Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title
PLASTIC DEFORMATION OF CRYSTALS: ANALYTICAL AND COMPUTER SIMULATION STUDIES OF DISLOCATION GLIDE

Permalink

https://escholarship.org/uc/item/901411n6

Author

Altintas, Sabri

Publication Date

1978-05-01
PLASTIC DEFORMATION OF CRYSTALS:
ANALYTICAL AND COMPUTER SIMULATION STUDIES OF DISLOCATION GLIDE
CONTENTS
ABSTRACT 111
I. INTRODUCTION ?
II. OUTLIT : OF THE PROBLEM 3
III. SPECIFIC PRIOR WORK 7
IV. PURPOSE AND SCOPE OF THE PRESENT INVESTIGATION 16
v. ANALYTICAL CALCULATIONS 20
A. ATHERMAL GLIDE 26

1. CRSS FOR LIKE OBSTACLES 20
2. CRSS FOR UNLIKE OBSTACLES 35
a) Two Types Or Obstacles 39
b) Arbitrary Distribution of Obstacles 41
B. THERMALLY ACTIVATED GLIDE 44
VI. COMPUTER SIMULATION 50
A BASIC CODING TECHNIQUES 52
3. Storing the Array 53
4. Representing the Dislocation 56
5. Advancing the Dislocation 57
B. APPLICATIONS AND RESULTS 61
[^0]1. DISLOCATION GLIDE THROUGH LARGE ARRAYS 61
a) Correction to Theory 65
b) Thermally Activated Glide 66
2. GLIDE THROUGH FIELDS OF UNLIKE OBSTACLES 67
a) Two Types of Obstacles 68
b) Square Spectrum of Obstacle Strenghts 71
c) Thermally Activated Glide 74
VII. COMPARISON WIIH EXPERIMENTS AND DISCUSSION 76
VIII. SUMMARY AND CONCLUSIONS 87
ACKNOWLEDGEMENTS 90
REFERENCES 91
TABLE 98
FIGURE CAPTIONS 99
FIGURES 105

PLASTIC DEFORMATION OF CRYSTALS: ANALYTICAL AND COMPUTER SIMULATION STUDIES OF DISLOCATION GLIDE

SABRI ALTINTAS
Materiais and Molecular Research Division, Lawrence Berkeley Laboratory and Ilepartment of Materials Science and Engineering: University of Cahfornia, Berkeley, California
ABSTRACT

The plastic deformation of crystals is usually accomplished through the motion of dislocations. The glide of a dislocation is impelled by the applied stress and opposed by microstructural defects such as point defects, voids, precipitates and other dislocations.

The planar glide of a dislocation through randornly distributed obsiacles 15 considered. The objective of the present research work is to calculate the criticai resolved shear stress (CRSS) for athermal glide and the velocity of the dislocation at finite tempereature as a function of the applied stress and the nature and strength of the obstacles.

Dislocation glide through mixtures of obstacles has been studied analytically and by computer simulation. Arrays containing two kinds of obstacles as well as square distribution of obstacle sirengths are considcred. The critical resolved shear stress for an array containing obstacles with a given distribution
of strengths is calculated using the sum of the quadratic mean of the stresses for the individual obstacles and is found to be in good agreement with the computer simulation data.

Computer simulation of dislocation glide through randomly distributed obstacles containing up to 10^{6} obstacles show that the CRSS decreases as the size of the array increases and approaches a limiting value. Histograms of forces and of segment lengths are obtained and compared with theoretical predictions Effects of array shape and boundary conditions on the dislocation glide are also studied.

Analytical and computer simulation results are compared with experimental results obtained on precipitation-, irradiation-, forest-, and impurity clusterhardening systems and are found to be in good agreement.

I. INTRODUCTION

The dislocation theory of plastic flow originaled in 1911 through a suggestion by Prandtl ${ }^{1,2}$ in explaining the mechanical hysteresis in metals in which several characteristic elements of dislocations were present. Dehinger ${ }^{3}$ was the first to consider dislocations in connection with questions of slip in a theory of recrystalization. The first, detailed theoreucal discussions and the foundations of the modern dislocation theory of slip were laid by Orousn ${ }^{4,5}$, Polany i^{6} and Taylor ${ }^{7}$ in 1934.

In an attempt to explain the discrepanty between the high theoretual estimate and the low observed value of yield stress Becker ${ }^{\varepsilon}$ and Orowan ${ }^{9}$ suggested that the non-linear resistance to deformation derives from the flow units in the solid which are larger than the atomic size. The large internal concentrations e: the applied stress produced by the flow units in plastic deformation make the thermally activated production of new flow units easy. This means in contem porary language that the rate process in plastic deformation derives from thermally activated motion of crystal dislocations over local slip plane obstacies.

The ideas of Becker and Orowai were developed and extended later by Orowan ${ }^{10}$, Kauzmann ${ }^{11}$, Seeger ${ }^{12}$ and Friedel. ${ }^{13}$ Since then the theoretical and experimental studies of dislocation dynamics have aimed at providing a clearer understanding and more accurate description of the plastic deformation of crystals.

The achievement of a microstructure-based theory of mechanical behavior of engineering alloys however remains still one of the central objectives of basic
research in metaliurgy. This is from an engineering point of view important for two reasons: First, in order to provide a firm basis for materials selection and engineering design with real materials a predictive theory is needed. Second, an interpretive theory of mechanical behavior is neuded to guide metallurgical research in the design of new alloys to meet advanced engineering needs. The complexity of the mechanical behavior of materials suggests however that a complete understanding of plastic deformation has a long way to go yet, indications are that a slight advance in understanding has a large effect on the development of new materials for specific uses.

The purpose of this thesis is to study the plastic deformation of crystals through thermally activated glide of dislocations. This problem is relevant, as discussed below, to deformation of single crystals and to yielding and initial plastic flow in engineering alloys. The objective of this research is to complete a theory of athermal and thermally activated dislocation glide through fields of microstructural barriers. The technical approach to the problem is to use computer models to directly simulate glide under precisely controlled conditions and to use the results to guide the development of predictive theories. The results of this research are used to interpret and predict the experimental data.

II. OUTLINE OF THE PROBLEM

Following Friedel ${ }^{14}$, a typical problem in the mechanical behavior of engineering alloys sets up essentially as follows. As indicated schematically in Figure 1, an alloy consists of an aggregate of individual crystalline grains. Each of these grains is described by its composition. its crystal structure, its defect structure, its size and shape, and the nature of the grain boundaries which define its contact with adjacent grains. The defect structure includes point defects, the network of existing dislocations and the type and distribution of voids or precipitates

To initiate plastic deformation, dislocations must be created or liberated onto slip planes bearing a resolved shear stress to sustain glide. The yieid strength of imperfect crystals is determined by the resolved shear stress that is needed to move glide dislocations across their slip pianes. If the applied stress is small the response is elastic with a small anelastic supplement due to bowing or recoverable motion of dislocations and to short range chemical rearrangements.

One of the most interesting and important (Kocks et al. ${ }^{15}$) theoretical problems in plastic deformation of crystals is the problem of yield and initial deformation in a grain or single crystal which is assumed to contain dislocations or active sources of dislocations, together with microstructural features which act as barriers to free dislocation glide. The bulk of prior research (summarized in references 15,16 and 17) argues that this is a central problem in the deformation of engineering materials. Potentially mobile dislocations may generally
be assumed to exist in a metal and the native lattice resistance (Peierls Nabarro Stress) to glide may generally be assumed small compared to that offered by such internal barriers as point defects, "forest" dislocations, precipitates, voids, and other internal stress ficlds.

If there are no obstacles to dislocation motion present, dislocations would sweep through crystals at infinitesimally low stresses. All real crystals, however, contain obstacles. It is the nature and distribution of such obstacles that determines the plastic behavior of metals and atloys.

The central parameters of this narrowed problem are

1) the resolved shear stress impelling glide.
2) the nature and distribution of the barriers,
3) the temperature and,
4) the nature of dislocations in the matrix.

At zero temperature the important parameter is the critical resolved shear stress for dislocation glide through the microstructure, a function of the nature and distribution of barriers. At inite temperature thermal activation may assist dislocation glide. The critical resolved shear stress is consequently less well defined, and essentially becomes the stress which allows sensible deformation within some appropriate experimental time. The problem is further complicated by the variety of possible barrier distributions and dislocation-barrier interactions, by the possibility that the barriers are mobile, and by the possibility of cross-slip of the mobile dislocations, particularly when it encounters a forest dislocaiion of appropriate Burge:'s vector and line direction.

The initial research on this problem concertrated on the motion of an isolated segment of a dislocation by cutting through or bowing around an obstacle or simple configurations of obstacles of given type. This research continues ${ }^{18}$ as investigators have sought more precise solutions to more reatistic dislo:ation obstacle models.

However, as was recognized in early research by Mout ${ }^{19}$ and by Friedel ${ }^{13}$. the distribution of barriers is also of qualitative importance. The modest introduction of statistics by Friede 1^{13} for high temperature glide through a random array of point obstacles showed that the nature of activation barriers woult change with applied stress even though the physical nature of the obstacles remained the same. The source of the change was a statistical tendency for the dislocation to contact a greater number of obstaclej per unit length with increasing stress. Because, as the applied stress is increased, dislocations bow 10 smaller radii of curvature causing the average dislocation length between the obstacles to decrease. Mott and Nabario ${ }^{20}$ treated an essentially similar phenomenon in the case of diffuse barriers. This initial research led to a serie: or studies on the effect of statistics of the obsiacle distribution on the characteristics of dislocation glide (summarized by Kocks, Argon, and Ashby in reference 15 and by Nabarro in references 16 and 17). In the cas: of "localized" obstacles, whose range of interaction with a dislocation is small compared to their mean spacing, the "Friedel statistics" has been used as a theoretical technique. "Mot1 statistics" is used for "diffuse" obstacles. The "localized" obstacles approximation appears generaty more applicable to hardening by small precipitates, "forest" dislocations which interact weakly in the glide plane, small voids
and inclusions, and solute atoms in dilute concentration The "diffuse" obstade approximation is thought to be applicable to hardening by a higher concentration of solute atoms and by distocations which interact strongly in the glade plane. Criteria separating the two cases tiave been glven by Labusch ${ }^{21}$ and wa. borated further by Nabarra ${ }^{22}$. More theoreival progrens has been made on the "localized" obstacle approximation, largety due to the observation gratath h: Foreman and Makin ${ }^{23}$, that under sutabic apmoximatons this case could be set up for direct computer simulation

III. SPECIFIC PRIOR WORK

The plastic deformation of crystalline solids invives generally the movement of dislocations against the resistance by various types of obstacles. In many cases the obstacle has only short-range interaction with a glide dislocation and may be replaced as a point obstacle ${ }^{24}$. Furthermore, obstacies are assumed to be randomly distributed rigid barriers to dislocation motion.

Friedel ${ }^{13}$ was first to introduce elementary concepts of statistics to the motion of dislocations past randomly distributed point obstacles. The bulk of the research on the problem of dislocation glide through a statistical distribution of localized microstructural obstacles addresses variants of the following basic problem ${ }^{25}$. Consider a crystal plane which is the glide plane of a dislocation. Let it contain a random distribution of microstructural barriers, which are represented as point obstacles to dislocation glide. The array is described by the statement that its points are randomly distributed and by a characteristic interobstacle spacing

$$
\begin{equation*}
l_{s}=(a)^{1 / 2} \tag{III.1}
\end{equation*}
$$

where a is the average area per point. The total area of the array is

$$
\begin{equation*}
A=N\left(l_{s}\right)^{2} \tag{III.2}
\end{equation*}
$$

where N is the total number of points cortained. We can non-dimensionalize the area by dividing through by the square of the characteristic length, so as to get

$$
\begin{equation*}
A^{0}=A /\left(I_{s}\right)^{2}=N \tag{III.3}
\end{equation*}
$$

and the edge length of the square area in dimensionless form is

$$
\begin{equation*}
W^{*}=\left(A ;{ }^{1 / 2}=N^{1 / 2}\right. \tag{1I4}
\end{equation*}
$$

Le! a dislacation be introduced into the glicie plane. We model the dislocation as a flexible string of constant line tension 1 , its energy per unit length, and Burger's vector of magnitude b, which is taken to lie in the glide plane. Any' dependence of Γ on the orientation of the line or on the mutual interaction of segments of the dislocation is neglected

The resolved shear stress, 7 , impelling glide of this dislocation may be conveniently written in dimensionless form

$$
\begin{equation*}
\tau^{*}=\frac{\pi l_{s} h}{2 \Gamma} \tag{III.5}
\end{equation*}
$$

Let the dislocation under the applied stress τ^{*}, encounter a configuration of point ohstacles denoted by (i) (Figure 2). Between two adjacent obstacles the dislocation will take the form of a circular are of radius

$$
\begin{equation*}
R=\frac{\Gamma}{\tau b} \tag{111.6}
\end{equation*}
$$

which can be writlen in dimensionless form,

$$
\begin{equation*}
R^{*}=\frac{R}{l_{s}}=\frac{\Gamma}{\tau b l_{s}}=\frac{1}{2 \tau} \tag{III.7}
\end{equation*}
$$

If the distance between any two adjacent obstacles along (i) exceeds $2 R^{*}$ or if the dislocation line anywhere intersects itself, then the configuration (i) is transparent to the dislocation and will be mechanically bypassed. If (i) is not transparent, its mechanical stability is governed by the strength of the dislocation-
obstacle interaction.
The obstacles are assumed to be identical, circularly symmetric, localized barriers to the dis'ocation whose effective range of interaction (d) is small compared to their mean separation (l_{s}). They may hence be treated as poinl obstacles 24. At the (k - lh) obstacle on the ($\mathrm{i}-\mathrm{th}$) configuration the dislocation: line forms the asymptotic angle $\psi_{1}^{k}\left(0 \leqslant \psi_{i}^{h} \leqslant \pi\right)$ (Figure 2$)$. The force, F_{1}^{k}, that the dislocation exerts on the (k-th) obstacle is simply, from Figure 2

$$
\begin{equation*}
F_{l}^{k}=2 \Gamma \cos \left(\frac{1}{2} \psi_{l}^{k}\right) \tag{III.8}
\end{equation*}
$$

or in dimensionless form

$$
\begin{equation*}
\beta_{i}^{k}=\frac{F_{1}^{k}}{2 \Gamma}=\cos \left(\frac{1}{2} \psi_{i}^{k}\right) \tag{T10}
\end{equation*}
$$

The dislocation-obstacle interaction is governed by a force-displacemeri relationship ${ }^{24}, \beta(x / d)$, the effective dimensionless point force on the dislocat:on as. it sweeps through (or folds around ${ }^{26}$) the obstacle. The mechanical strength of the obstacle is measured by the dimensionless parameter β_{c} (or ang'e ${ }^{\prime}{ }_{c}$) asa corresponds to the maximum force the obstacle can sustain without being cuit or locally by-passed. is non-transparent line configuration of obstacles constitutes a mechanically stable barrier to the flide of a dislocation under stress $\gamma *$ if $\beta_{i}^{k}<\beta_{c}$ for all obstacles (k) on (i), where β_{c} is a critical pre-selected obstacte sirength, or if $\beta_{l}<\beta_{c}$ where β, is taken to be the maximum of $\beta_{i}{ }^{k}$. The smailest stress τ^{*} at which $\beta_{i}>\beta_{c}$ for all configurations within the array (i.e., $\beta_{1}>\beta_{c}$, where β_{1} is the minimum of β_{i}) is the critical resolved shear stress τ_{c}.

The dosiocaton lone containing β_{1} is the stronges confoguration within the array

Fredelt employed essentally this mode? le treat thermalls activated ghde al high temperature and lou strese the atiompied 1 , esbatate the influence of the obtade spacong on the gicld strest by ashuming that the average configuratoon mght he approximated as shourn in Figure 3 He assumed that

 where the area swept ou: per obstacle la is approximated by

$$
\begin{equation*}
t_{1} \therefore=16 \tag{JIJ.10}
\end{equation*}
$$

The average segment length betweer the obstacles as a function of the appled stress can be calculated as follows: As required by the simple geometric relatonship (Figure 3),

$$
\begin{equation*}
R^{2}=(R-h)^{?}+i^{2} \tag{111.11}
\end{equation*}
$$

which can be writien for weak obstacles, where $h \ll 2 R$

$$
\begin{equation*}
I^{2}=2 R h=2 R \frac{l_{s}^{2}}{l} \tag{III.12}
\end{equation*}
$$

The mean length between adjacent weak obstacles increases with increasing vaiues of the radius of curvature and using equation (III.6) it can be approximated by

$$
\begin{equation*}
I=\frac{I_{s}}{\left(\tau l_{s} b / 2 \Gamma\right)^{1 / 3}} \tag{III.13}
\end{equation*}
$$

Accordingly, following

$$
\begin{equation*}
\cos \left(\frac{t}{2}\right)=\frac{1}{2 R}=\frac{-b l}{2 \Gamma}=\left(\frac{-l, b}{2 \Gamma}\right)^{23} \tag{IIl.i4}
\end{equation*}
$$

the flow stress $\overbrace{0}$ at the absolute zero temperature corresponding to a critical value of the included angie ψ_{r}, is fiven by

$$
\frac{\pi_{1} \cdot b}{2 \Gamma^{\circ}}=\left(\cos \frac{4}{2}\right)^{\cdot 2}
$$

い1.is
or, in dimensionless form, using equations (ILI.5) and (III.9)

$$
T^{*}=(\beta)^{3 \cdot 2}
$$

or

$$
\begin{equation*}
\beta=\left(\tau^{*}\right)^{2: 3} \tag{11}
\end{equation*}
$$

and 1°, the separation between adjacent obstacles, is

$$
\begin{equation*}
I^{*}=\frac{i}{I_{3}}=\left(\tau^{*}\right)^{-1 / 3} \tag{ILI.18}
\end{equation*}
$$

oi

$$
\begin{equation*}
\rho^{\circ}=\beta^{-1 / 2} \tag{III.19}
\end{equation*}
$$

Thus the average distance, i°, between adjacent obstacles increases as the stress decreases.

