
UC Riverside
UC Riverside Previously Published Works

Title
Skull-stripping with machine learning deformable organisms

Permalink
https://escholarship.org/uc/item/9006p69g

Authors
Prasad, Gautam
Joshi, Anand A
Feng, Albert
et al.

Publication Date
2014-10-01

DOI
10.1016/j.jneumeth.2014.07.023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9006p69g
https://escholarship.org/uc/item/9006p69g#author
https://escholarship.org
http://www.cdlib.org/


Skull-Stripping with Machine Learning Deformable Organisms

Gautam Prasada,b, Anand A. Joshic, Albert Fenga, Arthur W. Togaa,d, Paul M.
Thompsona,d,e, and Demetri Terzopoulosf

aImaging Genetics Center & Laboratory of Neuro Imaging, Institute for Neuroimaging and
Informatics, Keck School of Medicine of USC, Los Angeles, CA, USA

bDepartment of Psychology, Stanford University, Stanford, CA, USA

cSignal and Image Processing Institute, USC, Los Angeles, CA, USA

dDepartment of Ophthalmology, Neurology, Psychiatry & Behavioral Sciences, Radiology, and
Biomedical Engineering, Keck School of Medicine of USC, Los Angeles, CA, USA

eDepartment of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, USA

fDepartment of Computer Science, UCLA, Los Angeles, CA, USA

Abstract

Background—Segmentation methods for medical images may not generalize well to new data

sets or new tasks, hampering their utility. We attempt to remedy these issues using deformable

organisms to create an easily customizable segmentation plan. We validate our framework by

creating a plan to locate the brain in 3D magnetic resonance images of the head (skull-stripping).

New Method—Our method borrows ideas from artificial life to govern a set of deformable

models. We use control processes such as sensing, proactive planning, reactive behavior, and

knowledge representation to segment an image. The image may have landmarks and features

specific to that dataset; these may be easily incorporated into the plan. In addition, we use a

machine learning method to make our segmentation more accurate.

Results—Our method had the least Hausdorff distance error, but included slightly less brain

voxels (false negatives). It also had the lowest false positive error and performed on par to skull-

stripping specific method on other metrics.

Comparison with Existing Method(s)—We tested our method on 838 T1-weighted images,

evaluating results using distance and overlap error metrics based on expert gold standard

segmentations. We evaluated the results before and after the learning step to quantify its benefit;

we also compare our results to three other widely used methods: BSE, BET, and the Hybrid

Watershed algorithm.

Conclusions—Our framework captures diverse categories of information needed for brain

segmentation and will provide a foundation for tackling a wealth of segmentation problems.
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1. Introduction

Deformable organisms label objects in images by integrating high level control mechanisms

into a segmentation plan. More recent implementations have incorporated a variety of

processes such as sensing, knowledge representation, reactive behavior, and proactive

planning; a set of organisms may also cooperatively segment an image. Deformable

organisms were introduced into medical imaging by McInerney et al. (2002) who combined

ideas from artificial life (Steels, 1993) and deformable models (McInerney and Terzopoulos,

1996; Terzopoulos et al., 1987). Since their introduction, deformable organisms have been

used for limb delineation (McIntosh et al., 2007), and segmentation of the spinal cord

(McIntosh and Hamarneh, 2006b), vasculature (McIntosh and Hamarneh, 2006c), and

corpus callosum in the brain (Hamarneh and McIntosh, 2005). McIntosh and Hamarneh

(2006a) created a deformable organisms framework using the Insight Toolkit (ITK) (Ibanez

et al., 2005), but we did not use it here, as we developed our own representation along with a

set of behaviors to govern its development. Our deformable organisms attempt to segment

the brain by incorporating high-level knowledge and expectations regarding image data by

leveraging the interaction of multiple deformable models that cooperatively use low-level

image processing and computer vision techniques for brain segmentation. In contrast to

several brain segmentation methods that work with low-level image processing and

computer vision techniques, our deformable organisms can incorporate high-level

knowledge and expectations regarding image data.

Our contribution in the method presented here is to specify in detail the way organisms

should be initialized, how they can be used to interpret an image, adapt physically in the

image space, and follow a unique high-level goal-oriented plan specified by a researcher. In

addition to our definition of deformable organisms we explored using a machine learning

step to deal with the discrepancies that may arise from a high-level segmentation plan and

the fine boundaries of functional regions in the brain. We chose a wrapper (Wang et al.,

2011) based on the Adaboost algorithm that learns the errors made by our algorithm from

training data. We evaluated and compared our organisms based on their performance on one

specific neuroimaging segmentation problem (skull-stripping), which we detail here. Even

so, they offer a rich toolbox to construct a plan for any type of segmentation. The ability to

adapt this toolkit to different segmentation problems could make it ideal for a wide range of

standard neuroimaging tasks.

