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ABSTRACT: Current drugs against the influenza A virus
(IAV) act by inhibiting viral neuraminidase (NA) enzymes
responsible for the release of budding virions from sialoglycans
on infected cells. Here, we describe an approach focused on a
search for inhibitors that reinforce the protective functions of
mucosal barriers that trap viruses en route to the target cells.
We have generated mimetics of sialo-glycoproteins that insert
into the viral envelope to provide a well-defined mucus-like
environment encapsulating the virus. By introducing this
barrier, which the virus must breach using its NA enzymes to
infect a host cell, into a screening platform, we have been able
to identify compounds that provide significant protection
against IAV infection. This approach may facilitate the
discovery of potent new IAV prophylactics among compounds
with NA activities too weak to emerge from traditional drug screens.

The influenza A virus (IAV) causes periodic pandemic
outbreaks worldwide with substantial mortality and

economic cost.1,2 While powerful in combating IAV, vaccines
rely heavily on the correct prediction of candidate pandemic
strains. Small molecule antivirals offer a more general
alternative for rapid deployment during outbreaks.3−5 Currently
approved IAV drugs (i.e., oseltamivir,6 zanamavir,7 peramivir,8

and laninamivir9) target viral neuraminidases (NAs),10,11 which
are sialic acid-cleaving enzymes required for releasing budding
virions from infected host cells and for preventing virion
aggregation.12

Despite their usefulness, these anti-IAV drugs suffer from
emerging viral resistance13 and cross-reactivity with human
neuraminidases (Neu2 and Neu3).14,15 While the former can be
addressed with new classes of structurally distinct NA
inhibitors, current medicinal chemistry approaches focus on
generating potent inhibitors, whose off-target activity against
closely related human enzymes can be difficult to manage.
Here, we describe an alternate strategy for the identification of
IAV prophylactics that bolster the protective functions of the
pulmonary mucosa.
IAV infection begins with the binding of viral hemagglutinin

(HA) proteins to sialic acid-carrying glycans on host cells.
However, the target tissues for IAV infection are covered with a
layer of secreted mucus that contains highly sialylated mucin
glycoproteins, which can act as viral receptor decoys that
restrict viral entry (Figure 1A). The virus relies on its NA
enzymes to destroy sialic acid receptors on secreted mucins that

engage its HA and obstruct its path to the target cells.12,16−18

Considering the key role of NA in facilitating the diffusion of
IAV through the mucus, compounds with only a mild inhibitory
effect on NA may effectively cause virus trapping in the mucus
and its clearance with the natural turnover of the mucosal
barrier.19,20

While conceptually intriguing, introduction of the mucosal
component into screening assays to identify new NA inhibitors
capable of suppressing IAV infection poses considerable
challenges. Purified porcine mucins can offer broad-spectrum
protection against some viruses, including IAV.21,22 However,
the effectiveness of viral inhibition is strongly dependent on the
mucin source, with commercial products varying both in
potency and cellular toxicity.16,21

Synthetic glycopolymers, which mimic the basic architecture
of mucin glycoproteins, have a rich history as probes to evaluate
the mechanism of HA binding to multivalent sialoglycan
ligands23,24 and as IAV inhibitors.25,26 Recently, we reported
the preparation of azide-functionalized sialoglycan polymers for
immobilization in microarrays to analyze the effects of glycan
presentation on recognition by IAVs.27 Although soluble
glycopolymers are known to inhibit viral entry,25 they may
not adequately recreate the densely sialylated microenviron-
ment of the natural mucus. Inspired by reports of noninvasive
labeling of influenza virions utilizing the IAV’s lipid membrane
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envelope,28,29 we have generated glycopolymers with a
membrane-anchoring unit to facilitate the formation of a
discrete nanoscale mucus-like environment proximal to
individual virions. Such “nanobarriers” can be used to evaluate
low-activity NA inhibitors for their potential to restrict the
ability of IAV to escape from mucus and initiate infection
(Figure 1B).
The passive insertion of lipidated glycoconjugates into

membranes has emerged as a powerful tool to engineer new
components into the cellular glycocalyx.30−32 We have now
extended this strategy to introduce mucin-mimetic glycopol-
ymers terminated with a phospholipid tail to the surfaces of
H1N1 (A/PR/8/34) virions (Figure 2). Using RAFT polymer-
ization, we have generated polyacrylamide backbones with
narrow chain length distributions and initiating with the lipid
1,2-dipalmitoyl-sn-glycero-3-phosphoethylamide (DPPE; P1/
3/5) as well as with a nonlipophilic azido-tetraethylene glycol
moiety (PEG4-N3, P2/4/6). The polymers were decorated with
N-methylaminooxypropyl side chains, which served as reactive
sites for the attachment of 3′- and 6′-sialyllactose ligands for
HA (P1/2 and P3/4, respectively, in Figure 2).27 Control
polymers (P5/6) were functionalized with the nonbinding
glycan lactose. To facilitate tracking of the polymers, their thiol
termini were capped with an AlexaFluor 488 (AF488)
maleimide dye.
To generate a discrete mucus-like environment, H1N1 (A/

