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EPIGRAPH

The most difficult subjects can be explained

to the most slow-witted man if he has not formed any idea of them already;

but the simplest thing cannot be made clear to the most intelligent man

if he is firmly persuaded that he knows already, without a shadow of doubt,

what is laid before him.

—Leo Tolstoy
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ABSTRACT OF THE DISSERTATION

Three essays on environment and development economics

by

Jarrod Ross Welch

Doctor of Philosophy in Economics

University of California, San Diego, 2011

Professor Richard Carson, Co-Chair
Professor Joshua Graff Zivin, Co-Chair

This dissertation is composed of three original, self-contained essays on environment

and development economics. In the first essay we examine the relationship between weather

and rice production at the farm level in Asia. Higher minimum temperature reduced yield while

higher maximum temperature raised it; radiationŠs impact varied by growth phase. Combined,

these effects imply that yield at most sites would have grown more rapidly during the high-

yielding season but less rapidly during the low-yielding season if observed temperature trends at

the end of the 20th Century had not occurred. Diurnal temperature variation must be considered

when investigating the impacts of climate change on irrigated rice in Asia.

In the second essay, I expand on the models used in the first, and incorporate the fact that

agricultural yield functions are non-linear, with sharp negative impacts when crops are exposed

to temperature in excess of certain thresholds. Exploiting exogenous variation in planting date, I

xii



demonstrate exogenous variation in above-threshold exposure-time comparable to the projected

increase due to 100 years of climate change, and analyze the ability of farmers to make adjust-

ments to compensate. I show that farmers do make small adjustments in the quantity of seed

that they plant, as well as the amount of nitrogen fertilizer that they apply to the crop. This has

important implications for the validity of the typical approach of using observed weather shocks

to measure the impact of climate change on agriculture: farmers make adjustments according to

expectations. As climate change will be slow and predictable, measuring agricultural output as

a function of unpredictable shocks may overstate the true impact of climate change.

The third essay is unrelated to the first two, and in it we study the consequences of

poverty alleviation programs for environmental degradation. We exploit the community-level

eligibility discontinuity for a conditional cash transfer program in Mexico to identify the impacts

of income increases on deforestation, and use the program’s initial randomized rollout to explore

household responses. We find that additional income raises consumption of land-intensive goods

and increases deforestation. The observed production response and deforestation increase are

larger in communities with poor road infrastructure. This suggests that better access to markets

disperses environmental harm and that the full effects of poverty alleviation can be observed

only where poor infrastructure localizes them.
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Chapter 1

Rice yields in tropical/subtropical Asia

exhibit large but opposing sensitivities

to minimum and maximum

temperatures

1.1 Introduction

The impacts of temperature and solar radiation on rice yield remain imperfectly known

despite decades of agronomic research. Current knowledge is based primarily on field trials

and greenhouse experiments. These experimental studies indicate that increased temperature

(Yoshida and Parao, 1976; Yoshida, Satake and Mackill, 1981; Seshu and Cady, 1984; Wass-

mann, Jagadish, Heuer, Ismail, Redona, Serraj, Singh, Howell, Pathak and Sumfleth, 2009b) and

decreased radiation (Yoshida and Parao, 1976)(Seshu and Cady, 1984; Evans and Datta, 1979)

can reduce yield, with the impacts varying across the plant’s three growth phases (vegetative

= establishment to panicle initiation, reproductive = panicle initiation to flowering, ripening =

flowering to mature grain). Unresolved issues remain with respect to the relative impacts of

temperature during daytime (Tmax) vs. nighttime (Tmin), potentially confounding impacts of tem-

perature and radiation, and the magnitude of impacts in non-experimental settings. Here, we

investigate these issues by analyzing data from the largest farm-level rice study conducted in

Asia since the mid-1980s. To our knowledge, this paper is the first to use disaggregated data

from farmer-managed fields to disentangle the impacts of Tmin, Tmax, and solar radiation on rice

1
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yield.

With few exceptions (Lobell and Field, 2007; Lobell, 2007), most statistical studies on

temperature and rice yield have focused on the impact of daily mean temperature (Tave), despite

evidence that that the effects of Tmin and Tmax on crop phenological development and physiologi-

cal processes differ (Wassmann et al., 2009b). It is well-established that extremely high levels of

Tmax during flowering can drastically reduce rice yield due to spikelet sterility, but recent stud-

ies have provided evidence that yield might be more sensitive to Tmin than to Tmax in locations

where spikelet sterility is rarely observed (Peng, Huang, Sheehy, Laza, Visperas, Zhong, Cen-

teno, Khush and Cassman, 2004). Rice simulation models began to include Tmin and Tmax as

separate variables only recently (Wassmann et al., 2009b). Better understanding of the impacts

of temperature at different points in the diurnal cycle is needed, as Tmin has been rising faster than

Tmax in some important Asian rice-growing countries, including the two largest, China (Zhou,

Dickinson, Tian, Fang, Li, Kaufmann, Tucker and Myneni, 2004) and India (B. Padma Kumari,

2007), and is projected to continue doing so in the future (IPCC, 2007).

Potentially confounding impacts of Tmin and radiation on rice yield in field experiments

have attracted recent attention (Peng et al., 2004)(Sheehy, Mitchell and Ferrer, 2006), although

this was recognized as a challenge for yield studies decades ago (Evans and Datta, 1979). The

difficulty stems from the complex meteorological effects of clouds, which reduce not only in-

solation but also back radiation, thus possibly increasing Tmin by enhancing long-wave surface

warming at night (Sheehy et al., 2006)(Huang, Dickinson and Chameides, 2006). Understanding

the relative impacts of Tmin and radiation is important in view of evidence of a declining trend

in surface radiation (“global dimming”) (Stanhill and Cohen, 2001), which is likely due to in-

creased cloudiness caused by a combination of global warming and regional “brown clouds” of

aerosol pollution (Huang, Dickinson and Chameides, 2006; Stanhill and Cohen, 2001; Dai, Tren-

berth and Karl, 1999; Ramanathan, Chung, Kim, Bettge, Buja, Kiehl, Washington, Fu, Sikka and

Wild, 2005). A study based on a small number of annual observations (twelve) from a research

station in the Philippines reported that the yield of irrigated rice decreased by 10% for each 1◦C

increase in Tmin averaged over the growing season (Peng, Huang, Sheehy, Laza, Visperas, Zhong,

Centeno, Khush and Cassman, 2004). A reanalysis of the data from that study concluded that

the actual impact of Tmin was much smaller, because Tmin was negatively correlated with radia-

tion, thus confounding the observed impact of Tmin with the omitted impact of radiation (Sheehy,

Mitchell and Ferrer, 2006). A recent review of the impacts of climate change on rice concluded

that “the effect of high night temperature is not understood well” (Wassmann, Jagadish, Heuer,
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Ismail, Redona, Serraj, Singh, Howell, Pathak and Sumfleth, 2009b).

While experimental studies are essential for understanding physiological relationships

and constructing crop simulation models, they do not necessarily replicate real agricultural set-

tings. Researchers typically apply agronomically optimal levels of inputs that are not being

investigated, which can accentuate the impact of weather by making it the factor that limits

yield. Data from farmer-managed fields allow one to study how weather affects yield in a set-

ting in which farmers make decisions based on the weather they observe every day and the

prices they pay for inputs and receive for harvested crops. Although other studies have used

non-experimental data to study the relationship between weather (or climate) and agriculture

(Mendelsohn, Nordhaus and Shaw, 1994; Schlenker, Hanemann and Fisher, 2005; Deschenes

and Greenstone, 2007; Schlenker and Roberts, 2009; Guiteras, 2009), including for rice (Lobell

and Field, 2007; Lobell, 2007; Auffhammer, Ramanathan and Vincent, 2006), with one excep-

tion they have analyzed aggregate data (e.g., national, state, or county), which precludes careful

matching of weather variables with farm-specific planting and harvesting dates and crop growth

phases. The exception was a farm-level study on rice yield in a single country (Thailand), which

presented no detail on statistical results and evidently did not examine diurnal temperature vari-

ation or solar radiation (Felkner, Tazhibayeva and Townsend, 2009).

The data analyzed here are from a multi-year (1994-99) study on productivity of inten-

sively managed irrigated rice farms in Asia by the International Rice Research Institute (IRRI)

and its partners in six countries (Dobermann and Witt, 2004). The farms were located in seven

important rice-growing regions (“sites”; Figure 1.1) in six of the most important countries in

terms of contributions to global rice supply. Each site represented an irrigated rice-growing area

of more than 200,000 ha, ranging up to several million ha. All were located in inland plains or

large river deltas with humid tropical or subtropical climate, with at least two rice crops grown

each year. Such double- and triple-crop rice systems in similar climatic conditions occupy a land

area of about 24 million ha in Asia, feed about 1.8 billion Asians, and account for 40% of global

rice supply (Dobermann and Cassman, 2004). Most of the sites are in areas where monthly av-

erage Tmax is considered to be high (> 33◦C) during the reproductive or ripening phase of one of

the annual crops (Wassmann, Jagadish, Sumfleth, Pathak, Howell, Ismail, Serraj, Redona, Singh

and Heuer, 2009a).

Farms at each site were selected to represent a range of the most common soil types,

cropping systems, farm management practices, and farm sizes. They were early adopters of

Green Revolution technologies (modern high-yielding varieties adapted to local conditions, ir-
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rigation, fertilizers, pesticides, mechanization) and had been under intensive management for

decades. They were generally representative of intensively managed irrigated rice farms in their

countries in terms of demographics, access to capital, and capital intensity of production (Moya,

2004). We analyzed all the farms with complete data (227 farms; Table 1.1).

Our objective was to determine the relative sensitivity of rice yield to changes in Tmin,

Tmax, and radiation in a real-world setting, net of any responses (e.g., input adjustments) by

farmers to these changes. Our general approach was to regress yield on weather variables and,

in some specifications, exogenously determined economic variables, whose inclusion improved

the precision of the estimated weather impacts. IRRI and its partners collected data on crop

establishment and harvest dates, production inputs, and yields for each farm in each season of

each year. They also collected daily weather data from a single monitoring station at each site,

which was within 15-20 km of nearly all farms at a site. This detail enabled us to construct

farm-specific measures of weather variables defined according to the rice plantŠs three growth

phases (for each phase, means for Tmin, Tmax, and radiation and sums for rainfall). The fact that

the dataset included observations over multiple growing seasons enabled us to use fixed effects

to control for unobserved factors that varied across space (i.e., were unique to each farm, such

as soil) or time (were common to all farms at a given site in a given season and year, such as

ambient CO2 concentration). The inclusion of these fixed effects increased the likelihood that the

impacts we identified were indeed due to temperature and radiation and not to variables omitted

from the regression models.

1.2 Results

1.2.1 Data Variability and Correlations

Yield varied substantially in the sample (5182 ś 1468 kg ha-1; range = 288-10838 kg

ha-1), as did weather (Table 1.3). An understanding of correlations among the weather variables

is important for interpreting the regression results. Three features of the correlation matrix are

most notable (Table 1.4): Tmin and radiation were not highly correlated, unlike in the Philippines

study (Peng et al., 2004; Sheehy et al., 2006); both variables were moderately (and positively)

correlated with Tmax; and their correlations with rainfall were smaller in absolute value than

their correlations with Tmax. These features suggest that the dataset affords the possibility to

disentangle the impacts of Tmin and radiation, and that a failure to control for Tmax could bias

estimates of the impacts more than a failure to control for rainfall.
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1.2.2 Regression Results

Multiple regression results support these contentions (Table 1.5). Figure 1.2 shows, for

different specifications of the regression model, parameter estimates for the temperature and

radiation variables. Given the linear specification of the model, the estimates are interpretable as

marginal effects: the impact of a one-unit change in a weather variable on yield, holding other

variables constant. For example, in the model that included economic variables (Model 5), a 1◦C

increase in Tmin during the ripening phase reduced yield by 322.4 kg ha−1.

Impacts varied by growth phase, with the most significant impacts occurring during

the ripening and vegetative phases. Tmin, Tmax, and radiation had significant impacts (P < 0.05)

during both of these phases in the more complete model specifications, with the exception of Tmax

during the ripening phase (P = 0.087 in Model 5). The lower significance of the latter variable

resulted from its correlation with radiation during the same phase. The two variables were jointly

significant (P < 0.001 in Model 5), however, and excluding either one sharply improved the

significance of the other without affecting the signs or general magnitudes of the parameter

estimates on the other weather variables (Table 1.6). These additional results imply that yield

was significantly affected by both Tmax and radiation during the ripening phase.

Tmin and Tmax had opposite impacts (negative and positive, respectively), while the im-

pact of radiation differed between phases (positive for ripening, negative for vegetative). Differ-

ences in parameter estimates between the vegetative and ripening phases were more significant

for radiation and Tmin than for Tmax (Table 1.7).

Parameter estimates on Tmin changed only moderately when radiation was added (Figure

1.2), which is expected given the small correlation between the two variables. The addition of

Tmax had a larger influence, causing the Tmin parameter estimates to increase 1.5-2 times during

both the vegetative and ripening phases. This resulted from the combination of the positive

correlation of the two temperature variables and their opposing impacts on yield. Including

Tmax was thus necessary to accurately identify the impact of Tmin. Otherwise, the Tmin parameter

estimate reflected the net impact of both temperature measures and was biased toward zero. In

models that included both temperature measures, the absolute value of the (negative) impact of

Tmin differed significantly from the positive impact of Tmax during the ripening phase (Table 1.7),

which indicates that including both measures is more appropriate than including their mean, Tave.

This can also be demonstrated by estimating the same models with Tave included instead of Tmin

and Tmax. Consistent with previous studies (e.g., 28), Tave tended to have negative impacts on

yield during the reproductive and ripening phases, but the impacts were highly insignificant in
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nearly all specifications (Table 1.8).

Rainfall had a significant impact only during the ripening phase. The addition of rainfall

affected the parameter estimates less than the addition of Tmax, which is not surprising in view

of the lower correlations of Tmin and radiation with rainfall than with Tmax. Correlations of the

economic variables with the weather variables were very small (Table 1.3), and so their addition

had a negligible impact on the parameter estimates. It mainly increased the precision of the

estimates (lower standard errors and P-values).

The different units of the weather variables in Figure 1.2 impede comparison of the vari-

ablesŠ impacts on yield. This can be overcome by expressing the marginal effects per standard

deviation of the weather variables (Table 1.9). The standard deviations were calculated after

removing any variation explained by the fixed effects for farms and site/season-years, as only

this residual variation was used to identify the variablesŠ impacts in the regression models. The

largest marginal effect thus expressed was for Tmin during ripening (-174.4 kg ha−1), followed

by Tmax and radiation during the vegetative phase (122.9 kg ha−1 , -124.1 kg ha−1). The smallest

was for rainfall (68.4 kg ha−1), which is expected given that the farms were irrigated.

The marginal effects in Figure 1.2 came from regression models that did not allow non-

linear responses of yield to weather. To examine the implications of this restriction, we also es-

timated a quadratic specification. The estimated parameters on the quadratic terms were mostly

insignificant, and the marginal effects evaluated at mean values had the same signs as, and were

similar in magnitude to, those in Figure 1.2 (Table 1.10).

1.2.3 Joint Impacts

The opposing effects of Tmin and Tmax indicate that warming has an ambiguous impact

on rice yield. Which effect dominates depends on the magnitudes of not only the effects but also

the trends in the two variables. Even if the absolute values of the variablesŠ opposing effects are

re not significantly different, as they are not during the vegetative phase (Table 1.7), differences

in the variablesŠ trends could still result in a nonzero net impact of warming.

For each site and season, we investigated the joint impact of recent warming trends by

summing the products of the marginal effects and corresponding trends in the two temperature

variables during the vegetative and ripening phases. Analyzing observed trends instead of hy-

pothetical future ones that might occur under accelerated warming is appropriate because recent

trends have been relatively small; combining marginal effects to calculate the joint impact of

multiple temperature changes is valid only if the changes themselves are small (i.e., marginal).
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We also included radiation during the vegetative and ripening phases in the analysis, in view of

concerns about its potentially confounding effect with Tmin.

The analysis answered the question, “How would yield growth have been affected if

observed weather trends had not occurred?” Although our analysis is not the first to examine the

impact of recent climate changes on agricultural yields, including for rice (6, 22), to our knowl-

edge it is the first to be based on farm-level data from multiple countries. Data series from the

weather stations at the sites were too short to determine trends. Instead, trends in Tmin and Tmax

were based on a global analysis of ground-station data for 1979-2004, while trends in surface

radiation were based on satellite data for 1983-2004 (see “Data and Methods”). Combining tem-

perature data from ground stations with satellite data for radiation provides reliable estimates of

weather impacts on crop yields. Trends were determined separately for each quarter of the year

(December-February, etc.) and were assigned to seasons and growth phases using site-specific

crop calendars (Dobermann and Witt, 2004).

As expected, evidence of warming was stronger at night (Table 1.11). Sixteen of the 28

site-quarters had significant trends (P < 0.05) in the case of Tmin, with 13 being positive, while

only 8 site-quarters had significant trends in the case of Tmax, with all being positive. Significant

trends occurred for radiation in 9 cases, with 8 being negative. Significant warming and dimming

thus occurred at some sites, but not all.

Table 1.2 shows the joint impacts of these trends. The most obvious result is that the

impacts varied substantially between seasons and sites. At most sites, yield would have grown

more rapidly during the high-yielding season but less rapidly during the low-yielding season.

