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Abstract

We present a new non-interactive key agreement and progression (NIKAP) scheme for mobile ad hoc networks
(MANETS), which does not require an on-line centralized authority, can non-interactively establish and update pairwise
keys between nodes, is configurable to operate synchronously or asynchronously, and supports differentiated security
services w.r.t. the given security policies. NIKAP is valuable to scenarios where pairwise keys are desired to be established

without explicit negotiation over insecure channels, and also need to be updated frequently.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Self-certified key (SCK); NIKAP; Ad hoc on-demand routing

1. Introduction

There are three cryptographic techniques com-
monly used in practice to devise security mecha-
nisms for MANETSs: one-way hash functions,
symmetric cryptosystems and asymmetric (or public
key) cryptosystems. An asymmetric cryptosystem is
more efficient in key utilization in that the public
key of a node can be used by all the other nodes,
while a symmetric cryptosystem requires the exis-
tence of a shared key between two communicating
nodes. Hash functions can be implemented quickly,
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and usually work together with symmetric or asym-
metric algorithms to create more useful credentials,
such as a digital certificate or a keyed hash value.

Portable devices forming a MANET usually have
limited battery life-time and must share a relatively
limited transmission bandwidth. Therefore, symmet-
ric cryptosystems are preferable in ad hoc scenarios
due to their computational efficiency (conducting
an asymmetric algorithm usually is three or four
orders of magnitude slower than the symmetric coun-
terpart). The key establishment problem between
two network principals is well understood for
conventional communication networks, and gener-
ally can be resolved by key distribution or key
agreement.

The classic key-distribution scheme, such as Kerb-
eros [1], requires an on-line centralized authority
(CA) to generate and distribute keys for nodes. How-
ever, this is not suitable for MANETS. In practice,
the on-line CA can be unavailable to some of the
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nodes, or even the whole network during certain time
periods, because of the unpredictable state of wire-
less links and node mobility. Given that the CA is
the single point of failure, compromising the CA
jeopardizes the security of the entire system. More
importantly, the Kerberos system is designed to pro-
vide authentication and key distribution services for
networks structured according to the client-service
model, while a MANET is a peer-to-peer communi-
cation system for the purpose of routing. Recently
proposed key distribution protocols [2] replace the
functionality of CA by a subset of nodes in the net-
work. However, given that applications need to con-
tact multiple nodes that can be multiple hops away,
to obtain the desired keys, it is not clear whether
sharing the CA functionality amongst multiple nodes
can perform better than using a single CA.

Key agreement protocols, such as the Diffie-Hell-
man key exchange protocol [3] and many variations
derived from it, do not need an on-line CA and
compute the shared keys between nodes on-demand.
These protocols are interactive schemes and active
routes must pre-exist for such approaches to work.
However, assuming that routes pre-exist contradicts
the need to secure the routing discovery amongst
nodes in the first place. Network dynamics can also
tear them down in middle of the key negotiation, and
as such no key can be agreed upon. Moreover, inter-
active schemes are not scalable because messages
exchanged for key establishment consume significant
CPU cycles and wireless bandwidth.

Motivated by the observations above and based
on self-certified key (SCK) [4] cryptosystem, we
propose new non-interactive key agreement and
progression (NIKAP) protocols to facilitate the
key agreement process in MANETs. NIKAP needs
the aid of a centralized authority (CA) only at the
initial network formation, and the CA can be
entirely off-line thereafter. Scarce battery and band-
width of wireless nodes are also saved in transmit-
ting, receiving and processing messages. Though
there are protocols establishing keys between nodes
non-interactively (not rekeying) [11], to our knowl-
edge, NIKAP is the first scheme that supports
non-interactive key agreement and subsequent key
progression simultaneously.

Section 2 reviews the basics of self-certified key
(SCK) cryptosystem, which was first introduced by
Petersen and Horster [4]. Section 3 presents S-
NIKAP and A-NIKAP, the non-interactive key
agreement and progression protocols tailored for
MANETSs. Sections 4-6 present the results of our

recent use of NIKAP to secure the on-demand ad
hoc routing, in which we show that NIKAP
bootstraps key establishment in MANETS  efficiently.