In our experiments, we evaluate our deformable organisms framework by segmenting the

entire brain boundary from non-brain regions in whole head images. Segmenting brain from

non-brain tissues (such as the eyes, skull, scalp, and neck) in magnetic resonance imaging

(MRI) images of the head is a vital pre-processing step for many types of image analysis

tasks. Accurate masks of the brain are helpful for longitudinal studies (Resnick et al., 2003),

for multi-subject analyses of brain structure and function (Thompson et al., 2003), and as a

pre-processing step prior to cortical surface modeling (Thompson et al., 2004), surgical

planning (Gering et al., 2001), and brain registration (Woods et al., 1999).

The process of segmenting brain versus non-brain tissue in MRI is commonly referred to as

“skull-stripping” (although, strictly speaking, the skull generates almost no signal on T1-
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weighted MRI and the scalp and meninges are the main tissues removed). This has

traditionally been done manually by trained experts, or by automated methods that are

subsequently corrected by hand. Manually-created masks may also be used as gold standard

delineations to validate performance of skull-stripping methods based on different

principles. Many approaches have been developed for this task, but time consuming manual

clean-up of these generated masks is almost always required. Many published methods do

not perform well on all datasets, making improvements on existing methods an active area

of research.

There are a variety of existing skull-stripping methods. The Brain Extraction Tool (BET)

(Smith, 2002) evolves a deformable model to find the boundary of the brain. It provides a

robust way to find the boundary in unclear regions but does not incorporate prior knowledge

of the brain’s shape. The Brain Surface Extractor (BSE) (Shattuck and Leahy, 2002) uses

edge detection and morphological operations to find the brain/non-brain boundary. BSE

quickly extracts the brain from an image but may include extra material in the mask, as it

sometimes fails to remove connections between the brain and surrounding tissue. The

Hybrid Watershed Algorithm (HWA) (Segonne et al., 2004) uses the watershed algorithm to

find the brain region, then fits a deformable model to the region, and finally deforms it based

on a statistical atlas and geometric constraints. These methods have also been analyzed in

(Boesen et al., 2004). We chose these methods as they are among the most widely used and

are part of larger neuroimaging toolk-its. Our goal was to assess whether a deformable

organism framework and accompanying plan of segmentation could result in delineations at

least comparable with existing problem specific algorithms.

We present a detailed definition of deformable organisms for brain segmentation and

incorporate them into a segmentation plan that governs a collection of organisms to segment

different parts of the head and brain. The organisms evolve dynamically in the images. They

cooperatively compute an accurate and robust segmentation of the brain. We then use a

learning method to analyze the errors in our method, and incorporate information on it into

the models. We evaluate how effective this additional error correction step is, in improving

our segmentation. We test our method with 630 T1-weighted MRI images from healthy

young adults along with another dataset of 208 older adults with Alzheimer’s disease. We

compare our approach to three widely used methods and we validate our results using

distance, overlap, and error metrics. The current study builds on our preliminary work that

used simpler deformable models and had less extensive experiments (a, Prasad et al.,

2011b).

2. Methods

Our deformable organisms method aims to segment and model the brain in T1-weighted

MRI images of the head. We describe our deformable organism definitions for any type of

general segmentation of the brain, a way to learn and correct errors in our method, validation

metrics to compare our results to the gold standard and to other widely-used methods, and in

our experiments we propose and evaluate a plan for skull-stripping.
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2.1. Deformable Organisms

Deformable organisms are organized in five different layers that combine control

mechanisms and different representations to segment an image. We adapt this general

approach for segmenting the brain.

2.1.1. Geometry and Physics—We represent each organism as a 3D triangulated mesh.

These meshes are initialized on a standard brain template image. Our template was selected

from the 40 images in the LONI Probabilistic Brain Atlas (LPBA40) (Shattuck et al., 2008),

which have corresponding manual segmentations for 56 structures, and have manual

delineations of the brain boundary. In the image we selected from this set, the voxels lying

in each of our regions of interest are labeled. We fit our organisms to these labels to create a

mesh using a marching cubes method (Lorensen and Cline, 1987) that goes through the

image. The mesh is made up of polygons representing the border of the regions, which are

then fused together. These meshes deform to fit the 3D region that their corresponding

organism is modeling. This iterative process moves each of the mesh’s vertices along its

normal direction with respect to the mesh surface. The surface is smoothed at every iteration

using curvature weighted smoothing (Desbrun et al., 1999; Ohtake et al., 2002). This

smoothing technique attenuates noise through a diffusion process as

(1)

where S is the mesh, surface, or manifold and L is the Laplacian, which is equivalent to the

total curvature of the surface. This Laplacian is linearly approximated by

(2)

where vi is the vertex i in the mesh, N(i) are the neighbors of i, and wji is a weight

proportional to the curvature between vertices vj and vi. We smooth the mesh to constrain its

deformations to prevent intersections and artifacts from corrupting the boundary. On the

boundary, we sample from the surrounding image. Our prior based on an image from

LPBA40 precludes us from using the Segmentation Validation Engine tool (Shattuck et al.,

2009) to validate our method as it would lead to an unfair bias that would be favorable to

our method; instead we use other metrics (below).