The absolute values of the joint impacts were relatively large for one or both seasons at most

sites, being equivalent to a fifth or more of the actual annual yield trends for the countries where

the sites were located. The direction of the joint impact was influenced more by temperature

than by radiation: the absolute value of the joint impact of Tmin and Tmax exceeded the absolute

value of the impact of radiation for eleven of the fourteen season-sites and matched it for one.

1.3 Discussion

The estimated impacts of weather variables reported here are unique in being based on

repeated observations from a large number of farmer-managed fields in multiple countries. This

data structure enabled us to investigate the simultaneous impacts of multiple weather variables,

broken out by growth phase of the rice plant, and to control for unobserved factors that varied

across farms and, at the site level, over time. Despite these methodological differences compared
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to previous studies, our findings corroborate recent ones that Tmin has a large, negative impact

on yield (Peng, Huang, Sheehy, Laza, Visperas, Zhong, Centeno, Khush and Cassman, 2004).

Although the mechanisms responsible for the negative impact have yet to be conclusively iden-

tified (Wassmann, Jagadish, Heuer, Ismail, Redona, Serraj, Singh, Howell, Pathak and Sumfleth,

2009b), our results could be explained by increased respiration losses during the vegetative phase

(Peng et al., 2004) and reduced grain filling duration and endosperm cell size during the ripening

phase.

Our finding of a positive impact of Tmax during the vegetative and ripening phases is

perhaps more surprising, as the literature emphasizes the negative impact of elevated Tmax dur-

ing all growth phases, due to reduced photosynthesis caused by chloroplast damage (vegetative

phase), spikelet sterility caused by reduced pollen production (reproductive), and increased en-

ergy consumption caused by higher respiration demand (ripening) (Wassmann, Jagadish, Heuer,

Ismail, Redona, Serraj, Singh, Howell, Pathak and Sumfleth, 2009b). It can be explained by the

fact that Tmax within our sample seldom reached the extremes that cause these negative impacts.

For example, fewer than 4% of the observations of Tmax during the reproductive phase in our

sample exceeded the frequently cited threshold of 35◦C above which spikelet sterility becomes

common under humid conditions (Yoshida et al., 1981; Wassmann et al., 2009b). Field trials

for rice grown under ambient temperatures have reported a positive impact of Tmax (Evans and

Datta, 1979), and most controlled-environment studies use 29− 30◦C as the optimal daytime

growing temperature. Mean Tmax was within or not much above the latter range at most of our

sites (Table 1.3).

Although our finding of a negative correlation between yield and radiation during the

vegetative phase contrasts with the literatureŠs emphasis on a positive correlation during the

ripening phase (which we found, too), there is experimental evidence that yields of some crops

can rise if small reductions in total radiation, which is what we measured, coincide with increases

in diffuse radiation (14). Other possible explanations include photoinhibition and excessive

production of tillers, which could cause mutual shading and reduced panicle size.

Our most important methodological finding is that it is necessary to analyze the impacts

of Tmin and Tmax jointly. Because these two variables were moderately correlated in our data and

had opposing impacts on yield, excluding Tmax biased parameter estimates for Tmin in a position

direction. Moreover, the absolute values of the impacts of the two variables were significantly

different during the ripening phase. Although the absolute values were not significantly different

during the vegetative phase, their opposing effects would cancel only if trends in the two vari-
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ables were identical, but this has not been the case in recent decades. Recent efforts to develop

rice simulation models that include both Tmin and Tmax are clearly justified. Our results for these

two variables differ from those in two recent studies of national rice yield data (Lobell and Field,

2007; Lobell, 2007), which reported that Tmin and Tmax (Lobell and Field, 2007), or Tave and di-

urnal temperature range (= TmaxTmin) (Lobell, 2007), had insignificant impacts in most countries

during 1961-2002. Our finding of significant impacts is likely due to a combination of reasons,

including the larger number of observations in our sample, our ability to define weather vari-

ables specific to farms and rice growth phases, and our inclusion of controls for solar radiation

and economic variables, which increased the precision of the estimates.

We emphasize that the impact estimates in Figure 1.2 refer to marginal effects of climate

changes. They should not be extrapolated to the non-marginal warming that is projected to occur

in Asia by the end of the century (Table 1.12), which lies well outside the residual variation in

the weather data that was used to identify warming impacts in our regression models (Table 1.9).

For moderate warming in coming decades, however, our results imply a net negative impact

on yield, because Tmin is projected to rise more rapidly than Tmax and the combined negative

marginal effects of Tmin during the vegetative and ripening phases exceed the combined positive

effects of Tmax (Figure 1.2, Table 1.7). Beyond that, the impact would likely become even more

negative, as increases in Tmax would push it out of the optimal growth range and closer to, or

beyond, the extremely high levels where it can damage chloroplasts and cause spikelet sterility.

Another caveat is that our estimates refer to just irrigated rice, not all rice, in tropical

and subtropical regions of Asia, not all rice-growing areas of the world. The lack of a substantial

rainfall impact in our study does not mean that irrigated rice is ultimately unaffected by rainfall.

Rainfall is the source of irrigation water at all seven sites, but it had a negligible impact in our

sample simply because we analyzed a period when it did not limit irrigation. This could change

in the future, as climate models predict that the area of Asia affected by drought will likely

increase (IPCC, 2007).

1.4 Data and Methods

1.4.1 Data

The farms were not selected randomly (Dobermann and Witt, 2004), which is one reason

we preferred fixed-effects estimates to random-effects estimates. A consequence of the use of

fixed effects is that our results do not necessarily generalize to farms outside the sample, but the
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regression results changed little if we used random effects instead (see below). Each farm had

a parcel dedicated to a nutrient management study, but the parcel was small compared to total

farm size. We used only data from the remaining area of each farm, which was controlled by the

farmer.

Although IRRI collected weather data from just a single station at each site, the stag-

gering of crop establishment and harvest dates across farms created variation in the weather

variables within each site even for a given season-year. We included only farms with no more

than two days of weather data missing in a particular season. We used standard definitions of the

three growth phases of rice in constructing the weather variables: vegetative = crop establish-

ment through 66 days before harvest; reproductive = 31-65 days prior to harvest; and ripening =

last 30 days of the growing season, excluding the harvest date. We constructed the temperature

and radiation variables as farm-specific means, and the rainfall variables as farm-specific sums,

of the daily observations for each phase.

Some recent studies on future agricultural impacts of climate change, most (Deschenes

and Greenstone, 2007; Schlenker and Roberts, 2009) but not all (Guiteras, 2009) of which focus

on the U.S., have defined temperature variables in other ways, including growing-degree days

(GDD) and the number of days in 1-degree temperature bins, with the latter fitted either linearly

or with flexible polynomials. We did not use GDD because low temperature rarely constrains rice

growth at tropical and subtropical sites. Temperature bins are useful for identifying significant

nonlinearities in the relationship between yield and temperature, which is especially important

when simulating the impacts of projected large future increases in temperature. We were unable

to implement this approach for two reasons: we had too few observations to estimate precisely

the large number of parameters involved, and the tails of our temperature distributions were too

thin to detect the nonlinearities.ă It is for such reasons that we restricted the simulation analysis

to the relatively small climate changes that have already occurred at the sites.ă

Rice price was farm-specific. It reflected variation in the varieties grown, which changed

little over time on a given farm, and the quality of the harvested crop. Some farms sold parts

of their harvest at different prices; in those cases, the rice price variable was the average of the

various prices reported. The wage rate was calculated at the site level by dividing aggregate

expenditure on hired labor across farms by the aggregate number of person-days hired. This was

done separately for each season in a given year. The price of nitrogen fertilizer was also calcu-

lated at the site/season-year level. Nutrient-specific fertilizer prices were generally not available

due to the prevalence of compound fertilizers. The price of nitrogen fertilizer was approximated
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by the corresponding parameter estimate from a regression of total fertilizer expenditure on the

total quantities of nutrients applied (i.e., an implicit price). The use of uniform wages and fer-

tilizer prices across farms at a given site in a given season is reasonable because the farms at

each site were located in villages adjacent to each other and were well served by transportation

infrastructure.

1.4.2 Regression analysis

We used multiple regression to estimate the following statistical model,

yit = ci +θ jt +witβ +uit (1.1)

where yit is the yield of farm i in season-year t; ci is a farm-level fixed effect, which equals 1 for

observations from farm i and 0 otherwise; θ jt is a site-specific season-year fixed effect, which

equals 1 for observations from site j in season-year t and 0 otherwise; wit is an NK matrix of

weather variables, where N is the number of observations across farms and season-years and

K is the number of variables; β is a K1 vector of parameters that give the impact of weather;

and uit is a random error term that represents the impacts of factors other than weather on yield.

(We discuss the inclusion of economic variables below.) Because the model included farm-

level fixed effects, the impacts of climate change were identified from the random variation in

weather over time as opposed to the mean differences between farms. This identification strategy

has been used in other recent studies (Deschenes and Greenstone, 2007; Schlenker and Roberts,

2009; Guiteras, 2009; Auffhammer, Ramanathan and Vincent, 2006; Felkner, Tazhibayeva and

Townsend, 2009).

We used a Box-Cox transform to guide model specification. The estimate of the Box-

Cox theta parameter for a model with the same variables as Model 5 in Table 1.5 was 0.886,

which implied that a linear specification was more appropriate than log-log, semi-log, or inverse

specifications.

We intentionally excluded from the right-hand side of Equation 1.1 any variable over

which farmers had control, which could have caused endogeneity bias. As a result, the parame-

ters in β are more inclusive than the marginal effects of weather that would be obtained from a

regression model that controlled for farm inputs such as labor and fertilizer. To see this, suppose

that instead of Equation 1.1 the model were

yit = ai +θ jt +witα + γzit + εit (1.2)
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The key change is the addition of zit , which is a farmer-controlled input (an N1 vector) whose

impact on yield is given by the parameter γ . The farm-level fixed effects are now given by ai, the

parameters on wit by α , and the error term by εit . Suppose further that farmersŠ decisions about

how much of the input to use are affected by weather in the following way:

zit = δ0i +witδ1 +ξit (1.3)

δ0i and δ1 are parameters, and ξit is a random error term. Inserting Equation 1.3 into Equation

1.2 yields

yit = ci +θ jt +witβ +uit (1.4)

where ci = ai + γδ0i, β = α + γδ1, and uit = εit + γξit . This is the same as Equation 1.1. Hence,

the expected value of estimates of β obtained by regressing yield on just the weather variables

is the total marginal effect of weather on yield: the sum of the direct impact on yield (α) and the

indirect impact through weatherŠs influence on input use (γδ1).

The addition of exogenous economic variables does not fundamentally change the pre-

ceding explanation of the parameter estimates on the weather variables. According to standard

producer theory, input demand by farmers is determined by not only weather but also crop price

(rice in our model), prices of inputs (labor, nitrogen), and stocks of fixed inputs (area planted

with rice). The exclusion of these variables from Equation 1.3, and thus from Equation 1.4, can

bias estimates of β when the variables are significantly correlated with the weather variables.

When the correlations are small, however, as they are in our dataset, then the bias is small and

exclusion of these variables mainly makes estimates of β less precise. (Hence, P-values for the

temperature and radiation variables in Table 1.4 are larger for Model 4 than Model 5.) Consis-

tent estimates also require that the economic variables are not simultaneously determined with

yield. This condition was met in our data: farmers were price takers in rice, labor, and fertilizer

markets, and area planted was determined months before each seasonŠs crop was harvested.

The panel structure of our data (i.e., both cross-sectional and time-series variation) al-

lowed the estimation of models that included either fixed effects or random effects to control for

unobserved farm characteristics. We used the generalized form of the Hausman test to test the

validity of the random effects model. We rejected the null that the regressors were uncorrelated

with the farm-level random effects (P < 0.0001 in all cases). The random-effects estimates did

not differ greatly from the fixed effects estimates (Table 1.13), however, which implies that the

correlation of the random effects with the regressors did not bias the parameter estimates greatly.

The results remained similar if we did not include either fixed or random effects to control for
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unobserved farm characteristics, but they changed substantially if we excluded fixed effects for

site/season-years (Table 1.13). Evidently, the most influential unobserved effects in our sample

were ones that varied over time at the sites. This suggests that parameter estimates from future

studies that use cross-sectional, farm-level data instead of panel data might not be very biased if

the data are from multiple sites and the regression analysis includes site-level fixed effects.

Residuals in the models could be spatially correlated across farms within a site and se-

rially correlated over time despite the inclusion of the site-specific season-year fixed effects. We

addressed this issue by clustering the standard errors at the village/district level. The number of

clusters was relatively small (just 32), which could cause the standard errors to be inconsistent.

To check this, we implemented a recently developed bootstrapping method for estimating con-

sistent t-statistics when the number of clusters is small. Parameter estimates on Tmin, radiation,

and Tmax during the vegetative phase and Tmin during the ripening phase remained significant (P

< 0.05) according to the bootstrapped t-statistics, but the parameter estimates for Tmax and radi-

ation during the ripening phase did not (P = 0.118 and 0.148, respectively). Each of the latter

two variables became significant (P = 0.002 and 0.02, respectively), however, if the other was

excluded.

1.4.3 Analysis of joint impacts

Estimated quarterly trends in Tmin and Tmax (◦C yr−1) during 1979-2004 were provided

by the U.S. National Climatic Data Center and were generated using the methods described

in Vose et al. (2005). They referred to 5◦5◦ grid cells containing the sites. Trends in sur-

face radiation were based on analysis of the series, “Insolation on Horizontal Surface” (MJ

m−2 day−1), from the NASA Climatology Resource for Agroclimatology website (http://earth-

www.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov). Daily data

for this series were downloaded by entering the latitude, longitude, and elevation of each site.

Data were averaged within each quarter of the year during 1983-2004 (1983 was the first year in

the dataset), and then the natural logarithm of each quarterly series for each site was regressed

on an annual time trend. Hence, the radiation trends were expressed in % change yr−1. Sig-

nificance was tested using Newey-West standard errors, which were robust to heteroskedasticity

and first-order serial correlation.

Impacts in Table 1.1 were calculated by multiplying: (i) temperature trends (Table 1.11)

by the corresponding regression coefficients (Model 5 in Figure 1.2 and Table 1.5), and (ii) radi-

ation trends by not only the corresponding regression coefficients but also the means of the radia-
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tion variables used in the regression analysis. National yield trends were estimated by regressing

the natural logarithm of national yield data (FAOStat, http://faostat.fao.org/default.aspx), on an

annual time trend. Impacts changed little if they were based on weather trends that were signifi-

cant at P < 0.1 instead of P < 0.05.

1.5 Acknowledgments

We thank all the researchers who participated in the project, “Reversing Trends of De-

clining Productivity in Intensive Irrigated Rice Systems,” which generated the data we analyzed,

and the funders of that project (International Rice Research Institute, IRRI; Swiss Agency for

Development and Cooperation; International Fertilizer Industry Association; Potash and Phos-

phate Institute; International Potash Institute). We also thank A. Rala (IRRI) for preparing Figure

1; R. Vose (U.S. National Climatic Data Center) for providing estimates of historical temperature

trends; W. Li (Duke University) for providing temperature and radiation projections; seminar

participants at the Food and Agriculture Organization of the United Nations (FAO), the Univer-

sity of California at San Diego, and IRRI (especially S.V.K. Jagadish, S. Peng, R. Wassmann)

for their suggestions; and FAO and the University of CaliforniaŠs Institute on Global Conflict

and Cooperation for partial financial support of the preparation of this paper.

Chapter 1, in full, is a reprint of the material as it appears the Proceedings of the National

Academy of Sciences, vol. 107, no. 33, 2010. Welch, Jarrod R.; Vincent, Jeffrey R.; Auffham-

mer, Maximilian; Moya, Piedad F.; Dobermann, Achim; and Dawe, David. The dissertation

author shared equally in the research design and analysis, and is lead author of the paper.