PR/8/34) viruses were incubated with lipidated 3′-sialyllactose
(P1) or lactose (P5) glycopolymers, and membrane incorpo-
ration was examined with transmission electron microscopy
(TEM) after immunostaining with an anti-AF488 antibody
conjugated to gold nanoparticles (AuNPs, Figure 3). We
observed higher levels of membrane incorporation for the
sialylated polymers over those containing lactose glycans (8 ± 4
AuNPs/virion for P1 vs 4 ± 3 AuNPs/virion for P5). This
enhancement is likely due to precoordination of P1 through
binding to the viral HA and NA proteins. The lesser
incorporation of the lipid-free polymers P2 and P6 (3 ± 3 vs

1 ± 2 AuNPs/virion, respectively) indicates the contributions
from the membrane anchors to the surface remodeling process.
In the upper airways, the secreted mucus shields underlying

epithelial cells from IAV infection by trapping the virus with
sialylated mucin decoys, which are constantly cleared by
mucociliary motion.33 Inhibition of viral NA with oseltamivir
can enhance this protective effect by impeding virus release
from the mucus.16 To replicate this mechanism in an in vitro
assay, we treated Madin−Darby canine kidney (MDCK) cells
adhered on a 96-well plate with purified sialylated human
salivary mucins (HSM) followed by inoculation with H1N1

Figure 1. Secreted mucus engages influenza A viruses (IAV) en route
to a host cell by presenting sialic acid glycan receptors to their
hemagglutinin proteins (A). To avoid being trapped in the mucus, IAV
employs neuraminidase (NA) enzymes to cleave sialic acids from the
underlying mucin glycoproteins. Compositionally defined synthetic
mucus-like nanoenvironments constructed around individual viruses
allow for the identification of NA inhibitors that prevent infection by
reinforcing the protective function of the mucosal barrier (B).

Figure 2. Mucin mimetic decoys comprise RAFT-derived glycopol-
ymers carrying sialyllactose or lactose glycans armed with a 1,2-
dipalmitoyl-sn-glycero-3-phosphoethylamide (DPPE) lipid anchoring
unit or a hydrophilic, lipid free, azido-tetraethylene glycol (PEG4-N3)
group. The mimetics were tagged with AlexaFluor488 (AF488) for
characterization and imaging.

Figure 3. Incorporation of AF488-labeled decoys into the membranes
of H1N1 virions was visualized by TEM after immunostaining with an
anti-AF488 antibody conjugated with gold nanoparticles (Ab-AuNP,
micrograph). The lipid anchor in polymers P1 and P5 promoted
virion encapsulation, with precoordination of the sialoglycans in
polymers P1 and P2 to the viral HA proteins providing additional
enhancement (schematic and graph, ***p ≤ 0.001, ****p ≤ 0.0001
from Tukey’s multiple comparison test).
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(A/PR/8/34). After washing of excess HSM and virus, the cells
were cultured, and H1N1 propagation was quantified after 24 h
by measuring NA activity in the culture media.34,35 We
observed successful IAV infection with 1.5−3.0 nmol of HSM
sialic acid per well (Figure S11). In contrast, when the virus is
first preincubated with oseltamivir (1 μM), significantly less
virus activity is detected in the cell media (Figure S11). Thus,
inhibition of NA activity impairs the ability of IAV to escape
from the HSM layer and to initiate infection.
In analogy to the HSM, the mucin mimetics also provided

protection against IAV infection in the presence of oseltamivir
in our assay (Figure 4). The MDCK cells were similarly

