefore, ideally BFλ should be less than zero, when ˆ×n2

is 20 and for all simulations in which λ was the same throughout the process (eg: Sµ0 and
Sµ2), and should be greater than zero when λ differed between branches especially when that

difference was large. Furthermore, BFµ should be less than zero, when ˆ×n2 is 20 and for all
simulations in which µ was the same throughout the process (eg: Sλ0 and Sλ2), and should
be greater than zero when µ differed between branches especially when that difference was
large.

The results for the gene tree model come close to the ideal. A large majority of all
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Figure 4.9: Log10 Bayes factor comparing assignments in which the two branches
of the taxon tree have different values for λ to those assignments in which λ is
the same for both branches, as calculated under each of the three gene evolution
models. The rows of plots show results for simulations done with different rate
assignments used in the simulations; and the columns show analyses done with
different models of gene evolution. The simulations analyzed in each subplot
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within a single plot differ in the number of lineages expected at the end of
×

τ2. Each
bar shows the results for all the simulations done with the same parameter values,
so that bars in a subplot differ only in the number of gene lineages at the root as
described in the subplot legend. For simulations in which both branches had the
same λ value the part of the plot with log10 Bayes factors below zero is colored gray;
for those simulations in which the two values of λ were different the part of the plot
with log10 Bayes factors greater than zero is colored gray.

simulations for sets of parameters in which λ was the same on both branches of the taxon
tree had a negative BFλ (Figure 4.9), as we would hope; and most simulations in which
µ was the same on both branches had a negative BFµ (Figure 4.10). However, neither of
these hypothethes had strong support as both Bayes factors rarely fell below -1. The vast

majority of simulations in which ˆ×n2 was 18 also had a negative BF10 under the gene tree
model. This is to be expected as the difference between rates in these simulations is actually

very small and thus hard to detect. However, as the value of ˆ×n2 fell to 15 and 10 the value
of the appropriate Bayes factor rose drastically. For simulations using rate assignments Sλ0
and Sλ2 the values of BFλ calculated under the gene tree model were much greater when the

value of ˆ×n2 falls to 15 and 10, especially when
⋆

Nr is large. The support for rate assignments
with different values for λ on the different branches can be very strong with BFλ exceeding
1 for at least 75% of the simulations under Sλ0 with 10 expected genes in

×

τ2 and 10 gene
lineages at the root of the tree. Furthermore, while the BFλ under the gene tree model are
larger for simulations with larger differences between λ on the two branches the values of
BFµ are essentially unchanged, as we would hope. For simulations using rate assignments
Sµ0 and Sµ2, in which µ differs between branches, the situation is reversed; the values of BFµ

are much greater when the value of ˆ×n2 falls to 15 and 10, especially when
⋆

Nr is large, while
the values of BFλ are essentially unchanged.

The values of BFλ and BFµ under the gene tree model are not only affected by the values

of ˆ×n2 and the assignment of rates to the branches of the taxon tree. In general BFλ appears

to be higher for larger values of
⋆

Nr, except when
→

µ1 and
→

µ2 are both zero, in which case BFλ
is quite small (Figure 4.9). Nonetheless the increase in BFλ as ˆ×n2 decreases is greater for

higher values of
⋆

Nr. On the other hand increasing the value of
⋆

Nr appears to always shift
BFµ towards the correct assignment of µs to the branches of the taxon tree (Figure 4.10).

Therefore simulations with larger
⋆

Nr have greater power to detect differences between µ on
the branches of the taxon tree. Thus, the gene tree model can more easily detect differences

in both λ and µ when
⋆

Nr is higher; this may be because simulations with lower values for
⋆

Nr

have higher values for the birth-death parameters, which will lead to greater variation in the
evolution of the gene tree, and thus may obscure the effects of the differences between the
branches. Simulations using the higher value of

→

µ1 have larger between simulation variance
in both BFλ and BFµ and both those values tend to be closer to zero, than they are for
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Figure 4.10: Log10 Bayes factor comparing assignments in which the two branches
of the taxon tree have different values for µ to those assignments in which µ is
the same for both branches, as calculated under each of the three gene evolution
models. The rows of plots show results for simulations done with different rate
assignments used in the simulations; and the columns show analyses done with
different models of gene evolution. The simulations analyzed in each subplot
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within a single plot differ in the number of lineages expected at the end of
×

τ2. Each
bar shows the results for all the simulations done with the same parameter values,
so that bars in a subplot differ only in the number of gene lineages at the root as
described in the subplot legend. For simulations in which both branches had the
same µ value the part of the plot with log10 Bayes factors below zero is colored gray;
for those simulations in which the two values of µ were different the part of the plot
with log10 Bayes factors greater than zero is colored gray.

simulations in which
→

µ1 is zero. This also leads to a decrease in power to detect a difference
between branches of the taxon tree, and is also probably a consequence of the higher rates
for the birth-death parameters obscuring the process of gene tree evolution.

On the other hand the gene count model has a difficult time distinguishing between
different assignments of rates to the branches of the taxon tree (Figures 4.9 and 4.10). Both

BFλ and BFµ do increase as ˆ×n2 decreases. However, these increases are very small, and the

magnitude of the increase depends only on ˆ×n2 and is insensitive as to whether the difference
in the number of genes in the two taxa is a consequence of the birth rate or the death rate.
The performance of the gene count model is improved by supplying it with the true value of

Nr. The values of BFλ and BFµ do increase by a noticeable amount as ˆ×n2 decreases, although
neither one is very large. The values of BFλ may be slightly higher for those simulations
in which λ differs between branches and BFµ may be larger for those simulations in which

µ differs between branches even when the values of ˆ×n2 and
⋆

Nr are the same. However, the
differences are small and not nearly as large as those calculated under the gene tree model.

4.5 Reconciliation Analysis of Real Gene Families

In order to further study the gene tree model, I used it to compare phylogenies for two clades
of metazoan genes to phylogenies for the animals in which those genes are found. Each clade
of genes had previously been identified as monophyletic; nevertheless, for each gene clade
I used MrBayes 3.1 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) to
reconstruct their phylogeny based on gene sequences downloaded from Genbank in order
to confirm the monophyly of the clade. Up until now I have assumed that the true gene
tree was known. However, for both gene clades studied here there was much uncertainty
in the gene tree, as there is for all gene family phylogenies. Therefore, I summed over the
uncertainty in the gene topology by including a search for the gene tree based on the gene
sequences in the MCMC, such that the estimates of the birth-death parameters and their
assignments to the branches of the taxon tree are weighted by the posterior probabilities of
the different possible gene trees under the model of nucleotide evolution. Each taxon tree
was already well established in the literature.

I studied a clade of 46 cytoplasmic protein tyrosine kinase (PTK) genes found in
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Drosophila melanogaster, Caenorhabditis elegans and Homo sapiens. Protein tyrosine kinase
is a large gene family with 478 members in the human genome alone (Manning et al. 2002).
They code for cellular enzymes that catalyze the phosphorylation of tyrosine residues, and
thus play an important role in intracellular signaling (Hunter and Cooper 1985). The
particular clade that I studied here was identified as monophyletic on the NCBI Clusters
of Orthologous Groups (COGs) website (Tatusov et al. 2003) and code for a group of
cytoplasmic PTKs. I chose this group, because they were found in all three of these genomes
and showed a large difference in gene counts between genomes while the total number of
genes remained reasonable.

Hox genes are a group of paralogous genes found in clusters within the genomes of all
bilaterians as well as cnidarians (Ferrier and Holland 2001). They code for helix-turn-helix
transcription factors and are expressed along the anterior-posterior axis during bilaterian
development, where they play a critical role in pattern formation (Ruddle et al. 1994).
They are arranged collinearly: the order of the genes within the cluster is the same as
the order of their expression along the anterior-posterior axis. While there is only a single
cluster found in most bilaterians, craniates have from three to eight clusters as a consequence
of whole cluster - possibly whole genome - duplications (Wagner et al. 2003; Irvine et al.
2002). The hox genes form three monophyletic clades, the anterior hox, the medial hox and
the posterior hox, each of which have independently expanded during bilaterian evolution
(De Rosa et al. 1999; Kourakis and Martindale 2000), and it is widely believed that the
complement of these genes was produced by gene duplication with only minimal gene loss
playing a role. While there are only one or two posterior hox genes in each protostome
genome, there are from three to six posterior hox genes in each deuterostome hox cluster,
and several authors have suggested that this has lead to increased complexity of deuterostome
posterior development (Izpisua-Belmonte et al. 1991; Holland 1992; Tabin 1992). To test this
hypothethis I analyzed the evolution of posterior hox genes on a phylogeny of nine Bilateria
taxa. If the expansion of posterior hox genes is critical for the evolution of deuterostomes,
then we would expect the rate of duplication to be higher in the deuterostomes than it
is in the protostomes. Furthermore we may ask whether the rates differed only early in
deuterostome evolution or if they have continued to be elevated throughout the history of
the Deuterostomia. Lastly we can determine the relative role of gene duplication as opposed
to gene loss in the diversification of this gene family.