15

1.6 Figures

Figure 1.1: Location of study sites
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Figure 1.2: Impacts of temperature and radiation on rice yield, expressed per ◦C for tempera-
ture and per MJ m−2 d−1 for radiation. Each cluster shows estimates for a given variable from
different regression-model specifications, distinguished by rice-growth phase (vegetative, repro-
ductive, and ripening). Model 1 included only Tmin. Model 2 added radiation. Model 3 added
Tmax. Model 4 added rainfall. Model 5 added economic variables. Bars show 95% confidence
intervals.
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1.7 Tables

Table 1.1: Characteristics of study sites: locations of weather stations, and observations included
in sample

Site Lat/Long Climatic zone Years Villages Farms Obs.
China (Jinhua) 29◦5’ N Subtropics 1998-99 7 25 91

119◦47’ E
India (Aduthurai) 11◦1’ N Tropics 1994-99 4 37 214

79◦29’ E (subhumid)
Indonesia (Sukamandi) 6◦21’ S Tropics 1995-99 3 30 159

107◦40’ E (humid)
Philippines (Maligaya) 15◦23’ N Tropics 1994-99 4 48 361

120◦54’ E (humid)
Thailand (Suphan Buri) 14◦28’ N Tropics 1994-98 3 31 169

100◦10’ E (subhumid)
Vietnam (Hanoi) 21◦1’ N Subtropics 1997-99 3 24 144

105◦53’ E
Vietnam (Omon) 10◦08’ N Tropics 1994-99 8 32 234

105◦32’ E (subhumid)
Totals - - - 32 227 1372
Sample: observations in regression models that included only weather variables.
Lat and long refer to weather stations at the sites.
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Table 1.4: Correlations among weather variables, by rice growth phase

Phase Variable Tmin Tmax Radiation
Vegetative Tmax 0.399 (0.000) - -

Radiation 0.117 (0.000) 0.597 (0.000) -
Rainfall 0.034 (0.215) -0.284 (0.000) -0.324 (0.000)

Reproductive Tmax 0.567 (0.000) - -
Radiation -0.118 (0.000) 0.396 (0.000) -
Rainfall 0.383 (0.000) -0.053 (0.052) -0.337 (0.000)

Ripening Tmax 0.505 (0.000) - -
Radiation 0.055 (0.043) 0.412 (0.000) -
Rainfall 0.358 (0.000) -0.158 (0.000) -0.250 (0.000)

To match the regression models, correlations were calculated using residual
variation in the variables, after demeaning them by farm and site/season-years to
remove the fixed effects of unobserved factors unique to each farm or common to all
farms at a given site in a given season-year. Number of observations: 1372. P-values
are in parentheses.
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Table 1.5: Regression results: Impacts of weather and economic variables on rice yield (kg
ha−1), for model specifications in Figure 1.2

Variables Model 1 Model 2 Model 3 Model 4 Model 5
Tmin: veg -116.0* (86.1) -172.4** -158.5** -185.2**

(0.1) (0.2) (0.0) (0.0) (0.0)
Tmin: rep (40.1) 8.9 (5.5) (11.0) 20.5

(0.5) (0.9) (0.9) (0.9) (0.8)
Tmin: rip -143.8* -178.3* -275.4*** -356.3*** -322.4***

(0.1) (0.1) (0.0) (0.0) (0.0)
Radiation: veg (13.7) -85.75** -98.17** -106.1***

(0.7) (0.0) (0.0) (0.0)
Radiation: rep (0.5) 0.5 11.4 27.4

(1.0) (1.0) (0.7) (0.4)
Radiation: rip 96.67* 88.7 88.0 109.4**

(0.1) (0.2) (0.1) (0.0)
Tmax: veg 214.9*** 190.4*** 193.9***

0.0 (0.0) (0.0)
Tmax: rep 7.4 (9.4) (22.3)

(0.9) (0.9) (0.7)
Tmax: rip 79.1 133.2* 124.9*

(0.2) (0.1) (0.1)
Rainfall: veg (0.6) (0.5)

(0.1) (0.1)
Rainfall: rep 0.4 0.3

(0.6) (0.7)
Rainfall: rip 1.325* 1.284**

(0.1) (0.0)
ln(Farm size) -779.5***

0.0
Rice price/Wage 7073**

(0.0)
Rice price/N price 348.6

(0.6)
R2 0.5 0.6 0.6 0.6 0.6
Observations 1372.0 1372.0 1372.0 1372.0 1248.0
Number of farms 227.0 227.0 227.0 227.0 219.0
All models included fixed effects for farms and site/season-years, in addition to
variables shown in table. Units for explanatory variables: ◦C for Tmin and Tmax,
MJ m−2 day−1 for radiation, mm for rainfall, and ha for farm size. Robust P-values
are in parentheses, for standard errors clustered by village;
***P < 0.01, **P < 0.05, *P < 0.1.
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Table 1.6: Regression results: Impacts of weather and economic variables on rice yield (kg
ha−1) in Model 5 when excluding either solar radiation or Tmax during the ripening phase

Variables Full model Exclude Exclude
(Model 5) Radiation: rip Tmax: rip

Tmin: veg -185.2** -200.2*** -185.9**
(0.0) (0.0) (0.0)

Tmin: rep 20.5 21.9 22.3
(0.8) (0.7) (0.8)

Tmin: rip -322.4*** -328.8*** -248.2***
(0.0) 0.0 (0.0)

Radiation: veg -106.1*** -126.8*** -91.83**
(0.0) (0.0) (0.0)

Radiation: rep 27.4 15.8 37.5
(0.4) (0.6) (0.2)

Radiation: rip 109.4** 138.5***
(0.0) (0.0)

Tmax: veg 193.9*** 190.3*** 180.6***
(0.0) (0.0) (0.0)

Tmax: rep (22.3) (60.7) (15.5)
(0.7) (0.4) (0.8)

Tmax: rip 124.9* 209.5***
(0.1) (0.0)

Rainfall: veg (0.5) -0.743** (0.5)
(0.1) (0.0) (0.2)

Rainfall: rep 0.3 0.0 0.3
(0.7) (1.0) (0.7)

Rainfall: rip 1.284** 1.117* 0.9
(0.0) (0.1) (0.1)

ln(Farm size) -779.5*** -741.8*** -799.7***
0.0 0.0 0.0

Rice price/Wage 7073** 6860* 6823*
(0.0) (0.1) (0.1)

Rice price/N price 348.6 380.1 441.1
(0.6) (0.6) (0.5)

R2 0.6 0.6 0.6
Observations 1248 1248 1248
Number of farms 219 219 219
All models included fixed effects for farms and site/season-years, in addition to
variables shown in table. Units for explanatory variables: ◦C for Tmin and Tmax,
MJ m−2 day−1 for radiation, mm for rainfall, and ha for farm size. Robust P-values
are in parentheses, for standard errors clustered by village;
***P < 0.01, **P < 0.05, *P < 0.1.
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Table 1.7: Equality tests for regression parameters in Models 4 and 5 in Table 1.5

Null hypothesis P-values
Model 4 Model 5

Equality across rice growth phases
Tmin: veg = Tmin: rep 0.12 0.02
Tmin: veg = Tmin: rip 0.04 0.11
Tmin: rep = Tmin: rip 0.01 0.01
Tmin equal for all 3 phases 0.04 0.02

Radiation: veg = Radiation: rep 0.01 0
Radiation: veg = Radiation: rip 0.01 0
|Radiation: veg| = Radiation: rip 0.87 0.96
Radiation: rep = Radiation: rip 0.14 0.12
Radiation equal for all 3 phases 0.03 0

Tmax: veg = Tmax: rep 0.04 0.02
Tmax: veg = Tmax: rip 0.47 0.35
Tmax: rep = Tmax: rip 0.2 0.19
Tmax equal for all 3 phases 0.11 0.05

Rainfall: veg = Rainfall: rep 0.19 0.25
Rainfall: veg = Rainfall: rip 0.04 0.02
Rainfall: rep = Rainfall: rip 0.24 0.21
Rainfall equal for all 3 phases 0.13 0.06

Equality within growth phases
|Tmin: veg| = Tmax: veg 0.58 0.9
|Tmin: rip| = Tmax: rip 0.03 0.04
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Table 1.8: Regression results: Impacts of weather and economic variables on rice yield (kg
ha−1), for models that included Tave instead of Tmin and Tmax

Variables Tave only Add radiation Add rainfall Add economic variables
Tave: veg -22.64 43.29 31.74 10.05

(0.8) (0.4) (0.6) (0.9)
Tave: rep -115.0** -38.22 -54.31 -34.26

(0.0) (0.6) (0.4) (0.6)
Tave: rip -45.77 -153.9 -163.4* -142.9

(0.6) (0.1) (0.1) (0.1)
Radiation: veg -12.43 -27.95 -30.32

(0.7) (0.3) (0.3)
Radiation: rep 18.7 19.03 28.22

(0.6) (0.5) (0.3)
Radiation: rip 121.1** 118.3** 142.5***

(0.0) (0.0) (0.0)
Rainfall: veg -0.820** -0.689**

(0.0) (0.0)
Rainfall: rep -0.13 -0.12

(0.9) (0.9)
Rainfall: rip 0.44 0.47

(0.5) (0.4)
ln(Farm size) -816.1***

0.0
Rice price/Wage 7199**

(0.1)
Rice price/N price 559.2

(0.4)
R2 0.55 0.55 0.55 0.59
Observations 1372 1372 1372 1248
Number of farms 227 227 227 219
All models included fixed effects for farms and site/season-years, in addition to
variables shown in table. Units for explanatory variables: ◦C for Tmin and Tmax,
MJ m−2 day−1 for radiation, mm for rainfall, and ha for farm size. Robust P-values
are in parentheses, for standard errors clustered by village;
***P < 0.01, **P < 0.05, *P < 0.1.
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Table 1.9: Marginal effects of weather variables, expressed per standard deviation: regression
model that included economic variables

Variable Growth phase Standard deviation, Marginal effect
based on residual variation (kg ha−1 per standard deviation)

Tmin Vegetative 0.42 ◦C -78.6
Ripening 0.54 ◦C -174.4

Radiation Vegetative 1.17 MJ m−2 day−1 -124.1
Ripening 0.90 MJ m−2 day−1 98.2

Tmax Vegetative 0.63◦C 122.9
Ripening 0.55◦C 69

Rainfall Ripening 53.3 mm 68.4
Marginal effects are shown only for weather variables whose estimated
regression parameters were significant at P < 0.1 (see Model 5 in Table 1.5) and were
calculated by multiplying regression parameters by the standard deviations of the
corresponding weather variables. Standard deviations refer to residual variation after
removing variation explained by fixed effects for farms and site/season-years.
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Table 1.13: Regression results: alternative specifications of fixed effects (FE)

FE: farm, RE: farm FE: site/season- FE: farm FE: none
site/season- FE: site/season- year

Variables year year
Tmin: veg -185.2** -170.3** -155.4* -89.92 -92.68

(0.0) (0.0) (0.1) (0.3) (0.3)
Tmin: rep 20.49 35.71 83.42 -9.13 4.89

(0.8) (0.7) (0.4) (0.9) (1.0)
Tmin: rip -322.4*** -373.0*** -381.6*** -160.7 -92.82

(0.0) 0.0 (0.0) (0.1) (0.4)
Radiation: veg -106.1*** -132.0*** -147.6*** -53.84* -95.75***

(0.0) 0.0 0.0 (0.1) (0.0)
Radiation: rep 27.38 11.27 -1.2 -3.64 -11.84

(0.4) (0.7) (1.0) (0.9) (0.8)
Radiation: rip 109.4** 133.9** 188.5** 46.77 71.30*

(0.0) (0.0) (0.0) (0.2) (0.1)
Tmax: veg 193.9*** 215.5*** 231.2*** 147.4** 150.2**

(0.0) 0.0 0.0 (0.0) (0.0)
Tmax: rep -22.27 6.85 29.86 -77.87 -99.67

(0.7) (0.9) (0.7) (0.3) (0.3)
Tmax: rip 124.9* 98.73 -2.3 75.98 4.1

(0.1) (0.3) (1.0) (0.4) (1.0)
Rainfall: veg -0.53 -0.842** -1.010** -0.836* -1.549***

(0.1) (0.0) (0.0) (0.1) 0.0
Rainfall: rep 0.31 0.26 0.26 -1.662** -1.176*

(0.7) (0.7) (0.7) (0.0) (0.1)
Rainfall: rip 1.284** 1.09 0.58 -0.97 -1.37

(0.0) (0.1) (0.5) (0.3) (0.2)
ln(Farm size) -779.5*** -228.7** -167.4* -742.4*** -201.1*

0.0 (0.0) (0.1) (0.0) (0.1)
Rice price/Wage 7073** 7813** 7794** 359.6 861.3

(0.0) (0.0) (0.0) (0.8) (0.6)
Rice price/N price 348.6 857.2 1442* 645.5** 366.2

(0.6) (0.2) (0.1) (0.0) (0.3)
R2 0.6 - 0.51 0.29 0.22
Observations 1248 1248 1248 1248 1248
Number of farms 219 219 219 219 219
Robust P-values are in parentheses, for standard errors clustered by village;
***P < 0.01, **P < 0.05, *P < 0.1.



Chapter 2

Climate change, agriculture, and

adaptation: A natural experiment

2.1 Introduction

The relationship between climate, agriculture, and socioeconomic outcomes is subject

to significant non-linearities. Agronomists have long understood that crop yield functions are

sensitive to high temperature, exhibiting strong negative responses to temperatures that exceed

certain crop-specific thresholds. With the exception of Schlenker and Roberts (2009), most eco-

nomic research on the topic of climate change and agriculture has focused on mean temperature.

With increasing evidence that not only are mean temperatures increasing, but we are likely to

see increased variability also, we should be particularly concerned about these threshold effects,

and how farmers respond to them.

The agronomic literature has significantly advanced the understanding of the physical

crop responses to weather variables, typically using simulation and experimental methods that

do not necessarily reflect farmer decision processes. Using observational data from the U.S.,

Schlenker and Roberts (2009) estimate non-linear yield functions for corn and soybeans, two

important U.S. crops, but to my knowledge this relationship has not been estimated for rice.

Disentangling the relationship between climate change, rice production, and human response is

an important issue; rice is an important global food crop contributing up to a third of the daily

caloric intake of over three billion people, among them some of the world’s poorest. Although

the detection of temperature thresholds is relatively straightforward, a complete understanding of

the relationship involves understanding farmer responses. Among the difficulties in conducting

30
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empirical analysis of this in particular, is that existing farmers are fully adapted to their envi-

ronments, and the probability of exposure to temperature exceeding the threshold is changing

very slowly. One could attempt to identify adaptation strategies using cross-sectional variation,

however, there are often many confounding factors. In this paper, I propose and use a natural

experiment that effectively assigns farmers to different amounts of exposure to high temperature,

at random. Further, individual farmers experience variation in the amount of time their crops are

exposed to high temperature from year to year, and in such a way that they are able to anticipate.

This allows me to not only estimate the temperature threshold for rice, but also analyze how

individual farmers change their behavior when faced with a less favorable climate regime.

Several studies have been conducted analyzing the relationship between temperature

and rice, many pointing to the importance of considering exposure to high temperature at night.

Seshu and Cady (1984) and Dey and Hossain (1995) both analyze data from International Rice

Research Institute (IRRI) test sites, Seshu and Cady using only climate variables as explanatory

variables, Dey and Hossain using climate and fertilizer. Both studies find that higher mini-

mum temperature is damaging to yield. Peng, Huang, Sheehy, Laza, Visperas, Zhong, Centeno,

Khush and Cassman (2004) find similar results in their analysis of field trials, though they do

not conduct a multivariate analysis, they include only one weather variable at a time, leading to

a subsequent critique by Sheehy, Mitchell and Ferrer (2006). Peng et al. find that minimum tem-

peratures rose significantly during the 23 years leading up to their study, and that this increase

had a significant, negative impact on rice yields. It should be noted that the crops studied were

on an IRRI test site in the Philippines, and they were managed to achieve highest possible yield,

not following practices of farmers responding to fluctuations in weather and price signals. This

makes controlled crop experiments and agronomic simulation methods suboptimal when consid-

ering the relevance of behavioral responses. Auffhammer, Ramanathan and Vincent (2006) and

Welch, Vincent, Auffhammer, Moya, Dobermann and Dawe (2010) both use observational data,

Auffhammer et al. (2006) aggregate state-level data from India, Welch et al. (2010) farm-level

data from six Asian countries, and also demonstrate the importance of considering nighttime

temperature.

One way the economic literature has tried to account for behavioral responses is with he-

donic studies. These studies use rents or farmland values as the dependent variable, regressed on

weather variables. Theoretically, in the presence of perfect land markets, farmland rents should

reflect the optimized use of the land. Any effect of weather on farmland rents (or value) then,

should be interpretable as the total effect, allowing for full behavioral response. In one of the
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original hedonic studies, Mendelsohn, Nordhaus and Shaw (1994) find that higher temperatures

in all seasons except autumn reduce farmland values, but that coupling their findings with global

warming scenarios shows a significantly lower estimated impact on agriculture than previous

studies that use a production function approach. Dinar, Mendelsohn, Evenson, Parikh, Sanghi,

Kumar, McKinsey and Lonergen (1998) find that in India, higher temperatures were harmful to

net farm revenues. This type of study is relevant for understanding economic effects of climate

change after account for adaptation, but all choice variables are swept into the error term so these

studies fail to shed light on any of the adaptation mechanisms.

In a more recent study, Schlenker and Roberts (2009) provide the first example in the

economics literature of consideration of the entire temperature distribution, enabling them to

isolate the threshold, and estimate the non-linearity of the yield function. On the other hand,

means may be appropriate when attempting to model behavioral responses. Kelly, Kolstad and

Mitchell (2005) argue that in the context of adaptation, means are the appropriate measure be-

cause it is possible for farmers to adjust to long term changes in climate (means), but given the

time horizon of many of their decisions (often the entire growing season) it is quite difficult for

then to adjust to daily weather fluctuations. In this paper, I show that farmers who plant later in

the season experience a significant increase in exposure to high temperature, and use exogenous

variation in crop establishment date driven by the availability of irrigation water, to demonstrate

that even though farmers can in fact anticipate changes in exposure to high temperature, they do

little about it.

Several researchers have studied agricultural adaptation to climate change. Smit and

Skinner (2002) discuss a variety of adaptation strategies from technological developments to

government programs and farm financial management, using specific examples from Canada.

Nath and Behera (2011) discuss adaptation in a more broad, social sense, and argue for the ne-

cessity of government intervention and a strong role for social institutions. Seo, Mendelsohn and

others conduct a series of cross-sectional, hedonic analyses of adaptation in South America and

Africa, focusing primarily on crop choice and diversification (e.g. Seo (2010), Seo and Mendel-

sohn (2008)). A similar study, specific to rice, is Wang, Mendelsohn, Dinar and Huang (2008).

