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Original Article

Multiple routes to reduced interspecific
territorial fighting in Hetaerina damselflies

Christopher N. Anderson™” and Gregory F. Grether®

“Department of Ecology and Evolutionary Biology, Universitzf of California, Los Angeles, 621 Charles E.
Young Drive South, Los Angeles, CA 90095-1606, USA and "Departamento de Ecologia Evolutiva,
Instituto de Ecologia, Universidad Nacional Autonoma de México, Circuito Exterior s/n, Apdo. Postal
70-275, México, D.F. 04510, México

Interspecific territoriality may be adaptive if territories contain depletable resources that are valuable to both species, but it can
also arise as a maladaptive by-product of intraspecific territoriality. In the latter scenario, sympatric species ought to diverge in
ways that reduce interspecific fighting. We studied 4 Hetaerina damselfly species that can be found in sympatry in North America.
Prior work showed that sympatric populations have diverged from each other in wing coloration and competitor recognition in 2
of the 4 sympatric species pairs (H. titia/ H. occisa, H. titia/ H. americana). Here, we show that sympatric populations of these 2
species pairs overlap completely in habitat use, and yet, interspecific territorial fights occur much less frequently than intraspe-
cific fights. Experimentally manipulating the wing coloration of male H. occisa and H. americana to more closely resemble H. titia
increased the rate of interspecific fights, which provides direct evidence that divergence in wing coloration is partly responsible
for the low rate of interspecific fights. We found that interspecific fighting is also reduced in the other 2 species pairs (H. occisa/
H. cruentata, H. americana/ H. cruentata), even though prior work showed that heterospecific territory intruders are attacked just as
aggressively as conspecific territory intruders. In these cases, however, the sympatric species differ sufficiently in habitat use to
reduce the interspecific encounter rate and thereby account for the reduced rate of interspecific fighting. Thus, interspecific
fighting is reduced relative to intraspecific fighting in all 4 species pairs, albeit through different mechanisms. Key words: com-
petitor recognition, heterospecific aggression, interspecific fighting, interspecific territoriality, species recognition. [Behav Ecol

22:527-534 (2011)]

INTRODUCTION

n their classic review of interspecific territoriality in birds,

Orians and Willson (1964) described several possible out-
comes of secondary contact between formerly allopatric terri-
torial species. In one scenario, the newly sympatric species
initially respond aggressively to each other and defend non-
overlapping territories, but interspecific aggression is selected
against because the species overlap so little in resource use
that the costs of defending interspecific territories outweigh
the benefits. Orians and Willson predicted that this would
lead to divergence in the traits used to identify conspecifics
until the species no longer respond aggressively to each other.
They did not consider this character displacement scenario
further, however, because they were primarily concerned with
cases in which interspecific territoriality is adaptive. For the
most part, researchers studying interspecific territoriality have
continued to focus on cases in which it seems adaptive, while
those interested in character displacement have focused on
the classic mechanisms described by Brown and Wilson (1956;
but see Cody 1969, 1973; Gill 1974; Murray 1981; Adams 2004;
Tynkkynen et al. 2005; Peiman and Robinson 2007; Grether
et al. 2009). Brown and Wilson (1956) alluded to the possi-
bility that interspecific fighting could cause sympatric charac-
ter shifts but only to clarify that they did not intend their
theory of character displacement to encompass such shifts.
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Recently, it has become clear that interspecific fighting is
common among closely related or phenotypically similar spe-
cies (Schultz and Switzer 2001; Dijkstra et al. 2005, 2006;
Tynkkynen et al. 2006; Pauers et al. 2008; Peiman and
Robinson 2010). Moreover, interspecific fighting is not re-
stricted to species that compete with each other for limited
resources (Grether et al. 2009; Ord and Stamps 2009; Peiman
and Robinson 2010). Grether et al. (2009) modeled the char-
acter displacement scenario described by Orians and Willson
(1964) and showed that 2 species that initially treat each other
as competitors but are not in competition for a limiting re-
source can diverge in agonistic signals and competitor recog-
nition functions until they no longer interact aggressively.
Conversely, species that do not initially recognize each other
as competitors but are in competition for a limiting resource
can converge in agonistic signals and competitor recognition
functions until they treat each other as competitors, as sug-
gested by Cody (1969, 1973). Several putative examples of
both of these forms of “agonistic” character displacement
have been reported (Tobias and Seddon 2009; Anderson
and Grether 2010a), but in general, the evolutionary effects
of interspecific fighting remain understudied (Grether et al.
2009; Peiman and Robinson 2010).

In this paper, we further investigate recently reported cases
of divergent agonistic character displacement in Hetaerina
damselflies (Anderson and Grether 2010a, 2010b). We
explain the specific goals of this paper after introducing the
study system and the evidence for character displacement.