2.1.2. Perception—Our organisms “sense” the encompassing image by sampling its

intensities at vertices of the mesh. The vertices composing the mesh have real-valued

coordinates, so we used nearest neighbor interpolation to find the intensities that correspond

to them in the discrete grid of voxels in the image. The images may be any of the subject-

derived volumes, which include a threshold image, 2-means classified image, 3-means

classified image, or gradient image. Examples of these subject-derived images and the

original T1-weighted subject image are given in Figure 1. Because each of these images is

composed of integer values, and especially in the threshold, 2-means, and 3-means images
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where there are only a few distinct values, we chose to use nearest-neighbor interpolation to

avoid averaging values in tissue classes or blurring boundary locations.

Paramount to the perception layer is the organisms’ ability to sense each other’s locations.

We locate the voxels an organism resides on using a 3D rasterization algorithm (Pineda,

1988; Gharachorloo et al., 1989) that efficiently computes these values. These locations

allow our organisms to dynamically change the way they deform based on their own

positions and intensities of the original T1-weighted subject image.

2.1.3. Motor Control—We move the vertices of the mesh along their normal direction

with respect to the mesh surface by analyzing a set of intensities along this normal line. We

describe the evolution of our mesh or surface S(i, t) with respect to time t, where i is a vertex

or point on the surface, as

(3)

with F being the speed of evolution. F samples a set of positions P along point i’s normal

and interpolates these values from any of the derived images Id, where d specifies the set of

derived images. That set consists of the threshold image (τ), 2-means image (2), 3-means

image (3), and gradient image (g). The function b(c, r)j specifies any of a number of

behaviors and decides how to move the vertex i on the surface by analyzing the sampled

intensities r subject to a set of constraints, and weights the movement by the scalar c.

In practice, we evolve each vertex by the amount specified by F along its normal. We

progress through time by iterating through all vertices in the mesh until there is no longer

any significant movement.

2.1.4. Behavior—Our behaviors are a higher level of abstraction to indicate how the

organisms function and what information they need to find certain segmentation boundaries.

Behaviors may prescribe a function for organisms to be attracted to or repelled from

landmarks or help converge on the boundary of an object. The functions for our behaviors

had specific tasks in mind - in the context of skull-stripping - but are general and simple

enough for repeated use in any segmentation task.

1. We create a behavior that analyzes a binary image and locates a boundary in these

images. It contracts if a vertex corresponds to an off value and expands if it

corresponds to an on value, and may be described as

(4)

In this case, the we select ri ∈ r, which is a single value of the binary image that

corresponds to the vertex i.

2. Our second behavior moves a vertex outwards if its corresponding intensity value

is q and may be described as
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(5)

Its purpose is to expand into an area of an image with voxels having intensities q.

In addition q may be a set of labels that are appropriate for expansion.

3. Our third behavior is customized to move an organism into the cerebrospinal fluid

(CSF). It contracts itself further if the boundary intersects another organism (in our

plan, the other organisms are the eyes and we wish to deform through those areas)

and will check the intensities (r) along the normal for those that correspond to CSF.

If CSF markers m are found (signified by very low intensity values and a specific

label in our k-means images) we contract the mesh, and if they are deficient, we

expand the mesh. This behavior may be represented as

(6)

In our framework, the intensities, r, are sampled from the k-means images and m is

the label corresponding to CSF. The sampled points are locations inside the surface

with respect to vertex i.

4. The fourth behavior we created was designed to locate a specific anatomical region

(in our case the brain boundary). It contracts vertices away from other organisms,

contracts if there are CSF marker values (m) present within the surface, expands if

the label value at i is not q, and expands if the gradient intensity at ri is greater than

or equal to a threshold θ. The precedence of these constraints is ordered as

(7)

The values, r, are sampled from either the 3D rasterization image of the other

organisms’ meshes, the 3-means classified image, or the gradient image.

5. Our final behavior is the same as behavior 2 but instead of expanding, it contracts.

(8)

2.1.5. Cognition—We create a plan of different behaviors to perform a segmentation task.

The plan may dynamically activate different behaviors depending on what features the
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organisms were able to find in the image. Our plan to skull-strip the brain, which we present

in the experiments section, is one such plan.