Wu, Shibasaki, Yang, Tang and Sugimoto (2010) use a crop decision model and simulation

methods to analyze future changes in rice sown areas in Asia. Wassmann, Jagadish, Sumfleth,

Pathak, Howell, Ismail, Serraj, Redona, Singh and Heuer (2009a) analyze the specific physio-

logical effects of climate on rice, and identify adaptation roles for irrigation infrastructure and

development of heat tolerant germplasm. To my knowledge, this is the first study that analyzes
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adaptation using farm-level data that are structured such that we are able to observe individual

farmers who knowingly face different climate scenarios from year to year.

In the next section, I provide a theoretical framework within which to discuss the anal-

ysis, in Section 3 I present the data and analysis, ending that section with a discussion of the

results in the context of projected climate change, and in Section 4 I discuss a few caveats, and

provide concluding remarks.

2.2 Theoretical Framework

When estimating the relationship between climate and agricultural and economic out-

comes, it is important to consider thresholds. It is well understood from a physiological per-

spective that plant growth, and therefore grain yield, is initially increasing in temperature until

temperature reaches a certain threshold at which point yield falls dramatically with further in-

creases in temperature. Denote by τ this temperature threshold, and let

Yt = F(Xt ,g(τt),Wt) (2.1)

represent the agricultural production function, where Yt represents yield for year t, g(τt) is some

function of crop exposure to temperature above the threshold, Wt is a vector of average weather,

and Xt is a vector of inputs composed of inputs X1t which are fixed at the beginning of each

season (e.g. area planted, seed quantity, planting method, some fertilizer), and X2t which are

applied throughout the season (e.g. pesticides, herbicides, labor for certain activities, additional

fertilizer). Assume that the marginal effect of weather on yield is the only stochastic component

of this function.

There are two conceptually distinct ways to quantify the relationship between tempera-

ture and yield. The first is simply the direct, marginal effect:

αW = ∂Y
∂W

This is only the partial effect of temperature on yield, holding all other inputs constant. I assume

that ατ ≥ 0 for T ≤ τ and ατ < 0 for T > τ .

It is important to remember, however, that agriculture is a coupled human-ecological

system, and that γW might not capture all factors that comprise this relationship. Alternatively,

we can talk about the total effect, allowing for the fact that farmers observe weather, formulate

expectations, develop beliefs about climate distributions, and that input choices may in fact be

functions of weather expectations and observations. Let
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βW = dY
dW = ∂Y

∂W + ∂Y
∂X

∂X
∂W

In earlier work, we estimate β , and argue that this is the relevant parameter when discussing how

agricultural output will change as the climate changes. Little is known about the second term,

β −α however, and that is the topic of this paper.

The farmer’s problem is:

max
X

E[U(PY F(Xt ,g(τt),Wt)]−PX Xt)] (2.2)

With the assumption that weather is the only source of stochasticity1, the solution can be written

as

X∗1 (E[g(τt)],E[Wt ]) (2.3)

and

X∗2 (g(τt),Wt) (2.4)

Theoretical predictions regarding these relationships are largely ambiguous. Particularly

in the context of climate change, we do not know how farmers will react; whether they will

continue to farm the same crops in the same locations while taking measures to mitigate the

harmful effects of climate change, or adapt by changing crops or moving to cooler areas is

largely an empirical question. In the long run, as the probability of temperature exceeding the

threshold increases dramatically, farmers will presumably move to cooler areas or plant less

temperature sensitive crops. What remains unclear is how large changes will have to be for this

to take place. Given the projected changes over the course of this century, how soon should we

expect to see changes of this sort?

Without making any further assumptions about functional form, I can take a first-order

Taylor approximation to get the following estimation equation:

Xt = δ1g(τt)+δ2Wt +ut (2.5)

where δ1 =
∂X

∂g(τt)
, δ2 =

∂X
∂W and ut is an error term. In the case of X1t , this is a function of expected

weather which is inherently unobservable. In this paper, I exploit a natural experiment that

generates exogenous variation in the amount of time a farmer’s crop is exposed to temperature

over the threshold, and provides information on predicted exposure as of the beginning of the

season.
1This assumption amounts to ignoring the fact that the spot price at the time of harvest is unknown; the futures

price is, however, and the assumption is essentially that the farmer has entered into a futures contract for delivery at
the time of harvest of an unknown quantity at a specified price.
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2.3 Empirical analysis

2.3.1 Data

The data come from a multi-year study of rice farming conducted by researchers at the

International Rice Research Institute (IRRI) and various local agricultural research centers in

Asia. Starting in 1994, data were collected from farms in Tamil Nadu, India; Mekong Delta,

Vietnam; Central Luzon, Philippines; and the Central Plain of Thailand. The study expanded in

subsequent years, and additional farms in the following sites were added: in West Java, Indonesia

(1995); Red River Delta, Vietnam (1997); and Zhejiang, China (1998). Data were collected

through 1999. Altogether, the data set I use contains data for 227 intensively irrigated farms

in 32 different villages, from seven important rice growing regions in six of the most important

countries in terms of their contribution to global rice supply. Farms were not chosen at random,

but were chosen to be representative of the main cropping systems and soil types of the region,

as well as a range of small and large farms. Each farm had a parcel dedicated to the experiment

which IRRI was conducting, but this parcel was small with respect to total farm size and the

remainder of the farm was controlled by the farmer. I use only data from the farmer controlled

plots. Some farms were dropped during the course of the study, but the attrition was generally

unrelated to farmer characteristics. Reasons include breakdown of irrigation systems, problems

with agronomic data collection (on the part of the experimenters), or project financial constraints.

All farms are irrigated, and most harvest two crops per year, a high-yield season (season

HY—typically the dry season) and a low-yield season (season LY—typically the wet season).

Detailed household surveys were conducted, collecting information on yield, rice price, and cost

and quantity of various inputs including land use, labor (highly disaggregated by sourceŮfam-

ily, hired, etc.Ůand task), pesticides, and fertilizers (Table 2.1 provides summary statistics of a

few key variables). Perhaps most importantly, the surveys document farm-specific crop estab-

lishment and harvest dates, allowing me to match each farm with specific weather realizations

actually observed over the growing season of the crop. In each location, the irrigation authority

controls the allocation and timing of water availability. This imposes a constraint on the farm-

ers’ choice of crop-establishment date as they cannot plant before their water is available, and

storage is not an option. Irrigation water is turned on, and farmers immediately plant and flood

their field. This effectively generates exogenous variation is the climate distribution to which

each farmer is exposed. To my knowledge, this is the first paper to exploit such year-to-year

variation at the farm-level, in the climate distribution (not just weather realizations), to explore
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how individual farmers adjust their behavior in response to different climate scenarios.

Wages were calculated by dividing total labor cost by quantity of hired labor. Some

farms did not hire labor in some seasons, so I calculate the wage at the site level, separately

for each growing season (e.g. wet season 1997, dry season 1998, etc.) in order to not lose

observations due to a missing wage variable. Often compound fertilizers are used and cost is not

nutrient specific, so prices of nitrogen, phosphorus, and potassium fertilizers were approximated

by their respective coefficients from a regression of total fertilizer cost on the quantity of each

of the nutrients. This was also done at the site-season level. The assumption of constant wages

and fertilizer prices for a given site in a given season is reasonable in intensively irrigated areas

in Asia because they are well served by infrastructure. Farm profit per hectare is defined as

the difference between production value per hectare and total non-land cost per hectare. All

economic variables are in constant 1999 US dollar terms.

Weather data come from seven weather stations (one at each site) located such that no

farm in a site is more than 25km from the weather station. I use daily observations on minimum

and maximum temperature (measured in degrees Celcius). Since all farms in this study are

intensively irrigated, contemporaneous rainfall is expected to have little effect on farm-level

outcomes and is therefore excluded. Despite the fact that weather observations are recorded by

a single weather station for all farms within a particular site, I observe farm-level variation in

weather due to the staggered crop-establishment dates.

2.3.2 Results

First, I estimate the threshold. I start with a model motivated by Welch et al. (2010),

separately controlling for nighttime (minimum) and daytime (maximum) temperature averages

over the three growth phases–vegetative (crop establishment to panicle initiation–66 days be-

fore harvest), reproductive (panicle initiation to flowering–30 days before harvest), and ripening

(flowering to harvest). Rice is known to be particularly sensitive to heat during a brief period of

time around flowering (Wassmann et al., 2009a), so I focus on the two-week window centered at

the flowering date (30 days before harvest). Define threshold-degree days around the flowering

date as T DDaysτit = ∑
14
d=1 Tidt − τ , where Tidt is the maximum temperature observed by farmer

i on day d of the window around flowering in season t, and τ is the threshold. I estimate the

following equation:

Yit = βT DDaysτit +λT meanit +θi +νit (2.6)
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where Yit is the yield of farm i in season t, T meanit is a vector of minimum and maximum tem-

perature, averaged over the three growth phases, θi is the individual farm fixed effect, and νit is

the error term. I run a series of these regressions, increasing the cutoff for threshold-degree days

into the negatively sloped region in 1◦C increments, selecting the threshold (32◦) that best fits the

data; this is my estimate of τ . Given the importance discussed above of considering nighttime

temperature effects, I repeat this process for minimum temperature, maximum temperature, and

both combined. Included alone, minimum temperature does have a significant threshold above

which yield decreases, but when I control for both minimum and maximum temperature, only

the coefficient on maximum temperature remains significant. I also test a second specification,

one which counts the number of days above the threshold. This treats all days with temperature

above the threshold equally, while threshold-degree days assigns greater importance to hotter

days. Table 2.3 displays the yield effects of threshold-degree days. Column 1 is the primary

model, showing the effect of degree days above 32◦C, where the coefficient on T DDays32 is the

effect in the high-yield season. Focusing on within variation to interpret these results, we see

that a one standard deviation change in threshold-degree days (∼ 11), holding mean temperature

constant, leads to a reduction in yield of 363 kg/ha in the high-yield season (about 7% at the

mean, or 0.3 within SDs). An F-test that the sum of the coefficients on T DDays32 and the in-

teraction term is equal to zero results in an p-value of 0.15, so the effect in the low-yield season

is statistically insignificant. This could be due to the fact that there is not only a differential

threshold effect, but possibly a differential threshold.

Columns 3-5 are included to demonstrate robustness (I discuss the relevance of column

2 below): column 3 shows that controlling for daytime thresholds, nighttime temperature thresh-

olds do not have any additional effect, and controlling for nighttime temperature has little effect

on the significance of daytime thresholds; column 4 shows that as I increase the cutoff for the

threshold, the fit does not decline dramatically, but the magnitude of the effect increases sharply;

column 5 shows that under the alternative specification, counting all days above the threshold

equally, we still detect a significant effect.

With respect to farmer responses in preseason input decisions, the identification strat-

egy relies on the assumption that farmers have no control over their planting day, and the extent

to which planting day predicts threshold-degree days within the brief window around flower-

ing. First, I create a new variable Şplanting dayŤ. For each site and season, I take the first

crop-establishment date to be the date on which irrigation is made available to the first farmer;

Şplanting dayŤ is defined as Pdateist − Sdateis, where Pdateist is the date on which farmer i
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in site s plants his crop in season t, and Sdates is the first date on which a crop is planted in

site s. To demonstrate the relevance of the farm-specific date of availability of irrigation wa-

ter as an instrument, Figure 2.1 displays a scatter-plot of farm-demeaned threshold-degree days

against planting day, along with a lowess plot and a linear fit, for the high-yielding season2. We

see that in the high-yielding season, the probability of observing temperatures that exceed the

threshold increases as farmers plant their crops later in the season. As further demonstration

that the probability of a given day exceeding the temperature threshold increases the later is a

particular farmer’s planting day, Figures 2.3 and 2.4 display the distribution (using between and

within variation) of daily maximum temperature for the first and last days of the window around

flowering date, separated by farms in the first and last quintile of planting day. Though all re-

gressions are identified using only within variation, I use this display to help make more concrete

the concept of climate as a distribution of potential outcomes on a given day.

Table 2.4 demonstrates the same relationship as in Figure 2.1, in regression form for

both high- and low-yielding seasons combined, including an interaction term to account for the

fact that planting day is likely to have a differential effect on threshold-degree days depending

on the season. (These are the first-stage regressions for the IV estimates in Tables 2.5-2.7). The

coefficient on T DDays32 indicates the effect for the high-yielding season; we can see that plant-

ing day effectively predicts threshold-degree days in the high-yielding season, but has negligible

predictive power in the low-yielding season. Focusing on column 3, we see that a one- (within)

SD change in planting day results in an increase of 3.6 threshold-degree days, resulting in a sub-

sequent decrease in yield of 119 kg/ha (0.1 SDs; not huge, but meaningful). In this case, I barely

reject the hypothesis of zero effect in the low-yield season (p-value of 0.05), but the coefficient is

an order of magnitude smaller than that for the high-yield season, and translates to a meaningless

(and statistically insignificant effect on yield).

An additional concern is that farmers may be able to influence the irrigation authority

and receive their water at an optimal time (or at least a time of their choosing), and that this

influence might be correlated with ability or socioeconomic status. There is no test for the

validity of planting day as an instrument, but Figure 2.2 displays a scatter-plot of farm size

(as estimated by maximum over all seasons, of area planted to rice on a particular farm) against

planting day, along with a lowess plot; farm size is the best measure of socioeconomic status, and

this figure shows that there is no relationship between farm size and planting day. Additionally,

column 2 of Table 2.3 shows that, controlling for the effect of threshold-degree days, planting day

2I focus here on the high-yield season due to the lack of a significant yield effect in the low-yield season
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has no additional marginal effect on yield. This evidence helps support the idea that farmers do

not have influence over the timing of their water allocation, and that the timing is not correlated

with ability or socioeconomic status or ability.

Tables 2.5-2.7 focus on the effect of predicted threshold-degree days on preseason input

choices. Columns 1 and 4 show the results of naïve OLS regressions of input choice on observed

whether. We should expect no effect here as weather observations are not realized until after

these decisions have been made; for the most part, these coefficients are indeed insignificant.

Columns 2 and 5 show the reduced-form estimates from regressing input choice on planting day,

and finally, columns 3 and 6 display the IV results, focusing on the high-yield season only. Table

2.5 shows the effects on area planted and planting method3, Table 2.6 the effects on seed and

fertilizer quantities, and Table 2.7 labor use for land preparation and crop establishment. I detect

no effect of planting day or predicted threshold-degree days on land use, crop-establishment

method, or preseason labor use. (Note that the standard error on the IV estimate of the effect

of threshold-degree days on area planted indicates a minimum detectable effect of about 0.006

standard deviations; we can be fairly confident that the effect here is truly zero).

Table 2.6 is perhaps the most interesting of the three: we actually do see some response

with respect to quantity of seed and nitrogen fertilizer4. Looking at columns 2 and 3, we see that

farmers respond to a later planting day by increasing the quantity of seed that they use, and in-

crease of almost 2 kg/ha per threshold-degree day that is predicted by the planting day (or a 0.16

standard deviation change in seed quantity per one standard deviation change in planting day).

Comparing this to column 1, we see that relying on the naïve OLS estimate gives the wrong sign.

Nitrogen fertilizer also displays an interesting pattern of results. We see that both OLS and IV

give us a negative coefficient, though very imprecisely estimated, while the reduced-form regres-

sion on planting day gives us a positive and significant coefficient. It would seem that farmers

respond to a bad draw in planting day initially by increasing seed and fertilizer use, but when we

look at the part of this that is due to predicted increase in threshold-degree days, on the the seed

effect remainsŮthe effect on fertilizer is ambiguous5. Note that the precision of the estimates of

the coefficients on nitrogen fertilizer and the fact that they are sensitive to specification is likely

a result of the heterogeneity of the sample of farms that I use; the probability of fertilizer as a

3Flowering date is a function of the number of growing-season degree-days from germination, so it is possible
that transplanting could be a way to mitigate the harmful effects of a late planting date. However, transplanting is also
associated with a reduction in yield and an increase in planting costs; this could help explain the ambiguous effect.

4Nitrogen fertilizer is by far the largest component of cost (25% on average, and up to 80%).
5Interestingly, if I add in a term for threshold-degree days in the vegetative phase, the result is a strong, negative

coefficient on fertilizer use. It would seem that farmers initially try to compensate for a suboptimal planting day by
farming more intensively, but that as they see confirmation of a bad weather draw, they decide to cut their losses.
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mitigation strategy is likely to depend on soil quality and seed variety, and within that there may

even be heterogeneity of farmer beliefs.

Finally, Table 2.8 shows the effects of threshold-degree days on harvest labor and the

application of herbicides and pesticides. These quantities are all chosen during or at the end

of the season, so we can expect them to respond to weather observations; I do not consider IV

estimates here. We see in the high-yield season, there is an increase in herbicide and pesticide

use, and that the coefficient on harvest labor is negative (as we would expect given the reduction

in yield) but it is statistically insignificant.

2.3.3 Relevance for climate change

In the previous section, I demonstrated that exposure of a farmer’s crop to above-threshold

temperature depends significantly and predictably on the exogenously determined day on which

the crop is planted, but the question remains: how does this relate to projected changes in the

global climate? The average projected warming from IPCC (2007), which takes into account sev-

eral different emissions scenarios and multiple climate models is about 0.2◦C per decade over

the next few decades. Warming after that depends heavily on the emissions scenario used, but in

general the rate is projected to increase. For example, projected warming for the decade 2090-

2100 is around 0.6◦C, with a range of 0.3◦− 0.9◦C. I make the conservative assumption that

the rate of warming will remain constant at 0.2◦C over the entire century, and that this increase

will be uniform across the temperature distribution. Figures 2.5 and 2.6 display the baseline

distribution (average over the sample from 1994-1999) of temperature on a typical day close to

flowering, and the projected distribution for 2100, based on warming of 2◦C over the century.