4.5.1 Protein Tyrosine Kinase

For the first analysis I used a group of cytoplasmic protein tyrosine kinase (PTK) genes which
had been identified as monophyletic on the NCBI COGs website (Tatusov et al. 2003). This
clade is labeled as KOG0194 on the COGs website, and includes two D. melanogaster genes,
42 C. elegans genes and two H. sapiens genes (Table 4.2). In order to root the gene tree
and confirm that this clade was in fact monophyletic, I included eight closely related genes
in the analysis. The COGs website identified a number of genes with high BLAST scores
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Table 4.2: Protein Tyrosine Kinase Genes

Label
Genbank Protein
Accession Number

Genbank Gene
Accession Number

Gene Source

In Group
Drosophila melanogaster

Dm1 AAF54366 AE014297.2 mRNA
Dm2 AAF54367 AE003682.2 mRNA

Caenorhabditis elegans
Ce1 NP496201 NM063800.2 mRNA
Ce2 NP498912 NM066511.1 mRNA
Ce3 NP502160 NM069759.1 mRNA
Ce4 NP501818 NM069417.2 mRNA
Ce5 NP501826 NM069425.1 mRNA
Ce6 NP494971 NM062570.1 mRNA
Ce7 NP501307 NM068906.1 mRNA
Ce8 NP501309 NM068908.3 mRNA
Ce9 NP494994 NM062593.1 mRNA
Ce10 NP492004 NM059603.5 mRNA
Ce11 NP501761 NM069360.1 mRNA
Ce12 NP501793 NM069392.2 mRNA
Ce13 NP501994 NM069593.2 mRNA
Ce14 NP501993 NM069592.1 mRNA
Ce15 NP501758 NM069357.1 mRNA
Ce16 NP502037 NM069636.1 mRNA
Ce17 NP500846 NM068445.3 mRNA
Ce18 NP501081 NM068680.1 mRNA
Ce19 NP501934 NM069533.1 mRNA
Ce20 NP492594 NM060193.1 mRNA
Ce21 NP491620 NM059219.1 mRNA
Ce22 NP491966 NM059565.1 mRNA
Ce23 NP500739 NM068338.1 mRNA
Ce24 NP499953 NM067552.1 mRNA
Ce25 NP492826 NM060425.1 mRNA
Ce26 NP492827 NM060426.2 mRNA
Ce27 NP496009 NM063608.1 mRNA
Ce28 NP501907 NM069506.1 mRNA
Ce29 NP500644 NM068243.1 mRNA
Ce30 NP502591 NM070190.1 mRNA
Ce31 NP490975 NM058574.1 mRNA
Ce32 NP493812 NM061411.1 mRNA
Ce33 NP506484 NM074083.1 mRNA
Ce34 NP502563 NM070162.1 mRNA
Ce35 NP502040 NM069639.3 mRNA
Ce36 NP503024 NM070623.1 mRNA
Ce37 NP503039 NM070638.1 mRNA
Ce38 NP500812 NM068411.1 mRNA
Ce39 NP500813 NM068412.1 mRNA
Ce40 NP491913 NM059512.1 mRNA
Ce41 NP490680 NM058279.1 mRNA
Ce42 NP498511 NM066110.3 mRNA

Homo sapiens
Hs1 NP001996 NM002005.3 mRNA
Hs2 NP005237 NM005246.1 mRNA
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Table 4.2: continued

Label
Genbank Protein
Accession Number

Genbank Gene
Accession Number

Gene Source

Out Group
Drosophila melanogaster

Out1 AAF49431.1 AE003526.2 mRNA
Caenorhabditis elegans

Out2 NP494807 NM062406.2 mRNA
Homo sapiens

Out3 NP002022 NM002031.2 mRNA
Out4 NP003206 NM003215.2 mRNA
Out5 NP004374 NM004383.2 mRNA
Out6 NP005148 NM005157.4 mRNA
Out7 NP009297 NM007313.2 mRNA
Out8 NP005224 NM005233.5 mRNA

Figure 4.11: Taxon phylogeny on which the Protein Tyrosine Kinase gene tree was
analyzed. The topology is from Aguinaldo et al. (1997) and the branch lengths are
from Peterson and Butterfield (2005).

relative to the KOG0194 consensus sequence that were not found in KOG0194. I chose the
eight genes from the genomes of these three taxa that had the highest BLAST scores, and
included them in the analysis; this consisted of one gene each from D. melanogaster and C.
elegans and six genes from H. sapiens (Table 4.2).

For the phylogeny of these three taxa, I used the generally accepted topology in which C.
elegans and D. melanogaster are more closely related to each other than to H. sapiens
(Figure 4.11) (Aguinaldo et al. 1997; Eernisse and Peterson 2004). The smallest clade
containing both C. elegans and D. melanogaster is the Ecdysozoa, and thus I will refer
to the internal branch of this phylogeny as the Ecdysozoa branch. I used the minimum
evolution (ME) estimates of divergence times from Peterson and Butterfield (2005) for the
branch lengths. This analysis was based on 1,747 nucleotides from the 18S rDNA gene
sequence and fossil calibration of 12 nodes that occurred in the last 530 million years. The
authors used r8s (Sanderson 2003) to estimate the divergence dates for the other nodes and
confirmed those dates by comparing them to the acritarch fossil record. I will call this tree
THDC .
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Table 4.3: Hox Genes used in analysis.

Label
Genbank Protein
Accession Number

Genbank Gene
Accession Number

Gene Source(Nucleotides used)

In Group
Nereis virens

Ne-Post1 AAD46175 AF151672 DNA(100-379)
Ne-Post2 AAD46176 AF151673 DNA(305-622)

Caenorhabditis elegans
Ce-php3 NP499573 NM067172 mRNA
Ce-nob1 NP001022941 NM001027770 mRNA

Drosophila melanogaster
Dm-AbdB NP996220 NM206498 mRNA

Strongylocentrotus purpuratus
Sp-Hox9/10 * AC165428 DNA(472551-804)
Sp-Hox11/13a * AC165428 DNA(416163-490)
Sp-Hox11/13b * AC165428 DNA(330122-29638)
Sp-Hox11/13c * AC165428 DNA(274889-5237)

Ciona intestinalis
Ci-Hox10 BAE06496 AB210491 mRNA
Ci-Hox12 BAE06497 AB210492 mRNA
Ci-Hox13 BAE06498 AB210493 mRNA

Branchiostoma floridae
Bf-Hox9 CAA84521 Z35149 DNA
Bf-Hox10 CAA84522 Z35150 DNA
Bf-Hox11 AAF81909 AF276811 DNA

AF276812 DNA
Bf-Hox12 AAF81903 AF276813 DNA

AF276814 DNA
Bf-Hox13 AAF81904 AF276815 DNA
Bf-Hox14 AAF81905 AF276816 DNA

AF276817 DNA
Heterodontus francisci

Hf-HoxD9 AAF44633 AF224263 DNA(74337-892,75444-685)
Hf-HoxD10 AAF44634 AF224263 DNA(67375-8113,69319-590)
Hf-HoxD11 AAF44635 AF224263 DNA(57461-8025,58571-803)
Hf-HoxD12 AAF44636 AF224263 DNA(49096-675,50437-675)
Hf-HoxD13 AAF44637 AF224263 DNA(42409-3012,43355-605)

Takifugu rubripes
Tr-HoxD9a ABF22465 DQ481668 DNA(159791-60367,160730-974)
Tr-HoxD10a ABF22464 DQ481668 DNA(156468-7203,157727-8001)
Tr-HoxD11a ABF22463 DQ481668 DNA(152005-566,153088-323)
Tr-HoxD12a ABF22462 DQ481668 DNA(146557-7103,147397-635)

Mus musculus
Mm-HoxD9 NP038583 NM013555 mRNA
Mm-HoxD10 NP038582 NM013554 mRNA
Mm-HoxD11 NP032299 NM008273 mRNA
Mm-HoxD12 NP032300 NM008274 mRNA
Mm-HoxD13 NP032301 NM008275 mRNA

4.5.2 Posterior Hox

The posterior hox genes form a widely recognized clade that is present throughout
the Metazoa (Ruddle et al. 1994; Kourakis and Martindale 2000). In order to study
the diversification of these genes in the deuterostomes I analyzed the phylogeny of the
posterior hox genes from three protostomes and six deuterostomes with a large phylogenetic
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Table 4.3: continued

Label
Genbank Protein
Accession Number

Genbank Gene
Accession Number

Gene Source(Nucleotides used)

Out Group
Symsagittifera roscoffensis

Sr-Hox4/5 AAN11405 AY117548 DNA(162-331,855-921)
Sr-post AAN11406 AY117549 DNA(412-706)

Nereis virens
Ne-Lox5 AAD46174 AF151671 DNA(269-669)

Caenorhabditis elegans
Ce-mab5 NP498695 NM066294 mRNA
Ce-egl5 NP001021166 NM001025995 mRNA

Drosophila melanogaster
Dm-AbdA NP476693 NM057345 mRNA

Branchiostoma floridae
Bf-Hox8 CAA84520 Z35148 DNA

Mus musculus
Mm-HoxD8 NP032302 NM008276 mRNA

* The protein sequence does not have a separate Genbank entry. The translation was found in the gene sequence entry.

distribution (Table 4.3). I used complete samples of posterior hox genes from the three
Protostome genomes: the polychaete, Nereis virens, has two posterior hox genes; the
Nematode, C. elegans has two; and the fruit fly, D. melanogaster, has one. I also used
complete samples of the posterior hox genes from three invertebrate Deuterostomes: the
sea urchin, Strongylocentrotus purpuratus, has four posterior hox genes; the tunicate, Ciona
intestinalis, has three; and the lancelet, Branchiostoma floridae, has six.

The hox cluster appears in multiple copies in vertebrate genomes. This is likely a
consequence of multiple duplications that happened in a common vertebrate ancestor and in
a teleost ancestor, and the homology of the individual clusters has been established (Irvine
et al. 2002; Wagner et al. 2003). I wanted to avoid the signal of gene duplication left
by these hox cluster duplications as the mechanism likely involved multiple whole genome
duplications and thus differs from the mechanisms that has lead to an expansion in the
number of posterior hox genes in all deuterostomes. Therefore, I only used hox genes from
the D clusters of the three Vertebrate genomes that I analyzed, and only the Da cluster of the
puffer fish. I chose the D cluster, because it appears to have retained a nearly full set of what
are believed to be the ancestral craniate posterior hox genes in the three vertebrate genomes
that I studied. The horn shark, Heterodontus francisci, and the mouse, Mus musculus, both
have five posterior hox genes in their D cluster and the puffer fish, Takifugu rubripes, has
four posterior hox genes in its hox Da cluster.

In order to root the posterior hox gene tree I included several medial hox genes from both
Protostome and Deuterostome genomes that were used in this analysis (Table 4.3). I used
one medial hox gene from each of the genomes of N. virens, D. melanogaster, B. floridae and
M. musculus ; and two from C. elegans. I also included one medial and the lone posterior hox
gene from the acoel flatworm, Symsagittifera roscoffensis. The acoel flatworms are believed
to be basal to the other Bilateria (Ruiz-Trillo et al. 1999), and thus, if there has been no gene
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Figure 4.12: Taxon phylogeny of Bilateria on which the posterior hox genes were
analyzed. The basal topology is based on Halanych (2004) and the internal Chordate
topology is from Rowe (2004). Branching times are from ME estimates in Peterson
and Butterfield (2005) and from Kishino et al. (2001). The branch colors indicate
groups of branches that were assumed to have the same birth-death parameters. The
names of these groups of branches are given in the legend.

loss, then Sr-post, the only posterior acoel hox gene, should also be basal to the posterior
hox genes of the other Bilateria. However, even if it is found within the posterior hox genes
of the other Bilateria, it still does not violate the monophyly of this gene clade, as no acoel
genes are included in this analysis. Thus Sr-post is not a proper member of the outgroup,
but instead is included as a test of the hypothethis that the common ancestor of all Bilateria
had only one posterior hox gene.

