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Iterative finite-difference solution analysis of acoustic
wave equation in the Laplace-Fourier domain

Evan Schankee Um1, Michael Commer1, and Gregory A. Newman1

ABSTRACT

We have investigated numerical characteristics of iterative
solutions to the acoustic wave equation in the Laplace-
Fourier (LF) domain. We transformed the time-domain
acoustic wave equation into the LF domain; the transformed
equation was discretized with finite differences and was
solved with iterative methods. Finite-difference modeling
experiments demonstrate that iterative methods require an
infinitesimal stopping tolerance to accurately compute the
pressure field especially at long offsets. To understand the
requirement for such infinitesimal tolerance values, we ana-
lyzed the evolution of intermediate solution vectors, residual
vectors, and search direction vectors during the iteration.
The analysis showed that the requirement arises from the
fact that in the solution space, the amplitude of the pressure
field varies more than sixty orders of magnitude on the com-
mon log scale. Accordingly, we propose a rule of thumb for
choosing a proper stopping tolerance value. We also
examined numerical dispersion errors in terms of the grid
sampling resolutions per skin depth and wavelength. We
found that despite the similarity of the form of the acoustic
wave and electromagnetic diffusion equations, the former is
different from the latter due to the fact that in the LF domain,
the skin depth of the acoustic wave equation is decoupled
from its wavelength. This aspect requires that in the LF
domain, its grid size be determined by considering the
minimum grid sampling resolutions based not only the
wavelength but also the skin depth.

INTRODUCTION

The full waveform inversion (FWI) is a seismogram-fitting
imaging method through full wavefield modeling and attempts to

extract quantitative information about subsurface structures
(Virieux and Operto, 2009). In FWI, computationally intensive
wavefield modeling has been considered a major numerical chal-
lenge although efficient modeling algorithms and massively parallel
computers are increasingly available. Another difficulty associated
with FWI is the convergence of the FWI misfit function toward local
minimums because of the lack of reliable low-frequency data
(Epanomeritakis et al., 2008; Plessix, 2009).

Recently, FWI in the frequency domain has demonstrated its cap-
ability of resolving the velocity of complex seabed and salt struc-
tures. The recent success is mainly contributed from the Laplace
and the Laplace-Fourier (LF) waveform inversion methods (Shin
and Cha, 2008, 2009). The Laplace and LF waveform inversion
methods are utilized to construct a smooth, long-wavelength
velocity model with sufficient depth coverage. The resulting smooth
velocity model is used as a reliable initial model for the subsequent
FWI in the frequency domain.
The Laplace and LF waveform inversion methods require solving

the acoustic wave equation in the Laplace and LF domain, respec-
tively. The transformed wave equation is discretized via finite-
difference (FD) or finite-element (FE) methods into a large sparse
matrix equation. When the Laplace and the LF waveform inversion
methods were first formulated and evaluated, they were mainly
implemented in the 2D modeling space (Cha and Shin, 2010; Shin
et al, 2010). For such 2D problems, direct methods have been the
method of choice for the sparse matrix equation due to their easy
use and robustness. However, when a complex 3D model is simu-
lated to interpret real field data, direct methods can be easily
hindered by their large memory requirements and difficulties for
their efficient parallel implementation (Golub and Loan, 1996).
Accordingly, recent studies on 3D acoustic waveform inversion
in the Laplace domain have been carried out using an iterative meth-
od (Pyun et al., 2011).
Numerical characteristics of iterative solution processes to the

acoustic wave equation in the Laplace and LF domain have not
yet been investigated. One might predict strong similarities of

Manuscript received by the Editor 20 June 2011; revised manuscript received 30 September 2011; published online 17 February 2012.
1Lawrence Berkeley National Laboratory, Earth Sciences Division, Geophysics Department, Berkeley, California, USA. E-mail: evanum@gmail.com;

mcommer@lbl.gov; ganewman@lbl.gov
© 2012 Society of Exploration Geophysicists. All rights reserved.

