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Abstract

Cell-line screens create expansive datasets for learning predictive markers of drug response, but 

these models do not readily translate to the clinic with its diverse contexts and limited data. In the 

present study, we apply a recently developed technique, few-shot machine learning, to train a 
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versatile neural network model in cell lines that can be tuned to new contexts using few additional 

samples. The model quickly adapts when switching among different tissue types and in moving 

from cell-line models to clinical contexts, including patient-derived tumor cells and patient-

derived xenografts. It can also be interpreted to identify the molecular features most important to a 

drug response, highlighting critical roles for RB1 and SMAD4 in the response to CDK inhibition 

and RNF8 and CHD4 in the response to ATM inhibition. The few-shot learning framework 

provides a bridge from the many samples surveyed in high-throughput screens (n-of-many) to the 

distinctive contexts of individual patients (n-of-one).

Translating biomarkers from basic research to clinical utility involves transfer of information 

across a series of contexts in which data are progressively harder to obtain. In vitro 

platforms such as human cell culture are amenable to high-throughput screening, yielding 

large datasets characterizing the molecular profiles of thousands of cell lines and their 

responses to millions of chemical compounds, genetic interventions or environments1,2. 

Promising indications may progress to advanced culture systems and animal models3,4, few 

of which are further evaluated in human cohorts and, ultimately, used in diagnosis and 

treatment of individual patients.

It is well known that drug-response predictions learned in cell-line or animal models do not 

always transfer to clinical contexts in a straightforward manner5–7. For example, dual 

inhibition of epidermal growth factor receptor (EGFR) and vascular epidermal growth factor 

receptor (VEGFR) had been found to induce sustained tumor regression in a mouse model 

of EGFR-mutant, nonsmall-cell lung cancer8, whereas follow-up clinical studies failed to 

replicate such an effect9. Similarly, upregulation of the insulin-like growth factor 1 receptor 

gene (IGF1R) had been noted as a prominent marker of tamoxifen resistance in breast 

cancer cell lines10, whereas the seemingly opposite behavior—reduced IGF-1R protein 

levels—was observed in tamoxifen-resistant patients11. It remains unclear whether such 

failures are caused by fundamental irreconcilable differences between biological contexts or 

missed opportunities to identify the correct markers that are likely to translate. A key 

challenge in marker selection is that the common signal is easily overwhelmed by context-

specific patterns, especially given the very limited amounts of data available in patients 

relative to cell lines.

To improve biomarker transfer across contexts, we formulated a neural network model, 

translation of cellular response prediction (TCRP), using the technique of few-shot 

learning12,13. Few-shot learning is an emerging method of transfer learning, a field that 

postulates that prior knowledge acquired in one problem domain can be reused and applied 

to solve different but related problems14–16. Transfer learning has proven instrumental in 

fields such as linguistics, where people (and machines) can learn to speak a new language 

much more quickly if they have extensive prior knowledge of a related tongue, which can be 

transferred efficiently to the new one17. Recent applications in biomedicine include an 

improved ability to identify chemical compounds with biological activity18 or to classify 

tissue type and tumor grade in histopathological images19.

Few-shot learning aims to identify widely applicable input features by optimizing their 

transferability rather than their overall prediction accuracy as in conventional learning 
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approaches (Methods). In an initial ‘pretraining’ phase (Fig. 1, top), the model is exposed to 

a variety of different predefined contexts, each of which is represented by numerous training 

samples. In a second ‘few-shot learning’ phase (Fig. 1, bottom), the model is presented with 

a new context not seen previously, and further learning is performed on a small number of 

new samples. Neural networks trained by this two-phase design have been shown to learn 

surprisingly rapidly in the new context relative to models trained by conventional 

means20–23.

In the present study, we applied the few-shot learning paradigm to three context-transfer 

challenges of high interest in predictive medicine: (1) transfer of a predictive model learned 

in one tissue type to the distinct contexts of other tissues; (2) transfer of a predictive model 

learned in tumor cell lines to patient-derived tumor cell (PDTC) cultures in vitro; and (3) 

transfer of a predictive model learned in tumor cell lines to the context of patient-derived 

tumor xenografts (PDXs) in mice in vivo (Fig. 1 and Table 1).

Results

Challenge 1: transfer across tissue types.

For the first challenge, we evaluated the ability of our TCRP model to predict the growth 

rates of tumor cell lines from a target tissue for which very few samples were available for 

learning. Data were taken from a recent survey of 335 human cell lines from 19 tissues, in 

which cell growth rates had been measured across a genome-wide panel of gene disruptions 

using clustered, regularly interspaced, short palindromic repeats (CRISPR). This resource 

has been called the Dependency Map, or DepMap (ref.1; Methods and Table 1). For each 

cell line, this same survey had summarized the binary genotype status of genes (0 = 

unmutated or synonymous mutation; 1 = nonsynonymous mutation) and their quantitative 

messenger RNA abundance levels during nominal growth. For each CRISPR gene disruption 

(focusing on 469 genes with demonstrated tumor growth dependencies; Extended Data Fig. 

1), we trained TCRP alongside a collection of conventional learning models to predict the 

growth responses of all cell lines. During this process, 1 of the 19 tissues was designated as 

the target. A training set was then created that included all cell lines from the other 18 

tissues but only a small number of cell lines from the target tissue; the remaining target cell 

lines constituted the test set. TCRP was trained in two phases, first on the large number of 

cell lines from the 18 tissues (pretraining phase), and then on the small number of cell lines 

available from the target tissue (few-shot learning phase; Fig. 1 and Methods). Conventional 

models were trained using a standard one-phase training procedure, by pooling all samples 

designated as training, after which the model was evaluated on all samples designated a test. 

Key questions were how quickly a predictive model transfers to the new tissue, having been 

trained mainly on others, and to which tissues the model transfers worst/best.