For the taxon tree I use the modern view of Bilaterian relationships in which the
deuterostomes and protostomes are both monophyletic and the protostomes are broken into
two large clades, the Ecdysozoa, which includes both arthropods and nematodes, and the
Lophotrochozoa, which includes annelids (Halanych 2004) (Figure 4.12). The deuterostomes
contain both a monophyletic Echinodermata and Chordata as well as several other groups.
The large scale phylogeny of Chordata has been stable for quite some time and I used this
classic set of relationships in my analysis (Rowe 2004). Here urochordates are sister to the
Euchordata, which contains the Cephalochordata and the Craniata. Within the Craniata
the Osteichthyes are monophyletic and sister to the Chondrichthyes. For the dates of the
nodes within the protostomes and for the protostome-deuterostome split I used the dates
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from Peterson and Butterfield (2005), as I did for the PTK analysis. However, this paper
did not have estimates of the relevant node dates within the deuterostomes. Therefore, for
the intra-deuterostome divergence times I used the estimates from Blair and Hedges (2005)
(Figure 4.12). These authors estimated the divergence times from a concatenated dataset of
325 proteins for 15 deuterostome taxa using a Bayesian local clock analysis (Kishino et al.
2001) with minimum constraints for 13 of 14 internal nodes and maximum constraints for 3
internal nodes derived from the fossil record. Both sets of divergence times were completely
compatible with each other. I will call this tree TBil.

This taxon phylogeny has 16 branches that could potentially have different birth-death
parameters under my model. This leads to more than 1020 possible rate assignments.
However, we are only concerned with the relative rates in certain clades. In particular we
want to know if the birth-death rates differ between the Deuterostomia and the Protostomia
and if the birth-death rates were different early in deuterostome history. Thus in analyzing
the posterior hox data, I assumed that the birth-death rates were equal in four groups
of branch lengths (Figure 4.12). I assumed that the birth-death rates were the same
within the Protostomia including the branch at the base, and I called these branches the
Protostomia branches. I wanted to see if the birth-death process operated differently early
in deuterostome history, so I defined the Basal Deuterostome branches as the branch at the
base of Deuterostomia and the branch at the base of Chordata, and I assumed that these
branches had the same rate. Defining these branches broke the rest of the deuterostome
branches into two groups: the Strongylocentrotus branch, the terminal branch leading to S.
purpuratus ; and the Chordata branches consisting of all the branches within the chordates,
but not the branch at the base.

4.5.3 Alignment and Outgroup Determination

I downloaded the nucleotide sequence of each gene used in this analysis as well as
the amino acid sequences of the proteins for which they code from GenBank (Benson
et al. 1998) (Tables 4.2 and 4.3). I aligned the amino acid sequences using ClustalW
(Thompson et al. 1994; Larkin et al. 2007). I identified conserved domains in each protein
using the Conserved Domains and Protein Classification server on the NCBI web site
(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), and confirmed that all identified
domains were properly aligned. I then used the nucleotide sequences to reverse translate the
amino acid alignments. I further aligned these reverse translated nucleotide alignments by
eye.

The gene tree reconciliation model used in this paper assumes that all the genes used
are monophyletic with respect to all the other genes in the genomes from which they were
sampled. Therefore it was necessary that I first confirm an outgroup, to determine that these
genes are in fact monophyletic and second to root the gene tree. For each data set I used
MrModelTest (Posada and Crandall 1998) run on PAUP* 4.0 (Swofford 2002) to determine
the model of DNA substitution. I then used those models to analyze the alignments with
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MrBayes 3.1 in order to infer the gene phylogeny (Huelsenbeck and Ronquist 2001; Ronquist
and Huelsenbeck 2003). For each alignment I made two independent runs with four chains
each sampling every 1000 generations using the default priors. In order to assure convergence,
I ran the MCMC until the standard deviation of split frequencies for the last 75% of samples
fell below 0.01. I then used the compare and split functions in AWTY to insure that the two
runs had in fact converged and determine an appropriate burn-in (Nylander et al. 2008). I
constructed a posterior phylogram from the distribution of posterior trees using the majority
rule consensus tree command in Mesquite (Maddison and Maddison 2007).

4.5.4 Phylogeny Reconciliation Analysis

The data for this analysis is now the taxon tree, T0, and the gene sequences, D, instead of
the taxon tree and the gene tree, G0. I want to find the posterior distribution of A, the
assignment of birth death parameters to the branches of the taxon tree, but to do so, I must
now deal with a number of nuisance parameters: Λ and M , the birth-death rates;

⋆

nr, the
number of gene lineages at the root of the taxon tree; G0, the gene tree; and Θ, the nucleotide
evolution parameters. I have already shown how to calculate the probability of a gene tree
given a taxon tree and a set of birth death parameters, and there is an immense literature
on how to calculate the probability of a set of gene sequences given a gene tree and a set of
nucleotide evolution parameters. I can calculate the total probability by multiplying these
two probabilities together.

P (D,G0∣A,Θ,Λ,M,T0) = P (D∣Θ,G0)P (G0∣A,Λ,M,T0)

I will use the MCMC so that my target distribution is the joint posterior density of G0, A,
Λ, M and Θ given T0 and D. Thus in estimating a posterior distribution for A, P (A∣D,T0),
I sum over the posterior distributions of all these nuisance parameters, and in the process
will also estimate posterior distributions for the nuisance parameters. All of these methods
were implemented in TRUL.

Phylogeny Search

I calculated the probability of the gene sequences using the Kimura two-parameter model in
which transitions and transversions occur at different rates (Kimura 1980). As the branch
lengths of the gene phylogeny were also allowed to vary and were not constrained by anything
other than the amount of nucleotide change, this model had only one free parameter, κ, the
transition-transversion ratio. If we assume that the prior distributions for both the transition
rate and the transversion rate are exponential, as we did for the other rates, then the prior
density of κ would be

f(κ) =
κ̃

(κ + κ̃)2
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where κ̃ is the prior median of κ, and the ratio between the prior means of the transition
and transversion rates. I assumed this prior distribution of κ, with a value of 2.0 for κ̃. I
marginalized the calculation over all possible assignments of characters to the internal nodes
Felsenstein (1973, 1981). I also assumed that the prior distributions for the branch lengths
of the tree were exponential with a prior mean of 0.1. The prior for G0 id derived from the
model of gene tree evolution.

I used Extending Subtree Pruning and Regrafting (eSPR) for the topology rearrangement
proposals (Lakner et al. 2008). My method only differed from Lakner et al. (2008) in that
I only moved the subtrees from the non-root end of the chosen branch, as the position of
the root is critical for the birth-death portion of the calculation. I used a probability of
moving on to another branch, pe, of 0.5. I modified both κ and the branch lengths in the
same manor that I did the birth-death rates (subsection 4.3.2), by multiplying them by some
number eξ, where ξ is chosen from the uniform distribution (−Ξ/2,Ξ/2). Thus there were two
new parameters for the MCMC: Ξκ, Ξ for the κ proposals, which I set to log(1.2); and Ξbl, Ξ
for the branch length proposals, which I set to log(2). I also used Ξbl for the branch length
modifications accompanying the eSPR proposals. The proposal ratio for these modifications
can be calculated as in subsection 4.3.2.

Birth-Death Reconciliation Search

In order to compare the rates of gene duplication and loss on the different branches of the
taxon tree, I not only calculated the probability of the DNA sequences given each gene
tree but also the probability of each gene tree evolving on the appropriate taxon tree using
the methodology described in section 4.3. However, as the tips of the gene tree are now
characterized by gene sequences two tips must have the same gene sequences to be equivalent,
and as the tree itself now has branch lengths two clades have to have not only the same
topology but also the same set of branch lengths to be equivalent. This will never happen,
so k(G(

→

γ)) is 2 for every branch in the tree. I used a reversible-jump MCMC to compare
all possible assignments of birth-death rates to the branches of the taxon tree for the PTK
analysis and to the groups of branches of the taxon tree for the posterior hox analysis. I
assumed that at least one gene survived into each terminal of the taxon tree. I also assumed
a prior expectation for each birth-death rate of 8 events/lineage/billion years, as the average
estimate for Bilateria in Lynch and Conery (2003). Ξλ was set to log(8), ΞA was set to
log(1.2) and ∆

⋆

nr was set to 1. The settings for the MCMC were chosen, such that the
acceptance rate was close to 50% for all proposals.

Run Details

Since I considered the topology of the gene tree as a free parameter in my analysis, I had
three additional types of proposals and thus had to determine the frequencies at which those
proposal occurred. cκ is the fraction of proposals for which I modified κ, cbl is the fraction
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Table 4.4: The order of branches in THDC as they appear in rate assignments from
left to right.

Homo Branch
Ecdysozoa branch
Drosophila branch
Caenorhabditis branch

of proposals for which I modified a single branch length and cG is the fraction of proposals
for which I modified the gene tree topology, such that cκ + cbl + cG + cr + cλ + cA = 1 The
frequencies with which each type of proposal was attempted were cr =0.05, cλ=0.2, cA=0.3,
cκ=0.05, cbl=0.1, and cG=0.3.

I sampled from the MCMC every 1,000 generations and I took 10,000 samples for the
PTK tree and 25,000 for the posterior hox trees. I had two independent runs for each
analysis for which the starting parameter values were chosen at random from the prior.
I chose the starting tree topology by randomly selecting trees from the samples MrBayes
took in stationarity. I took a burn-in of 2000 samples for the PTK analysis and 12,000
samples for the posterior hox analysis. In order to assess whether the independent runs
had in fact converged, I compared the two most important parameters, the tree topology
and the assignment of rates. I compared the number of times each assignment of rates
to the branches appeared in each run by constructing a contingency table and comparing
the two independent runs with a χ2-test using the R statistical programming language (R
Development Core Team 2010). I confirmed that the tree topologies had converged and
reached stationarity by using the compare and split commands in AWTY (Nylander et al.
2008). I also used AWTY to calculate the split frequencies and then calculated the average
standard deviation of split frequencies in R.

Comparing Birth-Death Rate Assignments

In order to describe the different assignments of rates to the branches of the taxon tree, I
will use a system in which the branches of the taxon tree are listed in a particular order.
The rate for the first branch will be referred to as 1 and the rate for every other branch that
is the same as the rate of the first branch will also be referred to as 1. The rate for the most
leftward listed branch that is not equal to the first branch will be referred to as 2, as will all
the other branches that have that same rate, and so on until all the rates are accounted for.
So that for a tree with three branches, if all three branches had the same rate assigned to
them, then A=111, if they all had different rates assigned, then A=123, and if the first and
third branch had the same rate, while the second differed, then A=121.