Many detailed statistical descriptions of the motion of dislocation through random points at $0^{\circ} \mathrm{K}$ are given: Labusch ${ }^{27}$ used the meinod of distribution functions which yielded functional agreement with Friedel model at low stresses. Fleischer ${ }^{28}$ and Fleischer and IIibbard ${ }^{29}$ suggested that the same
model might be appled to determine the critical resolved shear stress for athermal glide through a fandom array of weak obstacles Their expectation seemed confirned by the conoputer simulatom expermens of foreman and Makin ${ }^{17}$. Who determined the crilical resolved shear stress for whermat ghde (f, at a function of obstacle strength (β, for fandom arrays of up io 4×10^{4} poonts They found good agreement with equalion (lil.l6) when the obstacle strength was small Foreman and Makin inferred that the other features of the Fiedel model, egequation (lll.18), were also obeyed for small obstacle strengths, but apparently dod nol confirm this restit. Kocks ${ }^{3 / 4}$ who used graphical methods 10 determine critical resolved shear stress obtained good agreement with the value of r: - 0.82 which was found by Foreman and Makin, through computer simulation for very strong obstacles $\left(\beta_{r}-1.0\right)$. His method of approach was adopted by Stefansky and Dorn ${ }^{31}$ and Dorn et al. ${ }^{32}$ used the "unzipping" model

Foreman and Makin ${ }^{33}$ have also considered the glide through arrays of unlike obstacles and Foreman, Hirsch and Humphries ${ }^{34}$ simulated the motion of a dislocation through random arrays of impenetrable point and parallel line obstacles. Scattergood and Das ${ }^{35}$ developed a computer simulation method to determine the flow stress of a random distribution of circular, impenetrable obstacles. And recently, Shewfelt and Brown ${ }^{36}$ extended the computer model initially developed by Foreman and Makin ${ }^{23}$ to include the case in which some of the ohstacles are bypassed by local climb.

The first code to simulate thermally activated glide of a disiocation was the first Berkeley code written by Klahn, Austin and Dorn ${ }^{37}$. The code successfully
simulated dislocation glide as a function of stress, obstacle strength, and temperature, assumirg a simple step form for the dislocation-obstacle interaction. Zaitsev and Nadgornyi ${ }^{38}$ calculated using a Monte-Carlo method the velocity of the dislocation as a function of stress and temperature. Arsenault and Cadman used computers to calculate the force-distance profile ${ }^{34}$ and the fow stress as a function of temperature for single and two types of obstacles ${ }^{40}$.

Morris and Klahn ${ }^{25}$ found that fundamental statistical theorems could be used to substantially simplify the computational effort required in a simulation of thermally activated glide, and to give a precise statistical definition to the glide veloaty obtained. High and iow-temperature limits were ideritified which reduce the theoretical problem to the computation of characteristics of particular dominant configurations found in glide: the most stable, or "strengthdetermining" configuration in the case of low-temperature glide, and the "random" configuration in the case of high-temperature glide. At intermediate temperatures, the glide path, or sequence of configurations assumed during glide, becomes a statistical function of temperature.

Morris and Klahn ${ }^{41}$ and Altintas et al. ${ }^{42.43}$ used the statistical results presented in reference 25 to study thermally activated glide at low temperature, assuming an array of like obstacles and a dislocation-obstacle interaction of simple step form. The central results obtained were three:
(1) Studying the glide velocity as a function of temperature suress and obstacle strength, they found that low temperature approximations could be used to represent the data over a wide range of conditions. Since these approx-
imations obey relatively simple equations, they may easily be used 10 assess the effect of the nperational variables on the qualitative features of glide.
(2) Behavior in low-temperature glide is strongly influenced by the characteristics of the most stable configuration encountered during glide. These most stable configurations depend on applied siress, but are identically the configurations which determine the critical resolved shear suress as a function of obstacle strength. Detailed examination of these configurations showed that while their sirengths were reasonably approximated by the Friedel relatoon (at Jow stress) their other pertinent characteristics (shape, distribution of forces. distribution of segment lengthsl were not. This discrepancy is significant, since the distribution of forces is inporlant is the kinetics of low-iemperature gide and since the mean segment length is a parameter often used in attempts to fir experimental data $t 0$ the point obstacle model.
(3) Simulation of crystal deformation using a model constructed by "stacking" slip planes showed features in interesting correspondence with the deformation of real crystals. At very low temperature slip concentrated on welldefined slip planes. As temperature was raised deformation became more uniform, appearing homogeneous at high temperature.

To remove discrepancies between the Friedel model and the results of computer simulation reported in reference 41 , Hanson and Morris ${ }^{44}$ reinvestigated the strength-determining configurations at low sircsses. Using a variant of the extinction theorem of branching processes in probability theory they were able to arrive at an analytic solution for critical resolved shear stress for
infinitely large arrays. The strength, distribution of forces, and mean segment length defined by this solution were compared to the computer simulation data oblained in examining arrays containing up to 10^{4} obstacies. Even though the derived strength and distribution of forces were in reasonable agreement with the computer simulation data the distribution of segment lengths were no: The speculation that the discrepancy might be due to finite arrays used in computer simulation cailed for reinvestigation.

The approach used in reference 44 was extended to treat glide through an array of obstacles having an arbitrary distribution of properties. The rerthe were given in terms of integral equations and comparison was made with sontputer simulation experiments using arrays containing obstacles of two different types. ${ }^{45}$

IV. PURPOSE AND SCOPE OF THE PRESENT INVESTIGATION

Given the status of research at the time the present investigation started, ir was believed that a realistic attempt could be made to complete a theorelical solution to the general problem of dislocation glide through distributed lncalized microstructural barriers. Granting that the problem to be attacked is : small and specialized part of the overall problem of mechanical behavior i; is however the most realistic problem in dislocation theory which is opes, in detailed theoretical study. The results model the deformation of grains or cr, stals which may be assumed to deform by the above mechanism and are of significant value both in their own right and also for the insight thes elve ina, the influence of the statistics of microstructure on plastic deformation.

The specific objective of this dissertation is to calculate the CRSS a: ; function of the strength of the obstacles and to determine distocation velocity as a function of temperature, anplied stress and strength of the obstacle, : hes technical approach is to use a computer model to directly simulate zlide under precisely controlled conditions and to compare the results with the colculatinis and with available experimental data.

The results can be summarized as follows: Given that the computer simulation results are very important in comparing with theoretical predictions and as a guide to further theoretical work, a systematic sludy was necessary in obtain accurate results using a computer code which can handle very large arrays. Most of the previous analytical predictions were suspect becruse they were compared with the results obtained from relatively small sized arrays.

Computer simulation of dislocation glide through randomly distribute obstacles containing up to 10^{6} obstacles has beeri penormed using an thatent code. (The details of the computer progians agnem in a ister seciucti, the results indicate that the CRSS is array size dependeni aind derreases in
 lengths are obtained and conipared vil: heoretwal probetons. Lfiecis : xat shape and boundary conditions on the dislocation gide dee also sude w

Since mosi physicaly raintic sustems contar dosiade of cifletent wat

 predictions in the literature ${ }^{\text {4t a }}$ If th strour that the CRSS cat be c.a....... using the quadratic mean of the giresses for each xind of ohstaches. fan...... are compared with compule gimulaton data and shou good agreemen:.

In crystals contaning obstacies whose range of interatuen with :ha : : , tion is short compared to their spacing, thermal activation may hefp th ent come the barriers. Computer simulation of thermally activated dislocation glace indicates that the stress at a given veiocity decreases as temperature :atesecs It is shown that ihe stress exponent of disiocarion velocity varies in worson wit temperature and that the obstacle strength can be estimated using the exferi mentally determined values. The character of the strength dearminine configuration changes with temperature strongly in the case of arrays cormining
two-lypes of obstacles. The effects of temperature on the dislocertion motion have important consequences with respect to deformation hehavior of the crystals.

Even though the results of the Friedel model have been used in the literalure 10 predict the strengthening of crystals ${ }^{48.49}$ no detailed comparison of the model and computer simulation results with experiments have been made in this thesis, such a task was undertaken to compare the results with experiments performed on materials which were strengihencd through irradation and precipitation. The general fealures of dislocation motion oblained from computer simulation showed remarkable similarities to the Transmission Electron Microscope (TEM) observations conducted by Barnes ${ }^{50}$. Recent in-sinu High Voltage Electron Microscope (HVEM) deformation gave experimental results which made direct comparison with computer simulation data possible. Dislocation velocity measurements by Val'kovskii and Nadgornyi ${ }^{52}$ on Mg 0 crystals and insitu HVEM studies by Appel et al. ${ }^{51}$ gave results which were in excellent agreement with computer simulation resuits. Saimoto and co-workers ${ }^{53.54}$ studied the deformation behavior of Cu single crystals and measured the segment length distribution. The comparison of this distribution with the one obtained from computer simulation also showed excellent agreement. In an attempt to compare the computer simulation results of Foreman and Makin ${ }^{33}$, Munjal and Ardell ${ }^{55}$ made an extensive study of a precipitation hardened alloy. Even though their results were interpreted to disagree with the coniputer simulation data, the calculations and computer simulation of this investigation showed good agreement with the experiment.

In the next sections, we first give analytical catculations concerning the athermal and thermally activated distecation glicte through randomly distrituted obstacles. The description of the computer crade and comparison of the results with analytical predictions and expermonai data are given in later secuens.

v. ANALYTICAL CALCULATIONS

A. ATHERMAL GLIDE

1. CRSS For Like Obstacles

A dislocation moving through an array contaning andomly distributed obstacies will encounter various configurations under the influence of the applied stress. As illustrated in Figure 2, if the dislocation encounters a configuration (i) under stress τ^{*}, it will take the form of a circular arc of dimensionless radius $R^{*}\left(=1 / 2 \tau^{*}\right)$ between adjacent obstacles. If the distance between any two adjacent obstacles along (i) exceeds $2 R^{\circ}$ or if the dislocation line anywhere intersects itself then configuration (i) is transparent to the dislocation and will be mechanically by-passed. If (i) is not transparent its mechanical stability is governed by the geometry of the configuration.

At the (k -th) obstacle on (i) the dislocation exerts a force β, ${ }^{k}$ on the obstacle, where $0 \leqslant \beta_{1}^{k} \leqslant 1$ and is given by equation (III.9). If β_{c} is the strength of the obstacle impeding glide then it is necessary for the mechanical stability of the configuration that $\beta_{i}^{k}<\beta_{c}$ for all (k) on (i), or that

$$
\begin{equation*}
\beta_{i} \leqslant \beta_{c} \tag{V.1}
\end{equation*}
$$

where $\beta_{\text {t }}$ is the maximum of the β_{1}^{k}. If there is to be at least one mechanically stable barrier configuration within the array for given stress τ * then necessarily

$$
\begin{equation*}
\beta_{1}=\min \left(\beta_{i}\right) \leqslant \beta_{c} \tag{V.2}
\end{equation*}
$$

where β_{1} is the minimum force exerted by the dislocation on the most stable
configuration within the array
The non-transparent configuratong in a given array of ohstacies are uniquely fixed by the dimensionless stress (\boldsymbol{T}^{*}) as are the forces, β^{k}, exerted on them ${ }^{41}$. The maximum force exented on the most stable confguration within the array is hence specified by the function

$$
\beta_{1} \cdot \beta_{1}\left(\sigma^{\circ}\right)
$$

whose inverse

$$
\begin{equation*}
\tau_{i}=: *\left(\beta_{1}\right)=\tau^{*}\left(\beta_{c}\right) \tag{i,4}
\end{equation*}
$$

gives the critical resolved shear stress for athermal glide through an array of obstacles of strength β_{ℓ}.

A useful technique for locating the stable configurations within a random array of point obstacles is the "circle rolling" described in reference 4i. The dislocation line between iwo obstacles (say, $k-1$ and k) is the arc of a circle of dimensionless radius $R^{*}=1 /\left(2 *^{*}\right)$. If $k-1$ and k are obstacles of strength β_{r} in a stable configuration at τ^{*}, then there must be at least one obstacle ($k+1$) in the area swept out by rotation of the circle counterclockwise about (k) through an angle

$$
\begin{equation*}
\theta_{c}=\pi-\psi_{c}=2 \sin ^{-1}\left(\beta_{c}\right) \tag{V.S}
\end{equation*}
$$

Since this requirement holds for all obstacles on a stable line, the line may be generated by successive circle rolling. Using this technique, Hanson and Morris ${ }^{44}$ approximated the critical resolved shear stress $\tau_{c}{ }^{\circ}$ for an arbitraily large array of obstacles of like kind by identifying a "limiting configuration"
which was necessarily at least as strong as the most stable configuration which might be encountered during glide. The derivation may be summarized as folhows:

A stable dislocation configuration can be viewed as a chain of stable segments connecting the left-hand side of the array' (o) the right-hand side. Thus a stable configuration can be constructed by beginning from the left-hand side whth a single segment and searching for segments which continue the chain across the array. If the appled stress is τ^{*} and the obstacle strength is $\beta_{\text {i }}$, then a segment may be continued by connecting its right-hand terminal point to any point found in the area shown in Figure 4, an area generated by rotanng a circle of radius R^{0} through an angle $\theta_{c}\left(=2 \sin ^{-1} \beta_{c}\right)$ about the terminal point. The search area is parametrized by the coordinates (θ, ϕ) shown in Figure 4 The lines of constant θ are generated by the leading edge or the circle as it is rotated; the lines of constant ϕ are generated by the trailing edge. The range of θ is chosen to be $0 \leqslant \theta \leqslant \theta_{c}$. The range of ϕ is taken to be $-\pi \leqslant \phi \leqslant \theta_{c}$. Points of the array are distributed over this search area with density unity, hence the number of points in differential dimensionless area $d A^{\circ}$ is simply $d A^{\circ}$, where

$$
\begin{equation*}
d A^{\bullet}=\left(R^{\prime}\right)^{2} \sin (\theta-\phi) d \theta d \phi=(R)^{2} d a(\theta, \phi) \tag{V,6}
\end{equation*}
$$

Each point within the search area defines a possible segment continuing the chain.

The procedure for constructing a stable chain across the array by stochastically searching successive areas shown in Figure 5 bears a strong formal resemblance to the classical branching process in probability theory. The theory of
branching processes ${ }^{56}$ estimates the size of the $(k-t h)$ generation of descent from a given initial event, assumng that the probability distribution for the number of descendants per parent is known. A principal sesult of the theory is the extinction theorem, which states that if the expected number of descendants ($\langle n\rangle$) is less than urity the line of descent will necessanly terminate after a finite number of gencrations In the present problem it follows thet - " and θ_{6} must be such that the search arca A " of Figure 4 is greater than umiy if it 15 to be possible to construct a stable chain acress an ariay of arbitathlarge size.

The stable configurations of ine dislocation are, however, additionation onrstrained in that the dislocation line cannot intercept itself. A necessary (ihough not sufficient) condition ${ }^{44}$ is that the expected value of the coordinate d of the points used to extend the chain musi be zero. Since the average value of d over the search area is less than zero (at least for $\theta_{6}<\pi$) the condituon $\langle\phi\rangle$ $=0$ constrains the manner in which points may be selected from among those contained in A^{*}, points may only be used in subsets which have zero $<\phi>$.

Given these considerations, the points used to define the segmenis which extend a chain across the array are chosen according to a distribution function $f(\theta, \phi), 0 \leqslant f \leqslant 1$, which gives the fraction of the prints found in $d a(\theta, \phi)$ in an arbitrarily large sequence of searches of areas like A " which are used to form the segments of a stable chain. The function $f(\theta, \phi)$ must satisfy at least the two constraints :

$$
\begin{equation*}
\left.\langle n\rangle=(R)^{2} \int_{a} f(\theta, \phi) d a(\theta, \phi)\right\rangle 1 \tag{V.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\phi\rangle=\left(R^{\circ}\right)^{2} \int_{a} \phi f(\theta, \phi) d \alpha(\theta, \phi)=0 \tag{V.8}
\end{equation*}
$$

For given values of $\langle n\rangle$ and the obstacle strengin θ, it may be shown (Appendix to Reference 44) that the radius R "is minimized (τ * maximized) under the constraint (V.8) if we choose

$$
\begin{align*}
f(\theta, \phi) & =1 & & -\phi_{0} \leqslant \phi \leqslant H_{6} \\
& =0 & & \phi \leqslant \phi_{0} \tag{1.9}
\end{align*}
$$

where ϕ_{0} is the solution of the equation

$$
\begin{equation*}
<\phi>=\int_{a_{0}} \phi d a(\theta, \phi)=\int_{-\phi_{0}}^{\theta_{i}} \phi d a(\phi)=0 \tag{1.10}
\end{equation*}
$$

with the integral taken over the area a_{0} shown in Figure 5.

If we now set

$$
\begin{align*}
& \langle n\rangle=1 \\
& \langle\phi\rangle=0 \tag{V.11}
\end{align*}
$$

and cisoose $f(\theta, \phi)$ according to equation (V.9), we obtain a value of τ^{*}, τ_{0}^{*}, which is necessarily larger than the stress necessary to pass the most stable chain which might be constructed across an arbitrarily large array of obstacles of strength θ_{c}. Hence

$$
\begin{equation*}
\tau_{0}^{\dot{*}}=\frac{1}{2}\left[\int_{a_{0}} d a(\theta, \phi)\right]^{1 / 2}>\tau_{c}\left(\theta_{c}\right) \tag{V.12}
\end{equation*}
$$

places an upper limit on the critical resolved shear stress.

