
UC Berkeley
Research Reports

Title
Safety Analysis Of Automated Highway Systems

Permalink
https://escholarship.org/uc/item/8xn29461

Author
Leveson, Nancy G.

Publication Date
1997

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xn29461
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Safety Analysis of Automated
Highway Systems
Nancy G. Leveson

California PATH Research Report

UCB-ITS-PRR-97-36

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

October 1997

ISSN 1055-1425

Final Report2 : Safety Analysis of
Automated Highway Systems

Nancy G. Leveson
University of Washington

1 Executive Summary
This is a second final report on the work done under this grant. A first report
was written and submitted that included a description and copies of publi-
cations under grant funding. At the time, however, I did not know that a
separate report was required because the grant number had changed during
the 3-year period of the grant. This second report contains a more detailed
description of the safety analysis techniques and tools that have been devel-
oped for a state-based requirements specification language called Requirements
State Machine Language (RSML). These tools include a simulator that allows
for forward and backward execution of RSML specifications, a fault tree gen-
erator that is based on backward simulation, and tools to check for consistency
and completeness of specifications. An example requirements specification of
an automated highway system design is described and the functionality of
the tools are demonstrated on the model. The report also contains a copy of
a dissertation on a new safety analysis technique, called Software Deviation
Analysis (SDA) that was partially supported by this grant. The technique
allows analysis of the behavior of the model in the presence of deviations from
expected inputs, i.e, how the system would work in an imperfect environment.

i

Safety Analysis Tools for AHS
Models

1 Introduction
In many systems, especially safety-critical systems, it is important to spec-
ify the required behavior of the system as completely and unambiguously as
possible. Incorrectly behaving software can have disastrous consequences. It
is at this stage of system specification that some of the most costly errors
are introduced because accidents are primarily related to specification, rather
than implementation, errors [13, 81. These errors are the last and most diffi-
cult to find according to most studies of software errors. It is thus desirable
to provide readable, unambiguous, and complete requirements specifications
and to be able to perform an analysis of the specifications to validate desired
properties of the system.

The goal of our work is to explore the limits of automated analysis to pro-
vide information useful in safety-critical project development. We are explor-
ing various types of analyses that can be performed on state-machine mod-
els. Although these ideas can be adapted to most state-machine modeling
languages, the language used in this paper is Requirements State Machine
Language (RSML), which was developed to specify the system requirements
for TCAS I1 (Traffic Alert and Collision Avoidance System) for the FAA [ll].
This language includes many of the hierarchical abstraction and parallel state-
machine features of modern state-machine specification languages [3]. These
features make such languages feasible for specifying complex systems, but they
sometimes also greatly complicate the analysis process. We assume that the
reader is familiar with the basic features of such languages, but we include a
section describing the features of RSML that are relevant to this paper.

For this grant, we have developed an RSML specification of an automated
highway system (AHS) to demonstrate the usefulness of this approach to eval-
uating safety of AHS systems. It is important to note that our specification
is used to demonstrate the analysis tools and approach, and the model itself
does not purport to be complete or based on any real AHS design. We, how-
ever, believe it to be non-trivial and realistic enough to provide a convincing
demonstration.

1

The rest of this paper is organized as follows. Section 2 describes the
AHS model. Section 3 presents the basic features of RSML relevant to this
paper. Finally, Section 4 describes the safety analysis techniques, including
forward and backward simulation, generation of fault trees, and consistency
and completeness analysis. The complete model is contained in the appendix.

2 The AHS Example Model
In this paper, we have used RSML to create a requirements specification of
an AHS model. The specification is based some of the fundamental design
decisions in the AHS model described in [5, 61. We have chosen to concentrate
on modeling the motion of vehicles on the automated highways.

Our AHS model consists of a highway with multiple automated lanes in
which traffic is organized in platoons of closely spaced vehicles under automatic
control. The “intelligence” in the model is concentrated in the vehicle control
systems and in the roadway infrastructure. The characteristics of the model
are as follows :

0 The highway consists of multiple lanes, each lane supporting vehicles
traveling in the same direction.

0 The entry and exit of vehicles to or from the highway or vehicle entry
checks are not included in the model.

0 Vehicles move on the highway by performing three kinds of maneuvers:
Change-lane, Merge, and Split (described below).

0 On the highway, all vehicles move at the same speed except when they
take part in one of the above-mentioned three maneuvers.

0 Roadside information structures are present along the highway. They
sense traffic conditions and communicate this information to the vehicles.

0 Vehicles travel in platoons, i.e., groups of closely spaced vehicles. Each
platoon has a platoon leader, which is defined as the vehicle in the front
of the platoon. The number of vehicles in a platoon can vary from one
to a specified maximum. Each platoon must maintain a headway from
the others platoons. Furthermore, each vehicle in a platoon (except for
the platoon leader) must be separated from the one in front of it by a
constant distance. These limits and assumptions are designed to enable
the system to optimize capacity and reduce travel times of vehicles on
the highway.

2

0 Vehicles are provided information on the speed and position of other
vehicles around them through sensors and through communication with
the roadside information structures and the other vehicles.

The model includes three classes of maneuvers that a vehicle can perform on
the automated highway: (i) Change-lane, (ii) Merge, and (iii) Split. Change-
lane enables a single vehicle to move into an adjacent lane, Merge enables
a platoon to join with the platoon in front of it to form a single platoon,
and Split enables a platoon to separate into two. Change-lane is performed
by a vehicle that is the only vehicle in its platoon, after ensuring, through
communication, that no vehicles are present in the adjacent lane that could
impede its maneuver. Merge is performed by a platoon by accelerating toward
the platoon directly ahead of it until it becomes part of that platoon. In Split,
either a leader of a platoon can split from the platoon by accelerating away
from it (after ensuring that it is safe to do so), or part of the platoon (all
vehicles in the platoon in front of the vehicle that initiated the maneuver) can
accelerate away to form a separate platoon.

3 RSML specification of the AHS Model
RSML is based on an underlying Mealy machine and adopts some of the
features introduced in Statecharts [3], including hierarchical abstraction into
superstates and parallel state machines. A specification may be composed
of multiple components, where each component specifies the behavior of a
corresponding system component. A more detailed description of RSML can
be found in [ll].

The AHS can be modeled using multiple identical sub-systems, each sub-
system representing a vehicle or a roadside control structure. The environment
for each vehicle consists of the other vehicles on the highway as well as roadside
controllers along the highway. Each vehicle can be considered as consisting
of various components: the sensors (which provide information about other
vehicles in the vicinity), the controller (which is responsible for the maneuvers
of the vehicle on the highway), a transmitter (which can send messages to
other vehicles), a receiver (which can receive messages from other vehicles),
and others.

The vehicle controller handles communication with the vehicle’s environ-
ment, and it controls the maneuvers in which the vehicle can take part. We
have specified the behavior of this component using RSML. The state machine
model of the controller is an abstraction of the perceived behavior of the con-
troller and can be iteratively modified during the requirements development

3

Roadside
Controller Vehicle

Figure 1: Communicating components an the AHS model. Arrows represent
communication between components.

4

Figure 2: An AND/OR table.

phase as the understanding of the environment and the controller behavior
changes. Specifications can be made more detailed or abstract, depending on
the kind of analysis desired.

RSML components can communicate with each other, or with their envi-
ronment, through point-to-point messages over defined channels. RSML mes-
sages are received asynchronously and queued upon arrival. The interfaces are
connected to specific communication channels where the receipt of a message
on a channel can set variable values and trigger events. Each channel is con-
nected to one input interface and one output interface, and each interface is
connected to exactly one channel.

Within a vehicle in the AHS, the sensor and the receiver components pro-
vide inputs to the controller component, while the controller provides inputs
to the transmitter, which in turn communicates with the receiver on other
vehicles. This communication structure is shown in Figure 1. Within a com-
ponent, internal events are broadcast and available everywhere.

RSML components contain a state hierarchy, transitions between states, a
set of input and output interfaces, a set of variables and constants, and a set
of events to order the transitions.

Each transition in RSML has a source, destination, trigger event, and
events that it triggers along with a guarding condition that must be true
for the transition to be taken. RSML provides the full predicate calculus for
expressing guarding conditions: A guarding condition may be either a simple
Boolean TRUE or FALSE, an AND/OR table, or an existential or universal
quantifier of a variable over another condition.

An AND/OR table is a disjunction consisting of Boolean expressions, which
may contain macros (other AND/OR tables, that is, functions returning a
Boolean value) or predicates over arithmetic expressions (including numeric
functions and variable and table references). An example of an AND/OR
table is shown in Figure 2. The far left column of the AND/OR table lists the
logical phrases; each of the other columns is a conjunction of those phrases
and contains the logical values of the expressions. If one of the columns is
true, then the table evaluates to true. A column evaluates to true if all of its

5

elements are true. A dot denotes “don’t care”.
We have found while observing the use of RSML by application experts

that AND/OR tables provide a more natural and reviewable notation when
compared to other formal notations, such as the usual predicate calculus no-
tation. A predefined macro, IN-STATE, returns true if the component is in
a specified state. A predefined function, TIME, when applied to a variable
or event returns the time that the variable was last assigned or the event
was triggered. It is also possible to retrieve the nth last time that a variable
was assigned or event was triggered. Thus, the condition represented by the
AND/OR table in Figure 2 will evaluate to true if either (1) Dis tance is in
state IP, ThisLaneFront is true, and the variable OwnSpeed does not have the
same value as the constant System-Speed, or (2) P o s i t i o n is in state S ing le ,
Dis tance is in state IP, and OwnSpeed has the same value as System-Speed.

We describe the state machine model of the controller in the next sub-
section. We then describe the rest of the RSML specification of the controller in
terms of vehicle maneuvers. We finally provide a detailed example of the Merge
maneuver to show some of the transitions and interfaces in the specification.

3.1 State description of the Model
In the RSML model shown in Figure 3, the controller component is modeled
as four parallel state-machines. This state decomposition represents one of
many different ways in which the controller can be specified.

The Maneuver-Status state machine represents the maneuver in which the
vehicle is presently engaged. It is composed of the following atomic states :

0 NoAaneuver: Vehicle is currently not engaged in any maneuver,
-

0 Merge: Vehicle is part of the Merge maneuver,

0 Change-Lane: Vehicle has initiated the Change-lane maneuver,

0 S p l i t : Vehicle has initiated the Split maneuver,

0 Busy: Vehicle is participating in a maneuver, but did not initiate that
maneuver,

0 Waitl: Vehicle is waiting for a reply from another vehicle, and

0 Wait2: Vehicle has received a reply from one vehicle and is waiting for
a reply from another.

6

Figure 3: The state-machines comprising the controller component. Arrows
between states denote the presence of at least one transition between them.

7

The Distance state machine represents the distance between the vehicle
and the nearest one ahead of it and in its lane:

0 The I P (inter-platoon distance) indicates that the distance to the closest
vehicle in front is at least the minimum desired between platoons. Such
a situation can arise, for example, when the vehicle is the leader of a
platoon and is not participating in any maneuver.

0 IAP (intra-platoon distance) indicates that the closest vehicle in front is
at a distance equal to or less than the desired distance between vehicles
in a platoon. Such a situation can arise, for example, when a vehicle is
part of a platoon but not the leader of that platoon.

0 Between indicates that the closest vehicle in front is neither far (at an
inter-platoon distance) nor close (at an intra-platoon distance) but in
between. Such a situation can arise, for example, when a vehicle is the
leader of a platoon that is merging with the platoon ahead.

The Motion state machine represents the speed at which the vehicle is
moving:

0 Steady: Vehicle is moving at a constant speed, equal to the speed of
vehicles on the highway that are not participating in a maneuver,

0 Accelerate: Vehicle is accelerating; for example, at the beginning of a
Merge or a Split,

0 Decelerate: Vehicle is decelerating; for example, at the end of a Merge
or a Split, and

0 Lane-Change: Vehicle is changing lanes in a diagonal motion.

The Position state machine represents the position of a vehicle within a
platoon:

0 Single: Vehicle is the only one in the platoon,

0 Leader: Vehicle is the leader of the platoon, and there is at least one
more vehicle in that platoon, and

0 Not-Leader: Vehicle is part of the platoon, but not the leader

8

3.2 Rest of the specification
The rest of the RSML specification consists of constants, events, input and
output variables, input and output interfaces, and descriptions of the tran-
sitions between states. The input and output interfaces represent messages
between the Controller component and its environment (other components
or vehicles or roadside control structures). As mentioned earlier, the RSML
specification was developed based on three maneuvers that describe the motion
of vehicles on the automated highway. These maneuvers are now described in
detail. The roadside controllers decide if it is feasible for a vehicle to initiate
a maneuver, and a message is sent to the appropriate vehicle accordingly.

3.2.1 The Change-lane maneuver

A Change-lane can be initiated only if there are no other vehicles in the pla-
toon. Before changing lanes, the vehicle must ensure that there are no other
vehicles within a critical distance (such that they would impede the changing
of lanes) in the other lane. Assuming that vehicle A wants to change to lane
L, three situations arise :

0 There is no vehicle in L within a critical distance of A. In this case, A
can change lanes without communicating with any other vehicles.

0 There is at least one platoon in L within a critical distance of A (either
ahead or behind it), while there is no platoon within a critical distance in
the other direction. In this case, A must communicate with the platoon
in L closest to it before deciding to change lanes. Suppose B is the leader
of the closest platoon in L. On receiving a message from A, if B is not
taking part in some other maneuver and it is feasible for A to change
lanes without colliding with any vehicle in B’s platoon, B agrees to take
part in A’s Change-lane and continues to move at a steady speed (along
with the rest of the vehicles in its platoon) while A changes lanes.

0 There is at least one platoon in L ahead of A and at least one behind A
that are within a critical distance. In this case, A needs to communicate
with the closest platoons on both sides of it before deciding to change
lanes. Suppose B and C are the leaders of these two closest platoons.
Then, as in the previous case, if B and C are not taking part in some
other maneuver and it is feasible for A to change lanes without colliding
with a vehicle in either of their platoons, both agree to A’s Change-Lane,
thus continuing to move at a steady speed (along with the rest of their
platoons) while A changes lanes.

9

After A changes lanes, it continues to be a single vehicle platoon.

3.2.2 The Merge maneuver

A Merge combines two successive platoons in a single lane into one. Merge is
always initiated by the leader of the rear platoon, which accelerates towards
the platoon in front and merges into it. Merging is subject to the condition
that the combined size of the two platoons does not exceed the limit for platoon
size.

Assume that vehicle A is the leader of the rear platoon, i.e. the platoon
that wants to merge, and vehicle B is the leader of the platoon with which A’s
platoon wants to merge. If B receives a message from A and is not involved in
another maneuver, then B ascertains whether a merge is feasible by checking
that the sum of the number of vehicles in the two platoons involved does not
exceed the limit for a platoon size. If B agrees to the merge, then A and
the rest of the vehicles in A’s platoon merge with B’s platoon by accelerating
toward it and then subsequently decelerating.

3.2.3 The Split maneuver

A Split involves separating a platoon into two. It may be needed, for example,
because a platoon size has exceeded the limit or because a vehicle in the
platoon needs to change lanes. Split may be initiated by any vehicle in the
platoon. Two situations arise :

0 The leader of a platoon decides to split. A split can take place if there is
no vehicle within a certain critical distance in front of the leader (so as
to impede its movement). In this case, the leader accelerates away from
the rest of the vehicles in its platoon until it reaches a safe distance.

0 A vehicle that is not the leader of a platoon decides to cause a split. A
split can take place if there is no vehicle within a certain critical distance
in front of the leader of that platoon. In this case, all vehicles in front
of the initiator accelerate away from it to form their own platoon.

3.3 Detailed specification of Merge
In order to demonstratre the use of RSML to specify the controller, some
of the transitions and communication (interfaces) involved in Merge are now
described. They represent the RSML specification of the AHS that forms the

10

input to the analysis tools. Only part of Merge is shown here. The entire
maneuver is described in Appendix A.

Assume A is the vehicle that attempts to initiate Merge while B is the
leader of the platoon in front of it (if any). A initiates Merge upon receiving
an appropriate message from the environment (a roadside control structure).
This message is represented as part of an input interface of A.

Interface Sys-M-start:
Source: Roadside-ControlStructure
Trigger Event: RECEIVE(Vehiclelid, Dist-ahead)
Condition:
Output Action: Systemmerge
Description: Receive indication from roadside control structure to initiate
Merge. Vehiclelid is id of the leader of the platoon with which we will
merge. Dist-ahead is the distance between the two platoons.

Upon receiving an indication to start Merge, A checks if it is capable of initi-
ating the maneuver. If so, it initiates the sending of a message to B and waits
for an acknowledgement.

11

Transition(s): INo_Maneuverl d
Location: Controller
Trigger Event: Systemmerge
Condition: OR

A
N
D

Output Action: Reqmerge, Set-vehiclelid, Set-own-id,Setaum-vehicles-p,
Set-dist-ahead
Description: Send request to B to merge with it. Output action will result in a message to
B to request a merge. Generate events that trigger assignments to relevant output variables.

A sends the message through an output interface, indicating the vehicle id of
B, the number of vehicles in its platoon, and how far behind it is. Note that
the sending of the message is triggered by Reqrmerge, which was generated as
a result of the transition [NoManeuver d Waitl].

Interface M-send:
Destination: Vehicle
Trigger Event: Req-merge
Output Action: SEND(Vehiclelid, Ownid, Num-vehiclesin-platoon,
Dist-ahead)
Description: Send message to leader of platoon ahead, indicating desire to
merge.

A waits for a reply from B. If A does not receive any reply from B within a
specified time period (because, for example, B is busy in another maneuver,
or there is a communications failure), A times out and aborts the maneuver.

12

Transition(s): Im +

Location: Controller
Trigger Event: TIMEOUT (TIME(Reqmerge), TIMEOUT-VALUE)
Condition: OR

A
Ar Position In State Leader I RR Position In State Single

D Distance In State IP l v s N N
Output Action:
Description: No response received from leader of platoon ahead within time limit. Abort
maneuver.

J

If A does receive a reply from B (indicating B’s approval of the maneuver), it
starts its Merge. (B sends a similar message to other vehicles in A’s platoon
also.)

Interface M-rcv-ok:
Source: Vehicle
Trigger Event: RECEIVE(Vehiclelid, Num-vehicles)
Condition:
Output Action: Rcvdmerge-ok
Description: Receive message from leader of platoon in front indicating
Merge is OK. Num-vehicles is the number of vehicles in the platoon ahead.

13

Transition(s): P I - - - + F l
Location: Controller
Trigger Event: Rcvdmerge-ok
Condition:

A
N
D

fb
T T

Output Action:
Description: Leader received indication to proceed with merging with platoon ahead.

All vehicles in A’s platoon start accelerating towards B’s platoon.

Transition(s): l S t e a d y l 4 -1
Location: Motion
Trigger Event: Rcvdmerge-ok
Condition: OR

Position In State Leader
Position In State Single

A Position In State Not-Leader
N Maneuver-Status In State Wait1

Maneuver-Status In State No-Maneuver
Distance In State IP
Distance In State IAP

Output Action:
Description: Start accelerating towards platoon ahead to merge with it.

14

r-

Location: Distance
Trigger Event: Rcvdmerge-ok
Condition:

A
N
D

OR
Position In State Single
Position In State Leader
Maneuver-Status In State Wait1
Motion In State Steady
Dist-ahead = IPDISTANCE I ITIITI

Output Action:
Description: Start merging with platoon ahead. This is the case where the leader of the
merging platoon is IPDISTANCE behind the platoon ahead.

Each vehicle knows the distance to traverse in order to join B’s platoon at
the rear. Each vehicle accelerates for half this distance and decelerates (at the
same rate) for the other half in order to merge with B’s platoon at the same
relative speed. (The transitions involving the deceleration of the vehicles are
not shown.) Once A’s platoon has merged with B’s, all vehicles in the former
revert to their default states. A is no longer the leader of its platoon. A also
lets B know that Merge is complete. B receives an indication of the completion
of the maneuver, and its states are reset accordingly.

15

Transition(s): _+ I No-Maneuver I
Location: Controller
Trigger Event: TIMEOUT(TIME(Rcvdmerge-ok),
2*Sqrt(2*DistAhead/ACCEL-RATE))
Condition:

A
N
D

I Position In State Not-Leader I
1 Distance In State Between I
Distance In State IAP
Motion In State Decelerate

Output Action:
Description: Platoon merges with platoon ahead.

Interface M-send-complete:
Destination: Mrcv-vehicle-complete
Trigger Event: Sendmerge-complete
Condition:
Output Action: SEND(Vehicle1-id)
Description: Send message to leader of platoon ahead, indicating comple-
tion of Merge.

16

4 Specification Analyses
The goal of our project is to explore the limits of automated analysis to provide
information useful in safety-critical project development. Previously, Leveson
and Stolzy described how backward analysis could be used to analyze a Time
Petri-net model for safety [12], both with respect to the possibility of getting
into hazardous states when the system operated as specified and when there
were various types of failures.

Briefly, the procedure starts with a set of hazardous conditions. For each
member of this set, the immediately prior state or states are generated from
the inverse Petri net. Each of these “one-step-back” states is then examined
to see if it is potentially a critical state. Informally, a critical state is defined as
a state from which there is at least one path from which it is possible to reach
a hazardous state (and possibly also non-hazardous states) and at least one
path from which it is possible to reach only hazardous states. Identification
of a critical state can be used to eliminate the path to the hazardous state or,
if that is not possible, to design suitable controls. Note that it is necessary to
look forward only one step from each potentially critical state in order to label
it as critical (i.e., there exists a next state that is not hazardous). If it is not
critical, it will be eliminated by the algorithm in a later state.

The procedure starts with partial states only. Some conditions in the
state are unimportant as far as safety is concerned; therefore, the complete
composition of the reachable hazardous states (i.e., the complete states from
which to start the analysis) is not known at the beginning of the algorithm.
The “don’t-care” places in each state are filled in during the course of the
analysis with the conditions that are possible given the particular model under
consideration.

The procedure described considers only hazardous states that could be
reached if the system operated correctly, i.e., it detects errors in the specifi-
cation. Additional analysis procedures can be used to analyze the effects of
faults and failures during operation of the system and thus to aid in the design
of fault-tolerance and fail-safe mechanisms.

In the past, we developed algorithms to assist in performing some types
of safety analyses on state-based specifications. We are now building tools to
automate these algorithms and develop new types of safety analyses for require-
ments specifications written in RSML. We have also explored the application
of our safety analysis procedures defined on Petri-nets to more complex RSML
models and the automatic synthesis of fault trees from the model.

The core of our analysis tools is a simulator that is able to read RSML
specifications. The simulator executes the specifications and assists in certain

17

analyses. Forward simulation of a specification provides the designer with in-
formation from which to determine if the specification conforms to the desired
behavior. (At present, the simulator is run through a textual interface. A
graphical user interface is under development.)

Automatic fault tree generation from the specification, based on backward
simulation, allows a designer to see if, and how, a system can enter a hazardous
state. In addition, Heimdahl [4] has developed algorithms and an automated
tool to check an RSML specification for completeness and consistency. The
tool also detects nondeterminism in the specification. Nondeterministic spec-
ifications may not only be unsafe, but they also make safety analysis less
feasible. Although we do not require that detected nondeterministic behavior
be removed from the specification, the instances that we detected in our TCAS
I1 specification led to potentially unsafe behavior and basically reflected errors
in the specification process.

Before describing the analysis tools, a definition of the term configura-
tion as used in this paper is required. A configuration is a complete set of
states in which the system can exist at some given moment. For example, the
Controller system can be in a configuration where Maneuver-Status is in
state No-Maneuver, Distance is in state IP, Motion is in state Steady, and
Position is in state Single. This configuration reflects the situation of a
vehicle on the automated highway moving at a steady speed, not performing
any maneuver, and being the only vehicle in its platoon. The configuration is
textually represented as (MS:No-Maneuver, D:IP, M:Steady, P:Single). Simi-
larly, a partial configuration is a configuration that specifies the states of only
a subset of the components.

4.1 Forward simulation
Forward simulation can be started from a prespecified set of input messages
and an initial system configuration. Simulation “steps” are divided into mi-
crosteps. A microstep is taken by choosing a set of transitions that are each
triggered by an event generated during the previous microstep. This event
may be generated by a transition, a message receipt, or a timeout. A full
step is completed when no more microsteps can be taken. After completing a
step, a system-wide queue is checked to determine when the next timeout or
message is scheduled to occur. The global clock is advanced to this time, and
the component that received the timeout or message begins a new step. The
Simulator can be executed from start to completion or it can be single-stepped
(either a microstep or a step at a time), highlighting the currently active states
on the screen.

18

Forward simulation allows for a check on the system specification to see
whether it conforms to the way the system is supposed to work. It can also
display whether the system, based on its specification, can get into undesired
configurations.

The textual output from a forward simulation of the Merge maneuver is
displayed in Figure 4. The graphical user interface will provide more readable
output. The simulation process is as follows:

The simulator is started through a textual Tcl interface in line 1. The AHS
system is configured into its default states (lines 2-10)--MS:No_Muneuver,
D : P , M:Steady, P:SingZe). This default configuration represents a vehicle on
the automated highway moving at a steady speed, not performing any maneu-
ver, and being the only vehicle in its platoon. In order to simulate Merge to
completion, we set up messages that will be sent to the Controller component
at the appropriate times. (Messages are set with the rsml-addMessage com-
mand, and its syntax is rsml-addMessage <destination component> <destination

, interface> <list of arguments of message> <time at which message should be
sent >) .

The first message (line 12) is sent by the roadside infrastructure suggesting
the vehicle begin its maneuver. The message is received by the input interface
Sys-M-start in the component Controller. The first parameter (1) refers to
the id of the recipient, while the second parameter (20) indicates the distance
between the recipient and the platoon in front of it. The message is to be
sent at a time value of 5 units (the system is initialized at time 0). The
second message (line 14) simulates a response from the leader of the platoon
in front agreeing to Merge. The simulator acknowledges the correctness of the
messages by adding them to its message queue (lines 13 and 15) .

The simulator considers the earliest message or timeout, which, in this case, is
the message from the environment to begin Merge. The message is received by
the vehicle (line 17), and it triggers the event Systemmerge (line 18) accord-
ing to specification. This event then triggers the transition in line 20, which
further triggers the sending of a message (line 21). The system changes state
because of the transition taken (lines 22-23). The vehicle has now sent a mes-
sage to the leader of the platoon in front, indicating its desire to merge with
the latter’s platoon. No more events are active and, hence, no more transitions
are taken. The system thus completes a step (or a macrostep) (line 26).

The simulator considers the next message or timeout, which happens to be
the second message sent earlier. Receipt of this message enables the vehicle
to continue with Merge. The vehicle begins to accelerate forward, and the
system changes state because of three orthogonal transitions (lines 30-32).

We now run the system to completion (line 16) with the command rsml-runFW.

19

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

42:

-

curie% rsml-sim -i text-int.tc1
Entering state "Controller No-Maneuver"
Entering state "Controller Maneuver-Status"
Entering state "Controller IP"
Entering state "Controller Distance"
Entering state "Controller Steady"
Entering state "Controller Motion"
Entering state "Controller Single"
Entering state "Controller Position"
Entering state "Controller Controller-Machine"
AHS
rsml ~ 2 . 9 ~ (textual interface) $ rsml-addMessage Controller Sys-M-start Cl
RSML cb Adding Delta: message ({Controller Sys-M-start (1 20) 5)) 12
rsml ~ 2 . 9 ~ (textual interface) $ rsml-addMessage
Controller M-rcv-ok Cl 5) 10
RSML cb Adding Delta: message {(Controller M-rcv-ok C1 5) 10)) 13
rsml ~ 2 . 9 ~ (textual interface) $ rsml-runFW
message received: "Controller Sys-M-start (1 20) 5"
event "System-merge" triggered

End of a microstep ----------
transition "Controller No-Maneuver-to-Waitl-2" taken
message sent: "EXTERNAL EXTERNAL Cl 0 0 20) 5 M-send"
Leaving state "Controller No-Maneuver"
Entering state "Controller Waitl"
event "Req-merge" triggered

---------- End of a microstep ----------
---------- ---------- End of a macrostep ==========

message received: "Controller M-rcv-ok Cl 5) 10"
event "Rcvd-merge-ok" triggered

transition "Controller Waitl-to-Merge" taken
transition "Controller IP-to-Between" taken
transition "Controller Steady-to-Accelerate" taken
Leaving state "Controller Waitl"
Entering state "Controller Merge"
Leaving state "Controller IP"
Entering state "Controller Between"
Leaving state "Controller Steady"
Entering state "Controller Accelerate"

---------- End of a microstep ----------

---------- End of a microstep ----------
---------- ---------- End of a macrostep ==========

event "TIMEOUT (TIME (PREV (0) Rcvd-merge-ok) ,
Sqrt(TW0 * Dist-ahead / ACCEL-RATE))" triggered
---------- End of a microste@----------

20) 5

43:
44:
45:
46:
47:
48:

49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:

-

transition "Controller Accelerate-to-Decelerate" taken
Leaving state "Controller Accelerate"
Entering state "Controller Decelerate"
---------- End of a microstep ----------
---------- ---------- End of a macrostep ==========

event "TIMEOUT (TIME(PREV(0)Rcvd-merge-ok 1,
TWO * Sqrt(TW0 * Dist-ahead / ACCEL-RATE))" triggered

End of a microstep ----------
transition "Controller Merge-to-No-Maneuver" taken
transition "Controller Between-to-IAP-2" taken
transition "Controller Decelerate-to-Steady" taken
transition "Controller Single-to-Not-Leader" taken
message sent: "EXTERNAL EXTERNAL €11 26 M-send-complete"
Leaving state "Controller Merge"
Entering state "Controller No-Maneuver"
Leaving state "Controller Between"
Entering state "Controller IAP"
Leaving state "Controller Decelerate"
Entering state "Controller Steady"
Leaving state "Controller Single"
Entering state "Controller Not-Leader"
event "Send-merge-complete" triggered

---------- End of a microstep ----------
---------- ---------- End of a macrostep ====x=====

########## End of simulation ############

Figure 4: Forward Simulation Example (contd.)

21

The event Rcvdmerge-ok, which was triggered because of the receipt of the
second message (line 28), now causes a timeout event to be generated (line
41). This timeout event is an indication for the vehicle to begin decelerating
(line 43). Another timeout event at a later time causes the vehicle to change
its speed to a steady speed (line 48). This second timeout event also indicates
the end of the maneuver, and the vehicle moves into its new configuration
indicating that it is now part of a platoon (lines 50-53). The vehicle also sends
a message to the leader of its platoon (line 54) indicating that it has completed
the maneuver.

4.2 Fault Tree generation
Fault Tree Analysis (FTA) is a form of safety analysis widely used in the
aerospace, electronics, and nuclear industries. The technique was originally
developed in 1961 at Bell Labs to evaluate the Minuteman Launch Control
System for an unauthorized missile launch.

The top event in a fault tree is a hazardous condition or state of the system,
where a hazard is defined as a state or set of conditions of a system (or an
object) that, together with other conditions in the environment of the system
(or object), will lead to an accident (loss event) [8]. FTA uses Boolean logic
to describe the combinations of events and states that constitute a hazardous
state. Each level in the tree lists the events and states that are necessary to
cause or lead to the state shown in the level above it.

Previously, Leveson and colleagues explored the generation of fault trees
from code [lo, 91. Basically, generating code-level fault trees assumes that
system-level fault trees have already been built down to the software inter-
face. In contrast, this paper examines the practicality of producing system-
level (rather than code-level) fault trees from a state-machine model. Because
producing fault trees is labor-intensive and error-prone and depends on the an-
alyst’s understanding of the operation of the system, attempts have been made
to synthesize these trees automatically. Several procedures for automatic syn-
thesis have been proposed, but these work only for systems consisting purely
of hardware elements.

In the automated approaches, a model of the hardware, such as a circuit
diagram, is used to generate the tree [l, 2, 71. Taylor’s technique, which is typ-
ical, takes the components of the hardware model and writes them as transfer
statements [15]. Each statement describes how an output event from the com-
ponent can result from the combination of an internal change in the component
and an input event and how the component state changes in response to input
events. In general, the transfer statement will be conditional on the previous

22

component state. Together, the transfer statements form the transfer function
for the component.

Both the normal and failure properties of the component are described,
and each transfer statement is represented as a small fragment of a fault tree
that Taylor calls a mini-fault tree. The synthesis process consists of building
the fault tree by matching the inputs and outputs of these mini-fault trees.

To generate more general fault trees, a model that includes more than just
hardware circuits is required. We are exploring techniques to generate fault
trees from state-machine models.

Automatic fault tree generation from an RSML specification is based on
a backward simulation of the system. Backward simulation involves finding
configurations such that there exist a set of transitions that can lead from each
of these configurations to the current configuration in a microstep. For each
such "one-step-back" configuration found, fault tree templates (representing
mini-fault-trees) are created. These templates contain detailed information
on how the system could move from the one-step-back configuration to the
current configuration. Thus the backward reachability tree provides the basic
structure on which the fault tree is built.

Backward execution can be used to implement the safety analysis algo-
rithm described earlier and originally defined for Time Petri-nets. A particu-
lar starting configuration can have zero or more one-step-back configurations,
such that a set of parallel transitions can cause the system to move from each
one-step-back configuration to the starting configuration in a microstep. For
every one-step-back configuration constructed, the algorithm considers those
configurations that can be reached in one forward microstep. The information
obtained can be used to eliminate paths to hazardous states from the model.

Backward simulation can currently be performed one microstep at a time.
Hence fault trees are automatically constructed one backward microstep at
a time. Larger fault trees can easily be built by repeating the symbolic
backward simulation, starting from an appropriate one-step-back configura-
tion each time. Once the backward simulation has been repeated a desired
number of backward steps, the entire fault tree can be generated. By gener-
ating the tree one step at a time, we allow the possibility of having a human
analyst prune the tree of physically impossible branches to save time and effort.

We first describe the templates used in creating fault trees. We then demon-
strate the fault tree procedure with the help of an example. Typically, a great
many one-step-back configurations are possible for an initial configuration.
The fault tree generation tool can eliminate impossible one-step-back config-
urations based on IN-STATE conditions. This pruning technique is described
next. Finally, we show how fault tree analysis can be used to modify the

23

Starting configuration C

r 1
Backwards configuration C-1 Backwards configuration C-n

....._________

Figure 5: Basic template for each level of fault tree.

Backwards configuration C j

A C

Configuration and
guarding conditions triggering event
Information on

Figure 6: Expansion of a backward configuration node.

system design so that it can handle failures.

4.2.1 Fault tree templates

The fault tree generator constructs mini-fault-trees, each of which represents
a path from a configuration to one of its one-step-back configurations. These
mini-fault-trees are constructed from a set of templates that describe in greater
detail how the system could move from one configuration to another. As
noted earlier, Taylor uses a similar notion of mini-fault-trees to represent small

Configuration C-i
Event e triggered

Configuration C-i
TIMEOUT event

Configuration C-i
Message received

Figure 7: Choices of triggering event nodes.

24

Information on

Set of AND/OR Tables
(orthogonal transitions)

AND/OR Table - - - - - - -

Column in AND/OR Table

- - - - - - - redicate 1

Individual clause

redicate k l - - - - - - - &?a redicate k

Figure 8: Expansion of guarding conditions information node.