In these analyses, I will be dealing with the assignments to two different taxon trees, one
consisting of D. melanogaster, C. elegans and H. sapiens used to analyze the PTK genes,
THDC , and another more inclusive tree of Bilateria used to analyze the posterior hox genes,
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Table 4.5: The order of branch groups in TBil as they appear in rate assignments
from left to right.

Basal Deuterostomia branches
Strongylocentrotus branch
Chordata branches
Protostomia branches

TBil. Each will have a set of rate assignments that describes the assignments of the
→

λs,
AλHDC and AλBil, and one that describes the assignments of the

→

µs, AµHDC and AµBil. The full
assignments of birth-death rates to the taxon trees will be referred to as AHDC and ABil and
will be represented as the

→

λ assignment with a λ subscript followed by a slash and the
→

µ
assignment with a µ subscript (i.e: AHDC =1213λ/1221µ). The order of branches are shown
in Table 4.4 for THDC and the order of branch groups are shown in Table 4.5 for TBil.

I compared different assignments of birth-death rates to the branches of the taxon trees
using Bayes factors, in the same manor as I did for the simulations (section 4.4.3). However,
unlike the rate assignments for the simple two taxon tree that I used for the simulations,
many of the rate assignments that I wanted to compare for the more complex taxon trees
used in these analyses have different prior probabilities, which must be corrected for in order
to make these comparisons. When comparing two fully resolved rate assignments, say 111
to 112, both will have the same prior probability and so the ratio between their posterior
probabilities will be equal to the Bayes factor. However, what if we want to compare those
rate assignments in which the first rate and the second rate are unequal to those in which
they are equal. I will refer to these two assignments as 12N and 11N respectively, where
the N refers to indifference about that rate. As we can see 12N is made up of the fully
resolved rate assignments 121, 122 and 123, while 11N is made up of 111 and 112. Thus the
prior probability of 12N is 1.5 times the prior probability 11N and the appropriate correction
should be made to their Bayes factors.

That appears to be sufficient, but under this scheme the distribution of assignments
are weighted differently under 11N and 12N. To see why imagine that we take each of the
assignments that make up 12N and set the first and the second rate to be equal to each other.
In that case 121 and 122 will both be equivalent to 111, while only 123 will be equivalent
to 112. Thus the assignments in which the third rate does not equal either of the other two
rates are weighted more heavily under 11N than they are under 12N. To compensate for
this fact, I adopted a prior scheme in which the prior probabilities are all still equal for all
the less constrained fully resolved assignments (i.e. 121, 122 and 123), which make up the
less constrained unresolved assignment (i.e. 12N). But for the more constrained unresolved
assignment (i.e 11N), I calculate the prior probabilities of the fully resolved assignments that
make it up (i.e. 111 and 112), by adding up the prior probabilities of their equivalent less
constrained fully resolved assignments. So that for the case I already discussed, if 121, 122
and 123 all have prior probability p, then 112 will also have prior probability p because it
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is only equivalent to 123, while 111 will have prior probability 2p as it is equivalent to 121
and 122. This scheme will put greater weight on those assignments in which more rates are
equal to each other.

For those cases in which we want to compare the hypothesis that a set branches X all
have the same

→

λ, and a set branches Y all have the same
→

λ but X and Y do not have the
same

→

λ, X ⊆ A(λ1) and Y ⊆ A(λ2), to the hypothesis that all members of both groups
have the same rate, {X ∪ Y } ⊆ A(λ0), then we can calculate an appropriate Bayes factor
by weighting each fully resolved assignment under the first hypothesis by 1 and under the
second hypothesis by 2∣A(λ0)∣−∣X ∣−∣Y ∣. This same weighting scheme will work for

→

µ. However,
if we want to see if two groups have the same

→

r, meaning that they have the same
→

λ and
→

µ, then we must weight the assignments by (2∣A(λ0)∣−∣X ∣−∣Y ∣ + 1)(2∣A(µ0)∣−∣X ∣−∣Y ∣ + 1) − 1. For
some more complex cases, I had to write code in R that would count assignments in order
to generate the appropriate weighting scheme.

4.5.5 Protein Tyrosine Kinase Results

All the PTK genes had two well defined domains: SH2 for identifying phosphorylated kinases
and PTKc for phosphorylating kinases. The D. melanogaster sequences also had an F-BAR
domain for dimerization. All these domains were well aligned by ClustalW. The full reverse
translated DNA alignment had 10503 characters. MrModelTest chose a GTR+Γ+I model,
which I used to analyze the data set in MrBayes 3.1. After 6,000,000 generations the last
75% of samples from the two independent runs had an average standard deviation of split
frequencies of 0.004164. Using AWTY (Nylander et al. 2008) I examined the posterior
probabilities of splits over time using the slide command and plotted the splits between the
two independent runs using compare; both analyses indicated that a burn-in of 30% was
sufficient. Accepting splits with a posterior probability greater than 0.500 lead to a fully
resolved tree (Figure 4.13). The monophyly of the in group was strongly supported (posterior
probability=0.999), as was the monophyly of all three clades of in group genes from each
taxon (posterior probability = 1.000) and many splits within the out group and the clade
of C. elegans genes. The clade including all the C. elegans and D. melanogaster in group
genes is only supported with a posterior probability of 0.732; the alternative arrangement in
which the clade of D. melanogaster genes is sister to the clade of H. sapiens has a posterior
probability of 0.255, and the arrangement in which the H. sapiens genes are sister to the C.
elegans genes has a posterior probability of 0.013. The resolution of this node has a large
effect on the birth-death analysis, as the topology with the C. elegans and D. melanogaster
genes sister to each other requires no gene losses, while the topology with a D. melanogaster
genes- H. sapiens genes clade requires a minimum of three gene losses and an additional
gene duplication on the root (Figure 4.14). The uncertain topology within the C. elegans
gene clade may have some small effect on the birth-death analysis, but it is unlikely to be
very strong.

Comparisons of branch rate assignments and gene tree topologies indicated that the two
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Figure 4.13: Posterior phylogeny of a clade of 46 cytoplasmic protein tyrosine
kinase genes found in D. melanogaster, C. elegans and H. sapiens. The tree was
reconstructed from an alignment of 10,503 nucleotide characters by MrBayes 3.1
using a GTR+Γ+I model of nucleotide substitution. All splits with a posterior
probability greater than 0.500 are shown and the posterior probabilities of splits
greater than 0.666 are shown on the appropriate branch.
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Figure 4.14: Two different possible topologies for the PTK genes and their
maximum parsimony reconciliations. (a and b) Two different possible topologies
for PTK gene tree. Numbers on the branches show posterior probabilities for each
split as inferred by MrBayes 3.1 (to left of branch) and TRUL (to right of branch)
using an alignment of 10,503 nucleotides. The asterisk refers to the fact that the in
group was assumed to be monophyletic in the TRUL analysis and so that split is
not a conclusion of the analysis. c) Maximum parsimony reconciliation of gene tree
from (a) with the taxon tree. d) Maximum parsimony reconciliation of gene tree
from (b) with the taxon tree. Gene lineages that we can infer must have existed but
were lost before the present are shown with dashed lines.
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MCMC chains for the TRUL PTK analysis appeared to be converged after removing the
burn-in. I completely failed to reject the hypothethis that the distribution of rate assignments
from the two chains were from the same distribution by constructing a contingency table and
calculating a χ2-value (χ2=192.4, p=0.944). I plotted the split frequencies of the two runs
against each other and they appeared to be very similar. Furthermore, the average standard
deviation of split frequencies was 0.004677.

The phylogeny of PTK genes inferred by the reconciliation analysis is very similar to
the in group phylogeny of the MrBayes analysis (Figure 4.15). The in group genes from
each taxon were found to be monophyletic in all samples. The topology of the C. elegans
PTK clade differs somewhat between the two trees, but is overall very similar. Some of these
differences require that one dissolves splits that are well supported in at least one of the trees.
Of course changes in the topology of the C. elegans PTK clade will not have a large affect
on the reconciliation analysis. On the other hand the relationship between the gene clades
of each taxon will affect the analysis. Although both analyses have their majority of samples
from trees in which the D. melanogaster genes are most closely related to the C. elegans
genes, that arrangement is more strongly supported by the MrBayes analysis (posterior
probability = 0.732) than by the gene tree reconciliation analysis (posterior probability =
0.605). This is surprising; the gene tree reconciliation analysis also considers the fit of
the gene tree to the taxon tree and this arrangement is more parsimonious than either of
the other arrangements, so we would expect the reconciliation analysis to support it more
strongly (Figure 4.14). The difference in support is likely a consequence of the different
models of nucleotide substitution used in the two analyses.

It is apparent that the maximum parsimony reconciliation of the best supported PTK
tree to its taxon tree requires no gene losses (Figure 4.14c). Under this hypothethis, the
most recent common ancestor (MRCA) of the Bilateria had only one gene in this clade
which was passed on to the MRCA of the Ecdysozoa. On the other hand the other two
possible arrangements of the tree taxon PTK clades take up almost 40% of the posterior
probability and require at least two gene lineages at he root and in the MRCA of the
Ecdysozoa (Figure 4.14d). This is reflected in the posterior distribution of

⋆

nr, which is one
46% of the time, two 32% of the time, and is less than 5 96% of the time (Figure 4.16). The
MCMC does spend a significant amount of time sampling from reconciliations with more
gene lineages at the root other than the maximum parsimony reconciliation, but usually
stays pretty close to what we would expect under the maximum parsimony reconciliation.

The single assignment of birth-death rates to the branches of THDC with the highest
posterior probability is one in which all the branches have the same

→

µ, and
→

λ is the same
for the Homo branch, the Drosophila branch and the Ecdysozoa Branch, but is different
for the Caenorhabditis branch (BF10(AHDC = 1112λ/1111µ,AHDC ≠ 1112λ/1111µ) = 0.6764)

(Figure 4.17). However, varying the assignments of
→

µ and
→

λ for the Ecdysozoa has little

effect on the posterior probability. Assignments in which
→

λ for the Caenorhabditis branch
does not equal

→

λ for the Homo branch or the Drosophila branch are well supported
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Figure 4.15: Posterior phylogeny of a clade of 46 cytoplasmic protein tyrosine
kinase genes found in D. melanogaster, C. elegans and H. sapiens. The tree was
reconstructed from an alignment of 10,503 nucleotide characters by TRUL. All
splits with a posterior probability greater than 0.500 are shown and the posterior
probabilities of splits greater than 0.666 are shown on the appropriate branch.
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Figure 4.16: Posterior distribution of
⋆

nr for ML PTK tree, when compared to its
taxon tree.