2.2. Machine Learning Step

Researchers can design a segmentation plan that incorporates our deformable organisms.

This plan should specify certain goals such as easily recognized regions, interfaces,

landmarks, or relative positions of the organisms, but the detailed boundaries of anatomical

regions may be difficult to describe at such a high level of abstraction. To remedy this issue,

we assume that the deformable organisms roughly delineate areas of interest and we use

voxel level classification to fill in the finer details. The method we chose uses a supervised

learning algorithm to automatically recognize deficiencies or errors in a segmentation plan

and relabels certain voxels to fix them.

We are able to learn the types of errors our method makes by comparing the masks it

generated with expert manual delineations. Wang et al. (2011) introduced an algorithm

using Adaboost (Freund and Schapire, 1995) to learn a weighting of a set of features used to

classify if a voxel has been correctly labeled by a prior algorithm. This ‘Adaboost wrapper’

algorithm uses a set of corresponding automated and manual segmentations, as well as

intensity images to find features that lie in regions that the first-pass method incorrectly

classifies. We use this algorithm to learn situations in which our method makes errors and

thereby improve the segmentation.

2.3. Validation Metrics

The masks from the deformable organism method are compared with the gold standard

manual segmentations using standard distance, overlap, and error metrics. We use the

Hausdorff distance measure (Huttenlocher et al., 1993) to find the distance from the furthest

point in the deformable organism method mask to the closest point of the mask in the

manual delineation. More formally, if we take the voxel locations in the manually delineated

mask to be the set M = {m1, m2, …, mp} with a count of p and the set A = {a1, a2, …, aq} to

be the voxel locations from an automated method with a count of q, then the Hausdorff

distance is defined as

(9)

In this equation the directed Hausdorff distance is defined as

(10)

where ||.|| is the Euclidean norm.

We also compare the expert and automated masks using four overlap measures that assess

the agreement and error between the two delineations (Klein et al., 2009; Shattuck et al.,

2009; Crum et al., 2005). The first overlap metric we used represents the Jaccard coefficient
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or union overlap (Jaccard, 1912), which is defined as the set intersection over the set union

of the manual and automatic voxel locations as

(11)

The Jaccard coefficient measures the similarity of the two sets, with a value of 1 for two

identical sets and 0 if the two sets are disjoint.

Our second agreement overlap measure was the Dice coefficient or mean overlap (Dice,

1945), defined as

(12)

Dice gives double the weight to agreements between the sets and is similar to Jaccard in that

a value of 1 means complete correspondence of the sets, while 0 means the two are mutually

exclusive (disjoint).

In addition to the agreement overlap measures, we used two error overlap measures: the

false negative error and the false positive error. The false negative error is defined as

(13)

where M \ A = {x : x ∈ M; x ∉ A} represents the complement set. The false negative error

represents the number of voxels that were incorrectly labeled outside the region of interest

divided by the total number of voxels in the manual segmentation. The false positive error is

likewise defined as

(14)

It measures the number of voxels that were incorrectly labeled as part of the region of

interest divided by the total number of voxels automatically labels as part of that region. In

both error measures, a value of 0 corresponds to an exact alignment of manual and

automatic segmentations while a value of 1 means the two sets are completely disjoint.

3. Experiments

We create a deformable organism skull-stripping plan and tested it with two datasets, the

first of 630 subjects and the second containing 208 subjects along with their manually-

labeled brain delineations. In addition, we ran BET (BET2, FSL 4.1.5, default parameters),

BSE (BSE 10a, default parameters), and the Watershed algorithm (Freesurfer 5.0.0, default

parameters), and assessed their errors using the distance-based, overlap, and error metrics.
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3.1. Subject Data

Our first dataset consisted of 630 T1-weighted MRI images from healthy young adults,

between 20 and 30 years of age. These images are from Australian twins, and have been

used in numerous prior analyses (Joshi et al., 2011). Each of the images had been manually

skull-stripped by a neuroanatomically trained expert. These manual labels were used as the

gold standard to compare with automatic segmentation results of our method and the other 3

widely-used methods. The subjects were scanned with a 4-Tesla Bruker Medspec whole-

body scanner. 3D T1-weighted images were acquired using a magnetization-prepared rapid

gradient echo sequence, resolving the anatomy at high resolution. Acquisition parameters

were: inversion time (TI)/repetition time (TR)/echo time (TE)=700/1500/3.35 ms, flip

angle=8°, slice thickness=0.9 mm with a 256×256×256 acquisition matrix. In addition, we

used one of the 40 images from the LONI Probabilistic Brain Atlas (LPBA40) (Shattuck et

al., 2008). Each image had 56 different structures manually labeled, including a mask of the

brain.

