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Abstract

An analysis has been made of 51 000 K~ - m ot aecayé in
flight in the Berkeley 25-inch hydrogen bubble chamber. After correc=
tions for detection efficiency and Coulomb interactions, tﬁe projections
of the pion spectra have been fitted to expansiohs in the D%litz variables
~x and y. In addition, maximum-likelihood fits to the entire Dalfitz plot
have been made. The decay distribution is well described by 1+ ay,
where the slope a = 0.247%0.009. Comparison of this slqpe wi';h that
derived from a world compilatidn of 28000 7'+ decays shows no .5evidence
for CP wviolation. An isospin analysis of the rates and slopes of 7, T',
and K%—» 3w decays requires, in addition to the dominan;: Al =1/2
amplitude, AI = 3/2 amplitudes into both I = 1 and I = 2 three-pion
‘final states. No detectable AI = 5/2 or Al = 7/2 amplitudes are

required.
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I. Introduction

Since the first analysis of T meson data consisting of 13 events,
it has been known that the enérgy distribution of the three pions is
governed largely by phase space. By 1957 analysis of a éompiLation of
892 ol decays2 showed that a fit linear in the kinetic energy of 1::he odd
. pion adequately described the small deviation from uniforfni’cy éf the
Dalitz plot. Since then a number of experiments, each géneralfy con-

. sisting of several thousand events, have confirmed this s:imple
structure. In this experiment we report a measurement <;f the pion
spectra for a sample c;f 7~ which is nearly an order of magnitude larger
than any heretofore reported. The results are in agrevement wifh pre-
vious measurements, and no structure beyond a term line;.r in the odd-
pion energy is observed.

Section II of this pai)er describes the experimental procédures
followed and the bias correctioﬁs applied to the data. Section III con-
tains a tabulation of the Dalitz plot and graphs of its projeétions.weighted,
to remove the effect of final-state Coulomb interactions. Resulf;cs of
a variety of ways of fitting the data are contained in Tableé I and II.

If the weak interaction responsiblé for 7 decay is CP invariant,
the spectra of 7'+ and 7 decay should be identical. In Section IV a
.'comparison is made of a world summary of the data for each charge,
and no detectable difference in these spectra is found.

In order to explore the isospin dependence of the decayafnplitude
~one must compare the rates or slopes (or both) of 7 decay

* * + - . .
(K~ = m w m ) with other three-pion decay modes of the K meson,
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such as T' decay (K+ —~ Tr+1f° 79) and the neutral K decayé
| K%—> tr % and K°2 —~ 3w%. Since 1956, when Dalitz made the first
comparison of 7 and 7' decay rates, 3 it has been apparent that the 3w
decay of the K meson can be described by a dominant Ai = 1/2
amplitude although varying experimental data have usually; required
small admixtures of other amplitudes. Iﬂ 1960 Weinberg4’ suggésted a
comparison of the 7 and 7' slopes as another test of the AI = 1./2
rule. In Section IV we use the most recent data compilation on ;:he de -
cay rate55 in conjunction with our compilation of slopes ('ifable I:II) to
show that AI = 3/2 amplitudes into both I =1 and I = 2 fhi'ee—pion
final states are required when conventional prescriptions for multiplet

mass differences are employed, and exhibit graphically the limits placed

on these amplitudes by the data.

II. Experimental Analysis

An exposure of 1.3)(106 pictures in the Berkeley 25—incﬂ hydro-
gen bubble chamber has yielded about 60000 K™ — T decays in
flight. The K~ momenta range from 270 to 470 MeV/c.