Table 4.6: Log10 Bayes Factor for the hypothethis that
→

r for the branch in each
row is greater than

→

r for the branch in each column vs the hypothethis that those
values are equal, BF10(

→

r1>
→

r2,
→

r1=
→

r2).

Branch2

Homo Ecdysozoa Drosophila Caenorhabditis

B
ra

n
ch

1 Homo - -0.09371 -0.32622 -0.80911
Ecdysozoa -0.02818 - -0.02381 -0.38231
Drosophila -0.29924 -0.07678 - -0.79894
Caenorhabditis 0.72766 0.34176 0.66616 -

(BF10(AλHDC ∈ {1N12,1N23},AλHDC ∉ {1N12,1N23}) = 0.5652), but the support for
→

λ
being equal on the Homo branch and the Drosophila branch is pretty week (BF10(AλHDC =
1N1N,AλHDC =1N2N)=0.0028). The

→

µ assignments have less effect on the likelihood than

the
→

λ assignments. The assignments in which
→

µ is the same on the Caenorhabditis branch,
the Drosophila branch and the Homo branch are the best supported, while those in which
all three of those branches have different

→

µs are the worst supported. All the
→

µ assignments
in which only two of those branches have the same

→

µ are supported approximately equally.
Comparing the values of

→

r between pairs of branches instead of assignments of
→

λ or
→

µ
to all the branches helps to clarify the picture. Table 4.6 shows Bayes Factors comparing
the hypothethis that the value of

→

r is larger on one branch than it is on another to the
hypothethis that

→

r is the same for both branches. This is essentially a series of one tailed
tests for the relationships between the birth-death processes on the various branches of THDC .
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Figure 4.17: Log10 Bayes Factors comparing assignments of birth-death rates for
the PTK gene tree to the branches of the taxon tree. Above the diagonal shows

comparisons of different
→

λ assignments showing support for assignments in the
rows versus those in the columns, BF10(A

λ1
PTK ,A

λ2
PTK). These assignments are

further subdivided into those that have the same
→

λ assignments to the terminal
branches of the taxon tree. Below the diagonal shows comparisons of different
→

µ assignments showing support for assignments in the rows versus those in the
columnss, BF10(A

µ1
PTK ,A

µ2
PTK).

Table 4.7: Log10 Bayes Factors show that the data supports a model in which
the difference between

→

r for the Caenorhabditis branch and the other branches is a
consequence of differences in

→

λ, not
→

µ. Each entry shows BF10(H1,H2).

H1

→

λC ≠
→

λ1 ∩
→

µC =
→

µ1

→

λC ≠
→

λ1 ∩
→

µC =
→

µ1

H2

→

λC ≠
→

λ1 ∩
→

µC ≠
→

µ1

→

λC =
→

λ1 ∩
→

µC ≠
→

µ1

B
ra

n
ch

1 Homo 0.41236 0.64284
Ecdysozoa 0.26521 0.37216
Drosophila 0.42332 0.65445
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Figure 4.18: Posterior distribution of birth-death rates for the evolution of the PTK

tree. Samples from the MCMC for
→

λ,
→

µ and
→

r for each branch of THDC are grouped
into bins of 0.5 Events/Gene Lineage/Billion Years. The prior distribution is shown
as a dashed line for comparison.

We see here that there is solid support for
→

r being larger on the Caenorhabditis branch than
it is on any of the other branches, especially the Homo branch and the Drosophila branch.
We can also be certain that

→

r for the Caenorhabditis branch is not lower than
→

r on any of
the other branches. The rest of the comparisons do not strongly favor one hypothethis over
another, especially those involving the Ecdysozoa branch. Furthermore, there is also a fair
amount of support for the hypothethis that the difference in

→

r between the Caenorhabditis
branch and the other branches is a consequence of differences in

→

λ rather than
→

µ, as the
assignments in which

→

λ and not
→

µ differs between the pair of branches have a much higher
posterior probability than those in which both

→

λ and
→

µ differ, or only
→

µ differs (Table 4.7).
The posterior distribution of the birth-death rates reflects what we have already seen
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from comparing different rate assignments (Figure 4.18).
→

λ for the Homo branch and
the Drosophila branch both have strong modes at about 1.75 duplications/lineage/billion

years. The
→

λ for the Caenorhabditis branch also has a strong posterior mode at about 8
duplications/lineage/billion years. On the other hand,

→

λ for the Ecdysozoa branch has two
modes that correspond to the modes of the other three branches and its posterior distribution
appears to be a mix of the posterior distribution for the other three branches and the
prior, indicating that the data provides little information about what

→

λ actually is on that
branch. The posterior distributions of

→

µ appear to be more strongly influenced by their prior
distributions than the posterior distributions of

→

λ are. There is some information driving
all these distributions closer to zero than the prior distribution. This effect is particularly
strong for the Caenorhabditis branch and particularly weak for the Ecdysozoa branch, for
which the posterior distribution is very close to the prior. The posterior distributions of
→

r are essentially what we would expect given the distributions for
→

λ and
→

µ. However, it is
informative to see that the distributions of

→

r for the Homo branch, the Ecdysozoa branch and
the Drosophila branch all have modes near zero, and for the Homo branch and the Drosophila
branch, these modes are much stronger than the prior. The Caenorhabditis branch has a
very strong mode for

→

r near 5.5 changes/lineage/billion years and interestingly the variance

for
→

r appears to be less than it is for
→

λ.

4.5.6 Posterior Hox Results

All the posterior Hox genes had a single homeodomain for DNA binding, which was well
aligned by ClustalW. The full reverse translated DNA alignment had 1,866 characters.
MrModelTest chose a GTR+Γ+I model, which I used to analyze the data set in MrBayes
3.1. After 20,000,000 generations the last 75% of samples from the two independent runs
in MrBayes had a average sandard deviation of split frequencies of 0.004205. Using AWTY
(Nylander et al. 2008) I examined the posterior probabilities of splits over time using the
slide command and plotted the splits between the two independent runs using compare; both
analyses indicated that a burn-in of 30% was sufficient.

The posterior hox gene tree is not well resolved (Figure 4.19). The monophyly of the
in group is strongly supported (posterior probability(pp)=1.000), but only as long as we
include Sr-Post, which is nested well inside the in group. This is a common result in
phylogenetic analyses of posterior hox genes, in which the posterior hox are clearly resolved
as monophyletic, but there is little resolution within the posterior hox (see De Rosa et al.
1999; Kourakis and Martindale 2000). The nodes that are well resolved yielded some
unexpected results. All the protostome posterior hox are found nested within the chordate
posterior hox, implying that the most recent common ancestor of bilaterians had multiple
posterior hox genes, many of which were lost in the protostomes. The analysis recovered a
monophyletic gnathostome HoxD10 (pp=1.000), HoxD11 (pp=1.000), HoxD12 (pp=0.999)
and HoxD13 (pp=0.999). However, within the HoxD11 (pp=0.965) and HoxD12 (pp=0.805)
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Figure 4.19: Posterior phylogeny of a clade of 32 posterior hox genes found in nine
Bilaterian taxa. The tree was reconstructed from an alignment of 1,866 nucleotide
characters by MrBayes 3.1 using a GTR+Γ+I model of nucleotide substitution. All
splits with a posterior probability greater than 0.500 are shown and the posterior
probabilities of splits greater than 0.666 are shown on the appropriate branch.
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the T. rubripes gene was most closely related to the H. francisci and the M. musculus
and H. francisci HoxD10 genes formed a clade (pp=0.975), whereas a maximum parsimony
interpretations of the reconciliation would expect monophyletic osteichthyes genes. One
interpretation of this result is that the homology of the hox clusters has been incorrectly
assigned, but there is no consistent pattern within these results to assign an alternative
homology. Furthermore, a monophyletic gnathostome HoxD9 is rejected (pp=0.322), and
the C. intestinalis and B. floridae posterior hox rarely are grouped with the appropriate
gnathostome genes. Another feature of note is the monophyletic Sp-Hox11/13 (pp=0.730),
which has been found in previous studies (Cameron et al. 2006).

The last 13,000 samples from the two independent TRUL runs appeared to be completely
converged. I was extremely far from rejecting the null hypothethis that the distribution
of assignments from the two runs were from the same distribution (χ2=181.7, p=0.980).
Furthermore, the average standard deviation of split frequencies was only 0.00104. Visual
comparisons of split frequencies and slide analyses also indicated that the two runs had
converged.

The posterior gene tree for the TRUL analysis is no better resolved than the posterior
gene tree from the MrBayes analysis, but there are substantial differences in topology
(Figure 4.20). The vertebrate HoxD10 (pp=0.982), HoxD11 (pp=0.999), HoxD12 (pp=0.999)
and HoxD13 (pp=0.866) each form clades, as they do for the MrBayes tree, but now Ci-
Hox13 is grouped with the vertebrate HoxD13 genes (pp=0.844). Furthermore, the C. elegans
(pp=0.917) and N. virens (pp=0.584) genes are each monophyletic unlike in the MrBayes
trees. The TRUL tree also has a large polytomy consisting of each of the protostome posterior
hox clades, the vertebrate hoxD10 through hoxD13 clades, the C. intestinalis genes and the
B. floridae genes, which is at least partially resolved in the MrBayes tree. Finally, the TRUL
tree has a completely monophyletic S. purpuratus posterior hox.

Three different factors could account for the difference between the tree reconstructions.
The two analyses used different models of nucleotide substitution, the TRUL analysis did
not include Sr-post and the TRUL analysis took the prior distribution of tree topologies from
the gene tree evolution model. It is difficult to determine the effect of the first two factors,
but it does appear that the topology prior had a large affect on the posterior distribution of
trees. Posterior hox trees sampled from the TRUL analysis were in general more compatible
with TBil than those sampled from MrBayes (Figure 4.21). This is not surprising, because
the TRUL analysis took the tree reconciliation into account, and so it should tend to resolve
topological uncertainties in favor of topologies that require fewer gene duplications and
losses. It should be noted that both analyses produced trees with many more duplications
and losses than the five duplications and three losses required by the distribution of gene
numbers among taxa.

