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Abstract
Although prior studies have demonstrated that genetic factors play the dominant role in the patterning of the pediatric
brain, it remains unclear how these patterns change over time. Using 1748 longitudinal anatomic MRI scans from 792
healthy twins and siblings, we quantified how genetically mediated inter-regional associations change over time via
multivariate longitudinal structural equation modeling. These analyses found that genetic correlations for both lobar
volumes and cortical thickness are dynamic, with relatively static effects on surface area. While genetic correlations for
lobar volumes decrease over childhood and adolescence, in general they increase for cortical thickness in the second decade
of life. Quantification of how genetic factors influence maturational coupling improves our understanding of typical
neurodevelopment and informs future molecular genetic analyses.
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Introduction
Typical human brain development is an extraordinarily com-
plex process requiring a combination of thus far largely
unknown factors. Although once considered a relatively static
structure after 6 years of age (Jernigan et al. 2011), anatomic
MRI studies of have confirmed the notion that the cerebral cor-
tex is highly dynamic throughout childhood and adolescence
(Giedd and Blumenthal 1999; Gogtay and Giedd 2004; Sowell
et al. 2004; Jernigan et al. 2011). Structural maturation proceeds
in a coordinated and locally heterogeneous manner, with a
complex, nonrandom correlational structure that is related
both to known white matter connectivity and functional net-
works (Raznahan et al. 2011, 2012; Alexander-Bloch et al. 2013).

In addition to rapid, highly patterned structural changes rel-
ative to adults, the pediatric brain also demonstrates a high
degree of interindividual variability for practically every region
thus far measured (Lange et al. 1997). More than a decade of
imaging genetic studies have shown that a large fraction of
individual differences in most pediatric brain structures can be
attributed to genetic factors (Peper et al. 2007; Schmitt et al.
2007; Jansen et al. 2015) and genetic influences on brain struc-
ture are dynamic in childhood (Wallace et al. 2006; Peper et al.
2009; Schmitt et al. 2014). Furthermore, multivariate studies
have shown that different brain regions share common genetic
etiologies for volumes (Schmitt et al. 2010), surface area
(Chen et al. 2012), and cortical thickness (Schmitt et al. 2008;
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Chen et al. 2013). However, it remains unclear how common
genetic effects between brain regions change over time, that
is, how genetic factors influence maturational coupling.

In the current study, we use one of the largest genetically
informative longitudinal pediatric imaging datasets and com-
bine multivariate and longitudinal neuroanatomic modeling to
examine how genetic covariance patterns change over child-
hood and adolescence.

Materials and Methods
Subjects

792 typically developing children, adolescents, and young adults
from 410 families were recruited at the Child Psychiatry Branch
of the National Institute of Mental Health (NIMH). The sample
included pediatric, adolescent, and young adult monozygotic
twins (MZ, N = 249), dizygotic twins (DZ, N = 131), siblings of
twins (N = 110), and singleton (N = 302) family members (sum-
marized in Table 1). Details of this sample have been described
elsewhere (Schmitt et al. 2014). Briefly, parents of prospective
participants were interviewed by phone and asked to report
their child’s health, developmental, and educational history.
Subjects were excluded if they had taken psychiatric medica-
tions, had been diagnosed with a psychiatric disorder, had
undergone brain trauma, or had any condition known to affect
gross brain development. Inclusion criteria were a minimum
gestational age of 29 weeks and a minimum birth weight of
1500 g. Approximately 80% of families who responded to study
advertisements met inclusion criteria. For twin subjects, zygos-
ity was determined by DNA analysis of buccal cheek swabs
using 9–21 unlinked short tandem repeat loci for a minimum
certainty of 99%, by BRT Laboratories and Proactive Genetics. We
obtained verbal or written assent from the child and written
consent from the parents for their participation in the study.
The NIMH Institutional Review Board approved the protocol.

MRI Acquisition

All MRI images were acquired on the same General Electric 1.5
Tesla Signa Scanner located at the National Institutes of Health
Clinical Center in Bethesda, Maryland. A 3-dimensional spoiled
gradient recalled echo sequence in the steady state sequence
was used to acquire 124 contiguous 1.5-mm thick slices in the
axial plane (TE/TR = 5/24ms; flip angle = 45 degrees, matrix =
256 × 192, NEX = 1, FOV = 24 cm, acquisition time 9.9min). A
Fast Spin Echo/Proton Density weighted imaging sequence was
also acquired for clinical evaluation. A total of 1748 MRI data-
sets were acquired. Up to 8 MRI scans were performed per indi-
vidual, with sibships containing up to 5 members. The mean
interval between scans was 2.4 years.