25

fragments of fault trees that are generated from hardware circuit diagrams [15].
Given an initial configuration, there can be zero or more one-step-back con-

figurations, such that there exists a set of orthogonal transitions that can cause
the system to move from each of these backward configurations to the initial
configuration in a microstep. Figure 5 shows the template corresponding to
this situation. Figure 6 displays the expansion of each backward configuration
node. The orthogonal transitions are triggered by a set of simultaneous events
(there may be one event in this set that triggers all the orthogonal transitions,
or there may be more than one). This situation is depicted by node A. Fur-
thermore, the events in this set may need to be triggered before other events in
order for the system to move to the starting configuration. This information is
shown in node B. Finally, the guarding condition(s) on each of the orthogonal
transitions, if any, need(s) to be satisfied in order for the transitions to be valid
(node C). An event can be generated as an action of a transition, as a result of
a message received, or as a result of a timeout. Figure 7 displays these choices.
Finally, Figure 8 shows a template that represents the set of guarding condi-
tions that are to be satisfied, in terms of each individual guarding condition.
This template depicts an expansion of node C in Figure 6.

Perhaps the easiest way to understand the procedure is to look at an ex-
ample.

4.2.2 Fault tree example

For the example, we assume a safety constraint for the AHS that platoons
must be at least an inter-platoon distance apart from each other. This inter-
platoon distance is such that a vehicle decelerating at full platoon breaking can
avoid colliding with the vehicle ahead when the latter is decelerating at some
standard greater rate. A hazard arises when this condition is violated, i.e.,
when the leader of a platoon is at less than an inter-platoon distance behind
a vehicle. Such a situation can be represented by the partial configuration C ,
(D:Between, P:Leader). The fault tree, with C as root, is shown in Figure 9.
(The RSML fault tree generator outputs the fault tree in a file using a format
that is readable by dotty, a graph layout program that generates and displays
graphs. The fault tree generator can be easily modified to output the tree in
some other format if required.)

The fault tree displays three sub-trees that can lead to C: one correspond-
ing to Merge, one to Split where the vehicle is just behind the leader of the
platoon and the latter decides to split, and one where the vehicle is not the
leader of a platoon and decides to cause a split in the platoon. The subtrees
display how the system can end up in the configuration C (the events, mes-

26

Platoon too close to one ahead w OR
Config C: (Between, Leader)

0 AND

I

h I n
f

Config C1: (Waitl, IP, Steady, Leader)

Event : Rcvd-split-ok
I Event : Become-Leader I I

I I I I I

o condition

Waiting for Merge confirmation :

Config C2: (Waitl, IP, Steady, Leader)
Message received I

Waiting for Merge split message:

Config : (Waitl, IAP, Steady, Not-Leader)
Message received

I

F i,
I I

H Vehicle not in any maneuver:

Config C3: (No-Maneuver, IP, Steady, Leader)
Event : System-merge

I I

I I ‘ I A I

Vehicle not in any maneuver: I
Start-accl _ _ _

Event : System-merge
Config : (No-Maneuver, IAP, Steady, Not-Leader)

Figure 9: An example of a n A H S fault tree generated f rom a n RSML specafi-
cation.

27

sages, and conditions required) starting from the configurations at the lowest
level.

Consider the leftmost subtree of C. One backward configuration from C
was found. This configuration, C1, (MS:Waitl, D:IP, M:Steady, P:Leader), is
represented by node A in Figure 9 and denotes the situation where the leader
of a platoon is waiting for a response from a vehicle. The set of transitions
that take the system from C1 to C are triggered by the event Rcvdmerge-ok.
This set consists of the following orthogonal transitions:

0 The transition [Wait1 d Merge] (in the state-machine Maneuver-Status),

0 The transition [IP -+ Between] (in the state-machine Dis tance) , and

0 The transition [Steady Accelerate] (in the state-machine Motion).

Unlike C , C1 is not a partial configuration and requires that Maneuver-Status
and Motion be in specific states. Such a requirement is a result of the IN-STATE
guarding conditions on the three transitions listed above.

Node B in the fault tree specifies that the event Rcvdnerge-ok must be
triggered before a timeout event on Reqmerge moves the system from C1 to
C (this timeout event causes the system to abort Merge if the leader of the
platoon ahead does not respond to a Merge request within an appropriate
amount of time). For every one-step-back configuration constructed, the fault
tree generator considers those configurations that can be reached in one for-
ward microstep. If these one-step-forward configurations exist, a set of events
triggering transitions to each such configuration is constructed and displayed.
This analysis is based on the critical state analysis for Petri nets that was
described in the previous section. Such information can be useful in identi-
fying situations where a missed event or transition could cause the system to
get into a hazardous situation. Finally, node C requires that the condition
“This- lane- f ront- pos i t ion - Own-position = IP-DISTANCE,’ needs to be
true for the transitions to be taken.

The next level of the tree (the sub-tree with node A as root) describes
how the system can get into C1. One backward reachable configuration, call
it C2, was found (node D). Cz represents the situation where the C o n t r o l l e r
component receives a message that causes the event Rcvdmerge-ok to be
triggered, which in turn triggers the transitions connecting C1 and C. Node
E indicates that there are no conditions on the receipt of the message and the
triggering of Rcvdmerge-ok. The state machines remain in the same states
while the message is received.

D : P , M:Steady, P:Leader). C3 represents the configuration of a vehicle at
At the next level, node F represents the configuration C3, (MS:No-Maneuver,

28

the beginning of Merge. The system can move from C, to C2 if the event
Systemmerge is triggered before Rcvd-req-chng-lane, System-split, or Rcvd-req-split
(node G).

In summary, the example fault tree generated by the tool shows that a
vehicle can end up in a potentially hazardous situation (denoted by the con-
figuration C) in three different ways (represented by the three sub-trees of the
root node of the fault tree), based on the specification describing the normal
functioning of the system. If Merge or Split were completed, it would move
from C to a safe configuration according to the specification (for example, in
Merge, the vehicle would slow down appropriately to merge with the one in
front and not crash into it). The fault tree does reveal that if the system was
in C and some failure occurred (a communication error, for example) that pre-
vented it from continuing according to its specified behavior, a collision could
result. Hence the fault tree identifies situations where adequate care needs
to be taken to ensure correct behavior or risk-minimization mechanisms need
to be added to prevent a catastrophe in the presence of failures. Section 4.3
describes another such situation and suggests a way to modify the design to
incorporate a fault-handling mechanism.

4.2.3 IN-STATE Pruning

Typically, a great many backward configurations are possible from an initial
configuration. However it may be impossible for the system to move from some
of these one-step-back configurations to the initial configuration because the
guarding conditions on the set of orthogonal transitions cannot all be satisfied.
The fault tree generation tool can eliminate impossible one-step-back configu-
rations based on IN-STATE guarding conditions. (A similar sort of pruning can
be performed for IN-ONE-OF guarding conditions also.) To explain this pruning
technique, consider an example. Suppose a vehicle is in configuration C1, where
C1 is represented by (MS:No-Maneuver, D:IP, M:Accelerate, P:Single), i.e., it
is a single vehicle and accelerating. In the AHS specification, there exists a
transition T , [Steady - Accelerate], triggered by the event Rcvdmerge-ok.
So the configuration C2, (MS:No-Maneuver, D:IP, M:Steady, P:Single), is a
possible one-step-back configuration of C1. However, one of the IN-STATE
guarding conditions on transition T is “Maneuver-Status In-State Waitl”,
which is not satisfied if the system were in CZ. Hence, C2 fails to be a valid
backward configuration for C1 and can be eliminated from the fault tree for
C1. Such pruning can drastically cut the number of one-step-back configura-
tions. Manual pruning can also be performed by the analyst. We are exploring
additional ways to provide automatic pruning.

29

Leader too close and accelerating

Config : (IAP, Accelerate, Leader)

B

Leader getting closer and accelerating

Config : (Between, Accelerate, Leader)

Event : Received-lane-info

Event before

Figure 10: Fault tree example.

4.3 Handling failures
Consider the hazardous situation where the leader of a platoon is very close
to the vehicle in front of it (at an intra-platoon distance) and accelerating.
Such a situation can be represented by the partial configuration C defined as
(M:AcceZerute, D:IAP, P:Leader). Figure 10 displays the fault tree with C
as its root (node A). Only one one-step-back configuration (C,), defined as
(M:AcceZerate, D:Between, P:Leader) and represented by node B, was found
by the fault tree generator. C1 represents the situation where the leader is still
accelerating, but it is farther away from the vehicle in front (the state machine
Distance is in state Between). The system moves from C1 to C when the
event Received-lane-info is generated (node B). This event is generated
by the receipt of a message from the vehicle’s forward sensor indicating its
distance from the vehicle in front of it. The state machine Distance changes
state through the transition [Between d IAP], reflecting the sensor input.
Node C shows that the system can move from C1 to C provided that the
sensor input is received before a timeout event based on Rcvdmerge-ok. In
terms of the RSML specification, this timeout event triggers the transition
[Accelerate d Decelerate] during Merge. The timeout in effect slows the
vehicle down at the appropriate instant so that it merges with the platoon
ahead without crashing into it. Within the confines of the normal behavior of
the system, this timeout event and the associated transition would occur before
the transition [Between -+ IAP] that causes the system to move from C1 to
C. However, node C reveals that if either the timeout event or its related

30

transition fail (because of a faulty communications component or a faulty
deceleration device, for example), the system can move into the hazardous
situation represented by C, thus potentially causing an accident.

Information from the fault tree can thus be used to identify safety-critical
areas and situations where a failure in the system (for example, a failure that
leads to the transition [Accelerate 4 Decelerate] in Merge being missed)
can place the system in a hazardous configuration. The design of the AHS can
be then be strengthened appropriately to prevent such a configuration from
occurring. Leveson and Stolzy ([12]) show how interlocks can be incorporated
into Petri net models to ensure that a desirable transition has precedence
over an undesirable one. In the AHS model, we would like the transition
[Accelerate d Decelerate] to be taken before the transition [Between d
IAP]. If the desired former transition does not get taken, we would like the
system to act appropriately to prevent the vehicle from entering the state IAP
while still accelerating.

One way the AHS specification can be modified to prevent the system from
moving into configuration C in the presence of a transition failure (failing to
decelerate) is to introduce a watchdog timer. This timer can be treated as
another vehicle component that can communicate with the controller. The
timer is set by a message from the controller, and after a specified period of
time, it sends a message back to the controller. The timer can be used to set
a limit on how long a vehicle can accelerate. Thus, if a vehicle is in a situation
described above where it fails to decelerate while participating in Merge or
Split, the timer or controller can initiate a backup deceleration mechanism. In
order for this to work, the timer should be set for a time period (1) greater
than the time the vehicle would normally accelerate as part of Merge or Split
and (2) less than the time it would take for the vehicle to collide with the one
in front if it continued accelerating. If the vehicle decelerates normally, the
message from the timer is ignored. However, if the vehicle fails to decelerate
normally, the message from the timer can be used to place the vehicle in a
special configuration where it can decelerate at a higher rate than normal
(emergency braking) to avoid collision.

We modified the AHS design to incorporate the timer, adding both transi-
tions and interfaces. An extra state, Decelerate-Quick, was added to repre-
sent the state where the vehicle is decelerating quicker than normal in order to
slow down and avoid a collision. Figure 11 shows part of a forward simulation
with the modified AHS specification. Lines 1-3 show the system in the middle
of Merge, where the vehicle begins accelerating forward. At the same time, a
message is sent to the timer (line 4) indicating the beginning of acceleration.
When the vehicle fails to decelerate, i.e. it continues to be in its accelerated

31

1:
2:
3:
4:

5:
6:
7:
8:
9:

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:

20:
21:
22:

-

...
transition "Controller Waitl-to-Merge" taken
transition "Controller IP-to-Between" taken
transition "Controller Steady-to-Accelerate" taken
message sent: "EXTERNAL EXTERNAL (10) 10 OInterface-send-timer"

message received: "Controller IInterface-get-timer 0 20"
event "Timer-received" triggered

transition "Controller Accelerate-to-Decelerate-Quick" taken
Leaving state "Controller Accelerate"
Entering state "Controller Decelerate-Quick"

...

---------- End of a microstep ----------

---------- End of a microstep ----------
---------- ---------- End of a macrostep ==========

event "TIMEOUT (TIME(PREV(0)Timer-received 1,
Sqrt (TWO * Dist-ahead / QUICK-DECEL-RATE) 1 I' triggered

End of a microstep ----------
transition "Controller Merge-to-No-Maneuver" taken
transition "Controller Between-to-IAP-2" taken
transition "Controller Decelerate-Quick-to-Steady" taken
transition "Controller Single-to-Not-Leader" taken
message sent: "EXTERNAL EXTERNAL (1) 25 M-send-complete"

...
---------- End of a microstep ----------
---------- ---------- End of a macrostep ==========

########## End of simulation ############

Figure 11: Forward Simulation with timer.

32

state, a message is received from the timer (line 5). The message causes the
system to move into the special state Decelerate-Quick (line 8). After de-
celerating for a certain time (the quicker deceleration rate is determined by
the constant QUICK-DECEL-RATE), the vehicle completes Merge in a normal and
safe fashion (lines 15-19).

We have generated fault trees for other hazardous situations. For exam-
ple, the AHS system can find itself in the hazardous configuration (D:IAP,
P:Between) during a Merge or Split maneuver. We have also found that the
specification prevents the system from entering configurations where the vehi-
cle is not in the midst of any maneuver, yet its other state machines are not in
their default states. An example of such a configuration is (MS:No-Maneuver,
M:Accelerate, P:Leader).

The fault tree analysis thus enables the designer to detect situations where
failures can lead to accidents. Failure-handling mechanisms can then be added
to make the system more resilient to failures.

4.4 Consistency analysis
Tools have also been developed to check the consistency and completeness of
RSML specifications [4].

Consistency and logical completeness analysis on an RSML specification is
performed automatically, and the analysis results are output to a file without
user intervention. The output lists conditions on the transitions out of a state
that allow more than one transition to be satisfied simultaneously or miss-
ing cases. Performing this analysis on our AHS model, two nondeterministic
situations were detected, both arising during the beginning of Change-lane.
The output from the analysis that checks for one of these non-deterministic
situations is shown in Figure 12.

As described earlier, there are three cases for Change-lane, depending on
how many vehicles are present in an adjacent lane within a critical distance:
none, one, or at least two. With respect to the vehicle desiring to change
lanes, a transition from NoJaneuver to one of Change-Lane, Waiti, or Wait2,
respectively, can be taken, each triggered by the same event. In the AHS
specification, the Boolean variables Next-lane-f r o n t and Next-lane-back in-
dicate the presence of a vehicle in the adjacent lane within a critical distance in
front of or behind the vehicle. These variables allow the system to determine
which of the three transitions from No-Maneuver to take. For example, the
transition [NoXaneuver f Change-Lane] is governed by the following two
guarding conditions :

33

. .

Analyzing the state No-Maneuver

. .

Analyzing transitions for trigger: System-chnglane

No-Maneuver-to-Change-Lane anded with No-Maneuver-to-Wait2

T : Position In State Single
T : Distance In State IP
T : Motion In State Steady
T : Position In State Single
T : Distance In State IP
T : Motion In State Steady
T : Next-lane-back = TRUE-VAL
T : Next-lanefront = TRUE-VAL
T : Next-lanefront-position - Own-position 2 IPDISTANCE
T : Own-position - Next-lane-back-position 2 IPDISTANCE

Figure 12: Consistency analysis.

0 the expression Next-lane-front = TRUE-VAL is false (i.e. there is no
vehicle ahead in the adjacent lane), and

0 the expression Next-lane-back = TRUE-VAL is also false.

These two conditions were incorrectly left out of the guarding conditions
for the transition. This omission means that if a vehicle is moving at a steady
speed and is the only vehicle in its platoon, and either of Next-lane-front or
Next-lane-back were true, then the transition from NoManeuver to Change-Lane
can be taken, along with either of the transitions from NoManeuver to Wait1
or Wait2. This is an obvious error in the specification and can lead to a haz-
ardous situation (For example, a collision can result if the first transition is
taken and there is a vehicle in the adjacent lane).

The consistency and logical completeness analysis can thus greatly help in
developing consistent, unambiguous specifications.

34

5 Conclusions
This paper describes tools for the safety analyses of RSML specifications.
These tools include a forward simulator, a fault tree generator based on back-
ward simulation, and a consistency and logical completeness checker. The
automated analyses were demonstrated for a specific AHS model.

References
David J. Allen. Digraphs and fault trees. Hazard Prevention, pages
22-25, January/February 1983.

[ALM80] P.K. Andow, F.P. Lees, and C.P. Murphy. The propaga-
tion of faults in process plants: A state of the art review. In 7th
International Symposium on Chemical Process Hazards, pages 225-
237. University of Manchester, Institute of Science and Technology,
United Kingdom, April 1980.

David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231-274, 1987.

Mats P.E. Heimdahl and Nancy G. Leveson. Completeness and consis-
tency checking of software requirements. In Proceedings of the Interna-
tional Conference on Software Engineering, IEEE Computer Society,
Los Alamitos, Calif., April 1995.

A. Hitchcock. A specification of an automated freeway with vehicle-
borne intelligence. PATH Research Report, University of California,
Berkeley, 1992.

A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. The Design of Platoon Ma-
neuver Protocols for AHS. PATH Research Report UCB-ITS-PRR-
91-6. University of California, Berkeley, CA., 1991.

Frank P. Lees. Loss Prevention in the Process Industries, Vol. 1 and
2. Butterworths, London, 1980.

Nancy G. Leveson. Safeware: System Safety and Computers. Addison-
Wesley Publishing Co., 1995

Nancy G. Leveson, Stephen S. Cha, and Timothy J. Shimeall. Safety
verification of Ada programs using software fault trees. IEEE Soft-
ware, 8(7):48-59, July 1991.

35

[lo] Nancy G. Leveson and Peter R. Harvey. Analyzing software
safety. IEEE Transations on Software Engineering, SE-9(5):569-579,
September 1983.

[Ill Nancy G. Leveson, Mats P.E. Heimdahl, Holly Hildreth, and Jon D.
Reese. Requirements Specification for Process-Control Systems. IEEE
Transactions on Software Engineering, SE-20(9), September 1994.

[12] Nancy G. Leveson and Janice L. Stolzy. Safety analysis using Petri
nets. IEEE Transations on Software Engineering, SE-13(3):386-397,
March 1987.

[13] Robyn R. Lutz. Analyzing software requirements errors in safety-
critical, embedded systems. IEEE Software Requirements Conference,
San Diego, January 1992.

[14] Jon Damon Reese. Software Deviation Analysis. embedded systems.
Ph.D. Dissertation, University of California, Irvine, 1995.

[15] J.R. Taylor. An integrated approach to the treatment of design and
specification errors in electronic systems and software. In E. Lauger
and J. Moltoft, editors, Electronic Components and Systems, North-
Holland Publishing Co., 1982.

36

A Appendix A: Vehicle-Controller Example
Specification

This appendix includes an example specification of a vehicle controller com-
ponent. This model is intended only as an example and does not represent
any real AHS design.

A.l Interface
This section defines the interfaces between the controller component and the
components with which it communicates.

Roadside
Controller Vehicle

Figure 13: The components and interface messages. Only the messages t o and
f rom the Vehicle Controller are included here. A complete system specification
would include all the messages.

Input interfaces

The model has 17 different input messages to the vehicle controller as
described below.

37

~

Interface Sys-CL-start:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelidv-80, Vehicle2-idV+l)
Condition:
Output Action: System-chnglanee-84
Description: Message to begin Change-Lane maneuver.

Interface CL-rcv:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelidv-80, Vehicle2idv-81)
Condition:

A

Output Action: Rcvdreq-chnglanee-84
Description: Message from vehicle in adjacent lane that wants to change
lanes. From CLsendl or CLsend2.

Interface CL-rcv-vehicle-complete:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelidv-80)
Condition:

A

Output Action: Vehicle-chng-lane-comp~etee~~4
Description: Message indicating another vehicle has completed Change-
lane maneuver. From CLsend-completel.

38

Interface CL-rcv-ok:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelid,-80)
Condition:

A
N I Vehicle1idv-8o = OWnidv-80 D I LTJ

Output Action: Rcvd-chnglane-oke-84
Description: Indication from vehicle in adjacent lane that it is OK to
continue Change-lane maneuver. From CLsend-ok.

Interface Sys-M-start:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelid,-8~,, Dist-aheadV-8l)
Condition:
Output Action: Systemmergee-s4
Description: Message to begin Merge maneuver.

1 Interface M-rcv:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(VehiclelidV-8o, Vehicle2idV-8l,
Num~vehic~es,~~o, Distahead,_sl)
Condition:

A
N 1 Vehicle1-idv-8o = OWnidv-80 1
D

Output Action: Rcvdreq-mergee-84
Description: Message from leader of rear platoon that wants to merge.
From Msend.

39

Interface M-rcv-ok:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelidv-80, Num-vehiclesv-go)
Condition:
Output Action: Rcvdrnerge-oke-84
Description: Message from leader of platoon in front indicating Merge is
OK. F’rom Msend-ok.

I

Interface Mrcv-vehicle-complete:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelidv-80)
Condition:

A

Output Action: VehiClemerge-COmplete~g4
Description: Message from leader of merging platoon indicating its platoon
has merged. F’rom Msend-complete.

I

Interface Sys-S-start:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelidv-80, ~um-vehiclesv-~o)
Condition:
Output Action: Systemsplit,-84
Description: Message to begin Split maneuver.

40

Interface S-rcv-back:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelid,-80)
Condition:

A
D
N 1 Vehiclelid,-so = Ownid,-so I

Output Action: Become-leadere-~4
Description: Message from leader of platoon that is splitting away. From
Ssend-back.

Interface S-rcv-completel:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelid,-80)
Condition:

A
D
N I Vehiclelidv-80 = OWnidV-8o 1

Output Action: Vehiclesplit-completee-84
Description: Message from your leader that split, indicating it has com-
pleted its Split maneuver. From Ssend-completel.

Interface S-rcv-leader:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelidv-80, Vehic1e2idv-81,
Num-vehic1esv-8o)
Condition:

A
D
N I VehiclelidV-8o = OWnidv-80 I

Output Action: Rcvdreqsplite-84
Description: Message to leader from vehicle in platoon that wants to split.
From Ssendleader.

41

Interface S -rcv-all:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelidv-80)
Condition:

A
N D [Vehiclelid,-*o = OWnidv-80 I

Output Action: Start-accle-84
Description: Message from leader of platoon informing about split in pla-
toon. From Ssend-all.

Interface S-rcv-splitter:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehicle1idv-80)
Condition:

A
D
N I Vehiclelidv-80 = OWnidv-80 1 ITJ

Output Action: Rcvdsplit-oke-84
Description: Message from leader of platoon to vehicle that wants to split.
From Ssendsplitter.

Interface S-rcv-complete2:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Vehiclelid,-so)
Condition:

A
N I Vehiclel-idv-80 = OWnidv-80 1 ITJ
D

Output Action: Vehiclesplit-completee-84
Description: Message from your leader that split, along with other vehicles
that were in front of you. From Ssend-complete2.

42

Interface Rcv-own-info:
Source: Forward Sensor
Destination: Vehicle Controller
Trigger Event: RECEIVE(Dist-aheadv-8~)
Condition:
Output Action: Receivedlaneinfo,-s4
Description: Message from forward sensor indicating distance of vehicle
ahead.

Interface Get-positions:
Source: Receiver
Destination: Vehicle Controller
Trigger Event: RECEIVE(Own-positionv-80 Thislanefront-positionv-Tg)
Condition:
Output Action:
Description: Receive information on parameters.

Output Interfaces

The vehicle controller can transmit 14 different output message types.

Interface CL-sendl:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Req-chnglanel e 8 4

Output Action: SEND(Vehiclelidv-80, Ownid,_so)
Description: Message to leader of platoon in adjoining lane, indicating
desire to change lanes.

43

Interface CL-send2:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Req-chng-lane2 ,344

Output Action: SEND(Vehicle1idv-80, Ownidv_8o)
Description: Message to leader of other platoon in adjoining lane, indicat-
ing desire to change lanes.

Interface CL-send-ok:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Chnglane-ok ,344
Output Action: SEND(Vehicle2idv-81)
Description: Message to vehicle that wants to change lane, indicating
approval of Change-lane maneuver.

Interface CL-send-completel:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Changelane-complete e 4 4

Output Action: SEND(Vehiclelid,_so)
Description: Message to leader of platoon in adjacent lane, indicating

, completion of Change-lane maneuver.

Interface CL-send-complete2:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Changelane-complete e-84

Output Action: SEND(Vehicle2-idv-~l)
Description: Message to leader of other platoon in adjacent lane, indicating
completion of Change-lane maneuver.

44

Interface M-send:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Req-merge e-84

Num~veh ic l e s in~p~a toonv~~~ , Dist-aheadv-81)
Description: Message to leader of platoon ahead, indicating desire to
merge.

output Action: SEND(Vehiclel-idv-80, OWnidv-80,

Interface M-send-ok:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Merge-ok e-84

Output Action: SEND(Vehicle2-idv-81, Num~vehiclesin~p~atoon, ,~~~,
Dist-ahead,-sl)
Description: Message to leader of rear platoon that wants to merge, indi-
cating approval.

Interface M-send-complete:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Sendmerge-complete e-84

Output Action: SEND(Vehiclel-idv-80)
Description: Message to leader of platoon ahead, indicating completion of
Merge maneuver.

Interface S-send-back:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Sendleadersplit e-84

Output Action: SEND(Vehicle1idv-80)
Description: Message from leader of platoon that wants to split to vehicle
behind.

45

Interface S-send-completel:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Sendspl-complete1 e-84

Output Action: SEND(Vehicle1idv-80)
Description: Message to new leader of platoon behind, indicating the com-
pletion of Split maneuver.

Interface S-send-leader:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Reqsplit e-84

Output Action: SEND(Vehiclelidv-80, Ownidv-80, Num-vehiclesv-80)
Description: Message to leader of platoon indicating vehicle wants to cause
a split.

Interface S-send-all:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Sendsplit-ok e-84

Output Action: SEND(idList,-gl)
Description: Message from leader to vehicles behind, but ahead of vehicle
that initiated the Split maneuver, to proceed with the maneuver.

I
Interface S-send-splitter:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Sendsplit-ok e-84

Output Action: SEND(Vehicle2idv-81)
Description: Message from leader to vehicle that initiated the split, indi-
cating that the Split maneuver is in progress.

46

Interface S-sendxomplete2:
Source: Vehicle Controller
Destination: Transmitter
Trigger Event: Sendspl-complete2 e-84

Output Action: SEND(Vehiclelidv-8o)
Description: Message from leader to vehicle that initiated the split, indi-
cating completion of the Split maneuver.

A.2 Behavioral Specification
The behavioral state machine part of the specification describes the blackbox
behavior of the components, in this case the vehicle controller. Because the
specification is blackbox, only externally visible behavior is described and only
in terms of external variables. No internal variables or design is included.

47

Maneuver Status Transition Definitions

Maneuver-Status
\

L

7

Wait2
No-Maneuver

-z 2- Busy

Figure 15:

Transfers t o the busy state occur when the vehicle is participating in a
maneuver, but i t did not initiate that maneuver.

Transit ion(s) : I No-Maneuvers-48 I 4

Location: Controller
Trigger Event: Rcvdreq-chng-lanee-84
Condition:

A
DiStanCe,-48 In State D
Position,-48 In State Leaders-48 N
Position,-48 In State Single,-48

MOtiOn,-48 In State Steadys-48

Output Action: Chnghne-oke.84, Set-vehicle2ide-s4
Description: Agree to request from vehicle in adjacent lane to change lanes.

49

TEknSitiOn(S) : -1 -+ I Nohianeu~er , -4~ I
Location: Controller
Trigger Event: Vehicle-chnglane-complete,-~~
Condition: OR

A
Positions-48 In State Leader,-& N
Positions-48 In State Single,-48

Distance,-48 In State I P S 4 D
Motions-4s In State Steady,-48

Output Action:
Description: End of Change-lane maneuver.

Location: Controller
Trigger Event:
TIMEOUT-VALUE),B5
Condition:

TIMEOUT (TIME(PREV(0)Rcvdreq-chng-lane),

OR

Output Action:
Description: No response from vehicle changing lanes. Abort Change-lane maneuver.

50

Transition(s) : I No_Maneuver,-48 I
Location: Controller
Trigger Event: Rcvdreq-mergee-84
Condition:

- -1

A
N
D

Output Action:
Set-dist-aheade-84
Description: Agree to request from platoon behind to merge with this platoon.

Transition(s): -1 - I No-ManeuverS-48 I
Location: Controller
Trigger Event: Vehiclemerge-completee-84
Condition:

A
Position,-48 In State Single,-48 D
Distance,-48 In State N
MOtiOn,-48 In State Steady,-48

Position,-48 In State Leader,-48

Output Action:
Description: Rear platoon has completed merge.

51

Transition(s): - I No-Maneuvers-4g I
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvdreqmerge), TIMEOUT_VALUE),_s5
Condition:

A
N
D

Output Action:
Description: No response from rear platoon about merging. Abort Merge maneuver.

Transition(s): I No-Maneuvers-4g I - E3 ~ u s y ~ - ~ ~

Location: Controller
Trigger Event: Becorne-leadere-g4
Condition:

Output Action:
Description: Indication from leader that it is splitting.

52

Location: Controller
Trigger Event: Vehiclesplit-completee-84
Condition: OR

Output Action:
Description: Former leader of platoon has completed Split maneuver.

Transition(s): I No-Mane~ver,-4~ I -+ -1
Location: Controller
Trigger Event: Rcvdreqsp1ite-84
Condition:

Output Action: Split-0ke-84, Sendsplit_oke-84, Set-idListe_84, Set-vehicle2ide_84
Description: Agree to request from vehicle in platoon to cause a split.

53

Location: Controller
Trigger Event: Start-accle_84
Condition:

A
N
D

Output Action:
Description: Vehicles that are not leaders begin to split.

Transition(s) : --+ I No-ManeuverS-48 I
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Split-ok), TWO * Sqrt(TW0 * TWO *
IPDISTANCE / ACCELRATE)),_85
Condition:

A
N
D

Output Action: Sendspl-complete2,-84, Set-vehiclel-ide-84
Description: Splitting vehicles complete Split maneuver.

OR 11
T F

The following transitions represent maneuvers tha t are initiated by this
vehicle.

54

Location: Controller
Trigger Event: System-chnglanee-84
Condition:

A
N
D

Output Action:
Description: Initiate Change-lane maneuver. No vehicles in adjacent lane.

Location: Controller
Trigger Event: System_chnglane,-s4
Condition:

A '
N .
D .

Output Action: Req-chnghnele-84, Set-vehiclel-ide-84, Set-OWnide-84
Description: Send request to vehicle in adjacent lane to change lanes.

55

Transition(s): -1 - [Change_Lane,_4sI
Location: Controller
Trigger Event: Rcvd-chnglane-oke-84
Condition:

Output Action:
Description: Received indication to proceed with changing lanes.

Transition(s): a1tl,-48 --+ I No-Maneuvers-48 1
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Req-chng-lane1), TIMEOUT-VALUE)e-85
Condition:

Output Action:
Description: No response from vehicle in adjacent lane. Abort Change-lane maneuver.

56

Location: Controller
Trigger Event: System-Chnglanee-84
Condition:

A
N
D

Position,-48 In State Single,-48
Distance,-48 In State
Motion,-48 In State SteadyS-48
Nextlane-back,-~n

Output Action: Req_chnglane2,84, Set-vehicle1-ide-84, Set_own-ide-84
Description: Send request to two vehicles in adjacent lane to change lanes.

T [T

Transition(s): ait2,-48 - I No-Maneuvers-48 I
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(O)Req-chng-lane2), TIMEOUT-VALUE)e-85
Condition:

Output Action:
Description: Received indication from both vehicles in adjacent lane to proceed with
changing lanes.

57

Transition(s): - -1
Location: Controller
Trigger Event: Rcvd-chnghne-oke-g4
Condition:

Output Action:
Description: Received indication from one vehicle to proceed with changing lanes. Wait
for reply from the other.

Transition(s): 4 I No-Maneuvers-4g

Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Systemxhnglane),
CHANGELANE-TIME)e-84
Condition:

Output Action: Changelane-completee-g4, Set-vehiclelide-g4, Set-vehicle2ide-g4
Description: Vehicle changing lanes completes Change-lane maneuver.

58

Transition(s): I No-Maneuvers-48 I -- -1
Location: Controller
Trigger Event: Rcvdmerge-oke_84
Condition:

Output Action:
Description: Platoon ahead has agreed to Merge maneuver. Begin merging.

Transit ion(s) : I No_Mane~ver,-4~ I +

Location: Controller
Trigger Event: Systemmergee_84
Condition: OR

Output Action: Req-mergee-84, Set-vehicle1ide-84, Set-own-ide-84,
Set~lum_vehicles_p,_84, set-dist_aheade-84
Description: Send request to platoon ahead to merge with it.

59

Transition(s): I] - -1
Location: Controller
Trigger Event: Rcvdmerge-oke..84
Condition:

A
N
D

OR

Output Action:
Description: Received indication to proceed with merging with platoon ahead.

Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Req-merge), TIMEOUT_VALUE),-~E,
Condition:

A
N
D

OR

Output Action:
Description: No response from platoon ahead. Abort Merge maneuver.

60

Transit ion(s) : -1 -+ I No-Maneu~er,-4~ 1
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok), TWO * Sqrt(TW0 *
Dist-ahead / ACCELRATE))e-85
Condition:

A
N
D

Position,-48 In State Single,-48

Distance,-48 In State BetWeen,-48
Distance,48 In State IAPs-48

Output Action:
Description: Platoon merges with platoon ahead.

Transit ion(s) : I ~ o - ~ a n e u v e r , - ~ ~ I +

Location: Controller
Trigger Event: Systemsplite-84
Condition:

A
N
D

Output Action: Start-leadersplite-84, Send1eadersplite-84, Set-vehicle1-ide-84
Description: Leader initiates Split maneuver.

61

Location: Controller
Trigger Event: Systemsplite-84
Condition:

A
N
D

Output Action: ReqSplite-84, Set-vehic1e1ide-84, Set-own-ide-s4, Setnum-vehiCleSe-84
Description: Send request to leader to split platoon.

Location: Controller
Trigger Event: Rcvdsplit-oke-84
Condition:

A
N
D

Position,-g8 In State Not-Leaders-48
 distance,^^ In State IAPs-48

Output Action:
Description: Vehicles ahead start to split from rest of platoon.

Transition(s): -1 4 I No-Mane~ver,-4~ I
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Start-leadersplit), T W
IPDISTANCE / ACCELRATE)),_ss
Condition:

‘0 * Sqrt(TW0 *

Output Action:
Description: Complete Split maneuver.

62

Transition(s): I S p l . 1 lts-48 - [No&faneuver,-48 I
Location: Controller
Trigger Event: VehiClesplit_COmplete,_84
Condition:

A I MotionS-4s In State Steads,-48

Output Action:
Description: Complete Split maneuver.

Motion Transition Definitions

Motion

Decelerate Accelerate

Lane-Change

Figure 16:

63

Transition(s): --

Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok), TWO * Sqrt(TW0 *
Dist-ahead / ACCELRATE))+85
Condition:

A
N
D

Position,-48 In State Single,-48
Position,-48 In State Leader,-48
Position,-g8 In State Not_Leader,_48
Maneuver-StatusS-48 In State Merges-48

Output Action:
Description: Decelerate during Merge maneuver.