To compute the properties of the limiting configuration we require the function $\phi_{6}\left(\theta_{1}\right)$ determined by cquation (V.10). The differential area

$$
\begin{equation*}
d a(\phi)=\int^{\theta} d \Delta\left(\theta, \phi_{1}\right) \tag{1.13}
\end{equation*}
$$

is (Figure 6)

$$
d a(\phi)= \begin{cases}1-\cos \left(\theta_{1}-\phi_{1}\right) & 0 \leqslant \phi \leqslant \theta_{1} \\ \cos \phi-\cos \left(\theta_{1}-\phi\right), & \theta_{1}-\pi \leqslant \phi \leqslant 0 \\ \cos \phi+1 . & -\pi \leqslant \phi \leqslant \theta_{1}-\pi\end{cases}
$$

Since from equation (l . 10)

$$
\begin{equation*}
\int_{-1}^{H} \phi d a(\phi)=0 \tag{V.10}
\end{equation*}
$$

and using regions 1 and II (Figure 6)

$$
\begin{array}{r}
\int_{0}^{H} \phi\left(i-\cos \left(\theta_{c}-\phi\right)\right) d \phi+\int_{-\phi_{c}}^{\pi} \phi\left(\cos \phi-\cos \left(\theta_{c}-\phi\right)\right) d \phi=0 \\
\text { for } \theta_{c} \geqslant \phi \geqslant \theta_{c}-\pi
\end{array}
$$

we obtain

$$
\frac{1}{2} \theta_{c}^{2}-\cos \phi_{0}-\phi_{0} \sin \phi_{0}+\cos \left(\theta_{c}+\phi_{0}\right)+\phi_{0} \sin \left(\theta_{c}+\phi_{0}\right)=0
$$

using

$$
\sin x \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
$$

and

$$
\cos x \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}
$$

we get

$$
\begin{equation*}
\theta_{t}^{4}-6 \theta_{t}^{2} \phi_{0}^{2}-8 \theta_{i} \phi_{j}^{3}=0 \tag{V.16}
\end{equation*}
$$

which can be solved for $\phi_{0}\left(\theta_{1}\right)$.

Similarly, from equation (V.12)

$$
\left(2 \tau_{i j}\right)^{2}=\int_{a} d a(\theta, \phi)
$$

or using (V.14)

$$
\begin{equation*}
\left(2 \tau_{0}\right)^{2}=\theta_{c}+\sin \phi_{0}-\sin \left(\theta_{c}+\phi_{0}\right) \tag{1.18}
\end{equation*}
$$

or, approximately

$$
\begin{equation*}
\left(2 \tau_{0}\right)^{2}=\frac{\theta_{c}}{6}\left[\theta_{r}^{2}+3 \theta_{c} \phi_{0}+3 \phi_{0}^{2}\right] \tag{V'19}
\end{equation*}
$$

The solution of the equation (V.16) using conventional methods ${ }^{57}$ gives

$$
\begin{align*}
& \phi_{0}=\frac{\theta_{c}}{4}\left\{(3+2 \sqrt{2})^{1 / 3}+(3-2 \sqrt{2})^{1 / 3}-1\right\} \\
& \phi_{0} \approx 0.3388 \theta_{c} \tag{V.20}
\end{align*}
$$

Puting (V.20) into (V.19), we obtain

$$
\begin{equation*}
\left(\tau_{0}\right)^{2}=0.7870\left(1 / 2 \theta_{6}\right)^{3} \tag{V.21}
\end{equation*}
$$

which may be rewritten for weak obstacles

$$
\begin{equation*}
\tau_{0}^{*}=0.8871\left(\beta_{0}\right)^{3 / 2} \tag{V.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta_{0}=1.083\left(\tau_{0}\right)^{2 / 3} \tag{V.23}
\end{equation*}
$$

which differs from the Friedel relation (equation III.16) through a multiplicative constant. The agreement in functional form is not fortuitous, since virtually any technique for searching an array by rolling or bowing a sircle of radius R^{*} through a small angle θ_{6} leads to a search area proportional to $(R)^{2} \theta_{c}^{3}$, and will, hence, yield an equation which differs from Friedel relation only through a multiplicative result. Regarding the disagreement, note that the value in eruation ($\mathbf{V} .22$) is an upper bound on the value of $\tau_{c} \dot{\text { in }}$ an array of arbitratily large size, which lies below the Friedel limit by -11%.

The normalized distribution of forces along the limiting configuration may be computed from the relation

$$
\begin{equation*}
\rho\left(H, T^{*}\right) d \theta=\left(R^{*}\right)^{2} \int^{\phi} d a(\theta, \phi) \tag{V.24}
\end{equation*}
$$

where $\rho\left(\theta, \tau^{*}\right)$ is the distribution of angles θ, in the limiting configuration at stress $\tau_{0}{ }^{\circ}$. Using equation (V.14) and assigning appropriate limits to the integral, we obtain

$$
\begin{align*}
\rho\left(\theta_{t} \tau^{*}\right) & =R^{* 2}\left[1-\cos \left(\theta+\phi_{0}\right)\right], & & \phi_{0} \leqslant \pi-\theta_{c} \\
& =2 R^{* 2}, & & \theta_{c} \geqslant \theta \geqslant \pi-\phi_{0,} \phi_{0} \geqslant \pi-\theta_{c} \tag{V.25}\\
& =R^{* 2}\left[1-\cos \left(\theta+\phi_{0}\right)\right], & & \pi-\phi_{0} \geqslant \theta \geqslant 0, \phi_{0} \geqslant \pi-\theta_{c}
\end{align*}
$$

For the range of interest here, $0 \leqslant \beta_{0} \leqslant 0.7, \phi_{0}$ is less than $\left(\pi-\theta_{c}\right)$, and only the first term is important. Since $\beta=\sin \left(1 / 2 \theta_{c}\right)$,

$$
\begin{align*}
\rho\left(\beta, \tau^{*}\right) & =\rho\left(\theta, \tau^{*}\right) \frac{d \theta}{d \beta} \\
& =2 R^{* 2}\left\{\left(1-\beta^{2}\right)^{-1 / 2}\left[1-\left(1-2 \beta^{2}\right) \cos \phi_{0}\right]+2 \beta \sin \phi_{0}\right\} \tag{V.26}
\end{align*}
$$

where we have assumed $\phi_{0} \leqslant \pi-\theta_{c}$. This distribution is, of course, sharply cut off at β_{0}. It is uniquely fixed by either ion $_{0}$ or β_{0}, since either is sufficient to determine the radius R^{*}, the angle ϕ_{1}, and the maximum β_{0}.

In the limit of small obstacle strength (or, equivaleitts, low stresses) the density of forces takes the form

$$
\begin{equation*}
\rho\left(\beta, \beta_{0}\right)=\left[\left(\frac{\beta}{\beta_{0}} ;+k_{1}\right]^{2} /\left(\left.k_{2}^{2}\right|_{0}\right) \quad\left(\beta<\beta_{0} \ll 1\right)\right. \tag{V.27}
\end{equation*}
$$

where $k_{1}=0.3388$ and $k_{2}=0.8871$, Fote that this limiung distribution can be recast in the form

$$
\begin{equation*}
\rho\left(\frac{\beta}{\beta_{0}}\right)=\left[\left(\frac{\beta}{\beta_{0}}\right)+k_{1}\right]^{2} / k_{2}^{2} \quad\left(\frac{\beta}{\beta_{0}} \leqslant 1, \beta_{0} \ll 1\right) \tag{V.28}
\end{equation*}
$$

which is independent of τ^{*} or β_{0}.
The distribution of the angles ϕ can also be derived from equation (V.14) and is given by

$$
\begin{align*}
\rho(\phi) & =R^{* 2}\left[1-\cos \left(\theta_{c}-\phi\right)\right], & & 0 \leqslant \phi \leqslant \theta_{c} \\
& =R^{* 2}\left[\cos \phi-\cos \left(\theta_{c}-\phi\right)\right], & & \theta_{c}-\pi \leqslant \phi \leqslant 0 \tag{V.29}\\
& =R^{* 2}[\cos \phi+1], & & -\pi \leqslant \phi \leqslant \theta_{\tau}-\pi
\end{align*}
$$

The normalized distribution of segment lengths, $\rho\left(1^{*}, \tau^{*}\right)$, may be found by expressing l° as a function of θ and ϕ over which l^{\prime} is constant. The result is for $\phi_{0} \leqslant \pi-\theta_{c}$,

$$
\begin{align*}
\rho\left(l^{*}, \tau^{*}\right) & =l^{*} \theta_{c} & & 0 \leqslant l^{\circ} \leqslant l^{\prime} \\
& =l^{\prime}\left(\theta_{c}+\phi_{0}-2 \sin ^{-1}\left(l^{\prime} / 2 R^{*}\right)\right) & & I^{\prime} \leqslant l^{\circ} \leqslant l^{\prime} \tag{V.30}
\end{align*}
$$

$$
\begin{align*}
& r=2 R * \sin \left(\frac{\phi_{0}}{2}\right) \\
& r=2 R * \sin \left(\left(\theta_{i}+\theta_{0}\right) / 2\right) \tag{v.31}
\end{align*}
$$

The mean segment length, $\left\langle\left.\right|^{\circ}\left(\tau^{\circ}\right)\right\rangle$, is the quanmy which is usually compared to the Friedel relation (111.18). Using equation (V. 301

$$
\begin{align*}
& \left\langle i^{*}\left(\tau^{*}\right)\right\rangle=\int_{11}^{\infty} i_{0}\left(l^{\prime}, \tau^{*}\right) d t \\
& =\left(2 / 3^{1} / 2 R^{*}\right)^{3} \cdot \cos \left(\frac{\phi_{1}}{2}\right)\left[1-\frac{1}{3} \cos ^{2}\left(\frac{\phi_{0}}{2}\right)\right] \tag{V.32}\\
& \left.\left.-\cos \left(\frac{\theta_{c}+\phi_{\mathrm{a}}}{2}\right) 11-\frac{1}{3} \cos ^{2}\left(\frac{\theta_{c}+\phi_{\mathfrak{b}}}{2}\right)\right]\right\}
\end{align*}
$$

When $\boldsymbol{*}^{*}$ or θ_{1} is small, $\left\langle\|^{*}{ }^{*}{ }^{*} \mid\right\rangle$ is approximated by the asymptotic relat:on

$$
\begin{align*}
\left\langle i^{*}\left(\sigma^{*}\right)\right\rangle & =0.764\left(\theta_{c} / 2\right)^{-1 / 2} \\
& =0.734\left(r^{*}\right)^{-1 / 3} \tag{1.33}
\end{align*}
$$

or

$$
\begin{equation*}
\left\langle l^{\circ}\left(\tau^{*}\right)\right\rangle=0.764\left(\beta_{c}\right)^{-1 / 2} \tag{2.34}
\end{equation*}
$$

which suggests that the Friedel relation (equation III.19) overestimates the asymptotic $\left\langle l^{\circ}\left(\tau^{*}\right)\right\rangle$, by about 27%. The two relations are, however, identica! in the functional form.

The comparison of the results outlined above to the computer simulation data showed ${ }^{44}$ while the mean segment length, the distribution of forces gave good fit, the density function $\rho\left(1^{*}, \tau^{*}\right)$ calculated from equation (V.30) did noi correctly reproduce the shape of the empirical distribution, which was determined by compiling the segment lengths found along the most stable configuration in each of the 10 arrays of 10^{4} points at $\tau^{*}=0.1$. It was not
clear whether this discrepancy principally resulted from the approximations involved in the theoretical model or from the finite size of the arrays used to generate the empirical distribution.

Recently, Labusch ${ }^{58}$ criticized the model by Hanson and Morris ${ }^{44}$ on the grounds that the thearetical link length distribution and the one found in computer simulation tests disagreed, and that the function $f(d)$ was not determined correctly. The method of calculation used by Labusch ${ }^{58}$ is similar to the entropy calculation used in Statistical Thermodynamics.

He uses same parameters as shown in Figure 4. The search area A° is divided into L elements $d A_{l(k)}$ with the coordinates ϕ_{1} and θ_{1}. The test lines of K links is constructed stepwise according to the following scheme: on arriving at point (k) the next link is drawn as a circular arc of radius R^{*} with its end point in an area element $d A_{(k)}$ in the $(k-t h)$ step. A test line is stable only if a pinning point exists in each of the area elements $d A_{/(\alpha)}$. The probability that a given test line is stable is

$$
\begin{equation*}
\prod_{k=1}^{K} d A_{l(k)}^{*} \tag{V.35}
\end{equation*}
$$

If n_{l} is the frequency of occurence of the values of (1) among (k) links, this probability can be written as

$$
\begin{equation*}
\prod_{k=1}^{K} d A_{l(k)}^{*}=\prod_{l=1}^{L}\left(d A_{l}\right)^{\left(n_{l}\right)} \tag{V.36}
\end{equation*}
$$

subject to the condition

$$
\begin{equation*}
\sum_{i=1}^{L} n_{l}=K \tag{V.37}
\end{equation*}
$$

and to the quasi - straightness condition

$$
\begin{equation*}
\sum_{l=1}^{L} n_{l} \phi_{l}=0 \tag{V.38}
\end{equation*}
$$

The number of different test lines that can be constructed from a given set of links is given by the number of distinguishable permutations of the sequence of links which is equal to

$$
\begin{equation*}
\frac{N!}{\prod_{i=1}^{L}(n,!)} \tag{V.37}
\end{equation*}
$$

Thus, the expectation value of the total number of stable lines is

$$
\begin{equation*}
P=\frac{N!}{\prod_{l=1}^{L} n_{!}!} \prod_{i=1}^{L}\left(d A_{l}\right)^{n} \tag{V.40}
\end{equation*}
$$

The solution of this equation subject to the constraints (V.37) and (V.38) can be calculated from the equation

$$
\begin{equation*}
\frac{\partial}{\partial n_{l}}\left(\ln P+\gamma \sum_{l} n_{l} \phi_{l}+\lambda \sum_{l} n_{l}\right)=0 \tag{V,41}
\end{equation*}
$$

from which the "partition function" can be found to be

$$
\begin{equation*}
z=\int_{A} e^{\gamma \phi} d A \tag{V.42}
\end{equation*}
$$

which gives

$$
\begin{equation*}
z=4 R * 2 \frac{\exp (\gamma \theta)-1}{4 \gamma^{3}} \tag{V.43}
\end{equation*}
$$

where the parameter y is given by

$$
\begin{equation*}
\gamma=2.8214 / \theta \tag{V.44}
\end{equation*}
$$

For the critical condition, $z=1$, the critical resolved shear stress obtained by Labusch is,

$$
\begin{align*}
& \tau_{L}=1.186 \beta_{0}^{3 / 2} \tag{Y.45}\\
& \beta_{0}=0.892\left(\tau_{\dot{L}}\right)^{2 / 3} \tag{V.46}
\end{align*}
$$

which is $\approx 12 \%$ higher than the Friedel limit(equation (III.16)).
In an attempt to take the problem of the degeneracy of the lines into account Labusch corrected his result to get

$$
\begin{equation*}
\tau_{L}=0.954 \beta_{0}^{3 / 2} \tag{V.47}
\end{equation*}
$$

which differs from equation (1Il.16) by 5%.
The normalized distribution of forces on pinning points is

$$
\begin{gather*}
\rho_{L}(\beta)=\frac{\exp \left(2 \gamma \sin ^{-1} \beta\right)}{\left(\sqrt{\left.1-\beta^{2}\right)} \int_{0}^{\beta_{c}}\left(\exp \left(2 \gamma \sin ^{-1} \beta\right) / \sqrt{1-\beta^{2}}\right) d \beta\right.} \tag{V.48}\\
0 \leqslant \beta \leqslant \beta_{c}
\end{gather*}
$$

In the limit of small β_{s}

$$
\begin{equation*}
\rho_{L}(\beta)=\frac{2 \gamma \beta}{\exp \left(2 \gamma \beta_{c}\right)-1} \exp (2 \gamma \beta) \tag{V.49}
\end{equation*}
$$

The distribution of angles ϕ is given by

$$
\rho_{L}(\phi)=k_{0} \exp (\gamma \phi) \cdot \begin{cases}\sin ^{2}\left(\frac{\theta-\phi}{2}\right), & 0 \leqslant \phi \leqslant \theta \tag{V.50}\\ \sin ^{2}\left(\frac{\theta-\phi}{2}\right)-\sin ^{2}\left(\frac{\phi}{2}\right), & -\pi \leqslant \phi \leqslant 0 \\ 1-\sin ^{2}\left(\frac{\phi}{2}\right), & -\pi \leqslant \phi \leqslant \theta-\pi\end{cases}
$$

where normalizing factor k_{0} is chosen so that

$$
\int_{-\pi}^{\theta} f(\phi) d \phi=1
$$

The distribution of segment lengths in normalized form is given by

$$
\begin{equation*}
\rho_{L}(l)=\frac{i \exp \left(-2 \gamma \sin ^{-1}\left(\frac{i}{2 R^{*}}\right)\right)}{\int i^{*} \exp \left(-2 \gamma \sin ^{-1}\left(\frac{i^{*}}{2 R^{*}}\right)\right) d^{*}} \tag{V.51}
\end{equation*}
$$

which depends on the pinning strength through γ and on the applied stress through R^{*}. For small obstacle strengths, $(v .51)$ can be written as

$$
\begin{equation*}
\rho_{L}(I)=\frac{y^{2}}{R^{* 2}} i^{*} \exp \left(-\gamma l^{*} / R^{*}\right) \tag{V.52}
\end{equation*}
$$

The average value of l^{\prime} is given by

$$
\left\langle\dot{I}_{L}^{*}\right\rangle=\frac{2 R^{*}}{\gamma}=0.7088\left(R^{*} \theta\right)
$$

Since $R^{*}=\frac{1}{2 T^{*}}$ and $\theta \approx 2 \beta$,

$$
\begin{align*}
\left\langle I_{L}^{*}\right\rangle & =0.7088 \frac{\beta}{\tau^{*}} \\
& =0.5976 \beta^{-1 / 2} \tag{V.53}
\end{align*}
$$

Using equation (V.46) for β, we obtain

$$
\begin{equation*}
\left\langle I_{L}^{*}\right\rangle=0.6326\left(T^{*}\right)^{-1 / 3} \tag{V.54}
\end{equation*}
$$

or in corrected form

$$
\begin{equation*}
\left\langle I_{L}^{*}\right\rangle=0.7314\left(\tau^{*}\right)^{-1 / 3} \tag{V.55}
\end{equation*}
$$

which is 27% lower than the Friedel limit.