Based on this projected distribution, I calculate projected values of T DDays32, and compare the

difference between those values and the ones observed in the sample, to the observed variation

generated by variation in planting day. Table 2.2 tests the difference between farms which plant

in the first and last quintiles for a particular site in a particular season, and the difference between

the average actual and projected T DDays32. The assumed warming of 2◦C, results in an average

increase of 11.1 threshold-degree days, very close to the difference of 10.7 between farms in the

first and last quintiles of planting day, and even closer to the observed within standard deviation

of 11.0. The variation in threshold-degree days observed in these data is substantial, and com-

parable to 100 years of projected climate change, yet I find that the farmers do little differently

in light of this exposure.
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2.4 Conclusion

In this paper, I exploit a natural experiment which provides unique, exogenous variation

in crop establishment date for rice farmers in several different important rice producing regions.

This exogenous variation in planting day in turn generates variation in the amount of time a

particular crop is exposed to temperature above 32◦C, a threshold that I estimated to be harmful

for rice. I demonstrated that this variation is significant and large, comparable to 100 years of

global warming, but that even when faced with the less-favorable climate scenario, farmers seem

to do little differently. I interpret the pattern of results presented here as modest evidence that

adaptation to climate change is going to depend largely on technological change. In the long run,

farmers will have to move, grow different crops, grow their crops differently, or a combination

of all three.

These results should be interpreted with caution. In analyzing farmer decisions, I esti-

mate many equations; many more than I report here. We should expect a few coefficients to be

statistically significant by chance, and should not assign too much weight to the interpretation of

any one single coefficient. The impact of threshold-degree days on yield are robust to a variety

of definitions and specifications, and despite the very strong assumptions I make about the nature

of climate change, the exogenous variation in these threshold-degree days is meaningful. For the

inputs where the lack of response is precisely estimated (e.g. area planted), we can conclude that

those inputs will not be used as part of mitigation and adaptation strategies. The imprecision of

other estimates is probably due in part to the relatively small sample size and large degree of

heterogeneity across season and location. Further research into the source and nature of this het-

erogeneity is needed, but unfortunately, despite the opportunity for clean identification that these

data provide, they fail in terms of identifying this heterogeneity; broken down into the relevant

temporal and geographic categories, the cell sizes are simply too small.
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2.5 Figures

Figure 2.1: Planting day and threshold-degree days
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Figure 2.2: Planting day and farm size
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Figure 2.3: Distribution of threshold-degree days by planting day - 37 days before harvest
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Figure 2.4: Distribution of threshold-degree days by planting day - 23 days before harvest
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Figure 2.5: Distribution of threshold-degree days by planting day - day 1 of flowering, baseline
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Figure 2.6: Distribution of threshold-degree days by planting day - day 1 of flowering, 2100
projected
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2.6 Tables

Table 2.1: Summary statistics

Variable Mean Std. Dev. Min. Max.
Yield (kg/ha) overall 5179.317 107.644 288.018 10837.5

between 938.121 1308.756 7608.345
within 1198.072 -489.208 10300.48

Planting day overall 30.342 23.765 0 136
between 16.897 .444 79
within 18.157 -15.229 118.914

TDDays32 overall 9.984 15.045 0 88.4
between 10.580 0 53.95
within 10.984 -36.766 59.684

Area planted (ha) overall 1.587 1.946 0.023 29.73
between 1.670 0.029 15.599
within 0.869 -8.682 15.718

Seed (kg/ha) overall 151.169 84.035 4.8 674.286
between 77.715 19.025 413.083
within 41.756 -64.880 632.667

Nitrogen (kg/ha) overall 107.644 39.981 10.5 328.6
between 31.488 48.809 249.323
within 28.574 -46.577 256.463

Obs.
Season LY 753
Season HY 628

Table 2.2: Test of differences

Variable Obs. Mean Std. Err.
TDDays32 (within)

First quintile 129 -1.669 .735
Last quintile 121 9.031 1.271

Diff 10.7 1.446
TDDays32 (overall)

Baseline 1381 10.089 .408
2100, projected 1381 21.215 .645

Diff 11.125 .274
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Table 2.3: Effects of thresholds on yield

Dependent variable: kg/ha
(1) (2) (3) (4) (5)

TDDays32 -33.346 -33.071 -32.950
(7.396)∗∗∗ (7.052)∗∗∗ (7.685)∗∗∗

TDDays32*Season LY 45.237 43.662 45.009
(7.077)∗∗∗ (7.581)∗∗∗ (7.151)∗∗∗

TDDays37 -146.938
(23.876)∗∗∗

TDDays37*Season LY 327.505
(183.882)∗

NDays32 -115.973
(28.353)∗∗∗

NDays32*Season LY 135.137
(34.778)∗∗∗

TDNights27 -585.770
(432.106)

TDNights27*Season LY 583.492
(429.408)

Planting day -3.762
(3.183)

Planting day*Season LY -.728
(3.355)

Farm FE yes yes yes yes yes
Mean temp (max&min) yes yes yes yes yes
Obs. 1372 1372 1372 1372 1372
Farms 227 227 227 227 227
F statistic 25.017 29.944 29.877 17.853 26.465
R2 (within) 0.447 0.452 0.447 0.411 0.426

Standard errors clustered at village level.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 2.4: Effects of planting day on temp

TDDays32 TDDays37 NDays32
(1) (2) (3) (4) (5)

Planting day 0.232 0.192 0.208 0.025 0.041
(0.104)∗∗ (0.069)∗∗∗ (0.027)∗∗∗ (0.003)∗∗∗ (0.014)∗∗∗

Planting day*Season LY -.235 -.229 -.243 -.028 -.041
(0.096)∗∗ (0.087)∗∗∗ (0.029)∗∗∗ (0.003)∗∗∗ (0.017)∗∗

1[Season = LY] 1.017 0.298 0.948 0.423 -.477
(3.741) (3.731) (1.066) (0.108)∗∗∗ (0.86)

FE none site farm farm farm
Obs. 1381 1381 1381 1381 1381
Farms 227 227 227 227 227
F statistic 6.073 3.346 57.274 45.583 4.629
Adjusted R2 0.078 0.486
R2 (within) 0.13 0.106 0.131

Standard errors clustered at village level.
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 2.5: Pre-season inputs: Area and method

Area planted to rice 1[Method = Transplant]
OLS IV OLS IV

(1) (2) (3) (4) (5) (6)
TDDays32 0.008 0.007 0.002 -.002

(0.004)∗∗ (0.006) (0.001) (0.002)

TDDays32*Season LY -.002 -.004
(0.003) (0.001)∗∗

Planting day 0.003 0.0007
(0.003) (0.0007)

Planting day*Season LY -.005 0.0007
(0.005) (0.0007)

1[Season = LY] 0.316 0.357 0.076 0.058
(0.179)∗ (0.281) (0.033)∗∗ (0.043)

Farm FE yes yes yes yes yes yes
Mean temp (max&min) yes no no yes no no
Obs. 1372 1381 598 1372 1381 598
Farms 227 227 183 227 227 183
F statistic 1.478 0.839 1.477 3.306 2.067 1.022
R2 (within) 0.071 0.018 0.079 0.055

Standard errors clustered at village level.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 2.6: Pre-season inputs: Seed and fertilizer

Seed quantity Nitrogen fertilizer
OLS IV OLS IV

(1) (2) (3) (4) (5) (6)
TDDays32 -.443 1.932 -.052 -.201

(0.155)∗∗∗ (0.915)∗∗ (0.177) (0.514)

TDDays32*Season LY 0.963 0.094
(0.16)∗∗∗ (0.171)

Planting day 0.427 0.198
(0.136)∗∗∗ (0.095)∗∗

Planting day*Season LY -.289 -.291
(0.164)∗ (0.135)∗∗

1[Season = LY] 1.017 14.467 -7.212
(3.906) (7.182)∗∗ (4.016)∗

Price no no no yes yes yes
Farm FE yes yes yes yes yes yes
Mean temp (max&min) yes no no yes no no
Obs. 1372 1381 598 1372 1381 598
Farms 227 227 183 227 227 183
F statistic 29.157 3.981 4.318 5.264 1.961 0.085
R2 (within) 0.077 0.02 0.119 0.033

Standard errors clustered at village level.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 2.7: Pre-season inputs: Land prep and planting labor

Land prep labor Planting labor
OLS IV OLS IV

(1) (2) (3) (4) (5) (6)
TDDays32 -.018 -.016 0.025 0.042

(0.015) (0.067) (0.025) (0.083)

TDDays32*Season LY 0.026 -.074
(0.013)∗ (0.028)∗∗∗

Planting day -.018 0.043
(0.013) (0.035)

Planting day*Season LY 0.03 -.016
(0.013)∗∗ (0.035)

1[Season = LY] -.260 -1.102 1.840 2.385
(0.505) (0.482)∗∗ (0.924)∗∗ (1.311)∗

Price no no no yes yes yes
Farm FE yes yes yes yes yes yes
Mean temp (max&min) yes no no yes no no
Obs. 1372 1381 598 1372 1381 598
Farms 227 227 183 227 227 183
F statistic 1.81 2.552 0.56 3.478 1.901 2.857
R2 (within) 0.014 0.009 0.054 0.026

Standard errors clustered at village level.
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 2.8: Mid/late season inputs: Pesticides and harvest labor

Harvest labor Herbicides Pesticides
(1) (2) (3)

TDDays32 -.076 0.004 0.024
(0.089) (0.002) (0.005)∗∗∗

TDDays32*Season LY 0.089 0.003 -.007
(0.094) (0.003) (0.004)∗

1[Season = LY] -3.456 0.03 -.331
(3.141) (0.042) (0.096)∗∗∗

Price yes yes yes
Farm FE yes yes yes
Mean temp (max&min) yes yes yes
Obs. 1369 1349 1372
Farms 227 227 227
F statistic 1.479 2.573 25.513
R2 (within) 0.023 0.029 0.419

Standard errors clustered at village level.
* significant at 10%; ** significant at 5%; *** significant at 1%



Chapter 3

The ecological footprint of poverty

alleviation:

Evidence from Mexico’s

Oportunidades program

3.1 Introduction

Environmental quality and natural resource stocks are key components of welfare for the

world’s poor but are being degraded at an alarming rate (MEA, 2005). Are efforts to alleviate

poverty likely to mitigate or exacerbate this degradation? This is a crucial question for policy-

makers pursuing sustainable development goals and has been a perennial debate in the economics

literature (e.g. Grossman and Krueger (1995); Dasgupta, Laplante, Wang and Wheeler (2002);

Harbaugh, Levinson and Wilson (2002); Foster and Rosenzweig (2003)). Poverty alleviation

may raise demand for goods which are resource-intensive in production, increasing degradation.

However, increased wealth may also augment demand for environmental resources, inducing

households to invest in those resources, or may raise the opportunity cost of extractive activ-

ities, reducing degradation. As noted in a recent review (World Bank, 2008), empirical work

on the environmental effects of poverty alleviation has been significantly limited by the possi-

ble endogeneity of household income changes. In this paper, we exploit the discontinuity in

the community-level eligibility rule for a conditional cash transfer program in Mexico, as well

as random variation in the pilot phase of the program, to study the consequences of poverty

53
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alleviation programs for environmental degradation.

Previous work has also not adequately considered problems in estimating the response

to income changes when impacts are market-mediated and therefore can be spatially dispersed.

Recent work on the effects of local rainfall shocks (Keller and Shiue, 2008; Donaldson, 2009)

shows that as infrastructure improves, price changes become less correlated with local shocks.

Similarly, we show that even if the true impact of a wealth increase on production is constant, we

will detect apparently heterogeneous impacts. Stronger effects will be found where infrastruc-

ture is poor and thus the source of environmental resources for production is more geographically

constrained. The market-mediation of impacts is a fundamental causal inference issue but is of-

ten difficult to disentangle because markets are relatively homogenous. Here we take advantage

of large variation in transportation infrastructure to investigate whether observed heterogeneity

in impacts is consistent with these theoretical predictions.

Our analysis focuses on deforestation as a measure of environmental quality. Defor-

estation is locally and globally important and in our dataset can be consistently measured for

the more than 105,000 localities in Mexico. Locally, forests contribute to welfare through fuel

wood, fodder, timber, watershed protection and wildlife habitat. Globally, forest loss is a major

environmental concern. Net forest cover is estimated to have fallen by 9.4 million hectares (just

under one percent) per year during the 1990s (FAO, 2005). Carbon emissions from deforestation

are estimated at approximately 20% of the global total (IPCC, 2007) and have been an important

focus of recent international climate negotiations. We link spatial data on deforestation in Mex-

ico from the period 2000-2003 to the location and eligibility of every locality in Mexico, and

exploit this data structure to examine whether deforestation rates are affected by the program.

Oportunidades represents an ambitious attempt to increase consumption among the poor

in Mexico by building human capital. The program funnels large cash payments to households

conditional upon their children’s school attendance and receipt of regular health checkups. The

program has an annual budget of $2.6 billion, or half a percent of GDP, and treats 40% of ru-

ral households, increasing per-capita income among recipients by an average of one-third. The

program’s rollout featured centralized eligibility thresholds at both the locality and the house-

hold level, with eligibility defined according to a marginality index. It therefore introduced a

large income shock which is discontinuous where localities are defined as just “poor enough”

to participate in the program. While a relatively large literature exists using the household-level

discontinuity in Oportunidades (Angelucci and de Giorgi, 2009), few previous analyses use the

community-level discontinuity (exceptions are Barham (2009)’s paper on the impact of Oportu-
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nidades on child health and Green (2005)’s study of political impact). This structure provides

us with an unusual ability to study economy-wide effects from the nation-wide introduction of a

conditional cash transfer program in a large and diverse country.

We find that exposure to Oportunidades increases deforestation. The results imply

roughly a doubling in the probability that any deforestation occurs in a locality. The probability

that any deforestation occurs in a locality not eligible for the program is 4.9%, so this represents

an increase in an already high likelihood of deforestation. Among communities who do defor-

est, the results indicate an increase in the rate of deforestation ranging from 15 to 33 percent.

To understand the micro-behavior that might explain this increase in deforestation, we turn to

household data from the randomized pilot phase of the program. These experimental data show

that additional household income significantly increases consumption, and recipient households

shift strongly into land-intensive goods such as beef and milk. Consumption increases appear

to be constant across localities, but the corresponding production increases and deforestation

patterns are not. We observe significant household-level production responses only in treated

localities which are more isolated. We also find larger deforestation effects in treated localities

that have poor road infrastructure and thus are more isolated from outside markets. Finally, we

investigate spatial spillovers of treatment using a new method for calculating spatial lag func-

tions in a regression discontinuity context. This analysis shows the spatial contour of impacts

to be flat where roads are good, and to be concentrated around the location of treatment where

roads are bad. These results are consistent with the hypothesis that transportation infrastructure

is a significant determinant of the spatial profile of market-mediated production impacts.

Our results suggest that there are significant environmental impacts of poverty allevia-

tion. There is an increase in deforestation as households shift demand from less land-intensive

goods to more land-intensive goods, increasing their “ecological footprint” (Wackernagel and

Rees, 1996). This contrasts with Foster and Rosenzweig (2003)’s finding that as incomes rise,

household demand for forest products increases, strengthening incentives to conserve forests. It

implies that in cases where the demand for agricultural products is likely to rise faster than the

demand for forest products in response to higher incomes, poverty alleviation programs should

be accompanied by environmental regulations that correctly price externalities or clearly es-

tablish property rights to environmental goods (i.e. carbon markets). The results also indicate

that policymakers should be cautious in interpreting the magnitude of apparent impact estimates

without taking into account how these are mediated through markets. Given a set of localized

demand shocks, better-integrated local markets will allow demand to be sourced from a broader
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set of producers. To the extent that new demand is satisfied by national or global markets, we

will not observe a clear link between local consumption increases and local environmental degra-

dation. Therefore where local infrastructure is good, impact studies are unlikely to capture the

full magnitude of the “ecological footprint" effect1.

The paper is organized as follows: we begin in the next section by discussing the liter-

ature on poverty and deforestation and the empirical problem introduced by the study of micro-

interventions when agents may participate in market transactions on a broader spatial scale.

Section 3.3 describes the Oportunidades program in more detail, and presents the estimation

strategy and results of the discontinuity analysis. Section 3.4 seeks to disentangle the mecha-

nisms through which this impact occurs by using household data from the randomized evaluation

phase of the program. Section 3.5 presents results on the heterogeneity and spatial distribution

of observed impacts, and the final section concludes with a discussion of the policy implications

of our findings.

3.2 Poverty, Deforestation, and Spatial Impact Analysis

Conditional cash transfer programs that seek to alleviate household poverty and im-

prove access to education or health are increasingly popular in developing countries, but may

have unintended secondary effects. One possibility that has not received adequate attention is

the potential for environmental consequences. It is not clear, ex ante, whether we should expect

income increases to exacerbate or reduce environmental degradation: a large previous litera-

ture on the Environmental Kuznets Curve suggests the relationship is complex and non-linear

(Stern, 2004; Dasgupta, Laplante, Wang and Wheeler, 2002; Panayotou, 1997). Disentangling

this relationship requires examination of three distinct yet interrelated issues: the existence of

a correlation or causal link; the micro-foundations of the relevant household production and

consumption decisions; and the role of local markets in mediating the relationship.