Male Hetaerina damselflies form leks along rivers where they
defend small non-resource-based mating territories. Both
mating and territorial behavior typically occurs between the
hours of 10:00 and 17:00; outside this period, males are
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nonterritorial and readily share perches while roosting or
hunting for aerial prey (Weichsel 1987; Grether 1996; Grether
and Grey 1996; Grether and Switzer 2000). Unlike in Calopter-
yx damselflies, males do not defend access to oviposition sites
(Alcock 1987; Cordoba-Aguilar et al. 2007). A Hetaerina terri-
tory is merely a defended space within which the resident
perches and has priority of access to arriving females
(Weichsel 1987; Grether 1996). Although territories are com-
monly the sites of mate acquisition, mating pairs usually leave
the male’s territory to search for a suitable site to oviposit.
Territorial contests are common, conspicuous, and energeti-
cally expensive and have important fitness consequences
(Grether 1996; Contreras-Garduno et al. 2006; Serrano-
Meneses et al. 2007). Given that mates are a species-specific
resource, there would appear to be no benefit to attacking
heterospecific males. Nevertheless, interspecific territorial
fights do occur (Johnson 1963), and some sympatric Hetaerina
species defend exclusive nonoverlapping and interspecific
territories (this paper).

Our research has focused on 4 sympatric species pairs:
H. americana/ H. titia, H. occisa/H. titia, H. americana/
H. cruentata, and H.occisa/ H. cruentata. Males of every spe-
cies in this genus have red spots at the base of the forewings
(hence the common name, rubyspot damselflies). Females
lack red wing pigmentation and in general are more cryptic
in coloration than males (Figure 1). Hence, the red wing
spots of males are classic secondary sexual characters
(Darwin 1871). Hetaerina titia is the only species in the ge-
nus that has substantial amounts of black wing pigmenta-
tion. Males of other 3 species have red spots at the base of
all 4 wings, and the rest of the wing area is mostly trans-

Males Females

H. americana

H. occisa

H. cruentata

H. titia

Figure 1
Wing color variation in studied Hetaerina species. One male and one
female are shown for all species, except 2 males are shown for H. titia
to demonstrate the extensive variation in wing coloration. Images not
to scale.
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parent (Garrison 1990; Westfall and May 1996). The black
wing spots of male H. titia are highly variable and range in
size from a small portion of the wing base (similar in size to
sympatric congeners) to black areas covering the entire
hind wing and most of the forewing (Johnson 1963;
Garrison 1990; Anderson and Grether 2010b; Figure 1).
Thus, H. americana/ H. titia and H. occisa/ H. litia represent
pairs of species with dissimilar wing coloration, whereas
H. americana/H. cruentata and H. occisa/H. cruentata
represent pairs of species with similar wing coloration.

In simulated territory intrusion tests, in which live tethered
males were literally flown into the territories of other males,
residents responded more aggressively to conspecific intruders
than to heterospecific intruders in the species pairs with dis-
similar wing coloration but not in the species pairs with similar
wing coloration (Anderson and Grether 2010a). That wing
coloration is at least partly responsible for these results was
demonstrated by adding black coloration to the wings of H.
occisa and H. americana intruders. Conspecific residents
attacked blackened intruders at reduced rates compared
with sham-manipulated control intruders, whereas H. titia
residents attacked blackened intruders at increased rates com-
pared with sham-manipulated control intruders. At allopatric
sites, where H. titia is not present, the same color manipula-
tion had no effect on the responses of residents to conspecific
intruders, which suggests that competitor recognition has
diverged in sympatry (Anderson and Grether 2010a).

Based solely on the responses of males to simulated territory
intruders, we would expect interspecific fighting to be reduced
relative to intraspecific fighting in the species pairs with dissim-
ilar coloration, whereas no such reduction in interspecific
fighting would be expected in the species pairs with similar
coloration. Territory intrusion tests only show what happens
when animals actually encounter each other, however. Selec-
tion against interspecific fighting could also cause sympatric
species to diverge in ways that reduce the rate of interspecific
territorial encounters (e.g., divergence in habitat preferen-
ces). Here, we examine how naturally occurring rates of fight-
ing and territory spacing vary among the 4 species pairs. To
evaluate species differences in microhabitat use, we compare
the percent canopy cover and current speed of territories.
These microhabitat variables were selected because light and
current speed have previously been shown to influence habi-
tat use in Hetaerina (Johnson 1962, 1966; Weichsel 1987;
Grether 1996; Grether and Switzer 2000). Lastly, we test for
effects of wing coloration on rates of interspecific fighting in
free-flying males using both observational and experimental
approaches.