2. Overview of SCK

Self-certified key (SCK) system adopts the ideal
of implicit verification, in which the authenticity
of a public key is not verified until it is used for
some cryptographic operations (e.g., signature
verification and key exchanging). In the following,
we first summarize the basic primitives used in SCK.

2.1. Initialization

A centralized authority (CA) Z is assumed to exist
before the network formation. Z chooses large
primes p, g with ¢|(p — 1) (i.e., ¢ is a prime factor of
p — 1), arandom number k, € Z;, where Z_ is a mul-
tiplicative subgroup with order ¢ and generator o;
then Z generates its (public, private) key pair (xz, ).
We assume that the public key y is known to every
node that participates in the network. To issue the
private key for node 4 with identifier /D 4, Z com-
putes the signature parameter », = o*(modp) and
S4 =Xz h(ID4,r4) + k4(mod q), where A(-) is a col-
lision-free one-way hash function and (mod p) means
modulo p. Node 4 publishes the parameter r 4, called
the guarantee, together with its identifier /D 4, and
keeps x4 = s4 as its private key. The public key of
A can be computed by any node that has y,, ID,
and r 4 using the following equation:

vy =y, (mod p). (1)

We denote this initial key pair as (x,4,0,1.4.0)-
2.2. User-controlled key pair progression

Node A4 can update its (public, private) key pair
either synchronously or asynchronously. In the
synchronous setting, where A4 uses the key pair
(X4.1,¥4,) In time interval [ - AT, (¢ + 1) - AT), node
A can choose n random pairs {k,, € Z;,VAJ =
of¢(modp)}, where 1<r7<n, and publishes
guarantees r 4 ,. Then the private key of node 4 pro-
gresses as follows:

Xa:=X40 h(ID4,74,) + ka,(modq) (2)
and the corresponding public keys can be computed
according to

h(IDg.ra.4)

Yar = Yao -r4,(modp). (3)
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2.3. Non-interactive pairwise key agreement and
progression

Pairwise shared keys between any two nodes A4
and B can also be computed and updated synchro-
nously or asynchronously as follows:

Node A:
Xas =X40 - h(IDy,¥ays) + kay,
Vo, =Vo "™ ra(modp),
K4, = g, (modp),
K, = h(KL,).

Node B:
xg, = xgo - h(IDg,75,) + kg,
Vi =g - ra(modp),
K5, =y (modp),
K, = h(Kg,).

The pairwise shared keys obtained by node A4 and
node B are equal because

h(K4.) = h(ys; (modp)) = h(e****(mod p))
h(vyi (modp)) = h(Ks,). (4)

Unlike a certificate-based approach, guarantees
of nodes can be published and need not to be certi-
fied (signed) by any centralized authority. This
means that the public key of each node can be
derived and updated (rekeying) without the aid of
an on-line CA. Moreover, any pair of nodes can
establish and progress pairwise keys between them
in a non-interactive manner. Hence, without consid-
ering the distribution of guarantees, the overhead
incurred by key establishment is zero.

3. S-NIKAP and A-NIKAP

For NIKAP to work correctly, we assume that
the guarantees of a node are successfully distributed
to all nodes participating in the network. To ensure
the delivery of nodal guarantees in such error-prone
environments as MANETS, an efficient and reliable
broadcasting scheme, for instance the reliable
broadcasting protocol proposed in [12], can be used
to facilitate the process of guarantee distribution,
which tolerates link failures and node mobility.
Algorithms 1 and 2 present the specifications of
S-NIKAP and A-NIKAP, respectively.