OR

Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Start-leadersplit), Sqrt(TW0 *
IPDISTANCE / ACCELRATE)),-85
Condition:

Output Action:
Description: Former leader of platoon decelerates during Split maneuver.

64

Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Split-ok), Sqrt(TW0 * TWO *
IPDISTANCE / ACCELRATE))e-85
Condition:

A
N
D

Output Action:
Description: Vehicles decelerate during Split maneuver.

Transition(s): -1 --+

Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok), TWO * Sqrt(TW0 *
Dist-ahead / ACCELRATE))e-85
Condition:

A
N
D

Output Action: Sendmerge-completee-84, Set-vehiclel-ide-84
Description: Vehicles have merged with platoon ahead.

OR

65

Transition(s) : 1 ~ecelerate,-48 I -
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Start-leadersplit), TWO * Sqrt(TW0 *
IPDISTANCE / ACCELRATE))e-85
Condition:

Output Action: Sendspl_completele_84, Set-vehicle1ide-84
Description: Former leader has completed Split maneuver.

Transition(s): -1 --+

Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Split-ok), TWO * Sqrt(TW0 * TWO *
IPDISTANCE / ACCELRATE)),_85
Condition: OR

Output Action:
Description: Vehicles have completed Split maneuver.

66

Transition(s): [~ a n e - ~ h a n g e , - 4 ~ I - -1
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)System-chng-lane),
CHANGELANE-TIME)e-84
Condition:

A
N
D

Maneuver-StatusS-48 In State Change_Lane,-48
Position,-48 In State Single,-48
Distance,-48 In State

Output Action:
Description: Completion of Change-lane maneuver.

Transition(s): -1 -
Location: Controller
Trigger Event: Rcvdrnerge-oke-84
Condition:

Output Action:
Description: Start accelerating towards platoon ahead to merge with it.

67

Transition(s): -1 -+ -1
Location: Controller
Trigger Event: Start-1eadersplite-84
Condition:

Output Action 1:

A
N
D

Position,-~s In State Leaders-48
Maneuver-Status,-dx In State Splitn-4x

Description: Leader starts accelerating away from platoon during Split maneuver.

Location: Controller
Trigger Event: Split_Ok,-84
Condition:

A
N
D

Maneuver-Statuss-48 In State Busy,-48
Positions-4g In State Leaders-4s
Distances-48 In State Ips-48

Output Action:
Description: Leader starts accelerating during Split maneuver.

Transition(s): -
Location: Controller
Trigger Event: Start-accle-84
Condition:

A
N
D

Output Action:
Description: Vehicles that are not leaders start accelerating during Split maneuver.

68

Transition(s): I E I -+ -1
Location: Controller
Trigger Event: System-chnglanee84
Condition:

I Next-lanefrontv-7c, I
Output Action:
Description: No vehicles in adjacent lane. Proceed with changing lanes.

Transition(s): - -1
Location: Controller
Trigger Event: Rcvd-chng1ane-oke-84
Condition:

Output Action:
Description: Received indication to proceed with changing lanes.

69

Distance Transition Definitions

I Distance

+ Between

~

Figure 17:

Transition(s): -1
Location: Controller
Trigger Event: Received-1aneinfoe-s4
Condition:

Output Action:
Description: Act on sensor input.

70

Transition(s): -1 -+ -1
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok
Dist-ahead / ACCELRATE)),-85
Condition:

Output Action:
Description: Towards completion of Merge maneuver.

), TWO * Sqrt(TW0 * fb
T T

Location: Controller
Trigger Event: Vehiclesplit-completee-~4
Condition: fi

T T

Output Action:
Description: Former leader of platoon has accelerated away to complete split.

71

Transition(s): -1 - F l
Location: Controller
Trigger Event: VehiClesplit_COmpletee-8.1
Condition:

A
N
D

Output Action:
Description: Vehicles ahead have accelerated away to complete split.

Transition(s): -1 -
Location: Controller
Trigger Event: Become_leader,-84
Condition:

A
N
D

Output Action:
Description: Vehicle in front, i.e. the leader, starts splitting away.

Transition(s): -1 - -1
Location: Controller
Trigger Event: Rcvd-~plit-ok~-84
Condition:

Output Action:
Description: Vehicles ahead start splitting away.

72

Location: Controller
Trigger Event: Rcvdmerge_ok,-s4
Condition:

A
N
D

Output Action:
Description: Start merging with platoon ahead.

73

Position Transition Def in i t ions

I

Position

Single e D

Leader W

Not-Leader -
Figure 18:

Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok), TWO * Sqrt(TW0 *
Dist-ahead / ACCELRATE)),-85
Condition:

A
N
D

O u t p u t Action:
Description: Platoon has merged with platoon ahead.

74

r
Transition(s): t -1
Location: Controller
Trigger Event: Startleadersplite-84
Condition:

A
N
D

Output Action:
Description: Leader begins to split away from platoon.

Transition(s): -1 ---+ -1
Location: Controller
Trigger Event: Split-0ke-84
Condition:

Output Action:
Description: Leader begins to split. This is the only other vehicle in the platoon.

75

Transition(s): -
Location: Controller
Trigger Event: Become_leader,_84
Condition:

A
Motion,-48 In State Steady,-48 D
Distance,-48 In State IAPs-48 N
Maneuver-StatusS-48 In State No-ManeuverS-48

N u m ~ v e h i c ~ e s i n ~ p ~ a t ~ o n ~ ~ ~ o > 2

Output Action:
Description: Become new leader of platoon as leader splits.

Transition(s): -+ -1
Location: Controller
Trigger Event: Rcvdsplit-oke-84
Condition:

Output Action:
Description: Become new leader of platoon as part of it accelerates away during Split
maneuver.

76

Transition(s): -1
Location: Controller
Trigger Event: Become-leadere-84
Condition:

Output Action:
Description: Leader splits and this is the only other vehicle in the platoon.

Location: Controller
Trigger Event: Rcvdsplit-oke-84
Condition:

A
N
D

Output Action:
Description: Rest of platoon splits and this is the only vehicle left.

77

Transition(s): -1 t I leader,48]
Location: Controller
Trigger Event: Vehiclemerge~complete,_~~
Condition:

A
N
D

Output Action:
Description: Rear platoon merges with this vehicle.

Transition(s): 4 -1
Location: Controller
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok), TWO * Sqrt(TW0 *
Dist-ahead / ACCELRATE)),-85
Condition:

A
N
D

Output Action:
Description: Merge with platoon ahead.

A.3 Input Variables
Input: Next -lane-back
Type: boolean
Expected Range: True, False
Granularity: N/A
Units: N/A
Load:
Exception handling information:
Description: True if vehicle present behind in adjacent lane, False
otherwise.

78

Input: Next -lane front
Type: boolean
Expected Range: True, False
Granularity: N/A
Units: N/A
Load:
Exception handling information:
Description: True if vehicle present aheac 1 in a(djacent lane, False otherwise.

Input: Thislane-front
Type: boolean
Expected Range: True, False
Granularity: N/A
Units: N/A
Load:
Exception handling information:
Description: True if vehicle present ahead in own lane, False otherwise.

Input: Next-lane-back-position
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: Position of vehicle behind in adjacent lane.

Input: Next-lanefront-position
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: Position of vehicle ahead in adjacent lane.

Input: This-lane-front-position
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: Position of vehicle ahead in own lane.

79

Input: Own-position
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: Position of own vehicle.

Input: Num-vehiclesin-platoon
Type: integer
Expected Range: 0 .. 20
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: Number of vehicles in platoon.

Input: Num-vehicles
Type: integer
Expected Range: 0 .. 20
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: Number of vehicles in a platoon. Used in communication
during Merge or Split maneuver.

Input: Own-id
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: ID of own vehicle.

Input: Vehiclelid
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: ID of a vehicle.

80

Input: Vehicle2id
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: ID of a vehicle.

Input: idList
Type: integer list
Expected Range: 0 .. 1000
Granularity: 1
Units: N/A
Load:
Exception handling information:
Description: List of IDS of vehicles in platoon.

Input: Dist -ahead
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Units: feet
Load:
Exception handling information:
Description: Distance between vehicle and one ahead. Used in Merge.

A.4 Output variables
Output: Vehiclelid-out
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Trigger: Set-vehiclelide-84
Assignment: VehiclelidV-8o
Units: N/A
Load:
Exception handling information:
Description: ID of vehicle.

81

Output: Vehicle2id-out
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Trigger: Set-vehicle2ide-~4
Assignment: Vehicle2idv-81
Units: N/A
Load:
Exception handling information:
Description: ID of vehicle.

Output: Own-id-out
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Trigger: Set_ownid,-84
Assignment: OWnidv-80
Units: N/A
Load:
Exception handling information:
Description: ID of own vehicle.

Output: Num-vehiclesin-platoon-out
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Trigger: Setnum-vehicles-pe-84
Assignment: Num~vehic les in~p~atoon ,~~~
Units: N/A
Load:
Exception handling information:
Description: Number of vehicles in own platoon.

Output: Num-vehicles-out
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Trigger: Setnum-vehiclese-84
Assignment: Num-vehiclesv-80 + 1
Units: N/A
Load:
Exception handling information:
Description: Number of vehicles in platoon, plus one.

82

Output: Dist-ahead-out
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Trigger: Set_dist_ahead,-s4
Assignment: Dist-aheadV-8l
Units: feet
Load:
Except ion handling informat ion:
Description: Distance of vehicle ahead.

Out put : idList -out
Type: integer
Expected Range: 0 .. 1000
Granularity: 1
Trigger: SetidList,-84
Assignment: idList,-81
Units: N/A
Load:
Exception handling information:
Description: List of ids of vehicles in platoon.

83

A.5 Constants
IP-DISTANCE : 20
CHANGE-LANE-TIME : 3
TIMEOUT-VALUE : 10
IAP-DISTANCE : 2
ACCEL-RATE : 5
MAX-VEHICLES- NPLATOON : 20
MIN-SPLIT-DIST K NCE : 60

A.6 Event List
System-chnglane
Rcvdreq-chnglane
Vehicle-chnglane-complete
Rcvd-chnglane-ok
Changelane-complete
Req-chnglanel
Chnglane-ok
Req-chnglane2
Systemmerge
Rcvdreqmerge
Rcvdmerge-ok
Vehiclemerge-complete
Sendmerge-complete
Reqmerge
Merge-ok
Systemsplit
Startleadersplit
Becomeleader
Rcvdreqspllt
St art accl
Rcvd-split-ok
Split -ok
Vehiclesplit-complete
Split2xomplete
Sendleadersplit
Reqsplit
Sendsplit-ok
Sendspl-complete1
SendspLcomplete2
Receivedlaneinfo
Set-vehiclelld

et-vehlcle2~d
et -ownld
etaurn-vehicles

Setnum-vehicles-p
et-dist-ahead
etidList

TIMEOUT (TIME(PREV(0)System-chnglane), CHANGE-LANE-TIME)
TIMEOUT (TIME(PREV(0)Rcvd-req-chnglane), TIMEOUT-VALUE)

8
8

84

TIMEOUT (TIME(PREV(0)Req-chnglanel), TIMEOUT-VALUE)
TIMEOUT (TIME(PREV(O)Req_chnglane2), TIMEOUT-VALUE)
TIMEOUT (TIME(PREV(0)Req-merge), TIMEOUT-VALUE)
TIMEOUT (TIME(PREV(0)Rcvdmerge-ok), TWO * Sqrt(TW0 * Distahead
/ ACCEL-RATE))
TIMEOUT (TIME(PREV(0)Rcvd-reqmerge), TIMEOUT-VALUE)
TIMEOUT (TIME(PREV(0)Startleadersplit), Sqrt(TW0 * IP-DISTANCE
/ ACCEL-RATE))
TIMEOUT (TIME(PREV(0)Startleadersplit), TWO * Sqrt(TW0 * IPDISTANCE
/ ACCEL-RATE))
TIMEOUT (TIME(PREV(0)Split-ok), Sqrt(TW0 * TWO * IP-DISTANCE
/ ACCEL-RATE))
TIMEOUT (TIME(PREV(0)Split-ok), TWO * Sqrt(TW0 * TWO * IP-DISTANCE
/ ACCEL-RATE))

85

UNIVERSITY OF CALIFORNIA

IRVINE

Software Deviation Analysis

A dissertation submitted in partial satisfaction of the

requirements for the degree of Doctor of Philosophy

in Information and Computer Science

Jon Damon Reese

Committee in charge:
Professor John King, Chair

Professor Nancy G. Leveson
Professor Debra J. Richardson

1996

@ Jon Damon Reese, 1996.
All rights reserved.

The dissertation of Jon Damon Reese is approved,

and is acceptable in quality and form for

publication on microfilm:

Committee Chair

University of California, Irvine

1996

..
11

Dedication

This dissertation is dedicated to my grandparents-
James Dunn, Doris Wilson Dunn (may she rest in peace),

Edison Reese (may he rest in peace), and
Leone Marshall Reese.

111
...

Contents

List of Figures . Vi

List of Tables . Vlll
...

Acknowledgement . ix

Curriculum Vitae . x

Abstract xi .

Chapter 1 Introduction . 1
1.1 Contribution of the dissertation . 5
1.2 Organization of the dissertation . 6

Chapter 2 Related Work . 7
2.1 Backward Search Techniques . 11
2.2 Forward Search Techniques . 21
2.3 Combined Techniques . 26
2.4 Summary . 32

Chapter 3 Deviation Analysis . 33
. 3.1 Goals 40

Chapter 4 A Primitive Language of Causality 41

4.2 Encoding Causality . 49
4.3 Causality Diagram Grammar . 51
4.4 Translation of RSML . 55
4.5 Summary . 67

Chapter 5 A Calculus of Deviations 68
5.1 Introduction To Qualitative Mathematics 69
5.2 PB. N. A Logarithmic Qualitative Domain 72
5.3 A Qualitative Calculus for PB. N . 77
5.4 Inverse Relations . 92
5.5 A Qualitative Calculus of Deviations 93
5.6 Deviation Formulae . 95
5.7 Application of Deviation Formulae to PB. N 102
5.8 Assumptive Functions . 103

4.1 Definitions . 41

5.9 States . 105

iv

Chapter 6 A Forward Search Algorithm 109
6.1 Semi-Automated Analysis . 111
6.2 Fully-Automated Analysis . 113
6.3 Propagation of Definite Deviations 116
6.4 Propagation of Possible Deviations 128
6.5 Summary . 131

Chapter 7 Examples . 133
7.1 Train Crossing . 135
7.2 TCAS I1 . 140
7.3 Conclusions . 147

Chapter 8 Results and Future Directions 155
8.1 Results . 155
8.2 Future Directions . 157

Bibliography . 160

V

List of Figures

2.1 The TCAS I1 model of detected aircraft. written in RSML
2.2 Fault tree .
2.3 Mini-fault tree for IF-THEN-ELSE
2.4 Mini-fault tree constructed from standard component transition table
2.5 An instantiated mini-fault tree .
2.6 A simple digraph .
2.7 Conversion of pipe-and-process diagram to digraph
2.8 Example of a FMECA table .
2.9 An event tree .
2.10 An event tree for two unordered events
2.11 A cause-consequence diagram .

3.2 TCAS input interface .
3.3 Macro RA-Display-Delay .

3.1 Receipt of Mode S Address from the Mode S transponder

3.4 Transition to TA/RA-Delay upon first entering state Threat
3.5 Transition to R A upon first entering state Threat
3.6 Transition from TA/RA-Delay to R A

4.1 Causality diagram example .

4.3 A causality diagram fragment for Threat
4.4 A causality diagram fragment for Proximate-Trafic

4.6 Explicit representation of default transitions
4.7 AND/OR Table .
4.8 Causality diagram template for input variables
4.9 Causality diagram template for output variables
4.10 Causality diagram template for input interfaces

5.1 A qualitative representation of oscillating functions
5.2 Example of how assumptions and sequential propagation relate

4.2 The Intruder-Status state heirarchy .

4.5 Example of a causality digram fragment for an RSML transition . . .

5.3 Algorithms for determining whether a mode contains any deviations .

6.1 A semi-automated search procedure
6.2 A fully-automated search procedure
6.3 An example of a search tree produced by the Automated procedure . .

9
13
15
16
17
18
19
22
24
25
27

34
36
37
37
38
39

54
57
58
59
61
62
63
65
65
66

71
107
108

110
112
115

v1

6.4 The PropagateDefiniteDeviations procedure 117
6.5 The PropagatePorwardDef i n i t e procedure 122
6.6 The PropagateBackwardDef i n i t e procedure 124
6.7 Sample C++ functions for calculating equivalence code 127
6.8 The PropagateBackwardDef i n i t e procedure 129

7.1 Train crossing example . 134
7.2 Queue sizes on train crossing example 1 135
7.3 Assumption depth of Automated on train crossing example 137
7.4 Step depth of Automated on train crossing example 138
7.5 Search queue comparison for train crossing examples 1 and 2 139
7.6 Assumption comparison for train crossing examples 1 and 2 139
7.7 Search queue comparison for train crossing examples 1 and 3 140
7.8 The TCAS I1 model of its own aircraft 141
7.9 Queue sizes on TCAS I1 example . 142
7.10 The automatic sensitivity level transition from state 1 to state 5 144
7.11 Search order of Automated on the TCAS I1 example 151

vii

List of Tables

2.1
2.2
2.3

4.1

5.1
5.2

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7

HAZOP guide words . 29
MASCOT guide words . 30
Summary of hazard analysis methods 32

Basic functions . 56

Sign algebra . 70
Sign algebra of deviations . 95

Execution trace of the Automated procedure 116

Summarized results of one of the train crossing’s scenarios 136
Scenario produced for TCAS I1 barometric altimeter deviation 145
Search trace of Automated on TCAS I1 example 148
Search trace (continued) . 149
Search trace (continued) . 150
TCAS I1 causality diagram node meanings 152
Node meanings (continued) . 153

...
Vl l l

Acknowledgement

I am indebted to Professor Nancy G. Leveson for the many ways that she has
supported my efforts. Her insights and encouragement have been truly inspirational
for me. I would also like to thank the other members of my committee, Professors
John King and Debra J. Richardson. Clark Turner and Kurt Partridge provided
valuable comments on drafts of this dissertation.

I am deeply grateful for the financial support received from the National Aero-
nautics and Space Administration, the Federal Aviation Administration, and the
National Science Foundation.

Mom, Dad, Scott, and Merri, you are the reason I care. Thanks, y’all!

ix

Curriculum Vitae

1989 B.A. in Computer Science and Linguistics,
Rice University
Houston, Texas

University of California
Irvine, California

University of California
Irvine, California
Dissertation: Software Deviation Analysis

1991 M.S. in Information and Computer Science,

1995 Ph.D. in Information and Computer Science,

Publications

Nancy G. Leveson, Mats P.E. Heimdahl, Holly Hildreth, and Jon Reese.
Requirements Specification for Process-Control Systems. IEEE Trans-
actions on Software Engineering, SE-20(9), September 1994.

Steven B. Dolins and Jon D. Reese. A Curve Interpretation and Diagnos-
tic Technique for Industrial Processes. IEEE Transactions on Industry
Applications, 28(l), January/February 1992.

N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, J.D. Reese, and R. Ortega.
Experiences Using Statecharts for a System Requirements Specifica-
tion. Sixth International Workshop on Software Specification and De-
sign, Como, Italy, October 1991.

X

Abstract of the Dissertation

Software Deviation Analysis

by

Jon Damon Reese

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1996

Professor John King, Chair

An important step in developing safe software is to perform hazard analyses.

This dissertation presents an algorithm that, given a formal requirements specifica-

tion, automatically generates perturbations in the system, which it propagates for-

ward to find potential hazards. In order to achieve this goal, a primitive language

of causal dependency is defined. This language represents causal information be-

tween system variables directly. Additionally, a qualitative calculus of deviations

is presented for calculating normal and deviant behavior. A semi-automated and

fully-automated algorithm are defined in terms of these concepts.

xi

Chapter 1

Introduction

Major technological advances in the past century have facilitated inventions of

profound usefulness to humankind. We are able to produce more food, fight disease,

guard against natural disasters, and otherwise improve our quality of life. However,

the same inventions can also be the cause of diseases, disasters, and a degraded

quality of life. Bridges and buildings protect us from a harsh environment, but on

occasion they fall. Power plants of all varieties heat our homes in the winter and

give electricity to hospitals. But power plants, especially nuclear power plants, are

capable of large-scale destruction. Even a non-destructive black-out can potentially

contribute to the loss of lives. Such technologies as aviation, railway systems, nuclear

energy, and medical systems have had a steadily increasing impact on our safety and

welfare.

Much of the good and bad that technology can bring is due to an ever-increasing

complexity in the things we build. Even as we create tools at the limit of our un-

derstanding, we use them to design even more complicated systems. This trend is

not limited to advanced research; systems are routinely developed with increasing

complexity [a] . Systems have likewise increased steadily and significantly in sheer

size [31]. Size and complexity make the task of carefully investigating the hazards

to which a device or process may expose its environment more difficult [31]. This,

2

combined with the difficulty operators have in understanding hazards as they occur,

and especially in bringing them under control, compromises our ability to design safe

systems. As Charles Perrow observes:

In the last fifty years, ... and particularly in the last twenty-five, to

the usual cause of accidents-some component failure, which could be

prevented in the future-was added a new cause: interactive complexity

in the presence of tight coupling, producing a system accident [26].

The means of system control influences complexity. This is especially true of

automatic controllers; the potential “coupling” that Perrow mentions above is limited

if the control loop requires actions from a human operator. Historically, systems have

been controlled by mechanical or electrical means, although pneumatic, hydraulic,

and other devices are also commonly placed in the control loop. However, computers

and the software they contain are steadily replacing many of these conventional tech-

nologies. For example, in 1955 only ten percent of U.S. weapon systems contained

software. By 1981, more than 80 percent were computerized [15].

The reasons for computerization are many-fold, though not all of them are

sound. Computers can centralize process control, a common but debatable goal.

Software is relatively easy to modify, saving time and expense for the developers. It

is more precise and accurate than many conventional technologies. Computers per-

form millions of instructions per second, making software the fastest alternative to

perform complex tasks. Additionally, the combination of computer screen and flexible

operating modes makes the computer an attractive alternative to the “traditional op-

erator’s control panels, festooned with switches, buttons, and lamps.” Unfortunately,

the computer is also used as a marketing tool; “computerized” systems are often per-

ceived by industry, the government, and the general public as uniformly superior to

older technologies. Finally, computers are used to improve system safety.

3

The arguments given here comprise only a partial list of why computers are in-

creasingly prevalent in safety-critical systems, but it is strong argument that software

has a growing role in process control. However, software is certainly not without its

problems. First and foremost, it increases the very complexity it seeks to treat [20].

This is at least partly due to the aforementioned phenomenon of attempting to build

ever more complex systems as they become possible:

[Tlhe availability of enormous computing power at a low cost has led

to expanded use of digital computers in current applications and their

introduction into many new applications. Thus larger and more complex

systems are being designed. 141

The additional complexity is compounded by the nature of control software.

While conventional technologies exhibit typically continuous behaviors (consider, for

example, the sawtooth-shaped voltage of an overdriven capacitor or the deflection

of a stressed beam) software typically exhibits discrete reactions to its inputs. This

behavior can be dangerous since small perturbations of software inputs often result

in huge deviations in the outputs [l5, 261.' Additionally, the mathematics governing

programming languages are not as well understood, nor as easily calculated, as those

for analog systems [15].

Software engineering is a relatively new discipline, and there is very little his-

torical data on its use as compared to other fields of engineering. The products of

software have very unpredictable failure modes and rates compared to, say, metal-

lurgy, solid state electronics, or chemistry. Although more will be learned as software

engineering matures, efforts are exasperated by the wide range of possible behaviors

'Devices other than digital computers are certainly capable of such reactive behavior, e.g., a

switch connected to an explosives detonator. However, it is common-place for there to be a highly

non-linear relationship between software inputs and outputs.

4

enabled by software. Process-control software is especially difficult to characterize, as

designs generally result in “frontier software,” which tests the limits of programming

practice [24].

As we place more faith in computers, we become more vulnerable to their fail-

ures. Peter Neumann has compiled a list of over 400 cases in which computers con-

tributed to an accident or near-accident, some of which resulted in loss of life. Some

incidents are due to computer hardware failures. However, the majority are due to

some sort of software error [8]. Computers have contributed to an increasing number

of medical equipment recalls by the U.S. Food and Drug Administration. For exam-

ple, the number of recalls doubled between the years of 1982 and 1984 [13]. According

to Forrester and Morrison [8], failures are common in telephone switching software,

air traffic control systems, bank automated teller machines, electronic funds transfer

systems, industrial robots, and police computers.

One proposed solution to the problem of unsafe software is to remove the com-

puter from safety-critical systems altogether [8]. Similarly, the problem may some-

times be avoided by not building the system at all. These options should seriously be

considered; however, it is unrealistic to expect such rules to be applied categorically.

Computer software has many strengths, and sometimes it is the best alternative.

Regardless, computers will continue to be installed in safety-critical devices, and it

is the responsibility of software and system engineers to develop methods of making

software safer.

Unit, integration, and operational testing are the traditional ways to make soft-

ware more reliable. While testing is a necessary part of software development, in

general it is not sufficient for safety-critical software. Some operational tests cannot

be performed at all, e.g., inducing a meltdown in a nuclear reactor or firing missiles

5

at the United States to test the SDI system proposed in the 1980’s. Operational

conditions can be simulated during integration testing, but assumptions about the

environment may be wrong. Even if operational testing can be performed, there are

probably insufficient resources (including time) to obtain a high enough statistical

confidence in the software. For example, “ultra-reliable” software with an expected

failure rate of lo-’’ per hour would require approximately 114 years testing of 10,000

replicates [4]. About one-third of all software errors do not appear until after 5,000

operation years [20]. These figures do not include the added burden of testing in the

presence of failures of other components. It is difficult, if not impossible, to test the

software under all failure modes of the system. Thus, although testing is a necessary

part of protecting the system against unsafe software, other steps must be taken to

insure system safety.

1.1 Contribution of the dissertation

An important step in developing safe software is to perform hazard analyses.

Hazard analyses were first developed in the fields of nuclear power and weaponry,

aviation, and space technology [31]. As is shown in chapter 2, there are a variety

of hazard analysis procedures, but few can handle the complexities of software. In

particular, there is a lack of forward search methods for the analysis of software

requirements.

This dissertation presents an algorithm that, given a formal requirements spec-

ification, automatically generates perturbations in the system, which it propagates

forward to find potential hazards. The algorithm can be used to explore how de-

viations in the system can affect the controller’s behavior (and, via feedback, the

6

process’s state) and how deviations in the controller’s behavior can affect the pro-

cess. In order to achieve this goal, a primitive language of causal dependency will

be presented. Additionally, a framework is provided for calculating normal and de-

viant behavior at varying levels of detail. The algorithm is defined in terms of these

concepts.

1.2 Organization of the dissertation

This dissertation is organized into eight chapters, including this introduction.

Chapter 2 is a survey of existing hazard analysis procedures. The contributions of

this thesis are introduced in chapter 3. These contributions are then each treated in

detail in the following chapters. A new primitive language of causality is presented

in chapter 4. Chapter 5 provides a theoretical and practical framework for the de-

velopment of a calculus of deviations. These concepts form the basis for a forward

analysis algorithm developed in chapter 6. Chapter 7 presents examples. Chapter 8

summarizes the results and suggests new research areas for deviation analysis.

Chapter 2

Related Work

This chapter presents hazard analysis techniques that may be considered to ad-

dress software safety concerns. These methods are drawn from academic discourses in

software and system safety and from the state of practice in various industries. The

present survey is not intended to be complete with respect to these fields of knowl-

edge. Rather, evaluation of the methods is limited to applicability to requirements of

embedded-control software.

Given a system and an anticipated operating environment, hazard analysis is

the methodical investigation of the system, in part or as a whole, for potential haz-

ards. The concept of a hazard has been defined in a variety of ways. A traditional

engineering definition is the “potential for an uncontrolled transfer of energy having

the capacity to result in such undesired effects as death and injury.”[31] This defi-

nition precludes software from being in a hazardous state since it does not directly

involve an uncontrolled transfer of energy. Even if the definition is interpreted to

include indirect releases of energy, it excludes other dangerous situations. For exam-

ple, a non-operational patient monitoring system can lead to an accident in which no

energy is released, controlled or otherwise.

Another definition of hazard, suggested by [30], is a “peril, danger, or risk.”

While this captures the intuitive notion of a hazard, and certainly cannot be proven

7

8

to exclude any cases, it is too ambiguous to serve as a technical definition. Probably

the most useful definition is that of [16]:

a hazard is a state or set of conditions of a system ... that together

with other conditions in the environment of the system ... will lead to an

accident (loss event).

Thus, a hazard is a state of the system such that an accident is inevitable under certain

circumstances. Note that this definition differentiates between the system and its

environment. A useful working definition of the system is the controller and the part

of its environment over which it has some control [16] (thus dividing the controller’s

environment into “system” and “environment.”) For example, consider an autopilot

on an aircraft. The autopilot is the controller. It exercises at least partial control

over the entire aircraft, but not over anything external to the aircraft. Therefore, the

autopilot system is defined by the borders of the aircraft. The operating environment

is everything else that the aircraft encounters, including weather, other aircraft, the

ground, and radio signals. A potential hazard is a downward-drifting autopilot in an

airborne aircraft. Under some circumstances (e.g., over foggy, mountainous terrain)

an accident will occur. Note that the hazard is not present when the aircraft is

grounded. A hazard description must include the state of the system and must be

defined with respect to some (realistic) environmental conditions.

Hazard analyses may conceivably be performed at any stage of system develop-

ment. However, there is evidence that the earliest stages of development may benefit

most from a hazard analysis. In a study limited to the causes of safety-related software

errors [all, Lutz found that the errors that persist until integration and system test-

ing are usually due to difficulties with the software requirements. In particular, she

reports that “safety-related functional faults are more likely than non-safety-related

functional faults to be caused by requirements which have not been identified.” Thus,

9

Intruder-Status

Proximate-Traffic

-

-

-

4

I

I
I \ c

Figure 2.1: The TCAS I1 model of detected aircraft, written in RSML [6].

one may conclude that it is most beneficial and easiest to perform analysis early in

the design process.

A system may be represented in two complementary ways. A structural defini-

tion represents the system as a static hierarchy of elements. Structural relationships

are invariant with respect to time. For example, the RSML diagram in figure 2.1 con-

tains a variety of structural definitions. The states Other-Trafic, Proximate-Trafic,

Potential- Threat, and Threat are mutually exclusive. This relationship is independent

of time; if one state is active then the others must be inactive. The state Threat is

coexistent with its sub-states: Crossing, RIM-Send-Status, Range-Test, etc.. If one of

10

this group is active, then all of them are. Again, this relationship may be applied

without knowledge of past activity.

RSML states are boolean-active or inactive. Structural definitions may take

other mathematical forms. For example, the ideal gas law, PV = nRT, is invariant

with respect to time.

The dynamic behavior of a system may be represented as a mapping from state

to subsequent state. Dynamic definitions differ from structural definitions in that

the relationships depend on time. The transitions in the Intruder-Status example

transitions are dynamic definitions. For example, if state Potential-Threat is active,

then the transition to Other-Trufic defines how Intruder-Status can be in that state

in the next instant. (Note that the conditions for taking the transition are not shown

in the diagram.)

Most hazard analysis techniques involve a search of some sort. The type of

search may be categorized with respect to the direction of analysis. “Forward”

searches are those in which the analyst traces from cause to effect. If one conceives

of the system as a function, then a forward search works from domain to range. In

contrast, “backward” searches work from range to domain, thus representing a trace

of the function’s inverse relation.

The techniques presented in this chapter are divided into backward searches,

forward searches, and combined approaches.

11

2.1 Backward Search Techniques

2.1.1 State Machine Hazard Analysis

State Machine Hazard Analysis (SMHA) is an algorithmic procedure developed

specifically for the analysis of software requirements [18], although the method can

be adapted to any stage of design [16]. SMHA was originally defined for a timed

Petri net language [18]. It has been adapted to Statecharts [23, 241 and an effort is

underway to adapt it to RSML. The algorithm takes as input a model of the system

described in a formal, state-based language. The algorithm also requires the system

state space to be partitioned into complementary “hazardous ” and “safe” states.

The algorithm also supports analysis of safety in the presence of failures if the formal-

language supports the specification of “failure” transitions (described below).

The algorithm begins with a set of hazardous states that the analyst wishes

to inspect. It chooses one and does a search backward along all paths leading to

that state. The search terminates at a “critical” state-a state that is safe and leads

directly to another safe state (other than the one that is being followed backward, if it

happens to be safe.) The critical state is the last point at which the system can avoid

a hazard. The requirements must be changed to eliminate the undesired transition

from the critical state. The algorithm then picks another hazardous state to inspect.

Note that the algorithm is conservative in that it requires the removal of bad

transitions at all critical states, whether or not the critical state is reachable from

the initial state. The analyst is forced to remove hazardous states that may not

be reachable, but the added burden is probably far outweighed by the savings in

analysis efforts in determining whether a critical state is reachable. Thus, SMHA

12

is a labor-efficient method of hazard analysis. Additionally, designing in these extra

safety constraints provides a measure of protection against implementation errors and

hardware failures.

One consideration of the algorithm is whether any critical states could lead

eventually only to hazardous states, since the safe alternative may itself lead only

to hazardous states. This problem is avoided by having the hazardous transitions

removed as they are found. This is accomplished by adding the transition to a list

for the analyst to inspect and removing it for the reachability graph. In this way, the

next search to reach a particular critical state has one less transition to choose from.

By the time the last hazardous state is analyzed, that “critical” state is no longer

critical, because all transitions but the one under inspection have been eliminated

from the reachability graph; the search continues backward to the new critical state.

Thus the algorithm facilitates the removal of the hazards under inspection.

SMHA must be performed after the hazard identification phase since it takes

the hazardous states as input. Like any backward analysis method, it is most suited

for a relatively small number of hazardous states [18].

2.1.2 Fault Tree Analysis

Fault tree analysis (FTA) was developed by Bell Laboratories in 1961 for the

Minuteman missile project [14]. The analysis begins with the identification of some

undesired event, called the “top event.” The analyst determines the conditions that

could comprise the top event and places them in a graphical layout similar to that

shown in figure 2.2. If a single condition in a group of conditions is sufficient to cause

13
Sustained High

not sound

Figure 2.2: Fault tree.

the top event, then the conditions are all connected by an OR gate; an AND gate is

used if all conditions must be true for the top event to occur.

Treating each condition as a new top event, the analyst proceeds successively

to build a tree in which causality can be traced from the leaves to the root. The

tree is finished when all the leaves are “primal events,” which are considered to occur

stochastically or are otherwise resistant to a logical analysis. The decision of when

to stop is at the discretion of the analyst [16], subject to the information available.

Fault trees may be used qualitatively to determine whether or how a particular

top event is possible by inspecting “cut sets.” A cut set is a set of primal events

such that all of the events are necessary and sufficient to cause the top event [14].

Algorithms exist to produce a fault tree’s cut sets automatically. Thus the fault tree

is very useful in determining the causative relationship between primal events and

the top event [14].