After a complete first scan a third of the film was rescanned,
and this indicated an overall scanning efficiency of about 96% . Scanners
were instructed to isolate those events that on the basis of ionization
had a definite e+ or e as a visible decay product. A fraction of the
3380 events isolated were more closely inspected, and a nlegligﬂ;le
number were found to be three-pion decays. All the is ola£ed evénts
were removed from the sample and the remaining events were measured.
A restricted fiducial volume for the decay vertex was defined to insure

sufficient length of tracks for a good measurement. This restriction
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reduced our sample to 52715 events. Events for which the measure-
ment did not satisfy energy and momentum conservation a:dequa?:ely

were remeasured until a total of 52 261 events passed with a confidence

" level greater than 0.001. Half of these events had been measured on

Franckensteiné and half on a Spi.ra'l Réader. About '0.5% of the _zevents
passed both the four-constraint fit to K—»I m n ' and the :two-constraint
fitto KT > wn?%, w0~ e+e_y. Reexamination of these events showed
thenél all to be three-pion decays, and they were retained in the sample.
About 400 events fitted only the hypothésis K - 7 nf 'nb» ete Y.
Combining these with the events oi‘iginally isolated by the ,‘S canners
gives a total of 3780, in approximate agreement with the r;umbe;i' ex-
pected from known branching ratios. |

In order to estimate the amount of 3my contamination, about
4000 events \;vefe fitted to both K~ — 3w and K™ - .3‘n'y. ‘The number
fitting 3wy with a vy energy' greater than 10 MeV was in rodgh ag're'e-
ment with predictions by Dalitz. 6 Another ekperimen’c, by Stamer et al.,
indicates a branching fraction that is also in agreemeﬁt with Dalitz' s

calculations. Onthe basis of these predictions we expect in our total sample

about 50 events with a photon energy greater than 10 MeV. Our fit of the 4000

" . events indicates that most of the 37y events would not pasé the ;friteria

for 3ﬁ events.

A comparison of thé measured pion laboratory-frame momentum
distribution with a Monte Carlo calculation showed that the scanners
missed about 45% of the events with a pion momentum less than 30 MeV/c
(0.5 ¢cm range) and about 6% of the events with a pion morﬁeﬁtum be -

tween 30 and 60 MeV/c. A cut was made to eliminate from the sample
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events in which the momentum of any pion was less than 30 Me\}/c. To
account for this cut each of the remaining events was weighted by a
factor 1/(1-p), where p is the probability that any one pion has;. a lab
momentum less than 30 MeV/c. This probability is the fraction of the
pion' s angular distribution in the K~ rest frame removed by the cut;

it is a function of the incident momentum and the evenf' S positidn in
the Dalitz plot. The probability that two pions both had a moméntum
less than 30 MeV_/c was negligible. The cut removed 944 ‘-events:, and
the total number of remaining weighted events was 52 625.‘ Thefdistri—
bution of '"short pion'" weights as a function of Dalitz plot posi’cion for
our events is shown in Fig. 1. An analysis of the Dalitz plot of. those -
events with a pion of lab momentum between 30 and 60 MeV/c s}iowed
that the small fraction of these missed would have a negligible effect
on the analysis of the Dalitz plot of the entire sample.

Three-pion decay is completely described by five independent
variables: two energies, which determine the Dalitz plot ébordinates,
vand three ang;esv_, which determine the orientation of the déecay I;lane.
The angles are defined in the K~ rest frame (Fig. 2) as’ cés 6, the polar
.cosine of the normal to the decay plane with respect to the bearﬂ; b,
the azimuth of the normal about the beam direction; and «, the azimuth
of the nt about the normal. In the rest frame of the K~ the distributions
in ¢, o, and cos €@ should be flat. Due to the transformation frém the
laboratory to the K~ rest frame the cut on short pions destroys ;che
isotropy of the distributions in o and cos §. The anisotropy we c;bserye
in these distributions can be fully explained as a result of the sh.brt—

pion cut (Figs. 3a and b)., The distribution in ¢, however, is unaffected

g o e
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by the weight for short pions. Investigation of this distribution showed
that scanners missed some events where the edge of the décay I;lane
faced the cameras. (Figure 3c). The distribution was foided tq remove
the left-right and up-down symmetries and was fitted between 0 .and

m/2 to a polynomial in ¢, 1-b¢2., The parameter b was found to be inde-
- 'pendent of the Dalitz plot position and equal to 0.02. Since the e:lffect is
indepéndent of Dalitz plot position, it does not affect the a:i'lalysié of the
spectra. In summation, the éctual number of events used to obtain the
spectra is 50 919, which when weighted for the loss of 1ow}monientum

‘pions gives 52 625 weighted events which have an average weight of 1.034.