The results of the reconciliation analysis are largely driven by the incongruence between
the gene tree and the species tree. It predicts a large number of reconstructed gene lineages
at the root (median = 16, 50% credibility interval = 12 to 28). This implies that there has
been a large amount of gene loss in every lineage and that is reflected in the birth-death
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Figure 4.20: Posterior phylogeny of a clade of 31 posterior hox genes found in nine
Bilaterian taxa. The tree was reconstructed from an alignment of 1,866 nucleotide
characters by TRUL. All splits with a posterior probability greater than 0.500 are
shown and the posterior probabilities of splits greater than 0.666 are shown on the
appropriate branch.
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Figure 4.21: The distribution of the minimum number of gene duplications and
losses among the posterior hox phylogenies sampled from MrBayes and TRUL. The
number of required duplications and losses in the maximum parsimony reconciliation
were calculated for each tree sampled from stationarity. The plots show the posterior
mass of each value for the trees sampled from a) MrBayes and b) TRUL.

rate estimates (Figure 4.22). There is strong support for every branch having a negative
→

r.
For the Basal Deuterostomia branches and especially the Chordata branches there is a high
posterior probability that the duplication rate is less than 1 duplication/Lineage/Billion
years, implying that there were very few duplications on these branches. The posterior
distributions of all rates are well defined and are very distinct from the prior distribution.

Three rate assignments stand out as better supported than all the rest. In those
assignments

→

λ is the same on the Basal Deuterostomia branches and the Chordata branches
and is the same on the Strongylocentrotus branch and the Protostomia branches, but differs
between those two sets of branch sets. Similarly

→

µ is the same on the Strongylocentrotus
branch and the Protostomia branches, but is different on the Chordata branches, while
the assignment of

→

µ to the Basal Deuterostomia branches differs between the three rate
assignments. These three assignments are strongly supported when compared to all other
assignments (BF10(ABil = 1212λ/N121µ,ABil ≠ 1212λ/N121µ) = 1.188).

Comparison of birth-death rates on pairs of branch sets indicates that there is good
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Figure 4.22: Posterior distribution of birth-death rates for the evolution of the
posterior hox gene tree. a) The posterior probability that each set of branches had
a gene duplication rate less than 1 duplication/lineage/billion years (ELBY). b)

Samples from the MCMC for
→

λ,
→

µ and
→

r for each set of branches of TBil are grouped
into bins of 0.5 Events/Gene Lineage/Billion Years. The prior distribution is shown
as a dashed line for comparison. Bins that exceed the range of the plot are marked
red and are described in (a).
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Table 4.8: Log10 Bayes Factor for the hypothethis that pairs of birth-death rates
for the posterior hox gene tree differ between pairs of taxon tree branch sets. Above
the diagonal are tests for the gene duplication rate differing between the rows and

the columns (BF10(
→

λ1≠
→

λ2,
→

λ1=
→

λ2)). Below the diagonal are tests for the gene loss

rate differing between the rows and the columns (BF10(
→

µ1≠
→

µ2,
→

µ1=
→

µ2)).

Branch set2
Basal

Deuterostomia
Strongylocentrotus Chordata Protostomia

B
ra

n
ch

se
t 1 Basal

Deuterostomia
- 0.24954 -0.07484 0.10898

Strongylocentrotus 0.09711 - 0.84423 -0.08662
Chordata 0.23759 0.85721 - 0.3244
Protostomia 0.08528 -0.32637 0.93645 -

support for a difference in
→

λ between the Chordata branches and the Strongylocentrotus
branch and a difference in

→

µ between the Chordata branches and both the Strongylocentrotus
branch and the Protostomia branches (Table 4.8). We see that both

→

λ and
→

µ are lower on
the Chordata branches than on either the Strongylocentrotus branch or the Protostomia
branches (Figure 4.22). The other comparisons imply that the Protostomia branches and the
Strongylocentrotus branch have similar birth-death parameters with a higher turn over rate
than the Basal Deuterostomia branches or the Chordata branches. Furthermore, although
the different branch sets do differ in both

→

λ and
→

µ, the differences in
→

r tend to be much smaller
with mean values of 3 to 4 gene losses/ lineage/billion years for all branches (Figure 4.22).

4.6 Discussion

In this paper I introduced a Bayesian method to infer changes in the patterns of gain and loss
in a gene family during the evolution of a group of organisms by comparing the phylogeny
of those organisms to the phylogeny of the gene family. I used simulations to show that this
method could detect differences in the birth-death process between two branches and infer
when those differences were from differences in the duplication rate or the loss rate, so long
as the true gene tree was known. This method had much more power to infer differences
than a model based on gene counts alone. I also showed how to incorporate uncertainty in
the gene tree reconstruction by including a search among gene tree topologies based on the
gene sequences in my MCMC, and used that method to analyze the evolutionary history of
two real gene families.

This is the first likelihood method to detect changes in the process of gene family
diversification using the gene family phylogeny. In order to calculate the probability of
a gene tree given a taxon tree and a set of birth-death parameters, I used a slightly modified
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version of the model introduced by Arvestad et al. (2003, 2009). Although these authors had
used this model to infer the birth-death parameters, they did not allow those parameters to
vary between the branches of the taxon tree or attempt to compare different rate assignments
to the branches of that tree. By using a reversible-jump MCMC, I was able to incorporate
uncertainty in the reconciliation, in the gene tree phylogeny and in the parameter values
as well as describe the confidence in my result numerically. Most interpretations of gene
tree phylogenies are in effect parsimony methods, which assume a maximum parsimony
reconciliation with low rates and a single gene tree, and can only describe alternative
interpretations qualitatively.

When the true gene tree was known this model could detect a difference in the birth-
death process between two branches of a taxon tree using Bayes factors, especially when the
difference in parameters was large relative to the magnitude of the rates. A model based on
gene counts alone was much less powerful. The gene tree model was in part more powerful
than the gene count model because it could readily reconstruct the number of gene lineages
at the root of the taxon tree. However, even when the gene count model was provided with
the actual number of gene lineages at the root, it did not perform as well as the gene tree
model.

Hahn et al. (2005) have used a similar gene count model to detect changes in the
diversification of gene families on branches of a taxon tree. The small differences between
our likelihood calculations and the rather large differences between how we evaluated those
likelihoods, could mean that their method has more power to detect changes in the birth-
death process than the gene count model I used here. However, the difference between the
gene tree model and the gene count model was so large in my analysis, that I believe it is
reasonable to conclude that this gene tree model would outperform any gene count model.

Analysis of simulations showed that the gene tree model also did a very good job
of inferring the number of lineages at the root and the actual values of the birth-death
parameters. The posterior means of the number of reconstructed lineages at he root of
the taxon tree were almost always right on target. The gene count model also did a
good job of estimating λ, although the between simulation variance was high and the
posterior means tended to be low, when values of λ were very high. This model did not
do nearly as well at estimating µ, and the prior appeared to have a much larger effect on the
posterior distribution, implying that the interpretation of this data was not very powerful.
Nevertheless, the gene tree model was able to make fair estimates of µ and did estimate
larger values of µ for those simulations in which larger values of µ were used.

Most impressively, the gene tree model was capable of distinguishing whether differences
in the gene diversification process were from differences in the duplication rate or the gene
loss rate. Although this model did not always infer that two branches had different birth-
death rates when they in fact did, it almost never inferred that two branches with the same
λ had different λs or that two branches with the same µ had different µs. Even when two
branches had different λs, it rarely inferred that they had different µs, and when they had
different µs it rarely inferred that hey had different λs. The gene count model, on the
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other hand, was completely incapable of distinguishing differences in the duplication rate
from differences in the loss rate, even when it was provided with the actual number of gene
lineages at he root of the taxon tree. Analyses of reconstructed taxon trees have also had a
difficult time distinguishing changes in the birth rate from changes in the death rate (Nee
et al. 1994a; Rabosky 2010). Comparisons of a tree to a tree in which it evolved have a
unique ability to detect changes in the death rate that is not found in other methods based
on the analysis of only extant lineages. When reconstructing the evolution of one phylogeny
within another we can infer that certain lineages must have been lost, when a gene - or
parasite or whatever - found in one taxon clade is not found in its sister clade. Thus we can
be confidant that a lineage must have been lost, even without observing the distribution of
lineages at some time in the past.

My analysis of a clade of protein tyrosine kinase genes found in D. melanogaster, C.
elegans and H. sapiens concluded that the diversity of this clade was structured by a large
increase in the gene duplication rate in the ancestors of C. elegans. Most if not all of the
gene duplications appear to have occurred on the terminal branches of the taxon tree, and I
generally estimated very low rates of gene loss throughout the history of this family. There
was some uncertainty in the relationship among the clades of genes found in each taxon,
which left open the possibility that several gene losses may be required (Figure 4.14). This
was reflected in the posterior distribution of the number of reconstructed gene lineages at
the root of the tree, which was greater than one more than half the time, and probably lead
to an increase in the sampled values of gene loss rates.

In contrast my reconstruction of the posterior hox genes in nine bilaterian taxa inferred
a history of massive gene loss. There was a lower turn over rate in the chordates and the
two branches at the base of the deuterostomes than there was in the protostomes or the
branch leading to S. purpuratus, but over all rates of gene number change were negative and
approximately equal throughout the tree. In fact there was a large posterior probability of
the gene duplication rate being essentially zero in the chordates and the Basal Deuterostomia
branches. This is in stark contrast to a non-phylogenetic view of posterior hox evolution in
which there are several gene duplications but very few losses and overall low turnover rates
(Thomas-Chollier et al. 2010). However, my results were based on the large incongruence
between the taxon phylogeny and the gene phylogeny, which was inferred from the sequences
of the genes themselves. Previous results have shown a lack of resolution within the posterior
hox genes (De Rosa et al. 1999; Kourakis and Martindale 2000), but my results are not
a consequence of a lack of phylogenetically informative data, but on data that favors an
incongruent gene tree. Using the gene tree evolution model as a prior for the the gene
tree topology should improve the congruity of the gene tree, and the trees sampled from
my analysis did have fewer minimum gene duplications and losses than those sampled from
MrBayes, but even still they were highly incongruent. Nevertheless it is difficult to believe
that the most recent common bilaterian ancestor had 15 posterior hox genes, which have
been paired down to five or less in all extant bilaterian hox clusters, and there may be some
misleading sites in the alignment. It is also possible that the bilaterian phylogeny used
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here is incorrect. Phylogenetic analysis of whole genomes implies that Euchordata is not
monophyletic and that in fact vertebrates are more closely related to C. intestinalis than to
B. floridae (Nicholas et al. 2008). However, this is not consistent with my MrBayes posterior
hox tree and would result in a more incongruent gene tree.