FTA is traditionally a probabilistic methodology [7]. A quantitative analysis

can be performed if probabilities are provided for the primal events, although the

14

analysis is complicated by non-independent events. However, the validity of proba-

bilistic methods has been called into question. Actual rates of failure in practice have

exceeded calculated values by several orders of magnitude [27]. Probability densities

are usually ignored [30]. Consequently, no statistical confidence can be attached to

the top event’s probability, severely restricting its usefulness. Especially with respect

to software, numbers can be very difficult to obtain. In order to complete a prob-

abilistic analysis, the analyst must assign arbitrary values for software failures. In

light of this dilemma, the FAA specifically excludes software from any quantitative

analysis requirements [2O].

FTA is used extensively in safety programs in the nuclear power and weapons

industries. It has also gained widespread acceptance in other industries.’

Although FTA has proven useful in practice, manually-constructed fault trees

suffer from several weaknesses. They can require much time and effort to construct

[5 , 9, 14, 331. Also, they are subject to logical errors and omissions [14]. Because of

this, and because FTA ((is an art, rather than a science” [33], different analysts often

produce fault trees that are inconsistent with each other [5, 15, 331.

Several algorithms have been developed to alleviate problems with the manual

construction of fault trees. One family of algorithms is based on the technique of

“mini-fault trees.” The other family of algorithms uses “digraphs.”

‘A variation of FTA is the Management Oversight and Risk Tree (MORT). MORT is guided by a

1500-item questionnaire related to system management, human behavior, and environmental factors

[16]. These issues are outside the scope of this dissertation.

15

event in
if-then-else

cond. true,
then-part

causes event

cond. false,
else-part

causes event

1
cond. true

if-then-else

cond. false
prior to else-part prior to then-part

causes event if-then-else causesevent

Figure 2.3: Mini-fault tree for IF-THEN-ELSE. Taken from [17].

Mini-Fault Trees

The term “mini-fault tree” was coined by Taylor and the concept was developed

independently by Taylor and by Leveson in the early 1980’s. A mini-fault tree is a fault

tree fragment for a particular language construct, such as a programming language

statement (see figure 2.3 for an example). The top node of a mini-fault tree is an

event to expand. The leaves of a mini-fault tree are events or conditions that must

be investigated in order to show that the top node can or cannot occur. For each

leaf, the analyst has the option of attaching another mini-fault tree or expanding it

by hand.

In practice mini-fault trees are usually equivalent to the application of weakest

pre-condition rules. The weakest precondition wp(S, R) is defined as the weakest

logical statement about the state in which execution of statement S results in state

16

OUTPUT
STATES

STATE 1 STATE 3 STATE 2
v3

EVENT 1
w
&

EVENT4 E
EVENT3 s
EVENT2

>

f
OUTPUT

EVENT 3 STATE 2

Figure 2.4: Mini-fault tree constructed from standard component transition table.
The output is either an event or a new state.

R. The root node of a mini-fault tree is equivalent to state R occurring as a result

of statement S . The remaining nodes define the weakest precondition. For example,

the mini-fault tree in figure 2.3 is equivalent to the following weakest pre-condition

rule:

wp(if-then-else, event) = (cond. A wp(then-part, event)) V
(l cond . A wp(e1se-part, event))

Mini-fault tree analysis methods have been outlined for both hardware and

software. Taylor describes an algorithm based on a process flow sheet of the plant,

such as a piping and instrumentation diagram [33] . The system is assumed to be a set

of standard components, such as valves and pumps, inter-connected by ports. Each

port has process variables defined for it, such as pressure and temperature. A state

transition table is defined for each standard component mapping an input variable

event (“pressure becomes high”) and a component state to a new state or output

event. The mini-fault trees are constructed from these tables. See figure 2.4 for an

example.

Leveson and Harvey [17] define software fault tree analysis (SFTA). The goal

of SFTA is either to prove that the software cannot cause a particular event or to

show the circumstances under which the the event can occur. A standard fault tree

17

if (A > B) t hen
X := F (X)

bby,.,,t. 1 > 100 cause

else
x := 10; A
1
A > B, X:= F(X

A > B prior to
if-then-else

I I

I

X := F(X) causes I X>lOo
I I

A <= B, X:= 10
causes X > 100

A <= B prior to
if-then-else

X := 10 causes

I I I

Figure 2.5: An instantiated mini-fault tree (taken from [17].)

is constructed until a leaf node involves an assertion on the result of a particular

software statement. The analysis tool then attaches the program statement’s mini-

fault tree onto the fault tree at the appropriate place, substituting appropriate values

(see figure 2.5 for an example.)

Software fault tree analysis is semi-automated. Leaves of a mini-fault tree that

reference other statements can have their mini-fault trees appended (e.g., (‘then-part

causes event” and ‘(else-part causes event” in figure 2.3.) This activity is equivalent

to the expansion of wp(S, R) terms in a weakest pre-condition definition.

The SFTA templates have been defined for the programming language Ada,

and hence for most algorithmic programming language statements. It has been used

extensively, including for shutdown software at Ontario Hydro nuclear reactor [3] and

the University of California, Berkeley FIREWHEEL spacecraft [17]. The methodol-

ogy has also been extended to the Statecharts specification language [23,24], showing

18

+1 REVERSED VALVE ACTION

0 VALVE STUCK

Figure 2.6: A simple digraph.

the applicability of mini-fault tree analysis, and especially SFTA, to the analysis of

software requirements.

Digraphs

The other method of automating fault tree analysis is the use of directed graphs,

referred to as digraphs in the literature. Digraphs are used in failure analysis to con-

struct a model of failure propagation. Nodes in a digraph represent process variables.

The directed edges represent lines of influence between variables. Figure 2.6 illustrates

a simple digraph.

The basic procedure for producing a fault-tree using a digraph is to first convert

the system description into a digraph and then traverse the digraph backward (ie.,

in the opposite direction of the edges.) The conversion of specification to digraph can

be automated if standard components are used [14]. For example, figure 2.7(a) shows

a simple pipe-and-process diagram. Figure 2.7(b) is a description of the standard

failure behavior of one of its components, a valve. Figure 2.7(c) shows a portion of

the resulting digraph based on the failure behavior in (b).

Digraphs can be augmented by specifying the type of influence a failed variable

can have on another variable. Lapp and Powers [14] allow the set of values {-lo,

- 1 , 0, +1, +lo} to appear on digraph edges. These values are simplifications of

the partial derivative of the destination variable’s value with respect to the source

19

COOLING WATER
(OUTLET)

3 TEMPERATURE 4
SENSOR -m03

(HOT) (TO REACTOR)
HEAT~EXCHANGER

I 8
16
I

I I

T1 I I +1

REVERSED
VALVE P11 110 1 1

ACTION:

+10
REVERSED VALVE

ACTION

Figure 2.7: (a) A simple pipe-and-process diagram. (b) Failure description of a valve.
(c) The digraph resulting from applying the failure description (b) to figure (a).

20

variable. A value of fl indicates that a failure in one variable causes another to

deviate from normal value by a moderate amount. A value of f10 indicates that a

very large deviation results. A value of 0 indicates that the source variable has lost

influence over the controlled variable. The sign of the edge represents the direction

of deviation in the controlled variable. The Lapp and Powers method is an example

of the use of qualitative mathematics, which is discussed in chapter 5 .

A digraph can include multiple edges between two nodes. In this case, all but

one of the edges are qualified with failure conditions. The condition may be considered

external to the model (as all conditions are in the Lapp and Powers version) or it

may be a predicate of other variable values, as in the logic flowgraph [9].

The basic algorithm for constructing a fault tree begins with an assumed failure

in one of the process variables (ie., at one of the nodes in the digraph.) If the digraph

is augmented with values, then a specific failure is identified (such as a value of +lo.)

This is the top event of the fault tree. The algorithm inspects all edges leading into

the digraph node and constructs an OR gate under the top event consisting of all

the variable failures that could lead to the top event. Then each of the failures is

inspected in turn. If several failures must act in conjunction to produce the top event,

then those failures are placed under an AND gate.

The algorithm must consider cancelling effects by other variables. For example,

if an extremely high value for variable A can cancel variable B’s effect on variable C,

then a treatment of variable B’s influence must include the negation of the possible

influence of variable A:

21

Y Variable C Fails

1 Variable B Fails I I extremely high
A is not

Digraphs have not been adapted successfully to software. In particular, the

use of (constant-valued) partial derivatives as a basis for influence is inadequate

for expressing the often complex relationship between software inputs and outputs.

However, the use of qualitative values for variable deviations appears to be a promis-

ing approach, as will be explained in subsequent chapters.

With the exception of logic flowgraphs, the digraph models do not incorporate

binary relationships between variables.

2.2 Forward Search Techniques

Forward search techniques focus on whether or how a normal or failure state

can cause a hazard.

2.2.1 Failure Modes, Effects, and Criticality Analysis

Failure modes and effects analysis (FMEA) is employed to determine the effects

of single failures on a system’s performance [7] (contrasted with fault tree analysis, for

example, which allows the consideration of multiple failures.) FMEA was developed

22

Potential Risk
Part name Failure Mode Potential effect of failure mode Priority

Positive input Open circuit No screenwash 108
wire to pump Short to ground This might (should) blow a fuse 72

Short to positive The pump will be permanently on. 27
The water will quickly run out,
resulting in no screenwash

Input to CPU Open circuit No screenwash 108
Short to ground The pump will be permanently on. 54

The water will quickly run out,
resulting in no screenwash

switch which would result in no
screenwash.

Short to positive This might blow the tracking on the 54

Screenwash Stalled pump The pump has a stall current of 72
Pump 10 A. The fuse is rated at 5 A.

The fuse will therefore blow.
Negative input Open circuit No screenwash 108

to relay Short to ground The pump will be permanently on. 64
The water will quickly run out,
resulting in no screenwash

Darlington output
Short to positive This would blow the CPU 54

Figure 2.8: Example of a Failure Modes, Effects, and Criticality Analysis (FMECA)
table. The second column lists failures modes, the third column failure effects, and
the last column lists criticality ratings. Taken from [as].

as an aid to reliability analysis, but a variant known as Failure Modes, Effects and

Criticality analysis (FMECA) has been used to identify potential hazards [16].

FMEA is basically an ad-hoc procedure based on a tabular form (see figure 2.8

for an example.) The first step of the procedure is to list all of the components of the

system. Next the analyst lists all of the possible failure modes and failure rates for

each component. All these data are entered into the FMEA forms. The analyst then

determines and describes all the possible effects for each failure [16]. For a FMECA

this information includes hazard severity, the likelihood of detection, and frequency

of occurrence. If a failure rate is sufficiently high and the effect is sufficiently serious,

23

then the system must be redesigned [as]. A search for failure causes is not a part of

the FMEA procedure [as].

FMEA has been used extensively and is well-understood by industry [7]. It is

most appropriate as a detailed analysis of a single, standard component [16].

FMEA is described as a slow and tedious procedure [7, 25, 281. There are no

tools to lessen the analyst’s burden of investigating many similar effects, and there

has been little research into the automation of FMEA [as]. The amount of labor

involved causes FMEA’s to be expensive, since they must be performed by experts

[25]. In particular, the method leaves to the analyst the burden of investigating many

similar failure patterns [28] (or recognizing that such patterns exist.)

Another weakness of FMEA is its concentration on single failures. In contrast

to methods like HAZOP, they do not treat hazards arising in component interfaces

[16]. Finally, FMEA’s lack of structure with respect to identifying failure modes or

searching for effects is problematic for a software hazard analysis. As discussed in

chapter 1, control software behavior is often complex and disjointed. Analysts can be

overwhelmed by the multitude of variable interactions. FMEA does not provide any

assistance in structuring a search for failure effects.

2.2.2 Event Tree Analysis

Event Tree Analysis (ETA) was developed as a hazard analysis method for the

nuclear industry. The basic structure of ETA is a decision tree, called an event tree.

Each node in an event tree represents the occurrence or absence of an event, usually

a failure. The event tree is constrained in two ways. All nodes that are equidistant

from the root node address the same event. Also, time must proceed monotonically

24

Initiating
event

Yes - - 7 No accident
* * e - /

/ / e

Yes e yes /
e e -

Yes Yes

Yes ~

no Small loss-of- no
, /coolant accldent

0
0

0
0

no no , no 0

J - - - - - - - - - -
no

- - - - - - - - - - - severe accident
Possibility of mode

+ 8 secs + 12 secs + 2 mins + 5 mins

z d pump boiler &ed (Scram)
Boiler Standb Reactor trip Primary circuit Primary circuit ECCS

relief valve relief valve start-up
ECCS not shut Outcome of
down by accident
operators pump start-up open reseats on

falling pressure

Figure 2.9: An event tree, taken from [16].

down the tree, L e . , an event node cannot occur before its parent. Figure 2.9 shows

an example event tree.

ETA is most commonly used for probabilistic analysis. Each event is assigned

a numeric probability. The probability of a hazard occurring via a particular path

is the product of all of the event probabilities along that path, assuming the events

are independent. The total probability of a particular hazard occurring is the sum of

each path leading to that hazard. In the example in figure 2.9, a boiler feed pump trip

may lead to a severe accident if the standby boiler feed pump fails to start and the

reactor fails to trip or if the standby boiler feed fails to start, the reactor trips and the

primary circuit relief valve does not open. Given the following fictitious probabilities

for each event

Standby boiler feed pump starts = P (u) = .99
Reactor trip (Scram) = P(b) = .98

Primary circuit relief valve open = P(c) = .97

the probability of a severe accident is

= [I - P(a)] [l - q b)] + [l - P(a)]P(b)[l - P(c)]

= (.01)(.02) + (.01)(.98)(.03)

25

A occurs, then B occurs

A occurs, B fails to occur

B occurs, then A occurs

no Both A and B fail to occur
A B A

Figure 2.10: An event tree for two unordered events A and B.

= 2.00 X 1 0 - ~ + 2.94 X

This equation assumes, of course, that P (u) , P(b) , and P (c) are independent.

ETA is useful for presenting in detail the possible scenarios that can transpire

in the event of multiple failures. However, the thoroughness comes at great cost. The

trees can require quite a bit of space on the page, due to the need to list all events

across the bottom of the page. The list of events can also grow quite long if events

do not have a strict sequence. If events A and B may occur as AB or BA, then the

event tree must have ABA at the bottom of the page to accomodate the alternative

sequences (see figure 2.10.) Both of these problems are mitigated by separating

the tree into sub-trees, each of which can have its own list of relevent events. The

relationship between a sequence of events and the resulting failure is not explicitly

shown. ETA is limited to a single initiating event. Finally, and most seriously,

the probabilistic analysis becomes quite complicated if events are not independent.

Unfortunately, it is difficult to prove (and dangerous to assume) that two events are

independent.

26

ETA is appropriate only at the detailed design stage and afterward [16]. There

do not appear to be any automated methods for constructing an event tree, although

ETA appears to lend itself to automation as well as manual analysis.

2.3 Combined Techniques

Some hazard analysis techniques combine forward and backward searches by

beginning with a scenario, searching backward to find ways in which the scenario can

occur, and searching forward to determine whether the scenario leads to a hazard.

Methods that employ such a strategy may be considered “exploratory” since neither

hazards nor their causes are necessarily known beforehand.

2.3.1 Cause-Consequence Analysis

Cause-consequence analysis (CCA) is a semi-automated hazard analysis tech-

nique that combines forward and backward searches. The source of analysis is a

block diagram of the system, where each block represents a functional unit and a line

between blocks represents the output of one block serving as input to the other.

CCA produces a cause-consequence diagram based on the system description.

Figure 2.11 shows an example of a cause-consequence diagram. An event box describes

a change in the system state. A decision boa: shows alternative effects of an event,

depending on a condition box or condition tree. Condition trees resemble fault trees,

except that the top event is the condition that makes the decision box true. A

condition box is a single-node condition tree. The notation also provides for inhibitory

relationships between events. This symbol is useful to show mutual exclusion, i.e., to

27

Initial Event Falls
I I

Condition Box

Decision Box

Event Description N

Event Box I Becomes Ground I
I Wet I

Figure 2.11: A cause-consequence diagram, taken from [32]

show that an event can cause exactly one consequent event of multiple alternatives.

All the symbols except for the condition boxes and trees form a decision graph.

The algorithm begins with an initial event. It traces the event backward until

events can be considered spontaneous. The procedure is essentially the same as con-

structing a fault tree, suggesting that the algorithms described earlier are applicable

here. The algorithm then traces forward to find the effects, constructing the decision

graph.

As a manual technique, CCA is a systematic analysis of system block diagrams

that results in a notation in which sequence is shown explicitly [32]. As a semi-

automated technique, it has several shortcomings. The analyst must decide when

a particular search path will not lead to a hazard. Also, contrasted with HAZOP

(presented in the next section) the algorithm does not automatically identify failure

modes. This lack is not an important flaw in a highly heterogeneous process, where

behavior is not easily specified anyway, but CCA is not as useful for software process

control, where system behavior is already abstracted and specified. Thus, it would

be much more helpful to the analyst for the analysis procedure to postulate failure

28

modes automatically, rather than relying on expert input. More seriously, CCA

cannot represent feedback directly. All components involved in a feedback loop must

be collected into a single component for purposes of analysis. Finally, the diagrams

can become “unwieldy.” [161

2.3.2 Hazard and Operability Study

Hazard and operability analysis (HAZOP) is a semi-formal review procedure

developed for the chemical industry to cope with potential hazards and other dis-

turbances in operations. The goal of a HAZOP is to identify operational deviations

from intended performance and study their impact on the system’s safety [31]. The

HAZOP procedure is carried out by a HAZOP expert (the leader) and a team of

system experts. The leader poses a battery of questions to the experts in an attempt

to elicit potential system hazards. A HAZOP is basically an exploratory analysis, as

neither potential faults nor hazards have been identified beforehand [22]. Rather, the

HAZOP leader hypothesizes an abnormal condition and analysis proceeds in both

directions determining whether and how the condition is possible and what effects it

has on the system.

The analysis follows a systems theory model of accidents [16], in that it concen-

trates on the hazards that can result from component interaction, Le., accidents are

caused by deviations in component behavior. The basic document that a HAZOP

draws from is a pipe-and-process diagram. Each pipe has certain process parameters,

such as pressure, temperature, and chemical composition. A list of guide words is

applied to each parameter to yield an inventory of deviations from normal or expected

behavior. See table 2.1 for a typical list of guide words. An example of a deviation

is the guide word “MORE” applied to pipe A’s temperature. The analysts are asked

29

NONE Intended result is not achieved.
MORE Too much of a particular parameter.
LESS Not enough of a parameter.
AS WELL AS Unintended activity or material.
PART OF Parts of the parameter are missing.
REVERSE Parameter’s value is opposite of intended value.
OTHER THAN Something other than the intended result happens.

Table 2.1: HAZOP guide words (adapted from [16].)

the two questions “What is the effect of pipe A’s temperature being too high?” and

“How can pipe A’s temperature get too high?” Since the questions center around

pipe parameters, HAZOP has been characterized as a “flow-based” analysis [22].

A deviation that can occur and can lead to a hazard is a meaningful deviation

[22]. Often, this definition is modified to be probabilistic, i e . , a deviation that can

occur with sufficiently high probability and can lead to a hazard with sufficiently high

probability.

HAZOP has been used extensively in the chemical, nuclear and food processing

industries [22]. The success of HAZOP may be attributed to several factors. The

hypothetical nature of HAZOP questions encourages creative thinking [16]. Also,

HAZOP studies are typically performed by a team of analysts, led by a HAZOP ex-

pert, resulting in a potentially very useful exchange of information and opinions. As a

result, the HAZOP procedure is almost uniquely capable of systematically identifying

new hazards in a proposed design.

Since the procedure focuses on flow at the exclusion of component functionality,

a preliminary HAZOP can be performed early in system design, though the results

will likely be quite preliminary.

HAZOP has several limitations. It is time- and labor-intensive [16], in large

part due to its reliance on group discussions. HAZOP analyzes causes and effects

30

OMISSION Intended output is missing.
COMMISSION Unintended output is generated.
EARLY Output is generated sooner than intended.
LATE Output is generated later than intended.
COARSE INCORRECT Output’s value is wrong.
SUBTLE INCORRECT Output’s value is wrong, but cannot be detected.

Table 2.2: MASCOT guide words.

with respect to deviations from expected behavior, but it does not analyze whether

the design, under normal operating conditions, yields expected behavior or if the

expected behavior is what is desired.

Since HAZOP is a flow-based analysis, deviations that originate from within

components are not inspected directly. Rather, a deviation within a component (as

well as a human error or other environmental perturbation) is assumed to be mani-

fested as a disturbed flow [31]. This assumption may be problematic both for manual

and automated procedures. A basic strength of the manual HAZOP is the way in

which it engenders investigative thought processes. A purely flow-oriented approach

may cause the analyst to neglect component-related malfunctions and hazards in favor

of pipe-related causes and effects. Thus it may help a manual analysis to hypothesize

component deviations.

Software HAZOP

Since a HAZOP concentrates on physical properties of the system [31], it is

not directly applicable to analyzing computer input and output. McDermid and

Pumfrey [22] outline a manual technique for adapting HAZOP to software design. The

procedure taken is essentially identical to a standard HAZOP, except that the pipe-

and-process diagram and guide words are changed. The pipe-and-process diagram

is replaced by a MASCOT diagram. MASCOT encodes a structural model of the

31

software design, essentially a data-flow language. The guide words chosen by the

authors are listed in table 2.2.

The McDermid and Pumfrey method provides a systematic way to perform a

manual HAZOP of software design. The method has been been applied successfully

to the analysis of a “moderate size” aerospace system. The authors intend to adapt

the method to HOOD and Statecharts.

A problem with developing an automated technique based on MASCOT is that

only data flow (or “information flow” in the authors’ terminology) is subjected to

analysis. While this strategy is faithful to the standard HAZOP procedure, it pre-

cludes an analysis based on deviations in system state other than that of data paths.

This weakness does not limit the technique’s ability to find plausible hazards, since

every deviation of a component’s state either causes a deviation of an output pa-

rameter in the data-flow diagram or else it is not meaningful. Rather, the inclusion

of state-based deviations is important because of the exploratory nature of HAZOP.

The analysts wish to identify weaknesses in the design, and an analysis that stops at

the border of each component does not provide the necessary detail.

Another difficulty in developing an automated technique based on McDermid

and Pumfrey’s list is the guide word “subtle incorrect”. Whereas it is trivial to

generate predicates and test cases based on a parameter being “high” (e.g., “T >

T,,,” and “T = T,,,+l,” respectively), a deviation that is defined to be an erroneous

value that “cannot be detected” defies elaboration.

A further difficulty in developing an automated procedure based on MASCOT

guide words is the generality of the guide word “COARSE INCORRECT”. This

single guide word replaces several standard HAZOP guide words, such as “HIGH”

and “LOW”. Given that a HAZOP analysis is exploratory, the guide words should

32

Method Direction Stages Automated?
FTA Backward SRI Y Stages:
SMHA Backward R Y S - System requirements
FMECA Forward S N R - Software requirements
ETA Forward S N D - Design
CCA Combined S N I - Implementation
HAZOP Combined SD N

Table 2.3: Summary of hazard analysis methods

tend toward specificity in guiding the expert or the computer program. Chapter 5

presents a procedure for developing guide words for specific types of parameters.

2.4 Summary

In summary, there are existing methods for performing automated backward-

search hazard analysis of process-control software requirements. In contrast, the

analyst does not have a tool to perform a forward search any way but manually (refer

to figure 2.3.) The remaining chapters present a theoretical yet practical solution to

this problem.

Chapter 3

Deviation Analysis

This chapter presents an introduction to a new hazard analysis method called

deviation analysis. Deviation analysis uses a forward search to find a causal path

from a given initial deviation to a hazardous deviation. Thus, the goal is very similar

to that of HAZOP. However, due to the need for the analysis to be at least semi-

automated and for the analysis to be applicable to software, the technique is more

detailed and must be defined formally. This chapter presents an informal overview of

deviation analysis in order to place into context the more rigorous treatment provided

in subsequent chapters.

The TCAS I1 avionics system is used here as an example. The TCAS I1 sys-

tem consists of a computer, radio communication equipment, and pilot switches and

displays. TCAS I1 has two parts: a surveillance system and the collision avoidance

system (CAS). For each aircraft in the vicinity, CAS determines the aircraft’s distance

from itself at their closest point of approach (CPA). If the aircraft will be too close,

then CAS issues a resolution advisory, or RA. An RA is a command to the pilot (via

aural alarms and the TCAS display) to take an evasive maneuver, by causing the

aircraft to climb, descend, or hold course. Acceptable climb and descend rates are

delimited on the TCAS display.

33

34

Interface:
Source: Mode-S-Transponder
Destination: CAS
Trigger Event: REcEIvE(0wn-Update-Message(0wn-Mode-S-ID, Pilot-Selected-SL))
Assignment(s):

Own-Mode-S-AddressV_37 = Own-Mode-S-ID
Mode-SelectorV-s4 = Pilot-Selected-SL

Output Action: None.
Description: If an update message is received from own transponder, then update the
applicable variables.
MOPS Ref.: Periodic-data-processing (p. 3-P23)

Figure 3.1: Receipt of Mode S Address from the Mode S transponder.

Each operational TCAS I1 system has a unique identifier called the Mode S

address, which TCAS I1 obtains from a radio communication device called the Mode S

transponder. Figure 3.1 shows the RSML specification of how the Mode S address

is received by CAS from the Mode S transponder. The Mode S address and input

from the pilot are contained in the Own-Update-Message. The values of these fields

are assigned to two input variables. (Input variables represent information that has

been received from other components.)

One of the key-words of HAZOP is “TOO HIGH.” Suppose that the analyst

wishes to investigate the potential deviations resulting from field Own-Mode-S-ID

being too high (e.g. , an improperly encoded message.) Inspecting figure 3.1 reveals

immediately that TCAS’s model of the Mode S address, Own-Mode-S-Address, is too

high as a result.

The next question the analyst asks is, what system variables does Own-Mode-S-

Address influence? This variable is used directly in three CAS definitions. Figure 3.2

shows the definition of an output interface in which TCAS I1 transmits a radio-

frequency message, communicating important maneuvering information to a danger-

ously close TCAS-equipped aircraft. Certain conditions must hold in order for the

35

high Mode S address to be sent to the other aircraft. The trigger event Need-To-

Send-Resolution-Message must be present and the guarding condition must be true.

Given these circumstances, TCAS I1 will transmit a resolution message with a high

Mode S address for itself. The analyst may then proceed to track the deviation into

the receiving aircraft. However, at this point it is clear to a TCAS I1 expert that the

approaching aircraft will not correctly identify the message’s origin, thus disrupting

safety-critical communication.

A second definition that directly uses Own-Mode-S-Address is the macro defi-

nition RA-Display-Delay, shown in figure 3.3. This definition addresses the problem

of incompatible evasive maneuvers. If two aircraft are equipped with TCAS I1 units

then it is likely that they will both recognize a hazardous situation and attempt to

maneuver the aircraft to the same altitude, thus continuing the hazardous situation.

The solution is to have one of the units delay issuing an advisory until the other has

chosen a direction. Specifically, if the other aircraft also has an operational TCAS I1

unit (Other-Capability) and its maneuvering intent is not known (Other-VRC), then

the solution is for the TCAS I1 unit to delay displaying its RA for a certain number

of seconds if it has a higher Mode S address.

If the correct value of Own-Mode-S-Address is greater than 0ther-Mode-S-

Address, then a value that is too high does not change the result. However, if the

correct value is less than Other-Mode-S-Address, then a too-high value may cause

RA-Display-Delay to be erroneously true. Propagating the deviation thus requires

three assumptions:

0 The other aircraft has an operational TCAS I1 unit.

0 No intent (RA) has been received from the other aircraft.

36

Interface:
Source: CAS
Destination: TCAS-Transmitter
Trigger Event: Need-To-Send-Resolution-Message,-~~o
Condition:

there exists i :

OR
A
N
D

Other-Aircraft,-lol [i] in state Waiting-For-Reply
Some Other-Aircraft,-lol in state Waiting-For-Reply
Other-Aircraft,-lol Til in state Waitinn-to-Coordinate

Assignment(s): None
Output Action:

Sent-RMe-280[i]
S~~~(Reso~ution-Message(Other-Aircraft[i] D Other-Mode-S-Addressv-107,

Own-Mode-S-AddressV-37, Multi-Aircraft-Flag,
cvcf-232(i), VRCf-264(i),
VSBf-265(cvcf-232(i), VRCf-264(;))))

Description: If the condition is satified, then an aircraft model i that satisfies the con-
dition is selected, and a resolution message is sent to the corresponding aircraft. The first
column causes i to match with an intruder with which own aircraft has already initiated
a coordination sequence. The second column causes i to match with an intruder that has
yet to be coordinated with (note that it can only match if own aircraft is not currently
coordinating with some other aircraft).
MOPS Ref.: Sendlnitial-Intent (p. 6-P57), Complete-SendJntent (p. 6-P59).

Figure 3.2: Definition of interface between CAS and the TCAS transmitter for the res-
olution message command. The table is called an “AND/OR” table. The AND/OR
table must be true in order for the assignments to be made. The AND/OR table is
true if one of the columns is true. A column is true if each of its rows is true. (‘T’ =
true, ‘F’ = false, ‘ e ’ = don’t care.)

37

Macro: RA-Display-Delay
Definition:

A
Other-VRC,_los = No-Intent N
Other-Capabilityv-lll = TCAS-TA/RA

Own-Mode-S-Addressv_37 > Other-Mode-S-Addressv_107

Description: Threat is TCAS equipped and no intent has been received and own
Mode-S address is higher than threat’s.
MOPS Ref.: RESOLUTION~AND_COORDINATION.TCAS~threat_processing.

Figure 3.3: Macro RA-Display-Delay.

0 The magnitude of the deviation is greater than the difference in Mode S address

values.

Given these assumptions, RA-Display-Delay will be true when it should be false.

The macro RA-Display-Delay is referenced in five places in the TCAS I1 spec-

ification. All five references are transition definitions. The transitions are shown in

figure 2.1, a state diagram representing TCAS’s possible classifications of other air-

craft. Of interest is the state Threat, which is the classification given to an aircraft

that appears to be approximately on a collision course with the TCAS unit’s own

aircraft. Within this state, the RA-Display-Delay macro is used to define the transi-

tions of Advisory, accounting for three of the five references, and the transitions into

Strength-Not-Selected, accounting for the remaining two references.

Transition(s): 0 -+ ITA/RA-Delayl
Location: Threat D Advisory,-lg6
Trigger Event: N/A
Condition:

I RA-Display-Delaym-2l6 I
Output Action: None
Description: Delay this RA if the other aircraft has a higher Mode S address.
MOPS Ref.: See Intruder-Status macro section.

Figure 3.4: Transition to TA/RA-Delay upon first entering state Threat.

38

Transition(s): 0 lRAl
Location: Threat D Advisory,-136
Trigger Event: N/A
Condition:

I RA-Display-Delay,al6 I
Output Action: None
Description: Proceed to display RA if own address has precedence.
MOPS Ref.: See Intruder-Status macro section.

Figure 3.5: Transition to R A upon first entering state Threat.

Advisory indicates whether an RA has been issued against the threatening air-

craft. If Advisory is in state TA/RA-Delay then TCAS is waiting for the threat to

communicate its intended RA before taking action. If in state RA, then an RA has

been issued to the pilot and transmitted to the TCAS-equipped threat.

Figure 3.4 shows the condition for initially entering TA/RA-Delay. If RA-

Display-Delay is erroneously true, then Advisory will likewise enter TA/RA-Delay

erroneously. In order to propagate the deviation, the analyst must assume that

Intruder-Status was not previously in state Threat. This assumption is not inconsis-

tent with the prior assumptions for RA-Display-Display, so the deviation is possible.

Figure 3.5 shows the condition for initially entering RA. If RA-Display-Delay is

erroneously true (as we are assuming it is), then the guarding condition for Advisory

will be false, and the state R A will not be entered. Just as with the above transition,

the analysis must assume that Intruder-Status was not previously in state Threat in

order to propagate the deviation.

Continuing with the erroneously entered TA/RA-Delay: Figure 3.6 shows the

definition of the transition from TA/RA-Delay to RA. If RA-Display-Delay is de-

viantly true, then the first column of the AND/OR table is incorrectly false. However,

39

Transition(s): 1-1 --+

Location: Threat D Advisory,-136
Trigger Event: Air-Status-Evaluated-Evente-279
Condition:

A
N

t 2 t(entered TA/RA-DelayS-l36) + 2 s(WTTHR) D
RA-Di~play-Delay,~~~

Output Action: End-RA-Deferral-Evente-279
Description: Column 1: RA display delay criteria is not satisfied (intent was received
from threat). Column 2: RA display delay criteria is satisfied but the delay time limit
has expired. (Note: The 2-second delay timeout allows for the reception of two additional
surveillance reports. The surveillance update period is nominally one second. The timeout
period is subject to change.)
MOPS Ref.: See Intruder-Status macro section.
RESOLUTION~AND~COORDINATION.TCAS~threat~processing, Reversalxheck.

Figure 3.6: Transition from TA/RA-Delay to RA.

this deviation is “masked” if at least two seconds have elapsed since entering TA/RA-

Delay. That is, the transition is taken in the normal way despite RA-Display-Delay.

The assumption must be made that the elapsed time is less than two seconds in ad-

dition to the assumption that the trigger event Air-Status-Evaluated-Event occurs in

order to propagate the deviation.

The result of the transition being inhibited is that Threat is in state TA/RA-

Delay, it is not in state RA, and the output action End-RA-Deferral-Event is not

produced, all of which are deviations.

The forward analysis should continue in this way for all of the deviations pro-

duced. Although the remaining analysis will not be presented in this introductory

treatment, the reader will probably not be surprised that the deviations just described,

along with further assumptions, cause the suppression of a resolution advisory to the

pilot. However, it was not so obvious a priori that a spuriously high Mode S address

could inhibit the display of an RA.

40

3.1 Goals

HAZOP has various strengths, and before describing what is expected of the

deviation analysis algorithm it would be helpful to eliminate what contribution the

algorithm cannot reasonably be expected to make. HAZOP is a group-oriented proce-

dure, by which experts gather in a structured setting to discuss the proposed system.

This activity is inherently human in nature and cannot be duplicated by an auto-

mated algorithm. Deviation analysis could serve as an additional “expert” during

a conventional HAZOP, but the algorithm in this case is simply a resource for the

HAZOP procedure.

On the other hand, the role of the HAZOP leader can be duplicated, at least in

part. The HAZOP leader is not an expert of the proposed system. This independence

from the project helps the HAZOP leader to pose novel questions. Likewise, an

algorithm can subject a requirements specification to situations not anticipated by

the experts. In particular, a goal of deviation analysis is to capture the utility of the

HAZOP guide word for software requirements.

The next chapter presents a primitive language of causality that encodes such

information. The analysis also requires the ability to infer how and under what

conditions deviations propagate. The calculus of deviations developed in chapter 5

facilitates this task. Finally, chapter 6 presents automated and semi-automated al-

gorithms based on the strategy presented in this chapter.

Chapter 4

A Primitive Language of Causality

This chapter first defines the concepts of “cause” and “system” as used in this

thesis. A primitive language of causality is then defined and illustrated based on

these definitions. The chapter closes with a description of how RSML specifications

may be translated to causality diagrams.