In an attempt to characterize the first stable configuration encountered during glide Landau ${ }^{59}$ obtained the following results for the average angle of attack $\langle\theta\rangle$ and the average segment length $\left\langle\left.\right|^{\circ}\right\rangle$

$$
\begin{equation*}
\langle\theta\rangle=0.831\left(\frac{3}{R^{* 2}}\right)^{1 / 3} \tag{V.56}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle I^{*}\right\rangle=0.979\left(3 R^{*}\right)^{1 / 3} \tag{V.57}
\end{equation*}
$$

and the ratio

$$
\begin{equation*}
\frac{\langle\theta\rangle}{\left\langle i^{*}\right\rangle}=\frac{0.85}{R^{*}} \tag{V.58}
\end{equation*}
$$

However, for a quasi-straight dislocation in a large array, using the relationships

$$
\begin{equation*}
\lambda_{i}^{*}=\frac{i_{i}^{*}}{R^{*}} \tag{V.59}
\end{equation*}
$$

where $\lambda_{\text {: }}$ is the angle corresponding to the circle length of $l_{\text {, between two obs- }}$ tacles, and assuming straight, long dislocation,

$$
\begin{equation*}
\sum_{i} \lambda_{1}=\sum_{i} \theta_{1} \tag{V.60}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sum_{i} \theta_{i}=\frac{1}{R^{*}} \sum_{i} l_{i} \tag{V.61}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\langle\theta\rangle}{\left\langle i^{*}\right\rangle}=\frac{1}{R^{*}} \tag{V.62}
\end{equation*}
$$

The discrepancy between equations (V.62) and (V.58) suggests that the solution by Landau ${ }^{59}$ is probably in error. The average values of the angle $\langle\theta\rangle$ and segment length $\left\langle\left.\right|^{\circ}\right\rangle$ can also be obtained from equations (V.25) and (V.30) and we obtain

$$
\begin{equation*}
\langle\phi\rangle=0.924\left(R^{*}\right)^{-2 / 3} \tag{V.63}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left.\right|^{\circ}\right\rangle=0.924\left(R^{*}\right)^{1 / 3} \tag{V.64}
\end{equation*}
$$

giving

$$
\begin{equation*}
\frac{\left\langle\left.\right|^{\prime}\right\rangle}{\langle\theta\rangle}=R^{*} \tag{V.65}
\end{equation*}
$$

exactly the same result as equation (V.62). The ratio of $\left\langle 1^{\circ}\right\rangle$ to $\langle\theta\rangle$ for Labusch's solution ${ }^{58}$ gives also the correct result.

2. CRSS For Unlike Obstacles

Most realistical systems contain more than one type of obstacles, as for example the precipitate size, shape or location may vary, hence changing the interaction force between obstacles and dislocations. Other systems may contain more than one type of strengthening barriers, e.g. solute atoms in a precipitation hardened alloy.

The extension of the theory ${ }^{45}$ as outlined in the previous section to the case when obstacles are not identical can be treated by modifying the procedure for generation of the limiting configuration. Let a stable line be constructed left to right across an array which contains randomly distributed obstacles of P dis-
tinct types, labelled $\mathrm{i}=1,2,3, \ldots . . \mathrm{P}$, having fractions x, and strengths β, . Again using the constraints (V.7) and (V.8) we obtain

$$
\begin{align*}
& \left(\tau_{0}\right)^{2}=\frac{1}{4} \sum_{1} x_{i} a_{1}^{0} \tag{V.66}\\
& 0=\sum_{1} x_{i} a_{1}^{0}\langle\phi\rangle \tag{V.67}
\end{align*}
$$

where $\tau_{0}{ }^{\circ}$ is the strengit of the limiting configuration (an upper limit on τ_{*}^{*}), a_{1}^{0} is the subarea of a_{i} over which $-\pi \leqslant \phi \leqslant \theta$ and $\langle\phi\rangle^{\prime}$ is the average value of ϕ over a. The fraction of obstacles of type (i) on the strongest configuration can easily be calculated and is given by

$$
\begin{equation*}
c_{1}=x_{1} a_{1}{ }^{0}\left(R^{0}\right)^{2} \tag{V.68}
\end{equation*}
$$

The computation of the distribution of forces in the limiting configuration is straight-forward given the discussion in the previous section. The distribution of forces on obstacles of type i is specified by the density function

$$
\begin{array}{rlrl}
\rho,(\beta) & =\left(a_{1}^{0}(R)^{2}\right)^{-1} \rho\left(\beta, \tau^{*}\right), & & 0 \leqslant \beta \leqslant \beta \\
& =0, & \beta>\beta, \tag{V.69}
\end{array}
$$

where $\rho\left(\beta, \tau^{*}\right)$ is the density function given by equation (V.26). The density of forces in the limiting configuration is hence

$$
\begin{equation*}
\rho(\beta)=\sum_{l} c_{i}, \rho,(\beta)=\rho(\beta, \tau *) \sum_{i} x_{i} h_{i}(\beta) \tag{V.70}
\end{equation*}
$$

where $h_{1}(\beta)$ is a weighting function and is given by

$$
h_{i}(\beta)=\left\{\begin{array}{lll}
1 & \text { if } \beta \leqslant \beta_{i} \tag{V.71}\\
0 & \text { if } \beta>\beta_{i}
\end{array}\right.
$$

With similar arguments the average segment length aiong the configuration can be calculated through

$$
\begin{equation*}
\left\langle i^{\circ}\right\rangle=\sum_{1} x_{i}\left\langle i^{\circ}\left(\tau^{*}\right)\right\rangle \tag{V.72}
\end{equation*}
$$

where the function $\left\langle i^{*}\left(\tau^{*}\right)\right\rangle$, is given by equation (v.30).
Using lower order series expansion to the area a_{i}^{0} obtained from equation (V.14)

$$
\begin{equation*}
a_{1}^{0}=\left(R^{)^{2}}\left[\theta_{1}+\sin \phi_{0}-\sin \left(\theta_{1}+\phi_{0}\right)\right]\right. \tag{V.73}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
a_{1}^{0}=\frac{\theta_{1}}{6}\left[\theta_{1}^{2}+3 \theta_{1} \phi_{0}+3 \phi_{0}^{2}\right] \tag{V.74}
\end{equation*}
$$

The series expansions of equations (V.66) and (V.67) are then

$$
\begin{equation*}
24\left(\tau_{0}\right)^{2}=\sum_{1} x_{i} \theta_{t}^{3}+3 \sum_{1} x_{1} \theta_{i}^{2} \phi_{0}+3 \sum_{1} x_{i} \theta_{t} \phi_{0}^{2} \tag{V.75}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\sum_{i} x_{i} \theta_{i}^{4}-6 \sum_{i} x_{i} \theta_{i}^{2} \phi_{0}^{2}-8 \sum_{i} x_{i} \theta_{i} \phi_{0}^{3} \tag{V.76}
\end{equation*}
$$

To obtain a closed form solution of the critical resolved shear stress for multiple obstacles as a function of x, and θ, we approximate ϕ_{0} from equation (V.76) as

$$
\begin{equation*}
\phi_{0}^{2} \approx \frac{\sum_{i} x_{i} \theta_{i}^{4}}{6 \sum_{i} x_{i} \theta_{i}^{2}} \tag{V.77}
\end{equation*}
$$

As a function of obstacle fraction x, and strength β, the CRSS for multiple
obstacles is approximately given by

$$
\begin{equation*}
\left(\sigma_{0}\right)^{2}=\frac{1}{3} \sum_{1} x_{i} \beta_{1}^{3}+\frac{1}{2} \phi_{0} \sum_{1} x_{1} \beta_{1}^{2}+\frac{1}{4} d_{0}^{2} \sum_{1} x_{1} \beta_{1} \tag{V.78}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{0}^{2}=\frac{2}{3} \frac{\sum_{1} x_{i} \beta_{1}^{4}}{\sum_{1} x_{i} \beta_{1}^{2}} \tag{:.79}
\end{equation*}
$$

Inserting (V.79) into (V.78) grves

$$
\left(\tau_{0}\right)^{2}=\frac{1}{3} \sum_{i} x_{i} \beta_{i}^{3}+\frac{1}{\sqrt{6}}\left(\left(\sum_{i} x_{i} \beta_{i}^{2}\right)\left(\sum_{i} x_{i} \beta_{i}^{4}\right)^{1 / 2}+\frac{1}{6} \sum_{1} x_{i},\left(\frac{\sum_{i} x_{i} \beta^{4}}{\frac{1}{\sum_{i} x_{i} \beta_{i}^{2}}}\right)(V .80\}\right.
$$

The fraction of obstacles of type i on the strongest configuration is calculated from equation (V.68) and (V.74) as

$$
\begin{equation*}
c_{1}=\frac{8 x_{1} \beta_{1}+12 \phi_{0} x_{1}, \beta_{1}^{2}+6 \phi_{0}^{2} x_{1} \beta_{1}}{24\left(\tau_{0}\right)^{2}} \tag{V.81}
\end{equation*}
$$

The lower order series expansion for the average segment length can be calculated as follows:

From equation (V.72)

$$
\left\langle 1^{*}\right\rangle=\sum_{1} x_{1}\left\langle\|\left(\tau^{*}\right)\right\rangle_{1}
$$

where $\left\langle I\left(\tau^{*}\right)\right\rangle$, is approximated from equation (V.30) as

$$
\begin{equation*}
\left\langle I\left(\tau^{*}\right)\right\rangle_{i}=\frac{(R)^{3}}{12}\left\{\left(\theta_{1}+\phi_{0}\right)^{4}-\phi_{0}^{4}\right\} \tag{V.82}
\end{equation*}
$$

and

$$
\langle i\rangle=\frac{(R)^{3}}{12}\left(\sum_{1} x_{i} \theta_{1}^{4}+4 \sum_{1} x_{i} \theta_{1}^{3} \phi_{0}+6 \sum_{1} x_{i} \theta_{1}^{2} \phi_{0}^{2}+4 \sum_{i} x_{i} \theta_{1} \phi_{0}^{3}\right)
$$

or approximately

$$
\begin{equation*}
\left\langle i^{\cdot}\right\rangle=\frac{4(R)^{3} \phi_{0}}{12}\left(3 \sum_{1} x_{i} \theta_{i}^{2} \phi_{0}+\sum_{i} x_{i} \theta_{i}^{i}+\sum_{1} x \theta_{1} \phi_{0}^{2}\right) \tag{i:87}
\end{equation*}
$$

or using equation (V.75)

$$
\begin{equation*}
\sum_{1} x_{i} \theta_{1}^{3}+3 \sum_{1} x_{1} \theta_{1}^{2} \phi_{0}=24(-0)^{2}-3 \sum_{1} x_{i} \theta_{1} \phi_{0}^{2} \tag{V85}
\end{equation*}
$$

to get

$$
\begin{equation*}
\left\langle\left.\right|^{\prime}\right\rangle=\frac{4\left(R^{\bullet}\right)^{3} \phi_{0}}{12}\left(24 \tau_{0}^{3}-2 \sum_{t} x_{1}\left(\theta_{1} \phi_{0}^{2}\right)\right. \tag{1.86}
\end{equation*}
$$

which gives in terms of β,

$$
\begin{equation*}
<i\rangle=\left(\frac{\phi_{0}}{\tau_{0}^{*}}\right)-\frac{1}{6}\left(\frac{\dot{\phi}_{0}}{\tau_{0}^{*}}\right)^{3} \sum_{i} x, \beta_{i} \tag{V.87}
\end{equation*}
$$

a) CRSS for two types of obstacles

If we have two kinds of obstacles (strong and weak) distributed randomly and having strengihs β_{s} and β_{k} and fractions x_{s} and x_{k}, the formulas developed above can easily be applied. For the CRSS we obtain irom equation (V.80)

$$
\begin{equation*}
\left(\tau_{0}\right)^{2}=\left(\tau_{s}\right)^{2} x_{s}+\left(\tau_{w}\right)^{2} x_{w^{\prime}}+\text { small terms } \tag{V.88}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{s}^{\cdot}=k \beta_{s}^{3 / 2} \tag{V.89}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{\mathbf{k}}^{\circ}=k \beta_{n}^{3 / 2} \tag{V.90}
\end{equation*}
$$

where k is a constant. $\tau_{;}$and τ_{k} are stresses if the arrays contained only strong or weak obstacles, respectively.

There have been empirical formulas in the literature, developed for the superposition of two mechanisms. First one is due to Koppenaal and Kuhlmann-Wilsdorf ${ }^{47}$ and requires that the squares of the stresses should he added, i.e.

$$
\begin{equation*}
\tau^{2}=\tau_{s}^{2}+\tau_{u}^{2} \tag{V.91}
\end{equation*}
$$

or in dimensionless terms

$$
\begin{equation*}
\left(T^{*}\right)^{2}=\left(\tau_{S}^{*}\right)^{2} x_{S}+\left(T_{\mu}^{*}\right) \cdot x_{\mu} \tag{V.92}
\end{equation*}
$$

which is almost the same as obtained in this study.

The second formula is given by Kocks ${ }^{46}$ and was obtained for the special case of arrays containing a lot of weak and a few strong obstacles. In this case, the stress due to weak obstacles has been treated as a friction stress and simple addition of stresses is required, i.e.

$$
\begin{gather*}
\tau^{*}=\tau_{s}^{*} \sqrt{x_{s}}+\tau_{W}^{\cdot} \sqrt{x_{x}} \tag{V.93}\\
\text { if } x_{k} \gg r_{S} \quad \text { and } \quad \tau_{s}^{*} \gg \tau_{N^{*}}^{*} \quad \text { (or } \quad \beta_{s}^{*} \gg \beta_{N}^{\cdot} \text {) } \tag{V.94}
\end{gather*}
$$

The above constraints are necessary for the above formula to hold, since if $\tau_{s}{ }^{\circ}=\tau_{w^{\prime}}$ and $x_{s}=x_{w}=\frac{1}{2}$ we get

$$
\tau^{*}=\sqrt{2} \tau_{s}^{*}
$$

which is unreasonable.
b) CRSS for arbitrary distribution of obstacle strengths

To obtain CRSS for crystals containing arbitrary distribution of obstacle strengths the equations (Y.66) and (V.67) can be used in principle, but to get closed form formulas we approximate the CRSS for weak obstacles by,

$$
\begin{equation*}
\left(\tau^{*}\right)^{2}=k^{2} \sum x_{s} \beta_{1}^{3} \tag{V.95}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\tau^{*}\right)^{2}=\sum_{1} x_{1}\left(\tau_{1}\right)^{2} \tag{V.96}
\end{equation*}
$$

Since the distribution of obstacle strengths is not a priori known and has to be determined independently, we consider two simple cases of strength distributions. However, the technique used here could be extended to any type of distribution.

The first case to be considered is the distribution of angles, which has also been empirically studied by Foreman ans Makin ${ }^{33}$ through computer simulation. The obstacle strength is given by the critical angle ψ_{c} and square spectrum of angles is assumed (Figure 7). This distribution is characterized either by $\psi_{\min }$ and $\psi_{\text {max }}$ or by the mean value ψ_{m} and the width of the disiribution ψ_{n}, and is given by

$$
\begin{equation*}
\rho(\psi)=\frac{1}{\psi_{\max }-\psi_{\min }} \tag{V.97}
\end{equation*}
$$

We use for the stresses τ_{i} in equation (V.96) the following formulas, depending upon the range of ψ_{i}. For strong obstacles we use the empirically found

Cormula ${ }^{33}$

$$
\begin{equation*}
\tau_{1}^{*}=0.82 \cos \frac{\psi_{1}}{2} \text { for } \psi_{1}<\frac{\pi}{2} \tag{v.98}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{1}=k \cos ^{\frac{3}{2}}\left(\frac{\psi_{1}}{2}\right) \text { for } \psi_{1}>\frac{\pi}{2} \tag{V.99}
\end{equation*}
$$

Converting the equation (V.96) into integral form and using equations (V.97), (V.98), and (V.99) we obtain the CRSS for the square spectrum of angles

$$
\begin{align*}
\left(\tau^{*}\right)^{2} & =\frac{(0.82)^{2}}{2 \psi_{n}}\left[\psi_{n}+2 \cos \psi_{m} \sin \frac{\psi_{n}}{2}\right] \quad \text { for } \psi_{m}<\frac{\pi}{2} \\
& =\frac{k^{2}}{\psi_{n}}\left[3 \cos \frac{\psi_{m}}{2} \sin \frac{\psi_{n}}{4}+\frac{1}{3} \cos \left(\frac{3}{2} \psi_{m}\right) \sin \left(\frac{3}{4} \psi_{n}\right)\right] \text { for } \psi_{m}>\frac{\pi}{2}
\end{align*}
$$

where

$$
2 \psi_{\mu}=\psi_{\min }+\psi_{\max }
$$

and

$$
\psi_{m}=\psi_{\max }-\psi_{\min }
$$

The second case considered here is the square spectrum of obstacle strengths $\beta_{\text {, (Figure 8). In this case, the distribution function is given by }}$

$$
\begin{equation*}
\rho(\beta)=\frac{1}{\beta_{\max }-\beta_{\min }} \tag{V.101}
\end{equation*}
$$

For the stresses τ_{i}, we use the equivalent forms of equations (V.98) and (V.99) using the relation $\beta_{i}=\cos \left(\frac{\psi_{i}}{2}\right)$.