T29

GEOPHYSICS, VOL. 77, NO. 2 (MARCH-APRIL 2012); P. T29–T36, 7 FIGS., 2 TABLES.
10.1190/GEO2011-0220.1

1

dshawkes
Typewritten Text
1 Lawrence Berkeley National Laboratory, Berkeley, CA, 94720



numerical characteristics between the acoustic wave equation in the
LF domain and the electromagnetic (EM) diffusion equation in the
frequency domain. This prediction would be based on the fact that a
damping constant and a Fourier frequency in the LF domain can be
conceptually compared to the electrical conductivity and the source
frequency in EM, respectively. However, despite similarities, as de-
monstrated in this paper, numerical characteristics of the acoustic
wave equation are different from those of the EM diffusion equa-
tion. For example, iterative FD solutions to the acoustic wave equa-
tion in the LF domain require an infinitesimal stopping tolerance
value to ensure the accuracy especially at long source-receiver off-
sets. A discretization of the wave equation in the LF domain is also
different from that of the EM diffusion equation.
Here, we investigate numerical characteristics of iterative solu-

tion processes to the acoustic wave equation in the Laplace and
LF domain. In fact, because the Laplace transform is the equivalent
of the LF transform with zero Fourier frequency (Lathi, 2005), the
Laplace transform can be considered as a subdomain of the LF do-
main. Therefore, in this paper, we do not distinguish the LF domain
from the Laplace domain. The remainder of this paper is organized
as follows. First, we review the acoustic wave equation in the LF
domain and its 3D FD solution approach. We also briefly compare
the acoustic wave equation in the LF domain with the EM diffusion
equation in the frequency domain. The comparison hopefully leads
to understanding of the differences and similarities between the two
equations. Second, we examine effects of the tolerance of iterative
methods on the accuracy of solutions to the acoustic wave equation
as a function of offset. We follow this by examining LF modeling
parameters that influence the convergence rate of the FD solution.
Next, we analyze numerical dispersion errors of the 3D FD solution.
By carrying out the analysis, we provide a rule of thumb to deter-
mine an economic grid size for 3D FD modeling of the acoustic
wave equation in the LF domain.

ACOUSTIC WAVE EQUATION IN THE LF DOMAIN

The acoustic wave equation in the time domain for an un-
bounded, homogeneous and isotropic medium (Marfurt, 1984;
Cohen, 2001) is

−∇2pðr; tÞ þ 1

V2

∂pðr; tÞ
∂t2

¼ sðr; tÞ; (1)

where V is the velocity, r is a position vector, t is time, pðr; tÞ is the
pressure field at ðr; tÞ, and sðr; tÞ is the source term.
The LF transform of the pressure field (Shin and Cha, 2009) is

given as

p̂ ¼ p̂ðr; σ;ωÞ ¼
Z

∞

0

pðr; tÞe−ðσþiωÞtdt; (2)

where σ and ω are a Laplace damping constant and an angular Four-
ier frequency, respectively.
The LF transform of equation 1 yields

−∇2p̂þ k2p̂ ¼ ŝ; wherewave number k ¼ −
σ þ iω

V
:

(3)

Because the eigenfunction of the differential operator of equation 3
(Courant and Hilbert, 1989) is ekx, a skin depth that is defined as the

distance at which the pressure field is attenuated to 1∕e of its ori-
ginal amplitude and a wavelength are given as

skin depth δ ¼ V
σ
; (4)

wavelength λ ¼ V
f
; where f is a Fourier frequency: (5)

The skin depth and the wavelength are utilized later as primary para-
meters for grid design through numerical dispersion analysis.
At this point, it is instructive to compare the skin depth and the

wavelength of the acoustic wave equation in the LF domain with
those of the EM diffusion equation in the frequency domain. For a
given velocity in the LF domain, the skin depth and the wavelength
are solely controlled by the damping constant and the Fourier fre-
quency, respectively. In other words, the damping constant does not
affect the wavelength. Neither does the Fourier frequency affect the
skin depth. Because both the skin depth and the wavelength inde-
pendently describe the spatial change of the pressure field, one must
consider both together in designing FD grids in the LF domain. We
will demonstrate this aspect using 3D FDmodels later. In contrast to
the damping constant, an electric conductivity, which is logical to be
compared to the damping constant in the LF domain because both
are responsible for the attenuation, affects both the skin depth and
the wavelength (Appendix A). In fact, the wavelength (equation A-
5) of the EM field is simply given as 2π times the skin depth (equa-
tion A-4), indicating that the skin depth and the wavelength basi-
cally serve as the same yardstick to measure the spatial change of
EM fields. Therefore, one can consider either of them for its FD grid
design.
To derive an FD scheme for the acoustic wave equation, we