Algorithm 1. Protocol S-NIKAP

1:  Node (A) initialization:
Retrieve CA’s public key y, initial private
key x4, initial guarantee r 4 and key
progression interval AT

2:  Guarantees distribution:
Advertise ID 4 and randomly selected
guarantees r4, where 1 <t < n(ry,and ID 4
can be broadcast over insecure channel)

3:  Pairwise keys agreement and progression:
To communicate with node B within time
interval [To+ - AT, Ty + (¢t + 1) - AT), first
update the key shared with B to K,, according
to the following procedure:

XAt = X4,0 * hUDAﬂ’A,z) + kA,t
h(IDg,rp,)

VB = VBo -rg,(modp)
K4, = ygi(modp)
Kt == h(KA,t)

Algorithm 2. Protocol A-NIKAP

1: Node (A) initialization:
Retrieve CA’s public key y,, initial private key
X4, and initial guarantee r 4
2:  Guarantees distribution:
Advertise ID, and randomly selected
guarantees r 4, where 1 <t <n (r ,and ID4
can be broadcast over insecure channel)
3: Random bits stream generation and exchange:
To communicate with node B, first generate
a random bits stream BITS, and send to B as
follows
A= B:{ID4IDg,BITS ,,
hﬂSh([DA,IDB,B[TSA,1(,470)}1@1.0
where hashing value hash(-) is used by node B
to verify the integrity of BITS
4. Bit-Controlled key progression:
while BITS , is not empty do
If new session then > Or other triggering
events
flag — pop(BITS )
If flag = 1 then
update to K,
else
keep using K,_;
end if
end if
end while
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In synchronized NIKAP (S-NIKAP), where time
synchronization is made available to each node, two
nodes negotiate and update the shared keys between
them periodically according to the current time
instant and the specified security policy. Processes
or applications of higher security concern can
perform the rekeying operation at a high rate, and
those of lower security concern at a low rate,
accordingly. Therefore, communication principals
in the network can be distinguished based on differ-
ent security policies, such as roles, service types, or
the sensitivity of data. As a result, differentiated
security services can be achieved by specifying
high-to-low rekeying rates that correspond to
high-to-low security levels. The main limitations of
S-NIKAP are the prerequisite of time synchroniza-
tion and the periodical rekeying. Though there exist
devices or protocols providing time synchronization
for MANETSs, it is still not clear if the desired
performance can be achieved in such a dynamic
and unpredictable environment. Moreover, a pair-
wise key is independently updated no matter
whether there is communication between peer nodes
to take place. Therefore, local CPU cycles and
battery are wasted if the newly generated keys are
not used within its life-cycle.

It follows naturally that an asynchronous version
of NIKAP is desired in cases in which time synchro-
nization is not available or portable nodes cannot
afford the cost of progressing keys at high rates.
Asynchronous NIKAP (A-NIKAP) has the same
non-interactive rekeying capability as S-NIKAP
does, but requires no time synchronization service
from the underlying network. Instead, A-NIKAP
uses a pseudo-random bit stream to synchronize
the rekeying process between nodes, of which “1”
invokes new key progression while “0” keeps two
nodes using the current key shared between them.
According to SCK, an initial shared key can be
non-interactively  established. = Therefore, the
pseudo-random bits stream can be generated,
encrypted (using the initial key), and securely agreed
upon between nodes sharing the initial key. If the
same pseudo-random number generator is used by
both ends, to save the bandwidth, only a common
seed needs to be exchanged. The progression strat-
egy in A-NIKAP can be specified as per-session
based, fixed number of sessions based or fixed num-
ber of packets sent based etc., according to the given
security policies. If we count one bit in the random
bits stream equal to one time interval used in S-
NIKAP, A-NIKAP incurs half of the local CPU

cycles than S-NIKAP does, provided that the bits
stream is perfectly randomized.