Our second dataset was composed of 208 T1-weighted MRI images from the second phase

of the Alzheimer’s disease neuroimaging initiative (ADNI) project (Jack Jr et al., 2010). The

breakdown of the subjects was 51 healthy older controls, 74 with early mild cognitive

impairment (MCI), 38 with late MCI, and 45 Alzheimer’s disease (AD) participants. A 3-

Tesla GE Medical Systems scanner was used to acquire a whole-brain MRI image for each

participant. These images were from an anatomical T1-weighted SPGR (spoiled gradient

echo) sequence (256×256 matrix; voxel size = 1.2 × 1.0 × 1.0 mm3; TI = 400 ms; TR = 6.98

ms; TE = 2.85 ms; flip angle == 11°). The gold standard delineations of the brain in each

image were constructed first using a combination of an automated segmentation program

called ROBEX (Iglesias et al., 2011) and the Hybrid Watershed Algorithm. These results

were visually inspected and manually edits to derive the final masks used in our analysis.

More information about this dataset and processing steps is given by Nir et al. (2013).

3.2. Skull-Stripping Plan

Our skull-stripping plan combines our image processing and deformable organisms to create

objectives in the image to extract the locations of different regions, culminating in extracting

the boundary of the brain. In what follows, we describe each step in detail and how it

depends on previous knowledge obtained by organisms. This is just one plan and may be

fashioned for any type of segmentation or specifics of the data. Figure 2 summarizes the

steps each organism takes during the segmentation and how they sense the T1 image is

described in Figure 1.

1. We begin by registering the subject’s T1-weighted MRI image to the template we

selected from the LPBA40. This registration step is important to transform subject

images into a standard coordinate space as our organisms are tuned (iterations for

deformations and labels for k-means classification) to images roughly

corresponding to our template. Our template incorporates prior information and

may be changed by users who need something closer to their own data. It provides

initial locations and shapes for our skin, eye, and brain organisms. We used an

affine transformation for registration provided by FMRIB’s Linear Image
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Registration Tool (FLIRT) (Jenkinson and Smith, 2001). FLIRT uses the

correlation ratio (Roche et al., 1998) as the metric between the two images that

takes the form

(15)

Y represents one of the images, Var(Y) is the variance of Y, Yk is the k-th iso-set

i.e. the set of intensities in Y at positions where the other image X has intensities in

the kth bin, nk is the number of values in Yk with N =Σk nk. This cost is optimized

to find a 12-parameter affine transformation. In addition, we compute the inverse

transformation to take the subject image back to its native space at the end of the

segmentation.

2. We find the location or boundary of the skin with the skin organism. Its initial

shape is of the skin of our template image found using the marching cubes method.

We dilated this substantially to ensure we encompass the head of any subject

registered to the template. Our template-fitted mesh needs to be further refined to

fit our subject. To do this, we analyze the subject’s intensities and apply a threshold

to create a binary image masking out the head. We also use behavior 1 to sense the

threshold image and evolve our skin organism’s mesh to find this perimeter. We

iterate the deformations dictated by behavior 1 (applying smoothing at every step)

until there is no significant movement of the surface or we reach a maximum

iteration bound. We specify this bound based on images being reasonably aligned

to the template, an approach we used for all our deformations. The adjacent eyes

are handled in a similar manner.

3. Our eye organisms find the eye boundary by sensing the 3-means classified image.

We initialize the eye organisms’ meshes by fitting them to our template and

eroding them to make sure they lie within a subject image’s eyeballs. The eyeball

locations are found by the organisms sensing the 3-means image with behavior 2,

which chooses a label found in the eyeball region.

4. Our next step locates the cerebrospinal fluid (CSF) that surrounds the brain. We

achieve this using our skin organism by contracting its mesh into the head through

the skin and skull. The skin and skull locations are roughly classified in our 2-

means image and we apply behavior 3 to sense it and find the CSF boundary. To

further refine this boundary the behavior also makes the skin organism deform

through the eye organisms because there is more information about the CSF

location by the eyes.

5. This step finds the tissues surrounding the eyeballs that need to be excluded from

the brain delineation. We attain this goal by expanding the eye organisms further

by sensing the 2-means image along with behavior 2 again, this time behavior 2

looks for a different label in the classified image, one that gives an understanding

of tissues around the eyes. The eyes now furnish a better understanding to locate

the brain.
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6. We complete our plan by finding the brain using our brain organism. Every step in

the plan supports this step and all of our knowledge up to this point will come into

play. Our brain organism begins by sensing the 3-means image and gradient image

with behavior 4. The behavior is cognizant of the other organisms’ locations and

uses them to constrain its evolution. With the completion of behavior 4 we further

refine the boundary by sensing the 3-means image again with behavior 5, which

results in the brain being encapsulated by our brain mesh. The mesh is then

converted by the 3D rasterization scheme to a binary volume to which we apply our

inverse transform from FLIRT to bring the subject’s delineation back into its native

space to complete the segmentation.