Image Analysis

All MR images were imported into the CIVET pipeline for auto-
mated structural image processing (Ad-Dab’bagh et al. 2006).
Briefly, the native MRI scans were registered into standardized
stereotaxic space using a linear transformation (Collins et al.
1994) and corrected for non-uniformity artifacts (Sled et al.
1998). The registered and corrected volumes were segmented
into white matter, gray matter, cerebrospinal fluid, and back-
ground using a neural net classifier (Zijdenbos et al. 2002). The
gray and white matter surfaces were fitted using deformable
surface-mesh models and nonlinearly aligned toward a tem-
plate surface (MacDonald et al. 2000; Robbins et al. 2004; Kim
et al. 2005). The gray and white matter surfaces were resampled
into native-space. The tissue classification information was
combined with a probabilistic atlas to provide volumetric
region of interest (ROI) measures (Collins et al. 1995). Lobar
volumes were included in this analysis for each hemisphere
separately. Cortical thickness was measured in native-space
using the linked distance between the white and pial surfaces
(MacDonald et al. 2000; Lerch and Evans 2005) and assigned to
specific regions using a probabilistic atlas (Collins et al. 1999).
Measures of cerebral surface area were estimated for the same
ROI, defined as the sum of the areas of the triangles for within
each ROI (Im et al. 2008).

Statistical Analysis

Each subject’s neuroanatomic measures were imported into
the R statistical environment for analysis (R Core Development
Team 2016). The data were reformatted such that each record
represented family-wise (rather than individual-wise) data. The
subsequent dataset contained up to 8 measures per ROI per
individual and up to 5 individuals per family for each ROI.
Genetic modeling was performed in OpenMx, a structural
equation modeling package fully integrated into the R environ-
ment (Boker et al. 2011; Neale et al. 2016). Volumetric, cortical
thickness, and surface area measures were analyzed
separately.

For each pairwise combination of ROIs, a genetically infor-
mative quadratic latent growth curve model was constructed
(Neale and McArdle 2000; McArdle et al. 2004) which represents
the “bivariate” extension of the single-ROI model described pre-
viously (Schmitt et al. 2014). A traditional longitudinal growth
curve model uses repeated measures to estimate changes in
means and variances with time (Duncan and Duncan 2004).
Compared to other longitudinal methods, latent growth curve
models have the advantage that they allow for direct age-based
predictions, are robust to missing data cells, and are customiz-
able to unique data structures (Mcardle and Epstein 2013). In

Table 1 Demographic characteristics of the sample

MZ DZ Siblings of twins Singletons Total

Sample size 249 131 110 302 792
Mean age at first scan (years ∓ SD) 11.2 (3.8) 9.6 (3.5) 12.0 (4.4) 11.7 (5.1) 11.3 (4.4)
Mean scan interval (years ∓ SD) 2.4 (0.66) 2.4 (0.67) 2.3 (0.86) 2.3 (0.85) 2.4 (1.1)
Gender 117 F (47%) 62 F (47%) 61 F (55%) 136 F (45%) 376 F (47%)

132M (53%) 69M (53%) 49M (45%) 166M (55%) 416M (53%)
SES (Hollingshead Index ∓ SD) 44.4 (18.6) 43.2 (15.1) 43.0 (18.0) 40.6 (20.3) 42.6 (18.7)
Handedness 215 R (88%) 107 R (82%) 88 R (82%) 269 R (90%) 679 R (87%)

16M (7%) 14M (11%) 7M (7%) 17M (6%) 54M (7%)
14 L (6%) 10 L (8%) 12 L (11%) 14 L (5%) 50 L (6%)
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order to understand changes in the patterns of genetic relation-
ships between neuroanatomic structures, the variances and
covariances between the 3 latent growth curve factors per indi-
vidual were decomposed into additive genetic (A), common
environment (C), and specific environment components (E).
Each of these components was specified as a Cholesky decom-
position, which factors any symmetric positive definite matrix
into a lower triangular matrix of free parameters postmulti-
plied by its transpose (Neale and Cardon 1992).