Models displayed a range of prediction accuracies during pretraining, as assessed by fivefold 

cross-validation, with conventional random forests performing best (Extended Data Fig. 2a 

and Methods). However, when testing on the target tissue, no model performed better than 

random, demonstrating the difficulty posed by new contexts (Fig. 2a). We then entered into 

the few-shot learning phase. For conventional models, accuracy improved very slowly as 

samples from the new tissue were added to the training set. In contrast, TCRP improved 
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rapidly, with an average gain of 829% in performance after examining only 5 additional 

samples (Fig. 2a). Tissues with the most improvement were the kidney, urinary tract and 

pancreas (Fig. 2b). For example, we observed a very high accuracy when predicting the 

response to CRISPR knockout of the gene encoding hepatocyte nuclear factor 1β (HNF1B), 

for which TCRP achieved a performance of 0.60 (Pearson’s correlation) in contrast to the 

second best approach (random forests, 0.19). The importance of HNF1B to tumor growth 

has been verified in multiple cancer types, including hepatocellular carcinoma, pancreatic 

carcinoma, renal cancer, ovarian cancer, endometrial cancer and prostate cancer24.

We also conducted a related challenge 1b, in which cell growth response data were drawn 

from a high-throughput pharmacogenomic screen of 255 anti-cancer drugs (including both 

US Food and Drug Administration–approved and experimental compounds; Methods and 

Table 1) administered to each of 990 cancer cell lines encompassing 30 tissues. This dataset 

has been called the Genomics of Drug Sensitivity in Cancer (GDSC1000) resource2. Similar 

to challenge 1a, but for each drug, TCRP was trained alongside conventional learning 

models to predict the growth sensitivity of cell lines using their molecular markers. As 

before, TCRP learned rapidly when switching to the target tissue, with the largest 

improvements seen when learning from the first few cell-line samples (Fig. 2c,d and 

Extended Data Fig. 2b). We found that the accuracy of drug predictions was correlated with 

the accuracy of CRISPR predictions across the tissues examined (Spearman’s ρ = 0.73, P = 

0.01), with tissues such as the urinary tract generating highly accurate predictions in both 

settings, and tissues such as the central nervous system, skin and lung generating poor 

predictions.

Challenge 2: transfer to PDTCs.

Next, we studied whether models of drug response trained on cell lines could be transferred 

to preclinical contexts (challenge 2; Fig. 3a). For this challenge we used data on breast 

cancer PDTCs made available by Project Biobank4 (Methods and Table 1). In this previous 

study, tumors (n = 83) were biopsied, subjected to whole-exome and mRNA sequencing to 

generate molecular profiles, and implanted in immunodeficient mice. PDTCs were then 

isolated from the host mice and tested for drug responses in vitro. From these data we 

selected 50 drugs for which the protein targets were well characterized, with drugs 

administered to 15–19 PDTCs each. For each drug, TCRP was pretrained using the cell-line 

drug-response data from challenge 1b before switching context to PDTCs.

As observed with earlier challenges, all models performed poorly when switching contexts, 

achieving accuracies near or below zero (Extended Data Fig. 2c). However, once again we 

observed that TCRP improved substantially after exposure to each new patient sample: the 

average performance was r = 0.30 at 5 samples, reaching r = 0.35 at 10 samples versus r < 

0.10 for the runner-up (Fig. 3b,c and Extended Data Fig. 3a). Nearly all drug predictions 

were improved by the few-shot paradigm. For example, the ATM inhibitor KU-55933 had 

the top performing drug-response predictions, with Pearson’s correlation of 0.56 between 

predicted and actual growth response measurements (top row of Fig. 3c, average 

performance over 5–10 samples). KU-55933 also represented the largest improvement over 
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conventional approaches, where the best performing conventional model, the random forest, 

obtained correlations of approximately 0.12.

Challenge 3: transfer to PDXs in mice.

Finally, in challenge 3 we went a step further, moving from PDTCs tested against drugs in 

vitro to PDXs tested against drugs in live mice (Fig. 4a, and Extended Data Figs. 3b and 4). 

For this purpose we obtained data for 228 PDX mouse models from the PDX 

Encyclopedia25, where each model was exposed to 1 of the 5 drugs on which TCRP had 

been trained in cell lines (cetuximab, erlotinib, paclitaxel, tamoxifen and trametinib; Table 

1). Genotype and mRNA transcriptomes of each PDX were also provided, from which we 

obtained the molecular features used by TCRP to make drug-response predictions. In cell 

lines, the predicted output from TCRP was the area under the dose–response curve (AUC); 

for PDXs, the analogous measurement was the percentage change in tumor volume resulting 

from drug treatment in vivo (Δvol). Therefore, these predicted and measured values were 

each normalized to a standard normal distribution to translate between the two (z-score; 

Methods).

Although TCRP models pretrained on cell-line data initially performed poorly in predicting 

PDX responses, we observed significant improvements during training on the first few PDX 

samples (Fig. 4a). Such improvements were seen for all five drugs and led to a range of final 

prediction accuracies from r = 0.50 for erlotinib to r = 0.18 for paclitaxel (Spearman’s 

correlation between predicted and actual drug response after training on ten PDX samples; 

Fig. 4a and Extended Data Fig. 3b). We also explored the effect of translating the 

continuously valued drug-response predictions to discrete treatment outcomes, as are 

typically assigned in a clinical setting, by designating each response as progressive disease 

(PD, Δvol ≥ 30%) or stable disease (SD) or better (Δvol < 30%). We found that these 

predicted binary classifications were strongly associated with the observed PD/SD 

outcomes, with a range of odds ratios from 3.0 (cetuximab) to 10.5 (tamoxifen) (Fig. 4b,c). 

For cetuximab, paclitaxel, tamoxifen and trametinib, but not erlotinib, we found that the 

predicted PD/SD designations also showed significant differences in progression-free 

survival, depending on how many PDX samples had been used for few-shot learning (Fig. 

4d–g).

Interpreting the predictive models.