Using the equations (V.96) and (V.101) we obtain the CRSS for the square spectrum of strengths (β_{1})

$$
\begin{align*}
\left(\sigma^{*}\right)^{2} & =(0.82)^{2}\left[\beta_{m}^{2}+\frac{1}{12} \beta_{n}^{2}\right] & & \text { for } \beta_{m}>0.7 \\
& =k^{2}\left[\beta_{m}^{3}+\frac{1}{4} \beta_{m}\left[\beta_{n}^{2}\right]\right. & & \text { for } \beta_{m}<0.7 \tag{V.102}
\end{align*}
$$

where the averagt strength $\beta_{n:}$ and the width of the distribution β_{n} are given by

$$
2 \beta_{m}=\beta_{\min }+\beta_{\max }
$$

and

$$
\beta_{n}=\beta_{\max }-\beta_{\operatorname{man}}
$$

The CRSS obtained for the square spectrum of obstacle strengith can be written in terms of angles ψ_{m} and ψ_{k}, using the definitions

$$
\begin{equation*}
\beta_{m}=\frac{1}{2}\left(\cos \frac{\psi_{\min }}{2}+\cos \frac{\psi_{\max }}{2}\right)=\cos \frac{\psi_{m}}{2} \cos \frac{\psi_{x}}{4} \tag{V,103}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{\mathrm{w}}=\cos \frac{\psi_{\min }}{2}-\cos \frac{\psi_{\max }}{2}=2 \sin \frac{\psi_{m}}{2} \cos \frac{\psi_{w}}{4} \tag{V.104}
\end{equation*}
$$

we oblain

$$
\begin{align*}
\left(\tau^{*}\right)^{2} & =\frac{(0.82)^{2}}{3}\left[1+\cos \psi_{m} \cos \frac{\psi_{w}}{2}+\frac{1}{2}\left(\cos \psi_{m}+\cos \frac{\psi_{w}}{2}\right)\right] \text { for } \psi_{m}<\frac{\pi}{2} \\
& =\frac{k^{2}}{4}\left[2 \cos \frac{\psi_{m}}{2} \cos \frac{\psi_{w}}{4}\right]\left[1+\cos \psi_{m} \cos \frac{\psi_{k^{\prime}}}{2}\right] \quad \text { for } \psi_{m}>\frac{\pi}{2} \tag{V.105}
\end{align*}
$$

The consistency of the formulas can be checked by, for example, letting β_{w} go to zero, giving only one type of obstacle, which gives for weak obstacles,
from equation (V.102)

$$
\left(\tau^{*}\right)^{2}=k^{2} \beta_{m}^{3}=k^{2} \beta_{i}^{3}
$$

which is equivalent to the theoretical predictions

B. THERMALLY ACTIVATED GLIDE

Recently, Zaitsev and Nadgornyith discussed the problem of waiting time calculation for computer simulation of thermally activated motion and identified three different methods:

1) the accumulated time method ${ }^{37.61}$
2) the wailing time method ${ }^{\text {(1i), } 62}$
3) the residence time method 25.41 .42 and concluded that the methods 2 and 3 are equivalent and the empirical method 1 is a good approximation. They also indicated that the residence time method can have some advantages under the simulation of dislocation motion through randomly distributed point obstacles. To avoid confusion and to overcome the difficulties of comparing the results obtained using different methods, an account of the statistics employed in this study will be given.

The assumptions and basic equations are summarized in Table l. The obstacles are randomly distributed and the dislocation is allowed to move through them, starting from the bottom as a straight configuration. Let the dislocation at an intermediate position be pressed against a line configuration of point obstacle by the resolved shear stress (Figure 2). If configuration (i) is mechanically stable it must be passed by thermal activation. We ignore the possibility
of thermally activated bow-out of the dislocation line betwe on obstacles and require that activation occur at an obstacle. The activation energy is proportional to the area in force-displacement diagram (Figure 9), and may be written in dimensionless form

$$
\begin{equation*}
g_{1}^{k}=u\left(\beta_{c}\right)-u\left(\beta_{1}{ }^{h}\right) \tag{V.106}
\end{equation*}
$$

where $u(\beta)$ is the dimensionless area under both the force-displacement curve and a horizontal line of height β. The activation barrier at the ($k-h$) obstacle on (i) is then

$$
\begin{equation*}
\Delta G_{1}^{k}=2 \Gamma d g_{1}^{h} \tag{V.107}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\Delta G_{1}^{k}}{2 \Gamma}=\alpha g_{1}^{k} \tag{V.108}
\end{equation*}
$$

where α is the "dimensionless reciprocal temperature"

$$
\begin{equation*}
\alpha=\frac{1}{T^{*}}=\frac{2 \Gamma d}{k T} \tag{V.109}
\end{equation*}
$$

and d denotes the interaction range, usually of the order of one Burger's vector, k is the Boltzmann constant and T is the temperature.

For the statistics of thermal activation past a mechanically stable configuration of obstacles we require two general assumptions about the statistical nature of the activation process ${ }^{25}$:
i) Thermal activation is assumed in a sense that the probability of success in a given trial is independent of previous failures.
ii) Activation trials at a given obstacle are assumed stochastically independent of trials at the other obstacles in simultaneous contact with the dislocation and are taken to occur randomls in time with fixed frequency w. Using these two assamptions, the statistics of thermal activatom past a he configuration may be leveloped as follow's

Th probability for thermal activation past the ($k-1 h$) obstacle in configuration (i) in one altempt is

$$
\begin{equation*}
p_{1}^{h}=\exp \left(-\alpha g_{i}^{k}\right) \tag{V.110}
\end{equation*}
$$

where () and g_{i}^{h} have been defined in equations (V.109) and (V.106), respectively. The probability that the barrier remains uncut after j trials, given that it was inta : initially is

$$
\begin{equation*}
q_{1}^{k}(j)=\left(1-p_{i}^{k}\right) \tag{V.1}
\end{equation*}
$$

Let the islocation attenipt the obstacle with mean frequency ω, assumed constant, then, following assumption ii), that the activation trials occur randomly in time with expectation unity per unit of dimensionless time

$$
\begin{equation*}
t^{\prime}=\omega t \tag{V.112}
\end{equation*}
$$

the probability of exactly j trials in time t^{*} is given by the Poisson formula

$$
\begin{equation*}
p(j, t)=\frac{(t) j}{j!} e^{-i} \tag{V.113}
\end{equation*}
$$

and the probability $q_{i}^{k}(t)$ can be written ${ }^{25}$ as

$$
\begin{equation*}
q_{i}^{k}(t)=\exp \left(-p_{i}^{k} t\right) \tag{V.114}
\end{equation*}
$$

The probability that the i-th configuration remains uncut after time i° is the probability that all obstacles on (i) remain intact at i°

$$
\begin{equation*}
q_{i}(t)=\prod_{k=1}^{N} q_{1}^{k}(0)=\exp (-1,1) \tag{array}
\end{equation*}
$$

where

$$
\begin{equation*}
1=\sum_{i=1}^{n} p_{i}^{i} \tag{V.116}
\end{equation*}
$$

and N is the number of obstacles on (i).
The residence time of the dislocation in configuration (i) is the time required for thermal activation past at least one obstacle on (i). Hence the expected value of the residence time is

$$
\begin{equation*}
\left\langle l_{1}^{*}\right\rangle=\Lambda_{1}^{-1} \tag{V.117}
\end{equation*}
$$

The probability that thermal activation will occur first at an obstacle (k) on configuration (i) is

$$
\begin{equation*}
\eta(k, i)=\frac{p_{i}^{k}}{\sum_{k=1}^{N} p_{1}^{k}}=\frac{p_{1}^{k}}{\Lambda_{i}} \tag{V.118}
\end{equation*}
$$

In thermally activated glide the dislocation encounters a seqence of obstacle configurations as it moves through the array. These define the "glide path" χ of the dislocation. If there are (r) stable configurations along a particular path (χ) through the array then the expected transit time of a dislocation along (χ) is

$$
\begin{equation*}
\left\langle i_{x}^{\dot{x}}\right\rangle=\sum_{i=1}^{r} \Lambda_{i}^{-1} \tag{V.119}
\end{equation*}
$$

where we assume that the time required for disiocation glide between successive stable obstacle configurations is negligible compared to the time required for thermal activation past these configurations.

Given that the dislocation may take any one of many a vailable glide paths through the array, the expected transil time is

$$
\begin{equation*}
\langle\dot{t}\rangle=\sum_{x} \mu_{x}\left\langle i_{x}\right\rangle \tag{V.120}
\end{equation*}
$$

where μ_{x} is the probability that the path x is followed in a given trial.
A variety of ways have been suggested to calculate the average velocity of a dislocation; such as from the total area swept through and the total time during motion; from the average area per activation event and the average expectation time and from the distance traveled by the end of a dislocation and total lime. We define the expected value of the velocity of glide through a given array of obstacles in the following way: We consider a crystal made up of parallel glide planes, which contain a distribution of non-interacting gliding dislocations (i.e. the distance between planes is assumed to be sufficiently large). The expected value of the instantaneous strain rate of the crystal is

$$
\begin{equation*}
\dot{\gamma}=\frac{b}{V}\langle\partial A / \partial r\rangle \tag{V.121}
\end{equation*}
$$

where $\langle\partial A / \partial t\rangle$ is the expected total area swept per unit time and V is the volume of the crystal. The strain rate in dimensionless form is

$$
\begin{equation*}
\left.\dot{\gamma}^{*}=\left(\frac{\rho b}{t_{s}}\right)<v^{*}\right\rangle \tag{V.122}
\end{equation*}
$$

where ρ is the number of dislocations per dimensionless area and $\left\langle v^{\circ}\right\rangle$ is the expected value of the dimensionless velocity, which can be written as

$$
\begin{equation*}
\left\langle 1^{\circ}\right\rangle=N^{1 / 2} /\left\langle i^{\circ}\right\rangle \tag{V.123}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\langle v^{\circ}\right\rangle=\frac{A^{\bullet}}{W^{\circ}\left\langle I^{\circ}\right\rangle} \tag{V.124}
\end{equation*}
$$

where A^{*} is the dimensionless total area swept and W^{*} is the dimensionless width and N is the number of obstacles in the array.

For a crystal made up of stacking of (M) parallel slip planes containing a uniform ${ }^{41}$ distribution of dislocations the steady state strain rate may be written in dimensioniess form

$$
\begin{equation*}
\dot{\gamma}^{*}=\left(\rho b / l_{s}\right) \ddot{v} \tag{V.125}
\end{equation*}
$$

where \tilde{v}^{*} is the average of the expected glide velocity for the individual planes in the crystal,

$$
\begin{equation*}
\tilde{v}^{*}=\frac{1}{M} \sum_{i=1}^{M}\left\langle v_{i}^{*}\right\rangle \tag{V.126}
\end{equation*}
$$

with $\left\langle v_{i}^{*}\right\rangle$ the expected value for the glide velocity of the dislocation: in the ($1-$ th) plane and M is the total number of glide planes.

VI. COMPUTER SIMULATION

Given the geometric complexity of the dislocation structure and the microstructure in the usual realistic case the treatment of dislocation glide rapidly becomes analytically intractable, even when rather simple assumptions are made about the propertues of the dislocations. In analytic treatment of dislocation motion, as described in the previous section, one is usually forced into idealizing assumptions concerning both the critical events which govern glide and the manner in which these events sum statistically to yield glide conditions or glide rates.

The availability of large computers adds a new dimension to the study of dislocation motion. Since these are capable of rapid numerical calculation, of storing and recaling complex geometrical information. and of modeling simultaneous interacting processes the efficient use of computers allows the study of dislocation models in much more elaborate detail. While computer models, like any theoretical models, require initial idealizing assumptions, the number of these assumptions may be greatly reduced and the richness of the sesults significantly enhanced.

The computer simulation research of this investigation has concentrated on the effects of the configuration of dislocations and the nature and distribution of microstructural barriers on the critical resolved shear stress and the velocity of thermally activated glide. Given the intent of this work the properties of the dislocations and the micros1ructural barriers have been modelled in the simplest plausible way so that the full power of the computer could be devoted to pro-
viding the geomerrical structure needed to give statistical detail.
A solution to the problem of plastic deformation in the simple model outlined in the previous section should predict at least three types of information:
(1) The athermal yield stress. or critical resolved shear stress for athermal glide (τ_{c}), which depends upon the distribution of disiuations, the nature of dislocation interactions, and the strength and distribution of haralers.
(2) The rate of deformation, which depends additionally on the appled stress, the temperature and the specific nature of the dislocation-obstacle interaction.
(3) The salient morphological features of the deformation process, insluding in particular the temporal "jerkiness" and spatia: heterogeneity of flow. The solution should, moreover be phrased in analytic form, either as the analytic solution to a well-posed subproblem, or as an accurate analytic fit to probative computer-generated data.

Given these desirable features a suitable computer simulation code should have at least the following capabilities:
(1) The flexibility to simulate a variety of interesting cases;
(2) The ability to generate accurate data on the critical resolved shear stress and the flow rate for non-trivial models in reasonable computer time;
(3) The ability to monitor the deformation process in sufficient detail that critical mechanistic features may be identified and isolated for detailed study;
(4) The capability of computing and retrieving the specific data needed to
assesss and critisize theoretical models.

A code which generally satisfies these criterion has been in use at Berkeley for sometime. In the following section the central features of that code, which have been reported primarily in references 41,42 , and 63 , are described.

A BASIC CODING TECHNIQLES

In the basic problem simulated in this research a dislocation is introduced imo a glide plane containing a distribution of poim barriers of specified properties. A stress is applied and the dislocation is allowed to move freely until it finds itself an obstacle configuration which cannot be passed mechanically under the applied load (Figure 10).

Subsequent behavior depends on the process being simulated. In simulating athermal glide the applied stress is increased until the dislocation configuration just becomes mechanicaliy unstable. The dislocations are then displaced through the array until a new stable configuration is found.

As indicated in Figure 11 this process of saising the stress to the minimum point of instability and advancing the dislocation until a new stable configuration is found is continued until a new value of the stress is reached at which no further stable configurations occur. The lowest such value is the critical resolved shear stress, $\boldsymbol{\tau}_{c}^{\circ}$. The salient feature of the athermal glide process is the strength determining configuration, the configuration of dislocations and obstacles which is most stable mechanically, and hence determines $\tau_{r^{\circ}}$.

In simulating thermally activated glide the applied stress is constant and
the activation barrier is computed at each pinning point in the configuration. The site for thermal activation is then chosen using proper statistical procedures ${ }^{25}$ (or well- defined approximations to them) The activated site is broken, and the dislocation is adranced unill a new configuramon is found This process is iterated and the velocity of glide is compued from statistical formulae ${ }^{41}$. The salient feature of thermally activated glide is the sequence of stable configurations encountered during passage through the obstacle array, the geometric properties of these configurations determine the relevant activation barriers.

The precise code used to simulate the processes described above depends on the specific case under study e.g. whether the dislocation motion is assumed to be athermal or thermally activated. These various specific codes are, however, obtained by varying the peripheral features of a code which depend upon three central techniques: (1) A method for storing obstacle arrays so that local subsets can be easily accessed; (2) a data structure for dislocations, which carries all relevant information in a compact form and allows efficient modification as the dislocélon is moved; (3) a consistent algorithm which advances dislocations efficiently and without loss of information.

1. Storing the Obstacle Array

Clearly any algorithm for locally advancing a dislocation need consider only the obstacles in the immediate vicinity of the portion of the dislocation currently being advanced. It is hence efficient to store the obstacle array in subarrays such that only the relevant local subarrays need to be accessed and
considered when locally advancing the dislocation. If a subarray has an area, A, containing randomly distnbuted points af densily one then the probabilly, $p(n, A)$, of finding n pomts in the subarras is

$$
\rho(n, A)=\frac{A^{n}}{n!} \exp ^{(-A)}
$$

Inverting this function, a random number gencrator can be used to determine the number of points in each subarray Thus by chorsing the dimensions of the subarrays each subarray can be constructed indıidually:

The subarrays may be filled in either one of two ways. If the total size of the array is relatively small, so that computer storage is not an issue, one may simply fill the subarrays by using a random number generator to establish the x and y coordinates of the points contained. The x and y coordinates of all pomis, may be stored in ordered one-dimensional array's with additional ordered onedimensional arrays, as needed, containing the strengths and other pertinent properties of the individual obstacles. Two additional arrays of dimensions two are used to store the start and the end location of each subarray in the x and y arrays. Thus a directory is created for finding the necessary subregions of the entire array. The directory also aliows efficient storage of the x and y arrays. Finally, each obstacle is marked with a digit indicating whether it is behind, ahead of, or on a given dislocation.

When the simulation considers either glide through large arrays or simultaneous glide in several arrays computer storage becomes relevant. A straightforward and useful alternative method may ther be used. Rather than storing
the entire array the seeds for the random number generator for each subarray are slored in the directory on construction of the subarrays previously described. Then no subarray need be retained in storage since each can be constructed consistently as needed. Arrays can be recorded and reproduced in separate experiments by simply recalling, (or cunsistenly regenerating) the subarray structure and the associated seeds.