3.2.1 Does alleviating poverty increase or decrease forest cover?

We focus on forests as an environmental outcome of interest. Forests are a key local

resource and global public good. Understanding how to prevent further deforestation would

significantly contribute to efforts to limit greenhouse-gas emissions (Kaimowitz, 2008; Stern,

1It is possible that by sourcing production more broadly, goods will be produced more efficiently and thus the true
impacts might actually be smaller in better-integrated markets rather than constant. Caution is still warranted because
environmental goods may not be efficiently priced and therefore not efficiently sourced.
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2008). However, even if we limit the scope to the relationship between income and deforesta-

tion, previous empirical results and theory are ambiguous (Pfaff, Kerr, Cavatassi, Davis, Lipper,

Sanchez and Timmins, 2008; Chomitz, 2006).

Whether higher household incomes increase or decrease pressure on forest resources

depends on multiple factors (Barbier and Burgess, 1996; Wunder, 2001; Pfaff, Kerr, Cavatassi,

Davis, Lipper, Sanchez and Timmins, 2008) including prices of agricultural and pastoral goods

(Pfaff, 1999), demand for forest products (Baland, Bardhan, Das, Mookherjee and Sarkar, 2007;

Fisher, Shively and Buccola, 2005; Foster and Rosenzweig, 2003), credit constraints (Zwane,

2007), returns to alternative household activities (Deininger and Minten, 1999, 2002), agri-

cultural intensification and extensification (Shortle and Abler, 1999; World Bank, 1992), and

demand for environmental amenities (Cropper and Griffiths, 1994). The complexity of the re-

lationship between household incomes and deforestation means that research has generated few

unambiguous theoretical predictions, and the search for sufficiently large, plausibly exogenous

sources of income variation for empirical analysis has been a challenging one.

Initial work on the development-deforestation link focused primarily on the presence

and shape of an Environmental Kuznets Curve (Cropper and Griffiths, 1994; Pfaff, 2000), posit-

ing that forest cover initially decreases as income rises but then recovers as income increases

beyond some turning point. Subsequent work has shown both increases and decreases in forest

cover as income increases. Foster and Rosenzweig (2003) use a general equilibrium framework

to show that devotion of land to the production of forest products should rise as demand rises.

They confirm this relationship using long-term changes in income and forest cover across In-

dian states. Deininger and Minten (1999, 2002) suggest that as countries grow richer, relative

returns to off-farm labor would increase and reduce pressure on forests. They illustrate such a

relationship in data from Mexico. Zwane (2007) finds that the relationship between income and

deforestation in Peru is positive at low levels of income but may be negative at higher levels.

Baland, Bardhan, Das, Mookherjee and Sarkar (2007) assesses the impacts of income growth on

firewood collection in Nepal and find a net negative but very small effect.

The empirical literature on the relationship between income and deforestation has been

hampered by concerns about the endogeneity of income growth. Rates of deforestation are

clearly influenced by multiple factors which could be correlated with income shocks. These

include population growth, agricultural returns, forest product prices, capital availability, tech-

nology, accessibility and institutional variables (see reviews by Angelsen and Kaimowitz (1999);

Barbier and Burgess (2001); Chomitz (2006)). The endogeneity problem may be particularly se-
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vere for studies using cross-sectional variation to identify impacts. Conversely, in studies using

panel variation in income (Zwane, 2007; Baland, Bardhan, Das, Mookherjee and Sarkar, 2007),

the relatively small income changes observed in a short-term panel may not reflect true economic

development. Also, these short-term fluctuations are different in nature than permanent income

changes. Households are likely to respond differently to income changes that are perceived to

be substantial and permanent versus small and temporary.

Exploiting Mexico’s rollout of Oportunidades allows us to make two contributions to

the existing empirical literature. First, the implementation of the Oportunidades program creates

an exogenous source of variation in income, allowing for clean identification of causal effects.

Second, the magnitude and duration of the program represents a substantial and durable increase

in income for a large share of the households in poor communities. We are thus able to estimate

impacts using a positive shock to income that is as large as is likely to be achievable by any

actual poverty alleviation program.

3.2.2 The household response to income shocks

In the set of empirical studies discussed above, several potential mechanisms are pro-

posed to explain how changes in household income might affect deforestation. On the production

side, Deininger and Minten (1999, 2002) suggest that income increases which occur through in-

creased returns to off-farm labor would reduce agricultural land use and ease pressure on land,

also reducing deforestation. Although a conditional cash transfer program might not directly

raise off-farm wages, it could raise the opportunity cost of leisure, and therefore discourage on-

farm production through a similar mechanism. Other researchers have suggested that income

increases could spur capital improvements or technological adoption, which would facilitate

agricultural intensification and reduce pressure on forests (Shortle and Abler, 1999; World Bank,

1992). Zwane (2007), in contrast, suggests that the expected effect of relaxing a credit constraint

depends on initial income. At low incomes, relaxing the credit constraint increases deforestation

while at higher incomes there is an offsetting increase in the marginal utility of leisure which

may result in less deforestation.

On the consumption side, Foster and Rosenzweig (2003) propose that higher incomes

will decrease deforestation through increased demand for forest products and a corresponding

supply response by households where there is clear ownership of forest resources. However, their

results depend on the demand for forest products rising faster than the demand for agricultural

products in response to an income increase. If instead households rapidly increase demand for
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land-intensive agricultural goods, we would expect to see increased deforestation. This pattern

might be particularly pronounced if inferior goods are relatively more land-efficient than normal

goods. As incomes increase, households would substitute consumption away from these land-

efficient inferior goods (e.g. beans) to land-intensive normal goods (e.g. beef), thus expanding

their “ecological footprint".

3.2.3 The ecological footprint of market-mediated shocks

If income changes lead to consumption-driven impacts on deforestation, we must ad-

dress an issue that is fundamental to the estimation of all market-mediated impacts: there is by

no means a one-to-one mapping between the location of the consumption change and the loca-

tion of the corresponding adjustment in production. Particularly when the treatment unit (and

therefore the source of variation in demand) is small relative to the geographic coverage of the

program, the extent to which production impacts spill over will determine what is measured by

comparing treated and untreated units. In trying to understand how these local shocks alter mar-

ket demand and supply of forest-intensive resources, we can draw an analogy with the literature

estimating the effect of localized rainfall shocks on prices. A well-established result from this

literature is that as infrastructure improves, prices become less correlated with localized rainfall

shocks and more correlated with the rainfall shocks of adjacent areas (Keller and Shiue, 2008;

Donaldson, 2009). This effect occurs because demand within a given area is sourced from more

distant producers when infrastructure is improved, and hence shocks are spread over a greater

area.

When we measure market-mediated treatment effects from localized experiments (even

randomized ones), this same phenomenon will generate observed heterogeneity in the measured

treatment effect across infrastructure quality. This heterogeneity will be present even if the true,

total treatment effect is constant. To see this, we can think of a market as a grouping of a set

of units into a single price-setting mechanism, so that shocks to one unit within a market are

transmitted to the other units. Let the number of units per market be given by η , which proxies

for infrastructure quality. A treatment induces a constant increase in demand equal to τ per unit,

and this increase in demand is sourced on average from itself and the η − 1 other members of

the market.

The increase in outcomes within a unit as a function of its own treatment is the part

of the effect that does not spill over, namely τ

η
. In addition to the direct effect of treatment,

each unit will receive an expected spillover effect equal to the indirect treatment effect from the



60

number of individuals within the market who were treated. Writing the share treated as σ , then

ση units per market will be treated and the expected spillover effect will be ση
τ

η
= στ . The

average treatment effect is given by the difference between treated and untreated units, or

E(Y | T )−E(Y |C) = (
τ

η
+στ)−στ =

τ

η
.

This says that the experiment measures not the total effect of treatment but only the

component of it that does not spill over to other members of the same market. Now if we think

of infrastructure (in our case roads) as being an intermediating variable that determines the size

of the market, it can be thought of as determining the number of units on to which the treatment

effect τ spills. In environments where the road network is excellent, η moves towards infinity

and we have a single national market where the measured difference between treatment and

control units is zero. With poor road infrastructure, consumption is localized to the spatial unit

of treatment, η goes to one and the estimated difference between treatment and control converges

on the true total treatment effect, τ . If what we set out to do with our experiment was to measure

the total environmental impact of the treatment, then the error, meaning the difference between

the true total treatment effect and the result of the micro-experiment is given by τ(η−1
η

), which

vanishes as markets become completely autarkic.

In a sample with variability over the quality of local infrastructure, we will observe het-

erogeneity in impacts even when the actual treatment effect is constant. The reason for this dif-

ferential is that spatial arbitrage removes the difference between treated and control units when

the pixel size of treatment is small and transport costs are low. Under the assumption of homoge-

nous treatment effects, such an argument implies that we only get the correct estimated treatment

effect when spatial arbitrage is shut off. This argument is consistent with the results of Foster and

Rosenzweig (2003), who observe a positive feedback effect of higher income on forest reserves

only in closed economies, but not in open ones. Presumably the reason for this heterogeneity is

that closed economies do not arbitrage their increased demand for forest products across global

markets, and hence they manifest the full treatment effect on internal markets. In what follows

we investigate the heterogeneity in impacts across infrastructural quality and confirm that our

largest observed treatment effects occur precisely where they are the most localized.
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3.3 Oportunidades and Deforestation: Overall Impact

3.3.1 Program description

The intention of Oportunidades is to increase school attendance and health care among

poor families in Mexico. The financial scope of Oportunidades is large. The annual budget is

approximately $2.6 billion a year, about half of Mexico’s anti-poverty budget. It treats some four

million households, providing cash transfers conditional on health care provision and school at-

tendance. On average the transfers are about one-third of total income in these poor households,

clearly meaningful income changes.

The program has been widely studied and lauded for its success in achieving these ob-

jectives (Schultz, 2004; Fernald, Gertler and Neufeld, 2008; Skoufias and McClafferty, 2001).

The transparent nature of its enrollment criteria and benefits has contributed to the attractiveness

of the program, and it is currently being replicated in various other countries. The program was

implemented in stages. A pilot implementation of the program (beginning in 1997) was random-

ized, and combined with detailed household-level data collection. The full rural roll-out of the

program occurred mainly in 1998-2000, but new communities continued to enroll at a slower rate

after this. This phase was not randomized, but was targeted to localities based on a marginality

index; this created the discontinuity in treatment which we use. Eligible rural villages were first

selected according to their level of marginality, and then surveys were conducted within villages

to determine who would receive payments.

3.3.2 Data description

Our analysis of the national rollout focuses on rural localities2. We combine information

on locality eligibility and program rollout with national deforestation data.

The spatial coordinates of each locality (village) in Mexico, along with the population

and marginality index numbers for 1995, are from the National Institute of Geography and Statis-

tics in Mexico (INEGI), and the data describing the roll-out of Oportunidades come from the

Oportunidades office. We have information on enrollment by village through 20033. Locality-

2We exclude villages with more than 2,500 inhabitants as these are defined as “urban" communities in Mexico
and were not eligible for the program until after 2000. Focusing only on rural localities means that we are likely
to underestimate the total environmental impacts of Oportunidades because we are not taking into account possible
consumption increases resulting from the urban roll-out.

3Although the bulk of enrollment in rural areas occurred before 2000, some villages were enrolled after this date.
We include these villages although the presence of these villages, which were not enrolled according to the eligibility
cutoff, potentially biases the results towards zero and against finding any impact of the program. Leaving them in the
dataset therefore generates the most conservative estimates. Our results hold and are in fact stronger if we exclude
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level eligibility for the program is based upon marginality indices calculated by CONAPO for

105,749 localities4.

To measure deforestation at the locality level we rely on data from the Mexican National

Forestry Commission (CONAFOR). The data are based on mosaics of Landsat satellite images

from 2000 and 2003 (30 m resolution) and were created by CONAFOR under a mandate to

accurately measure and monitor deforestation (Monitoreo Nacional Forestal). CONAFOR’s data

pieces together a large number of Landsat scenes in order to achieve wall-to-wall coverage for

the entire country. This is in contrast to the method used by Foster and Rosenzweig (2003)

which looks at forest cover for a representative sample of villages. Here we are measuring

deforestation for all of the more than 105,000 localities with a marginality index in 19955. We

restrict the analysis to localities which had at least 10 hectares of land classified as forest in the

2000 National Forest Inventory, focusing on localities in which deforestation is possible6. Figure

3.1 shows the distribution of forest across Mexico in 2000. In order to assign each part of the

landscape to a unique locality, we use the method of Thiessen polygons. (INEGI gives point

data on the locations of each locality, but data on the detailed boundaries of the localities does

not exist.) This method assigns land to localities based on the closest locality point and has the

advantage of avoiding the problem of double counting caused by other shapes such as circles

around each locality. Figure 3.2 shows a zoomed in picture of land use in 2000 along with the

locality boundaries assigned by the Thiessen polygons method. Finally, because CONAFOR

was primarily concerned with identifying areas of new deforestation, we do not have data on

afforestation. We correct for this potential censoring problem in the data analysis by using Tobit

estimations. Practically speaking, we believe our measure picks up the key land use change

dynamic of the study period because Mexico was a net deforester across this time. In fact,

FAO’s 2005 Global Forest Resources Assessment places Mexico in 13th place in the world in

villages enrolled in and after 2000 or before 1998
4By 2000, points were available for approximately 200,000 localities; the missing points in 1995 are very small

localities: ninety-three percent of the villages for which there is no marginality index in 1995 had fewer than 25
inhabitants in 2000. The index is a continuous measure and was created using a principal components analysis
based on seven variables from the 1995 Conteo (short census) and 1990 census, including illiteracy rates, dwelling
characteristics, and proportion of the population working in the primary sector (Skoufias et al., 1999).

5The correct georeferencing and interpretation of Landsat data is a specialized and labor intensive process. After
putting images together from several Landsat “scenes," the classification of deforestation is based on changes in the
Normalized Difference Vegetation Index (NDVI) values across time. Comparisons are made using images from the
dry season. NDVI is an indicator of vegetation cover and is used worldwide to measure changes in forest cover.
Although NDVI change is the best available indicator of changes in forest cover, we note that the measure can have
some errors due to weather shocks such as unusually high rainfall or drought conditions. These errors are in the
dependent variable but are unlikely to be correlated with variation in treatment.

6The NFI data are based on a combination of remote sensing using Landsat images and field sampling to verify
the classification system. The results are not sensitive to using lower thresholds.
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terms of net forest loss over the period 2000-2005 (FAO, 2005). We present results using the

percent of each locality deforested as the dependent variable, but all results in the paper are

robust to alternative specifications of the dependent variable, including ln(total deforestation)

and percent of baseline forest area deforested.

3.3.3 Illustrating the discontinuity

Figures 3.3 and 3.4 illustrate the variation in program enrollment and deforestation

across the marginality index. The marginality index, which is continuous, is divided into bins

with width = .1 for these illustrations. In each of these figures the left axis measures the percent

of each locality deforested and the right the proportion of localities treated.

Figure 3.3 shows the relationship between enrollment, deforestation, and marginality

for the full sample of localities7. As expected by program rules, we see a sharp increase in

enrollment to the right of values of -1.2 on the marginality index. The discontinuity is not

perfect – there is a small jump in enrollment before the eligibility criteria. This jump is due

almost entirely to the enrollment of villages post-2000, when the program became more demand-

driven8.

Figure 3.3 also shows that deforestation rates vary with poverty in a roughly inverse-U

relationship. This is an interesting confirmation of the empirical environmental Kuznets curve

relationship: we see lower rates of deforestation for very poor communities (high marginality

index), higher rates of deforestation for poor communities, and lower deforestation rates among

less poor communities9.

Figure 3.4 zooms in on the range of the marginality index around the eligibility cutoff,

showing the discontinuity more clearly. The figure uses a kernel regression to estimate the

relationship between deforestation and the marginality index (the results are robust to larger and

7It is important to note that the number of observations in each bin varies considerably across bins because the
marginality index itself has frequencies which are roughly normally distributed. Therefore there are few observations
per bin in the extreme bins and many more per bin towards the middle. This means that outliers have more influence
on the points at either end of the marginality distribution.

8The proportion enrolled remains high for intermediate values of the marginality index and then is lower at high
levels of marginality; we suspect that the decreases in enrollment at very high levels of marginality may be related to
the fact that the very poorest villages may not have been eligible as a result of their lack of infrastructure.

9Note that because income is decreasing as we move to the right, a treatment that increases income is effectively
pushing households to the left on this figure. The implication is that while the cross-sectional data are supportive of a
Kuznets-style relationship (deforestation highest in the middle part of the distribution) the eligibility discontinuity lies
above this value, and so if we took the Kuznets relationship to be causal, we would have expected an income increase
in this part of the poverty distribution to decrease deforestation. This would appear to provide another piece in the
already substantial body of evidence suggesting that cross-sectional Kuznets relationships do not depict a causal link
between income and environmental changes.
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smaller windows). The data range in Figure 3.4 includes marginality levels from -2 to -.2, which

constitutes 27% of the total sample with baseline forest and populations less than 2,500. This is

referred to as the “restricted sample” in the sections that follow. We can see the clear increase

in the proportion of localities to the right of -1.2. We also see the increase in deforestation rates

around the discontinuity. Deforestation rates average around .03 percent on the richer end of

the discontinuity, but once a locality becomes just poor enough to qualify for Oportunidades,

average deforestation jumps to nearly .08 percent.