A common critique of machine-learning systems is that they produce ‘black boxes’, the 

predictions of which are difficult to interpret26,27. In the present study, as we had focused on 

drugs with known specific targets, we found that model predictions typically could be 

explained by molecular markers within that target’s pathway (using models constrained to 

these features; Methods and Extended Data Fig. 5). For example, a top feature in predicting 

the response of PDTCs to PD-0332991 (palbociclib; Fig. 5a,b) was the expression of the 

gene encoding RB-like factor (RBL2), a cell-cycle transcriptional repressor inactivated by 

CDK4/6. RBL2 expression was associated with palbociclib resistance (third from top in Fig. 

5c; r = 0.47), suggesting that high RBL2 protein activity masks upstream inhibition of 

CDK4/6 by the drug. Another important feature was somatic mutation of SMAD4, encoding 

a transcriptional modulator repressing CDK4 transcription28 (Fig. 5d). SMAD4 inactivation 
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may release CDK4 to drive the cell cycle29, with CDK4 repression counteracting this effect 

(Fig. 5b). Although SMAD4 mutation was rare in PDTCs (1/19 samples), it was much more 

common in cell lines (43/811 samples). The model had learned to strongly rely on the 

SMAD4 mutation during pretraining, where the large number of SMAD4 mutant samples is 

strongly associated with drug response. When switching to the PDTC dataset, this prior 

information was combined with the effect of SMAD4 mutation in the new dataset to jointly 

estimate its importance to the drug response.

As a second example, a top feature in the response to ATM inhibition (KU-55933; Fig. 5e,f) 

was the expression of RNF8, for which the protein is recruited to DNA double-stranded 

breaks (DSBs) after activation of ATM by DNA damage30–32. RNF8 expression was 

correlated with KU-55933 resistance (third from top in Fig. 5g; r = 0.54), suggesting that, 

when RNF8 activity is high, ATM is not limiting for DSB repair. Also correlated with drug 

resistance was mutation of CHD4 (Fig. 5h), encoding the chromodomain–helicase–DNA-

binding subunit of NuRD, a complex essential for chromatin relaxation at DSBs33. Disabled 

NuRD may interfere with DNA repair, masking the effects of ATM inhibition. Alternatively, 

it may dampen the impact of ATM on CHD4-dependent cell-cycle progression34.

A notable third example involved BRAF inhibition, to which tumors tend to be sensitive in 

the context of a BRAF-activating mutation. It is well established that some tissue types 

respond to BRAF inhibition more strongly than others; for instance, BRAF-mutant 

melanomas are generally responsive whereas BRAF-mutant colorectal tumors are not, for 

reasons that are not fully understood but are partially explained by expression of EGFR35. 

As expected from these previous observations, the TCRP model predicted significant 

sensitivity to the BRAF inhibitor dabrafenib in BRAF-mutant cells, but not in wild-type 

cells, with a much more pronounced effect in melanoma than in colorectal cancer (CRC) 

(Fig. 6a). Of note, the drug response predicted by TCRP was significantly more accurate 

than the response predicted solely based on BRAF mutation and EGFR expression status 

(Fig. 6b), raising the question of which features TCRP had used to achieve higher accuracy. 

Further examination indicated that the model drew from a combination of novel features 

(Fig. 6c–f). These included expression of MRAS, which has been shown to function as a 

RAF phosphatase36, expression of 14-3-3 genes YWHAE and YWHAH, which interact with 

RAF proteins in signal transduction37, and mutation of RAPGEF1 (Rap guanine nucleotide 

exchange factor 1), a gene central to activation of the Ras/Raf/MEK/ERK signal 

transduction pathway.

Discussion

Recently an abundance of tumor response data has been generated for targeted perturbations 

in numerous contexts. The usual way of analyzing these data is to pool all samples, under 

the assumption that accruing the maximal amount of data will result in a predictive model 

with the greatest statistical power. In the present study, we have identified a more efficient 

means of building predictive models, using the technique of few-shot learning. The two-

phase learning procedure overlays naturally on the process of translating observations from 

basic research in vitro to predictive markers in tumors (Fig. 3a). First, in a basic research 

phase, a general predictive model is pretrained from extensive data generated in high-
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throughput, cell-based screens. Second, in a preclinical or clinical phase, few-shot learning 

is used to tune the general model to make predictions for a specific type of human tumors, 

by testing drugs with high predicted sensitivity in settings such as PDTCs and PDXs and, 

ultimately, patients. Thus far, few-shot learning shows encouraging performance in multiple 

datasets and translation scenarios where conventional learning fails. In all three challenges 

we examined, the initial pretraining phase was the same: optimizing the model for transfer 

across cell lines of different tissue types. Notably, this particular transfer task was 

sufficiently general to enable predictive models to transfer from cell lines to the settings of 

PDTCs and PDXs.

Models such as TCRP may have compelling applications in clinical contexts seeking to 

implement precision medicine, in which the task is to match a patient’s specific molecular 

profile to an optimal course of therapy. For this purpose, molecular tumor boards have been 

established in many cancer centers, where clinical experts must often make treatment 

decisions for a patient based on just a few precious cases with matching histopathology and 

molecular profiles. A second compelling application is in the pharmaceutical industry, in 

which a key goal is to select patients who are most likely to respond to a targeted agent. In 

both cases, classic predictive models have been hampered by lack of access to large numbers 

of well-characterized clinical samples, that is, samples for which molecular profiles have 

been coupled to precise information on treatment outcomes.