4.1 Definitions

Before investigating the ways in which the causal information may be repre-

sented, it may be helpful to define the concept of “cause.” Lewycky [19] describes

philosophers’ attempts through the ages to define cause, and shows how difficult the

task is, if it is possible at all. Part of the problem lies in differentiating causation from

correlation. If event A always precedes event B, does that mean that A causes B?

Fortunately, for the purposes of the hazard analysis algorithm presented in this thesis,

the question can remain unanswered. Since all physical relationships are provided by

the analyst, the difference between causation and correlation is moot. Both concepts

are reduced to logical implication for the purpose of analysis. Thus, if event A is used

to define the occurrence of event B, it may be assumed that they are causally linked.

41

42

If in fact another event causes both A and B independently, then this does not pre-

clude the analyst from using the occurrence of event A to infer a subsequent B. The

only caveat to this practice is that the behavioral definitions must be complete. If C

causes A then B , but D causes A only, then A cannot be used to infer the occurrence

of B.

Another difficulty is how far back to trace cause. If A causes B which subse-

quently causes C , then which is the cause of C? Again, this question can remain

unanswered for purposes of the algorithm presented in chapter 6. The forward anal-

ysis proceeds one step at a time, so cause is always considered to be immediately

preceding effect. The analyst can develop more remote definitions of causality from

a sequence of events.

It should be noted that the complementary term “dependency” could have been

chosen for the discussion, but the concept of dependency is more general than that

of causality. In particular, one might confuse use of the term here with the notion as

used by dependency graphs in compiler theory. In that sense, a dependency between

two variables indicates a relationship of type. This concept is similar to, but not

the same as, that of value dependencies of a causality diagram. A causality diagram

must satisfy certain type constraints, but that is not the purpose of the diagram. For

example, given an expression z = y + 2, where y is an integer and z is a float, a

dependency graph reveals that z must be a float. A causality diagram shows that,

for example, y’s previous value and 2’s current value are added to produce 2’s value.

The notion of causality as used in this dissertation can be defined formally. It

first requires a formal definition of a system:

Definition 1 (Closed system)

A closed system S is defined by a 5-tuple formal automaton S = (Q, 6, E , V, B) , where

43

0 Q is a set of states,

0 S : Q - Q is the transition function,

0 E is a finite set of system variable symbols,

0 V is a set of value symbols for the system variables,

0 B : Q x E - V maps system variables to their bound values for a given state.

A closed system’s state is defined by the symbols in Q. A closed system has no

inputs, but one may think of the “input” to the formal automaton S as an initial

state qo taken from &. The transition function S maps qo to the subsequent state ql,

which maps to q 2 , ad infinitum. A closed system has no outputs, either, but one may

consider the series

&o) = qo 41 q 2 . e .

to be the “output” of S. If Q is a finite set, then 8(qo) is a recurring series of length

less than or equal to 11Q11.

By definition, a system is a set of interacting components. Each component

can be described by one or more system variables, such as temperature, altitude, or

voltage. Each variable is assigned a symbol in the set E. The function B maps state

variables to their values for each state. In practice, a system’s state is defined in

terms of its state variables, making the two concepts partially redundant. Drawing

the distinction aids the following definitions, however.

Recall that the concept of a structural definition was introduced in chapter 2.

This notion can be formalized using the above definition of a closed system. The

formal definition will be presented in three steps. The first step is to define the

concept of a structural relation. A structural relation maps the values of a set of

variables d to the set of values that a variable r can possibly take. An example

should illustrate this definition. Assume a system SI = (Q, 6, E , V, B) , where

44

Furthermore, the following table defines B:

Q A B C D
q 1 0 0 0 1
q 2 0 1 1 0
q 3 0 0 1 1
q 4 0 1 0 1
q 5 1 1 1 0

(The definition of S is not needed to discuss structural relationships.) Take as an

example the structural relation RAB,D, mapping the values of variables A and B to

D. Referencing the definition of B, the following table describes RAB,D:

of those states, D has a value of 1. The states that apply to the second row are q2

and 44. Variable D has different values for those states, hence RAB,D(O, 1) contains

two elements. None of the states in Q produces the combination of values for A and B

given in the third row, so RAB,D(~,O) is the empty set. Finally, q5 is the only state

that applies to the fourth row, and B(q5, 0) = 0.

Since the domain of a structural relation is 2E X E (a set of variables and a

variable), the number of possible structural relations for a system S is the number of

sets in the power set of E multiplied by the size of E , or IlEll 2 1 1 E l l . Applying this

formula to system S1, we see that 64 structural relations are possible.

The concept of a structural relation can be formalized as follows:

45

Definition 2 (Structural relation)

Given a system S = (Q , 6, E , V, B) , a set of system variables d such that d =

{ d l , . .., d,} E , and a system variable r E E , R : v d l X ... x vd, + 2vr describes

a structural relation between d and r if and only if

The definition is a bi-implication in the form of two constraints. Put simply, the defi-

nition asserts that a value i is in w, if and only if there is a state with the appropriate

values for the state variables in d. The first constraint corresponds to the “if” part of

the bi-implication: if the variables in d have the values q , ..., v,, then the value for r

must be in v,. The second constraint (the “only if” part) asserts that for each value

i in the set v,, there must be a state q that has the variables in d bound to the values

v1, ..., v, and variable r bound to i.

To relate this definition to the example for RAB,D above, d is the set {A , B }

and r is the variable D. In the course of defining R, dl and d2 are arbitrarily chosen

to refer to A and B, respectively. Thus, if v1 = 0 and 212 = 1, then inspection of

RAB,D’S table shows that v, = (0, l}.

Note that there exists exactly one structural relation between any set of vari-

ables d and variable r. The existence of two relations R; and Rj implies that there

exists a set of bindings for d such that the two relations differ. Since they differ, the

value for one of the relations, say R;, must contain an element v; that Rj does not

contain. If indeed r may take the value v; given the bindings for d, then Rj fails the

first clause of the above definition and is not a relation for d and r . If r does not take

46

the value v; for any state with the given bindings, then R; fails the second clause and

is not a relation between d and r .

The range of a structural relation is a set of variable values. If the range of the

relation contains exactly one value for each mapping from d to r , then the relation is

a function. This fact is very helpful in using the variables in d to determine the value

of r. Formally, a structural function is defined as follows.

Definition 3 (Structural function)

Given a system S = (Q, 6, E , V, B) , a set of system variables d c E , and a system

variable r E E , a structural function exists between the bindings of d and r if and

only if

functionalo(d, r) 3

V i , j E Q : (B (i , r) # B (j , r)) + (3 k E d : B(i, k) # B (j , k))

In other words, if variable r has different values for two states i and j , then some

variable in d must also have different values for i and j . Otherwise, r has multiple

values for some single set of values for d and the relation that maps the values of d

to r is not a function.

Structural functions have a property that is useful to the definition of causality

as used in this thesis. If a structural function exists mapping values for a set of system

variables d to a single value for another variable r , then the variables in d can be used

to infer the value of r . Strictly speaking, T is functionally redundant with respect to

the other system variables. The existence of functionally redundant system variables

is not an indication of a poorly written specification. Rather, redundancy is common-

place in the description of physical properties of the system and the controller’s model

47

of these properties. For example, the ideal gas law, PV = nRT, does not obviate

the explicit reference to a reactor's pressure, volume, mass, and temperature in a

specification.

Thus, structural functions indicate the presence of structure in the specifica-

tion-some variables are defined in terms of others. However, the definition is some-

what weak in that it shows that a set of variables is suficient to define another

variable, but not that all the members of that set are necessary for the definition. For

example, mapping all the variables in the system to a single variable r is certainly

a structural function, but it contains variables that are not structurally related to r.

The following definition of structural causality includes in d only those variables that

are necessary to describe r unambiguously, i. e., necessary as well as sufficient:

Definition 4 (Structural causality)

Given a system S = (Q, 6, E , V, B) , a set of system variables d c S, and a system

variable r , r d, d structurally causes r if and only if

functionalo(d,r) A 'v'i C d : lfunctionalo(i,r)

This definition states that a functional mapping from d to r must exist, and there

must not exist a functional mapping from a subset of d to r. The existence of such

a mapping would indicate the existence of an independent variable in d that is inde-

pendent of r.

Sequential causality can be defined in a way analogous to structural causality:

Definition 5 (Sequential function, sequential causality)

1. Given a system S = (Q, 6, E , V, B) , a set of system variables d c S, and a

system variable r , a sequential function exists between the bindings of d and r

48
if and only if

functionall (d, r)

V i , j E Q : (B (D (i) , r) # B (D (j) , r)) +- (3k E d : B (i , k) # B (j , k))

2. Further, d sequentially causes r if and only if

functionall (d , r) A Vi C d : lfunctionall (2, r)

Finally, the two concepts can be combined for a general concept of causality:

Definition 6 (Functional relationship between variables)

1. Given a system S = (Q , S , E , V, B) , two sets of system variables do,d l c 5'
(not necessarily disjoint), and a system variable r , a function exists between

the previous bindings of d l , the current bindings of do, and the current bindings

of r if and only if

2. do and dl cause r if and only if

49

4.2 Encoding Causality

Although the deviation analysis algorithm can be developed for each separate

specification language, there are considerable advantages in developing the algorithm

and calculus around a “core” analysis language. The language should have a basic

syntax and semantics into which requirements languages can be translated. There are

several reasons for doing this. Requirements languages often have subtle semantics. It

would aid development of the analysis algorithm if the semantics relevant to analysis

can be made explicit. It is also an advantage to divide the research problem into

that of (1) translating the relevant parts of the language into a more fundamental

representation and (2) developing an analysis algorithm for the simpler language. In

addition, this tactic aids adaptation of the algorithm to other requirements languages,

since it is an easier task to translate from a full requirements language to the simpler

analysis language than to translate to another full-featured requirements language or

to rewrite the analysis algorithm, since it very likely makes semantic assumptions.

Finally, it is more difficult to explain and understand the algorithm if it is defined

over a language with features irrelevant to deviation analysis. Thus, it is preferable

to develop and present the algorithm using a basic analysis language.

A potential disadvantage of using a separate analysis language is that the analyst

must maintain two mental models: one of the specification and one of the analysis

model. However, the translation from specification to analysis language is automatic,

so the analyst does not need to see the analysis model for the purpose of input to

the algorithm. In addition, an entity in the analysis model always maps back to a

single entity in the specification. Thus the algorithm’s results (including a full search

tree) can be satisfactorily presented to the analyst in terms of the specification model.

50

Therefore it is not strictly necessary that the analyst inspect the analysis model at

all.

What is desirable in a language of causality? First of all, the relationships

represented should be direct. That is, there should be no intermediate variables

or “steps” that take no time. The language must be able to represent complex

relationships in order to propagate deviations. The notion of sequential dependency

should also be explicit, rather than relying on relationships implied by the language’s

semantics. Simultaneous relationships should be explicit. The language must be able

to handle numeric and boolean system variables.

Several languages already exist that partially encode causality. However, they

do not encode enough information about the nature of causal relationships to be

useful for a software hazard analysis.

A dependency graph is a type of directed graph that indicates the “interde-

pendencies among the inherited and synthesized attributes at the nodes in a parse

tree.” [l] The relationships are restricted to type, and thus are basically limited to

analysis of structural causality.

In contrast, pipe-and-process and block diagrams show sequential causality but

generally lack structural causality. Additionally, the nature of the sequential causality

is not described, so only the most rudimentary hazard analysis may be performed

automatically.

Digraphs (section 2.1.2) encode sequential causality as a partial derivative.

However, with the exception of the Logic Flowgraph Method (LFM) [9], interaction

between causes is not represented. Even with the limited specification of interactions

51

allowed by LFM, the partial derivative is inadequate to specify much of the control

behavior of software.

4.3 Causality Diagram Grammar

A causality diagram is composed of a set of nodes N , connected by directed

edges. Each node n E N has a function associated with it that, combined with the

edges into n, defines its causality. The value of the nodes is the state of the causality

diagram.

Nodes in a causality diagram are divided into source nodes and a u d i a r y nodes.

The source nodes correspond to the system variables. The causality of a source node

is often a complex expression; the auxiliary nodes serve to compose functions of source

nodes. For example, assume the following arithmetic causalities between source nodes

s1, s 2 , s3, s4, and s5,

These equations can be represented by the following tree:

Each of the unnamed nodes represents an “intermediate” expression, in this case

arising from operator precedence. The expressions have value, and the deviation

analysis algorithm exploits this fact to provide some information when a deviation

52

cannot propagate from one source node to another. For example, suppose that s3 is

less then it should be but s4 is normal. Then the sum of s3 and s4 is less than it

should be. However, if the values of s2 or s6 are not known then the deviation cannot

propagate to another source node without making any assumptions. It is useful to

know though that those expressions are deviant.

Furthermore, the calculus used by the search algorithm to propagate the devi-

ations may be defined for functions of fixed arity. For example, the sum a + b + c + d

may be parsed as a + (b + (e + d)) for purposes of analysis. Such a restriction requires

additional nodes (one for each set of parentheses.)

Finally, the model specified by the requirements may be incomplete, in essence

making it an open system with unspecified sources and sinks. In consideration of

this and the aforementioned needs, the language of causality diagrams contains in-

termediate nodes (called auxiliary nodes), which are considered to be the same as

source nodes for the purposes of propagating deviations. For example, the following

auxiliary nodes may be defined as

such that s1 and s5 above may be defined by binary arithmetic operators and auxiliary

nodes:

53

An edge is described for each parameter in a node Nd’s function domain. Each

edge may be represented as a 2-tuple (N , , T) , where N , is the source node and

T E {sequential, structural}. The edge associates the range of Ns’s function with part

of Nd’s domain. If T = sequential, then the causal relationship between N , and N d

is temporal. The value of N , in one step affects the value of Nd in the next step.

If T = structural then the causal relationship is structural, which is to say that the

current value of N, constrains what the current value of N d is. The terminology used

in this thesis is that the source of an edge (N ,) is called the parent node and the node

at the terminus (N d) is called the child node.

Because auxiliary nodes facilitate functional composition, the edges with an

auxiliary node as source almost always have T = structural. The exception is when

an auxiliary node serves to describe a sequential relationship that extends beyond

one step, e.g., if node N , influences node Nd’s value with a time lag of t steps, then

t - 1 auxiliary nodes are needed:

@---@---* 0 0 0 ----@---a
(Sequential edges will be represented by dashed arrows in this thesis. Structural edges

will be represented by solid arrows.)

A node may have a sequential relationship with itself, i e . , it may be the source

of an edge with T = sequential. However, there may not be any loops along paths

composed only of structural edges. This situation is easy to discover by a search of

the directed graph created by the nodes and structural edges.

54

Pressure
Reading

Pressure = Flow / Aperture
Aperture = Aperture’ + Delta
Delta = Delta-Max - Delta-Min
Delta-Max = Pressure’ > 250 ? 10 : 0
Delta-Min = Pressure’ < 100 ? 10 : 0

_ _ _ _ - - -

I

I Const (10) Const (0)
I
I
I
I
I
I

Figure 4.1: Causality diagram example

Putting the concepts of structural and sequential causality together, figure 4.1

shows an example of a simple feedback system and the corresponding causality di-

agram. The system shown is a tank equipped with a variable-aperture valve. The

system variables are the tank pressure, the flow of material through the tank, and

the aperture of the valve. To simplify the example, pressure is the quotient of flow

over aperture. The controller increases or decreases the valve opening by ten units if

the pressure is above the maximum of 250 units or below the minimum of 100 units,

respectively.

The causality diagram in the example contains twelve nodes and sixteen edges.

Three of the nodes represent the system variables. The behavior of the Flow variable

is undefined. Pressure is a quotient function, with the numerator edge originating

from Flow and the denominator edge originating from Aperture. Aperture is an in-

teresting node because it has direct feedback from its previous value. The size of the

valve aperture is equal to its previous value (indicated by a dashed line) plus one of

{ - 1 O , O , lo}, as provided by the controller.

55

The remaining nodes comprise the controller. The pressure reading is compared

to minimum and maximum values (the “<” and “>” nodes, respectively.) Note that

each node is a function: The domain of the inequality functions is a pair of numbers

and the range is a boolean.

The nodes represented by 1o?o:o(are called selection nodes. The selection

function is defined as follows:

Thus, following the edges from the subtraction node (the output of the controller)

backward to the pressure reading, one gets the expression

[(Pressure’ > 250) ? 10 : 01 - [(Pressure’ < 100) ? 10 : 01

where Pressure’ represents the previous value for pressure. This is the value that is

output to the valve actuator.

Translation of RSML

This section describes how to translate the Requirements State Machine Lan-

guage (RSML) to the primitive language of causality. RSML is a graphical, state-

based requirements specification. RSML specifications are composed of intercon-

nected system components. Each component is composed of a heirarchical state

definition, a useful state abstraction originally developed for the Statecharts specifi-

cation language [lo]. Please refer to [Ill for a presentation of RSML. Some review of

RSML accompanies the following discussion of translation issues, but knowledge of

the language’s semantics is recommended.

56

B 4 B
B X B + B
X-+%
% X % + %
% X % + B
B x % x % + %
& + &
& X & + B
B x & x & + &

identity, negation
and, or
identity, negation
+ , - , x , +

selection
identity

selection

=, #, <, >, 572

=, #, <, >, I, 2

Table 4.1: Basic functions. “B” is the set of booleans, “%” is the set of reals, and
“I” is an enumerated set.

4.4.1 Basic Functions

Each node in a causality diagram is associated with a particular function. This

section presents the basic functions necessary to translate RSML. Although most of

the functions given here should be useful for translating another language to causality

diagrams, it is likely that additional basic functions would need to be defined. For

example, RSML does not include any set theoretic functions.

The functions described here can be divided into three groups: functions over

the booleans, reals, and enumerated types. These functions are listed in table 4.1.

Most of the functions are self-explanatory. The “selection” function has already

been defined. Enumerated types are small sequences {el, e2, ..., e,}. The relational

operators are defined such that

e; = ei

57

. ,

Figure 4.2: The Intruder-Status state heirarcby.

4.4.2 States

An RSML specification is composed of a heirarchy of “states.” For example,

figure 4.2 shows the state heirarchy for Intruder-Status (figure 2.1.) According to the

definition of a system given earlier in this chapter, RSML states are actually state

variables because they represent part of the system state. The translation of an RSML

specification to a system automaton would involve mapping the RSML state symbols

to the variable symbols V . Since the terminology is somewhat conflicting, please

interpret use of the term “state” to be an RSML state variable for the remainder of

this section.

58

1 \ \

1 Advisory

Crossing =
I / /

RM-Send-Status = dl

Figure 4.3: The portion of the causality diagram showing the relationship between
Threat and its children. Each child takes its value directly from Threat.

States are binary variables; they are either “active” or “inactive.” These two

values can be modeled by boolean nodes in the causality diagram (i.e., functions with

a boolean range.) States are classified by their children. A state with no children is

called a basic state. Two basic states in figure 2.1 are Other-Trafic and New. A state

whose children are mutually-exclusive is called an or-state. If the or-state is active,

then exactly one of its children is active. Intruder-Status and Crossing are examples

of or-states in figure 2.1. The children of an and-state are all active if the and-state

is active. Threat is an example of an and-state.

And-States

The causal relationship between an and-state and its children can be described

by the boolean identity function. That is, the value of the children (true or false,

active or inactive) is exactly the same as the and-state’s value. Figure 4.3 shows a

partial causality diagram for state Threat.

59

Other-Traffic Potential-Threat

Transitions out of Proximate Traffic
\
\
\

Transitions to Proximate-Traffic \
\

\ \
\ \
\ \ \ OR JOR

\ \
\ \

Intruder-Status

",\\\

I N

I Proximate-Traffic AND AND A AND 1
Figure 4.4: A causality diagram fragment for Proximate-Trufic.

Or-States

The causal relationship between an or-state and its children is a bit more com-

plicated. The or-state must be active in order for any child to be active. Three

additional conditions must hold in order for a child state to be active:

0 There was either a transition to the state or the state was active in the previous

instant. The latter condition means that once in a state the system stays in that

state until there is a transition to another state. This characteristic contrasts

with transient variables, such as events.

0 There was not a transition out of the state in the previous instant.

0 None of the siblings of the state are active.

he first two conditions are sufficient to describe the behavior of a state procedurally.

However, the third condition is needed in order to enforce the mutual exclusion of

or-states. For example, if the analyst postulates an initial scenario in which Climb

and Descend are both active, the first two conditions would not form a contradiction.

60

The third condition would cause the two nodes to be true and false simultaneously,

signaling an impossible scenario.

Figure 4.4 shows a causality diagram fragment based on the relationship between

Proximate-Trufic and its parent and siblings.

4.4.3 Events

Events may be thought of as transient states. In RSML and similar languages,

events are a sort of communication between states. Events are also used to synchronize

state transitions. In this capacity they may be thought of as similar to the parentheses

of an equation [ll].

Events can be produced by state transitions, input interfaces, output variable

transitions, and output interfaces-all of which are types of component transition.

Since the same event can be produced by multiple transitions, an event is simply

an or function of the various transitions that can produce it. In RSML, events are

considered to be active in the next instant after the transition is taken, so all of the

edges into the or function are sequential.

The next section shows an example of a transition producing an output action.

4.4.4 Transitions

Transitions have five components:

0 source state,

0 destination state,

61

I - - - - - - - - - - - Air-Status-Evaluated-Event

1 ‘ OR .., \
\
\
\ Guarding-Condition
\
\
\

NOT
\
\
\

Transition =,p AND AND
A

I \
I \

‘ I \ \

TA/RA-Delay = AND AND\ AND
\

End-RA-Deferral-Event = OR ...

I RA= AND\. AND AND 1
Figure 4.5: A causality diagram fragment for the transition from TA/RA-Delay to
RA. Compare this diagram to the or-state example to see how transition definitions
combine with or-state definitions.

0 triggering event,

0 guarding condition (optional), and

0 output action (an optional event).

The semantics of a transition may be described by the following logical inference:

S A E A C j 75’’ A D’ A A’,

where S , E , and C are the values of the source state, triggering event, and guarding

condition in one instant, and S’, D’, and A’ are the values of the source state, des-

tination state, and output action in the next instant. A causality diagram fragment

for the transition in figure 3.6 is shown in figure 4.5.

Conditional Connectives

Conditional connectives (represented by ‘0’) are an abstraction for combining

transitions. Transitions out of conditional connectives have two distinct differences

62

Figure 4.6: A transition into Threat is actually a transition into all of the default
states contained in Threat.

Transitions into conditional connectives are the same as any other transition.

Default State Transitions

Or-states may have default states. The simplest method of translating default

transitions to a causality diagram is to translate it first to its component transitions

63

A
(4 N

D

[Other-Air-Status,-lnl in state Airborne 1

P~tential-Threat-Range-Test,-~~~ A
~(Other-Alt-Reportingv-l13 = True) A
Own-Tracked-Altf-248 < 15500 f t (A B 0 V N M C)) V
Other-Air-Status,-lol in state Airborne A
Potential-Threat-Range-Te~t~-~~~ A
Other-Alt-Reportingv-113 = True A
Potential-Threat-Alt-Testm-212)

Other-Air-Status in state Airborne
Potential-Threat-Ah-Test

Potential-Threat-Range-Test

Other-Alt-Reporting = True

(4 Own-Tracked-Alt < 15500 ft

Figure 4.7: AND/OR Table.

(see figure 4.6.) Such a construction would be very difficult to read, but it makes the

causal relationships quite clear.

Transition Bus

The transition bus is simply a graphical shorthand for transitions directly be-

tween states; its purpose is to minimize the number of arrows on the page and show

64

the interconnectedness of states. Hence it does not contribute to the semantics of

RSML or to causality diagrams.

4.4.5 AND/OR Tables

AND/OR tables are a graphical representation of boolean expressions in disjunc-

tive normal form. As such, the semantics of AND/OR tables are quite straightforward

and easy to encode in a causality diagram. The left-most column of each AND/OR

table lists the terms of the expression. The remaining columns are logically OR’d, so

that the table is true if only one column is true. A column is true if all of its terms

are true. For example, figure 4.7(a) shows an AND/OR table from the TCAS I1 spec-

ification. Figure 4.7(b) shows the same expression in conventional boolean notation.

Figure 4.7(c) is the same table as a causality diagram fragment.

4.4.6 Macros

A macro is an abstraction of an AND/OR table. RSML has two kinds of

macro: parameterized and non-parameterized. Non-parameterized macros are simply

AND/OR tables with names and the translation proceeds in exactly the same way.

Parameterized macros have one or more parameters in their AND/OR tables.

A reference to a parameterized macro replaces each parameter with an expression,

such as the name of an input variable or a state.

Since causality diagrams represent relationships directly, each parameterized

macro reference must be replaced by the causality diagram fragment of the AND/OR

table, with the parameters instantiated.

65

Interface C Triggered

Message Field in B / Message Field in C

Interface B Triggered I
d?d.

Message Field in A

I L?.:d Interface A Triggered

I
I
I

I
I

I

Input Var =\ ? L : d /
/

/
\ /

\ /
/

\ , - _ -___---,

Figure 4.8: Causality diagram template for input variables

4.4.7 Functions

Like with parameterized macros, each function reference must be replaced by a

causality diagram of the function definition with the function parameters instantiated.

4.4.8 Input Variables

Input variables are set by input interfaces. They may be represented as a series

of selection nodes, as shown in figure 4.8. In the example, the input variable can be

assigned a value by one of three interfaces A , B , and C. If none of the three interfaces

is triggered by the receipt of a message, then the input variable retains the value it

had in the previous instant.

Function Reference

Triggering Event

\

Figure 4.9: Causality diagram template for output variables

66

Other Input Interfaces

Message Event
I

/ Guarding Condition
/ I

\ I / I

I Interface =\. AND AND C 1

Triggered Events Input Variables

Figure 4.10: Causality diagram template for input interfaces

4.4.9 Output Variables

Changes in output variable values are triggered by events. The new value is

given by the value of a function reference at the time of the event. Figure 4.9 shows

a causality diagram fragment.

4.4.10 Input Interfaces

Input interfaces receive messages from other components. The message has two

parts: a boolean node representing whether the message has been sent and a numeric

(or enumerated type) node for each of the fields of the message. The interface is active

if the message is active and the input interface’s guarding condition is true. Input

interfaces can can events to be active. Input interfaces share these characteristics

with transitions.

67

Like or-nodes, input interfaces are mutually exclusive, so a condition of an

interface being active is that the others are inactive. Figure 4.10 shows a causality

diagram template for input interfaces.

4.4.11 Output Interfaces

Output interfaces package output variables into a message and send to a com-

ponent or components. The output interface is triggered by an event, contingent on

a guarding condition. In addition to the message it may also generate events within

the scope of its own component.

4.5 Summary

This chapter began with a definition of closed systems, and especially system

variables. This definition was used to define two types of causality as related to

requirements specifications, The concepts of causality were incorporated into a prim-

itive language of nodes and edges, the artifacts of which are termed causality dia-

grams. Finally, a strategy for translating RSML specifications to causality diagrams

was presented.

Chapter 5

A Calculus of Deviations

The previous chapter introduced a primitive language of causality, by which

system variables are defined in terms of present or previous values of other system

variables. One possible use of the causality diagram is testing. If certain nodes are

given specific values then the simultaneous values of other nodes could be derived

based on structural relationships. Likewise, subsequent values of nodes could be

determined by inspecting sequential relationships. This would be similar to a partial

“execution” of the specification. This information would be useful, but the results

would be valid only for the tests performed. Consequently, the analyst must rely

on proper coverage of the state space just as in execution of the specification in the

source language. The causality diagram may still have advantages for this purpose.

For example, only relevent parts of the specification are “executed.” Furthermore,

the causality diagram may be an appropriate language upon which to develop test

selection methods based on deviations in the environment (as opposed to testing

under normal operating conditions.)

Alternatively, the causality diagram could be used to develop a proof of the

system’s behavior. Although formal verification of safety constraints is more general

than testing, it is also more difficult. For many systems it is just not practical to

develop and review a proof.

68

69

These two common approaches are on a continuum of feasibility versus gener-

ality of the analysis. In practice, compromises must be made between the costs of

constructing and analyzing the system model and the quality of the results [16].

The particular balance struck depends in part on the stage of development. The

system model typically begins as a coarse, incomplete description of the problem and

is amended and refined as the solution develops. Accordingly, analysis should be

an iterative process [16]. To wit, preliminary analysis should readily provide coarse

results for incomplete information and final testing should yield conclusive results for

an operational system.

The general topic of this thesis, software requirements analysis, is one of the

earliest stages of software development (though not quite as early with respect to

the system as a whole.) At this stage, the information is usually incomplete and

volatile. Accordingly, the analyst needs procedures that can expeditiously furnish

results given incomplete, abstract information. On the other hand, as the control

model is being developed, the analyst does not require conclusive results so much as

motivating information.

5.1 Introduction To Qualitative Mathematics

A potential solution lies with qualitative mathematics. Qualitative mathematics

is the creation and study of calculi of small ordered sets, called qualitative domains.

Qualitative domains partition the system’s quantitative domains (usually the set of

real numbers.) Formally, a qualitative domain is defined by a function mapping

members of the quantitative domain to members of a small set. In other words, if 27

70

Table 5.1: Sign algebra.

is some domain (e.g., the integers or complex numbers) and L is a (small) finite set,

then a function A4 : D -+ L defines L as a qualitative domain over D.

The area of research that has introduced qualitative mathematics is most com-

monly referred to as “qualitative reasoning,” although variations in research emphasis

have led to such labels as “causal reasoning,” “qualitative process theory,” and “qual-

itative analysis.” Qualitative reasoning has been proposed as a method for system

control, as an educational tool, and for system analysis. The present thesis falls into

the latter category and so can be termed more accurately as qualitative analysis.

Note that when viewed from the perspective of a calculus, the causality diagram

may be seen to be a set of axioms. Each node N of the diagram can be rewritten as

N = f (11, ...), where f is the node’s function and 11, ... are input nodes. An analysis

procedure may apply the calculus to the set of system axioms to produce “theories”

of system behavior.

A simple and commonly used qualitative domain is the set of signs of the real

numbers, SQ = { -, 0, +, ?}. SQ partitions the real numbers into two sets, the positive

(+) and negative (-) numbers. Zero (0) is the border between the two sets. The

special symbol “?” represents an unknown value and is equivalent to the union of the

other symbols. The addition and multiplication functions over SQ are referred to as

s i g n algebra in the literature. Their definitions are shown in table 5.1.

71

Figure 5.1: A qualitative representation of oscillating functions. The dashed line is
an oscillating function with increasing envelope, descreasing frequency, and normal
shape. The solid line is the same function with “sharp” shape.

Qualitative mathematics is not limited to algebraic functions. For example,

Schaefer constructs an interesting model for a family of nonlinear oscillating func-

tions [as]. The parameters of the functions are the envelope, period of oscillation,

and “shape” of the function. Figure 5.1 shows an example of a qualitative oscil-

lating function. Schaeffer has developed an algorithm for qualitatively solving the

derivatives of this family of functions. Please see [29] for a detailed treatment of this

calculus.

Qualitative mathematics has the advantage of being efficient to calculate and

relatively easy to understand. Similar values can be grouped and treated collectively

by the qualitative functions.

A disadvantage of qualitative analysis is that potentially useful information is

lost in the discretization of the quantitative domains. This is not unusual, as all

models are incomplete approximations of reality. The analyst must decide whether

72

a qualitative analysis, or any method of analysis, is appropriate and useful for a

particular system.

It should be noted that the logic used in digraph models such as LFM is a

type of qualitative mathematics. In particular, they represent qualitative partial

derivatives of process variables. The qualitative domain is composed of the set of

values {-lo, - l , O , +1, +lo}. The digraph algebra is composed of such rules as

(-1) + ($10) = +10 (a small negative influence combined with a large positive

influence results in a large positive influence.)

A problem with the digraph algebra is that while the qualitative calculations are

internally consistent, the calculus is not consistent with respect to the quantitative

domain. For example, suppose that L > 2 is the boundary between small and large

values. (L - 1) and 2 are both small positives, and the sum of two small positives is

a small positive under digraph algebra. But (L - 1) + 2 = L + 1 is large, so the result

of adding two numbers and converting the result to a digraph value is inconsistent

with converting the two numbers and then adding them qualitatively.

5.2 PB,N: A Logarithmic Qualitative Domain

Before describing the calculus of deviations it is first necessary to describe the

qualitative calculus for the value part. Since booleans and enumerated types are small

sets, they can be analyzed directly without converting to qualitative sets. In fact,

they may be considered to be qualitative sets since they partition the system state

space into a small number of salient values.

73

The author has chosen a logarithmic mapping from the numbers to a qualitative

domain. A logarithmic scale allows coverage of a large range of values while still

partitioning the smaller values. The following function defines a mapping from the

real numbers to a family of qualitative domains. The parameters of the domain are

the base B and the number of qualitative values N for each sign:

Definition 7 (PB,N family of qualitative domains)

Given: B 2 2, N 2 1. B, N are integers.

PB,N(x) is abbreviated as P (x) in formulas to save space.

The function is fairly straightforward. The reason that 0 < 1x1 5 B is treated

separately is to account for the sub-interval 0 < 1x1 < 1, in which logarithms are

negative.

As an example, if B = 2 and N = 5 , the qualitative domain has the following

definition:

0
< I I I 1 I 1 I I ’

-16 -8 -4 -2 0 2 4 8 16

-5 I -4 I -3 1 - 2 1 - 1 1 1 I 2 I 3 I 4 , 5

Real Numbers

The size of a qualitative domain PB,N is 2N + 1.

Disregarding the qualitative values that go to fw, the “coverage” of P2,5 is

only 32 (from -16 to 16.) In contrast, Plo,7 covers a range of 2 million using only

74
four additional qualitative values. Thus, the parameters can be modified to suit the

particular system they describe.

The inverse relation on PB,N is defined as follows.

Pg,$(q) is defined as an interval over X for three of the four cases, making it a

relation with respect to X.'

A proof of the inverse relation follows. It will use the following extended defini-

tion of PB,N and P i $ over subsets of the real numbers and { - N , ..., N } :

Definition 9 (PB,N and Pg,$ over sets)

Given X C: X and Q C_ { - N , ..., N } ,

Theorem 1 (Pi,$is the inverse relation of P B , N)

Proving that Pi,; is the inverse relation for PB,N involves showing that a real number

is associated with a qualitative value if and only if that qualitative value is associated
lp-1 B , N is, however, a function with respect to the domain of 4-tuples ({open, closed}, 3,

{open, closed}, %).

75

with the real number:

vq E { - N , ...) N},V'a E 3 : a E P-I (4) H P (a) = q.

The reader will note that the definitions of PB,N and Pgh both have four parts. For

three parts the two definitions are identical: x = 0 and Q = 0, 0 < 1x1 5 B and

I Q I = 1, and 1x1 > BN-' and I Q I = N . The remaining case requires a little bit of

work to show the inverse relationship:

1. Given an integer q7 1 < 141 < N . Prove that P (P-' (q)) = q.

(a) Let x = p-1 (4) = Sign(q) (~ l q 1 - 1 , B I ~ I] .

(b) 1x1 = (Blql--l,B/ql] (Recall that B > 0.) Note that this implies that

sign(x) = sign(q).

(c) Thus the range gives the inequality: BIqI-' < 1x1 < -

(d) 1 < 141 + B < BIqI-l.