3.3.4 Empirical strategy

We observe a cross-sectional relationship between enrollment in Oportunidades by the

year 2003, and deforestation between 2000 and 2003. One way to estimate the effect would be

to apply OLS to the equation:

∆ fi = α +δTi +β
′Xi + εi (3.1)

where ∆ fi represents the percent deforestation in polygon i over the period 2000-2003,

Ti is equal to one if the locality associated with the polygon was enrolled in the program by

2003, Xi represents a vector of locality-level characteristics which might also affect deforestation,

including poverty, and εi are unobserved factors affecting deforestation. If the program had been

randomly assigned, then this would be an appropriate way to measure its effect on environmental

outcomes. However, it is not randomly assigned; it is offered to those who are poor, and who

may be likely to have different rates of deforestation even in the absence of the program. In

addition, since enrollment in the program is voluntary, it is possible that those communities

where enrollment is very high are systematically different than those where enrollment is very

low – i.e., that selection problems could bias the estimates of the parameters in equation 3.1.

If the discontinuity is sharp, meaning that the rule for eligibility perfectly predicts treat-

ment, then one can simply include the eligibility cutoff as a proxy for the treatment itself. In our

case, this is a dummy variable (Ei) equal to one if the locality’s marginality index exceeds -1.22.

This corresponds to the boundary between “medium" and “low” levels of poverty, as classified

by the marginality index. We use this simple approach in several specifications, noting that it

captures the intention to treat effect, rather than the treatment effect on the treated.

Our situation differs from a sharp discontinuity in two ways. First, enrollment is not one

hundred percent beyond any threshold. Second, the probability of enrollment increases rapidly

over a range of the marginality index between -1.2 to -0.9. The first problem can be dealt with in
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the standard way by using the eligibility cutoff to instrument for the probability of enrollment10.

We address the second problem following approaches developed by Hahn et al. (2001), Green

(2005) and Jacob and Lefgren (2004). Nonlinear combinations of the eligibility rule and the

marginality index (equation (3)) are used to instrument for treatment in the main regression. The

two equations are given as:

∆ fi = α +δTi + γIi +β
′Xi + εi (3.2)

Ti = ω + τ1Ei + τ2EiIi + τ3Mi + τ4MiIi +µIi +Γ
′Xi +νi (3.3)

where Ti represents treatment, Ei is the eligibility cutoff dummy, Ii is the marginality

index and Mi is a dummy equal to one over the zone where enrollment increases rapidly and

zero otherwise. Other variables are as defined above. Note that all specifications include a

control for the marginality index, Ii, in order to control for the underlying relationship between

deforestation and poverty. We also estimate results both for the full sample and a narrow window

around the discontinuity. Within a narrow window around the discontinuity, it is reasonable to

assume that the relationship between poverty and deforestation is linear. When we use a wider

window, we include higher-order terms of the index (up to a fourth-order polynomial, following

the example of (Lee, Moretti and Butler, 2004). We also include additional controls, represented

above by the vector Xi and including the size of the polygon in kilometers squared, the population

in 1995, the percentage of the polygon that was forested in 2000, kilometers of roads in a 10

kilometer buffer around the locality (“road density"), and regional ecosystem dummy variables.

Finally, in order to address issues surrounding the appropriateness of the IV Tobit estimator when

the endogenous variable is binary, we also estimate the equation substituting the continuous

proportion of households treated in lieu of the binary treatment variable.

Valid estimates based on a regression discontinuity design rely on the assumption that

the discontinuity in the outcome can be attributed to the discontinuity in treatment; i.e. there is

not another unobservable variable which also changes discontinuously over the relevant marginal-

ity range which could be driving the results. To test this assumption, we analyzed all covariates

using the kernel regression specification applied in Figure 3.4. No variables showed a significant

jump at the discontinuity, with the exception of slope, which is slightly higher among the eligible

population. Given that deforestation generally decreases with increases in slope, we feel that this

strengthens our results. In addition, we control for slope in all specifications.

10For a review of regression discontinuity approaches, see Imbens and Lemieux (2008).
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As a falsification test, we check for a discontinuity in forest cover around the eligibility

cutoff prior to the start of the program, using data on 1994 land use. We find no difference in

1994 forest levels (measured in percent of polygon in forest) at the point of the discontinuity

either visually or statistically11.

3.3.5 Results

Table 3.1 presents some simple summary statistics from the two samples comparing

average deforestation levels and other covariates across the eligibility criteria for the program.

In both the full and restricted samples, there are significant differences in both the probability of

deforestation and in the level. These simple comparisons of means across the running variable

seem to indicate the presence of a jump in deforestation around the discontinuity. They do not,

however, control for the underlying relationship between poverty and deforestation, nor do they

control for any other covariates which might be correlated with both of these.

Simple approach

We first present results from the simplest approach of regressing deforestation outcomes

on the eligibility cutoff as a proxy for treatment (i.e. intention to treat; which replaces Ti in

equation 1 with Ei). Table 3.2 shows the results of this approach. The first three columns are es-

timated using a Tobit. Columns (1) and (2) show results from the full sample and the last column

from the restricted sample (marginality index between -2 and .2). Column 1 includes in addition

to the eligibility cutoff: the marginality index, the area of each locality, the baseline percentage

of the locality in forest, locality population, road density, slope, and ecoregion controls. Column

2 shows results with a fourth order polynomial of the marginality index12. The third column

shows results from the restricted sample and includes the marginality index linearly.

We see that the coefficients on eligibility are positive and significant (10% level) in all

specifications, suggesting that the program increased deforestation. Marginal effects of eligibil-

ity on the probability of deforestation and on the rate of deforestation among deforesters calcu-

lated at the mean of the covariates are given at the bottom of Table 3.2. As a robustness check,

we also consider OLS estimates of the probability of deforestation in a given polygon (column

(4)), and on the percent deforested in those polygons with positive deforestation (column (5)).
11Unfortunately, the data on 1994 forest areas is missing large tracts of land in northwest Mexico and in parts of

the state of Guerrero; but at least 30,000 relevant observations remain. We also note that the classification of this
data into land uses is not directly comparable with the 2000 Forest Inventory so we must use forest cover rather than
changes in forest cover for this test.

12Results are robust to including just second and third order polynomials of the index as well.
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Note that the estimates from the linear probability model are nearly identical to the marginal

impact of eligibility on the probability of deforestation estimated using the Tobit. The impact

on percent deforestation among the deforesters is larger in the linear model that in the marginal

effect estimated with the Tobit, but it is also not adjusted for the probability of deforestation in

the sample.

Relying on this simple methodology, we also conduct a basic falsification test of the re-

sults using pseudo eligibility rules. We chose the eligibility cutoff based on the defined boundary

between “medium" and “low" levels of poverty (-1.2). Using other cutoffs should not indicate

deforestation effects. We re-run the specification in Column 2 of Table 3.2 on subsamples both

to to the left and to the right of the discontinuity, but re-define eligibility at each tenth of the

marginality index. We do not find any significant results using these placebo eligibility thresh-

olds13.

Instrumental variables approach

Results from the instrumental variables discontinuity approach are presented next. We

begin by examining the predictive power of the instruments and then show the impact estimation

results. Table 3.3 shows the results of the first stage OLS regressions (corresponding to equation

(3)) of a dependent variable equal to one if the locality was treated by 2003. The first column

tests the significance of the simple instrument of eligibility using the full sample, and columns

2-3 test the power of the set of fuzzy discontinuity instruments on the full sample. Column (4)

shows results for the restricted sample. Column (5) shows an estimation of the fuzzy disconti-

nuity variables on the proportion of households receiving Oportunidades in a locality between

1997 and 2003. The variables have the expected signs – being eligible for the program (in the

zone above -1.2) increases the probability of enrollment, as does being in the marginal zone. The

slope of the increase in probability of enrollment in the marginal zone is given by the interaction

of the marginality index with the marginal zone, and is positive and significant as predicted. Es-

timations 3 and 5 include nonlinear terms of the marginality index. F-tests of the set of excluded

instruments show that the instruments have excellent power.

Table 3.4 shows the estimated impact of the program on deforestation using the eligibil-

ity as the sole instrument. The results are consistent with those of the simplest approach, showing

participation in the program increasing the probability and amount of deforestation. Two robust-

ness checks in Table 3.4 warrant discussion. First, IV OLS is used in columns (5) and (6), and

13Results available upon request.
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yields a nearly equivalent marginal effect of treatment on the probability of deforestation, and,

as in the simplest approach, a slightly larger impact on percent deforestation. Column (3) uses a

continuous variable to measure impact – the average proportion of the locality treated – and the

marginal impact on the probability of deforestation is substantially larger than using the binary

treatment. It is important to note, however, that the binary treatment variable should pick up the

treatment for the average locality, which in terms of proportion treated is .42. Multiplying .120

by .42 yields a marginal effect estimate nearly identical to the marginal effect estimated using

the binary treatment in column (2).

Table 3.5 shows the estimated impact of the program on deforestation using the fuzzy

discontinuity approach. The estimates are similar to the simple approach. The marginal ef-

fects for the binary treatment indicate an increase in the probability of deforestation of 1.8 to

3.8 percentage points. Given the baseline probability of deforestation among the non-eligible

population of 4.9%, this suggests nearly a doubling of deforestation probability around the dis-

continuity. The baseline percent deforested among deforesters in the non-eligible population is

.6, which means that the marginal effects implied by the estimation amount to a 15-33% increase

in the percentagearea deforested among deforesters.

The discontinuity results indicate that Oportunidades is associated with an acceleration

of deforestation. Localities that received treatment show greater deforestation than localities

with very similar poverty levels that did not receive treatment. In order to try to understand the

household-level changes that might underlie these broader impacts, we turn to the evaluation

data from the randomized pilot of the program.

3.4 Understanding Household Channels using a Randomized Trial

3.4.1 The Progresa data

The initial, experimental phase of Oportunidades was known as Progresa. The pilot

phase featured a three-year period during which the intervention was directly randomized at

the locality level. This evaluation design provides a unique opportunity to study the micro-

foundations of the household production and consumption decisions that underlie the observed

deforestation impacts. Of the pool initially identified for participation in the program, 506 lo-

calities were randomized into 320 “treatment” (initial intervention) and 186 “control” (delayed

intervention) groups. Within each locality, households were assigned eligibility status for the

program depending on their degree of poverty; eligible households within the treatment local-
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ities received the program. The experiment included several baseline and evaluation surveys

that have been used in previous studies (see Skoufias (2005), Section 3 for a description of the

evaluation design). For our analysis, we combine the 1997-98 baseline surveys with the 2000

follow-up survey which occurred at the end of the experimental phase.

Since the program was randomized among households in this dataset, we apply a dif-

ference in difference specification. We use the sample of eligible (poor) households to estimate

direct treatment effects and the sample of non-eligible (non-poor) to estimate spillover effects:

yit = γ0 + γ1Ti + γ2Pt + γ3TiPt +υit (3.4)

where yit is the household-level outcome variable related to consumption or production, Ti equals

1 if the household is in a treated locality, Pt is equal to one in the post-treatment period, TiPt is

the interaction of Ti and Pt , and υit is the household specific error. Because randomization was

at the locality level we cluster standard errors at the locality level.

We test first for relevant consumption impacts of the program. Given the previous re-

sults by Foster and Rosenzweig (2003), we might suspect that there would be an increase in

demand for forest products. Since the survey does not contain direct measures of timber de-

mand, we use measures of new housing construction (number of rooms) as a proxy for timber

demand. Previous literature on the consumption impacts of Progresa has indicated that the pro-

gram increased the intake of meat and animal products (Hoddinott and Skoufias, 2004). Given

the well-documented significant increase in the resources required to supply an animal-intensive

diet (White (2000), Gerbens-Leenes and Nonhebel (2002), Bouma et al. (1998)) and the intense

competition between cattle-rearing and forest resources in Mexico (Barbier and Burgess (1996),

Kaimowitz (1995)) this seems a natural place to look for a demand-driven increase in pressure

on forest cover. We therefore examine changes in consumption of beef and milk products.

As mentioned in Section 3.2, there is not necessarily a one-to-one relationship between

the location of consumption changes and the corresponding production adjustment, but we might

expect that some increased production could come directly from the treated households. We

therefore assess changes by treated households in the number of cattle owned, number of plots

of land that households report using for livestock grazing or agricultural purposes, and total area

of all plots. Since these goods are also traded in markets, increased production could come

from neighboring non-recipient households. Therefore, we also examine changes in produc-

tion behavior by neighboring households were in treated localities but were not eligible for the

program.
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We would expect that the degree to which we should observe local production responses

(and therefore local environmental consequences) depends on the extent to which local mar-

kets are connected. To this end, we will use road density (as measured by total kilometers of

roads within a 10km buffer of each locality) as a proxy for market-connectedness. To test for

heterogeneity, we include a second specification for each outcome variable which examines the

interaction between treatment effect and the inverse road density in the locality (Ri):

yit = β0 +β1Ti +β2Pt +β3TiPt +β4Ri +β5RiTi +β6RiPt +β7RiTiPi + εit (3.5)

The coefficient β7 measures the variation in the intention to treat effect according to infrastruc-

ture quantity.

3.4.2 Progresa results

The experimental household data confirm the findings in previous literature that Opor-

tunidades strongly increased consumption of land-intensive resources (Hoddinott and Skoufias,

2004). Table 3.6 shows regression results for demand-side outcome variables. We see no in-

crease in the direct demand for timber products in the context of the home improvements proxy,

but we do see increases in beef and milk consumption. The estimated treatment effects repre-

sent increases relative to the baseline mean of 29% and 23%, respectively. The interactions with

road density however show that these demand-side impacts do not vary significantly with the

quality of local road networks–it appears as though the treatment effect on consumption of these

resource-intensive goods is homogeneous across infrastructure quality.

Table 3.7 presents production-side results on number of cows, total hectares of land in

production and number of plots in production. The baseline distribution of total hectares in

production is highly skewed so we use the natural logarithm of this variable in both specifica-

tions. We do not see significant increases in the number of cows owned, plots used, or the total

area cultivated by recipient households, nor do these effects vary with road density14. Progresa

does not appear to provoke a substantial increase in agricultural production among beneficiary

households, regardless of the level of isolation15.

14The results indicate that we can rule out increases in land use and cow ownership greater than 9% and 18% respec-
tively, with 95% confidence. Given the 29% and 23% increase in beef and milk consumption, it seems unlikely that
recipient households are supplying their entire increase in demand. Skoufias (2005) documents a significant decrease
in child labor (not surprising given the conditionality of the program). Since this type of labor is disproportionately
used on the family farm, this provides a possible reason for why households eligible for Progresa/Oportunidades may
produce less on their own household farms and consume more goods produced elsewhere

15This result would seem to contradict the findings of Gertler, Martinez and Rubio-Codina (2006). In that study
the authors show that recipient households do invest a small portion of Oportunidades transfers in livestock and land.
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The discussion in Section 3.2 motivates the analysis of market-mediated spillovers which

may vary with the depth of local markets despite the very constant increases in consumption ob-

served so far. In order to address this question using the Progresa data, we examine the extent

to which non-recipient households (households that reside in eligible localities but who do not

themselves qualify as poor) adjust their production behavior in response to the arrival of pro-

gram transfers. In Table 3.8 we observe that while the program does not have significant effects

on production in this group overall, in road-poor areas there is a significantly stronger increase

in the number of hectares under cultivation and in the number of cows owned by non-recipient

households. The estimate of the coefficients on the interaction of inverse road density with the

spillover effect in Column 4 indicates less than a one-percent increase in hectares in production

at the 90th percentile of road density, and a 1.2% and 3.2% increase at the median and 10th per-

centile, respectively. The estimate of the same interaction effect on the number of cows owned

(Column 6) indicates a 3% and 5% increase in the number of cows owned when evaluated at

the 90th percentile and the median respectively, and a 12% increase when evaluated at the 10th

percentile.

The micro-data from the randomized pilot phase of the program therefore provide evi-

dence that the consumption increases caused by Progresa were similar across localities with dif-

ferent connection to markets, but the corresponding production increases among nearby wealth-

ier households were not. Specifically, in localities with good road infrastructure there is no

production-side response among local ineligibles, but where poor infrastructure localizes eco-

nomic activity the increased consumption engendered by the program is met by an increase in

output. This is in accordance with our hypothesis that even homogenous treatment effects will

appear heterogeneous when they are mediated by markets of different sizes.

Given these estimated consumption increases by households, are the deforestation im-

pacts previously estimated of a reasonable magnitude? To explore this question we conducted a

back-of-the-envelope calculation using the marginal effects on milk and beef consumption com-

bined with estimates of consumption and the resource intensivity of cattle-raising to estimate

the additional land required16. Our simulation indicates that the average locality would require

However, they aggregate all animals into two categories: “production" animals which include cows, pigs, chickens,
turkeys; and “draft" animals (horses, oxen). While they do find a significant increase in ownership of production
animals, this appears to be driven by landless and non-agricultural households in their sample, indicating that the
increase is unlikely to be due to large animals. Our data confirm this. We concentrate on the demand for animal
protein but previous studies also suggested a diversification of fruit and vegetable consumption in response to the
program Hoddinott and Skoufias (2004) which could also increase deforestation.