If the subsequent reproducibility of the partucular obstacle array is not necessary to the simulation experiment an even more efficient technique may be used. The only a priori information known about a random array of obstacles is its density, which is, in this problem, identically one if the unit length is taken to be l_{s}. It is hence statistically permissible to construct random subregions as they are needed when the dislocation is advanced. Since the dislocation dces not know what is in front of it, and does not remember what is behind it, the only obstacle information which ever need be actively in storage is the nature and location of the obstacles which are actually in contact with the dislocation and the nature and location of the obstacles immediately in front of the specific local section of the dislocation which is currently being advanced. In this the glide of an isolated dislocation through an array of very large size may be efficiently treated with minimal demand on compuier memory.

These are the basic algorithms used in the simulation code to efficiently create, store and retrieve the obstacle arrays. The modification of these techniques to treat non-random distribution of obstacles is straight-forward.

2. Representing the Dislocation

To optimize the information obtaia drom the simulation of glide it is important that the dislocation be stored in the computer in a simple array which contains all relevant information and can be eatsib accessed and updatud These criteria are efficiently mel by a data structure in which a dislacation is represented by a two-way chained list. The central element of this structure in a simple ordered list of the x and y coordinates of the obstacles in current contact with the dislocation. Each obstacle in this list is then connected to twe identifiers which give the location in storage of the obstacles to its immediate left and right, and to a mark which indicated whether the mechanical stability of the dislocation segment to the right of the obstacle has been verified. The configurations of several dislocations may be simultaneously stored by adding a list of pointers to one obstacle on each dislocation; given periodic boundary conditions the sublist representing a single dislocation will be closed under the operation of left and right connection.

All relevant information concerning the dislocation, such as the shapes of inter-obstacle segments, the forces on the obstacies, and the mechanical stability of the configuration, may be easily computed from the information contained in this double chained list. When the dislocation is advanced the bypassing of an obstacle is accounted for by simply deleting it from the list and updating the relevant connections; contact with a new obstacle is achieved by simply adding it to the list. Interesting configurations, such as the strength determining configuration may be stored for later study by simply copying the
list in storage.

3. Advancing the Dislocation

The dislocation is advanced in the code by the analytic equivalent of the following procedure. A dislocation configuration tecomes unstable by bypassing an otstacle along it, either because of mechanical instability of the segment to the left or right of the obstacle due to the increasing stress or because the obstacle has been passed by thermal activation according to some criterion. This obstacle is appropriately marked and removed from the list representing the dislocation. the obstacles to its left and right are connected in the list and the associated segment is marked to indicate that its stability has not been verified.

The new dislocation segment will bow out between ins terminal obstacles toward equilibrium. This bow-out process will be terminated by the first of three events:
(1) the dislocation encounters a new obstacle of the array;
(2) the dislocation violates the angle condition $\psi>\psi_{c}$ or the strength condition $\beta<\beta_{r}$ at one of its two end points;
(3) the dislocation segment bows into the equilibrium radius $R^{\circ}(=1 / 2 ;)$. To determine the first of these events the following geometric relation is utilized (Figure 12): if a circular are is drawn through two moints A and B , and if a third point, C , is located on this are and connected to A and B by lines $\overline{A C}$ and $\overline{C B}$, then the angle, α, measured clockwise between the extension of $\overline{A C}$ and
$\overline{C B}$ is given

$$
\begin{equation*}
\alpha_{1}=\sin ^{-1}(\overline{A B} / 2 R) \tag{V12}
\end{equation*}
$$

where $\overline{A B}$ is the distance from $\mathrm{A} t \mathrm{~B}$ and R is the radius of the arc. Using the terminal conditions (2) and (3), a maximum value, α_{m}, may be found at which the bow-vut process necessari!y ierminates. The atea of the anray associated with bow-out to α_{m} may then be idenufied and the values of α, computed for each obstacle, C_{k}, within this area.

If there are obstacles having $\alpha_{k} \leqslant \alpha_{n}$ then the particular obstacle having the minimum value of α would be the first contacted by the dislocation in a continuous bow-out process. The obstacle is added to the dislocation and the list is updated to correct for its connecuons to left and right. The corresponding sections are marked and their stability or possible further subdivision is lested in turn.

If there are no obstacles having $\alpha_{k} \leqslant \alpha_{m}$ then the appropriate terminal condition (2) or (3) is invoked. If condition (2) pertains then the unstable end point is by-passed by properly marking it, removing it from the list, and updating the list. The update defines a new segment whose stability must be tested. If condition (3) pertains then a stable segment has heen found. When the list representing the dislocation contains only stable segments a stable configuration has been found.

When the dimensionless applied stress is high ($\tau^{*} \geqslant 0.5$) an additional check must be made for possible instability due to self-intersections of the dislocation and a procedure must be provided to decompose the dislocation list
to account for the formation of stable loops from self-intersections during glide. The procedures for handling these cases are straight-fnrward using the data structure and search algorithm described. At lower values of 7° such intersections are extremely uncommon, and may usually be ignored.

A stable configuration may be broken by enther increasing the stress or selecting an obstacie for thermal activation. The stress at which the configuration first becomes unstable may be precisely calculated, and corrected for possible contact with additional obstacles during bow-out as the stress is raised. The athermal critical resolved shear stress is that value of τ° which is just sufficient to insure that no stable configurations are found. It may be found by continuously increasing τ^{\star} unti! no further stable configurations are encountered(Figure 11).

For thermally activated glide, the following procedure is used to calculate the velocity of glide. Given a stable configuration, the code computes the angles ψ_{i}^{k} along it, and uses the assigned value of the dimensionless reciprocal temperature, α, to compute the mean residence time according to equation (V.117). It then calls a random number and chooses an activation site according to the probability assignment given in equation (V.118). The chosen point is passed, and the code then initiates a new search to establish the next stable configuration. In this way a statistically chosen glide path is generated and a transit time is computed according to equation (V.119). By allowing several sequential passages the ergodic average of the transit time is estimated (equation (V.!20) and the glide velocity $\left\langle\nu^{\circ}\right\rangle$ found.

The above described data structure and search algonthm combine to yield a code whose efficiency is sufficient for the purposes of this research. In current use on the $\operatorname{CDC} 6600 / 7600$ systen at the Lawrence Berkeley Laboratory the code requires - 25 computer units (-8 seconds) of running time to determine the athermal resolved sheur stress for glide through an array of 10^{4} points together with a geometric analysis and TV-graphic plot of the strength determining configuration. The simulation of thermally-activated glide is only slightly less rapid. The simulation of glide through very large arrays is relatively time-consuming, but not prohibitively so. Analysis of glide through a square array of 10^{6} points requires -1500 computing units ($-71 / 2$ minutes).

B. APPLICATIONS AND RESCLTS

The coding procedures described above have been used to conduct simula. tion studies on the problem of dislocation motion through randomly distributed point obstacles. The athermal cribical resolved shear stres for glide through a random array of tike vostacles was previousty invenigated by Korks ${ }^{36}$ for the particular case of impenetrable obstacles) and by Forer an and Makin. ${ }^{2}$ Thes studies were extended ${ }^{44}$ to include the statistics of the athermal glide stress and the detailed features of the paricular obstacle configurdton, in the limit of large array size. To test the validty of the equations nbtained for CRSS and the geometric properties of the strength-determining configuratoons it was necessaty to simulate glide through very large arrays. The results obained from this study are reported below.

1. DISLOCATION GLIDE THROUGH LARGE ARRAYS

To study the effects of array size and shape we employed computer sithuia tion of dislocation glide through arrays containing 10^{3} to 10^{6} obstacles. In each case the properties of the strongest configuration (i.e. CRSS, average segment length, distribution of forces and segment lengths) were printed out. The size effect was studied by taking square arrays and increasing the rumber of obstacles (e.g. for 10^{6} obstacles we took an array of size of 1000×1000). For the shape effect, the number of obstacles was kept constant (e.g. 250,000) but the width of the array was changed.

Two types of boundaries were used in this study. Periodic boundaries, where the array is extended periodically in both directions were used in most of
the computer simulation runs. Mirror houndaries which require that the dislocation meets the boundaries at right angles has also been used in order to see the effects of boundary conditions.

Figure 13 shows the data obtained from simulation of arrays containing up to 10^{6} obstacles. The CRSS for athermal glide is ploted as a function of the width of the array. The obstacle strength $\left(\beta_{c}\right)$ was chosen to be 0.01 and periodic boundaries were used. As is clear from the figure, the CRSS decreases steadily as the array size is increased and approaches a limiting value. The comparison between computer simulation and predictions (equations (IIl.17). (V.23) and (V.46)) are shown in Figure 14, where the strengith of the array β_{1} at a fixed value of the applied stress ($\tau^{*}=0.001$) is plotted as a function of the width of the array. As can be seen from the figure, the parameter β_{1} increases with array size and appears to asymptote at a value close to that predicted by Hanson and Morris ${ }^{44}$. For comparison the value of β_{1} predicted by Friedel ${ }^{13}$, (equation III.1\%), is also included, which underestimates the data for large arrays. The solution by Labusch ${ }^{58}$, equation (V.46), underestimates the data, but the corrected form, equation (V.47), gives very close agreement with the value oblained from arrays containing 10^{6} obstacles. The data bars in Figures 13 and 14 correspond to computer simulation of two different arrays. Notice that these values are different even for large arrays. The scatter in data, i.e. changes in the properties of the strongest cofifiguration from array to array has important consequences with respect to deformation behavior of idealized crystals. ${ }^{42}$

The distribution of forces on the strongest configuration of an array containing 10^{6} obstacles is shown in Figure 15 , where the force exerted by the dislocation on each obstacle in the strongest configuration is calculated according to equation (III.9). The theoretical distributions are those obtained by Hanson and Morris ${ }^{44}$, equation (V.26), and by !abusch, ${ }^{58}$ equation (V.48). The data to construct the histogram was obtained from dislocation glide through 10° obstacles at a stress of $\tau^{*}=0.001$. The strongest configuration contained 14] obstacles.

The force distribution given by Hanson and Morris gives a rather good fir to the empirical histogram obtained from computer simulation. The prediction by Labusch requires a correction factor in order to give a reasonable fit to the empirical distribution.

The average segment lengths, obtained from two arrays containing obstacles from 10^{3} to 10^{6} are plotted in Figure 16 as a function of the widt of the arrays. The $\left\langle\mathrm{l}^{*}\right\rangle$ values seem to be a slowly increasing function of array size. and to approach the value predicted by Hanson and Morris ${ }^{44}$, equation (V.34). for very large arrays. The "Friedel relation", equation (III.I9), overestimates the simulation data b_{y} more than 30%. The value obtained by Labusch, equation (V.53), underestimates the computer simulation results for large arrays.

The distribution of segment lengths are compared in Figure 17, where the histogram obtained from an array containing 10^{6} points is plotted at a constant applied stress of $\tau^{*}=0.001$. The theoretical distribution by Hanson and Morris ${ }^{44}$, equation (V.30) does a poor job of reproducing the empirical curve,
suggesting that the discrepancy is due to the approximations used in the theoretical model and not due to array size. However, as noted earlier, the average segment length matches that obtained from theory very closely. The prediction by Labusch ${ }^{58}$, equation (V.51), gives the shape of the histograni reasonably well.

The distribution of the angle ϕ predicted by both theories, equationt (Y.29) and (V.50), are compared with the simulation data in Figure 18. The solution by Hanson and Morris ${ }^{44}$ requires that there is a cut-off angle $\dot{\phi}_{0}$. whereas the prediction by Labusch ${ }^{58}$ gives a rather good fit to the empirical distribution.

a) Correction to the Theory

In the following a simple analytic technique for estimating the influence of the array size on the CRSS will be given. We assume, in addition to those introduced in reference 44, that an obstacle array of arbitrarily large size contains a high density of strong configurations and the strong confgutations encountered in glide through a finite array are subsets of these. Using these assumptions one could write the average number of configurations having strengths $\beta \geqslant \beta$, to be

$$
\begin{equation*}
<m\rangle=\left(\frac{n N}{2}\right)(S)^{n} \tag{VI.3}
\end{equation*}
$$

where n is the number of obstacles on the dislocation, N is the total number of points in the array and S is the area of force distribution, (Figure 19).

By setting

$$
\begin{equation*}
\langle m\rangle=1 \tag{VI.4}
\end{equation*}
$$

one can write

$$
\begin{equation*}
S(\beta)=\left(\frac{n N}{2}\right)^{-\frac{1}{n}} \tag{V1.5}
\end{equation*}
$$

and inverting

$$
\begin{equation*}
\beta=f(S) \tag{V,6}
\end{equation*}
$$

Using equation (V.28) for S, the value of β or τ^{*} can be calculated numerically.

Figure 20 shows the value of the obstacle strengith, β_{1}, required to prevent athermal glide under given applied stress as a function of array width, for two
stresses, $\tau^{*}=0.005$ and $\tau^{*}=0.001$, where mirror boundaries were used. The agreement between the computer simulation and the prediction (equation (VIG)) is very good. In Figure 21, the (KSS for athetmal ghde is ploted as a function of the dimensionless obstacle strength. β, for square arrays contaning 10^{h} points. Here, peroduc boundaries were used Agan for these sizes of arrays the agreement between calculation and compute samulation is good However, further refinement of the analysts is needed waccount for effect which intrude at higher obstacle strengthe and for the influence of boundary conditions in arrays of small size.

To study the effects of array shape on the mrapertes, of the strongent configuration, rectangular arrays are considered, where the number of points in the array is kepl constant and the arras width or height is varied. The strength β_{1} as a function of the width of the array containing 250 , (1m prunts is shown in Figure 22. The computer simulation data was taken for an applied stress $\tau^{*}=$ 0.005 and periodic boundaries were used. The prediction according to equation (V1.6) is drawn as a continuous line. The agreement beikcen theory and con:puter simulation is good.

b) Thermally Activated Glide

The dependence of β_{1} on array size and shape has profound effects on dislocation velocity in thermally activated glide. For a dislocation-obstacle interaction of simple step form, the velocity of the dislocation at low tempera1ures can be written ${ }^{41.42}$ in Arrhenius form

$$
\begin{equation*}
\left\langle\nu^{*}\right\rangle=\frac{N}{W^{*}} \cdot \exp \left[-\alpha\left(\beta_{c}-\beta_{1}\right)\right] \tag{VI.7}
\end{equation*}
$$

where N is the number of obstacles in the array and \mathbf{W}° is the width of the array in terms of I_{s}, and α is the thermal parameter (equation (V.109)). As can be seen from equation (V1.7), as β_{1} increases with W^{*} the dislocation telo. city will increase exponentially, the more so as α increases, i.e. as temperature decreases. The scatter in β_{1} from array to array has also important consequences ${ }^{42.43}$, where at low temperatures the dislocation will glide on those planes on which the glide velocity is highest and thus the deformation of tat crystal appears inhomogeneous. The deformation becomes homogeneous ds temperature is raised or stress is decreased.

2. GLIDE THROUGH FIELDS OF UNLIKE OBSTACLES

Foreman and Makin ${ }^{33}$ were the first to report on the computer simstaitor of dislocation glide through mixture of obstacles. They carried out their sim. lation for relatively high strength obstacles and used mirror boundary condition Their results seem to confirm equation (V.92), quadratic mean of stresses, fo: all strong obstacles except in the region where $\beta_{s} \gg \beta_{w}$ and $x_{5} \ll x_{n}$, where equation (V.93), simple addition of stresses, is assumed to be valid.

Hanson and Morris ${ }^{45}$ extended the analytic procedure to estimate the cailcal resolved shear stress for glide through an array of like barriers, to treat the case of simultaneous random distribution of obstacles of different properthes. The predictions of the equations were compared to the results of simulation experiments on glide through arrays containing both strong and weak obstacles. Relevant properties of the strength-determining configurations were determined, including the distribution of angles and segment lengths and the relative
fractions of strong and weak obstacles in actual contact with the disiocation line.

a) Two types of obstacles

To identify the regions of applicabilty of the solutions to the CRSS for tuo kinds of obstacles we carried out extensive computer simulation of mixtures of two kinds relatively weak obstacles using periodic boundary conditions.

In Figure 23, we plot the CRSS for arrays containing strong and weak obs. tacles as a function of the fraction of weak obstacles $\left(x_{n}\right)$. The CRSS decreases as more and more weak obstacles occupy obstacle positons. The relathe strengths of the obstacles correspond to the critical angies of 90° and 130°. To obtain the data we used 10,000 obstacle arrays. For comparison we plot the data obtained by Foreman and Makin ${ }^{33}$ and the approximate equation (1.80). Both the data obtained in this study and by Forcman and Makin is in good agreement with the prediction.

In Figure 24 we show the dependence of the CRSS on the fraction of strong obstacies $\left(x_{s}\right)$, which increases as the relative number of strong obstacles increases. The obstacles have strengths $0.1,0.05$ and 0.01 . The data is oblained from computer simulation of 10 arrays containing 10,000 obstacies and is shown as data bars. We have also plotted various predictions discussed earlier. The formula (V.92) fits the data approximately over the whole region of obstacle fractions, except in the case where $\beta_{s} \gg \beta_{\mu}$ and $x_{s} \ll x_{w}$, where the simple addition of stresses can be used. The approximate formula (V.80) fits the computer simulation data over the whole region of obstacle strengths and fractions. The exact theoretical prediction (equations(V.66) and (V.67))
underestimates the data consistently, a resuit which is believed to be due to relatively small size of the array's used to obtain the data. The CRSS for arrays containing two types of obstacles is also array size dependent and decreases as the width of the array increases. This is illustated in Feque 25, where uc have ploted CRSS as a function of the widh of the arams comtaning two thes of obstacles of strengths $\beta_{s}=0.05$ and $\beta_{n}=0.01$ and relatuve fractions $x_{s}=1.1$ and $x_{k}=0.9$. The CRSS decreases steadly and seems to anaroach a tmmin wilue for large arrays.