In this regard, an important question for future exploration concerns the degree to which an 

approach such as TCRP is ready for use in clinical or pharmaceutical settings. There are 

many uncertainties when deciding on treatment, and how the predictive value of the models 

built here compare with other molecular and clinical markers, and their predictive values, 

will need to be determined for each disease setting. In terms of absolute predictive 

performance, we observed a range of accuracies across the drugs examined, with some drugs 

yielding promising results. For example, in the PDX analysis of paclitaxel (Fig. 4b,c,e), a 

drug nonresponse was predicted for 23 tumors, of which 20 were in agreement with the 

actual observations of tumor growth in mice, a very high success rate by any standard (20/23 

= 87% correct predictions of PD). As another example, nonresponse of PDX tumors to 

tamoxifen was correctly predicted in 23/24 of cases (96%). In these analyses, a nonresponse 

(PD) was called if the change in tumor volume was ≥30%, the standard threshold 

implemented by the PDX Encyclopedia25,38. Given more data and a focused clinical study, 

one could probably tune the prediction threshold to drive performance higher. For example, 

at a threshold value >60%, TCRP predicts paclitaxel nonresponse with 100% accuracy given 

the current PDX dataset (14/14 patients). Future investigations with larger cohorts of PDX 

models or patients will be able to shed further light on the best clinical uses of few-shot 

learning.

In our analysis of both the PDTC (Fig. 3b) and the PDX (Fig. 4a) datasets, we noted that the 

performance of few-shot learning improves quickly and then appears to saturate. Further 

inspection reveals that the reason for this phenomenon relates to the balance of training 

versus test samples during evaluation. Given a fixed number of tumor samples, as the 

number of few-shot training samples increases, the number of testing samples decreases 

proportionally. In turn, a fewer number of testing samples means that the statistical power 
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used to evaluate the prediction performance gets weaker, with a concomitant increase in 

variance. For most drugs in the PDTC dataset, a total of 19 tumor samples was available to 

be split between training and validation. To evaluate performance for 1-shot learning, 18 of 

these samples were therefore available as a test set, whereas, for 10-shot learning, only 9 

samples were available for testing.

We also observed that drug responses were better predicted in some tissues than in others 

(Fig. 2b,d). Although the poor predictive power in some tissues is in need of further 

investigation, a potential factor relates to the substantial molecular heterogeneity observed 

within some cancer tissue types. For example, cell lines of lung tumors have been organized 

into as many as nine subtypes based on their transcriptomic profiles, in contrast to pancreatic 

tumor cell lines which appear far more homogeneous39. These findings are superficially in 

agreement with those of our study, in that drug-response predictions in lung cancer lines are 

less predictive than those of the pancreas (Fig. 2b,d).

Although the results demonstrated in the present study were obtained with gene mutation 

and mRNA expression features, the TCRP framework is general with potential relevance to 

many other data types, such as copy-number variants, features extracted from 

histopathological images or data transferred from disease models in other species. 

Furthermore, although each perturbation by CRISPR (challenge 1a) or drugs (all other 

challenges) was considered a separate machine-learning task, a worthy future direction 

would be to explore the extent to which information can be transferred from one 

perturbation to another. If important information is shared, one might pursue a single unified 

model with predictive capacity across many or all drugs rather than training models 

separately.

A final future direction is to better understand the relationship between the predictability of a 

drug and its pharmacological properties, including its number of recognized targets and off-

target effects (that is, polypharmacology). This relationship is difficult to study with the 

present TCRP, for which features are selected from the pathway of each known target, 

yielding a tendency to include more features for drugs that have more known targets 

(Methods). On the other hand, our understanding of drug-target genes and pathways is far 

from complete, and the protein network we used for feature selection is not cancer specific. 

Future model configurations using the same numbers of biomarkers across drugs will 

potentially shed light on the complex interactions between drug response and 

polypharmacology.

Methods

Challenge 1a.

Overview.—The first challenge was based on the Cancer Dependency Map (DepMap), 

which used CRISPR/Cas9 gene editing to disrupt nearly all (~17,700) human genes in each 

of 335 cancer cell lines (19 tissues), in each case measuring the relative cellular growth 

response1. The machine-learning task was to use molecular features of each cell line to 

predict its growth response to the gene disruptions. Each gene disruption was considered as 

a separate learning task, in which cell lines represent learning samples. We studied 469 gene 
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disruptions that had been reported by DepMap to have demonstrated the ability to influence 

cellular growth, as evidenced by the presence of at least one cell line for which the response 

was at least 6 s.d.s away from the mean across cell lines1. Even though there is a modest 

difference between the distribution of fitness values for all genes versus the selected genes 

(Extended Data Fig. 1a), we did not observe a strong relationship between the overall fitness 

effect of a gene knockout and model predictive performance (Extended Data Fig. 1b).

Task-specific features.—Features for learning were based on gene somatic mutations 

and expression levels for each cell line, as reported in the Cancer Cell Line Encyclopedia 

(CCLE) project40 and downloaded from the DepMap website (https://depmap.org/portal/

download). For each learning task (CRISPR gene disruption, see above) we selected genes 

reported as having either a protein– protein interaction (PPI) or an mRNA co-expression 

relationship (|r| > 0.4) with the disrupted gene. The PPI data were taken as the union of the 

InBioMap41, PathwayCommons42 and CORUM43 databases. The co-expression relationship 

is calculated over all the cell lines from the feature mRNA expression data. Such a feature-

selection strategy, based on the molecular network neighborhood of the disrupted gene, was 

similar to that adopted earlier by the DepMap project. We further removed gene expression 

features for which the s.d.s fell into the lowest 10% over all genes and excluded genes with 

fewer than 10 somatic mutations across cell lines. The somatic mutations and mRNA 

expression levels of the remaining genes were applied to construct the input feature vector 

for each cell line.

Labels.—Sample labels were taken as the growth response of a cell line to the CRISPR 

disruption of interest (see above) using the CERES-corrected single-gene disruption scores 

downloaded from DepMap (https://depmap.org/portal). These scores are calculated by 

comparing the abundances of guide RNAs for the disrupted gene between the starting 

plasmid pool and the end of the CRISPR disruption experiment. The CERES method44 then 

processes these scores by removing effects due to copy-number variation.