4. Ad hoc on-demand secure routing
(AOSR) protocol

AOSR is an ad hoc on-demand secure routing
protocol that derives pairwise keys using NIKAP,
and exploits k-MAC to authenticate the generic
on-demand ad hoc routing. We assume that each
pair of nodes in the network shares a pairwise key
K;;, which can be achieved by using the key agree-
ment protocols described in Section 3. We also
assume that the MAC (media access control)
address of a node cannot be changed once it joins
the network. Even though some vendors of modern
wireless cards do allow a user to change the card’s
MAC address, we will see that this simple assump-
tion can be helpful in detecting some complicated
attacks such as wormhole. Moreover, every node
must obtain a certificate signed by the CA, which
binds its MAC and ID (can be the IP address of this
node), before it joins the network. Note that such
certificates are used for nodes to verify the authen-
ticity of their neighbors, rather than validating the
routes discovered during the process of route dis-
covery. A node presents its certificate to each node
that it meets for the first time, and two nodes can
communicate with its neighbor nodes only if their
certificates have been mutually verified. The
approach used to authenticate and maintain neigh-
bor-node information is presented in [5], and as
such is omitted here due to the space limitations.
In our discussion, k-MAC refers to keyed-message
authentication code (a keyed hash value), while
MAC refers to media access control unless specified
otherwise. To be clear, the notation we use is
summarized in Table 1.

AOSR consists of route request initialization,
route request forwarding, route request checking at
destination and the symmetric route reply initializa-
tion, route reply forwarding and route reply checking
at source.

Route request initialization: Source S generates
the following route request RREQ and broadcasts
to its neighboring nodes, when S wants to commu-
nicate with node D but has no active route main-
tained for D at that point

RREQ = {RREQ, S,D, ONum, HC, { NodeList},
QMACS7d}' (5)
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Table 1

Notation used in the paper

Name Meaning

S, D, N; Node IDs, particularly, S = source, D = Destination

RREQ, RREP and RERR
QNum and RNum

The type identifier for a route request, a route reply and a route error, respectively
The randomly generated route request /D and the corresponding route reply

ID, respectively. RNum = QNum + 1 for each route discovery

HC;_; The hop-count from node N; to N;

OMAC, RMAC and EMAC The k-MAC used in RREQ, RREP and RERR, respectively

K;; The key shared between nodes N; and N, thus K;; = K;;;

{ NodeList} Records the intermediate nodes traversed by messages RREQ, RREP or RERR

rTi; The route from node N; to node N;

Because no node has been traversed by RREQ at
the source S, HC =0 and {NodeList} = {Null}:

OMAC, , = Hash(CORE, HC, {NodeList},K,;)  (6)

is the k-MAC which will be further processed by
intermediate nodes, and used by the destination D
to verify the integrity of RREQ and the validity of
the path recorded by { NodeList}. Parameter

CORE = Hash(RREQ, S, D, ONum, K ;) (7)

serves as a credential of S to assure D that the
RREQ is really originated from S and its immutable
fields are integral during the propagation.

Route request forwarding: A RREQ received by
an intermediate node N; is processed and further
broadcast only if it has never been seen (the ID of
node S and the randomly generated Q Num uniquely
identify the current route discovery initialized by .S).
Because {NodeList} records the nodes that have
been traversed before the RREQ is received at N,
N; increases HC by one and appends the /D of the
upstream node N,_; into {NodeList}, and updates
QMAC by
OMAC, , = Hash(OMAC,_, ;, HC, {NodeList},K ).

(8)

A reverse forwarding entry is also established at
N;, which is used to relay the replied RREPs back
to source S.

Check RREQ at destination D: Fig. 1 shows the
verification procedure conducted at destination D.
Basically, D repeats the computation executed by
each intermediate node traversed by RREQ, which
are recorded in field {NodeList}, using the shared
keys maintained by D itself. Obviously, the number
of hashing that D needs to perform equals HC,
the number of nodes traversed by the RREQ. If
such a verification is successful, D can be assured
that the RREQ was really originated from S, each

Nf Drop RREQ

CORE = Hash (RREQ,S,D,QNum,KeydAVS )5
{NodeList} = { Null};
OMACr,,,, = Hash(CORE ,0,{ NodeList},Key; ; );

j=0

{NodeList} = {NodeList N} /IN=S
=j+1;
-Hash(QMAC,W J.{NodeList},Key, ;);

OMAC

Temp

<<¢>

Yes
Accept RREQ

Fig. 1. Check RREQ at destination D.