MATERIALS AND METHODS
Localities and data collection

The observations reported here were carried out in July 2005;
June—July 2006; June—July 2007; and in April, May, and August
2008 at 6 sites in Texas and Mexico (site name abbreviations
and GPS coordinates are given): Castroville, Texas (CV: 29.34
N, 98.88 W); El Limon, Mexico (EL: 21.37 N, 104.62 W);
Armeria, Mexico (AR: 18.96 N, 103.95 W); southeast of La
Tinaja, Mexico (OT: 18.69 N, 96.39 W); La Palma, Mexico
(PA: 18.56 N, 95.07 W); and Tebanca, Mexico (CT: 18.37 N,
95.00 W). At 3 sites, we performed replicate observations: AR
(July 2005, April 2008), CV (April 2008, August 2008), and OT
(June 2006, June 2007). Data from repeat visits to the same
site were not pooled because expected values for rates of intra-
and interspecific fights under the null hypothesis depend on
relative species abundances, which varied somewhat between
visits.
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Study transects (50-100 m) were established along riverbanks.
Damselflies were captured with aerial nets, photographed, and
individually marked with a unique combination of 3 colored
marks on the abdomen using paint pens (Marvy Decocolor Paint
Marker; Fine Point, Uchida of America, Torrance, CA). Wings
were photographed with a digital camera (Canon 10D; Canon
USA, Inc., Lake Success, NY) equipped with a 100 mm macro
lens and macro flash attachment (Canon MT-24EX). Behavioral
data collection began after at least 7 h were devoted to marking
damselflies within the study transect, by which time >80% of
the males were marked. During a behavioral census, we re-
corded each individual’s perch location relative to the transect
line to the nearest 0.1 m and all observed fights, regardless of
whether the individuals were marked. Some marked males were
recorded in multiple fights. Repeated fights between the same 2
marked males were reduced to a single observation; otherwise,
we treated multiple observations of the same male fighting with
different marked or unmarked individuals as independent ob-
servations. Transects were censused hourly between 10:00 and
17:00 for at least 3 consecutive days (range: 3-8 days). With one
exception, all observations were recorded on consecutive days.
Inclement weather interrupted one census day at the Castroville
site. For the purposes of territory mapping (see below), we
treated days adjacent to the inclement weather as consecutive.

To estimate microhabitat use of each species, along each
transect, we estimated canopy cover at every 10 m using a con-
cave spherical densiometer (Model C Spherical Crown Densi-
ometer; Forestry Suppliers, Jackson, MS), and stream current
speed at every 2 m using a categorical scale based on the
appearance of the water surface (0: still; 1:moving but flat;
2: shallow standing waves; 3: rippling/mixing; and 4: turbu-
lent/white water). Canopy cover was estimated at the river’s
midpoint if the river was less than 10 m wide; for rivers with
widths that exceeded 10 m, we estimated canopy cover at the
river’s midpoint and at 2 m from each riverbank. We interpo-
lated these measurements to estimate percent canopy cover
and current speed for each territory midpoint.

Measurements of total hind wing area and the extent of
pigmentation were made using NIH Image software (US
National Institutes of Health; available on the Internet at
http://rsb.info.nih.gov/nih-image/). Wing spot size was mea-
sured as the proportion of total wing area covered with pigment.

Territoriality

Territorial males often displayed a high degree of perch site
fidelity, but our threshold for classifying a male as holding a ter-
ritory at a given site was that he was recorded within a 3 m ra-
dius for at least 2 consecutive days. Territory midpoints were
determined by averaging the x-y locations of the same indi-
vidual on a given day. Nearest-territorial-neighbor distances
and territory “neighborhood” densities were calculated sepa-
rately for each individual on each day of the study. For 2
territorial residents to occupy the same neighborhood, their
territory midpoints could be no further than 4 m apart. This
distance criterion was based on the observation that territorial
males chase away intruding males that come within approxi-
mately 1-2 m of their perch (Raihani et al. 2008; Anderson
CN and Grether GF, personal observation).

If interspecific territoriality is weaker than intraspecific ter-
ritoriality, and species do not differ in habitat preferences, we
would expect territorial neighborhoods to be biased toward
heterospecifics. That is, we would expect a 4 m radius drawn
around a given male’s territory midpoint to include more het-
erospecific residents than conspecific residents, on average, af-
ter adjusting for species differences in density. Conversely, if
interspecific territoriality is stronger than intraspecific territo-
riality or if the species differ in habitat preferences, then we
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would expect territorial neighborhoods to be biased toward
conspecifics. Finally, if inter- and intraspecific territoriality are
equal in strength, and the species do not differ in habitat
preferences, we would expect no bias in either direction.