It would be possible to include uncertainty in the taxon tree as well as the gene tree
in an MCMC. I would not recommend basing ones taxon phylogeny on the phylogeny of
a single gene family with a complex evolutionary history. However, if one were to analyze
multiple gene families at once, then you could have more confidence in the taxon phylogeny.
Alternatively, one could put priors on different taxon topologies based on previous more
intensive analyses. Another interesting possibility is to treat each cluster of genes within a
genome, such as the hox cluster, as a separate terminal in the container tree. In other words
use a hox cluster tree instead of a taxon tree. One could then reasonably judge different
possible topologies for the cluster tree based on the gene family phylogeny, as the gene
sequences within the hox family are the only basis for inferring the hox cluster phylogeny.
I can imagine an analysis in which a gene tree is nested in a cluster tree, which is in turn
nested within a taxon tree, although as a practical matter such an analysis seams daunting.

The methods described here would probably be improved by including a mechanism to
relate the length of the branches of the gene tree inferred from the nucleotide substitution
model to those inferred by the gene tree evolution model. Åkerborg et al. (2009) have used
a relaxed clock to relate the amount of time between nodes of the gene tree under a given
reconciliation to the amount of nucleotide change that occurred between those nodes. Here
I assumed that the rate of nucleotide change was independent of the amount of time that
has passed, but that is unreasonable and doubtlessly throws out a great deal of information.
We would expect more nucleotide changes to have accumulated since older gene duplications
than since more recent ones. Therefore the amount of nucleotide change tells us something
about when a given gene lineage split occurred, and which reconciliation is correct, so that
the probability of a given reconciliation would be affected not just by the model of gene tree
evolution but also by the model of gene sequence evolution. Under different reconciliations,
gene duplications and losses occur on different branches of the taxon tree, and so they would
imply different assignments of birth-death rates to the branches of the taxon tree.

Here I used the Kimura two-parameter model (Kimura 1980) to calculate the probability
of the gene sequences. This is the second simplest likelihood model available for nucleotide
changes. It is common to use models in which more than two rates describe the probability
of change between the four different nucleotides (see Felsenstein 2004, Chapter 13). The
most complicated of these models that is commonly used is the general time reversible
model with 10 parameters, but since our gene tree is inherently rooted, we could use a non-
reversible model with up to 12 rates. It is also common to use models in which rates of
change vary between the different sites such as Γ-distributed rates model (Yang 1994). It
has been shown that tree reconstruction is made more inaccurate by use of the incorrect gene
evolution model, especially when that model is too simple (Huelsenbeck and Rannala 2004),
so incorporation of more complicated nucleotide evolution models would likely improve the
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performance of this method. It may also be beneficial to incorporate other types of characters
into the analysis, such as features of the secondary structure of the proteins for which the
gene encodes, as these characters may be less prone to homoplasy than are individual sites
in a gene sequence, and thus provide more information about the gene tree topology.

The dynamics of gene duplication and loss are actually quite complicated. Genes can
be duplicated when a genetic locus is duplicated within the genome either as a tandem
duplication or as a part of a larger chromosomal rearrangement, or reverse transcribed RNAs
can be reinserted into the genome (Betran and Long 2002). In the former case a gene is
likely to be copied along with its transcriptional machinery and so be able to produce a
transcript and in turn be selected on, while in the latter case the gene sequence will be
randomly inserted into the genome and so is unlikely to be transcribed and instead will
undergo rapid pseudogenization (Graur et al. 1989). Once a gene has been duplicated, it
must become fixed in a population either through drift or a selective sweep. Gene losses
may be a result of deletions of large pieces of chromosomes or a two step process involving
pseudogenization followed by decay and ultimately loss of the actual gene sequence (Moran
2003). The birth-death process is obviously only a rough summary of these processes, and in
fact the actual rate of gene gain and loss should depend on many factors including mutation
rate, environmental conditions and population size. However, one rarely has all the data
necessary to account for all these factors, and as an approximation, the birth-death process
has many features that are relevant to any model of changes in gene family size. The basic
null model in which the rates do not vary is critical for testing any hypothethis of varying
rates. Furthermore, as opposed to other stochastic processes, under the birth-death process
the rate of change in the size of a gene family is proportional to the size of the gene family,
a condition that we would expect to be true under any of the above scenarios.

On the other hand, the model used here would not hold up if a polymorphisms were
inherited between two nodes in the gene tree. Let us imagine a situation in which two
alleles, A and B, at a given locus were inherited in both taxon lineages, X and Y, descended
from a speciation and then allele A was duplicated in lineage X. If allele B became fixed in
the the other duplicate loci in lineage X, then, no matter which allele were fixed in lineage
Y, the gene tree would suggest that a duplication happened in a common ancestor of the two
taxa with a gene loss in lineage Y. There are numerous other scenarios in which inheritance
of polymorphic loci could confound a gene tree analysis. There is an immense literature
on the coalescent process (see Liu et al. 2009; Degnan and Rosenberg 2009), a model used
to account for and infer information from the inheritance of polymorphic loci. However,
without independent data about population size and population structure, it would be very
difficult to untangle the effects of the coalescent and gene duplication and loss. I basically
assumed that the branch lengths of my taxon tree were so long that there was sufficient time
for all loci to become fixed between the nodes of my gene tree. In this sense, the coalescent is
a microevolutionary process and gene duplication and loss is a macroevolutionary process, as
they operate at different temporal scales. Nevertheless, if a researcher were using this model
to study closely related taxa or a loci, such as MHC, which is known to retain polymorphisms
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for a long time (Garrigan and Hedrick 2003) then the coalescent may have an effect on their
analysis.

Here I studied models in which the rate of gene gain and loss varied between the branches
of a taxon tree for all members of a gene family simultaneously. However, it would also be
biologically realistic to investigate a model in which the birth-death rates evolved on the
gene tree, such that certain clades within a gene family would have different rates of gene
duplication and loss than the other members of the same family in the same genome at the
same time. Several methods have been developed to identify exceptionally diverse clades of
taxa within a reconstructed taxon phylogeny (e.g. Magallon and Sanderson 2001; McConway
and Sims 2004; Moore and Donoghue 2007). It would not be particularly difficult to modify
these methods so that they would work on a reconstructed gene tree evolving in a taxon tree.
Such a method would have to incorporate the gene tree evolution model described here, in
order to deal with the simultaneous formation of orthologous nodes in every lineage of a gene
family as a consequence of speciation.

Ideally this method would be used not to merely mine for gene families with
phylogenetically variable histories of diversification or to confirm that a given gene family
has in fact diversified at different rates at different times; the study of evolution would
be better served if these methods were used to detect correlations between the process of
gene diversification and other biological or ecological characters. Over the last two decades
several methods have been developed to detect correlations between pairs of characters (Pagel
1994; Felsenstein 1985), or between characters and rates of taxon diversification (Maddison
et al. 2007; Paradis 2005; FitzJohn 2010). The second group of methods attempt to detect
correlations between a biological character and the process of diversification by comparing
models in which the birth-death rates are dependent on the state of that biological character
to models in which those rates vary independently of that character. We would expect
that if the process of gene family diversification is in fact critical for evolution that a given
gene family may expand or contract in separate taxon lineages under similar evolutionary
conditions. Several studies have suggested a link between changes in gene family size and
convergent evolutionary changes (see Demuth and Hahn 2009). For example multiple insect
lineages have gained resistance to organophosphate pesticides in parallel by expanding certain
esterase gene families (Mouches et al. 1986; Field et al. 1988; Vontas et al. 2000), and it has
been suggested that multiple Drosophila species have decreased the size of their odorant
receptor families in response to increased host plant specificity (McBride et al. 2007). It
would not be difficult to expand the methods described here in such a way that the birth-
death rates are dependent on the states of other characters, in order to detect correlations
between gene family diversification and the evolution of other taxonomic characters.

This method is currently too slow for application on a genomic scale. When the true
tree is known, a pair of runs takes a reasonable amount of time (10 to 20 minutes on a
single PC for the simulation analyses in this paper). However, the burden of identifying the
correct gene tree adds a significant amount of time to the analysis. The method described
by Hahn et al. (2005) and implemented in CAFE (De Bie et al. 2006) is substantially faster,
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but methods which use the gene tree are much more powerful and give a more accurate
view of the process of gene evolution. Thus currently a good approach would be to use the
method of Hahn et al. (2005) to scan a large number of gene families, and then use the gene
tree method described here to get a more refined view of the gene families that have been
identified as having a varying history of gene gain and loss. My model also works better
for cases in which a hypothethis about a gene family’s evolution has already been developed
and needs to be tested. Furthermore, as computing power increases, it will be possible to
apply these methods on a genomic scale.

The method described in this paper is the first likelihood method that can detect changes
in the duplication and loss rates of genes in a gene family on a taxon phylogeny by using the
full gene tree. I couched this method in terms of gene trees and species trees, but it could
also be used to describe the relationships between other entities in which one entity evolves
inside another, such as domains in genes, genes in chromosomes, cell types in organs or taxa,
parasites or symbionts in hosts, and taxa in geographic areas. I used examples involving
genes in animals, for which the rates of horizontal transfer are very small, but in many of
these other systems, one must account for the possibility of horizontal as well as vertical
transmission. Not only is the method I described here useful in its own right, it can also
serve as the basis for a large number of additional methods that attempt to identify changes
in the process of lineage gain and loss.
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Chapter 5

Conclusion

So, what is there left to say?
I described the reconstructed time variable birth-death process in which the rates of

lineage gain and loss can vary with time but not between lineages alive at the same time, and
we assume that any observed lineage survived to the present. I calculated the distribution of
the number of reconstructed lineages at any time, the time between lineage splitting events
and all the lineage splitting events in a phylogenetic tree. All of these distributions can
be calculated when conditioned on any set of assumptions about how many reconstructed
lineages their are at any times. I also showed how to sample from the distribution of
branching times in a phylogenetic tree under any time variable birth-death process.

I introduced the discrete time birth-death process, a time variable birth-death process
in which time is broken down into several periods during which the birth-death parameters
are constant but between which they may vary. This process can be used as a simple and
efficient numerical solution to any time variable birth-death process. It is trivial to calculate
the inverse of all values under the discrete time birth-death process. Furthermore, it can
be used to analytically incorporate sampling and mass extinction into any time variable
birth-death process.