IIT. . Fits to the Pion Spectra

To compare spectra of various charged modes of K decay and to
compare d.ata with theoretical predictions, many experimentersi have
weighted their distributions to account fbr the effects of final—state
Coulomb interactions. There is some question about the appropriate
prescription to be used, and different authors have used different ex-

pressions. Consequently we have fitted our data both with and without

theise corrections. Following D_alitz3 and Schiff8 it is assvilmed that the
Coulomb interaction between pions i and j multiplies the phase space
by a factor n/(en-i), where n = 21'reiej/vij and vij is the relatifvistic
relative velocity between pions i and j. The distribution of Coulomb
weights over the Dalitz plot is shown in Fig. 4.

The usual variables x and y are defined from the pion kinetic

energics in the K~ rest frame,

A3 _ 1
x =1 5 lTi—TZ land y = 6(3T3—Q),
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where T1, TZ’ and T3 are the kinetic energies of the negative pions
v
and positive pion respectively, and Q = MK - 3m1r'
Figure 5a shows the array of the events over the Dalitz plot with .

' 1

statistical errors. The events have been weighted for the short-pion cut.
The events of Fig. 5b have in addition been weighted for Coulomb inter-
actions.

The normal kinematic fitting of the measured events givés un-
certainties in laboratory-system quantities. In order to calculate the
uncertainties in the center-of-mass quantities x and y, a sample of
about 2000 events was fitted to the hypotheses K~ - pioh + missing
mass, missing mass - two pibns. These fits give the unc::ertéiﬂties in
the three combinations of dipion invariant masses, and these can be re-
lated to the K rest frame quantities x and y. The mean errcérs in
the x and y positions varied from 0.01 to 0.025 over the Dé.litz plot.

For comparison with previous results the x and y projections
of the Dalitz piot have been fitted, by using a least-squares method, to
expansions in XZ and y. Uncertainties in the x ‘and y positions cause
) lérge uncertainties in the weighting for phase space at large x and y
in these projections. To remove this uncertainty the last bins of the x
~and y projections were cut at 0.961 and 0.920 respectively,: and the
events in these bins were weighted to account for the cut. . Table I
summarizes the least-squares fits to these projections, both with and
without .weights for Coulomb interactions. The distribution in y (Fig. 6)
is well described by the linear fit. The distribution in x (Fig. 7) has
been weighted by 1/(1 + 0.247 y) to remove the reflected vy depéndénce.

The low confidence levels for the x fits are due to a presumed
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statistical fluctuation at x = 0.6. Althoﬁgh there is a two‘l-stanc%lard—
deviation %2 dependence, the quality of the fit is not substéntially im-
proved by the introduction of this x2 dependence. |

A yz term in the spectrum can be generated by the squa:jbe of a
linear term in the matrix element and by the interference;betwe;en con-
stant and quadratic terms in the matrix element. A linea;;' matrix ele-
ment which reproduces the y dependence of our spectrum Wouldggenerate

a quadratic term approximately equal to + 0.015 yz. Our observed yz

‘dependence, (-0.023 % 0.019)y2, differs by two standard deviations from

this, suggesting the possible pre.senc':e of a négative quadratic term in

the matrix element.