Wing color manipulation experiment

At a subset of sites, we manipulated the wing coloration of
H. americana or H. occisa to resemble the wing coloration of
H. titia and documented the effect on interspecific fights. This
experiment was carried out not only at H. americana/H. titia
and H. occisa/ H. titia sites but also at H. americana/ H. cruentata
and H. occisa/ H. cruentata sites, to establish whether the re-
sponse to the treatment was predicted by species composition.
Previously marked H. americana and H. occisa males were re-
captured and then assigned 1 of 3 treatments: 1) blackened—
hind wings fully painted with a black marker (Prismacolor PM-
2; Sanford L.P., Oak Brook, IL); 2) sham control—hind wings
painted with a colorless marker (Prismacolor PM-121); or 3)
unmanipulated control. All males were released at the loca-
tion of capture immediately after treatment. The black marker
closely matches the color of H. titia wings both to human eyes
and as assessed with reflectance spectrometry. Treatments were
assigned at random with respect to the identity of the male but
in alternating order to ensure that half received the blackened
treatment, one quarter received the sham control treatment,
and one quarter received the unmanipulated control treat-
ment. After the last male was added to the study, hourly
censusing continued for 3—4 consecutive days.

Data analysis—fighting

To examine whether the observed frequencies of intra- and in-
terspecific fights differed significantly from null expectations,
we used a chi-squared test. Expected frequencies were gener-
ated from a binomial expansion of the proportion of marked
individuals of each species. To test the prediction that wing col-
oration influences rates of interspecific fighting, we used a ran-
domization test (sensu Whitlock and Schluter 2009)
comparing the mean wing spot size of individually marked
H. titia observed in interspecific fights with a null distribution
of means from 10 000 simulated data sets obtained by resam-
pling (without replacement) from a pool of all marked H. titia
from the site. We restricted this analysis to sites where at least
5 marked H. titia were observed in interspecific fights. Ran-
domization tests were performed in R 2.8 (R Foundation for
Statistical Computing, Vienna, Austria).

In the wing color manipulation experiment, we predicted
that blackening H. americana or H. occisa wings would increase
the frequency of fights with H. titia but have little or no effect
on the frequency of fights with H. cruentata. Chi-square tests
were used to compare the frequencies of interspecific fights
involving experimentally blackened or control males. Control
groups were pooled after verifying that the sham treatment
had no significant effect on fighting rates compared with the
unmanipulated control (exact test: P = 0.866). Expected
frequencies for interspecific fights were generated from the
proportion of individuals that received each treatment. Chi-
squared analyses were performed in StatXact 8 (Cytel Software
Corporation, Cambridge, MA). When expected values were
below 5, P values were calculated by Monte Carlo simulation.

Data analysis—spacing and microhabitat use

A generalized linear mixed model (GLMM) was constructed to
compare the observed proportion of heterospecific neighbors
with an expected proportion of heterospecific neighbors for
each species at each site separately. Expected proportions
were generated from each species’ relative abundance on
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each territorial day. Each GLMM was fit with a binomial error
structure and logit link function, with the proportion of het-
erospecific neighbors as the response variable and a categori-
cal explanatory term that coded observed and expected
frequencies of neighbors. All GLMMs used the cluster com-
mand in Stata 10 (StataCorp LP, College Station, TX) to ad-
just the standard error for repeated measurements on the
same territory holders. To compare conspecific and hetero-
specific nearest neighbor distances, we used the nearest
neighbor distance on each territorial day as the response vari-
able in a regression model with a categorical explanatory term
coding heterospecific versus conspecific status. We used the
cluster command in Stata to adjust the standard error for
repeated measurements on the same territory holder. Analy-
ses treating each of 2 sympatric species as the focal species at
a given site are not independent of each other. Therefore, to
avoid redundancy, here, we only present results from analyses
where H. titia or H. cruentata was treated as the focal species.
This choice of perspective facilitates comparisons of species
pairs with similar versus dissimilar coloration. Results from
analyses treating H. americana or H. occisa as the focal species
are presented in the online supplement.

Wilcoxon rank-sum tests were used to test for species differ-
ences in territory canopy cover and current speed. GLMM,
regression, and Wilcoxon rank-sum tests were performed in
Stata 10. Unless otherwise stated, all reported P values are
two tailed.

RESULTS
Fighting

The frequency of interspecific fights was lower than random
expectations at all H. occisa and H. americana sites, regardless
of whether the sympatric congener was H. titia or H. cruentata

140 351 occisa /
@ 120 occisa / titia sites 30 crusei?;ata
<
2100 - 25
5 Observed
5 80 . *hx . O Expected 20 .