discretize equation 3 in the 3D space using a second-order central
difference scheme. A zero-pressure boundary condition (Keys,
1985) is applied to the air-earth interface. A one-way wave equation
(Engquist and Majda, 1977) is applied to other computational
boundaries. The resulting sparse matrix equation is given as

Mp ¼ s; (6)

whereM is a system matrix, p is an unknown vector of the pressure
field, and s is a source vector which corresponds to an impulse
source in the time domain.
In general, the system matrix is complex, symmetric, and non-

Hermitian. Therefore, we solve equation 6 using a quasi-minimal
residual (QMR) method (Freund, 1992). For the QMR method
to converge effectively, the Jacobi preconditioner (Barrett et al.,
1994) is employed. As a side note, when the Fourier frequency
is set to zero, the system matrix becomes symmetric and positive
definite. In this case, a conjugate gradient (CG) method can also be
the method of choice for equation 6 (Hestenes and Stiefel, 1952). In
our FD scheme, the initial guess of the solution to equation 6 is set
to a zero vector. Our FD scheme is also implemented on massive
parallel computers using the Message Passing Interface (Commer
et al., 2008). The parallel implementation allows us to simulate suf-
ficiently large spatial distances. In the next section, along the long
survey line, we demonstrate an extremely large dynamic range of
the solution to equation 6 with typical LF modeling parameters (i.e.,
a damping constant and a Fourier frequency). We investigate the
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effects of a stopping tolerance on the FD solution accuracy as a
function of a source-receiver offset.

NUMERICAL CHARACTERISTICS
OF ITERATIVE FD SOLUTIONS

To illustrate the effect of the stopping tolerance on the accuracy
of the FD solution, we solve the acoustic wave equation for a simple
3D homogeneous whole-space seawater model. The velocity of the
model is set to 1500 m∕s. A damping constant and a Fourier fre-
quency are set to 10 and 0, respectively. The FDmodel is discretized
with 15 m uniform grid cells and consists of 1734 × 667 × 667

grid cells in the x-, y-, and z-directions (we will discuss in the next
section how to determine a proper grid size when a velocity, a damp-
ing constant, and a Fourier frequency are given). The source is
placed at x ¼ 0 m. The maximum source-receiver offset is set
to 20 km.
The iterative FD solutions to this model are computed with a

stopping tolerance varying from 10−30 to 10−130 and are compared
with a corresponding analytic solution. As shown in Figure 1a, the
pressure field decays rapidly due to the damping constant. As a re-
sult, along the survey line, the pressure field varies more than sixty
orders of magnitude. Although the acoustic wave equation is fre-
quently compared to the EM potential or diffusion equation, this
extremely wide dynamic range is not observed in EM problems.
For example, in controlled-source EM modeling, a typical dynamic
range of EM solutions are smaller than 10 orders of magnitude
(Um and Alumbaugh, 2007; Chave, 2009). As investigated below,
this extremely wide dynamic range of the pressure field in the LF
domain differentiates the iterative solution processes compared to
the EM diffusion equation in the frequency domain.
Figure 1a indicates that a smaller tolerance is required to accu-

rately compute smaller pressure fields at longer offsets. We assume
that the FD solutions to equation 3 are sufficiently accurate if their
relative errors (Figure 1b) with respect to the analytical solution are
less than 5%. For example, when the tolerance is set to 10−30, the
iterative solution produces the accurate pressure field only before
x ¼ 4.4 km. Beyond x ¼ 4.4 km, the pressure field remains close
to the initial guess of zero, implying that the pressure field does not
seem to be updated during iterative processes. As a result, the re-
lative errors quickly increase beyond x ¼ 4.4 km. Due to the loga-
rithmic scale used for the pressure field axis, the near-zero-pressure
field is not plotted beyond x ¼ 6 km. Figure 1 demonstrates that for
the QMR method to accurately compute the pressure field up to
x ¼ 20 km, the tolerance should be reduced to 10−130.
To understand why such an infinitesimal tolerance value is