In a search for other structure we have made a maximum-likeli-

hood fit to the entire Dalitz plot. The results of a five-pai'ameter fit

.are shown in Table IIA. Again the only significant structﬁre is the

linear term in y. To test the quality of the fit the data were divided into

bins and the final fit integrated over each bin. A x 2 of 341 was then

" calculated for the 313 degrees of freedom.v A similar fit has been

made in the variables p and 6 suggested by Weinberg. 4 Here

x =psinfandy =p cos 8. An expansion up to p cos € corresponds to

.a linear y expansion; however, higher-order terms differ from the ex-

pansion in x and y. The results are shown in Table IIB, and ag_ain the

only 'significg.nt structure corresponds to a linear term in p cos O or
in y. | |

We have inyestigated the y dependence of those eve&its wii:h a
confidence level less than 0.01, and found it consistent.with the .rest of

the sample. We have also found agreement between the y distributions
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for those events measured on the Spiral Reader and those measured on
the Franckenstein. As a final check we have made a number of least-

squares fits to the form 1 + ay looking for dependence of a on the in-

cident momentum, the three decay angles, or the position of the event -

in the chamber. These fits show (as expected) no dependence on those
variables. (Fig. 8).
9

Our results are combined with previous results in Table IIL,

For the comparison of various charged modes,mass differences within

the K and m multiplets introduce important corrections. For this reason

a more appropriate parameter g, the coefficient of an invariant, has
been defined by
S, - S

s,+s +s3)/3, and we have introduced the

- 2 S
Here s = (pK—pi) and 5g = ( PR

charged pion mass so as to make g dimensionless. For 7 decay, in

which the pion masses are equal, the invariant term is related to y by
S3-85 = - ZMK Qvy/3 .

IV. K = 3m Amplitudes

A difference in the Dalitz plots of K~ — rornt and K- ntot

would be an indication of CP violation in this decay. Following

Wolfenstein, 10 we parameterize the difference in f.h‘l;é,slopes for 7~ and

+ %
T as N
A -2 - a(r)

a(rt) + a(r7)

and calculate, from Table I1I, A = 0.024+0.031. A number of models

for CP violation have been proposed, and most of them predictio

A< 10'3.

~

LU
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We now turn to a comparison of the presently available data on
decay rates and the odd-pion spectra for the four decays

+ +

+ - : -
K -»>mm1mT, K+ - 'rr+-rr°v° , K¢ - o0 -rr+'rr , K2 - 37% ., In this discussion

2 2

we follow Zemach, e who has :mad'e a general analysis of the isospin
decomposition for these decays. The amplitudes used in this analysis
are summarized in Table IV. The subscripts '"ch' and ”_’ﬁ” on these
- amplitudes refer to charged and neutral K decays, which can‘i:n turn
be expressed as linear combinations of the two AI transitions of which
each is composed. Columns 4 and 5 of Table IV list these expressions.
The numerical subscript is 2 AI. Table V gives a summary

of the data on the three ratios of reduced decay rates (y) and the three
slopes (g). The ratios of the reduced rates were calculated by using
Coulomb-corrected nonuniform Dalitz plot phase-space faétors to cor-
rect for mass and charge differences12 and rates taken from the com-
pilation of the Particle Data Group. > The ratios have been factc:)red

to show the deviations from the prédictions of the Al = 1/2 rule, for
which the value in the parenthesis should be 1.00. The slopes éf the
. spectra are from Table III. In addition to the experimenté.l data,
Table V also contains expressions for thé decay rates and slope_“s in
terms of various éoefficients of the decay amplitudes, which caﬁ be
founcf in Ref. 11.

‘Equations (1) and (2) of Table V imply that the ratios of fhe

amplitudes leading to I = 3 final states to the amplitudes leading to
I =1 final states lie on circles in the complex plane (Fig. éa,b). These
ratios are consistent with the vanishing of the I = 3 amplit:udes, and in

the following calculations we have assumed them to be zero. The third
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equation implies that the ratio of the I = 1, AI = 3/2 amplitude to the
I=1, AI = 1/2 amplitudes also lies on a circle in the com;plex plane
(Fig. 9c). If CP invariance is assumed and final-state ihteraétions
are neglected13 these amplitudes are real, and this ratio has either of
two values, 0.032%0.006 or 1.75+0,05. Although there :'Lsi no direct
‘evidence favoring the smaller value in K- 3w, the succeés of the
dominant AI = 1/2 rule in K - 2w and other nonleptonic istrangve-particle
decays obviously suggests the former.