Qo
= 60 15
2 40 10
2 |] Ik il
0 lIl 0
OO0 OT TT OO OT TT O T TT 000CCC
70 americana / titia sites americana
701 [ cruentata
%) 60 60 site
ey
2591 - - 501
-
o 40 40
8
g 30 30
Z 20 20
l] I:I | ] 0 I:l

0 AAAT TT AAAT TT AAAT TT AAAT TT AA ACCC

Fight category

Figure 2

Observed and expected frequencies of intra- and interspecific fights.
Codes: OO, occisa versus occisa, OT, occisa versus titia, TT, titia versus
titia; AA, americana versus americana, AT, americana versus titia; AC,
americana versus cruentata; CC, cruentata versus cruentata; and OC,
occisa versus cruentata. Site and visit, Top Row: OT, 6.2006; OT,
7.2007; PA, 7.2007; and CT, 7.2006; Bottom Row: AR, 7.2005; AR,
4.2008; CV, 4.2008; CV 8.2008; and EL, 5.2008. In all instances,
observed interspecific fights are less frequent than null expectations.
#P < 0.05, ##P < 0.01, and ***P < 0.001.
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(Figure 2; OT in 2006: chi-square statistic [y> ] = b8.55, 3 de-
grees of freedom [df] P < 0.001; OT in 2007: X =42.00, 3 df,
P < 0.001; PA: y* = 88.18, 3 df, P < 0001 AR in 2005:
12.74, 3 df, P = 0.0017; ARm 2008: x* = 12.63, 3 df, P—
0.0018; CV in Apnl 2008: ¥* = 9.4, 3 df, P— 0.0089; CV in
August 2008: x* = 239 3 df, P < 0.001; CT: ¥* = 15.78, 3 df,
P<0.001; and EL: ¥* = 17.9, 3 df, P< 0.001). As predlcted at
H. titia sites, blackening the wings of male H. occisa and
H. americana caused them to get 1nt0 more interspecific fights
than control males (Figure 3; PA: % = 6.3, 2 df, P= 0 012; OT
in 2007: * = 19.6, 2 df, P < 0.001; and AR in 2008: 3* = 7.9, 2
df, P = 0.005). At H. cruentata sites, blackening the wings of
H. occisa had no effect on the rate of interspecific fights
(Figure 3; CT: x* = 0.00054, 2 df, P = 0.98;), whereas black-
ening the wings of H. ammcana decreased the rate of
interspecific fights (Figure 3; EL: x* = 8.48, 2 df, P = 0.004).

As predicted, H. titia observed in fights with H. occisa
had smaller black wing spots than the null expectation
(Figure 4: OT: Pone taitea = 0.0046; PA: P, taitea = 0.028).
This was not the case for H. titia observed in fights with
H. americana (Figure 4: AR in 2005, P, ¢ tilea = 0.26; AR in
2008, Pone wilea = 0.83; and CV in April 2008, Pone tailed =
0.84), but the power to detect effects of H. titia wing spot size
was lower at H. americana sites than at H. occisa sites because
H. titia wing spot size was much less variable at H. americana
sites (mean 95% confidence interval [CI]: 5.97%) than at
H. occisa sites (mean 95% CI: 32.6%; Figure 3). In short,
H. titia wing spots were not sufficiently variable at H. americana
sites to perform a strong test of this prediction.

Spacing and microhabitat use

Hetaerina titia territorial neighborhoods were always biased
toward heterospecifics at H. occisa sites (Table 1), which im-
plies that interspecific territoriality is weaker than intraspecific

americana

40 occisa / titia sites
/ titia site

30 *kk *x

Fights with H. titia

Black Control Black Control Black Control

occisa occisa americana
occisa / americana
10, cruentata / cruentata
T 9 site site
2 8 [l Observed
g 7 [] Expected
S 6
I 5
,‘g 4
@ 3 ns
c 2
2
ic 1
0

Black Control  Black Control
occisa americana

Wing color treatment group

Figure 3

Observed and expected number of interspecific fights for blackened
and control males in the wing color manipulation experiment. Site
and visit, Top Row: PA, 7.2007; OT, 6.2007; and AR, 4.2008; Bottom
Row: CT, 7.2006; EL, 4.2008. *P < 0.05, **P < 0.01, and ***P <
0.001.
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Figure 4

Average hind wing spot of Hetaerina titia observed in interspecific
fights (squares) compared with a 95% CI of H. titia hind wing spot
size in the local population (vertical lines). Asterisks correspond to
one-tailed P values based on a randomization test. *P < 0.05, **P <
0.01, all others NS, not significant.

territoriality in this species pair. At H. americana sites, H. titia
territorial neighborhoods were strongly biased toward hetero-
specifics at one site in 1 year, but no bias was observed at the
same site in a different year or at the other site where these 2
species occur (Table 1). Hetaerina cruentata neighborhoods
were always biased toward conspecifics, whether the sympatric
congener was H. americana or H. occisa (Table 1), which is
consistent with our evidence for habitat partitioning (see be-
low). Analyses carried out with H. americana or H. occisa as the
focal species yielded similar results (see Supplementary Mate-
rial, Supplementary Table SI).