The problem of finding the appicability and the ranges of validt: of equations (V.92) and (V.93) is considered in Figures 26 and 27 . It is dear from Figure 24 that the simple addition of stresses consistently overestmates the simulation data and the difference diminishes as the ratic of the obstacle strengths is increased. This suggests that either the equation (V. 93) is valid ir a very limited range of obstacle strengths and fractions or it is formitaus ano holds when the effect of one of the obstacles is negligible. The differentation between formulas (V.92) and (V.93) is difficult because of the sca:tic in casa obtained from these finite size arrays. Since, the size of the array was not considered in obtaining equations (V.92) and (V.93) and since the plot of these predictions require the knowledge of the end points τ_{s}^{*} and $\tau_{x^{*}}^{*}$, at $x_{s}=1$ and $x_{s}=0$, we simulated an array which is rectangular in shape and contains 2000 points. The width of the array was chosen to be 200 so that the strongest configuration will contain a larger number of obstacles. The obstacle strengths were chosen to be 0.1 and 0.01 , giving a ratio of 10 , which could be considered

10 be in the range of applicability of equation (V93). Figure 26 shows the CRSS as a function of fractuon of shong obstacles in the array We considered arrays containing up to 10% stong obstacles Even ir thr range, where the artay contains many weak and feu strong obstacks. equation iv.93) overentimates the computer simulaion data. whereas equalior. (V 921 gives a very good fit to the simulation results The datia ohtained from simulation of arrays containing an even smaller number of nhsiactes $(x, f \%$ did nos fall through the prediction of equation (V.93. As shamon in Figure 27, ewn for this case equation (V.92) predicts the results rather ciosely

Aside from the comparison made with compute: smuiation data, equations (V.92) and (V.93) also differ in their behavior of slopes ($d \tau * / d x$, as $x_{\text {. }}$ approaches zero. This slope is finite for equations (80) and (v.92), whereas for the simple addition of the stresses it is infinite. However, it is difficult th get $\left(d \tau * / d x_{s}\right)$ from the computer simulation data as $x_{1}-0$ Also as was shown previously, the equation (V.93) breaks down for $\beta_{s}=\beta_{\mu}$ and $x_{s}=x_{n}=0.5$.

The fraction of strong obstacles on the strongest confguration $\left(c_{s}\right)$ is shown as a function of the fraction of strong obstacles in the array $\left(x_{s}\right)$ in Fig. ure 28. The obstacle strengths used to obtain the data ware $0.1,0.05$ and 0.01 . The parameter c_{s} increases with x_{s} with sharper slope as the fraction (β_{s} / β_{n}) increases. We have aiso plotted in the figure the analytical prediction, according to equation (V.81). As is apparent from the figure the caluatation reproduces the computer simulation results very well.

The average segment length as a function of the fraction of strong obsta-
cles is plotted in Figure 29 and compared with the equation (V .87). The caiculation (equation (V.87)) gives a good fit to the dati obtained from the computer simulation of arrays containing 10,000 obstacies An interesting feature in the figure is that the average segment length as a functom of x_{s} undergoe: a mad. imum in the range where there are a lot of wat and few strong of intes This maximum is predicied correctly by the equaton (V:87) and is mow nounced when the differerce in the obstache strengths is large Thi, ain be explained with the help of Figure 28, where the dolocaton "picks up" more strong obstacles at small fractons which is more pronounced as the ration ($\beta_{5}!\beta_{n}$) increases. For example, in arrays onnaming 5% strong obstact . 4 , strongest configuration contains 20% strong obstacles for $\left(\beta_{s} / \beta_{s}\right)=2$ ihe fraction of strong obstacles increases as $\left(\beta_{s} / \beta_{k}\right)$ increases. For $\lambda_{s}=3 i$, : tas fraction of strong obstacles is, from Figure 28 , about 55% for $\beta_{s} / \beta_{k}=5$ and 75% for $\beta_{s} / \beta_{\kappa}=10$.

b) Square spectrum of obstacle strengths

The obstacle strength can be defined either by the critical angle ψ, or the critical strength β_{ς}. We first consider the square distribution of obstacle angles ψ, as shown in Figure 7. The critical resolved shear stress τ° as predicted by the equation (V.100) is shown as functions of the average angle ψ_{m} and the width of the distribution $\boldsymbol{3}_{\mathrm{n}}$ in Figure 30 . The data obtained by Foreman and Makin ${ }^{33}$ in simulating arrays containing 10,000 points is plotted as points. The data obtained in the present work is plotted as data bars and is taken from computer simulation of five arrays containing 1600 obstacles. As can be seen in the
figure the prediction (equation (S .100)) fits the data very well within the range of scatter. The calculation in the range of $\psi_{m} \leqslant 3 \pi / 8$ was done for complete. ness. since the work by Bacon et al. ${ }^{44}$ showed, that due w the interactoon between neighbruring segrnenth the more reahstu case for point obsiawie strengths to be 0.7 and tower in generat, as shown in figure $30,7^{\circ}$ is a very weak function of the width of the draributon and decreases stowly if $\psi_{n}<\frac{\pi}{2}$ and increases with w_{n} if $\psi_{m}>\frac{\pi}{2}$. In figure 3 we whe the results for CRSS obtained between the angles $\frac{\pi}{2}$ and π The constant k in equation (N lon: which is array size dependent was obtained for $\psi_{m}=5 \pi / 8$ to be 0.92 from 5 arrays containing 1600 obstacles.

The second case to be considered for the distribution of obstacle strength. is the square spectrum of strengths(β) according to Figure 8. We plot the CRSS as a function of the width of the distribution in Figure 32. We used equations (V.90) and (V.91) to convert β, into $\psi_{\text {, }}$. The data bars indicate the computer simulation results of five arrays containing 1600 points. The prediction according to equation (V.105) is also plotted in the figure and shows good agreement with the computer simulation data. Figure 32 is very similar to Figure 30 , except when the average angle ψ_{m} is less than $\frac{\pi}{2}$. In this range, the decrease in CRSS is stronger in Figure 32 than in Figure 30. The conversion of the two kinds of square distribution is also possible using

$$
\begin{equation*}
|\rho(\psi) d \psi|=|\rho(\beta) d \beta| \tag{V1.8}
\end{equation*}
$$

For

$$
p(\beta)=\frac{1}{\beta_{\text {miax }}-\beta_{\operatorname{mir}}}
$$

and

$$
\begin{equation*}
d \beta=\frac{1}{2} \sin \frac{t}{2} d \omega \tag{V}
\end{equation*}
$$

ne get

$$
\rho(\psi)=\frac{\sin \left(\frac{4}{2}\right)}{2\left(\beta_{\max }-\beta_{\operatorname{man}}\right)}
$$

or for $\quad \rho\left(v_{3}\right)=\frac{1}{\psi_{\max }-\psi_{\min }}$.

$$
\begin{equation*}
\rho(\beta)=\frac{2}{\psi_{\max }-\psi_{\operatorname{man}}} \cdot \frac{1}{\sqrt{1-\beta^{2}}} \tag{V11i}
\end{equation*}
$$

Thus, the uniform distribution of angles empha is the stronger obstarles Both distributions give similar results if the obstacle strengths are small for for large angles).

The CRSS for the uniform distribution of relatively weak obstacles corresponding 10 angles between $\frac{\pi}{2}$ and π, is siven as a function of ψ_{N} in Figure 33, where the results are very similar to ne one shown in Figure 31.

The average segment lengths as a furction of ψ_{k} for th uniform distribution of relatively weak obstacies is show: in Figure 34. The average segment length depends very weakly on ψ_{m}. he prediction, which is obtained from equation (V.87), is also plotted in the figure and shows good agreement with
the computer simulation data.

The distribution of fores on the stronecst configuration obtained from computer simulation of arrays containing unifrom disiritution of obstade strengths is compared with the theareical predicton in Fgure 35 and shous excellent agreement.

c) Thermally activated glide

Thermally activated glide threuth arras contaning one lype of obstacle has been studied extensively in refe:inces 25.41 and 42 . In these studes. the stanstics of thermally activated gide uere developed and usefi: approximanorn. identified. These approximaton, uere studed through simulation and ther range of accuracy identified ${ }^{41.4}$.

In this section, we report resuits oblaned for thermally activated glide through airays containing two lypes ol obstacles, fistributed randomly We assume that the force-displacement redan is of simple step form. Also, we do not differentiate between obstacles of different types conceraing the effective range of interaction (d) so that the parameter or remans the same for both types of obstacles. If the effective ranges of interaction were different, the parameters must be modified according!y.

Figure 36 gives the stress (τ°) at a given velocity of glide as a function of temperature (T), for an array containing 2000 obstacies, half of which are strong ($\beta_{s}=0.05$) and the other half weak ($\beta_{k^{\prime}}=0.01$), at a velocity of $\ln \left\langle v^{\circ}\right\rangle=-10$. The siresses at $\ln \left\langle v^{\prime}\right\rangle=-10$ as a function of temperature is also plotted if the array's contained only strong ind only weak obstacles.

Using the data given in Figure 36, we see that the formula

$$
\begin{equation*}
\tau^{*}\left(T^{*}\right)=\tau_{s}^{*}\left(T^{*}\right) x_{s}+\tau_{n}^{*}\left(T^{*}\right) x_{n} \tag{V1.12}
\end{equation*}
$$

closely approximates the computer simulation resuis over the whole range of temperature, whereas the formula

$$
\begin{equation*}
\tau^{\circ}\left(T^{*}\right)=T_{j}^{\cdot}\left(T^{*}\right) \sqrt{x_{j}}+\tau_{n}^{*}\left(T^{\circ}\right) \sqrt{x_{n}} \tag{11}
\end{equation*}
$$

overestimates the data.

For arrays containing smaller fractions of strong obstacles (10%) the above results are not chareed and equation (Vl.12) gives a good fit to the computer simulation data (Figure 37).

One of the most striking features in thermally activated glide through arrays containing more than one type of obstacle is that the charact ristics of the configurations change with temperature This is illustrated in Figure 38. where we have plotted the fraction of strong obstacles on the strongest line $\left(c_{s}\right)$ as a function of the inverse of the temperature $(1 / T)$ at a given stress ($\tau^{\circ}=0.005$). As can be seen from the figure, the fraction of strong obstacles increases as temperature decreases, suggesting that at low temperatures only strong obstacles determine the strength and at high temperatures the effect of weak obstacles becomes more pronounced. The parameter c_{s} approaches the athermal value (Figure 28) as the temperature decreases. The configurations obtained at high ($T^{*}=0.1$) and low temperatures ($T^{*}=0.001$) are also shown in the figure, where circles represent strong obstacies and dots represent weak obstacles. It is clear from the figure that the number of strong obstacles on the line decreases as temperature increases.

VII. (OMPARISON WITH EXPFRIMEXTSANI) IISCISSION

 on the stathe is of overcomong loat obstacke b: da ator. whach is needed

 obtaned are senative to the appormations ased and it a necessary to cheir:

The general problem of plasta deformatoon arbina lrom cuating of lowai ized obstacles is complacated by the minuston of sereral factors An extemare laterature has been developed to devente deformatun characteristics due to the motion of dislocations past localized stress fields arising from the presence of substitutional and interstital solute atoms 15.16 .22 .28 .24 , tetragonal pornt defects ${ }^{28.24}$, precipitates and dispersed phases ${ }^{20,26,48,4 y, ~}{ }^{5 \cdots 68}$ and centers of radiation damage ${ }^{69-73}$. While the details will not be reviewed here, it is appropriate to reconsider the validsy of some of the simplifications that have been made 10 facilitate analyses. The stress fields due to the lattice stram centers decrease very rapidly in amplitude and spread over larger areas of the slip plane as their distance from the slip plane increases. It has been customary 10 neglect the effects of all strain centers lying a greate: distance away than one atomic plane on either side of the slip plane. In most approaches no consideration is given to the fact that the slrain centers are usually more or less randomly distributed.

In this study, we assumed the ohstacles to be point-like and randomly dis.
tributed In mose modets. The nature of the obvacle has generally been unspectfed, however a proper desempton of ponf: rinsacte approxmatmon is necessars. According to Murn and Synit if the elf wher range of interation

 cerned with ourners havig shart ang: watabtams the assumption of ran-

 ar flexble forest distocations will mor be randum the nature of the momon of a dislocation through non-random obstacles can of course te quite differeni and is more pronolinced for high-htrength obstactes" ${ }^{4}$

We considered dislocations 10 be flexitic, extensible strings of constant line tension, thus, neglecting effects of orientation, radur, of curvature and the influence of elastic anisotropy on the energy of the dislocation.

Bacon et al. ${ }^{65}$ considered the change in line tension with dislocation type and obstacle spacing when the obstacles are sirnag. The midgniude of line tension can vary by a factor of 4 depencing upon whether the dislocation is edge or screw in character, however, an average line tension could be used for dislocations of mixed character ${ }^{49.75}$. The elastic anisotropy has beer, considered by Scattergood and Bacon ${ }^{76-78}$.

Given the accuracy and short-comings of the model an attempt will be made to make qualitative and quantitative comparison of the results with exper-

小! :

 surengh(β), this also has to be calculated or estanated and would emeraily depend on the shape ${ }^{74}$, stze and posituon of the abstacles relative the the ghde plane. The crilical force in dimensional form is given hy

$$
I_{i}=2 \Gamma \beta,
$$

If the distributions of the obstacle mengits are knoun thati the dimensionles, CRSS (τ *) can be calculated using equation (V.96) and in dimensional form tia equation (VII.1).

The most simple but powerful result obtained from the madei considered here is that the CRSS τ is proportional to the square root of the obstacle concentration, c. Since $l_{s} \propto-\frac{1}{\sqrt{c}}$ we oblain from equation (VII.I)

$$
\begin{equation*}
\tau \propto \sqrt{c} \tag{VII.3}
\end{equation*}
$$

This is an experimental fact, observed in most of the exporimentat studies on
dilute soldisen and prectptation hardened materma

The first direct comparison of experiment and computer simulaton mbohes qualitame aspects of the dishocamon motom The expermental data is taken from Barnes ${ }^{" 1}$, who studed the monemeni of drionalon in irradiated
 Ehector. Marographs of copper whath had been bombarded with 3×10^{-2}

 electron macroscope, noves upuard and forms a senes of arcs in this drection and is held at individual points alone its length. The movement can be realized mone readily from Figure 39, where the four dislocations have been superimnosed by racing each in turn, and it can be seen that some sections do not advance between photographs, while neighbouring secions do. It is apparent that the dislocation was held by a number of very small obstacles until, under the stress the dislocation, released from one, rapidly advanced until it met the next obstacle in its path. It is believed that these small obstacles in copper irradiater. with alpha particles are vacancy clusters which are not planar and that each of them is acting as an obstacie, and it is possible that even smaller crystal disturbances, which are not detected in the electron microscope, are also effective ${ }^{50}$.

For coniparison we have also printed in Figure 39, the motion of the dislocation through randomly distributed point obstacles taken from the computer

 faham

 fastuon

In durect observaton of the merathons between disfocatoms and prown tates in an Aluminium - Silicon alloy Nemoto and Koda ${ }^{86}$ estimated the CRSS from the measurements of the radius of curvature of moving dislocations exparded between the precipitates. Their micrographs showed also close resemblance to the dislucation motion through computer simulation.