required for accurately computing the pressure field at long
offsets, we further simplify the model above by considering the
1D acoustic wave equation. Because iterative FD solution processes
of the 1D equation require a much smaller amount of memory than
that of the 3D equation, we store an intermediate solution vector, a
residual vector, and a search direction vector during the iteration.
The analysis of the evolution of these vectors elucidates the me-
chanism of the iterative solution construction, helping us under-
stand the requirement for the infinitesimal tolerance. An FD
scheme for the 1D equation is also formulated using a second-order
central difference and one-way wave equation boundary conditions.
In the 1D model, the damping constant, the Fourier frequency, the
velocity, and the grid size are set to the same as those in the 3D

model above. Because the Fourier frequency is set to zero, the
1D model is solved using the CG method.
Figure 2 shows the evolution of intermediate solution vectors,

residual vectors and CG search direction vectors at selected iteration
steps. The residual and search direction vectors are projected onto a
part of the solution space that is covered by the 20-km-long source-
receiver offset. First, we examine the behavior of the three vectors at
the 10th iteration step. The 10th residual vector has its largest ele-
ment in the solution space near the source position (Figure 2b). In
contrast, in the remaining solution space, the residual vector has
near-zero elements. The largest element is created around the source
in the solution space because the pressure amplitude is the largest at
the source position and decays very rapidly with increasing offset.
Because the CG method optimally minimizes a norm of the residual
vector in the given Krylov subspace, it chooses the search direction
vector such that the largest element in the residual vector can be
effectively reduced. As a result, the search direction vector effec-
tively spans only a small portion of the solution space where the

Figure 1. (a) Three-dimensional FD solutions of the acoustic wave
equation in the LF domain for the homogeneous whole-space model
with a velocity of 1500 m∕s. The source is placed at x ¼ 0 m. The
survey line (the x-axis) is 20 km long. The six stopping tolerance
values ranging from 10−30 to 10−130 are used to demonstrate the ac-
curacy of the FD solutions via the QMR method. (b) Relative errors
of the FD solutions with respect to the analytic solutions.
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largest elements of the residual reside (Figure 2c). Therefore, the
other part of the solution is not effectively updated and remains
close to the initial value (i.e., zero). For example, after the 10th
iteration step, the intermediate FD solution corresponds to the ana-
lytic solution only around the source position (Figure 2a).
As the iteration continues, the largest element of the residual

vector gradually migrates outward from the source position
(Figure 2b). So does the solution space that the corresponding
search direction vector effectively spans (Figure 2c). Accordingly,
the accuracy of the intermediate solutions gradually improves over a
larger offset (Figure 2a). Consequently, the stopping tolerance
should be sufficiently small to allow extra iteration steps at which
the search direction vectors span the solution space associated with
large offsets. The stopping tolerance should also be small enough
such that the infinitesimal amplitude of the pressure fields at the
largest offset can be considered when a stopping criterion is
evaluated.
As shown in Figures 1 and 2, a proper tolerance value strongly

depends on the maximum offset to be simulated. Based on our

Figure 2. The evolution of (a) intermediate solution vectors, (b) re-
sidual vectors, and (c) search direction vectors. In (a), the elements
of the intermediate solution vectors smaller than 10−60 are not
plotted. In (b), the elements of the residual vectors smaller than
10−80 are not plotted.

Figure 3. The 2-norm comparison of the recursively computed and
directly computed residual vectors.