We make a binary volume of the brain organism and apply the inverse transformation back

to the subject image space, completing the segmentation. Typical patterns of error in our

method were learned by selecting a subset of our segmentation results and using the error

learning algorithm (the ‘Adaboost wrapper’ approach). We then segmented a new subset of

images with the error classified and corrected. We repeated this experiment 10 times, using

10 random images from our results to train and 10 random (but non-overlapping) images to

test. Masks were then compared to expert ground truth before and after error correction; note

that the test set of images was independent of those used for training the error correction

step.

4. Results

The deformable organisms plan took less than 5 minutes to run on the subject images we

used on a machine with dual 64-bit 2.4 gigahertz AMD Opteron 250 CPU with 8 gigabytes

of memory.

Table 1 shows the distance, overlap, and error metrics for the automated skull-stripping

algorithms compared to manual segmentation. We compared BET, BSE, and the Watershed

method. Average metrics over the 630 Australian twins dataset are shown. To compare the

methods to each other, we used a linear mixed-effects model (Gelman and Hill, 2007) to

account for the similarities and correlations between the brain structure in twins that we

have taken advantage of in previous studies to understand heritability (Prasad et al., 2014,

2011c; Thompson et al., 2001). We encoded the family membership as a random effect,

each metric value as the response, and a dummy variable representing the deformable

organisms method vs. one of the other three methods as the fixed effect. We corrected for

multiple comparisons across the different metrics using the false discover rate (FDR)

(Benjamini and Hochberg, 1995) at a level of 0.05, which gave a significance threshold of

9.49 × 10−9 for the deformable organisms vs. BET comparison, a threshold of 1.50 × 10−3

for deformable organisms vs. BSE comparison, and a threshold ≪ 1.0 × 10−9 for the

deformable organisms vs. the watershed method comparison. These tests ranked the

deformable organisms approach first in Hausdorff distance & false positive error, second in

Jaccard overlap & Dice overlap, and third in false negative error. When we removed the

random effect term accounting for family membership the only change in results was that

the deformable organisms method and BSE tied for second in Jaccard overlap instead of

deformable organisms being the only method at that level.
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In Figs. 3 and 4 we show the false positive and false negative errors respectively in the axial,

sagittal, and coronal planes sampled from the Australian twins dataset. In Fig. 3 we see that

the false positive errors are smaller overall for the deformable organisms approach and the

problem areas are around the interhemispheric fissure and the inferior part of the temporal

lobe near the brain stem, a pattern similar to BET. In contrast, the BSE and WSA methods

have more of their false positive voxels in the neck area. Our deformable organisms

approach again has a similar distribution of its false negative errors shown in Fig. 4 that

focus themselves in the cerebellum and the anterior part of the frontal lobe. BET has most of

its false negatives in the temporal lobe while HWA collects its errors in the superior part of

the brain and the frontal lobe.

We also list average results of deformable organisms with and without error correction

versus manual training in Table 2. Random samples of 20 images from the 630 twins were

selected, using 10 to train and 10 to test the error correction. We repeat this 10 times and

average the results. These results were used in FDR corrected (at the 0.05 level) paired-

sample t-test that found the learning step significantly improved both the Dice overlap and

false negative error measures.

Table 3 shows the corresponding metric values for the ADNI dataset. In this case we left out

the HWA method since it was used as a step in creating the gold standard images. Because

the ADNI dataset if of much older adults with many subjects having moderate to severe

atrophy due to dementia, skull-stripping is relatively more challenging and the metric

performance across all methods is much lower, but at the same time provides a good way to

test how robust each approach is to abnormal data. We used paired-sample t-tests to

compare the BSE and BET with the deformable organisms method and found that

deformable organisms ranked highest in the Hausdorff distance and false positive error

metrics and was not significantly different from BSE and BET in the Jaccard and Dice

metrics. It did have the highest false negative error, meaning the method will leave too much

from the boundary. We also corrected results here with FDR at the 0.05 level, which

resulted in a significance threshold ≪ 1.0 × 10−9 for both the deformable organisms vs.

BET and deformable organisms vs. BSE because of the large difference in metric results.

In Figs. 5 and 6 we show the false positive and false negative errors sampled from the 208

images in the ADNI dataset. The false positive errors in the deformable organisms approach

are localized in the occipital lobe and partially in the parietal lobe while for BET and BSE

the majority of errors are located in the neck area. The deformable organisms method has

the largest number of false negative errors located in the cerebellum and temporal lobe while

BET has its errors in the superior part of the parietal lobe while the errors in BSE are

collected in the anterior part of the frontal lobe.