Few-shot design.—For each gene disruption learning problem, the 19 tissues represented 

by DepMap cell lines were split such that 18 tissues were used in the pretraining phase and 

the remaining tissue was held for the few-shot phase. To ensure sufficient samples for 

performance evaluation, this held-out tissue was selected from among the 9 tissues having 

≥15 cell lines. In the few-shot phase, we randomly selected k cell lines as the few-shot 

samples to fine tune the model (k = [0 … 10], plotted along the x axis of Fig. 2a) and used 

the remaining cell lines as testing data. For each k, the selection of few-shot samples was 

random, so we repeated this selection 20 times and reported the average and s.d. of the 

prediction performance over these replicates (y axis of Fig. 2a).

Challenge 1b.

Overview.—This challenge was based on the dataset collected by the GDSC1000 project2, 

which systematically tested the cellular growth responses elicited by a panel of 265 drugs 

applied to each of 1,001 tumor cell lines (representing 30 tissues). The machine-learning 

task was to use molecular features of each cell line to predict its growth response to a drug. 

Each drug was considered as a separate learning task, in which cell lines represent learning 
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samples. We focused on 199 drugs for which the mechanism of action was at least partially 

characterized, that is, with a documented protein target or pathway. Drug target and pathway 

information was obtained from Table S1G of the original GDSC1000 paper2.

Task-specific features.—Task-specific features were constructed for each drug by 

selecting genes having PPI or mRNA co-expression relationships (|r| > 0.4) with the 

documented drug targets, with the PPI and mRNA co-expression networks defined as per 

challenge 1a above. For drugs with multiple targets, we included all PPI/co-expressed 

neighbors of these targets. As above, we further removed gene expression features for which 

the s.d.s fell into the lowest 10% over all genes and excluded genes with <10 somatic 

mutations across cell lines. Somatic mutations and mRNA expression levels of the 

remaining selected genes were applied to construct the input feature vector for each cell line.

Labels.—Sample labels were taken as the growth response of a cell line to the drug of 

interest, using the AUC as the measure of drug response. All drug response data were 

downloaded from the GDSC1000 website: https://www.cancerrxgene.org/gdsc1000/

GDSC1000_WebResources.

Few-shot design.—For each drug, the tissues were split such that one tissue was held out 

for the few-shot phase, and the remaining tissues were used in the pretraining phase. We 

required the held-out tissue to have data for ≥15 cell lines to provide sufficient samples for 

the few-shot learning phase. A consequence of this requirement was that the number of held-

out tissues differed from drug to drug, because drugs had a variable number of cell lines for 

which drug responses had been measured2. Similar to challenge 1a, in the few-shot phase we 

randomly selected k cell lines from the held tissue as few-shot samples to fine tune the 

model (k = [0 … 10], plotted along the x axis of Fig. 2c) and used the remaining cell lines as 

testing data. For each k, the selection of few-shot samples was random, so we repeated this 

selection 20 times and reported average and s.d. of prediction performance over all of these 

replicates (y axis of Fig. 2c).

Challenge 2.

Overview.—In this second challenge, we pretrained TCRP to predict drug responses in the 

GDSC1000 dataset (see Challenge 1b) and then subjected this model to few-shot learning 

using a study of PDTCs4. This previous study obtained 83 human breast tumor biopsies and, 

using mice as an intermediary, established distinct human cell cultures from these tumors. 

Each of these human cell cultures was exposed to a panel of drugs, from which we 

considered the 50 drugs with known protein targets and for which cell-line responses had 

also been measured in the GDSC1000 dataset. The machine-learning task was to use the 

pretrained model to predict the growth response of these PDTCs to each drug. Each drug 

was considered as a separate learning task, in which PDTCs represent learning samples.

Features.—We considered gene expression and mutation features that had been 

characterized in both the PDTC and the GDSC1000 datasets. Both drug-specific features 

and mini-cancer genome features were evaluated. Expression and somatic mutation data of 

the PDTC dataset were downloaded from https://figshare.com/articles/
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Bruna_et_al_A_biobank_of_breast_cancer_explants_with_preserved_intra-

tumor_heterogeneity_to_screen_anticancer_compounds_Cell_2016/2069274.

Labels.—For the PDTC responses, we used the AUC as the measure of drug response, 

similar to the GDSC1000 dataset in challenge 1b. These data were downloaded from the 

same site as above: https://figshare.com/articles/

Bruna_et_al_A_biobank_of_breast_cancer_explants_with_preserved_intra-

tumor_heterogeneity_to_screen_anticancer_compounds_Cell_2016/2069274.

Few-shot design.—In the few-shot learning phase, we randomly selected k PDTCs as the 

few-shot samples to fine tune the model (k = [0 … 10], plotted along the x axis of Fig. 3b), 

and used the remaining cell lines as testing data. For each k, the selection of few-shot 

samples was random, so we repeated this selection 20 times and reported the average and 

s.d. of prediction performance over all of these replicates (y axis of Fig. 3b).

Challenge 3.

In this third challenge, we pretrained TCRP to predict drug responses in the GDSC1000 

dataset (see Challenge 1b) and then used few-shot learning to transfer it to make drug-

response predictions in a study of PDXs25. This previous study created a large collection of 

mouse xenografts of human tumor biopsies, all characterized for tumor somatic mutations 

and mRNA expression levels. PDXs were exposed to a panel of drug treatments (one PDX 

per animal per treatment) during which in vivo tumor growth was measured. Here the 

machine-learning task was to use the pretrained TCRP to predict tumor growth in vivo. In 

particular, we used data for 228 PDX mouse models, where each model was exposed to one 

of the five drugs on which TCRP had been trained in cell lines (cetuximab, erlotinib, 

paclitaxel, tamoxifen and trametinib).