16Our simulation assumes each household consumes a quarter gallon of milk and a pound of beef each day they
consume it, that a beef cow produces 400 pounds of beef and a dairy cow 1500 gallons of milk per year – these
numbers in the US are 500-650 and 2400, respectively. Given the Progresa treatment effects, this gives us a number
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maintenance of eight additional cows, more than twice the number that Table 8 shows were being

provided by ineligibles in local villages. This would suggest that even in isolated places more

than half of demand was being satisfied from production outside of the locality. If we then esti-

mate the land required to support these cows, we come to a figure roughly 20 times the observed

deforestation estimated in column 3 of Table 5. This demonstrates that the measured consump-

tion increases are more than large enough to account for the observed deforestation. That the

predicted amount of land needed is larger than the observed effects is not surprising, both be-

cause much of the marginal land is likely not to be forested and because the market-mediated

spillovers cause us to underestimate total treatment effects17.

3.5 Heterogeneity in the Impact of Oportunidades

3.5.1 Road Density and Treatment Effects

If the most plausible mechanism underlying an increase in deforestation is increasing

demand for land-intensive goods, we should expect to observe heterogeneity in estimated treat-

ment impacts across localities consistent with this mechanism. To this end, we test for variation

in estimated effects by the quality of local transportation infrastructure. We expect that the esti-

mated impact of the program should be greater where the supply response is more localized by

poor infrastructure.

The problem of estimating responses when shocks can be dispersed through market

transactions suggests that we will be more likely to detect impacts where road networks are

poor. Table 3.9 shows the apparent differential impact of treatment at different categories of road

density. The first six columns divide the entire sample into three equal sized groups according

to road density. Results are shown for both IV OLS and IV Tobit specifications. Here we

observe that the program only has a significant positive local impact on deforestation where

road densities are low. We also see much larger point estimates for the marginal effects on the

of beef cattle slaughtered over the 3-year period, and the incremental size of the dairy herd needed. We assume
that 9 acres is needed to support a cow, and that the resource intensity of the counterfactual vegetable-based diet is
1/5th of the animal-based diet, and this gives us the additional number of square kilometers needed for the dietary
change: just under a quarter of a square kilometer per locality. The simulation of observed average deforestation per
locality multiplies locality size times the fraction of localities in the treatment group with any deforestation and the
marginal effect where deforestation occurs. The estimated deforestation is roughly a hundredth of a square kilometer
per locality.

17This market demand mechanism between treated and ineligible households within treatment villages provides an
alternative channel for the well-documented spillover effects of Progresa. Rather than working through peer effects
or insurance and credit markets (Angelucci and de Giorgi, 2009), ineligible households may have realized benefits by
increasing output to satisfy local demand.
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probability of deforestation for the low road density class. The results are nearly identical for

the restricted sample (not shown). Columns 7 and 8 interact treatment with low road density

for the full sample. We find the percent deforested difference to be marginally significant in the

Tobit estimation (although the marginal effects in the low-density areas are several times those

in the other groups), but isolated localities have a significantly higher probability of seeing some

deforestation. The coefficient estimates for the sum of the interaction with treatment in both the

tobit and OLS estimates are almost identical to the estimates from the low road density sample.

3.5.2 Spatial ACFs in a RD framework

An alternate test of our hypothesis that production is sourced from surrounding markets

is to examine the spatial contours of program effects directly. Since treatment is potentially

endogenous, we cannot calculate spatial lag functions in the standard way. Instead, we adapt

techniques introduced by Conley and Topa (2002) to the regression discontinuity framework.

This mirrors the logic of the discontinuity analysis in that while the distribution of outcomes may

be endogenous across the broader distribution of the eligibility score, it is plausibly exogenous

within a window around the discontinuity.

The underlying information used here is the same as that used in the discontinuity anal-

ysis, but the structure of the data is slightly different. Here we divide the country in a grid of

equally-sized cells of 10x10 km. For each cell we calculate deforestation and a “saturation" of

treatment, which is composed of a ratio where the numerator is the number of villages out of

the “study" localities that receive Oportunidades and the denominator is the number of “study”

localities in the cell. We define a study village as one which is in the restricted subsample that we

used for the discontinuity analysis, i.e., one which is located between -2 and -0.2 on the poverty

index. This provides a conservative way of using “as if random” saturation in the intensity of

treatment in the window around the discontinuity to measure spillover effects.

si0 represents this saturation ratio in each cell, which we refer to as “own" saturation.

For each cell, we then calculate saturation for all of the neighboring cells, excluding the own

cell (saturation at 10 kilometers, si10). We proceed outwards in a similar fashion, calculating

saturation in successive rings around a given cell up to 40 kilometers. We also calculate the

density of road networks in the 50 kilometers surrounding each cell. We call this variable ci

and interact it with each of the saturation variables to help us understand how road access might

affect the probability of deforestation. For areas which have no “study” localities in them, we

include a dummy variable equal to one when there are no localities, and for these observations
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include zeros in the saturation observations18. We then drop all cells with no baseline forest

cover and estimate:

di = α + ∑
k=0,10,20,30,40

[βksik +θksikci]+ΓXi + εi, (3.6)

where di = 1 if there is deforestation in the cell, sik is the saturation at each distance, ci

is road density, Xi are control variables including average poverty level, road density within 0-50

kilometers around cell, latitude and longitude fixed effects, and baseline forest. εi is the error

term. We calculate standard errors using bootstrapping in order to avoid the problem of spatial

autocorrelation of error terms (for a discussion of spatial autocorrelation in the probit, tests, and

estimation strategies, see Pinkse and Slade (1998)). Our theory tells us that deforestation should

be most strongly correlated with nearby treatment intensity where infrastructure is poorest.

3.5.3 Spatial analysis: Results

The results from the spatial regression are shown in Table 3.10. The table contains only

partial results – in all cases, 10 latitude/longitude fixed effects and the mean poverty level in

each buffer is included, along with the variables indicating zero observations in a buffer. The

fixed effects capture spatial variation in ecosystem, as well as cultural heterogeneity, to the extent

that it varies geographically in Mexico. We use two variables capturing infrastructure quality:

the natural log of total road density (measured as total length of roads in all the cells around

a sample cell), and a dummy variable equal to 1 if the density is less than the median19. In

the simplest specification, which does not include interactions of saturations with road density,

saturations have no significant effect on the probability of deforestation. In the two versions

where interactions are included, however, we observe that road density is very important in

determining the effect of program concentration on deforestation, but that the key determinant is

the interaction of saturation with infrastructure. In both cases, in more remote areas (those with

low road density), the probability of deforestation as a result of Oportunidades recipients nearby

increases.

Figure 3.5 graphs out the reported coefficients from column (2) by distance, calculating

the interaction effects at 90% road density (“high”) and at 10% road density (“low”)20. The

horizontal axis indicates the distance to the baseline cell in kilometers, and the plots include

dotted lines indicating 95% confidence intervals. At each cell distance, the marginal effect is

18This follows Foster and Rosenzweig (2003)’s approach for dealing with missing data.
19Results are robust to various cutoff points less than the median as well.
20The graph looks nearly identical using coefficients from column (3).
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calculated for a one standard deviation change in saturation. This provides a visual image of the

effect of the program on deforestation according to distance, and shows that the spatial contour

of deforestation is not significantly different from zero with respect to the location of treatment

for well-connected cells, whereas in isolated cells the deforestation effect is more localized –

increases in saturation increase the probability of deforestation, but at a decreasing rate. The

impact of increases in saturation goes to zero at the 20-30 kilometer band. This confirms our

hypothesis that good infrastructure may help spread the impacts of the program to the point

where they are non-detectable locally.

In summary, the results discussed above are consistent with the framework introduced

in Section 2. Oportunidades appears to induce greater consumption of resource-intensive goods

everywhere, and hence increases pressure on resources regardless of network quality. However,

since treatment does not increase output among recipient households, this additional demand is

mediated through market networks. With poor transportation infrastructure, demand must be

met locally and so we see greater production responses. Where infrastructure is better, increases

in demand will be sourced from a greater variety of locations.

3.6 Conclusions

This paper conducts an analysis of the impact of large income transfers on deforestation,

taking advantage of the discontinuity created by the eligibility rule for Oportunidades. We find

that the income transfer increases deforestation, at least in the population that is just below the

marginality level required to be able to receive payments. We then use household data to test

for a plausible mechanism consistent with this increase in forest loss. Here we observe that

households increase their consumption of two relatively land-intensive goods – beef and milk.

We do not detect a corresponding increase in consumption of a good that might increase forest

cover through increasing demand for forest products– housing construction. Nor do we detect

consistent changes on the production side triggered by exposure to Progresa, suggesting that the

observed deforestation effects of the program arise from consumption changes, in other words

through an expansion of each household’s “ecological footprint” of land use.

Average household income increases by one-third as a result of the transfers, which

leads the probability of deforestation to nearly double and the rate of deforestation among de-

foresters to increase by 15 to 33 percent. These increases are significant in the entire sample,

but are strongest in places with poor infrastructure. These results underline the importance of

considering spatial spillovers in the analysis of micro-experiments, and provide no support for
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the argument that increasing incomes will translate into improved environmental outcomes. Al-

though we demonstrate that there were potential negative secondary environmental effects of the

Oportunidades program, we cannot draw firm overall welfare conclusions. Welfare losses due

to deforestation may have been outweighed by the health and education benefits of the Opor-

tunidades program. In addition, a full welfare analysis of the program would take into account

how long-term changes in income might affect environmental quality. Income growth may im-

prove education or institutional quality, potentially leading to better environmental outcomes in

the long term.

In recent years the use of local average treatment effects in the analysis of development

program impacts has come under fire for answering small questions using a non-representative

sample, and for obfuscating important sources of heterogeneity in outcomes (Deaton, 2009).

Although we estimate local average treatment effects in this paper, our use of the national rollout

means that we have a very large and heterogeneous sample at the discontinuity. Therefore we are

able to exploit the jump in program participation to cleanly identify impacts of poverty reduction

but also to investigate a critical source of heterogeneity. Furthermore, the eligibility cutoff that

we use for identification in this paper is close to the extensive margin of the actual program, and

hence measures plausibly the impact of expanding the current program, as in Karlan and Zinman

(2009). Hence we submit that the treatment effect estimated in this paper is both policy relevant

and has substantial richness in terms of the analysis of heterogeneity.

In terms of the generalizability of these results, it is important to recognize the dimen-

sions in which impacts of a CCT program may not reproduce the dynamics of a more endogenous

long-term increase in income. Most obvious is the conditionality; it explicitly seeks to alter the

prices faced by households in the use of one input to production, child labor. The program also

features conditionality on regular health checkups for beneficiary children, and this increase in

focus on their health may lead to dietary changes that would not be replicated with a simple in-

crease in income. Further, Oportunidades payments are made monthly and hence provide a cash

flow that may be more suited to consumption than investment. It is quite possible, for example,

that an alternative program delivering the same total amount of cash to beneficiary households

in one lump sum would have seen more investment and less consumption, particularly if credit

markets are imperfect. Finally, no particular household receives Oportunidades payments for

longer than they have children of eligible age, and so the program features a rolling beneficiary

pool and is not likely to generate the real wealth effects that would be seen if permanent income

had increased. Despite these caveats, CCT programs have emerged as a major policy tool in the
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fight against global poverty, and so to the extent that they present one of the most obvious policy

levers for decreasing poverty our results are relevant even if we interpret impacts as limited to

these programs.

Our findings, particularly the spatial contours of estimated treatment effects, motivate

the idea that transportation infrastructure plays a critical role in determining the location of

environmental impacts–i.e. where the “ecological footprint" lands. This underlines the empir-

ical issues generated by spatial spillover effects when we examine the production response to

market-mediated increases in local demand. A well-established result in the literature on rainfall

shocks and on famines is the idea that infrastructure decreases the correlation between local-

ized shocks and local market prices (Keller and Shiue, 2008; Donaldson, 2009). Extended to

a program evaluation context, this logic suggests that when treatment is administered at small

spatial units, market-driven spillovers cause an underestimation of the true harm from treatment.

By this logic, the strong deforestation impact seen in isolated parts of Mexico when treated

with Oportunidades is troubling, because it is precisely in these environments that we are clos-

est to capturing the full impact of treatment. We therefore see these results not as a criticism of

poverty-alleviation programs but rather as a cautionary tale. Should we wish to achieve increases

in wealth simultaneously with improvements in environmental quality, our study suggests that

carefully designed environmental management schemes should accompany poverty alleviation

programs.

Chapter 3, in full, has been submitted for publication of the material as it may ap-

pear in the Review of Economics and Statistics. Alix-Garcia, Jennifer; McIntosh, Craig; Sims,

Katharine R.E.; Welch, Jarrod R. The dissertation author shared equally in the research design,

analysis and authorship.
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3.7 Figures

Figure 3.1: Forest Cover in Mexico, 2000
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Figure 3.2: Thiessen Polygons
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Figure 3.3: Entire sample minus observations with index > 3 (51 observations missing)
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Figure 3.4: Kernel estimation of deforestation on marginality index – restricted sample
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Figure 3.5: Own deforestation probability as a function of treatment within distance bands
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3.8 Tables

Table 3.1: Summary statistics across eligibility

Non-eligible Eligible Test of Normalized
<-1.2 >=−1.2 difference difference

Full sample
Polygon area (km2) 37.9 18.9 18.17 -.163
Average slope in polygon (degrees) 5.63 9.63 34.4 .482
% polygon forested in 2000 12.1 10.5 3.24 0.035
Km roads in 10 km buffer 47.0 32.7 32.7 -.36
% polygon polygon deforested .0003 .0014 6.78 .11
Proportion with deforestation .048 .098 9.64
Observations 3510 55077

Restricted sample
Polygon area (km2) 37.9 25.6 7.43 -.095
Average slope in polygon (degrees) 5.61 6.95 12.5 .18
Percent forested in 2000 12.2 10.4 3.37 -.042
Km roads in 10 km buffer 46.4 41.2 9.88 -.129
Proportion polygon deforested .0003 .0008 4.14 .139
Proportion with deforestation .049 .072 4.89

Observations 3350 12408
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Table 3.2: Simple approach – eligibility as proxy

Tobit OLS
% polygon deforested Deforestation % deforested

(0/1) if 1
(1) (2) (3) (4) (5)

Eligible .004 .005 .004 .013 .004
(.002)∗∗ (.003)∗ (.002)∗ (.008)∗ (.002)∗

Marginality index .005 .008 .002 .031 .0008
(.0004)∗∗∗ (.0008)∗∗∗ (.002) (.003)∗∗∗ (.0008)

Index2 .0006 .002 .0005
(.0007) (.003) (.0008)

Index3 -.001 -.004 -.0002
(.0004)∗∗∗ (.001)∗∗∗ (.0003)

Index4 -.00002 -.0001 -.0001
(.0002) (.0005) (.0001)

Baseline area in forest, 2000 -3.72e-06 -4.78e-06 .00004 .0006 .00005
(9.77e-06) (9.78e-06) (.00002)∗∗ (.0001)∗∗∗ (1.00e-05)∗∗∗

Ln(polygon area) .010 .010 .007 .046 -.010
(.0004)∗∗∗ (.0004)∗∗∗ (.0007)∗∗∗ (.002)∗∗∗ (.0006)∗∗∗

Ln(total population in 1995) .001 .001 .0004 .010 -.0004
(.0002)∗∗∗ (.0002)∗∗∗ (.0003) (.001)∗∗∗ (.0003)∗

Ln(slope) -.0005 -.0005 -.00009 -.003 -.0003
(.00005)∗∗∗ (.00005)∗∗∗ (.0001) (.0002)∗∗∗ (.00006)∗∗∗

Ln(road density) -.0006 -.0006 .0003 -.004 -.0001
(.0003)∗∗ (.0003)∗∗ (.0005) (.001)∗∗∗ (.0003)

Obs. 58587 58587 15758 58587 5551
Ecoregion controls yes yes yes yes yes

Marginal effects of eligibility
Pr(y > 0) .011 .015 .011 .013

(.005)∗∗ (.021)∗∗ (.007)∗ (.008)∗

y > 0 .0006 .0008 .0005 .004
(.0003)∗∗ (.00042)∗∗ (.0003)∗ (.002)∗

In column (4) the dependent variable is an indicator for any deforestation, and in column (5) is
percent polygon deforested, but only for those polygons experiencing positive deforestation.
Standard errors in parentheses. * significant at 10%; ** significant at 5%.
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Table 3.10: Spatial regressions
Dependent variable = 1 if deforestation

(1) (2) (3)
Own saturation .017 .192 -.006

(.018) (.044)∗∗∗ (.019)

Within 10-20 km .025 .120 -.027
(.019) (.047)∗∗ (.033)

Within 20-30 km .038 -.070 .067
(.023)∗ (.067) (.056)

Within 30-40 km -.006 -.154 .066
(.028) (.079)∗ (.076)

Within 40-50 km .012 -.014 -.068
(.031) (.080) (.075)

Ln(road density, 0-50km) -.027 -.081
(.016)∗ (.039)∗∗

Baseline forest .001 .001 .001
(.0002)∗∗∗ (.0002)∗∗∗ (.0002)∗∗∗

Density x own saturation -.090
(.020)∗∗∗

Density x 10-20 km -.063
(.029)∗∗

Density x 20-30 km .068
(.045)

Density x 30-40 km .099
(.051)∗

Density x 40-50 km .013
(.054)

Density < median -.061
(.044)

Density < median x own saturation .058
(.020)∗∗∗

Density < median x 10-20 km .069
(.032)∗∗

Density < median x 20-30 km -.043
(.058)

Density < median x 30-40 km -.093
(.079)

Density < median x 40-50 km .095
(.078)

Obs. 11007 11007 11007
R2 .195 .198 .196
Lat-long fixed effects yes yes yes

OLS with bootstrapped standard errors. ** significant at 5%; *** significant at 1%.
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