No

Drop RREQ

node listed in {NodeList} actually participated in
the forwarding of RREQ, and the distance between
S and D is equal to HC,_,,.

The back-forwarding at intermediate nodes and
the verification of RREP at the source S are basi-
cally symmetric to that of RREQ, and as such are
omitted for brevity. Note that AOSR forwards
traffic on a hop-by-hop basis, and each intermediate
node relaying a RREP also establishes the forward-
ing entry for the requested destination D, which is
used to route succeeding data packets.

Route maintenance: A route error message
(RERR) is generated and unicast back to source S
if an intermediate node N; finds the downstream
link of an active route is broken. Before accepting
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a RERR, S must make sure that (a) the node gener-
ating the RERR belongs to the path for the destina-
tion; and (b) the node reporting link failure should
actually be there when it was reporting the link fail-
ure. The process of sending back a RERR from
node N, is similar to that of originating a route reply
from N; to the source S. Therefore, here we only
describe the main differences. A RERR has a format
similar to that of a RREP, except the type identifier
RERR and the initialization of CORE, which is
calculated as follows:

CORE = Hash(RERR,N;, S, D, RNum,K,). 9)
Each intermediate nodes in the reverse path to

the source only processes and back-forwards a
RERR received from its successor used for destina-

tion D, which ensures that no node rather than N;

can Initialize a RERR, and node N; is still in the
path for D when reporting the link failure. When
source S receives the RERR, it invokes a verification
procedure similar to that of RREP. The only differ-
ence is the initial value of CORE, which is calcu-
lated by

CORE = Hash(RERR, N, S, D, RNum., K.), (10)

where rather than K, of node N, the pairwise key
K, ; maintained at S is used.

5. Security analysis

The attacks to MANETSs can be classified into
external attacks and internal attacks based on the
information acquired by the attackers. By having
the access to keys owned by legal nodes, internal
attacks are not as defensible as external attacks
(the reader can refer to [6,7] for details of attack
classification). Fig. 2 depicts the network topology
used for our analysis. We only consider RREQ
because the processing of RREP is symmetric.

S : Source

D : Destination

Ay, A, : Attackers

W, W, :Two Nodes (form a wormhole)
V.V, : Nodes forged by W|.W,
I:Node forged by A,

R : Node removed by A,

<t -—- > "Wormhole" tunnel

€ ----- » Non-existent links

Fig. 2. Example network topology.

In AOSR, RREQ consists of immutable fields
RREQ, ONum, S, D, and mutable fields QMAC,
HC and {NodeList}. As to immutable parts, they
are protected by the one-way hash value CORE,
which has RREQ, S, D, QNum and K , as the input.
No node can impersonate the initiator S to fabricate
RREQ due to the lack of key K, known only to S
and D. Any modification on such fields can be easily
detected by destination D, because the QMAC car-
ried in the RREQ cannot match what D recalculates
based on {NodelList}.

Mutable fields HC, {NodeList} and QMAC are
modified by intermediate nodes when the RREQ
propagates to D. In AOSR, the authenticity of
HC, {NodeList} and QMAC is guaranteed by inte-
grating HC and {NodeList} into the computation
of QM AC, in such a way that no node can be added
into {NodeList} by the downstream node, unless it
has actually forwarded a RREQ; and no node can
be maliciously removed from {NodeList}, unless it
is not used for routing traffic for D. For instance,
let us assume that attacker 4; attempts to remove
node R from {NodeList} and decrease HC by one.
When receiving the RREQ, D recomputes QMAC
according to the nodes listed in { NodeList}. Because
the hashing executed by R, i.e., QMAC, ;4 has been
omitted, D cannot have a match with the received
OMAC. The reason is that hashing operation is
one-way only, and there is no way for 4, to reverse
the computation of QMAC,, Another possible
attack is for attacker A, to insert a non-existent
node [/ into {NodeList} and increase HC by one.
To achieve this, 4, needs to perform one more hash-
ing that requires K;, as the input, which is impossi-
ble because K, is only known to I and D. For the
same reason, A, cannot impersonate another node
(Spoofing) and make itself appear on { NodeList}.