I showed how to compare a real tree to any time variable birth-death process using
both mathematical and visual methods. One can calculate the maximum likelihood of a set
of branching times under any time variable birth-death model in order to deduce the best
parameter values. The likelihood or Kolmogorov-Smirnov’s D under the maximum likelihood
parameters can then be used as statistics to compare the fit of a real data set to a time-
variable birth-death model. One could also visually compare the number of reconstructed
lineages through time or the time between waiting times to the distribution of those values
under a time variable birth-death process. The comparison of waiting times is particularly
informative, as it allows you to see both when exactly one’s data diverges from a model and
how exactly a model fits the data. These visualizations can also be used without a real tree
in order to see how different time variable birth-death models and different parameters for
those models would affect the shape of phylogenetic trees.
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In order to detect whole genome duplications from comparative analysis of chromosome
counts, I used a modified birth-death process, in which I used not only the normal birth-
death parameters but also a stochastic rate of every lineage duplicating at once. I used
the Akaike Information Criterion to compare the maximum likelihoods of a model in which
the genome doubling rate was zero to one in which that rate was free to vary. Once I
had concluded that the genome duplication model was in fact a better fit, I calculated
the posterior probability of a genome duplication on each branch of a taxon tree using the
maximum likelihood parameters. I used this model to analyze chromosome counts in 125
molluscan taxa and concluded that there had been three paleopolyploidies: one near the
base of the cephalopods; one near the base of the Stylommatophora; and a third at the base
of a clade containing both the Capulidae and the neogastropods.

I used a likelihood method to compare a gene phylogeny to a phylogeny of the taxa in
which those genes were found in order to detect changes in the process of gene duplication
and loss in the history of a clade of genes. The gene evolution model can calculate the
probability of a gene tree given a taxon tree and a set of birth-death parameters on the
branches of the taxon tree. I implemented this model with a reversible-jump Markov chain
Monte Carlo method in order to estimate the joint posterior distribution of the birth-death
parameters and different assignments of those parameters to the branches of a taxon tree,
given a taxon tree and a gene tree.

I wanted to show that this method had more power to detect changes in the process of
gene duplication and loss than one which relied only on gene counts in the terminal taxa. So,
I simulated 100 gene trees on a two taxon tree using a wide range of birth-death parameters.
I then used a reversible-jump MCMC to analyze those trees both with the gene tree evolution
model and a model in which gene counts evolved on the branches of the taxon tree. Bayes
factors calculated for both models showed that the gene tree evolution model did a better job
than the gene count model of detecting differences in the birth-death parameters between
the branches of the taxon tree and in distinguishing whether those differences were in the
duplication rate or the loss rate. The gene tree evolution model also did a better job of
estimating parameter values.

In order to examine the evolution of real gene trees, it is necessary to account for the
uncertainty in the gene phylogeny reconstruction. Therefore, I expanded my model by
calculating the probability of the gene sequences and the gene tree, given the taxon tree, a
set of birth death parameters and a set of nucleotide evolution parameters, by using the gene
tree probability as a prior for the gene tree topology in a standard model of gene sequence
evolution. I then used a reversible-jump MCMC to estimate the joint posterior distribution
of all those parameters given a gene sequence alignment and a taxon tree. I used this model
to analyze a clade of protein tyrosine kinase genes found in three metazoan taxa and all the
posterior hox genes found in nine metazoan taxa. The protein tyrosine kinase diversification
appeared to be characterized by a very low gene loss rate over all and by an increase in the
gene duplication rate on the branch leading to C. elegans. On the other hand the posterior
hox genes appeared to have had a great deal of gene loss in all lineages since the most recent
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common ancestor of the Bilateria, with higher turn over rates in the protostomes and the
echinoderms than in the chordates or at the base of the deuterostomes.

So, I described three different methods for detecting changes in the rate of lineage
formation and lineage loss of biological entities under a number of different circumstances.
I described a diverse set of results for inferring changes through time in macroevolutionary
processes using reconstructed branching times in taxon phylogenies. I showed how to
distinguish whole genome duplications from the normal process of chromosome duplication
and loss by comparing chromosome counts on a phylogeny. Finally, I developed a method
to infer changes in the rate of gene duplication and loss on the branches of a taxon tree by
comparing a gene phylogeny to a taxon phylogeny. All three methods apply to active areas
of biological research and continue a trend of using the birth-death process to analyze the
process of biological lineage diversification.
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Appendix A

Mollusk Chromosome Counts
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Table A.1: Statistics describing the distribution of observed chromosome counts
among members of the terminal molluscan clades used in this study.

No of Species Range
Terminal Clade Mode Total At Mode Low High
Polyplacophora

Chitonidae 12 4 3 12 13
Ischnochiton 12 2 2 12 12
Lepidozona 12 3 3 12 12
Mopaliidae 12 4 3 12 16
Acanthochitonidae 8 7 4 8 12

Bivalvia
Heterodonta

Sphaeriidae 18 2 1 18 22
Corbiculidae 13 3 1 12 19
Veneroida 19 18 15 15 23
Myoida 17 1 1 17 17
Mactroidea 18 5 2 17 19
Solenoidea 19 4 4 19 19
Tellinoidea 19 5 5 19 19
Lasaeidae 20 2 1 18 20
Pholadoidea 17 3 2 17 19
Cardioidea 19 4 2 12 20

Palaeoheterodonta
Unionoidea 19 26 24 10 19

Pteriomorpha
Mytiloidea 14 31 14 11 16
Arcoida 19 10 7 14 19
Pterioidea 14 10 9 13 14
Ostreoidea 10 23 23 10 10
Pectinoidea 19 18 13 13 19
Limoidea 16 1 1 16 16
Anomioidea 7 3 1 6 13

“Protobranchs”
Nuculanoidea 19 1 1 19 19
Solemyoidea 11 1 1 11 11
Nuculoidea 12 1 1 12 12

Cephalopoda
Nautiloidea

Nautilidae 21 2 2 21 21
Coleoidea

Octopoda 30 6 3 28 30
Sepiidae 46 3 2 46 56
Loliginidae 46 4 3 46 84

Scaphopoda
Dentaliidae 10 3 3 10 10
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Table A.1: continued

No of Species Range
Terminal Clade Mode Total At Mode Low High
Gastropoda

“Patellogastropoda”
Lottiidae 10 11 11 10 10
Patelloididae 10 3 3 10 10
Patellidae 9 9 8 8 9

Vetigastropoda
Trochidae 18 17 16 18 20
Turbinoidea 18 4 3 8 18
Haliotidae 18 15 9 14 18
Fissurellidae 16 6 3 13 16

Neritimorpha
Neritidae 12 26 24 11 13
Helicinidae 18 3 3 18 18

“Caenogastropoda”
“Architaenioglossa”

Cyclophoroidea 14 7 7 14 14
Diplommatinidae 13 16 16 13 13
Ampullarioidea 14 9 7 13 14
Viviparoidea 9 27 8 7 32

“Littorinimorpha”
Hydrobiidae 17 10 6 16 18
Rissoidae 16 1 1 16 16
Assimineidae 15 7 3 15 15
Bithyniidae 17 6 5 17 18
Vermetidae 17 1 1 17 17
Hipponicidae 17 1 1 17 17
Atlantidae 15 12 9 14 16
Carinariidae 16 2 1 16 17
Pterotracheidae 16 4 4 16 16
Littorinidae 17 5 4 8 17
Pomatiidae 13 2 2 13 13
Naticidae 17 3 3 17 17
Calyptraeidae 17 1 1 17 17
Strombidae 12 1 1 12 12
Capulidae 31 1 1 31 31
Cypraeidae 36 6 2 26 36
Ranellidae 35 1 1 35 35
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Table A.1: continued

No of Species Range
Terminal Clade Mode Total At Mode Low High
Gastropoda

“Caenogastropoda”
Neogastropoda

Nassariidae 32 6 3 32 34
Mitridae 19 1 1 19 19
Fasciolariidae 35 1 1 35 35
Melongenidae 28 1 1 28 28
Muricidae 35 13 9 18 36
Turbinellidae 33 1 1 33 33
Buccinidae 35 8 5 34 36
Columbellidae 34 1 1 34 34
Conoidea 35 3 1 17 36

Cerithioidea
Turritellidae 16 1 1 16 16
Pleuroceridae 18 33 17 7 19
Thiaridae 18 7 3 16 36
Pomatiopsidae 17 1 1 17 17
Cerithiidae 18 14 10 7 18

Heterobranchia
“Lower Heterobranchia”

Valvatoidea 10 1 1 10 10
Pyramidellidae 17 1 1 17 17

Opisthobranchia
Nudibranchia 13 56 51 12 16
Notaspidea 13 4 2 12 13
Sacoglossa 17 14 12 14 17
Thecosomata 10 8 4 10 17
Gymnosomata 16 4 4 16 16
Anaspidea 17 11 8 10 17
Cephalaspidea 17 19 11 13 18

“Basommatophora”
Amphibolidae 18 1 1 18 18
Siphonariidae 16 8 8 16 16
Anclidae 18 11 3 15 60
Chilinidae 18 1 1 18 18
Latiidae 18 1 1 18 18
Planorbidae 18 56 46 18 72
Lymnaeidae 18 35 21 16 19
Physidae 18 7 7 18 18
Ellobiidae 18 10 7 17 18
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Table A.1: continued

No of Species Range
Terminal Clade Mode Total At Mode Low High
Gastropoda

Heterobranchia
Systellommatophora

Veronicellidae 17 3 2 16 17
Onchidiidae 18 3 2 17 18

Stylommatophora
Succineidae 18 10 32 5 25
Helicidae 26 59 16 21 30
Bradybaenidae 29 31 16 28 30
Camaenidae 29 12 10 27 29
Polygyridae 29 21 16 26 31
Haplotrematidae 30 2 1 29 30
Cerionidae 27 1 1 27 27
Endodontidae 31 3 2 29 31
Bulimulidae 30 3 2 29 30
Arionidae 26 6 2 25 29
Philomycidae 24 2 2 24 24
Testacellidae 32 1 1 32 32
Megalobulimidae 31 3 3 31 31
Milacidae 33 4 3 33 34
Limacidae 30 9 4 20 31
Vitrinidae 28 1 1 28 28
Ariophantidae 27 6 2 25 32
Zonitidae 30 5 2 20 31
Trochomorphidae 28 2 1 28 30
Helicarionidae 28 2 1 24 28
Achatinidae 30 1 1 30 30
Subulinidae 31 2 1 25 31
Ferussaciidae 30 1 1 30 30
Clausiliidae 24 16 12 24 30
Chondrinidae 30 7 3 28 30
Cionellidae 26 2 2 26 26
Achatinellidae 20 4 2 20 23
Enidae 24 6 6 24 24
Valloniidae 28 2 2 28 28
Partulidae 29 1 1 29 29
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