Figure 4. The eigenvalue distribution of the system matrix of equa-
tion 6 for the 1D acoustic wave equation with four damping con-
stants: 10, 7, 3, and 1. The Fourier frequency is set to 0 Hz.
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extensive 3D FD modeling experiments, our rule of thumb for
choosing a small enough stopping tolerance is to set it to be slightly
smaller than the square of the minimum amplitude of the pressure
fields that is typically recorded at the largest offset. For example, as
shown in Figure 1, the QMR method produces the accurate solution
up to x ¼ 20 km when the tolerance is set to 10−130 which is
slightly smaller than the square of the pressure amplitude (i.e.,
10−64) at x ¼ 20 km. For a complex 3D model, one can roughly
estimate the minimum amplitude from a 1D background model.
To use such an infinitesimal tolerance value in the iterative meth-

ods, one should compute the residual vector by recursively updating
previous residual vectors (Freund, 1992) rather than by directly
evaluating the residual vector ri ¼ Mpi-s, where the superscript
i denotes the ith iteration step. It is known that a norm of the re-
cursively updated residual vector can be many orders of magnitude
smaller than a given machine precision (Greenbaum, 1997). In con-
trast, a norm of the directly computed residual vector does not de-
crease below the machine precision and can even increase due to
round-off errors. Thus, the norm of the directly computed residual
vector makes the iteration stop too soon before the pressure field is
accurately computed at long offsets. For example, the 2-norm of a
recursively computed residual vector (Barrett et al., 1994) of the 1D
model is compared with that of the directly computed residual vec-
tor in Figure 3. The former linearly decreases on the log scale,
whereas the latter reaches about 10−14 and starts to increase with
additional iterations. Consequently, iterative methods that utilize
a directly computed residual vector (e.g., a preconditioned CG rou-
tine in MATLAB) are stopped at 484 iterations.
Next, using the 1D model, we investigate the impact of the damp-

ing constant and the Fourier frequency on clustering of eigenvalues
that is directly related to the convergence rate of an iterative method.
Figure 4 shows the eigenvalue distribution of system matrix of
equation 6 as a function of the damping constant. As the damping
constant decreases, small eigenvalues are increasingly less clus-
tered. The corresponding condition number of the system matrix
gradually increases from 401.0, 817.3, 4445.4, to 3999.4. There-
fore, as demonstrated in the next section, equation 6 with a smaller
damping constant requires more iteration steps for the convergence
although a relatively larger stopping tolerance is provided.
The impacts of the Fourier frequency on clustering eigenvalues

are demonstrated in Figure 5. As the Fourier frequency decreases,
the eigenvalues become less clustered. When the Fourier frequency

Figure 5. The eigenvalue distribution of the system matrix of equa-
tion 6 for the 1D acoustic wave equation with four Fourier frequen-
cies. The damping constant is set to one. (a) The real component of
eigenvalues. (b) The imaginary component of eigenvalues.

Table 1. The summary of the modeling parameters and errors with a damping constant varying from one to 10. For each
damping constant, the minimum amplitude of the pressure field along the survey line is analytically calculated and is used to set
up a small enough stopping tolerance.

Model no. V (km∕s) σ f (Hz) λ (m) δ (m) Δx (m) Nλ Nδ

Min. amp. of
pressure (1D) QMR tolerance No. of iterations

Max.
error (%)

1 1.5 1 3 500 1500 50 10 30 7.4 × 10−12 10−30 1664 1.9

2 1.5 2 3 500 750 50 10 15 1.2 × 10−17 10−50 1470 2.8

3 1.5 3 3 500 500 50 10 10 2.0 × 10−23 10−60 1163 3.2

4 1.5 4.5 3 500 333 50 10 6.7 3.5 × 10−32 10−80 1041 2.2

5 1.5 6 3 500 250 50 10 5 1.1 × 10−40 10−100 982 4.2

6 1.5 10 3 500 150 50 10 3 4.9 × 10−64 10−130 772 60

Iterative solution of LF wave equation T33
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decreases from 10, 7, 3, and 1, the corresponding condition number
increases from 572.3, 859.3, 2088.6, to 6276.8. Accordingly, the
convergence rate gradually decreases. In short, smaller damping
constants and Fourier frequencies tend to decrease the convergence
rate. However, based on our 3D FD modeling experiments, we

conclude that the simple Jacobi preconditioner works reasonably
well for equation 6 with a typical range of damping constants
(one to 10) and Fourier frequencies (0 to 10 Hz).