Compared with H. titia residents with conspecific nearest
neighbors, H. titia residents with H. americana nearest neigh-
bors were significantly closer to their nearest neighbors at one
site (CV in April 2008, August 2008; Table 2) but not at a sec-
ond site (AR in 2005, 2008; Table 2). Likewise, compared with
H. titia residents with conspecific nearest neighbors, H. titia
residents with H. occisa nearest neighbors were significantly
closer to their nearest neighbors at one site in 1 year but
not at the same site in a different year or at a second site
(Table 2). Hetaerina cruentata nearest neighbor distance did
not depend on whether the nearest neighbor was conspecific
or heterospecific, regardless of whether the sympatric conge-
ner was H. americana or H. occisa. Analyses carried out with
H. americana or H. occisa as the focal species yielded similar
results (Supplementary Material, Supplementary Table S2).

Table 1

531

Average percent canopy cover did not differ significantly be-
tween the territories of H. titia and the territories of either of
its sympatric congeners (Table 3). Hetaerina cruentata territo-
ries differed in average percent canopy cover from those of its
sympatric congeners, but the direction of the difference de-
pended on the species pair. Hetaerina cruentata territories were
shadier than H. americana territories but less shady than H.
occisa territories (Table 3). Hetaerina cruentata occupied signif-
icantly shadier territories at the H. americana site than at the
H. occisa site (Wilcoxon test, z = 5.854, P < 0.0001, n = 71).

Current speed did not differ significantly between the ter-
ritories of H. titia and the territories of either of its sympat-
ric congeners (Table 4). Hetaerina cruentata territories had
more rapid flow than H. occisa territories but did not differ
significantly from H. americana territories (Table 4).

DISCUSSION

In all 4 sympatric Hetaerina species pairs, interspecific fights
occurred less frequently than expected based just on relative
species densities. This reduction in interspecific interference
is expected in species, like Hetaerina, that defend non-
resource-based territories. In the species pairs with similar
wing coloration (H. americana/H. cruentata and H. occisa/
H.cruentata), the reduction in interspecific interference prob-
ably results from species differences in microhabitat use that
reduce the rate of interspecific encounters relative to intra-
specific encounters. Our evidence for this is that territory
neighborhoods were biased toward conspecifics (Table 1, Sup-
plementary Material, Supplementary Table S1), and the terri-
tories of sympatric species differed in mean canopy cover
and/or current speed (Tables 3 and 4). Species-level differ-
ences in microhabitat use cannot entirely account for these
results, however. Mean canopy cover was much greater on
H. cruentata territories at site EL (47.7%) than at site CT
(7.3%). For the sympatric congeners, however, the site differ-
ences in mean canopy cover went in the opposite direction
(15.8% for H. americana at site EL vs. 25.9% for H. occisa at site
CT). This shows that the H. cruentata results cannot be ex-
plained entirely by site differences in mean canopy cover.
Sunny territories were available at EL, but they were occupied
by H. americana. Likewise, shady territories were available at
CT, but they were occupied by H. occisa. We cannot infer
causal mechanisms from these results, but we can rule out
the hypothesis that the site difference in habitat use by
H. cruentata is solely due to site differences in shade availabil-
ity. Comparable data from a wider range of sympatric and
allopatric sites will be required to determine whether the
direction of the species differences in shade use are predict-
able, and manipulative field experiments will be required to

Observed and expected neighborhood compositions for territorial male Hetaerina titia and H. cruentata

Observed prop.of

Expected prop.of

Focal species N  Sympatric congener Site Visit (month year) heterosp.neighbors  SE heterosp. neighbors z P

H. titia 28  H. americana AR July 2005 0.456 0.063  0.479 0.370 0.709
H. titia 70 H. americana AR April 2008 0.342 0.034 0.323 —0.550 0.586
H. titia 30 H. americana CV  April 2008 0.588 0.051  0.578 —0.200 0.838
H. titia 20 H. americana CV  August 2008 0.441 0.092 0.417 —0.260 0.797
H. titia 46 H. occisa OT  June 2006 0.401 0.042  0.290 —3.410 0.001
H. titia 41 H. occisa OT  June 2007 0.491 0.041  0.396 —2.430 0.015
H. titia 26 H. occisa PA  July 2007 0.929 0.026  0.644 —4.910 <0.001
H. cruentata 24  H. americana EL  May 2008 0.319 0.074 0.711 4960 <0.001
H. cruentata 44  H. occisa CT  July 2006 0.202 0.060 0.415 3.560 <0.001