Table 4 shows the results of the deformable organisms approach with and without the error

correction step. It uses the same approach in the twins analysis by learning the errors on 10

images while testing it on 10 separate images and repeating the process 10 times. The results

using paired-sample t-tests before and after the steps shows that when correcting for

multiple comparisons using FDR at the 0.05 level, the learning step significantly improved

performance across all the metrics.

Prasad et al. Page 12

J Neurosci Methods. Author manuscript; available in PMC 2015 October 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



5. Discussion

The metrics in Tables 1 and 3 suggest that in general the performance of our deformable

organisms approach is comparable to that of other widely used methods. It performed

particularly well in the Dice overlap and false positive error meaning it avoids including too

many voxels in the boundary. The deformable organism plan did not fare as well in the false

negative error and as a consequence may not include enough voxels inside the brain

boundary. However, we stress that our objective is to simply evaluate if our definition of

deformable organisms for MRI images can be effective for segmentation, with skull-

stripping being a convenient and established example.

There is also considerable variability in the validation results for skull-stripping algorithms

depending on their parameter settings and the datasets used. In (Leung et al., 2011), the

authors used ADNI images to train and validate their methods. In their approach they set

aside a subset of the data to train the parameters of BET, BSE, and HWA and evaluated the

trained methods on a separate test dataset. Their default performance of BET is similar to

our results though our images come from a different set of subjects as part of the second

phase of ADNI. As mentioned by Iglesias et al. (2011), the results of BSE are highly

dependent on its parameters being tuned to a dataset with a significant drop in accuracy

when the default parameters are used. Our goal in the current study was to evaluate whether

our framework could create comparable segmentation results with the most widely used

approaches. Alternative approaches could involve the authors of each method optimizing

and training their methods on our test dataset (Iglesias et al., 2011) or searching the

parameter space for each algorithm for their optimal performance on a separate training

dataset (Leung et al., 2011), but we found in most neuroimaging studies the researchers are

not using these approaches. In addition, by training the parameters of an algorithm it could

be difficult to understand if the method is an accurate representation and model of the brain

boundary or instead is reduced to some kind of segmentation regularization. We also

acknowledge that although our deformable organisms results were similar to the other

approaches in the ADNI dataset and that there is a positive correlation between

segmentation error and subject age (Iglesias et al., 2011), because of the relatively low

performance it could be that the method is not able to generalize as well and future work

could involve modifying the plan to work with more diverse data.

Tables 2 and 4 show that learning errors improves the segmentation performance in a range

of metrics depending on the dataset used. Th improvement in false negative error is

promising, as it shows that the machine learning step is able to compensate for the low

performance in the initial plan specification. The training step may be useful if a large data

set needs to be segmented, making it reasonable to segment some images manually for error

correction. The method could be trained on a small subset of the manual and automatically

segmented data, in a first pass, and the error corrections learned could be useful to segment

the rest of the dataset.

In our experiments we focused on a skull-stripping plan for the deformable organisms, but

our framework can be used in the future for a variety of segmentation problems. The related

problem of skull-stripping MRI images that have tumors (Zhao et al., 2010) could be
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addressed by our framework with the addition of a tumor organism that localizes the tumor

boundary so it will not interfere with finding an accurate brain boundary. The behaviors and

image processing we described may be adept at labeling the bones in images of the hand

(Michael and Nelson, 1989), where an organism can map each bone and vary its own

boundary significantly while respecting the integrity of the surrounding bone boundaries.

Another use for the organisms could be a complete segmentation of the brain tissue and

would need a far more detailed plan to be successful, but could be more robust than the

current atlas based approaches because of the organisms’ ability to uniquely deform

themselves while searching for a specified goal.

We used a machine learning algorithm to fix errors in the deformable organism plan as a

final step, but it could be incorporated more extensively throughout the plan. Each organism

could have its own trained model to classify its boundary voxels and improve its

segmentation to the benefit of surrounding organisms. Even the deformations could be

influenced by a learned global model of the most probable deformations similar to an active

shape or active appearance model or incorporate information about the segmentation

uncertainty (Beutner III et al., 2009). Any of these or more sophisticated statistical

techniques (Shen et al., 2001; Zaidi et al., 2006) may be integrated into an organism

specification or simply complement the organisms in the plan.