Wormbhole is a special attack that is notoriously
difficult to defend against. Wormhole usually con-
sists of two nodes working collusively, picking up
packets at one point of the network, tunneling them
through an implicit channel, then releasing them at
a faraway point. The goal is to mislead nodes near
the releasing point to believe that the tunneled pack-
ets are transmitted by a nearby node. A demonstra-
tive scenario of wormhole is shown in Fig. 3.

The chained k-MAC values computed by all
intermediate nodes during the route discovery,
together with the authenticated neighbor informa-
tion, enable AOSR to detect wormhole and varied
attacks derived from it. As an example, let us
assume that nodes W, and W, in Fig. 2 are two
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| Implicit tunnel between N;and N, |

S

Dark nodes are attackers and white nodes are legal nodes

Fig. 3. Illustration of wormhole attack.

adversaries who have formed a tunnel Tul,, .,,.
First, they can refuse to forward RREQ, but this
is not attractive because this actually excludes them
from the route discovery. Second, they can attempt
to modify HC or {NodeList}, but this can be
detected when destination D checks the QM AC car-
ried by RREQ. They can also insert some non-exis-
tent nodes, like V;, V5, into {NodeList}, but this
cannot succeed due to the lack of shared keys
Kul,d and KuZ,a’~

Packets tunneled by external attackers can be
detected because the MAC address of the outsider
cannot match any /D maintained by the neighbor
list at the receiving node near the releasing point
(or does not exist at all). This can be done because
a node’s MAC address cannot be changed, any
binding of a MAC address and an /D on the neigh-
bor list has been authenticated, and the MAC
address of a packet is always in clear text. For
example, assume again that the nodes W, and W,
in Fig. 2 are two external attackers and form a tun-
nel Tul,, ..,, and w; or w, is tunneling a packet from
node 2 to node D. This packet cannot be accepted
because the MAC address shown in the packet
(the MAC address of W;) does not match the
MAC address of node 2 maintained by node D
(or, there is no neighbor entry maintained for node
2 at all).

Though there are other approaches to defending
against wormhole attacks [8], time synchronization
must be made available to each node for the pro-
posed packet leashes to work. On the other hand,
binding unalterable MAC address with nodal iden-

tifier is simple to implement and provides almost the
same defensive results as packet leashes.

6. Simulation

We implement AOSR in NS2 [9], which acts as
the centralized authority at the network formation,
and provide time synchronization in the course of
simulation. Simulation parameters are summarized
in Table 2, and used throughout the following
unless specified otherwise.

We present five metrics: (a) packet delivery ratio
(PDR) is the number of CBR packets received aver-
aged over the number of CBR packets originated;
(b) end-to-end packet delay is the average elapsed
time for a CBR packet to traverse between source
and destination; (c) route discovery delay is the aver-
age time it takes for the source node to find a route
for the requested destination; (d) normalized routing
overhead 1s the total routing messages originated
and forwarded over the total number of CBR pack-
ets received; and (e) average route length is the aver-
age length (hops) of the paths discovered.

Figs. 4 and 5 demonstrate the performance
comparison between AOSR using S-NIKAP and
the ad hoc on-demand distance vector routing pro-
tocol AODV [10]. When there is no attack occurring
in the network, the normalized routing overhead of
AOSR, as shown in Fig. 4(b), is almost the same as
that of AODV. The reason is intuitive, establishing
shared keys using NIKAP does not need the negoti-
ation between nodes, or between the nodes and an
on-line CA. In our simulation, the key progression
interval is set to 5s, and in practice, this is adjust-
able according to the processing power of mobile
nodes, or the given security policy. Because shared
keys between nodes need to be updated at a fixed
rate, we expect that the time it takes for AOSR to
discover routes should be longer than that of
AODV. Fortunately, as shown in Fig. 5(a), the
average routing delay caused by key progression,