See METHODS for key to Study sites and for description of neighborhood composition metrics. P values are based on GLMMs. SE, standard

€error.
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Table 2

Behavioral Ecology

Conspecific and heterospecific nearest neighbor distances for territorial male Hetaerina titia and H. cruentata

Conspecific distance Heterospecific
Focal species  Sympatric congener Site Visit (month year) (meters) SE distance (meters) SE t P
Hetaerina titia  H. AR July 2005 1.393(18) 0.232  1.944(14) 0.276 —1.960 0.060
americana
H. titia H. AR April 2008 1.498(55) 0.092 1.562(35) 0.140  —0.390 0.698
americana
H. titia H. CV  April 2008 1.618(23) 0.188 1.174(23) 0.153 2.300 0.029
americana
H. titia H. CV  August 2008 2.233(14) 0.182 1.411(9) 0.303 2.350  0.030
americana
H. titia H. occisa OT  June 2006 1.562(36) 0.172  1.192(29) 0.134 2.050 0.047
H. titia H. occisa OT  June 2007 1.472(27) 0.189 1.043(34) 0.117 1.860 0.070
H. titia H. occisa PA  July 2007 1.175(3) 0.696 1.708(25) 0.212 —1.010 0.320
H. cruentata  H. americana EL  May 2008 1.535(19) 0.178 1.682(11) 0.269 —0.560 0.578
H. cruentata  H. occisa CT  July 2006 1.959(35) 0.140  2.228(17) 0.172 1.260 0.215

See METHODS for key to Study sites. Sample sizes are shown in parentheses. P values are based on regression models. SE, standard error.

determine whether the inferred shifts in habitat use are
a product of past or current interspecific aggression. Data
from a wider range of sites may additionally indicate whether
regular dominance relationships are present among species
pairs, which may influence whether one or both species di-
verge from allopatric habitat utilization patterns.

In the 2 species pairs with dissimilar wing coloration
(H. titia/ H. americana and H. titia/ H. occisa), analyses of ter-
ritory spacing revealed either no spatial bias or closer prox-
imity to heterospecifics than to conspecifics (Tables 1 and 2,
Supplementary Material, Supplementary Tables S1 and S2).
No species differences in microhabitat use were detected in
these species pairs (Tables 3 and 4). Instead, interspecific
fighting appears to be reduced by divergence in wing colora-
tion—based competitor recognition (Anderson and Grether
2010a). This hypothesis predicts that males whose wing color-
ation more closely resembles that of a sympatric congener will
experience higher rates of interspecific fighting. We tested
this prediction in 2 ways: first, by manipulating the wing col-
oration of male H. occisa and H. americana to more closely
resemble H. titia and second, by taking advantage of the high
level of natural variation in H. titia wing spot size at some sites.
As predicted, male H. occisa and H. americana whose wings
were painted black to resemble the wing coloration of H. titia
were observed in more fights with H. titia than were control
males (Figure 2). Likewise, H. titia that were observed in
interspecific fights had smaller black wing spots, on average,
than expected by chance (Figure 3). These findings are

Table 3
Comparison of territory canopy cover between sympatric species

consistent with those of Johnson (1963) who reported that
H. titia with small black wing spots were more often displaced
from perch sites by H. americana than were H. titia with large
black wing spots. Similar correlations between wing coloration
and interspecific fighting have been reported in Calopteryx
damselflies (Tynkkynen et al. 2004, 2006).

Thus, we found that interspecific fighting is reduced relative
to intraspecific fighting in all 4 species pairs, albeit through
different mechanisms and to different degrees. Whether the
variability in outcomes is predictable, or at least explicable, is
a question that would require data on more species and an
explicitly phylogenetic (e.g., ancestral state reconstruction)
approach. Perhaps some threshold level of pre-secondary con-
tact divergence in wing coloration is required to enable evo-
lution to take the route of character displacement in
competitor recognition and wing coloration. Alternatively,
or in addition, divergence in habitat preferences prior to sec-
ondary contact might reduce the frequency of interspecific
fights sufficiently to eliminate selection for divergence in
competitor recognition and coloration.