Mini-cancer genome features.—Expression and somatic mutation data for all PDX 

samples were downloaded from Supplementary Table 1 of the original paper25. Most drugs 

in the PDX dataset do not have known drug targets, a requirement for feature selection in 

previous challenges (see above). Therefore, we adopted an alternative means of selecting 

features that does not require knowledge of drug mechanism of action, as introduced in 

recent work45. These features were based on the ‘mini-cancer genome panel’, a set of known 

cancer-related genes collected by the Center for Personalized Cancer Treatment (CPCT, The 

Netherlands)46. From this panel, we first removed gene expression and mutation features 

that had not been characterized in both the PDX and the GDSC1000 datasets. Second, we 

removed gene expression features for which the s.d.s fell into the lowest 10% over all genes 

in GDSC1000, and we removed gene mutation features with <10 somatic mutations across 

GDSC1000 cell lines. The somatic mutations and mRNA expression levels of the remaining 

selected genes were applied to construct the input feature vector for each cell line. In this 

scenario, all learning tasks (drugs) shared the same feature set.

Labels.—PDX drug response was measured by the minimum change in tumor volume in 

comparison to baseline, over the period from 10 d post-treatment until completion of the 

study (Δvol in the main text). This measure captures the speed, strength and durability of the 
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in vivo response; all values were downloaded from Supplementary Table 1 of the original 

paper25. When comparing TCRP predictions to Δvol measurements, both were normalized 

to a standard normal distribution to translate between the two (that is, z-score).

Few-shot design.—In the few-shot learning phase, we randomly selected k PDXs as the 

few-shot samples to fine tune the model (k = [0 … 10], plotted along the x axis of Fig. 4a) 

and used the remaining PDX samples as testing data. For each k, the selection of few-shot 

samples was random, so we repeated this selection 20 times and reported average and s.d. of 

prediction performance over all of these replicates (y axis of Fig. 4a).

TCRP neural network model.

We trained a multilayer neural network model to predict the phenotype of a tumor sample 

using its molecular features. For each sample i, the output of the j + 1th layer ℎi
(j + 1) is 

defined as a nonlinear function of the output of the jth layer ℎi
(j) as follows:

ℎi
(j + 1) = Relu Linear ℎi

(j)
(1)

where Linear ℎi
(j)  is a linear function of ℎi

(j) defined as W (j) × ℎi
(j) + b(j).W(j) is the weight 

matrix and b(j) is the bias vector. Relu is the rectified linear activation function47 which 

thresholds values <0 to exactly 0. The first layer ℎi
(1) is the input molecular feature of sample 

i and the last layer ℎi
(N) acts as its final prediction pi(θ),where θ is a parameter containing 

W(j) and b(j) from all the linear layers. For each machine-learning task, we scan all 

combinations of layers = {1,2} and hidden neurons = {5,10,15,20}, and determine the 

architecture of the neural network by crossvalidation. All parameters are trained by 

minimizing the mean square error function, L, which is a function of sample set, C, and 

parameters, θ:

L(C, θ) = 1
M Σci ∈ C pi − pi(θ) 2

(2)

where pi is the measured label for sample i and M is the number of samples in C.

Model pretraining phase.

In the pretraining phase, the aim is to train a neural network model that can quickly adapt to 

a new learning task with only a few additional training samples. The rationale is to acquire 

prior knowledge from a set of related tasks where training samples are abundant. In the 

present study, we adopted an established computational framework called the Model 

Agnostic Meta-Learning (MAML) algorithm19. Meta-learning approaches such as MAML 

seek to identify universal knowledge across multiple conditions and then to transfer this 

knowledge to make robust predictions in a new condition. In recent studies, the MAML 

technique has shown superior performance in comparison to other meta-learning 

frameworks19, and it is a flexible and model agnostic such that it can be applied to any 

gradient-based learning algorithm.
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For each training iteration, we first sample a subset Si of 12 tissue types from the pool S of 

all types available. Si is then randomly partitioned into two nonoverlapping sets of six cell 

lines T and six cell lines V. A loss function adapted from equation (2) is defined as follows 

with respect to S:

ESi ∈ S E < T, V > ∈ Si L V , θ − α∂L(T , θ)
∂θ (3)

Here L is a mean square error function with respect to V. The second argument of the loss 

function is a one-step gradient descent that seeks a better regression loss for cell-line set T. 

We then optimize equation (3) using the gradient descent algorithm Adam48. Note that using 

the gradient descent requires calculation of a second-order gradient-of-loss function L. The 

intuition is that, for each training iteration of minimizing equation (3), we seek parameters θ 
that can achieve a smaller regression loss on cell-line set V after performing one iteration of 

the gradient descent on a distinct cell-line set T. A total of 200 training iterations were 

performed, sampling different Si values, with each Si including 20 partitions.

Few-shot learning phase.

In the second training phase, we observe a task Q with only a few training samples (for 

example, cell lines, PDTCs or PDX models). We perform only one iteration of gradient 

descent to achieve θfew–shot suitable for the new task (for example, new tissue or mouse 

models):

θfew‐shot  = θpretraining  − α∂L(Q, θ)
∂θ θ = θpretraining  (4)

Here θpretraining is the TCRP model trained in the pretraining phase. In theory, one can 

perform multiple iterations of gradient descent using equation (4) until convergence. 

However, one of the unsolved problems in the field of meta-learning is that the few-shot 

model can be easily overfit on a new task, given its very few samples. Therefore, we chose 

to update parameters only once. Note that α in equations (3) and (4) refers to the same 

hyperparameter. The structure of the neural network was defined as in equation (1).

Nested crossvalidation.

The appropriate architecture of a neural network is dependent on the particular problem and 

datasets. For drug-prediction problems (challenges 1b, 2 and 3), all hyperparameters, 

including mini-batch size and the size of T and V, were determined by the technique of 

nested crossvalidation as previously described49. For challenge 1a, we used regular 

crossvalidation due to the greater number of prediction tasks.

Interpreting TCRP model predictions.