(e) 141 < N + ~ l q l 5 W - ' .
(f) Therefore, case three in the definition of PB,N applies:

(g) Substituting the value of n: into the equation:

I (The third and fourth lines use the fact that q is an integer.)

76

2. Given a real number x, B < 1x1 5 BN-l. Prove that x E P-l (P (x)).

(a) Let Q = P (x) = sign(z) . [log, 1x11.

(b) IqI = [logB 1x11 (since B > 0). Also, sign(q) = sign(x).

(c) Substituting the given bounds on 1x1:

B < 1x1 5 BN-l

logB B < log, 1x1 5 lo& BN-l

1 < log, 1x1 5 N - 1

Pl < rlogB P I 1 5 YN - 11
1 < 141 5 N - 1

(d) Therefore, case three in the definition of Pi,& applies:

(e) In order to prove the postulate, we need to show that x E P-l(q) . Since

sign(q) = sign(x), we can reduce the task to comparing 1x1 to the range

(BIqI-1, BIqI : 1

By definition, the ceiling of a number y is y if it is an integer, or the smallest

integer greater than y if a non-integer. Thus the difference between y and

its ceiling must be strictly less than 1, and the above inequality is valid. I

77
(g) The right-hand inequality is

Revisiting the definition of ceiling, we note that the ceiling of y is either y

itself or some number slightly greater than y. This inequality is valid also,

completing the proof. I

5.3 A Qualitative Calculus for PB,N

This section defines the concept of a qualitative function in PB,N and applies

this definition to some standard functions to build an algebra over PB,N.

Definition 10 (Qualitative Function)

Given a function f (x , y, ...) and qualitative values q, r , ... E PB,N, the qualitative

function for f is annotated as Ifl and defined as

U(Q, r , ...) = { U ~ X E (Q) A y E P-' (r) A ... A P (f (z , y, ...)) = a }

Theorem 2 (Negation)

The negation of a qualitative value is the negation of its numeric symbol:

Proof :
Given: - N < q < N

q = 0 * M q = P (- (0)) = 0 = - 4

Reason

Def. 7

78

Before proceeding to the mathematical proofs, it would be helpful to construct

some lemmas. A lemma that will be useful in the proofs in this section is the preser-

vation of commutivity in PB,N:

Theorem 3 (Preservation of Commutivity)

Proof : Reason
(5.1) Given: f : Z x Z + Z is commutative.

q,r E { - N , ..., N }
I f l (q , r) = {ulx E P-' (4) A y E P-' (r) A P (f(z, y)) = a } Def. 10

= {ulx E (q) A y E P-' (r) A P (f (y , x)) = a } (5.1)

= Ifl(., 4) Def. 10
I

The following lemma will be useful in deriving qualitative addition. It proves

that the addition of two positive values in PB,N results in the larger value or a value

one greater.

79

Theorem 4 (Sum of two positive values in PB,N)

Reason
(B' , B'+'] Def. 8
B' < Bq + B' (B 2 2)
B * B'
2 B' (B 2 2)
B' + B'
By + B' (4 5 r)
r + l (5.2), (5.3), Def. 7
I

The following lemma is also used for the addition proof. It proves that if a

positive qualitative number is subtracted from a larger qualitative number, then the

result is equal to the larger number or one less.

Theorem 5 (Difference of two positive values in P B , N)

Proof :
P-l (r) =

B' =

2
>

B'- BQ > -
-

(5-4) >
(5.5) B'- Bq <
(5.6) P (B' - BQ) =

(B'-', B']
Reason
Def. 8

The following lemma shows that negation is distributive over multiplication in

PB,N.

80

Theorem 6 (q u r = - q u - r)

Inspection of definition 8 shows that each qualitative value q can be written as

sign(q) A,, where A, is an interval on [0, +m). sign(q) determines the sign of q and

A, the range of magnitudes.

Although it might at first seem that

can be proven by preservation of commutivity (Thm. 3) , such a proof would need

the lemma uq = -1uq) which is unfortunately not valid under PB,N. This is a

deficiency in PB,N that would be remedied by having a special value for multiplicative

identity (i . e .) P-' (1) = 1) just as PB,N has for additive identity. This improvement

is discussed in chapter 8.

Theorem 7 (Distributivity of Negation)

(Refer to Thm. 6 for description of A, and AT.)

Proof :
-qUT = P (P-1 (- 4) * P-l (r))

Reason
Def. 10

81
= P (sign(- q) - A, - sign(r) AT)
= P (- 1 . sign(q) - A, - sign(r) . AT)
= P (sign(q) A, - 1 . sign(r) - AT)
= P (sign(q) e A, sign(- r) . AT)
= q u - r I Def. 10
= P (- (sign(q) . A, sign(r) - A T))
= W P (sign(q) . A, . sign(r) AT) Def. 10
= - (qU-r) I Thm. 2, Def. 10

5.3.1 Addition

The rules for addition in PB,N are given by table 1.

Table 1 (Addition Summarized)

4 r q1+1r Line Ref.
1 -N - N , ...) -1 -N (5.22), (5.28), (5.33)
2 -N + 1, ..., -1 4 , ..., -1 q - 1,q (5.15)) (5.18), (5.24)
3 - N , ...) -1 0 4 (5.9), (5.11), (5.13)
4 - N , ..., -3 1, ...) -4 - 2 q,q + 1 (5.20), (5.26)~) (5.29)~) (5.34)
5 - N , ..., -2 -4 - 1 q, ..., -1 (5.2O)(q = a), (5.26)b) (5.29)b
6 - N , ..., -1 - 4 4 , ...) r (5.16), (5.25)c, (5.26)c, (5.31)
7 - N + 1) ...,- 1 - q + 1 1, ..., r (5.19)(q = 2), (5.25)b, (5.30)b
8 -N +2 ,...) -1 -q+2 ,..., N r - l,r (5.19)(q > 2),(5.25)~,

(5.30)u, (5.35)
9 0 0 , ..., N r (5.7),(5.8),(5.10),(5.12)
10 1, ..., N - 1 q, ..., N - 1 r , r + 1 (5.14), (5.17), (5.23)
11 1, ..., N N N (5.21)) (5.27), (5.32)

Theorem 8 (Addition)

Table 1 conforms to the definition of qualitative functions.

Proof : Reason
Given: - N < n < m < O < q < r < N

OM0 = P ([O,O] + [O,O])
= P ([O , O I)

(5.7) = o

OM-1 =

-1MO = - (lpJO)

(5-9) = -1

ONq =

q M 0 = P ((Bq-l, BPI + [O, 01)
= P ((B4-1, Bq])

(5.10) = 4

0 M m =

mWO = -(-mpJO)
(5.11) - - m

OMN =

NMO = P ((B y $0) + [O, 01)

= P ((B N - 1 , $0))

(5.12) = N

OM-N =

-q+Jo = - (NMO)
(5.13) I - N

82

Def. 10, Def. 8

Def. 7

Thm. 3, Def. 10, Def. 8

Def. 7

Thm. 3, Thm. 7

(5-8)

Thm. 3, Def. 10, Def. 8

Def. 7

Thm. 3, Thm. 7
(5.10)

Thm. 3, Def. 10, Def. 8

Def. 7

Thm. 3, Thm. 7
(5.12)

Def. 10, Def. 8

Def. 7

Thm. 7

(5.15) = {-2, -1>

83

(5.14)

1pJ-1 =

-q+J = P ([B , 0) + (0, B])
= p ((-7 B))

(5.16) = {-1,0, 1}

1pJq =

qpJ1 = P ((Bq-l, Bq] + (0, B])
= P ((Bq-l, Bq + B])

(5.17) = { 4 , 4 + 1)

-1pJm - -

mpJ-1 = -(-mpJl)
(5.18) = {-m, -m + 1}

-1pJq =

qpJ-1 = P ((Bq-l, Bq] + [B, 0))
= P ((BQ-1 - 1, Bq))

(5.19) = (4 - 174)

1pJm =

mpJ1 = -(-mpJ-1)
= -{-rn - 1, -m}

(5.20) = { m , m + l }

1pJN =

NpJ1 = P ((A N - 1 , +(x) + (0, BI)
= P ((BN-', +w))

(5.21) = N

-1pJ-N =

-NpJ-1 = -(NpJl)

(5.22) = - N

Thm. 3, Def. 10, Def. 8

Def. 7

Thm. 3, Def. 10, Def. 8

Def. 7

Thm. 3, Thm. 7
(5.17)

Thm. 3, Def. 10, Def. 8

Def. 7,(4 > 1)

Thm. 3, Thm. 7
(5.19)

Thm. 3, Def. 10, Def. 8

Def. 7

Thm. 3, Thm. 7
(5.21)

q M r =

84

rHq = P ((B'-1, B'] + [-B-q, -B-q-l > > Thm. 3, Def. 10, Def. 8
= P ((B'-l + F - 1 , B' + Bq])

(5.23) = { r , r + 1) Thm. 4

rnMn =

n u r n = -(-rnM-n)
(5.24) = { m - l , m }

Thm. 3, Thm. 7
(5.23)

r M m =

m M r = P ([-I?-", -El-"-') + [- E ' , --B-'-')) Thm. 3, Def. 10, Def. 8
- - P ((Br-1 - B-", B T - B - m - 1 >)

{ r - l , r} if --m < r - 1
(1, ..., r } if --m = r - 1
{m, ..., T } if --m = r

(5.25)
= {

= - { (1, ..., -n} if q = -n - 1

= {

q M n =
n w q = -(-nM-q)

{-n- I , -n} i f q < - n - 1

{-q, ..., -n} if q = -n

{.,.+I} i f q < - n - 1
{n, ..., -I} if q = -n - 1
{n, ..., q} if q = -n

(5.26)

q w N =

NMq = P ((E?"-', $0) + (Bq-l, Bq])

= P ((BN-'+ w-1 , +m))

(5.27) = N

m H - N =

- N M m = - (NH-m)

(5.28) = - N

ql+l-N =

-Nlflq = P ((-m,B"-'-') + (Bq-',Bq])

= P ((-m, -W-' + Bq))

Thm. 5

Thm. 3, Thm. 7

(5.25)

Thm. 3, Def. 10, Def. 8

Def. 7

Thm. 3, Thm. 7
(5.27)

Thm. 3, Def. 10, Def. 8

85

(5.29) { -N , -N+1} i f q < N - 1
{-N, ..., -1) if q = N - 1

m M N =

Nlflm = - (-NN-m)

(5.30) = i { N - 1 , N) i f m > - N + l
(1, ..., N} if m = -N + 1

- N U N =

Nl f l -N = P ((BN-', $0) + (-co, BN-'-'))

= P((-co,+m))
(5.31) = { - N, ..., N}

N M N = P ((BN-', $0) + (El"-', +a))
= P ((2BN-1, +XI))

(5.32) = N

-NpJ-N = - (NpJN)
(5.33) = -N

1 u - N =

-NMl = P ((-0, BN-'-1) + (0, B])

= P ((-w, -BN-' + B))
(5.34) = { - N , - N + 1)

-1MN
NM-1 = -(-Nlfll)

(5.35) = { N - l , N }

Thm. 5

Thm. 3,Thm. 7

(5.29)

Thm., 3,Def. 10,Def. 8

Def. 7

Def. 10,Def. 8

Def. 7

(5.32)

Thm. 3,Def. 10,Def. 8

Thm. 5

Thm. 3,Thm. 7
(5.34)

An interesting result of the proof is that addition is independent of the base B.

The following example shows an addition table for the sub-family P B , ~ , of which the

previous example P2,5 is a member.

86

Example 1 (Addition of P B , ~)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4

-5 -5 -5 -5 -5 -5 -5,-4 -5,-4 -5,-4 -5...-1 -5...5
-5 -5,-4 -5,-4 -5,-4 -5,-4 -4 -4,-3 -4,-3 -4...-1 -4...4 1...5

-2 -5 -5,-4 -4,-3 -3,-2 -3,-2 -2 -2,-1 -2...2 1,2,3 3,4 4,5
-1 -5 -5,-4 -4,-3 -3,-2 -2,-1 -1 -l,O,l 1,2 2,3 3,4 4,5
0

-5...-1 -4...4 1...4 3,4 3,4 4 4,5 4,5 4,5 4,5 5 4
-5,-4 -4...-1 -3...3 1,2,3 2,3 3 3,4 3,4 3,4 4,5 5 3
-5,-4 -4,-3 -3...-1 -2...2 1,2 2 2,3 2,3 3,4 4,5 5 2
-5,-4 -4,-3 -3,-2 -2,-1 -l,O,l 1 1,2 2,3 3,4 4,5 5 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3 -5 -5,-4 -4,-3 -4,-3 -4,-3 -3 -3,-2 -3...-1 -3...3 1...4 4,5

5 -5...5 1...5 4,5 4,5 4,5 5 5 5 5 5 5

To provide a bit more motivation as to the efficacy of qualitative mathematics,

let us explore an efficient representation of P B , ~ . Since P B , ~ has 11 values, a number

capable of representing any subset of these values would require 11 bits. The following

implementation rounds to one and one-half bytes:

Example 2 (Hexadecimal Representation of &,5)

PB.5 is a set of 11 values. The power set 2'B95 can be contained in 11 bits, which round

up to 3 nybbles (half-bytes). The most-significant nybble can be used to represent

the special values -5, 0, and 5, the middle nybble the bounded negative values, and

the least-significant nybble the bounded positive values:

Special Negative Positive
0 I00 -1 010 1 001
-5 200 -2 020 2 002
5 400 -3 040 3 004

-4 080 4 008

For example, the set of values { -4, -3,0,5} would equal 5CO.

Using this encoding scheme, we can implement addition as an 11 x 11 array:

87

Example 3 (Hexadecimal representation of table 1)

(Refer to example 2 for explanation of hexadecimal values.)

+ I 200 080 040 020 010 I00 001 002 004 008 400
----+--

200 I 200 200 200 200 200 200 280 280 280 2F0 7FF
080 I 200 280 280 280 280 080 OCO OCO OF0 1FF 40F
040 I 200 280 OCO OCO OCO 040 060 070 177 OOF 408
020
010
I00
001
002

I 200 280 OCO 060 060 020 030 133 007 OOC 408
I 200 280 OCO 060 030 010 I11 003 006 OOC 408
I 200 080 040 020 010 100 001 002 004 008 400
I 280 OCO 060 030 Ill 001 003 006 OOC 408 400
I 280 OCO 070 133 003 002 006 006 OOC 408 400

004 I 280 OF0 177 007 006 004 OOC OOC OOC 408 400
008 I 2F0 1FF OOF OOC OOC 008 408 408 408 408 400
400 I 7FF 40F 408 408 408 400 400 400 400 400 400

Thus, the addition of whole ranges of numbers is reduced to referencing an array

element.

5.3.2 Subtraction

Subtraction is derived from negation and addition. Given q , T E PB,N,

q H r = q1Ifil-r

The following table summarizes how one number in PB,N is subtracted qualita-

tively from another.

88

Table 2 (Subtraction)

4 r 41-lr
1 - N 1, ..., N - N
2 - N + 1, ..., -1
3 - N , ..., -1
4 - N , ..., -3
5 - N , ..., -2
6 - N , ..., -1
7 - N + 1, ..., -1
8 - N + 2, ..., -1
9 0
10 1, ..., N - 1
11 1, ..., N

1, ..., -q

q + 2, '", 1
q + l

q - 1

0

4

- N , ..., 4 - 2
- N , ..., 0
- N + 1, ..., -4
- N

q - 1 , q

4 , 4 + 1
q , ..., -1

4

4 , " ' 7

1, ..., r
r - l , r
r
r , r + 1
N

5.3.3 Multiplication

Qualitative multiplication is defined as follows. The subsequent proof shows

that this definition satisfies the concept of a qualitative function (Def. 10).

Definition 11 (Multiplication for PB,N)

{ O

if qr = 0
q U r = sign(qr) - (1, ..., r + 1) if 141 = 1

sign(qr) (1, ..., q + 1) if Irl = 1
sign(qr) . {min(141 + Irl - 1, N) , min((41 + Irl, N)) otherwise

Theorem 9 (Multiplication)

Let: 0 < Is(5 N , 1 < q < N , 1 < r < N .

Proof : Reason
- N U - N E N U N Thm. 6

= P ((B"- ' ,+a) * (AN- ' ,+CO)) Def. 10,Def. 8

89

= P ((B2N-2, $0))
(5.36) = N

ouo = P (O . 0) = 0
S U O = O U S

= P (0 . sign(s) * Is\)
= o

1u-1 = -1U1
= -(1U1)
= {-2, -1}

qJq = q U 1 = -1U-q = -4U-l

P ((0, B] (BQ-' , B Q])
= P ((0) BQ+l])

(5.38) = (1, ... , q + 1}

Def. 7

Thm. 3
Thm. 7
(5.36)

Def. 10,Def. 8,Def. 7
Thm. 3
Def. 10,Def. 8
Def. 7

Thm. 6
Def. 10,Def. 8

Def. 7

Thm. 7
Thm. 6
(5.37) ,Thm. 2

Thm. 3,Thm. 6
Def. 10,Def. 8

Thm. 3,Thm. 6
Thm. 7
(5.38)

Thm. 3,Thm. 6

Def. l0,defipbn

Def. 7

Thm. 3,Thm. 6

90

Thm. 7
(5.39)

(5.40)

q u r = - q u - r
= P ((Bq-1, Bq] - (B Y - 1 , B'])
= p ((Bq+'-2, fp+'])

{ q + r - l , q + r } i f q + r 5 N
= (N i f q + r > N

Thm. 6
Def. 10,Def. 8

Def. 7

Thm. 3
Thm. 7

The following table shows multiplication for PN,5.

Example 4 (Multiplication table for P N , ~)

-
-5
-4
-3
-2
-1
0
1
2
3
4
5

-5 -4 -3 -2 -1 0 1 2 3 4 5
5 5 5 5 1...5 0 -5...-1 -5 -5 -5 -5
5 5 5 5 1...5 0 -5...-1 -5 -5 -5 -5
5 5 5 4,5 1...4 0 -4...-1 -5,-4 -5 -5 -5
5 5 5 3,4 1,2,3 0 -3...-1 -4,-3 -5,-4 -5 -5

1...5 1...5 1...4 1,2,3 1,2 0 -2,-1 -3...-1 -4...-1 -5...-1 -5...-1
0 0 0 0 0 0 0 0 0 0 0

-5...-1 -5...-1 -4...-1 -3...-1 -2,-1 0 1,2 1,2,3 1...4 1...5 1...5
-5 -5 -5,-4 -4,-3 -3...-1 0 1,2,3 3,4 4,5 5 5
-5 -5 -5 -5,-4 -4...-1 0 1...4 4,5 5 5 5
-5 -5 -5 -5 -5...-1 0 1...5 5 5 5 5
-5 -5 -5 -5 -5...-1 0 1...5 5 5 5 5

91

5.3.4 Division

Division will not be proven formally here. The interested reader can use the

strategy demonstrated for addition and multiplication or derive this definition directly

from the multiplication table.

Definition 12 (Division)

5.3.5 Relational Operators

Since qualitative values partition 82 disjointly, two elements of qualitative values

cannot be equal if the qualitative values are different. However, except for the point-

interval zero, nothing can be said about quq, since there exist values in (4) that

are not equal to each other.

Table 3 (Equality)

false i f q f r

{true, false} otherwise
i f q = r = O

Inequality is simply the negation of equality:

92

Table 4 (Inequality)

i f q f r
i f q = r = O

{true, false} otherwise

The less-than operation is true if q < r and false if q > r. In general, if q = r

then the value is unknown, with the exception of the point-interval zero:

Table 5 (Strictly Less Than)

i f q < r
i f q > r o r q = r = O .

{true, false} otherwise

The remaining inequalities can be derived easily from 111 by performing the

following transformations:

5.4 Inverse Relations

The algorithm in the next chapter performs backward propagation on assump-

tions, so that the state can be modeled more completely. Backward propagation is

accomplished by applying an inverse relation on each input.

The inverse relations are derived from the normal functions by solving for each

input. For example, the inverse relations for the product q u r = s are

93

The results are intersected with the current values of q and T . Take, for example, the

following set of values:

q = {-3, -2, -1,o, 1, a}

T = {0,1,2}

s = {-3, -2)

Calculating the inverse relations:

qnew = q n ~ M T
= { -3, -2, -1,0,1,2} n {-5, -4, -3, -2, -1}

= { -3, -2, -1}

Tnew = n
= {0,1,2} n { - 5 , -4, -3, -2, -1,1,2,3,4,5}

= {1,2>

These results correspond to the intuitive observations that only a negative can be

combined with a positive to produce a negative (c.f. q) , and zero cannot be a multi-

plicand of a non-zero product (c.f. T) .

5.5 A Qualitative Calculus of Deviations

A contribution of this dissertation is the use of qualitative mathematics to de-

scribe deviations. The concept is similar to the guide words of HAZOP. Although

digraph methods use a qualitative calculus to analyze flow deviations, it is important

to note that the deviations are indistinguishable from normal relationships. That

94

is, influences are only considered deviations if they are qualified with a fault. For

example, an influence of -1 if the valve is accidentally reversed is a deviation from

the norm, but -1 is not the value of the deviation. It is simply the influence of

one variable on another variable, the same as described for normal relationships. In

contrast, the calculus developed in this chapter is specifically a calculus of deviations.

The values characterize the value of a parameter in relation to its normal value.

Each qualitative value is a 2-tuple (V, D), where V is the qualitative domain

representing the possible values a process variable can take and D is the qualitative

domain representing the ways in which the variable can deviate from its correct value.

D includes the special value 0, which indicates that the variable’s value is correct.

In order to avoid confusion, V will be referred to as the “value part” and D will be

referred to as the “deviation part.”

The value part of the quantitative domains for deviation analysis are the causal-

ity diagram function types (i e . , the function ranges.) Recall from section 4.4.1 that

three types are needed to translate an RSML specification: boolean, enumerated, and

real. Another language may necessitate different quantitative domains.

In general, the values in a qualitative domain are chosen to distinguish as mini-

mally as possible between meaningful alternatives [12]. This goal applies to both the

value and deviation parts. The simplest calculus, sign algebra, was described above.

Sign algebra as applied to the deviation part describes whether the value part is too

high, too low, or correct.

The value-part functions are independent of the deviation part. That is, it

does not matter whether a variable is a deviation when calculating what its value

is. However, the deviation-part functions can be dependent on the value. Figure 5.2

95

4 S L L L N N N H H H

Table 5.2: Sign algebra of deviations. ‘L,’ ‘N,’ and ‘H’ represent values that are too
low, normal, and too high, respectively.

shows the rules for addition and multiplication. Deviations due to addition are inde-

pendent of the value part. However, the value part must be taken into account when

calulating a product’s deviation. Proofs of these calculations will be presented later

in this chapter.

5.6 Deviation Formulae

This section defines the meaning of a deviation and derives formulae to calculate

deviations for the functions introduced in section 4.4.1.

5.6.1 Numeric Functions

In order to formulate a calculus of deviations, it would be helpful to formally

define what is meant by a deviation. For purposes of this calculus, a deviation of a

numeric variable is defined to be the amount added to or subtracted from the correct

value in order to obtain the actual value. For example, if the pressure should be

96

10 p.s.i. but is in actuality 7 p.s.i. then the deviation in pressure is -3 p.s.i. The

corresponding formula is

(5.41) x a = x, -k xd,

where X is the variable, the subscript a means the actual value of X , c means the

correct value of X , and d is the deviation in X’s value.

Note that the deviation could be calculated in other ways. For example, Xd

could be the ratio 2. Under this paradigm, a value of Xd = -0.5 would mean that

X , is the opposite sign of and one-half the magnitude of X,. While this formula is

quite useful, x d does not have a value when X , = 0 and it is virtually meaningless

when X , = 0.

Equation (5.41) associates three values to each system variable. Since one value

can be derived from the other two, the variable may be represented unambiguously

by one of three pairs: (X a , X c) , (X, ,Xd) , or (X, ,Xd) . Although any of these three

alternatives would be appropriate, the calculus of deviations developed here is based

on (X a , x d) . The rationale is that xd is most salient (this being a deviation analysis),

and X , is more salient than X , since the analyst is presumably more interested in

understanding deviations in the context of what actually happens than what should

have happened.

Functions also conform to the above definition, so that replacing X with a

function f (X , Y, ...) yields the equation

(5.42) f a = f c + f d

The meaning of f a and f, are straightforward. They are defined in terms of the actual

and correct values of independent variables X , Y, etc., respectively:

(5.44)

However, since only the actual value and deviation are available for each variable,

equation (5.41) is used to replace each parameter in (5.44) with the available input

information:

By rearranging equation (5.42) and substituting (5.43) and (5.45) for f a and f c ,

respectively, a general definition for function deviations can be derived solely in terms

of the actual and deviation values of f’s inputs:

Equation (5.46) can be used as a template to derive the deviation functions for

numeric functions. A simple example to begin with is addition. The following proof

uses equations (5.46)) (5.43)) and (5.45) to show that the deviation of X + Y is simply

the sum of their deviations:

Unary negation is as follows:

(5.48)

98

Subtraction may be derived by using the results of addition and negation:

Thus far the proofs have shown that f d = f (X d , Y d , ...) for some functions. The

following proof for multiplication shows that deviations can interact with each other

as well as the actual values:

Division is as follows:

(5.52)

Reciprocal can be derived from quotient by setting X , = 1 and x d = 0:

(5.53)

99

5.6.2 Boolean Algebra

Since there are only two values in the boolean domain, the concept of a deviation

is limited to whether the value is correct or incorrect. Taking a logical “0” as being

the special value correct, and hence logical “1” as a deviation, the following truth

table shows the relationship between correct and actual values and deviations:

Correct Actual Deviation

0 0 0
(BC) (Ba) (B d)

0 1 1
1 0 1
1 1 0

One can readily see that this table describes the exclusive-or operation. Thus, the

boolean equivalent to equation (5.41) is

Given a boolean operator p (B , C , ...), the following equations are the boolean equiv-

alents of the numeric equations (5.42)-(5.46):

Negation is as follows:

(5.61)

100

Intuitively, this equation states that if a boolean variable’s value is incorrect (or

correct), then its negation is also.

Logical conjunction is given by

This form poses a problem for the forward algorithm presented in the next chapter. If

B, and Bd are both true, then B, Bd is false. False means “no deviation” and the

algorithm will not continue its search of (BC),. Factoring out @ and rearranging

the terms gives:

If B, and B d are both true, then the forward search algorithm will make the assump-

tion that

(B,C, V lB,(C, @ Cd) = True

which reduces to C, = True.

Substituting logical disjunction into 5.55 gives

Disjunction can likewise be rearranged to facilitate forward analysis:

101

5.6.3 Relational Operators

Equations (5.46) and (5 .55) both are used to determine the deviation equations

for the numeric relational operators. Like disjunction and conjunction, the relational

operators do not simplify beyond the given formulae:

5.6.4 Enumerated Types

An enumerated type is defined as a set of tokens over which the ’<’ operator

has been defined (thus enumerating the tokens.) The following function can be used

102

to map from an enumerated type € to the integers:

This function allows the deviation equations of the relational operators to be extended

to enumerated types by first mapping the inputs to the integers. For example, given

e , f E € 7

5.7 Application of Deviation Formulae to PB,N

Now that the deviation formulae and the qualitative domain PB,N have been

defined, they can be combined to create a qualitative calculus of deviations.

The deviation calculus could be extended by performing the kind of proof

demonstrated in section 5.3 on the deviation formulae. However, a simpler solu-

tion is to extend the causality diagram to include the deviation part. For example,

recalling that the deviation formula for multiplication is

the causality diagram fragment would be constructed as follows:

bd ad

103

This strategy has two advantages. First, it is a straightforward construction with no

necessary extensions to the PB,N algebra. Second, the inverse relationship between

deviations and the input values on which they depend can be exploited. For example,

The inverse deviation relations are calculated in the same manner as for the

value part. For the multiplication example,

5.8 Assumptive Functions

The deviation analysis algorithm must often make assumptions in order to prop-

agate deviations forward. The mathematical equivalent to this activity is termed the

assumptive function. The goal is to propagate a deviation, so the function assumes

that the deviation does propagate (a non-zero deviation part) and calculates the

inverse relation accordingly.

5.8.1 Addit ion

The deviation function for addition is

(x + Y) d = x d + Y d .

104

In order to propagate z d # 0 to produce (z + y)d # 0 the sum must be non-zero.

Thus, remove - z d from the set of possibilities for yd. For example, if X d = {1,2,3},

andyd={-1 ,0 ,1} , then thenewvaluefory~is{O,1} ,making(z~y)~={1 ,2 ,3 ,4} .

5.8.2 Subtraction

Subtraction is similar to addition, except values from X d are removed from yd’s

set of possibilities. Given the same example as for addition, the new yd = { -1, O}.

5.8.3 Multiplication

Now assume that x d is non-zero and we want to make (zy)d non-zero. The terms of

which x d is a part must be non-zero too. First of all, (x, - zd) # 0. As discussed

above, the set of possible values for x d must be removed from that for z,. For example,

if x d > 0, then x, 5 0. Proceeding to the product, (y, - yd) cannot be zero, since

this would cancel the effect of xd. Finally, z,y, cannot be the same value as its

subtrahend. In the most general case, this entails setting z,ya to zero in order to

propagate the deviation. However, additional constraints on the actual and deviation

values of z and y can loosen the constraint on z,y,.

Since multiplication is commutative, the same rules apply to propagating yd.

105

5.9 States

The algorithm presented in the next chapter performs a forward search based on

qualitative values of nodes in a causality diagram. The node-value pairs are collected

into sets referred to as states in this thesis. Each state describes the values of some

subset of nodes in the diagram at a particular instant of time. Since the nodes

are associated with either the system variables or some part of a system variable’s

definition, then the state also describes some portion of the system state. Generally

speaking, each state is consistent with some subset of the system states Q. Note that

the system variables have quantitative domains whereas the bindings in a state have

corresponding qualitative domains. Since many qualitative values can map to a single

qualitative value, a single state binding can represent many state bindings.

Deviation analysis begins with an initial state, composed of the analyst’s start-

ing assumptions. Assumptions are in the form of node value assignments, or bindings.

Using these initial bindings, the algorithm traces structural relations in the causality

graph, adding to the state’s set of bindings.

Deviation analysis also involves tracing the causality graph’s sequential rela-

tions. Normally the sequential relationship is traced forward (from cause-to-effect)

since deviation analysis is principally a forward analysis method. However, if a state

contains assumptions, as the initial state does, the causal relationships are also traced

backward one step to infer further bindings in the current state. This exercise is part

of the algorithm discussed in chapter 6. What is relevent at this point is knowing that

each state has a next state, which is in most cases calculated by following sequential

relationships forward. A state logically implies its next state, i.e., given a system

106

state S that is described by the bindings in qualitative state Q , it must be true that

Next (&) describes all possible system states that immediately follow S.2

The activity of using known bindings and causality graph to derive new bindings

is referred to as propagation in this thesis. A synonymous phrase that will be used in

chapter 6 is that the node’s value has been “updated” for a state. Please note that

the update occurs in the state’s data structure, i e . , progress is made in analysis of

a particular system state. The phrase does not mean that some system variable has

been updated, i.e., that the system has changed state. Changes are recorded as new

states in deviation analysis.

As shown in chapter 3 and as further described in this chapter, sometimes

additional assumptions need to be made in order to propagate deviations. When

this is the case the assumptions are added to the existing state in the form of node

bindings. This creates a new state whose bindings are a superset of the original state’s

bindings. The number of degrees of freedom in the variables is correspondingly fewer.

The new state is referred to as a derived state. The state to which it added its

assumptions is called the base state. A state that has no base state is called a root

state. The bindings in a state that are not in its base state are called its leaf bindings.

Since more than one set of assumptions may be made about a state to propagate

deviations, that state may have more than one derived state. Conversely, each derived

state has only one base state. Therefore, the states form a heirarchy.

A qualitative state S can be viewed as a predicate on its variable bindings:

S = bl A b2 A ... A b,,

2Note that the concept of “immediately following” is implicitly defined by the model. It may

mean a microsecond or a minute.

107

Assum tion a
Figure 5.2: Example of how assumptions and sequential propagation relate.

where b; is an assertion on a variable binding (e.g., v = High.) S being true means

that it is consistent with the state of the system at the time considered. The causality

diagram (which the reader may recall is essentially a set of axioms) can be used to

calculate S', which is the predicate describing what is true immediately subsequent

to S being true. This task will be described in detail in section 6.3.1, but briefly it

is accomplished by first following sequential edges to build a minimal set of bindings

for the next state and then following structural edges to obtain a full description of

the state.

A derived state sd is composed of the bindings of its base state sb and its leaf

bindings:

sd = sb A bl A ... A b,.

Thus it is trivially true that a base state implies its derived states. This observation

may be combined with the fact that a state implies its next state, yielding a sort of

lattice of implications, shown in figure 5.2. In this figure, forward sequential analysis

produces state s: from sb. Further analysis makes an assumption on the state sb
producing the derived state sd. Si can be produced directly by a forward sequential

analysis of sd (including the bindings sd inherits from Sb.) However, such an exercise

involves some redundant calculations, since the leaf bindings in sd often do not change

the propagation of values in sb. That is, some bindings in Si are the same as those in

108

function Contains-Deviation(S : Mode) : Boolean
begin

if Deviations-In-Leaf (S) then

else if not Root(S) then

else

return True;

return Contains-Deviation(Base(S)) ;

return False;
end ;

function Deviation-In-Leaf(S : Mode) : Boolean
begin

for each binding B in S do
if Is-Deviation(Value(B)) then
return True;

return False;
end ;

Figure 5.3: Algorithms for determining whether a mode contains any deviations.

5’:. In fact, SL can be treated as a derived state of 5’:. Only the forward propagations

that involve leaf bindings of Sd need to be included in Si. All other bindings can be

found in Si.

The automated algorithm in the next chapter discontinues its search along a

particular path if a state does not contain any deviations, since deviations cannot be

propagated from normal values. For purposes of that algorithm, a state S is consid-

ered to “contain deviations” if and only if it contains deviations in its leaf bindings

or its base state contains deviations. Figure 5.3 shows an algorithmic definition.

Chapter 6

A Forward Search Algorithm

As stated in chapter 2, the goal of this thesis is to develop a forward-search

algorithm for the purpose of hazard analysis of computer-controlled systems. The

goals of hazard analysis are to identify hazards, identify their causal factors, and

evaluate risk [16]. Since a forward search works from cause to effect, a forward-

searching hazard analysis would tackle the task of identifying potential hazards.

The algorithms in this chapter assume the following items are available:

e causality diagram,

e forward, backward, and conditional function mappings

e initial state,

e stopping criteria.

The causality diagram was discussed in chapter 4. The function mappings were

discussed in chapter 5 . The initial state is the starting place of the analysis.