The rich family structure in the present data made it possible
to employ an extended twin design (Posthuma and Boomsma
2000; Posthuma et al. 2000), which significantly increased statis-
tical power. Because the study design acquired panel rather
than cohort longitudinal data, the age at scan was integrated
into the model as a dynamic (e.g., definition) variable to individ-
ualize growth curve predictions (Mehta and West 2000). Models
were fitted by maximum likelihood, which is efficient and yields
asymptotically unbiased parameter estimates. In order to test
the statistical significance of genetic covariance with time, sub-
models were constructed which removed the free parameters
modeling changes in ROI–ROI covariance (while retaining the
mean effects); differences in log-likelihood between these mod-
els generally follow a χ2 distribution with degrees of freedom
equal to number of parameters removed (Neale and Cardon
1992; Visscher 2004; Dominicus et al. 2006). Because several prior
studies have shown little role of the shared environment on the
variance of brain structures in children (e.g., Wallace et al. 2006;
Peper et al. 2007; Lenroot et al. 2009), we attempted to simplify

our models by the removal of shared environmental para-
meters. For all pairwise combinations of ROIs, shared environ-
mental factors were not statistically significant for either main
effects or changes over the age range studied even without cor-
rection for multiple testing. Subsequent analyses were per-
formed using the AE submodel. Control of multiple comparisons
was performed via false discovery rate (Genovese et al. 2002). A
q-value threshold was set at 0.05.

For each timepoint, ROI genetic covariance matrices were
calculated based on parameter estimates from the full model.
Genetic correlations (rG) were then calculated by standardizing
the genetic correlation matrix, mathematically defined as

=
∗

r
A

A A
.x y

xy

x y
,

Trends in genetic correlations were displayed for each pair-
wise combination of ROIs. Likelihood based 95% confidence
intervals for rG were calculated in OpenMx for all pairwise com-
binations of ROIs (Neale and Miller 1997). Dynamic correlation
matrices were then constructed to observe how genetic inter-
relationships change over time.

Results
For volumes and cortical thickness, there were significant
genetic effects for all pairwise combinations of ROIs (P < 0.0001)
even after adjusting for multiple testing (Fig. 1). The most

Figure 1. Statistical significance of genetically mediated maturational coupling for cerebral volumes, cortical thickness, and surface area. The heatmaps display

−log10 P-values for all pairwise combinations of ROIs; the top row shows statistical significance of absolute genetic effects on pairwise genetic covariance, while the

bottom row shows statistically significant changes in genetic covariance over childhood and adolescence. On the margins, dendograms from hierarchical cluster

analyses are provided.
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significant relationships tended to be between an ROI and its
contralateral homolog. Volumetric correlations were in general
very high (>0.80), with cortical thickness also high but overall
lower when compared with volumes, ranging from approxi-
mately 0.70–0.80. Genetic correlations between measures of
surface area were still lower, with most ROI pairs ranging from
0.40 to 0.60, again with the notable exception of contralateral
homologs. Most main effects of genetic factors on surface area
were statistically significant, with the most significant effects
seen between pairwise combinations of the frontal, temporal,
and parietal lobes (Fig. 1). After adjusting for multiple testing, a

few ROI pairs involving the cingulate cortex did not reach sta-
tistical significance (Supplementary data).

Trajectories of change in rG for volumes are provided in
Figure 2. There were statistically significant changes in genetic
correlation over childhood and adolescence for all ROI pairs. ROI
trajectory patterns were similar for contralateral ROI pairs (e.g.,
right parietal-right occipital vs. left parietal-left occipital), as well
as similar cross-trait cross-hemispheric combinations of ROIs
(e.g., right parietal-right occipital versus left parietal-right occipi-
tal). Overall, genetic correlations tended to decrease over time by
approximately 10–20% between nonhomologous ROI pairs. Global

Figure 2. Age-related changes in genetic correlations (rG) for cerebral volumes. Panel A displays changes in genetic correlations for all ROI pairs, with 95% confidence

intervals shown in gray. Asterisks identify ROI pairs with significant age-related changes after FDR-correction. The heatmap (B) shows the same trajectories sorted

via hierarchical cluster analysis. The numbers on the right correspond to the numbers in each panel of A. A dynamic version of these results available in

Supplementary Movie 1.
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changes in correlational trajectories are more apparent when
viewed dynamically (Supplementary Movie 1).

Patterns of change in cortical thickness genetic correlations
were more complex than with volumes (Fig. 3). In early child-
hood, there were 3 clear clusters of genetic correlations: (1)
bilateral lobar structures, (2) bilateral parahippocampal gyrus
and insula, and (3) cingulate ROIs. Like with volumes, the stron-
gest genetic correlations tended to be with contralateral homo-
logs. There also were strong genetic correlations between
temporal cortical thickness and insular and limbic structures. In
the second half of the first decade, rG between lobar measures
and cingulate and parahippocampal ROIs slightly decreased.
Genetic correlations between regions then steadily increased by

up to 50% starting in the second decade. Increased genetically
mediated maturational coupling was particularly apparent
between the cingulate cortex and other ROI. As with volumes,
changes over time were best appreciated when viewing the data
dynamically (Supplementary Movie 2).