We used the framework of local interpretable model-agnostic explanations (LIME)50 to 

generate locally faithful explanations for the TCRP neural network model. LIME works by 

taking the feature vector of a query sample of interest and perturbing it randomly, resulting 

in many perturbed samples around this query. Subsequently, it trains a much simpler 
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interpretable model on this perturbed neighborhood (Extended Data Fig. 5). In this way, 

LIME can select important features specific for sample i, which is the major difference from 

conventional feature selection methods that act globally over all samples, not locally to a 

sample of interest. More formally, for the molecular feature vector fi of each sample i, we 

generated N (=10,000) perturbed samples. Each of these perturbed samples j was created by 

adding to the original features of independent Gaussian noise with mean 0 and s.d. 1. For 

each perturbed sample, we made a prediction gij using the TCRP neural network. A second, 

simpler model, regularized linear regression, was then trained to fit the perturbed samples to 

their corresponding neural network predictions {gij}. Empirically, we applied both Elastic 

Net51 and Lasso52 regularization methods with different sparsity parameters 

(={0.1,0.01,0.001,0.0001}). The final ranking of features was averaged from the rankings 

produced by Elastic Net and Lasso over all sparsity parameters and over all tested samples. 

LIME was chosen over alternative model interpretation techniques, such as layer-wise 

relevance propagation53, because these other techniques do not generate sample-specific 

explanations. LIME is an approximation of gradient-based methods54 and could be used 

interchangeably with those methods in our work.

Implementation details of competing methods.

We used the Python package ‘scikit-learn’ (http://scikit-learn.org/stable/index.html) to 

implement four conventional machine learning methods: random forests, conventional 

neural networks, K nearest neighbors (KNN) and linear regression, as follows.

Random forests.—For random forests, we chose the maximum depth for each of the 

learning tasks based on fivefold crossvalidation.

Conventional neural networks.—Conventional neural network models were 

implemented using the PyTorch library (https://pytorch.org), selecting the number of hidden 

neurons (={5, 10, 20, 30, 40, 50, 100}), layers (={1, 2}) and learning rates (={0.1, 0.01, 

0.001}) based on fivefold nested crossvalidation. For each machine-learning task (for 

example, drugs and gene perturbations), there are approximately (or fewer than) 1,000 cell-

line examples (+ <20 PDTC/PDX models in some cases); thus, the data do not support a 

very deep neural network architecture with many parameters. Therefore, we focused on 

exploration of small neural network architectures in the present study. The number of hidden 

layers (={1, 2}) and the number of hidden neurons (={5, 10, 15, 20}) of the neural network 

were also determined by crossvalidation. We implemented the algorithm using the PyTorch 

library (https://pytorch.org) running on Tesla K20 graphics processing units. The nonlinear 

transformation was the same as equation (1) and optimized using Adam48. Notice that both 

TCRP and this baseline method rely on a neural network model; however, the two models 

are trained in different ways and with potentially different network architectures (no. of 

hiddens, layers) due to separate crossvalidation processes.

K nearest neighbors.—For the KNN algorithm, to evaluate the accuracy of a sample i in 

the training data, we ruled out sample i when making its prediction. Otherwise, KNN will 

achieve a zero prediction error on the training set. The best ‘K’ for KNN was selected using 

fivefold crossvalidation.
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Linear regression.—For the final conventional method, we implemented linear regression 

with the regular least squares loss of function and without regularization.

Statistics and reproducibility.

Sample size, data exclusion criteria and randomization on the test data are extensively 

explained in Methods. The investigators were not blinded to allocation during experiments 

or outcome assessment.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Extended Data

Extended Data Fig. 1 |. Analysis of fitness versus predictive performance for the panel of gene 
knockouts in our study.
a, Distribution of relative growth values after CRISPR gene knockout, median for all n = 

341 cell lines. Blue: pooling knockouts of all n = 17670 genes; Pink: pooling n = 469 

knockouts of genes selected in our study. Fitness is corrected by the Copy Number Variation 

by the CERES algorithm. b, For each knockout of a selected gene, predictive performance (y 

axis) is computed as the Pearson correlation between predicted and actual growth 

measurements over all n = 341 cell lines. This performance is displayed as a function of the 

median growth fitness of that knockout (x axis). Growth fitness is binned according to 

percentiles, for example the first bin (0–10%) represents the top 10% of selected genes with 

the strongest median effects on growth. The distribution of predictive performance for each 

bin is shown with a violin plot. Error bars represent 95% confidence interval.
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Extended Data Fig. 2 |. 
Training accuracy of TCRP and other baseline models for all challenges.

Extended Data Fig. 3 |. Alternative calculation of model performance using Spearman 
correlation.
While Pearson correlation is used to calculate model performance in the main text, this 

supplemental figure provides equivalent performance calculations using the non-parametric 

rank-based Spearman correlation. a, Related to Fig. 3b on n = 83 PDTC models. b, Related 

to Fig. 4a on n = 228 PDX models.
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Extended Data Fig. 4 |. Comparison of transferability of different machine learning models to 
patient-derived xenografts.
Predictive models were pre-trained using responses of cancer cell lines to perturbations with 

drugs, one model per drug. Few-shot learning was then performed on 0–10 PDX breast 

tumor samples exposed to that drug (x-axis), and model accuracy (y-axis) was measured by 

a, Pearson correlation or b, Spearman correlation on the remaining held-out PDX samples. 