The highly variable wing coloration of H. titia is a prime
candidate for agonistic character displacement. Because we
have not found H. titia in allopatry, we have not been able
to test for a character displacement pattern in the traditional
way by comparing sympatric and allopatric populations. In-
stead (in a previous study), we tested for wing color displace-
ment in relation to relative species abundance. This approach
is based on the assumption that selection to diverge from

Sympatric species Site  Visit %Canopy cover species 1~ SE %Canopy cover species 2 SE z P
Hetaerina americana/ H. titia AR July 2005 0.441(25) 0.029  0.429(30) 0.043 —0.423 0.673
H. americana/ H. titia AR April 2008 0.152(29) 0.026  0.19(71) 0.016 —1.432 0.152
H. americana/ H. titia CV  April 2008 0.764(16) 0.034  0.774(27) 0.02 0.427 0.669
H. americana/ H. titia CV  August 2008  0.647(43) 0.022  0.703(32) 0.014 —0.943 0.346
H. occisa/ H. titia OT  June 2006 0.532(25) 0.048  0.459(75) 0.029 1.15 0.25
H. occisa/ H. titia OT  June 2007 0.477(38) 0.049  0.538(50) 0.043  —0.703 0.482
H. occisa/ H. titia PA  July 2007 0.41(52) 0.025  0.393(28) 0.034 0.741 0.458
H. americana/ H. cruentata EL  May 2008 0.159(51) 0.032  0.478(24) 0.042 —4.952 <0.001
H. occisa/ H. cruentata CT  July 2006 0.072(39) 0.035  0.257(48) 0.015 —5.451 <0.001

Mean canopy cover estimates (proportion) for each species are shown along with sample sizes (number of males). Pvalues are based on Wilcoxon

rank-sum tests. SE, standard error.
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Table 4

Comparison of territory current speed between sympatric species

Sympatric species Site  Visit Mean current species 1~ SE Mean current species 1~ SE z P

H. americana/ H. titia AR July 2005 3.02(25) 0.083  2.658(30) 0.116 1.933 0.053
H. americana/ H. titia AR April 2008 2.997(29) 0.003  2.903(71) 0.034 1.294 0.196
H. americana/ H. titia CV  April 2008 2.841(16) 0.151  3.037(27) 0.065  —1.432 0.152
H. americana/ H. titia CV  August 2008  2.974(43) 0.068  2.959(32) 0.067 0.131 0.896
H. occisa/ H. titia OT  June 2006 2.855(25) 0.053  2.668(75) 0.059 1.315 0.189
H. occisa/ H. titia OT  June 2007 2.865(38) 0.05 2.695(50) 0.075 1.483 0.138
H. occisa/ H. titia PA  July 2007 2.283(52) 0.062  2.346(28) 0.096  —0.584 0.559
H. americana/ H. cruentata ~ EL May 2008 2.813(51) 0.067  3.027(24) 0.031  —0.582 0.561
H. occisa/ H. cruentata CT  July 2006 2.877(39) 0.085  3.326(48) 0.073 3.762  <0.001

Mean current speed estimates for each species are shown along with sample sizes (number of males). Current speed estimates were made on
a categorical scale-0: still; 1: moving but flat; 2: shallow standing waves; 3: rippling/mixing; and 4: turbulent/white water. P values are based on

Wilcoxon rank-sum test.

sympatric congeners is most intense at sites where the focal
species is numerically subordinate (Goldberg and Lande
2006). We found, as predicted, that H. titia has larger black
spots and smaller red wing spots at sites where H. americana or
H. occisa is numerically dominant compared with sites where
these congeners are less abundant than H. t#itia (Anderson
and Grether 2010b). Hetaerina americana shows the predicted
inverse pattern, shifting toward larger red wing spots where
H. titia is numerically dominant. Although patterns of charac-
ter displacement in secondary sexual characters, such as
these, are usually hypothesized to result from selection against
cross-species mating (i.e., reproductive character displace-
ment), we are not aware of any evidence that male coloration
influences female choice/resistance in Hetaerina. By contrast,
there is considerable evidence that wing coloration influences
interspecific fighting (Anderson and Grether 2010a; this
study). Thus, the current study strengthens the evidence for
agonistic character displacement in Hetearina damselflies
(Grether et al. 2009; Anderson and Grether 2010b).

Promising future work includes removal experiments
(Martin PR and Martin TE 2001; Tynkkynen et al. 2006) to
confirm the ecological and fitness consequences of species
coexistence. We predict that conspecific removals will have
dramatic effects on patterns of space use and territory tenure,
whereas heterospecific removals will have only a modest
effect, if any, in Hetaerina species pairs with dissimilar colora-
tion. Removal experiments may also help disentangle whether
differing habitat utilization between sympatric species is
a cause or a consequence of the frequency of interspecific
fighting in species pairs that are similar in coloration. Finally,
common garden-type experiments will be required to deter-
mine whether shifts in sympatric competitor recognition,
habitat preferences, and even wing coloration reflect genetic
or plastic responses to the presence of the other species.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www.beheco
.oxfordjournals.org/.
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