inoculated with the virus in the presence of the mucin mimetic
decoys (17.5 nmol sialic acid/well) with or without oseltamivir
(1 μM). Both 3′-sialyllactose polymers P1 and P2 significantly
reduced IAV infection with oseltamivir. However, P1 reduced
infection to a much greater extent relative to P2 (∼80% vs
∼35%, respectively), indicating the benefits of physically
confining the virus within a mucus-like nanoenvironment. As
expected, lactose polymers P5 and P6, lacking sialic acid
binding sites for either HA or NA, had no effect on infection
(Figure 4). Polymers P3 and P4 carrying 6′-sialyllactose
glycans, which engage HA proteins of H1N1 A/PR/8/3427 but
are not cleaved by its NA enzymes that preferentially hydrolyze
α2−3 sialic acid glycosidic linkages,36,37 provided no protection
against infection in the presence of oseltamivir (Figure S12).
The protective effect of the mucus-like nanoenvironment was
also borne out in IAV hemagglutination experiments showing
that the addition of oseltamivir (1 μM) improves the inhibitory
capacity of the lipidated 3′-sialyllactose glycopolymer P1 by
∼16-fold (Tables S6−8 and S11). The lipidated mucin
mimetics cannot differentiate between viral and cellular
membranes, and, as expected, some membrane incorporation
was observed in cells treated with the lipidated glycopolymers
(Figure S13). However, the presence of these polymers on the
cell surface does not significantly affect IAV infection (Figure
S14).
Having established that the mucin-mimetic decoys can

prevent infection, we next sought to introduce them into a
screening platform to identify new NA inhibitors that prevent
IAV infection by reinforcing the protective function of the
mucosal barrier. We focused on a small panel of flavonoids
known to inhibit NA (Figure 5). We hypothesized that,

although their low inhibitory activities (IC50 ≈ 102 μM
compared to ∼1 nM for oseltamivir)38,39 would likely disqualify
them as hits in traditional screens, flavonoids may provide
sufficient protection against IAV by enhancing virus trapping in
the clearable mucus.
To test their ability to inhibit IAV, flavonoids 1−7 (0.1 mg/

mL) as well as oseltamivir (1 μM) were incubated with the
virus. MDCK cells were inoculated with the virus-inhibitor
mixture with the lipidated glycopolymers, and washed. Fresh
media was added and virus propagation was quantified after 24
h. As expected, oseltamivir reduced IAV infection by ∼60−70%
in the presence of P1 compared to PBS (Figure 5). Among the
flavonoids, several compounds exhibited some protection
against IAV with isoquercitrin (3) inhibiting infection by
∼50%. Isoquercitrin also enhanced glycopolymer-mediated
inhibition in an IAV agglutination assay (Tables S9−S11).
This indicates that despite its poor NA activity, isoquercitrin
can provide protection against IAV at levels approaching those
of oseltamivir, a much more potent inhibitor.
In summary, we report a conceptually novel drug-screening

platform to identify inhibitors of viral NA to prevent the release
of virions from sialylated mucins in mucosal barriers and,
thereby, reduce infection of underlying cells. Using synthetic,
membrane-anchored glycopolymer mimetics of mucin glyco-
proteins, we assembled a mucus-like environment at the virus
surface with tunable size and glycan composition. These

Figure 4. Sialoglycan decoys provide protection against IAV infection
in the presence of the NA inhibitor oseltamivir. Relative infection was
determined as a ratio of viral activity measured 24 h after inoculation
with or without oseltamivir. Anchoring of decoy P1 into the viral
membrane via its lipid tail provides a robust mucus-like barrier difficult
for the virus to breach in the presence of the inhibitor (*p ≤ 0.05, **p
≤ 0.01). Figure 5. Flavonoids with known NA activity were tested for their

ability to inhibit infection of MDCK cells by H1N1 (A/PR/8/34)
remodelled with lipidated 3′-sialyllactose polymer decoy P1. Relative
infection refers to a ratio of viral activity measured 24 h after
inoculation with or without inhibitor. Isoquercitrin, a weak NA
inhibitor, provided a similar extent of protection against IAV infection
compared to the much more potent inhibitor oseltamivir (*p ≤ 0.05).

ACS Central Science Research Article

DOI: 10.1021/acscentsci.6b00191
ACS Cent. Sci. 2016, 2, 710−714

712

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00191/suppl_file/oc6b00191_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00191/suppl_file/oc6b00191_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00191/suppl_file/oc6b00191_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00191/suppl_file/oc6b00191_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00191/suppl_file/oc6b00191_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00191/suppl_file/oc6b00191_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00191/suppl_file/oc6b00191_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00191/suppl_file/oc6b00191_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.6b00191


discrete nanobarriers can be used to identify small molecules
that block viral escape from mucus and prevent infection. This
technique is general and can be broadened beyond the small
group of test compounds employed in this proof-of-concept
study to identify potential new prophylactic antivirals among
weak NA inhibitors that otherwise might have been overlooked
in traditional drug screening assays.
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