Results averaged across five drugs (see main text). This experiment considers n = 228 PDX 

models.
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Extended Data Fig. 5 |. Interpreting the TCRP model with the framework of Local Interpretable 
Model-Agnostic explanations (LIMe).
See Methods.
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Fig. 1 |. Study design.
Three distinct translation challenges are considered. Each challenge involves a pretraining 

phase (top) based on cell-line response data across tissues, followed by a few-shot learning 

phase (bottom) in which data in the new context are presented for additional learning, one 

sample at a time. Challenge 1: transfer of CRISPR (challenge 1a) or drug (challenge 1b) 

response model for prediction in the context of a new tissue. Challenge 2: transfer of model 

to PDTCs in vitro. Challenge 3: transfer of model to PDXs in vivo.
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Fig. 2 |. Transfer of predictive models across tissue types.
a, Challenge 1a. For each CRISPR gene knockout and target tissue, model accuracy is 

measured by Pearson’s correlation between predicted and actual drug responses, considering 

only the test samples from the target. The plot shows the average model accuracy across 

CRISPR knockouts (y axis, mean ± 95% confidence interval (CI)) as a function of the 

number of cell lines (from n = 0 cell lines to n = 10 cell lines) from the target tissue provided 

to the model during training (x axis), considering in total n = 335 cell lines with n = 469 

gene disruptions. b, Model accuracy (x axis) is displayed separately for each tissue in 

challenge 1a (y axis). Accuracy is the average achieved when training includes five to ten 

samples of the target tissue. The accuracy s.d. is shown over all CRISPR gene knockouts 

(point size). c, As for a for models trained on perturbations with n = 199 targeted drugs and 

n = 1,001 cell lines. d, As for b for models trained on perturbations with targeted drugs.
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Fig. 3 |. Transfer of cell-line models to PDTC lines.
a, Schema for translating a predictive model from cell lines to patients using few-shot 

learning. The model is trained over successive rounds of data, each with fewer samples but 

closer to the desired clinical context. b, Challenge 2. Predictive models were pretrained 

using responses of breast cancer cell lines to targeted perturbations with a particular drug 

(Table 1). Few-shot learning was then performed on 0–10 PDTC breast tumor samples 

exposed to that drug (x axis), and model accuracy (Pearson’s correlation, y axis, mean ± 

95% CI) validated using the remaining held-out PDTC samples. Results averaged across 48 

drugs on n = 83 PDTC models. c, Predictive accuracy (x axis) is displayed separately for 

each drug model (y axis, mean ± 95% CI) on n = 83 PDTC models. Colors as in previous 

figures.
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Fig. 4 |. Transfer of cell-line models to PDXs.
a, Challenge 3. Predictive models were pretrained using responses of cancer cell lines to 

targeted perturbations with drugs, one model per drug. Few-shot learning (x axis, number of 

few-shot samples used) was performed using PDX samples exposed to one of five drugs 

(line colors), and the improved model used to predict the change in tumor volume (Δvol; 

Methods). Accuracy of this prediction was validated using the actual changes in volume of 

the remaining held-out PDXs (Pearson’s correlation, y axis, mean ± 95% CI). This 

experiment included in total n = 228 PDX models. b, Odds ratio. We evaluated the odds of 

obtaining SD:PD outcomes when stratifying tumors into predicted responsive versus 

unresponsive subtypes (predicted Δvol < or ≥30%, respectively). Odds ratio (left) and 

corresponding contingency table (right), are shown for each drug (n = 31 samples for 

trametinib, n = 37 for tamoxifen, n = 51 for paclitaxel, n = 21 for erlotinib and n = 60 for 

cetuximab). Error bar represents mean ± 95% CI. c, Ranking of all PDX samples (x axis) by 
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the predicted Δvol (y axis) for trametinib, paclitaxel and erlotinib. Color indicates actual 

clinical outcome. The rank P value is calculated by using a one-sided Wilcoxon’s Mann–

Whitney U-test (n = 31 samples for trametinib, n = 51 for paclitaxel and n = 20 for 

erlotinib). d–g, Kaplan–Meier survival plots when stratifying tumors into responsive versus 

unresponsive subtypes for cetuximab (d) on n = 65 PDX models, paclitaxel (e) on n = 57 

PDX samples, tamoxifen (f) on n = 36 PDX samples and trametinib (g) on n = 35 PDX 

samples. The log(rank P value) is calculated using a two-sided χ2 test.
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Fig. 5 |. Model interpretation to identify predictive markers.
a, Measured versus predicted resistance to the CDK4/6 inhibitor palbociclib after few-shot 

learning on five PDTC samples treated with this drug on n = 19 test PDTC models. The 

error bars indicate the minimum/maximum value of the predictions across ten 

randomizations. b, Schematic of CDK pathway with palbociclib targets and selected 

molecular markers. c, Left: mRNA expression profiles for the top expression-based features 

of palbociclib. Right: Pearson’s correlation of palbociclib resistance and mRNA expression 

for the top expression-based features. d, Left: somatic mutation profiles for the top 

mutation-based features of palbociclib. Right: increase of palbociclib resistance when 

comparing mutated and wild-type samples for each top feature. e, Same as a for the response 

to ATM inhibitor KU-55933 on n = 19 PDTC models. f, Schematic of ATM pathway with 

selected predictive markers. g,h, Same as c and d for the response to ATM inhibitor 

KU-55933. Numbered sample labels in a and e correspond to PDTC sample numbers in 
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c,d,g and h, in which molecular profiles for the six most sensitive and six most resistant 

samples are shown (PDTC1-6 and PDTC14-19, respectively) within n = 19 PDTC models.
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Fig. 6 |. Model predictions and interpretation for the BRAF inhibitor dabrafenib.
a, Box plots of predicted dabrafenib response for n = 39 CRC and n = 42 melanoma cell 

lines with respect to BRAF mutation status. The rank P value is calculated by using a one-

sided Wilcoxon’s Mann–Whitney U-test on a total of n = 81 cell lines. The error bar 

represents mean ± 95% CI. b, Prediction accuracy of the TCRP model for CRC and 

melanoma cell lines used for a. Accuracy (y axis) is shown as a function of additional 

training samples used for few-shot learning (x axis). Accuracy mean and s.d. calculated over 

ten random samples of cell lines selected from n = 39 CRC and n = 42 melanoma cell lines 

used for training. c, Pearson’s correlation of dabrafenib response (AUC) and mRNA 

expression for the top expression-based features for CRC (ranked in decreasing importance 

from top to bottom; Methods). d, Relative change in dabrafenib response (AUC) on somatic 

mutation of each of the top mutation-based features for CRC (ranked in decreasing 
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importance from top to bottom; Methods). e, Similar to c for melanoma. f, Similar to d for 

melanoma.
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