Figure 7. (a) The amplitude of the pressure field, (b) the relative
errors of the amplitude of the pressure field, and (c) the phase of
the pressure field is plotted as a function of the source-receiver off-
set and a Fourier frequency that varies from one to 10. In (c), the
broken lines and the broken lines with circles denote the analytic
and FD solutions, respectively. In (a), (b), and (c), the damping con-
stant is set to three. For detailed modeling parameters, see Table 2.

Figure 6. (a) The amplitude of the pressure field, (b) the relative er-
rors of the amplitude of the pressure field, and (c) the phase of the
pressure field is plotted as a function of the source-receiver offset and
the damping constant that varies from one to 10. The Fourier fre-
quency is set to 3 Hz. For detailed modeling parameters, see Table 1.
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NUMERICAL DISPERSION ANALYSIS

So far, we have investigated numerical characteristics of solving
the acoustic wave equation in the LF domain using iterative meth-
ods. The use of iterative methods improves the overall computa-
tional efficiency because they not only require a relatively small
amount of memory but also can be effectively parallelized. To
further improve the computational efficiency, it is also important
to economically discretize a given computational domain. A too
dense discretization results in storage and computational overhead,
whereas a too coarse discretization causes inaccurate solutions and
unacceptable numerical dispersion errors. In this section, we deter-
mine a proper grid size by systematically exploring the effects of
modeling parameters on the solution accuracy. As described before,
we assume that FD solutions to equation 3 are accurate enough if
their relative errors with respect to the corresponding analytical so-
lutions are within about 5%. Because the degree of the numerical
dispersion increases with the source-receiver offset, we consider
this error limit within the 20 km offset which is sufficiently longer
than a typical survey line.
First, we consider the homogeneous whole-space seawater model

whose velocity is 1500 m∕s. A Fourier frequency is fixed to 3 Hz,
whereas a damping constant varies from one to 10. The 50-m uni-
form FD grids are used to simulate the pressure field. The modeling
parameters are summarized in Table 1. The resulting amplitude and
phase of the pressure field are plotted in Figure 6. As the damping
constant increases, the amplitude of the pressure field is more ra-
pidly attenuated as a function of the offset (Figure 6a). The higher a
damping constant is used, the larger spatial gradient of the pressure
field develops. Therefore, a finer FD grid should be used to resolve
such rapid change of the pressure field. Because a grid size is con-
stant in the models, the accuracy of the solution gradually deterio-
rates with an increasing damping constant (Figure 6b). Because the
skin depth is a measure of the attenuation, a proper grid size can be
determined by the grid sampling resolution per skin depth, Nδ

(Table 1). Based on extensive numerical experiments, we have
found that our FD solutions are accurate when Nδ is approximately
larger than six. When a model consists of complex velocity struc-
tures, it is recommended to use the smallest velocity value in the
model for Nδ. Next, we examine the grid sampling resolution
per the wavelength (Nλ). For this numerical experiment, the
damping constant is fixed to three, and the Fourier frequency varies
from 1 to 4.5 Hz. The modeling parameters and the modeling
results are summarized in Table 2 and Figure 7, respectively. Our
numerical modeling experiments suggest that for accurate solutions,
Nλ should be approximately larger than 10 for our second-order

differencing scheme. At this point, it is instructive to mention that
a classic finite-difference time-domain (FDTD) formulation of the
acoustic wave equation (Alford et al., 1974) requires a similar rule
of thumb for determining a proper grid size (e.g., Nλ > 10) How-
ever, in contrast to the FDTD formulation, a FD grid size in the LF
domain should be chosen to satisfy both minimum Nδ and Nλ.
Figures 6 and 7 also graphically elucidate the requirement for

both Nδ and Nλ. When the Fourier frequency is fixed, the damping
constant controls only the attenuation of the pressure field
(Figure 6a). the wavelength does not change as inferred from the
phase plots (Figure 6c). In contrast, for the constant damping con-
stant, the Fourier frequency controls only the wavelength as inferred
from the phase plots (Figure 7c). Thus, the amplitude of the wave-
field does not change (Figure 7a). In short, the skin depth is com-
pletely decoupled with the wavelength. One must consider both
minimum Nδ and Nλ to determine an accurate grid size. In addition
to an extremely wide dynamic range of the pressure field in the LF
domain, this decoupling aspect is another major difference between
the acoustic wave equation in the LF domain and the EM diffusion
equation in the frequency domain.
Finally, Tables 1 and 2 demonstrate that behaviors of the iterative