Table 2

Simulation parameters

Parameter Value

Topology 30 nodes, 1000 m x 250 m field and two-ray propagation model

MAC protocol
Traffic pattern

802.11 DCF, radio range = 250 m and bandwidth = 2 x 10° bits/s
15 constant bit rate (CBR) flows with randomly chosen source and destination, two packets

per second, and with a payload size of 512 bytes. Each flow starts randomly within 50 s after
the simulation is launched, and the lasting time varies between 100 and 200 s

Mobility model
Simulation time

Random way-point model with Vy,;, =0 and Vi, = 15 m/s
300 s, 5 trials with different random seeds




Z. Li, J.J. Garcia-Luna-Aceves | Ad Hoc Networks 5 (2007) 1194-1203

a Packet delivery ratio PDR

0.98 ‘ ‘
—— AODV | :
-9~ AOSR |

b Normalized routing overhead
1.25

i [-e-= AODV
:{-6- AOSR |-

0.978

0.976 1.15
0.974 1.1
0.972 1.05

0.97 1
0.968 0.95
0.966 | 0.9
0.964 F 3 ()51 SERSSURIOS SRS TR

: : D
0.962 i i 0.8 : i
0 100 200 300 0 100 200 300

Pause time (Sec.) Pause time (Sec.)

Fig. 4. PDR comparison w/o attacks.

measured over all nodes, is only 2-5 ms more than
that of AODYV, which is an acceptable increase of
5-12%. This indicates that NIKAP efficiently sup-
ports the security mechanisms used by the route-
discovery process of AOSR without incurring
significant routing delay. The average route length
of AOSR is a little shorter than that of AODV, as
shown in Fig. 5(c). The reason is that AOSR
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not be the shortest at that moment. This also
explains why the packet delivery delay of AOSR is
shorter than that of AODYV, as shown in Fig. 5(b).

Figs. 6 and 7 present the simulation results when
30% and 60% of the nodes in the network are com-
promised, and fabricate fake route replies to route
requests by claiming that they are zero hop away
from the specified destination node, in hope that
the querying source node is willing to send its
succeeding data packets to them. After that, a

a  Packet delivery rate PDR b Normalized routing overhead
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Fig. 5. Delay comparison w/o attacks.
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Fig. 7. Delay comparison with attacks.

compromised node simply drops all the data pack-
ets received (black-hole attack).

The packet delivery ratio of AODV decreases
drastically, as shown in Fig. 6(a), given that most
of the packets are sent to the compromised nodes,
which discard them silently. The average route
length of AODYV is much shorter than when there
1S no malicious node in the network, as shown in
Fig. 7(c). The reason is that a compromised node
is likely to receive and reply to the route requests
for the specified destination earlier than the destina-
tion itself, or other nodes having an active route.
This also indicates that most of the successful pack-
ets are delivered within one or two hops away from
the source.

As shown in Fig. 6(a), AOSR is still able to sus-
tain over 62% packet delivery ratios for all pause
time configurations, even when 60% of the nodes
are compromised. This is achieved at the cost of
more time to find a route, longer end-to-end packet
delay and higher overhead, as shown in Figs. 7(a),
(b), and 6(b), respectively. Lastly, nodes running
AOSR cannot be misled by compromised nodes
declaring better reachability for the requested desti-
nation (AOSR detects the misbehavior of malicious
nodes when the verification of RREQ or RREP
fails), and as such are able to find a route to the des-
tination if there is one. Consequently, the average

length of routes discovered by AOSR is longer than
that of AODYV, as shown in Fig. 7(c).

7. Conclusion

We proposed S-NIKAP and A-NIKAP, two key
agreement protocols that achieves non-interactive
key establishment and if needed, the succeeding
key progression (rekeying process). NIKAP needs
the aid of a centralized authority only at the initial
network formation, which is better than other
approaches relying on on-line CA services.
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