Our deformable organisms could have been represented as level sets (Osher and Sethian,

1988), point-set surfaces (Amenta and Kil, 2004), or graph-cuts (Amenta and Kil, 2004), but

our framework has advantages for specifying detailed behaviors. We may define a behavior

that vastly changes the landscape of the potential function we are optimizing without having

to deal with the computationally expensive numerical solutions to level sets. Our deformable

organisms have some constraints on shape and size provided by curvature weighted

smoothing but other smoothing techniques such a feature-preserving statistical estimation

approach (Jones et al., 2003) or a method based on adaptive and anisotropic Gaussian filters

(Belyaev and Seidel, 2002) may provide more freedom to follow a boundary while

preserving shape at previously recognized locations.

There are similarities between our approach and the Markov random field (MRF) based

segmentation approaches (Zhang et al., 2001; Held et al., 1997). MRF methods enforce

priors on the pixel intensities based on the neighborhood of intensity information. On the

other hand, deformable organism is a more direct approach to finding the brain-skull

boundary based on a recently developed model. It has a number of advantages: 1) Behavior

of different regions can be locally controlled. 2) This model is robust to noise as shape of the

brain boundary is defined by warping of the contour model. 3) Topology of the boundary

can be controlled by adding appropriate constrains on the deformable model. These unique

advantages of the deformable organism model make it particularly attractive for the purpose

of skull extraction. For comparison, we have included methods that use MRF models (e.g.

BSE and HWA).

Researchers may specify countless plans for segmentation that use our deformable organism

definitions and future work could address how to properly design and optimize these plans.

Thimbleby et al. (1995) introduced conventions that organisms should adhere to when they
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interact or cooperate, concepts also presented by Doran et al. (1997). These rules could be

incorporated into the cognition layer to automatically regulate how organisms interact in a

plan. In addition, we could find the best plan for segmentation by comparing the

delineations from sample plans to manual segmentations, a process that may be optimized

using genetic (Goldberg, 1989) or evolutionary algorithms (Zitzler and Thiele, 1999).

In the context of segmentation in medical images, our deformable organisms aspire to be a

framework that researchers use to specify high-level goals and problem or data specific

information to segment an image. If a user encounters data that is noisy in certain areas, that

information could be used so that organisms in other areas would have precedence in

fulfilling their objective and errors from the noisy areas could be contained so it does not

affect the final segmentation greatly. This malleability in the application of a deformable

organisms method could be valuable to connect the specialized boundaries of a manual

protocol with the detailed image processing capabilities of modern algorithms.
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Figure 1.
This figure showcases the various processing steps that we apply to the basic T1-weighted

MR image. The threshold image is created by analyzing the distribution of grayscale

intensities, and is vital for the skin organism to locate its boundary. The 2-means and 3-

means classification images are found using the k-means clustering algorithm to separate the

voxels into 2 or 3 classes, respectively. The 2-means classified image is used to locate the

boundary of the cerebrospinal fluid (CSF) and the tissue surrounding the eyes. The 3-means

classified image is important for locating the eyes and brain. The gradient image is found by

taking the gradient magnitude of the basic T1-weighted image and is used by the brain

organism as part of its behaviors to find its boundary.
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Figure 2.
We show a high level description of the plan to skull-strip an MRI image. Step 1 linearly

registers a template image to the subject space to initialize the locations of each organism. In

step 2 we use behaviors to locate the skin boundary and provide our first constraint to the

brain segmentation. The eye organisms that were initialized in step 1 are now deformed to

find the eye boundaries by sensing the 3-means classified image. Step 4 deforms the skin

boundary further to find the cerebrospinal fluid (CSF) boundary by the sensing the locations

of the eye organisms and sensing the 2-means classified image. The boundaries of the eyes

are extended in step 5 to include the surrounding tissue by sensing the 2-means image and

the CSF organism locations. Step 6 is the final part of the plan and uses the brain organisms

along with the locations of the other organisms in combination with the 3-means classified

image to locate the boundary of the brain. This final mesh is converted to a binary volume

and the reverse transformation from step 1 is applied to bring it back into the subject space.
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Figure 3.
We show the projections of the false positive errors in the axial, sagittal, and coronal planes

for the 630 Australian twins dataset. Our results include our deformable organisms

approach, the brain extraction tool, brain surface extractor, and watershed transform.
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Figure 4.
We show the projections of the false negative errors in the axial, sagittal, and coronal planes

for the 630 Australian twins dataset. Our results include our deformable organisms

approach, the brain extraction tool, brain surface extractor, and watershed transform.
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Figure 5.
We show the projections of the false positive errors in the axial, sagittal, and coronal planes

for the 208 images from the Alzheimer’s disease dataset. Our results include our deformable

organisms approach, the brain extraction tool and brain surface extractor.
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Figure 6.
We show the projections of the false negative errors in the axial, sagittal, and coronal planes

for the 208 images from the Alzheimer’s disease dataset. Our results include our deformable

organisms approach, the brain extraction tool and brain surface extractor.
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