solution to the 3D problems are consistent with our previous
analysis on the 1D problem. A larger damping constant requires
a smaller stopping tolerance for accurate solutions. However, this
requirement does not increase the total number of iteration steps
for the convergence. This paradox can be explained by the observa-
tion that a larger damping constant makes eigenvalues more clus-
tered and reduces the condition number of the system matrix. As
shown in Tables 1 and 2, a sufficiently small stopping tolerance
can be determined by using the minimum amplitude of the pressure
field at the maximum source-receiver offset.

CONCLUSIONS

Numerical characteristics of iterative FD solutions to the acoustic
wave equation in the LF domain have been investigated. An
important feature of the pressure field in the LF domain is that
its amplitude can be rapidly attenuated in the space and becomes
infinitesimal at long offset. To ensure accurate solutions of the wave
equation at long offset, iterative methods require a stopping toler-
ance value that is several tens of orders of magnitude smaller than a
machine precision. To utilize such an infinitesimal tolerance value,
a residual vector of the iterative methods should be computed
recursively.
Numerical dispersion errors of iterative FD solutions have been

examined. We have shown that the skin depth of the acoustic wave
equation in the LF domain is decoupled from the wavelength.

Table 2. The summary of the modeling parameters and errors with a Fourier frequency varying from one to 4.5.

Model no. V (km/s) σ f (Hz) λ (m) δ (m) Δx (m) Nλ Nδ

Min. amp. of
pressure (1D) QMR tolerance No. of iterations Max. error (%)

7 1.5 3 1 1500 500 50 30 10 2.0 × 10−23 10−30 1125 1.3

8 1.5 3 2 750 500 50 15 10 2.0 × 10−23 10−30 1152 0.4

9 1.5 3 3 500 500 50 10 10 2.0 × 10−23 10−23 1173 3.2

10 1.5 3 4.5 333 500 50 6.7 10 2.0 × 10−23 10−30 1197 9.4

Iterative solution of LF wave equation T35
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Therefore, both the skin depth and the Fourier frequency indepen-
dently influence the numerical dispersion errors. For accurate solu-
tions, the minimum grid sampling resolutions per both the skin
depth and the wavelength should be considered simultaneously.
Lastly, we should mention that this analysis is based on the sec-
ond-order FD scheme. If a higher-order FD scheme is employed,
the minimum grid sampling rules are expected to be relaxed, but
specific guidelines would still need to be reexamined. However,
we believe our approach to numerical dispersion analysis using both
the wavelength and the skin depth will still be effective and useful.
We are considering implementing high-order FD schemes and in-
vestigating their impacts on reduction in numerical dispersion errors
and extra computational costs incurred.
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APPENDIX A

THE WAVE LENGTH AND THE SKIN DEPTH
OF THE EM DIFFUSION EQUATION IN

THE FREQUENCY DOMAIN

For a source-free, homogeneous region, the electric field diffu-
sion equation (Nabighian, 1997) is given as

∇2Eþ k2E ¼ 0: (A-1)

Note that the form of equation A-1 is basically the same as that of
equation 3. The wavenumber of the diffusion equation, k is different
from that of equation 3 and is given as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iωμσ

p
; (A-2)

where ω, μ, σ, and i are the angular frequency, the magnetic perme-
ability, the electric conductivity and

ffiffiffiffiffiffi
−1

p
, respectively.

For a sinusoidal time dependence eiwt, the solution of equationA-1
that diffuses in the positive z-direction can be written as

E ¼ Eoe−βzeðωt−αzÞi; where α ¼ β ¼
ffiffiffiffiffiffiffiffiffi
ωμσ

2

r
: (A-3)

Therefore, the skin depth and the wavelength of the diffusive
electric field is given as

skin depth δ ¼
ffiffiffiffiffiffiffiffiffi
2

ωμσ

s
; (A-4)

wavelength λ ¼ 2πδ: (A-5)

In short, the wavelength can be obtained by scaling the skin depth.
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