In addition to having lower absolute genetic correlations, rela-
tionships between surface area ROIs were in general more static
than either for volumes or cortical thickness (Supplementary
Fig. S1). There were no ROI pairs that demonstrated statistically
significant change after correction for multiple testing. When
examining the maximum likelihood estimates, most ROI pairs
had either unchanged or slightly decreasing genetic correlations.
The notable exception was for several ROI pairs involving the

Figure 3. Age-related changes in rG for cortical thickness with 95% confidence intervals shown in panel A. Asterisks identify ROI pairs with significant age-related

changes after FDR-correction. A heatmap of the same results are shown in Panel B. Supplemental Movie 2 presents the same data dynamically.
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insular cortex, where there were increases in the maximum likeli-
hood estimates. Genetic correlations for surface area can be
viewed dynamically in Supplementary Movie 3.

Discussion
The current study provides evidence that the genetic contribu-
tions to maturational coupling significantly change in child-
hood and adolescence for both cerebral volume and cortical
thickness. These results are not unexpected and have been pre-
dicted in the literature (Raznahan et al. 2011; Irimia and Van
Horn 2013), although to the best of our knowledge the current
study is the first to address this question directly. In addition to
providing additional insights on how cerebral patterning takes
place, these findings have pragmatic implications in the hunt
for specific molecular genetic biomarkers.

We found that genetic correlations between lobar cerebral
brain volumes generally decrease over childhood and adoles-
cence, although they remained high throughout the age range
studied. Our prior work has shown that volumetric ROI are
highly correlated in childhood, predominantly secondary to a
dominant shared genetic factor (Schmitt et al. 2010). Given that
genetic correlations between volumes are decreasing, the
observed correlations may reflect residual global genetic effects
that occurred earlier in life, possibly near or even before birth.
Gilmore et al. (2010) demonstrated that the heritability of brain
volumes is high even in neonates, although the extant litera-
ture suggests heritability increases for most volumetric brain
regions over childhood and adolescence (Batouli et al. 2014).
Future multivariate imaging genetic studies targeting neonates
may help elucidate whether shared/global genetic effects are
even more dominant near birth than they are later in
childhood.

In contrast to volumes, genetic correlations between cortical
thickness ROIs generally increased over the age range studied.
These findings parallel our prior observations in the same sam-
ple that the heritability of cortical thickness increases over
time (Schmitt et al. 2014). Our results are particularly interest-
ing given that complex patterns of maturational coupling have
been observed over this age range in nongenetic samples
(Raznahan et al. 2011), as well as relationships between struc-
tural neuroanatomic covariance and brain function (Alexander-
Bloch et al. 2013). It has been previously hypothesized that the
observed changing patterns of neuroanatomic covariance may
be driven by shared neurodevelopmental influences (Zielinski
et al. 2010); the current study provides evidence that these
influences may, at least in part, be genetically mediated. In
contrast, genetic correlations between measures of surface area
are lower and tend to be more static than for either cerebral
volumes or cortical thickness.

Limitations

There are several limitations to the current study which should
be considered when interpreting these findings. First, while our
sample is large by imaging standards, for twin research our sam-
ple size is modest. The strong statistical significance of our find-
ings is therefore reassuring. Second, the ROI are large; spatial
resolution is therefore limited. The numeric optimization used
in the current study is computationally intense, and thus study-
ing all pairwise combinations of a large number of ROIs repre-
sents a substantial (although not insurmountable) technical
challenge. Future investigations into group differences in pat-
terns of genetic maturational coupling (e.g., based on sex or

socioeconomic status), although intriguing, would test the limits
of our current methodology. As computational demands increase
with increasing model complexity, more computationally effi-
cient methods (Carlin et al. 2005; Dite et al. 2008) may prove use-
ful. Further research using smaller ROI would also be of value,
and also would benefit from improved computational speeds.
Third, the current study does not directly examine the dynamic
neuroanatomic network structure implicit in our findings.
Characterization of temporal networks represents an area of
active research (Bassett et al. 2013), and future investigations
should quantify the role of genetic influences on changes with
time via structured graph theoretical analyses.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.
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