The data on the slopes (Eqs. 4 and 5 of Table V) irﬁply that
Re(cch/ach) equals 0.029:I:_0.005. If the ratios of the I = 1 parameters

are defined as

U= (az/ay),  V=(by/a), W= (bs/ay),
relations (4), (5), and (6) yield for V and W, for the value of

U = 0.032+£0.006 determined from the rates, the values

V =0.218%0.006, - W=0.015£0.006. -
In conclusion, the current data on K - 37 exhibit the following

isospin properties:

+ -
°—>_Tr1r1r°

() A comparison of 7 and 7' rates and a comparison of K2

with K% - 3 7% show that I = 3 final states are not required. P

(b) A AI=3/2, I=1 amplitude (a3/a1 = 0.032.:1:0.006)v£is indicated
by the K% ->,Tr+'rr—'n° decay rate's being too low by four sténdard devia-
tions with respect to the rate for K:t - it to be consistent with the
Al = 1/2 rule. I
" (¢) Anl=2 (AI=3/2or 5/2) amplitude (c /2y = + 0.029%0.005)

ariscs from the 7' slope's being 6.5 standard deviations larger than

is cxpected from the 7 slope and the AI = 1/2 rule.
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(d) The slopes of the three Dalitz plots show the presence of an
I =1 state of mixed symmetry. From comparison of the 'r and 7' slopes

with the K% slope this state is found to come predominantly from

1/2 (by/a, =+ 0.218%0.006) with a small admixture of

Al =3/2 (b3/a1

1}
i

+ 0.015+0.006).

It is important to reemphasize that the above quantitative results
are based on the neglect of final-étate interactions, which do gi{/e rise
to imaginary parts to the amplitudes. In aadition, the preScriptjions
we have used to account fior Coulomb effects and mass differehéés are

subject to theoretical uncertainty.
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Fits to X and Y projections.

A. Fit of the Y projectionto 1 + ay + b‘y’2

Coulomb factor included

Linear fit
Quadratic fit

No Coulomb factor

Linear fit

Quadratic fit

B. Fit of the X projectionto 1 4 cx2 + dx4

a

0.247+£0.009
0.245+0.009

Coulomb factor included

-0,023+0,019

Constant
Quadratic
Quartic

No Coulomb factor

Constant
Quadratic

Quartic

0.211+0.009 -
0.205+ 0.009 -0,042 +£0.019
c d
-0.037+0.019 -
-0.032+0.060 0.006+0.080
-0.002+0.019 -
" -0.010+0.061 -0.011+0.082

Confi-
dence
level

82.8%
77.8%

6.4%
15.2%

0.06% -

0.13%
0.08%

0.14%
0.09%

0.05%
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Table II. Maximum-likelihood fits to Dalitz plot.

a= 0.244+0,013
b= -0.002% 0,020
-0.067+0.060
d= 0.069+0,083
e = 0,023+0,054
error matrix (X 100)

0.0159 0.0080 0.0024 . 0.0021 -

0.0401 0.0120 0.0020 -

'0.3630 -0.4705
0.6880 -

C

A. Fitto 1 + ay + by2 + cx2 + dx4 + exzy

0.0451
0.0152
0.0362
0.0708
0.2940

B, Fitto 1+ apcosf + bp2 cosZG + cp2 + dp3 cosf + ep3 cos36

a= 0.219%0.027

b= 0.021%0.024
c = -0.021% 0,020
| d= 0.059%0,059

e = -0,015+ 0,057

error matrix (X 100)

0.0072 -0.0060 0.0030 -0.01059

0.0565 -0.276  0.0082
0.0213  -0.0115
0.3547

0.0030
0.0108

0.0130

-0.2433
0.3206
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Table III. Compilation of experimental results.