Deviation analysis may be thought of as a type of symbolic execution, since the

specification is used to propagate symbols representing classes of values (as defined

by the calculus of deviations.) It may also be thought of as a limited theorem prover

that does not prove an a priori postulate, but rather can provide a posteriori “proof”

of circumstances leading from an initial state (the proof’s antecedent) to a hazardous

109

110
procedure Semi-Automated

var
S : Mode;

Push-Mode(Get-Initial-Mode-From-Analyst);
while Stack not empty do

S := Top(Stack) ;
Display-Mode(S) ;
case (Get-Command-From-Analyst) of

begin

begin

Generate-Derived-Modes:
Propagate-Possible-Deviations(S);
Display-Derived-Modes(S);

Push-Mode (Get-Derived-Mode-From-Analyst (S)) ;

Push-Mode (Next (S)) ;

Pop (Stack) ;

Analyze-Derived-Mode:

Analyze-Next-Mode:

Back-Track:

end ;
end ;

procedure Push-Mode(S : Mode)
begin

Push(Stack, S) ;
Propagate-Def inite-Deviations(S) ;

end ;

Figure 6.1: A semi-automated search procedure.

state. As will be discussed, this proof may involve making assumptions in addition

to the antecedent. The steps of the proof are composed using rules of the calculus

(the qualitative functions) and the axioms (the relations in the causality diagram.)

The search may be directed by the analyst, in which case the deviation analysis

is semi-automated , or it may be directed by a top-level search algorithm, in which

case it is f u l l y automated. The advantage of a semi-automated search is that the

analyst, who invariably has more knowledge of the system than is represented by the

specification, can often direct the search toward the most serious hazard scenarios.

111

The advantage of a fully-automated search is that a large number of scenarios can be

generated and prioritized very quickly. The analyst can then scan a large number of

scenarios, focusing on the ones that appear to be the most interesting. Both methods

are profiled in this chapter.

6.1 Semi-Automated Analysis

The SemiAutomated search is guided by a stack of states. The stack represents

states that have already been visited by the analyst. This means that deviations have

already been propagated for these states (refer to the presentation of Propagate--

Def i n i t e D e v i a t i o n s .) The procedure P u s h S t a t e performs the push and analysis.

The SemiAutomated procedure begins by obtaining the initial state from the

analyst. The state is passed to the procedure P u s h S t a t e , where it is analyzed for

definite deviations and pushed onto the stack. This is the extent of the initialization

of the procedure and it then proceeds to the command loop.

When presented with a new state the analyst has two options: analyze the next

state in sequence (ie., go forward a step) or generate derived states. Derived states

are discussed in detail later in this chapter, but briefly they are based on the current

state with additional assumptions in order to propagate deviations. Once the derived

states have been generated, the analyst may choose one to analyze. A search may

be concluded or postponed at any point by back-tracking, ie., popping states off the

stack.

The command loop (whi le S tack n o t empty do) first pops the top state off

the stack. It displays the state, including any auxiliary information obtained from

112
procedure Automated

v a r
Depth : i n t e g e r ;
S : Mode;

Append(Queue, Get- Ini t ial-Mode-From-Analyst ;
while Queue not empty do

begin

begin
S : = Pop-Front (Queue) ;
Propagate-Def ini te-Deviat ions(S) ;
i f (Contains-Deviations(S)

and Consistent (S)
and Unique (S)
and not Hazard(S)) then

i f (Step(S) < MAX-STEPS) then
Prepend(Queue, Next (S) ;

i f (Depth(S) < MAX-DEPTH) then
begin

begin

Propagate-Possible-Deviat ions(S) ;
f o r each c h i l d mode C of S do

Append (Queue, C) ;
end ;

end

Append-Search-Path-To-Hazard-List(S);
else i f Hazard(S) then

end ;

Figure 6.2: A fully-automated search procedure.

PropagateDef i n i t e D e v i a t i o n s , such as whether it is inconsistent, whether it

dead-ends, or if it contains a hazardous deviation (as defined by the stop criteria.)

The analyst is then prompted for a command. If the command is to generate derived

states, then it does so, displaying the results. If the command is to visit a derived

state, then the user is prompted for the state to visit. The derived state is analyzed

and pushed onto the stack. If the analyst gives the command to visit the next state in

time, then that state is created if necessary (by Next), analyzed, and pushed onto the

stack. The back-tracking command pops the top state off the stack so that the next

113

iteration of the command loop refers to the state analyzed just before the current

one. The analysis concludes when all of the states are popped off of the stack.

The lust in-first out nature of this algorithm is written to complement the char-

acteristics of short-term human memory. However, it is presented as an example only.

The SemiAutomated procedure could be improved in several ways. For example, the

command loop could include

0 a command that lists the stack,

0 a command that displays the search tree generated so far,

0 a command that pops the stack until a particular state is on top (multiplepops),

0 a command that performs A n a l y z e N e x t S t a t e until a state is reached that ei-

ther has no deviations, is inconsistent, or contains a hazardous deviation (mul-

tiple pushes).

6.2 Fully-Automated Analysis

The procedure Automated does a breadth-first search with respect to the derived

states. First, all of the states with no assumptions are analyzed. Then the states with

a single assumption are analyzed. The analysis continues until the maximum depth

of assumptions (MAXDEPTH) is reached or until there are no more states to analyze.

The algorithm first obtains the initial state from the analyst. This state is

appended to an empty queue. It is not first analyzed as in the semi-automated

algorithm since the search loop performs this task.

The search loop first pulls a state S off the front of the queue. S is analyzed

for definite deviations (discussed in detail in the next section.) In order for the

114

next state of S (Next (SI) and the S’s derived states to be analyzed, S must satisfy

certain criteria. First, it must contain at least one deviation. If it does not, then no

states based on S will contain deviations. Second, it must be internally consistent-

inconsistent states are not reachable according to the requirements and assumptions

of the system. Third, it must be unique. If it is not unique, it means that this state

has been reached via a different search path; any further analysis would be redundant.

Fourth, if S contains a hazardous deviation then by definition the search is complete.

In addition, Automated prevents runaway searches by limiting the number of

steps taken forward (MAXSTEPS) and the number of assumptions a search path can

have (MAXDEPTH). The values for MAX-STEPS and MAXDEPTH depend on the char-

acteristics of the system being investigated and should probably be determined by

the analyst, although the algorithm could make suggestions based on the size of the

causality diagram.

If S satisfies the criteria to continue forward, then S’s successor is prepended to

the queue. Thus, Next (S) is analyzed on the next iteration of the search loop.

If S satisfies the criteria to investigate potential derived states, then those states

are generated by PropagatePossibleDeviations (section 6.4) and appended to the

queue. Since they are appended to the queue and the successors are prepended, this

ensures that all of the successors are analyzed before the first derived state. When the

last successor state is analyzed, the derived states are at the front of the queue. Their

successors are prepended and as they are analyzed, the new, twice-derived states are

appended. In this way, all of the states of one order of derivation are analyzed before

any of a higher order of derivation.

Figure 6.3 shows an example of the search order. The boxes represent states in

a search tree, where the initial state is the root of the tree (marked by the number

115

/
/

/

131
/

/
/

Figure 6.3: An example of a search tree produced by the Automated procedure. The
boxes represent states, the dashed lines mark successor states, the solid lines mark
derived states, and the numbers show the order of analysis.

‘1’). One of the children of each non-leaf state is its successor; they are connected by

a dashed line. For the purpose of the example, each non-leaf state has two derived

states-these states are connected to their base states by solid lines. The numbers

in the boxes show the search order. Refer to table 6.1 for the execution trace corre-

sponding to figure 6.3.

The algorithm given here is intended as an example of an efficient traversal of

the search space. It is based on the premise that hazard scenarios requiring fewer

assumptions are likelier than those with more assumptions. This premise is not

necessarily true. Other search strategies that are more sensitive to the characteristics

of the system being analyzed are possible. For example, the system variables could be

prioritized according to likelihood to deviate. Thus, assumptions could be weighted.

These weights could be used to sort the search queue. Such a strategy is outside the

scope of this thesis, since it would likely require a detailed taxonomy of safety-critical

systems.

116

State (s) Operation State Queue
Analyst provides initial state

1
1
1
2
2
2
3
4
4
4
5
6
6
6

7-1 3

Pop front and analyze
Prepend successor
Append derived states
Pop front and analyze
Prepend successor
Append derived states
Pop front and analyze
Pop front and analyze
Prepend successor
Append derived states
Pop front and analyze
Pop front and analyze
Prepend successor
Append derived states
Pop front and analyze

Table 6.1: Execution trace of the Automated procedure. The left column is the state
currently being analyzed. The middle column is the action being performed. The
right column is the queue of states yet to be analyzed.

6.3 Propagation of Definite Deviations

The previous section presented the main loop for the Automated algorithm.

This section describes the procedure PropagateDef i n i t e D e v i a t i o n s , shown in

figure 6.4. This procedure takes a state as input and attempts to propagate any

deviations it contains. In the process of doing this it also propagates any normal

values that it can, since the normal values of some variables can condition whether

and how deviations can occur in other variables.

Each state has two queues for the analysis of definite deviations. One queue

is for the forward propagation of value changes. The other queue is for propagation

backward, from effect-to-cause. The forward queue is appended under three circum-

stances:

117

procedure Propagate-Definite-Deviations(S : Mode)
begin

if (Is-Derived-Mode(S) and not Finished(Base(S)) then
Propagate-Def inite-Deviations(Base(S)) ;

Process-Definite-Queues(S);
if (Initial-Mode(S) or From-Base(S) then
begin

Process-Definite-Queues(Prev(S));
Process-Def inite-Queues (S) ;

end
Set-Finished(S);
Check-For-Equivalence@);
Check-For-Hazards(S);

end ;

procedure Process-Definite-Queues(S : Mode)
begin

while not Empty(Backward-Queue(S)) do

while not Empty(Forward-Queue(S)) do
Propagate-Backward-Def inite(S, Pop-Front (Backward-Queue(S))) ;

Propagate-Forward-Def inite(S, Pop-Front (Forward-Queue(S))) ;
end ;

Figure 6.4: The PropagateDef initeDeviations procedure.

118

0 when an assumption about a node is added to a state (including the initial

assumptions the analyst provides),

0 when a node changes value due to a forward propagation (see discussion of

PropagateJorwardDef ini te) , and

0 when a node changes value due to a backward propagation (see discussion of

PropagateBackwardDef ini te) .

The backward queue is appended in two circumstances:

0 when an assumption about a node is added to a state (including the initial

assumptions the analyst provides),

0 when a node changes value due to a backward propagation (see discussion of

PropagateBackwardDef ini te) .

The procedure takes a state S as input. If S is a derived state, then its base state

must be analyzed before S is analyzed. Otherwise not all values will get propagated in

S. For example, suppose node N1 = N2 A N3. Also suppose that in order to propagate

a deviation (unrelated to N I) , N2 is assumed to be true in S. If N3’s value is unknown

in Base (S) , then N1’s value is also unknown, since

true A N3 = N3 = unknown.

If, however, some value in Base(S) propagates to cause N3 to be set to true or false,

then N1 should be updated correspondingly in S. It will not, however, if Nl is analyzed

in S prior to N3 in Base (S) . Thus Base (S) should be analyzed before S (hence the

first statement in the procedure.)

After analyzing the base state if necessary, S’s definite queues are processed. The

procedure ProcessDef inite4ueues first processes all of the nodes in the backward

119

definite queue (BackwardlJueue(S) in the algorithm.) The backward definite queue

is processed first because, as noted above, backward analysis can cause nodes to

be added to both the backward queue and the forward queue, whereas the forward

analysis can only result in nodes being added to the forward queue. Processing the

backward queue results in an empty backward queue and a possibly larger forward

queue. Processing the forward queue results in an empty forward queue and no change

in the backward queue. Thus, processing backward and then forward results in two

empty queues. Processing forward and then backward could result in a non-empty

forward queue.

If S contains assumptions, then its previous state must also be analyzed because

some values may propagate from S backward to its previous state and then back again.

For example, if node Nl = Previows(N2) V N3, and an assumption of state S

is that Nl is false, then N2 must be false in Prev(S) and N3 false in S. If another

node N4 = Previous(N2) A N 5 , then N4 must be false in S. In order for these values

to propagate properly, S must first be analyzed as described above. The backward

propagations may add nodes to Prev(S)’s queues. Thus, Prev(S) must then be

analyzed. The forward propagations in analyzing P r e i (S) may add nodes to S’s

forward queue. (It cannot result in adding any nodes to S’s backward queue because

only the forward propagations in Prev(S) can affect S’s queues, and as previously

discussed backward queues can only be added to by backward propagations.) Since S’s

forward queue may now contain entries, it must be re-analyzed. The procedure simply

calls P r o c e s s D e f i n i t e a u e u e s again, although the check to see if the backward

queue is non-empty is unnecessary.

Next, the algorithm sets a flag in S to signify that it has been analyzed for

definite deviations. The flag is used to determine whether the base state needs to

120

be analyzed before analyzing a derived state, a possibly recursive procedure if the

base state is itself a derived state. This situation is not possible for the Automated

algorithm since it analyzes all base states before proceeding to their derived states

(since the successor states are pushed onto the front of the queue and derived states

are pushed onto the rear.) However, the SemiAutomated algorithm allows the analyst

to analyze a state S’s derived state before S’s successor. The derived state’s successor

has S’s successor as its base state. For example, in figure 6.3 state 2 is state 5’s base

state.

The state is then checked for equivalence with any other state in the search tree.

Finally, it is checked for the existence of hazardous deviations. These algorithms as

well as the definite propagations will be discussed presently.

6.3.1 Forward Propagation

Forward propagation is the application of a qualitative function to update a

binding in a state. Each node in the causality diagram is associated with a qualitative

function. If one of the inputs to that node has its value refined, then the value of

the node may also need to be refined. Forward propagation may take one of three

forms-structural, sequential, or combined-depending on the types of edges into the

node.

The impetus for forward propagation is the update of a node’s value. Since

the update occurs for a particular state, the two arguments that must be passed to

the P ropaga te Jo rwardDef i n i t e procedure (figure 6.5) are a state S and a node N.

Recall that the edges out of a node N lead to nodes with which N has a causal relation-

ship. Accordingly, PropagateTorwardDef i n i t e calculates the qualitative function

121

for each child node C by iterating over the edges out of N. If the edge is sequential,

then the function must be evaluated in the context of Next (S). The variable C h i l d 3

is assigned to either S or Next (S), depending on the type of edge.

The variable Old-Value is assigned to the current binding of C in C h i l d S or

Unknown if no binding exists. NewBinding is assigned to the value of C’s qualitative

function given the new values of its inputs. The function Input-Values supplies the

function with values either from C h i l d S or Prev(Chi ldS) , depending on the type

of each edge into C.

If the new value is inconsistent with the old value, then C h i l d 3 is marked

inconsistent. The topic of consistency will be discussed presently. Otherwise, if the

node’s value has been refined, then it is added to ChildS’s forward queue, so that

its new value may be propagated to its children. If C’s value is not updated and N’s

value is a deviation, then C is added to the “possible” queue to see if any assumptions

can be made to propagate the deviation.

The procedure finishes when all of the children of N have been inspected, thus

concluding all possible ways that N’s new value may be propagated forward (without

making assumptions.)

6.3.2 Backward Propagation

Backward propagation is the application of the inverse of a qualitative function

to update a state’s binding. Its role in deviation analysis is to provide additional in-

formation about a state. Like forward propagation, backward propagation is initiated

by the initial assumptions. However, since deviation analysis is primarily a forward

search method, the Automated algorithm limits the use of backward propagation to

122

procedure Propagate-Forward-Definite(S : Mode, N : Node)
var
Child-S : Mode;
C : Node;

foreach arc A out of node N do
begin

begin
if (Sequential(A)) then

else
Child-S : = Next (S) ;

Child-S := S;
C := Child(A) ;
Old-Value := Value(Chi1d-S, C);
New-Value := Forward-Mapping(Function(C),

if (Inconsistent(O1d-Value, New-Value)) then
Input-Values(S, C));

Mark-Inconsistent(Chi1d-S);
else
begin
if (Old-Value <> New-Value) then
begin
Update-Value(Chi1d-S, Cy Old-Value, New-Value);
Add-To-Forward-Queue(Child-S, C);

if (Unknown-Deviation(New-Value) and
Deviant(Value(S, N))) then

Add-To-Possible-Queue(Child-S, C);

end ;

end ;
end ;

end ;

Figure 6.5: The PropagatePorwardDef inite procedure.

123

the state containing the assumptions and possibly its preceding state (see sections 6.2

and 6.3.) The SemiAutomated algorithm as written does not allow analyzing the pre-

vious state, but this could easily be added.'

6.3.3 Existence of Deviations

The existence of deviations is simple to track. When a state is created, a flag,

say C o n t a i n s D e v i a t i o n s , is set to false. If a binding is added which contains a

deviation, the flag is set to t r u e .

6.3.4 Internal Consistency

When the new value is calculated, the old and new value might be inconsistent.

Recalling that qualitative values are actually sets over the quantitative domain, the

two values are inconsistent if the new value is not a refinement of the old value, ie.,

New-Value Old-Value. In other words, the new value must either be the same as

the old value or describe a portion of the old value.

An inconsistent result may be due to inconsistent assumptions. Recalling the

I n t r u d e r- S t a t u s diagram (figure 2.l) , an example of two inconsistent assumptions

is a state in which Descend and Other- Traf f i c are both active.

lTo give the analyst the ability to propagate definite deviations backward in time, the following

line could be added to the case statement:

AnalyzeSreviousState: PushState(Prev(S)) ;

124

procedure Propagate-Backward-Definite(S : Mode, N : Node)
var
Parent-S : Mode;
P : Node;

if (Arity(N) = 0) then return;
Old-Input-Values := Input-Values(S, N);
New-Input-Values :=

if (New-Input-Values = Inconsistent) then

begin

Backward-Mapping(Function(N), Old-Input-Values, Value(S, N));

begin
Mark-Inconsistent (S) ;
return

end ;

begin
foreach parent arc A of node N do

if (Sequential (A)) then

else
Parent-S := Prev(S);

Parent-S := S ;
P : = Parent (A) ;
if (New-Input-Values(P) <> Old-Input-Values(P)) then
begin
Update-Value(Parent,S, Old-Input-Values(P),

New-Input-Values(P));
Add-To-Forward-Queue(Parent-S, P);
Add-To-Backward-Queue(Parent-S, P);

end ;
end ;

end ;

Figure 6.6: The PropagateBackwardDef inite procedure.

125

It is possible for inconsistencies to arise from an internally inconsistent calculus.

For example, the following two qualitative axioms are inconsistent:

Positive x Unknown = Positive

Positive x Negative = Negative

The hypothesis “The product of a positive and negative is positive” is true according

to the first axiom but false according to the second.

It is also possible for inconsistencies to arise indirectly from the requirements

specification and thus from the causality diagram directly. This situation arises from

loops in structural causality, in which a path may be traced from a node back to itself

exclusively via structural edges. Such a definition constitutes a recursive, iterative

function (such as a limit function or a fractal.) Although it may be useful in some

cases to define an environmental variable recursively, analysis of the causality diagram

for structural loops is probably prudent.2 Note that loops involving at least one

sequential edge do not present a problem, since a node’s value is defined in terms of

its value in a previous state.

6.3.5 Checking for Equivalence

It is desirable to identify equivalent states to avoid redundant searches. This

is useful not only for an efficient automated algorithm, but to aid the analyst in

recognizing patterns in the search space.

Checking for equivalence is a potentially costly operation. If the states contain

an average of b bindings, and there are c states to check against, then a naive check

’An even more prudent approach is to analyze the original specification for structural loops.

126

for equivalence of a state with previously defined states is O(cb2), assuming the states

are unsorted. If the states are sorted (an operation requiring time O(b log b)) , then

the cost of a search for equivalence is O(cb + blog b) .

The search for an equivalent state is conducted each time a new state is created.

Neglecting the effect of duplicates on the number of states created and kept, the

number of comparisons for n iteratively-created states is given by

n

Gib+ blogb
i=l

= O(n2b + nb log b)

Thus the search for equivalent states can become quite costly as the size of the search

and number of bindings increases.

An efficient method of comparing states is to compute a pseudo-random integer

based on the bindings in a state. The integer can be used to exclude practically all

states except those that are equivalent. This method is similar to a hash function. A

hash function should distribute hash keys amongst the buckets as evenly as possible,

to minimize the number of conflicts. Similarly, the proposed equivalence function

seeks to distribute states evenly over a set of n-bit integers, which shall be called

equivalence codes. Additionally, the distribution should be as random as possible, so

that similar states do not have a significantly higher probability of having the same

code. Thus, even though a search will very likely be concentrated around a group of

similar states, their equivalence codes should be randomly distributed.

The code function takes a state as input, which is to say that it takes a list

of bindings as input. An additional constraint on the code function is that it be

commutative with respect to the order of the bindings. This avoids the need to sort

127

#include <stdlib.h>

unsigned Encode(unsigned x) { srand(x); return (unsigned) rand(); 3

unsigned Equivalence-Code(Binding B)

unsigned int code, num-bytes, i;
unsigned char *bytes;

code = 0;
num-bytes = sizeof (B) ;
bytes = (char*) &B;
for (i = 0; i < num-bytes; i++)

code = Encode(code A Encode((unsigned) bytes [ill) ;
return code;

3

Figure 6.7: Sample C++ functions for calculating equivalence code.

the bindings so that they are always handed to the function in the same way. It also

allows the equivalence code to be computed incrementally, as bindings are added.

This is particularly useful when a derived state is created, as it can simply inherit

the equivalence code of its base state.

For example, suppose a base state has the bindings b l , bz, and b3 and its derived

state has the binding b4. Suppose also that another base state has the bindings bl

and b3 and its derived state has the bindings bz and 134. Then the two derived states

must have the same equivalence code, which should be different from the codes from

the two base states.

The hash function is composed of two operators, one for translating a variable

binding to a pseudo-random key and one for combining the keys into a single equiva-

lence code. It is the combining function that must satisfy the commutative property.

The translating function must satisfy the constraint that it yields the same value each

time it is called for a particular binding (ie., node-value pair).

128

A suitably random translating function is the pseudo-random function contained

in most programming language libraries. Figure 6.7 shows an example from the C

programming language. When this example was run on 100,000 test cases (nodes

numbered between 0 and 9,999 and values numbered between 0 and 9) there were

three pairs of bindings with the same equivalence code.3

A suitably random hash code is integer addition of pseudo-randoms. Integer

addition is addition modulo 2*, where N is the number of bits. Thus, the distribution

of the sum randomly distributed naturals between zero and 2N - 1 results is itself

random.

6.3.6 Checking for Stopping Criteria

The stopping criterion can take one of several forms. It can be a list of nodes in

which a deviation is considered hazardous. It can be a list of states that are considered

hazardous. The former is faster to check for. The latter allows for node interaction,

e.g., one may interested in a state in which one node is too high while the other is

too low.

6.4 Propagation of Possible Deviations

Conditional analysis is the propagation of possible deviations. These are devia-

tions which, given certain assumptions about the state of the system over and above

what is currently known about its state, will definitely occur.

3Experiment performed on a Mitra 486DX running Linux 1.1.2, using GNU gcc 2.5.8 and GNU

stdlib. The Binding data structure was represented as struct { unsigned short int Node;

char Value ; }.

129

procedure Propagate-Possible-Deviations(S : Mode)
begin
while not Empty(Possib1e-Queue(S)) do
Propagate-Possible(S, Pop-Front(Possib1e-Queue(S))) ;

end ;

procedure Propagate-Possible(S : Mode, N : Node)
var
D, Parent-D : Mode;

if (Arity(N) == 0) then return;
Old-Input-Values := Input-Values(S, N);
Old-Value : = Value(S , N) ;
New-Values : =

if (New-Values(N) <> Old-Value) then

D := Create-Derived-Mode(S);
Update-Value (D , Old-Value , New-Values (N) ;
Add-To-Forward-Queue (D , N) ;
Add-To-Backward-Queue(D, N);
for each parent arc A of N do

if (Sequential(A1) then

else

begin

Possible-Mapping(Function(N), Old-Input-Values, Old-Value);

begin

begin

Parent-D := Prev(D);

Parent-D := D;
P := Parent(A);
if (New-Values(P) <> Old-Values(P)) then
begin
Update-Value(Parent-D, Old-Values(P),

Add-To-Forward-Queue (Parent-D , P) ;
Add-To-Backward-Queue(Parent-D, PI;

New-Values (P)) ;

end ;
end ;

end ;
end ;

Figure 6.8: The PropagateBackwardDef inite procedure.

130

Note that unlike the PropagateDef i n i t e procedures, this procedure does not

need to check whether the old and new values are inconsistent. This is because the

definite procedures check for inconsistencies whenever a node changes value. If a

value changes due to a forward propagation, then it is known to be consistent with

respect to its inputs; it needs to be checked whether it is consistent with its children

nodes. This will happen as soon as it is removed from the forward definite queue.

Likewise a backward propagation causes a node’s value to be consistent with one of

its children nodes. Since backward propagations cause a changed node to be put into

both the forward and backward queues, it will be checked against its inputs when it

is analyzed by PropagateBackwardDefinite and against its other children nodes

when it is analyzed by PropagateYorwardDef in i te .

It is important to note that these assumptions may be inconsistent with the state

of other system variables. Several things can cause this. Some assumptions about the

system’s behavior may have been left unspecified. Also, the qualitative mathematics

presented in chapter 5 groups sets of values that are considered similar. This grouping

facilitates analysis, but can result in loss of significant information. The result of

impossible assumptions is that the analyst may be presented with an impossible

hazard scenario. In this respect, deviation analysis is a conservative method similar

to SMHA. The analyst must invest time in protecting against potentially impossible

situations, but in doing so also provides insurance against false assumptions and

future changes in the system’s operating environment.

On the other hand, the assumptions made by the algorithm may actually be

inevitable given the known state of the system. Again, this may be due to other

unspecified assumptions made by the experts or due to the grouping effect of qual-

itative analysis. In this case, the analyst is presented with a scenario and told that

a hazard might occur, when in point of fact it will occur. The analyst should still

131

take the scenario seriously, but a potential danger is that in the face of limited time

and resources the analyst may give the hazard a lower priority than other less-likely

hazards.

The forward possible queue is appended when a node’s deviation does not prop-

agate forward and one of the node’s children has an unknown deviation value.4 This

indicates the possibility that assumptions could be made in order to propagate the

deviation.

6.5 Summary

This chapter presented two related algorithms, one semi-autoamted and one

automated, to assist the analyst in discovering potential problems in how software

handles system deviations.

The author feels compelled to discuss two possible uses of deviation analysis that

he feels are not advisable. Although the resulting trace of events from a forward search

ties a hazard to a given set of causal factors, this information cannot be considered

fulfillment of the goal of finding causal factors. The analyst cannot assume that all

causal factors have been identified. Though it may be tempting to use the information

to infer the impossibility of a hazardous event, this practice is not sound.

As discussed in chapter 1, the calculation of risk is a controversial task, due

to the lack of confidence, statistical or otherwise, that can be placed in software

failure probabilities. Although the results of the algorithm presented in this chapter

can conceivably be used to calculate approximate risk given an initial scenario, a

4N.B.: “Unknown” means that a value may or may not be deviant from the norm, not that it is

definitely a deviation of unknown magnitude.

132

full forward search, and probabilities on the assumed events, such an analysis would

require a careful treatment of variable interaction, since a wrong assumption that

system variables are independent can lead to failure probabilities that are many orders

of magnitude too optimistic. Therefore, the author advises against such an analysis.

Chapter 7

Examples

This chapter presents experimental results of the deviation analysis algorithm

and a discussion of how deviation analysis addresses the goals of this dissertation.

The experiments were performed on two models. One model is a simple train cross-

ing example and the other is part of the requirements specification for the TCAS

avionics software. The results for each experiment will take the form of space and

time requirements and some example scenarios produced by the algorithm.

The software used in these experiments utilizes the RSML simulator developed

at the University of California, Irvine and the University of Washington. The majority

of the deviation analysis software is written in C++. The top-level search algorithms

presented in chapter 6 are written in the interpreted language Tcl. The compilation

and experiments were performed on the Linux 32-bit operating system (version 1.1.2)

using the GNU C++ compiler (version 2.5.8). Size and execution performance data

are for unoptimized code (including debugging information) on an Intel 80486DX2

microprocessor at 66 MHz. Available physical memory ranged from six to twelve

megabytes before loading the code and data. The initial free memory affects how

soon before virtual memory swaps begin, so execution figures are only approximately

related. Sixteen megabytes of virtual memory were available for the experiments.

133

134

Receive(GateDownSignal)lGateDownEvent

Approach

IApproachingEvent

nnCrossingEvent

Incrossing

PastEvent

_ _ - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

;ateDownEvent :?sing Event

Green

ApproachingEvenUSend(ApproachingSigna1)
PastSignalEvenUSend(PastSigna1)

I CONTROLLER I
r

Receive(PastSigna1)TainPastEvent
Receive(ApproachingSignal)KrainApproachingEvent

GateUpCmdSentEvent TrainApproachingEventEnteredCrossingEvent

TrainPast
TrainPastEventLeftCrossingEvent GateDownCmdSent
.
7, EnteredCrossingEvenUGateDownCmdEvent

3
LeftCrossingEvenUGateUpCmdEvent

GateDownCmdEvenUSend(GateDownCmd)
GateUDCrndEvenUSend(GateUDCmd~

7, Rec’dDownCmdEvenUSendDownSignalEvent

Rec’dUpCmdEvent I
SendDownSignalEvenUSend(GateDownSignal) 1

Figure 7.1: Train crossing example.

The parameters for PB,N are as follows. The base (B) equals 4 and the number

of elements on each side of zero (N) is 8. Thus, the domain has the following divisions:

(-16384, -4096, -1024, -256, -64, -16, -4,0,4,16,64,256,1024,4096,16384}

The major consideration in choosing the parameters was to make sure that the divi-

sions reached into the tens of thousands, since the altitude variables in the avionics

example can reach 30,000 feet or more. N was chosen to be large enough to provide

roughly order-of-magnitude coverage within BN.

This chapter introduces some terminology. Deviations of nodes that have been

identified by the analyst as being significant are referred to as “significant deviations.”

“Significant states” are states that contain significant deviations. A trace from the

initial state to a significant state is a “scenario.”

135

Queue Size
Queue Size

450

400

350

700

250

200

150

1 0 0

50

0

7.1

Queue

Iterations
0 1000 2000 3000 4000

Figure 7.2: Queue sizes on train crossing example 1.

Train Crossing

A specification for a simple system is shown in figure 7.1. As the train ap-

proaches a railroad crossing, a sensor on the tracks sends a signal to the gate con-

troller, which then lowers the gate. After the train has left the intersection, another

sensor signals the controller to raise the crossing gate.

The software creates the causality diagram in about 1.5 seconds. The data

structures require 252 kilobytes. There are a total of 980 nodes in the causality

diagram, with 65 nodes directly mapped to entities in the RSML specification and

the balance of the nodes encoding the causal relationships of the somewhat rich RSML

semantics.

The analyst makes initial assumptions-including at least one deviation-to

start the analysis. In this case, one might investigate the potential effects of the

136

ASSUMPTIONS:
Step 0: node557: dev(ApproachingSigna1Event) = T
Step 0: node50: value(ApproachingSigna1Event) = F
Step 2: node911: correct(value(TrainPositionUnknown)) = T
Step 3: node972: correct(value(GateUp)) = T
VALUES :
Step 0: node50: value(ApproachingEvent) = F
Step 1: node68: value(SendApproachingSigna1) = F
Step 2: nodel83: value(Unknown-to-TrainApproaching) = F
Step 2: node69: value(ReceiveApproachingSigna1 TrainApproachingEvent) = F
Step 3: node156: value(EnteredCrossingEvent) = F
Step 3: node213: value(GateUp-to-GateDown) = F
Step 4: nodel90: value(TrainAppr0aching-to-Unknown) = F
Step 4: nodel50: value(GateDownCmdEvent GateDownCmdSentEvent) = F
Step 5: nodel71: value(SendGateDownCmd) = F
DEVIATIONS:
Step 0: node557: dev(ApproachingEvent1 = T
Step 1: node589: dev(SendApproachingSigna1) = T
Step 2: node714: dev(Unknown-to-TrainApproaching) = T
Step 2: node874: dev(ReceiveApproachingSigna1 TrainApproachingEvent) = T
Step 3: node832: dev(GateUp-to-GateDown) = T
Step 3: node871: dev(EnteredCr0ssingEvent) = T
Step 4: node869: dev(GateD0wnCmdEvent GateDownCmdSentEvent) = T
Step 5: node898: dev(SendGateD0wnCmd) = T

Table 7.1: Summarized results of one of the train crossing’s scenarios.

approach signal not being sent to the controller when it should have. The analyst

must also select significant nodes. For the first example, the only significant node is

the gate-down command issued by the controller. With only the one significant node,

the search grows very large. Figure 7.2 is a graph of the state queue size for each

iteration of the Automated algorithm. Automated’s main loop made 4,700 iterations

before exhausting available memory on the computer (approximately 24 Mbytes.)

The angle of the curve suggests that the algorithm is not yet halfway through the

search.

Although the search did not terminate, it still yielded useful information. Recall

that deviation analysis is meant as an investigative method, not an exhaustive analy-

sis. In fact, the most general results are the first to be generated since the algorithm

137

Number Assumpions
Assumptions

I I I I I Assumptions
1 8 -

1 7 -

1 6 -

1 5 -
1 4 -

1 3 -

1 2 -

1 1 -
1 0 -

9 -

8 -

7 -

6 -

5 -

4 -

3 - -

2 -

1 -

0 -

-

I -

I
-

1
-

-

-

-

-

-

-
-
-
-

-

-

I I I I
0 1000 2000 3000 4000

-
I Iterations

Figure 7.3: (Train crossing, example 1.) The 17: axis is the number of iterations of
Automated. The y axis is the number of assumptions made to arrive at the state
being inspected in iteration i.

investigates all scenarios with n assumptions before moving on to n + 1. Table 7.1

shows the first significant state to be returned by the algorithm. The scenario re-

quires four total assumptions. The first two assumptions are the ones provided by

the analyst: the signal for the approaching train does not occur when it should. The

next assumption occurs two steps later-the controller's model of the train should

be in state Unknown.' Finally, the controller model of the gate should be in state

GateUp in the following step. Given these assumptions, the algorithm determines the

values and deviations shown. In particular, it finds that under these circumstances,

the controller should send the command to lower the crossing gate but does not.

Chapter 6 asserted that the search space can be pruned by limiting the number of

steps or assumptions. Given that the number of assumptions increases monotonically

as the search progresses, a limit on the number of searches amounts to a stopping

138

Steps Investigated
Step

18 -

1 7 -

1 6 -

1 5 -

14 -

13 -

1 2 -

1 1 -

1 0 -

9 -

8 -

7 - -

6 -

5 -

4 -

3 -

2 -

1 -

0 -

-
-

Iterations

Figure 7.4: (Train crossing, example 1.) Number of steps taken after initial assump-
tion to arrive at the state under investigation at each iteration.

criterion for the algorithm (see figure 7.3.) Limiting the number of steps can prune out

much of the search space if the analyst is interested in immediate effects. Figure 7.4

shows the number of steps (sequential arcs followed) to get to the state at each

iteration i. Figures 7.5 and 7.6 shows the queue and assumption graphs when the

maximumnumber of steps is limited to five (example 2). Note that the search was not

limited as to the number of assumptions. The algorithm terminated after 98 seconds

and 383 iterations, finding four significant states. The search required 2.6 megabytes

of memory.

The search may also be pruned by adding significant nodes. The first example

showed that the search space grows very large when targeting a single significant node.

Figure 7.7 compares the first example with a third search on both of the controller’s

‘Recall from chapter 5 that “value(Unknown) @ dev(Unknown)” represents the correct value of

Unknown. The software converts this expression to “correct(Unknown)” for display to the analyst.