Events Reference a g
50919  This experiment 0.247+0.009
5778 Moscoso, 14 0.242 £0.029
1347 Ferro-Luzzi, 15 0.28 +0.045
58 044 average = 0.247 £ 0.009 -0.194+0.007
9 994 Butler et al., 16 0.277+0.020
6752 Grauman et al., 17 0,228+0.030
5428 Plano, 18 0.28 +0.03
3 587 Huetter et al,, 19 0.21 +0.04
25761 average = 0.259+0.013 -0.204+0.011
4 048 Davison et al., 20 0.516 £ 0,020
1 874 Bisietal., 21 0.586+0.098
1792  Kalmus et al., 22 0.48 £0.04
7714 average = 0.511+0.018
2 446 Basile et al., 23 0.382 % 0.040
1 350 Hopkins et al., 24 0.651 +0.044
1198 Nefkens et al., 25 0.437+£0.057
4 994 average from Refs. 23 and 25 = 0.400+0.033
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Table IV. K - 3w amplitudes classified by final-staté
isospin (I) and by AI rules. : :

Amplitudes I Al K K%
a + bs 1 | 1/2, 3/2 a, =a, +a, a =a -2a,
by = by + by b =b,-2by
cs 2 3‘/2, 5/2 Cep = C3 t 5
d 3 5/2, 1/2 dy, =dg+dg d, = 3/2<15-2d7

s is related to the customary invariants by

_ 0 - _ 2 _ :
s = —r—n-z—: » Where s, = (pK-pi) and 89 = (s1 t s, + s3)/3
™




Table V. K — 37 rates and slopes.
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2
v{£+ =) 2a +d
o ‘ ch chh- = 4(0.95+ 0.03)
Y(0 0 + %ch "“%ch
. ’ 2
009 _ 1 et B (0.99+0.04)
Y+ - 0) N 2
2
2a +d
Y(E+-) _4j_ch  chl _ 50421005
‘Y+ - 2 an+dn.

- g(0 0 +)

g+ =)

g+ - 0)

1

= -Re

1
by
[¢]

b .+ c
2Re ch . ch]
_ . ch

0.511+£0,018

beh ~Cch

] = -0.197+0.006
a
L ch _

[2b

n

an ] = 0.400+ 0.033

Eq. No.

- (1)

(2)

(3)

(4)

(6)
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Figure Captions

1. Contour niap '\showing the variation over the Dalitz plot of the
- weight for the loss of low-momentum pions.. “

2. .Figure defin;ng.. the 'K_‘rest frame angles ¢, o, and 6. |

3. (a) and (b). Di"stribution_s in @ and cos 0. The ilpper déta.have
been cbr.rected for the loss of low-momentum pié:n's.

(c) Distribution in ¢. The lower data are béfofe thejapplica-—
‘tion of weights for azimuthal loés, the "upII)er datzit aft‘.ef.

4, Contour map showing the variation of the factor multiplying
phaise space to account for final-state Coulomb iritera’ctiohs.

5. Array of the Dalitz-plot .distribvution of events aﬁd statistical
errors. In a the events have bee;i weighted for the loss of
low-momentum pions. In b the ex.zben_t's have in addition been
Wéighted for the effects of final-state C:oulomb infefactions.
The axes are divided into equal intervals. |

6. Distribution in y weighted for phasé space, Cdulomk; inter-
actions, and a cut on low-momentum pions. The line 1s a
best fit to 1 + ay,' where a = 0.247:1:0._009.

7. Distribution in x weighted for phase space, Co;vulo'rnbj inter -
a‘ctions, 2 cut on low-momentum pions, and by
1/(4+0.247y).

8. Dalitz-plot 'slopg a from fits to the form 1 + aj as determined
from different daéa samples for various intervals of incjident‘

momentum, ¢, a, cos.e, and the distance ‘(cm) a_lfo_ng the beam

. from the center of the chamber.

9. Plots of the allowed'compiex values of the ratios of various amplitudes

as determined from the ratios' of rates 1, 2,’ and 3,
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respectively of Table V. (a) dch/ach, (b) dn/an, (c) a3/a.1.

For plot (c) d and dn are assumed to vanish,

ch
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Slope of Dalitz plot, a
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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