139

Queue Size
Queue Size

45 0

400

350

300

25 0

200

1 5 0

1 0 0

5 0

0

0 1 0 0 0 2000 3000 4000

Max Step=S
Unlimited
......................

Iterations

Figure 7.5: Search queue comparison for train crossing examples 1 and 2.

Assumptions

I
1 8 -
1 7 -

1 6 -

1 5 -

1 4 -

1 3 -

1 2 -

1 1 -

1 0 -
9 -

8 -

7 -

Number Assumpions

I I I I Max Step=5 - Unlimited
.... -

................. J -

................. __
........... ..._, -

..........., -

......... -

-

-

-

-

-

__
-

4 -

3 -

2 -

1 -

0 -

-

-

-

-
I I
0

I
1 0 0 0 2000

I
3000

I
4000

Iterations

Figure 7.6: Assumption comparison for train crossing examples 1 and 2.

140

Significant Nodes (Train Crossing)
Queue Size

45 0

400

350

300

250

200

150

1 0 0

50

0

0 1000 2000 3000 4000

.. Gate Up, Gate Down
Gate Down

Iterations

Figure 7.7: Search queue comparison for train crossing examples 1 and 3.

outputs (gate-up and gate-down commands.) The third example terminated after 24.2

minutes. The search required 21.3 Mbytes of memory to iterate over 4,373 states. A

total of 220 significant states were discovered.

7.2 TCAS I1

Chapter 3 introduced the TCAS I1 avionics system. The portion of the spec-

ification that deals with the model of own aircraft (i .e. , the aircraft containing the

TCAS unit) will serve as an example. Figure 7.8 shows an RSML diagram of the

states in the Own-Aircraft model. The top part of the diagram lists inputs from

other components, the states in the middle represent knowledge about the state of

own aircraft (including commands received from TCAS), and the bottom of the dia-

gram lists outputs to other aircraft components, such as the TCAS display and the

141

I Own-Aircraft I
f Input: \

Own-Alt-Radio : Integer Traffic-Display-Permitted : {True,False)
Standby-Discrete-Input : (True, False} Aircraft-Altitude-Limit : Integer
Own-Alt-Barometric : Integer Prox-Traffic-Dis lay : { True,False}
Mode-Selector : {TA/RA, Standby, TA-Only, 3,4,5,6,7} ~ ~ n ~ ~ ~ ~ ~ ~ - ~ ~ f e . , T r u e , F a l s e }
Radio-Altimeter-Status : {Valid, Not-Valid}
Own-Air-Status : {Airborne, On-Ground} Altitude-Climb-Inhib-Active : (True, False}
Own-Mode-S-Address : Integer Increase-Climb-Inhibit-Discrete : (True,False}
Barometric-Altimeter-Status : (Fine, Coarse)

Effective-SL I Descend-Inhibit

I ;---__-----------
I Increase-Descend-Inhibit

I

4
I
I

Inhibited

I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I I
I I I I

output:

Sound-Aural-Alarm : (True,False} Climb-RA : Enumerated
Aural-Alarm-Inhibit : (True,False} Descend-RA : Enumerated
Combined-Control-Out : Enumerated Own-Goal-Alt-Rate : Integer
Vertical-Control-Out : Enumerated Vertcal-RAC : Enumerated

\ Horizontal-RAC : Enumerated

Figure 7.8: The TCAS I1 model of its own aircraft.

transmitter. The Advisory-Status and transition logic (which is quite substantial)

are not shown in the figure. The relevant parts of this diagram will be explained as

needed.

The Own-Aircraft causality diagram contains 322 nodes directly related to items

of the specification (state names, event names, transition names, etc.) and 9675 total

nodes. The causality diagram for Own-Aircraft requires 2.8 megabytes of memory.

The data structure is created in approximately 11 seconds.

One of the inputs to the Own-Aircraft model is the altitude above sea-level,

provided by the aircraft’s barometric altimeter (Own-Alt-Barometric in the figure.)

142

Queue Size
Queue Size

Queue

0 1 0 0 200 300 400
Iterations

Figure 7.9: Queue sizes on TCAS I1 example.

Suppose that the analyst wishes to know potential effects of the barometric altime-

ter reading being too high. In the example the deviation of Own-Alt-Barometric is

assumed to take the qualitative value 1, 2, or 3, which corresponds to

0 < dev(Own-Alt-Barometric) 5 64.

The analyst next identifies the “significant” nodes, i.e., the nodes for which

deviations are considered to be of interest. In this example, assume that any transition

is considered to be significant. In other words, if a transition is taken when it should

not be, or is not taken when it should, then report the assumptions that led to the

deviation.

Figure 7.9 is a graph of search queue size versus iteration. The search queue

contains the intial state before the first iteration and is empty again after 424 iter-

ations. The queue contains a maximum of 62 states. The entire search took 23.8

143

minutes. 1,473 total states were created. The total memory used in the search was

3.2 Mbytes.

The algorithm identified 144 significant states. All of the significant states ended

with deviations of automatic sensitivity level (ASL). ASL is a measure of TCAS’s

sensitivity, which can be viewed as a protective sphere around the aircraft. The ASL

can range between a value of 1 and 7. The higher the ASL, the larger the protective

sphere. ASL 1 affords no sphere of protection and displays no traffic information.

While in ASL 7, TCAS attempts to give a warning 35 seconds prior to the point of

closest approach with a threatening aircraft. The inputs to ASL are the altimeter

readings and the prior “effective” sensitivity level (ESL), which is based on pilot and

air traffic control input.

One scenario output by the program involves a failure to transition from ASL

1 to 5. Recall that ASL 1 provides no protection. On the other hand, ASL 5 pro-

vides a warning of 25 seconds. If ASL fails to transition from 1 to 5, then TCAS

is not providing the protection that it should be. The output for the scenario is

listed in table 7.2. In the lists of values and deviations there is a combination of

dev(ASL-1-to-ASLS) = T and value(ASL-1-to-ASL-5) = F. Together they mean

that the transition should have occurred but did not.

The first assumption in the list is the analyst’s assumption. The remaining as-

sumptions are made by Automated in an attempt to propagate the deviation through

the ASLA to ASL-5 transition, shown in figure 7.10. The barometric altitude reading

appears twice in the table, in the third and fourth rows.2 A deviation in the fourth

row is what occurs in this scenario, and that is the meaning of the second assumption.

’The deviation for the third row eventually leads to a transition from ASL 1 to 5 that should not

occur but does, enabling TCAS alarms when they should be disabled.

144

"ransition(s): +

Location: Own-Aircraft D Auto-SLs-30
Trigger Event: Descend-Inhibit-Evaluated-Evente_279
Condition:

A
N
D

Effective-SLS-3o in state 4
Effective-SL,_so in state 6
Own-Alt-Barometricv-33 22550 ft(ZSL4T05)
Own-Alt-Barometricv-33 59500 ft(ZSLGT05)
Own-Alt-Radiov_31 22550 ft(ZSL1T05)
Climb-Desc.-Inhibit,-lQ~
Own-Air-Statusv-3~ = Airborne
Radio-Altimeter-Statusv-3s = Valid

OutDut Action:

~

T
OR

Figure 7.10: The automatic sensitivity level transition from state 1 to state 5 .

In order for the high value to propagate, the value of Own-Alt-Barometric must be

greater than the 9500-foot threshold (ZSL6T05) and the amount of the deviation

must be greater than the amount it is above that threshold. In other words, without

the deviation, the altimeter reading would have been less than or equal to 9500 feet.

Now that the deviation has propagated to the fourth row, assumptions must be

made in order to propagate it to the entire column. Since the fourth row should have

been true but is not, the other three relevant rows should be satisified so that the

column's value is dependent on the fourth row, and hence the deviation. The third,

fourth, and fifth assumptions address these rows. Note that the assumptions are not

on the actual values but the correct values. This is a more general assumption, since

a deviation in any of these other rows also propagates a deviation. The analyst may

wish to assume that the actual values are correct (and in fact the Automated algorithm

may assume this at a later point of the search) but at this point it is sufficient to

assume that the effective sensitivity level should be in state 6, the aircraft should not

be inhibited from climbing and descending, and the aircraft should be airborne.

145

STATE: state12241 STATUS: has-deviations significant from-base
STEPS: 0 # ADDED ASSUMPTIONS: 7
ASSUMPTIONS:
Step 0: node4949:
Step 0: node5729:

Step 0: node5759:
Step 0: node5769:
Step 0: node5750:
Step 0: node5827:

Step 0: node5705:

Step 0: node5688:

VALUES :
Step 0: node1072:

dev(0wn-Alt-Barometric) == 1 2 3
ZSL6T05 < value(0wn-Alt-Barometric) AND
ZSL6T05 - value(0wn-Alt-Barometric) >

correct (value(ESL-6 Eff ective-SL In State ESL-6))
correct(N0T value(C1imb-Desc-Inhibit))
correct (value(0wn-Air-Status == Airborne)
NOT value(ESL-4 Effective-SL In State ESL-4) OR
value(C1imb-Desc-Inhibit) OR
NOT value(0wn-Air-Status == Airborne) OR
value(Radi0-Altimeter-Status == Valid)
NOT value(ESL-4 Effective-SL In State ESL-4) OR
NOT value(0wn-Alt-Radio >= ZSL4T05) OR
value(Climb,Desc-Inhibit) OR
NOT value(0wn-Air-Status == Airborne) OR
NOT value(Radio-Altimeter-Status == Valid)
correct(value(ASL-1 Auto-SL In State ASL-1) AND
value(Descend-Inhibit-Evaluated-Event))

value(ASL-6-to-ASL-5) = F

-dev(Own-Alt-Barometric)

Step 0: node780: value(ASL-4-to-ASL-5) = F
Step 0: node634: value(ASL-2-to-ASL-5) = F
Step 0: node1218: value(ASL-7-to-ASL-5) = F
Step 0: node926: value(ASL-5-to-ASL-5) = F
Step 0: node468: value(ASL-1-to-ASL-5) = F
Step 0: node291: value(0wn-Alt-Barometric) = 7 8
Step 0: node474: value(0wn-Alt-Barometric >= ZSL4T05) = T
Step 0: node478: value(0wn-Alt-Barometric <= ZSL6T05) = F
DEVIATIONS:
Step 0: node5692: dev(ASL-1-to-ASL-5) = T
Step 0: node5731: dev(0wn-Alt-Barometric <= ZSL6T05) = T
Step 0: node4949: dev(0wn-Alt-Barometric) = 1 2 3

Table 7.2: Scenario produced for TCAS I1 barometric altimeter deviation.

146

Recall from chapter 3 that an AND/OR table is true if one of its columns is true.

The third column is false when it should be true, but this deviation does not propagate

if one of the other columns is true. The sixth assumption addresses the second column

of the AND/OR table. The expression is the negation of the second column, except

that the third column cannot be false, since Own-AIt-Barometric > 9500 feet. For the

second column the actual rather than correct values are assumed because a deviation

in the second column may cancel out the barometric altimeter deviation. For example,

if the assumption were correct (NOT ESL-4),3 then ESL would be allowed to be in

state 4, and if the other conditions are also satisfied the AND/OR table evaluates to

true despite the deviation in the barometric altimeter. Thus, the deviation does not

propagate.

The seventh assumption causes the first column to be false. Note that both

the first and second columns can be made false by not being in ESL 4, being climb-

descend inhibited, or not being airborne. Interestingly, the latter two rows cause the

third column also to be false. Combining one of these with the the third, fourth,

and fifth assumptions implies multiple, possibly independent, deviations. A strength

of deviation analysis is that its search is not limited to single failures. Scenarios

such as this will hopefully help the analyst to consider novel and potentially complex

interactions between system variables.

The final assumption involves propagating the AND/OR table to the transition.

ASL should be in state 1 and the trigger event should occur in order for the deviation

147

to propagate. Generally the analyst may assume that they actually are true, but like

the third column assumptions, the possibility of multiple deviations is left open.

A trace of the Automated algorithm is listed in table 7.3. A graphical repre-

sentation of this trace is provided by figure 7.11. The nodes in the graph represent

nodes in the causality diagram. (Nodes 5753, 5827, and 491 appear twice to fit the

graph on a page; each pair is a single node.) Edges are causal relationships, with the

parents below the children. For example, node 5753 (in the top-lefthand corner) is

dependent on node 5751 and node 5752 for its value. Arrows represent the direction

of the search. Arrows pointing toward the top indicate that a parent node changed a

child node’s value via Propagate-Forward_Definite. A downward arrow indicates that

Propagate-Backward-Definite changed a parent’s value based on the child’s value. The

nodes’ function and value are given except where irrelevent to propagation. Although

space does not allow a full treatment of the meaning of each and every node, the in-

tuitive meaning of certain nodes is given in table 7.6. The reader may also refer to

table 7.2.

7.3 Conclusions

The experiments show that deviation analysis can take a formal specification

and given one or more initial assumptions and one or more significant nodes can

produce scenarios that are likely to be of interest to the safety analyst. The inputs to

and output from the algorithm can be expressed in terms of the source specification,

making it straightforward to use.

Interestingly, increasing the number of “significant nodes” increases the general-

ity of the search, but actually constrains it in that the search size can only be reduced

148

I n i t :
state-I : Created as i n i t i a l s ta te .
state-I: Assume node4949 i s (I 2 3).

s ta te-I : Forward D e f i n i t e : Considering node4949:
state-I: node5723 becomes F due t o node4949’s new v a l u e .
s tate-I: node5724 becomes T due t o node4949’s new v a l u e .

s tate-I: Forward D e f i n i t e : Considering node5723:

s tate-I: Forward D e f i n i t e : Considering node5724:

state-I: Forward P o s s i b l e : Considering node5730:

node5730 as T .

s ta te- I : node5728 becomes F due t o node5723’s new v a l u e .

s tate-I: Add node5730 t o Forward P o s s i b l e queue.

s t a t e - 2 : Crea ted as de r ived of state-I t o p ropaga te

s t a t e - 2 : Assume node5729 i s T .
s t a t e - 2 : Forward D e f i n i t e : Considering node5730 :

s t a t e - 2 : Forward D e f i n i t e : Considering node5731 :

s t a t e - 2 : Backward D e f i n i t e : Considering node5729:

s t a t e - 2 : node5731 becomes T due t o node5730’s new v a l u e .

s t a t e - 2 : Add node5761 t o Forward P o s s i b l e queue.

s t a t e - 2 : node5721 becomes T due t o node5729’s new v a l u e .
s t a t e - 2 : node5725 becomes T due t o node5729’s new v a l u e .

s t a t e - 2 : Forward D e f i n i t e : Considering node5721:

s t a t e - 2 : Forward D e f i n i t e : Considering node478:

s t a t e - 2 : Forward D e f i n i t e : Considering node490:

s t a t e - 2 : Forward D e f i n i t e : Considering node491 :

s t a t e - 2 : Forward D e f i n i t e : Considering node488 :

s t a t e - 2 : node478 becomes F due t o node572l’s new v a l u e .

s t a t e - 2 : node490 becomes F due t o node478’s new v a l u e .

statell838: node491 becomes F due t o node490’s new v a l u e .

s t a t e - 2 : node488 becomes F due t o node49l ’s new v a l u e .

s t a t e - 2 : node5818 becomes T due t o node488’s new v a l u e .
s t a t e - 2 : node5825 becomes F due t o node488’s new v a l u e .

s t a t e - 2 : Forward P o s s i b l e : Considering node5761:

node5761 as T .
state-3: Crea ted as de r ived of s t a t e - 2 t o propagate

state-3 : Assume node5759 i s T .

Table 7.3: Execution order of the Automated algorithm on the TCAS I1 example
(continued on next page)

149

state-3: Forward D e f i n i t e : Considering node5761:

state-3 : Forward D e f i n i t e : Considering node5763 :

state-3: Forward P o s s i b l e : Considering node5771:

node5771 as T .

state-3: node5763 becomes T due t o node576l ’s new v a l u e .

state-3: Add node5771 t o Forward P o s s i b l e queue.

state-4: Crea ted as de r ived of state-3 t o propagate

state-4: Assume node5769 i s T .
state-4: Forward D e f i n i t e : Considering node5771 :

state-4: Forward D e f i n i t e : Considering node5744:

state-4: Forward P o s s i b l e : Considering node5752:

node5752 as T .

state-4: node5744 becomes T due t o node577l’s new v a l u e .

state-4: Add node5752 t o Forward P o s s i b l e queue.

s t a t e - 5 : Crea ted as d e r i v e d of state-4 t o propagate

s t a t e - 5 : Assume node5750 is T .
s t a t e - 5 : Forward D e f i n i t e : Considering node5752 :

state-5 : Forward D e f i n i t e : Considering node5753 :

s t a t e - 5 : Forward P o s s i b l e : Considering node5829:

node5829 as T .

s t a t e - 5 : node5753 becomes T due t o node5752’s new v a l u e .

s t a t e - 5 : Add node5829 t o Forward P o s s i b l e queue.

s t a t e - 6 : Crea ted as de r ived of s t a t e - 5 t o propagate

s t a t e - 6 : Assume node5827 i s T .
s t a t e - 6 : Forward D e f i n i t e : Considering node5829 :

s t a t e - 6 : Forward D e f i n i t e : Considering node5693:

s t a t e - 6 : Backward D e f i n i t e : Considering node5827 :

s t a t e - 6 : Backward D e f i n i t e : Considering node5819:

s t a t e - 6 : Backward D e f i n i t e : Considering node5817:

s t a t e - 6 : Forward Definite: Considering node492:

s t a t e - 6 : node5693 becomes T due t o node5829’s new v a l u e .

s t a t e - 6 : Add node5707 t o Forward P o s s i b l e queue.

s t a t e - 6 : node5819 becomes T due t o node5827’s new v a l u e .

s t a t e - 6 : node5817 becomes T due t o node5819’s new v a l u e .

s t a t e - 6 : node492 becomes F due t o node5817’s new v a l u e .

s t a t e - 6 : node498 becomes F due t o node492’s new v a l u e .

Table 7.4: Execution order of the Automated algorithm on the TCAS I1 example
(continued on next page)

150

s t a t e - 6 : Forward D e f i n i t e : Consider ing node498 :
s t a t e - 6 : node5696 becomes T due t o node498’s new va lue .
s t a t e - 6 : node5703 becomes F due t o node498’s new va lue .

s t a t e - 6 : Forward P o s s i b l e : Consider ing node5707:

node5707 as T .
state-7: Created as de r ived of s t a t e - 6 t o p ropaga te

state-7: Assume node5705 is T .
state-7: Forward D e f i n i t e : Consider ing node5707:

s t a t e - 7 : Forward D e f i n i t e : Consider ing node5683 :

state-7: Backward D e f i n i t e : Consider ing node5705:

state-7: Backward D e f i n i t e : Consider ing node5697:

state-7: Backward D e f i n i t e : Consider ing node5695:

state-7: Forward D e f i n i t e : Consider ing node497:

state-7: Forward D e f i n i t e : Consider ing node469:

state-7: Forward P o s s i b l e : Consider ing node5690:

node5690 as T .

state-7: node5683 becomes T due t o node5707’s new va lue .

s t a t e - 7 : Add node5690 t o Forward P o s s i b l e queue.

s t a t e - 7 : node5697 becomes T due t o node5705’s new va lue .

state-7: node5695 becomes T due t o node5697’s new va lue .

state-7: node497 becomes F due t o node5695’s new v a l u e .

state-7: node469 becomes F due t o node497’s new v a l u e .

state-7: node468 becomes F due t o node469’s new v a l u e .

state-8: Created as de r ived of state-7 t o p ropaga te

state-8: Assume node5688 is T .
state-8 : Forward D e f i n i t e : Consider ing node5690 :

state-8: node5692 becomes T due t o node5690’s new va lue .

Table 7.5: Execution order of the Automated algorithm (continued.)

5

w

w
 ..

57
-T

(O
R

)
57

50
=T

56

!
58

25
=F

'(A
N

D
) n

57
62

4

49
lK

 5
7

5
9

-
1

7
7

5

57
21
=T

57
25

0
49

49
=1

p,
3

0
49

2=
F(

A
N

D
)

48
8=

F
A

N
D

)

t
A

B

E
G

IN

I

49
1a

=F
 (c

on
t.)

38

5
/

\

152

Node Meaning
29 ESL in state 6
385
416
468
468
469
478
488
490
49 1
492
497
498
4949
5683
5688
5690
5691
5692
5693
5695
5696
5697
5701
5703
5705
5706
5707
5721
5723
5724

air status is airborne (row 7)
not climb or descend inhibited
ASL in state 1 and triggering event is present
Transition ASL 1 to 5
AND/OR table (guarding condition for the transition) is satisfied
actual value of barometric altimeter 5 9500feet.
Column 3 value
Rows 2 and 4 in AND/OR table are true
Rows 2 and 4 are true and row 6 is false
Column 2 value
Column 1 value
Column 2 or 3 is satisfied
barometric altimeter deviation
AND/OR table deviation
Conditions under which table deviation propagates to transition
transition deviation, due to table deviation
Transition deviation, due to deviation in ASL 1 or trigger event
Transition ASL 1 to 5 deviation
Deviation in “column 2 OR column 3”
Column 1 is not satisfied
Neither column 2 nor 3 is satisfied
All 3 columns are false (AND/OR table is false)
Column 1 should be false
column 1 should be false, columns 2 and 3 are false
Conditions under which col. 2 and 3 deviation propagates to whole table
AND/OR table deviation, due to column 1
AND/OR table deviation, due to “column 2 OR columnn 3”
actual value of barometric altimeter > 9500 feet.
barometric altimeter reading too low
barometric altimeter reading too high

Table 7.6: Informal meaning of causality diagram nodes in the TCAS I1 example
(continued on next page.)

153

Node Meaning
5725 deviation is greater than difference between correct and actual values
5727
5728
5729

5730
573 1
5744
5750
5751
5752
5753
5759
576 1
5762
5763
5769
5770
5771
5817
5818
5819
5823
5825
5827
5828
5829

Conditions under which “ Own-Alt-Barometric 5 9500 feet” propagates.
barometric altimeter 5 9500 feet and it shouldn’t be
Amount that Own-Alt-Barometric is more than 9500 feet is less than
deviation
Own-Alt-Barometric > 9500 feet and it shouldn’t be
Own-Alt-Barometric 5 9500 ft is a deviation
Column 3: rows 2, 4, and 6 are deviation
Conditions to propagate deviation in rows 2, 4, and 6 to all of column 3
Column 3 is a deviation due to row 7
Column 3 is a deviation due to rows 2, 4, and 6
Column 3 deviation
Column 3: conditions to propagate deviation in row 2 to rows 2 and 4
Column 3: rows 2 and 4 are deviation because of row 4
Column 3: rows 2 and 4 are deviation because of row 2
Column 3: rows 2 and 4 of the AND/OR table deviation
Column 3: conditions to propagate row 2 or 4 to rows 2, 4, and 6
Column 3: rows 2, 4, and 6 are deviation due to row 6
Column 3: rows 2, 4, and 6 are deviation due to row 2 or 4
Column 2 is false
Column 3 is false
Columns 2 and 3 are false
Column 2 should be false
Column 3 is true and column 2 should be false
Conditions under which col. 3 deviation propagates to col. 2 and 3
Column 2 deviation propagates to columns 2 and 3
Column 3 deviation propagates to columns 2 and 3

Table 7.7: Informal meaning of nodes in the TCAS I1 example (continued.)

154

by adding significant nodes. As expected, the Automated algorithm appears to be

at a disadvantage when investigating effects on a single significant node. A directed

investigation still1 may best be performed via a backward search, such as a fault tree

analysis. Deviation analysis appears to be most useful when it is open-ended (many

critical nodes), investigating the effects of a small number of assumptions on a larger

number of significant nodes.

The software requires a large amount of memory (sometimes in the tens of

megabytes) but the execution time is under 30 minutes for all experiments performed.

Even when the algorithm exhausted memory, it was after it had identified many

scenarios.

Chapter 8

Results and Future Directions

8.1 Results

This dissertation presented a new forward analysis method for safety-critical

software. The method utilizes a primitive language of causality, a calculus of devia-

tions, and either a semi-automated or automated search procedure.

A Primitive Language of Causality. The primitive language of causality was

shown to be powerful enough to encode state-based specifications using RSML as an

example. The language lends itself well to analysis since tracing causal relationships

is reduced to traversing the diagram forward from the source variable to the variables

it affects.

A Calculus of Deviations. A new family of qualitative domains, PB,N, was de-

fined. PB,N domains have a logarithmic scale so that a large range of values may be

partitioned by relatively few symbols at a coarseness appropriate for the size of the

numbers. The parameter B can be changed to alter the size of the ranges that the

155

156

symbols represent. The parameter N determines the number of symbols in the qual-

itative domain. Together, they determine the coverage of the domain (not counting

the two extreme symbols that go to infinity.)

An algebra was developed for PB,N, including the general functions used by the

causality diagrams. The inverse functions were also defined.

The concept of a deviation was defined formally and used to derive deviation

formulas for the general functions. The PB,N algebra was then applied to these for-

mulas to produce a calculus of deviations. In addition to the normal and inverse

functions of the PB,N qualitative algebra, ((ass~mpt ive~~ functions, crucial to propa-

gating deviations with incomplete information, were defined.

Search procedures. Two alternative search algorithms were presented. Both algo-

rithms work from a causality diagram, applying the calculus of deviations in order to

propagate the analyst’s initial assumptions forward. The SemiAutomated algorithm

allows the analyst to control which path the search will take. The analyst’s options

include following a state forward one step to propagate definite deviations or adding

assumptions (provided by the algorithm) to the current state in order to propagate

possible deviations.

Given a set of initial assumptions, the Automatedalgorithm performs a “definite-

first” search. The algorithm thus provides the most likely scenarios first.

157

Future Directions

Causality diagram size. Although chapter 4 showed that the causality diagram is

appropriate for state-based languages, the language needs improvement. It is subject

to get very large. The causality diagram for a medium-sized RSML specification can

contain 5,000 nodes.' The issue is one of size versus speed, with the economics of

computer resources suggesting that memory can afford growth faster than the CPU

can. However, this strategy may need to be modified for very large specifications.

Application to other specification languages. An outstanding research is-

sue is the applicability of the causality language to various specification languages.

Chapter 4 showed that state-diagram concepts can be translated to causality dia-

grams. The causality diagram also appears well-suited to functional definitions.

Timing. A weakness of the language of causality lies in its treatment of timing.

The author is confident that the language of causality can be extended to include

more complex temporal relations. An obvious extension is to qualify sequential edges

with timing information. This strategy would be similar to some Petri-net variants.

Although the calculus of deviations would be unaffected by such an extension, the

deviation analysis procedures would require significant changes.

Of particular interest is the development of deviations based on timing. The

notions of early and lute are currently defined as sequences of {true-wrong, false-

wrong} and {false-wrong, true-wrong}, respectively. These deviations could be refined

with additional timing information.

'In the author's implementation of the deviation analysis algorithm, the nodes appear to use well

under 100 bytes on average, not counting descriptive strings taken from the specification.

158

Improved search strategy. The first incarnation of deviation analysis employs a

“definite-first” search strategy. If a deviation can definitely be propagated, then the

algorithm follows that line of inquiry before turning to deviations that require making

additional assumptions on the system state. At first blush this appears to be a sound

strategy, but more research needs to be conducted into alternative strategies. The

analyst is a potential source of additional information to guide the analysis. Perhaps

data from usage of the SemiAutomated algorithm could guide future research in this

area.

Backward deviation analysis. Deviation analysis was developed as a forward

search method. As discussed already, the forward algorithm is very inefficient at

finding the effects of particular assumptions on particular critical nodes. A backward

deviation analysis, exploiting the backward-definite operation and adding a back-

ward-possible operation, may be a reasonable alternative or supplement to fault tree

analysis and other backward methods. This possibility should be researched for its

practicality and usefulness.

Calculus of Deviations. The calculus of deviations is currently based on a specific

qualitative mathematics, P B ~ . PB,N can be improved by representing the negative

powers 0 < B-g < 1. This improvement provides a reciprocal balance for multiplica-

tion the way that negation does for addition.

Alternatively, a calculus of deviations could be developed for intervals. The

author has already begun research into this area. The results can be much more

precise than with qualitative mathematics, but the precision comes at a cost. First,

the number of intervals could grow quite large, leading to a nonlinear increase in com-

putations (which are already more complex than qualitative calculations.) Second,

159

analysis over arbitrary intervals is subject to “creep”, whereby a node’s value is incre-

mentally adjusted over time, leading to much finer-grained analysis. Such an analysis

may be too involved to be useful early in software development. The coarse nature

of qualitative mathematics allows whole classes of values to be treated at once.

Analysis skills. With deviation analysis, the analyst has been provided with a new

tool, but how to use the tool is a significant issue. The analyst needs skills to help

focus on the analysis that will help most. This is a difficult problem because it is

often the analyst’s knowledge that interferes with critical review of the specification.

Deviation analysis has concentrated on the mechanizable parts of HAZOP. Perhaps

some attention should be paid now to adapting the social component of HAZOP to

deviation analysis.

Space and time efficiency. The space and time figures cited in chapter 7 are

for unoptimized code. Moreover, although considerable thought went into a time-

efficient algorithm, little attention was paid to optimizing for memory requirements.

This problem is not trivial, since the algorithm can recognize any state that has been

visited along another search path. Every state must thus be kept available for the

duration of the search.

In conclusion, deviation analysis appears to be a practical method of require-

ments analysis. The strength of HAZOP guide words has been captured in part by

the calculus of deviations. However, some guide words must be encoded by devia-

tion sequences. The Automated algorithm provides meaningful results in a reasonable

amount of time. The usefulness of the results will be determined by practitioners.

Bibliography

[l] Aho, Sethi, and Ullman. Compilers: Principles, Techniques, and Tools. Addison-

Wesley, 1985.

[a] Richard C. Booten Jr. and Simon Ramo. The development of systems engineer-

ing. IEEE Transactions on Aerospace and Electronic Systems, AES-20(4), July

1984.

[3] W.C. Bowman, G.H. Archinoff, V.M. Raina, D.R. Tremaine, and N.G. Leveson.

An application of fault tree analysis to safety-critical software at Ontario hydro.

In Conference on Probabilistic Safety Assessment and Management (PSAM),

April 1991.

[4] R.W. Butler and G.B. Finelli. The infeasibility of experimental quantification

of life-critical software reliability. IEEE Transactions on Software Engineering,

19(1):3-12, January 1993.

[5] Yue-Lung Cheng, Hsiu-Chuan Wei, and John Yuan. On establishment of i/o

tables in automation of a fault tree synthesis. Reliability Engineering and System

Safety, 40:311-318, 1993.

[6] Federal Aviation Administration, 800 Independence Avenue, S.W., Washington,

D.C., 20591. TCAS II Collision Avoidance System (CAS) System Requirements

Specification, change 6.00 edition, March 1993.

[7] Peter Fenelon and John A. McDermid. An integrated tool set for software safety

analysis. Journal Systems Software, 21:279-290, 1993.

160

161

[8] Tom Forester and Perry Morrison. Computer unreliability and social vulnerabil-

ity. Futures, pages 462-474, June 1990.

[9] Sergio Guarro and David Okrent. The logic flowgraph: A new approach to pro-

cess failure modeling and diagnosis for disturbance analysis applications. Nuclear

Technology, 67, December 1984.

[lo] David Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8:231-274, 1987.

[ll] Mats Per Erik Heimdahl. Static Analysis of State-based Requirements. PhD

thesis, University of California, Irvine, 1994.

[12] Danial Hernindez. Reasoning with qualitative representations: Exploiting the

structure of space. In QUARDET '93: III IMACS International Workshop on

Qualitative Reasoning and Decision Technologies, June 1993.

[13] Jonathan Jacky. Safety-critical computing: hazards, practices, standards and

regulation. In C. Dunlop and R. Kling, editors, Computerization and controversy,

chapter 5, pages 612-631. Academic Press, 1991.

[14] Stephen A. Lapp and Gary J. Powers. Computer-aided synthesis of fault-trees.

IEEE Transactions on Reliability, pages 2-13, April 1977.

[15] Nancy G. Leveson. Software safety: Why, what, and how. ACM Computing

Surveys, 18(2):125-163, June 1986.

[16] Nancy G. Leveson. Safeware: System Safety and Computers. Addison-Wesley,

1995.

[17] Nancy G. Leveson and Peter R. Harvey. Analyzing software safety. IEEE

Transactions on Software Engineering, SE-9(5):569-579, September 1983.

[18] Nancy G. Leveson and Janice L. Stolzy. Safety analysis using petri nets. IEEE

Transactions on Software Engineering, SE-13(3):386-397, March 1987.

162

[19] Peter Lewycky. Notes toward an understanding of accident causes. Hazard

Prevention, March/April 1987.

[20] Bev Littlewood and Lorenzo Strigini. The risks of software. Scientific American,

267(5):38-43, November 1992.

[all Robyn R. Lutz. Analyzing software requirements errors in safety-critical, embed-

ded systems. In Proceedings of the IEEE international symposium on require-

ments eng ineering, pages 35-46, January 1993.

[22] J.A. McDermid and D.J. Pumfrey. A development of hazard analysis to aid

software design, 1994.

[23] Bonnie E. Melhart. Specification and Analysis of the Requirements for Embedded

Software with an External Interaction Model. PhD thesis, University of

California, Irvine, July 1990.

[24] Bonnie E. Melhart and Nancy G. Leveson. A specification model for safety

analysis of embedded software. Technical report, University of California, Irvine,

September 1990.

[25] A.R.T. Ormsby, J.E. Hunt, and M.H. Lee. Towards an automated fmea assis-

tant. In Applications of Artificial Intelligence in Engineering VI, pages 739-752.

Elsevier Applied Science, July 1991.

[26] Charles Perrow. Normal Accidents. Basic Books, New York, 1984.

[27] Henry Petroski. Galileo and the marble column: A paradigm of human error in

design. Structural Safety, 11:l-11, 1991.

[28] C.J. Price, J.E. Hunt, M.H. Lee, and A.R.T. Ormsby. A model-based approach

to the automation of failure mode effects analysis for design. In Proceedings of

the Institution of Mechanical Engineers Vol. 206, 1992.

163

[29] Philip Schaefer. Analytic solution of qualitative differential equations. In

Proceedings Ninth National Conference on Artificial Intelligence, pages 830-835.

AAAI Press, July 1991.

[30] Roland Schinzinger. Technological hazards and the engineer. IEEE Technology

and Society Magazine, pages 12-16, June 1986.

[31] Jouko Suokas. The role of safety analysis in accident prevention. Accident

Analysis and Prevention, 20(1):67-85, 1988.

[32] J.R. Taylor. Sequential effects in failure mode analysis. In Reliability and fault

Tree Analysis, pages 881-894, 1975.

[33] J.R. Taylor. An algorithm for fault-tree construction. IEEE Transactions on

Reliability, R-31(2):137-146, June 1982.

	PRR-9a.pdf
	Acknowledgement
	Curriculum Vitae
	Abstract
	Chapter 6 A Forward Search Algorithm
	6.1 Semi-Automated Analysis
	5.2 Example of how assumptions and sequential propagation relate
	5.3 Algorithms for determining whether a mode contains any deviations
	6.1 A semi-automated search procedure
	6.2 A fully-automated search procedure