In order 10 study the dynamical behaviour of dislocations a direct method has been developed in recen' years. This method is based on the m-sm deformation experiment in a High Voltage Electron Microscope (IJV'EM) with a tensile device attached to it. In this technique, the specimen is deformed plastrcally while under observation in a IIVEM, and the behdwiour of individual
distocations is recorded connmuobidy figura 4 is taken from suct a siudy "; in Figure 40 we compare the dminhutwo if segment lengths ohtaned from computer samulathor with the experamentally determaned ane

 meroseope
b) The diskocaton arats are more or tes random whoul clustered regums such that every dislocation and node can be resolved
c) The yield stress can be reproducibly determined frum specimen to specimen

The specimen which satisfied the above structural conditions closely was idenlified and in-sim HVEM deformation studies were conducled ${ }^{53}$. HVEM has the advantage of being able to penelrate relatively thick foils which permit determinations of the three dimensional array of dislocations. Saimoto et al. ${ }^{53}$ measured the distribution of true segment lengths and the interobstacle spacings. From these measurements and using the following formula for CRSS

$$
\begin{equation*}
\tau=0.887 \beta_{c}^{3 / 2} \frac{G b}{I_{s}} \frac{\ln \left(I_{s} / r_{j}\right)}{2 \pi} \tag{VII.4}
\end{equation*}
$$

they were able to est: nate the obstacle strength β_{c} to be between 0.3 and 0.7 , iaking various values for the lower cut-off radius r_{0}. They wed two reflection

```
! !. A. : | ., & & | .
j:
```


 the dishacan i belsenty

$$
\left\langle v^{\circ}\right\rangle=\left(7^{\circ}\right)^{\prime \prime}
$$

as

$$
\begin{equation*}
m^{\circ}=\frac{d \ln \varphi^{\circ}}{d \ln \sigma^{\circ}} \tag{2116}
\end{equation*}
$$

was given as a function of tomperature. Soweral other :rewterters heve eried to predict m^{*} as a function of stress and lemperature ${ }^{84} 8 \%$. Computar simulation studies ${ }^{2}$ suggest that the stress exponent is a fantion of stass and

$$
\begin{equation*}
A^{\circ} \text {.and als } / 11 \tag{-1}
\end{equation*}
$$

11:

$$
r^{\circ}>=\frac{A^{\circ}}{H} \cdot \cos +\ldots, 1 \ddot{H} \cdot \|
$$

I bene the appemamatuon

$$
\begin{equation*}
\ln \left(\frac{\beta_{1}}{\beta_{1}}\right)=\frac{\beta_{1}}{\beta_{1}}-1 \tag{V}
\end{equation*}
$$

we obtain the stress exponent to be

$$
\begin{equation*}
m^{*}=\frac{2}{3} \beta_{c} \frac{G b^{3}}{k T} \tag{VII.10}
\end{equation*}
$$

where G is the shear modulus and the interaction distance (d) has been assumed to be equal to one Burger's vector. The equation (VII.10) is obtained for a particular dislocation-obstacle interaction form. For other types of interaction similar result can be obtained. Equation (VII.10) indicates that the stress exponent m is an inverse function of temperature and is directly proportional to the obstacle strength. The stress exponent m^{*} as a function of the inverse of the temperature is shown in Figure 41, following the data given in reference 51. The plot gives a straight line through the data points as demanded by equation
(VII.10). The same type of behaviour is observed fros other malerials ${ }^{\text {s. }}$ os This plot can be used westumate the whatacle strength β. Using the values of b and (; for Mg). we estimate frem the slope ef Figure 41 the obstacte stumeth to be of the order of if 1

The same material was deformed in a spectal tensile sage insode the
 The obstacles to the dislocation monno are heleved to be clusters of impuntmes having bizes of the order of 20 A . Ihe dbinbuthor of segment lengibe of screu dislocations obtained from specimens of Mg() single crystals by Appel et
 tion of dislocation motion in arrays containing 2000 ponnts is also shown on the figure This data was obtained from the thermally acuvated glide of dislocations through point obstacles of strength $\beta_{i}=0.1$ a a a temperature of $7^{\circ}=001$ and stress $\tau^{\circ}=0.005$. The agreement heween computer smotation and experiment as shown in Figure 42 is excellent. The density of obstacles estimated from $l_{s}=\langle l\rangle_{\text {measured }} l\left\langle l^{\prime}\right\rangle_{\text {compurer }}$ matches with the impurity concentration closely.

Munjal and Ardell ${ }^{55}$ investigated the effect of the width of the γ particle size distribution on the CRSS of Ni-Al single ciystals containing 6 wt. \% Al. The samples were given two-step aging treatments to produce broader unimodal distributions than those resulting from isothermal aging. By charging the width of the distribution by 30% they observed a decrease in CRSS by 8%. The size distribution of $\gamma^{\prime}\left(\mathrm{Ni}_{3} A l\right)$ particles was oblained by TEM and the breaking
angles were calculated according to the procedure given by Ham ${ }^{80}$. The average angle ψ_{m} was approximated to be in the range of $3 \pi / 8$. The computer simulation data using uniform distribution of angles as obtained by Foreman and Makin ${ }^{\text {i }}$ and in this study in given in Figure 30. The CRSS in the range of $\psi_{\text {, }}=3 \pi / 8$ shows very hule decrease with the changes in the width of the dis. arbung suggestang that the computer simulation and experiment is not in agreement However. since the ohstacle strength is usually taken to be proporwenal the the precipitate size ${ }^{44}$, and since the distribution of angles discriminate, against the weak obstacles, a more reasonable approximation to the distribution of the particle stzes is the uniform distribution of obstacle strengths rather than the angles. The CRSS for the distribution of obstacle strengths is shown in Figure 32, where τ^{*} is a decreasing function of the width of the distribution in the range of $\psi_{m}=3 \pi / 8$. One-10-one correspondence between computer simulation and the experiment in this case is difficult, partly because the precipitates are ordered and dislocations travel in pairs and also, the average particle size and the volume fraction change from experiment to experiment. Also the scatter in the computer simulation data makes the comparison more difficult. However, by taking the calculated distributions of angles given by Munjal and Ardell ${ }^{55}$ and performing computer simulation through randomly distributed point obstarles the CRSS changed by 4106%, which is close to the experimentally observed value. The experimental data is in accord with the computer simulation studies on at least two accounts: First of all, the CRSS decreases with the width of the distrit tion of angles and secondly the experimental data show a small decrease with the width of the distribution compared
 that the (RSS is mamly delemmand b; the averate value of the romathe sireneth

 and good ageement was found between theory and expenmer:

H11. SCMMARYANI) CONCIUSIOM.

The major bejectues of invechgatoons on dishoathon mechanisnts are to pronde a bask understanding of the varied plasta behatour of material and
 researt was to calvulate the CRSS as a functon of the strength of the obstacles and w determane the dostocaton velocity as funcions of temperature and applie. stresh and strength of the obsiacles A computer model was used to dire. If: smulatic glade under prectsely controlled conditions and compared the rersults with analyical predictions and experimental data

Brom the study of the effects of the array size and shape the following conclusions can be drawn

1) The CRSS for athermal glide obtained in simulating finite size arrays depends on the array size and shape and decreases as the width of the array increases or the height of the array decreases.
a) The array-to-array scatter in the properties of the strongest configuration still exists even with large arrays.
iii) The velocity of a dislocation in thermally activated glide will depend on the array size and increases as the size of the array increases.
iv) The CRSS is also dependent on the boundary conditions (mirror or periodic) for arrays of small size.
v) Since the microstructural obstacle arrays of physizal interest are finite, the varjation of glide properties with the size of the array should be taken into account in physical theories.

Since most of the obstacles in real materials have distribution of strengtins, we have made analytical and computer simulation studies of dislocation monon through arrays containing disiribution of obstacle strengths. Mixture of obstacles change the properties of the strongest configuration drastically, especially in the case of two kinds of obstacles. The effects are more pronounced when the array contains a lot of weak and a few strong obstacles We have chule ed the CRSS, average segment length. the fraction of obstacles on the configuration and distribution of forces and obtained good correlations with computer simulation data. We have also demonstrated that in the case of superposition of then mechanisms the addition of stresses does not hold in the ranges of obstar: strengths studied and in genetal the CRSS can be calculated using the quadratic sum of the stresses, i.e. $\tau^{2}=\sum_{1} \tau_{1}^{2} x_{1}$, Thermally activated dislocation glide through two types of obstacles have also been considered and the effects of the temperature on the strength-determining configuration is studied through computer simulation.

The comparison of the computer simulation results with experiment was carried out in the last section. The dislucation motion through irradiated Cu is compared to commuter simulation of dislocation glide through randomly distributed obstacles and very good agreement is found. Quantitative comparison of the segment length distributions of gliding dislocations obtained from computer simulation and hardened Cu single crystal showed very good agreement. The stress exponent is shown to depend inversely with the temperature which has been observed experimentally. The distribution of segment lengths obtained
from MgO single crystal containing impurities matiched very closely the computer simulation histogiam. The results compared with the experimental data obtained from a precipitation hardened alloy also showect good agreement.

ACKNOWLEGEMENTS

The author is indebted gratefully to Professor J.W. Morris, Jr. for his continuous guidance and encouragement throughout this study. My sincere thanks to Dr. K. Hanson and to Professor A. J. Ardell of the Materials Department in UCLA for useful discussions, to Professors J. Washburn and r. E. Hauser for reviewing the manuscript, to Gloria Pelatowski for drawing the figures.

This work was supported by the Department of Energy through the Materials and Molecular Research Division of the Lawrence Berkeley Laboratory and by the National Science Foundation through Grant\# DMR 75-08163.

REFERENCES

1. Reported by Th. von Karman, Enzykl. d. Math. Wiss.,IV.4, p.767, (1913).
2. L. Prandul, Z. Angew. Math. Mech $8,85,(1928)$
3. U. Dehlinger, Ann. Phys 2,749,(1929)
4. E. Orowan, Z. Physik, 89,614,(i934).
5. E. Orowan. Z. Physik, 89,634, (1934).
6. M. Polanyi, Z. Physik, 89.660, (1934).
7. G. 1. Taylor, Proc. Roy. Soc London, A-145, 362,(1934).
8. R. Becker, Z. Physik. 26,919.(1925).
9. E. Orowan, Z. Physik, 89,605,(1934).
10. E. Orowan, Proc. Phys. Soc. 52,8,(1940).
11. W. Kauzmann, Trans. AIME, 143,57,(1941).
12. A. Seeger. Z. Naturf., 9A. 758.(1954).
13. J. Friedel, Les Dislocations, Gauthier-Villars,Paris, (1956), Dislocations, Addison-Wesley; New York, (1964).
14. J. Friedel, in Electron Microscopy and Sirength of crystals. G Thomas and J. Washburn, eds., Interscience Publishers, New York (1963), p. 605.
15. U. F. Kocks, A. S. Argon and M. F. Ashby, Tie: modyamics of Slip, Prog. Mat. Sci., 19,1,(1975).
16. F. R. N. Nabarro, in The Physics of Metals, P. B. Hirsch, ed. Cambridge University Press, Cambridge (1975), vol.2, pls2.
17. F. R. N. Nabarro, J. Less Common Metals, 28, 257, (1972).
18. U. F. Kocks, Report after an International Workshop, Cornell University, (1976).
19. N. F. Moll, in Imperfections in Nearly Perfect Costals, Schocley et al., eds., John Wiley, New York (1952).
20. N. F. Moll and F. R. N. Nabarro, Report of a Conference on Sirenght of Solds, The Physical Society, London, (1948), p. 1.
21. R. Labusch, Acta Met., 20, 917, (1972).
22. F. R. N. Nabarro, Phil Mag., 35.613, (1977).
23. A. J. E. Foreman and M. J. Makin, Phil. Mag.,14,911,(1966).
24. J. W. Morris, Jr. and C. K. Syn, J. Appl. Phys.,45,961, (1974).
25. J. W. Morris, Ir. and D. H. Klahn, J. Appl. Phys.,44.4882, (1973).
26. E. Ornwan, Symposium on Internal Stresses, Inst. Metals, London, (1947). p. 451.
27. R. Labusch, Z. Physik, 167,452,(1962).
28. P. L. Fleischer, Acta Met.,10,835, (1962).
29. P. L. Fleischer and W. R. Hibbard, in The Relation Berween the Structure and Mechanical Properties of Metals, Her Majesty's Stationary Office, London, (1963), p. 262.
30. U. F. Kocks, Phil. Mag., 13,541,(1966).
31. T. Stefansky and J. E. Dorn, Trans. AIME.,245,1869,(1969).
32. J. E. Dorn, P. Guyot, and T. Stefansky, in Phusics of Strength and Piasticib: A. S. Argon, ed.,MIT Press, Cambridge, (1969), p.133.
33. A. J. E. Foreman and M. J. Makin, Can. J. phys., 45.571, (1967).
34. A. J. E Foreman, P. B. Hirsch and F. J. Humphrics, Fundamental Aspects of Dislocation Theory, NBS Publ.\#317, (1970), vol.2, p. 1083.
35. R. O. Scattergood and E. S. P. Das. Nuclear Metallurgy, 20, 740 (1976).
36. R. S. W. Shewfelt and L. M. Brown, Phil. Mag., 35,945,(1977).
37. D. H. Klahn. D. Austin, A. K. Mukherjee, and J. E. Dorn, in Advences In Applied Probabilng, Supplement 2, (1973), p.112.
38. S. I. Zaitsev and E. IM. Nadgornyi, Sov. Phys. Solid State, 15,1777, (1974).
39. R. J. Arsenault and T. Cadman, in Rate Processes in Plastic Deformation of Materials, J. C. M. Li and A. K. Mukherjee, eds., ASM, \#4, (1975), p. 102.
40. R. J. Arsenault and T. Cadman, phys. stat. sol., (a)24,299, (1974).
41. J. W. Morris, Jr. and D. H. Klahn, J. Appl. Phys.,45,2027, (1974).
42. S. Altintas, K. Hanson, and J. W. Morris, Jr., J. Eng. Mater. Techn. (Trans, ASME H), 98, 86, (1976).
43. S. Altintas, K. Hanson, and J. W. Morris, Jr., in Proceedings of the Second International Conference on Mechanical Behavior of Materials, Boston, Mass., (1976), p. 2.
44. K. Hanson and J. W. Morris, Jr., J. Appl. Phys., 46,983, (1975).
45. K. Hanson and J. W. Morris, Jr., J. Appl. Phys., 46, 2678, (1975).
46. U. F. Kocks, Trans. Japan. Inst. Metals, Supplement, 9.1, (1968).
47. T. J. Koppenaal and D. Kuhlmann-Wilsdorf, Appl. Phys. Letters. 4. 59.(1964).
48. A. Kelly and R. B. Nicholson, Pret putation Hardenme. Progr. in Mat. Sci.,10,1,(1963).
49. L. M. Brown and R. K. Ham, in Sirengithening Mcthods in Cnstals. A. Kelly and R. B. Nicholson. eds., Applied Science Publishers London, (1971), p 12.
50. R. S. Barnes, in Flow and Fracture of Metais and Nuclear Envronments. ASTM publ.\#380, (1965), p. 40.
51. S. N. Val'kovskii and E. M. Nadgornyi, Sov. Phys. Solid State, 17,1733,(1975).
52. F. Appel, H. Bethge, and U. Messerschmidt, phys. stat. sol. (a) $38,103,(1976)$.
53. S. Saimoto, H. Saka and T. Imura, Scripta Met., 11,903,(1977).
54. S. Saimoto, H. Saka, T. Imura, and N. Yukawa, in Proceedings of the Fiff Intern. Conference on HVEM, Kyoto, (1977), to be published.
55. V. Munjal and A. J. Ardell, Acta Met. 24,827,(1976).
56. W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed., Wiley, New York,(1957), vol.1.
57. I. N. Bronstein and K. A. Semendjajew, Taschenbuch der Mathematik, Verlag Harri Deutch, Zurich, (1970), p. 117.
58. R. Labusch, submitted to J. Appl. Phys. (1977).
59. A. I. Landau, phys. stat. sol. (a) $30,659,(1976)$.
60. S. I. Zaitsev and E. M Nadgornyi, Nuclear Metallurgy, 20, 707,(1976).
61. R. J. Arsenault and T. W. Cadman, Nuclear metallurgy, 20,658, (1976).
62. S. I. Zaitsev and E. M. Nadgornyi, Nuclear Metallurgy, 20, 816,(1976)
63. K. Hanson, S. Altintas, and J. W. Morris, Jr., Nuclear Metallurgy, 20.917.(1976).
64. D. J. Bacon, U. F. Kocks, and R. O. Scattergood, Phil. Mag., 28,1241,(1973).
65. M. Fine, in The Relations Berween the Structure and Mechanical Propertles of Metals, Her Majesty's Stationary Office, London,(1963), p.، $\$ 9$.
66. M. Fine, in Strengthening of Metals, D. Peckner, ed., Rc,inhold Publishing Corp., New York, (I964), p. 141.
67. A. Kelly, in Electron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience, New York, (1963), p. 947.
68. P. M. Kelly, Intern. Metal. Rev.,18, 31,(1973).
69. A. Seeger, Proc. 2nd U. N. Imtern. Conference. PUAE, 6,250,(1968).
70. J. Diehl, in Vacancies and Interstitials in Metals, A. Seeger, D. Schumacher, W. Schilling, and J. Diehl, eds., North-Holland Publ. Co., Amsierdam, (1970), p. 739.
71. M. Ruhle, phys. stat. sol., $26,661,(1968)$.
72. W. Frank, M. Ruhle, and M. Saxlova, phys. stät sol, 26, 671,(1968).
73. J. Diehl, in Moderne Prableme der Metallphysik, A. Seeger, ed., SpringerVerlag, Berlin, (1965), vol. 1, p. 227.
74. Reference 4S, p. 33.
75. L. M. Brown, Phil. Mag., 15, 363,(1967).
76. R. O. Scattergood and D. J. Bacon, phys. stat. sol. (a)25, 395, (1974).
77. R. O. Scattergood and D. J. Bacon, Phil. Mag.,31.179,(1975).
78. D. J. Bacon and R. O. Scattergood, J. Phys. F4.2126, (1974).
79. P. M. Kelly, Scripta Met., $6,647,(1972)$.
80. M. Nemoto and S. Koda, Trans. Japan. Inst. Metals, 7,235,(1966).
81. A. R. Rosenfield, G. T. Hat.n, A. L. Bement, Jr., and R. I. Jaffee, Dislocaton Dynamics, Mc-Graw Hill, New York, (1968).
82. J. J. Gilman and W. G. Johnson, J. Appl. Phys.,30,129,(1959).
83. T. Imura, in Eleciron Microscopy and Structure of Materials, G. Thomas, R. M. Fulrath, and R. M. Fisher, eds., University of California Fress, Berkeley,(1972), p. 104.
84. A. 1. Landau and V. I. Dotsenko, phys. stat. sol.,(a) 37,709, (1976)
85. P. M. Kelly and J. M. Round, Scripta Met., 3, 85, (1969).
86. J. C. M. Li, Can. J. Phys., $45,493,(1967)$.
87. K. R. Evans, D. J. Bailey, and W. F. Flanagan, phys. stat. sol., 22,607,(1967).
88. U. F. Kocks, Scripta Met., 4,29,(1970).
89. R. K. Ham, Trans. Japan. Inst. Metals, Supplement, 9,52, (1968).
90. L M. Brown, Scripta Met., 9,591,(1975)
91. A. Melander, to be published.
92. A, Melander and P. A. Persson, Acta Met.,26,267,(1978).
93. M. F. Ashby and R. Ebeiing. Trans. AIME,236.1395,(1966).
94. R. Ebeling and M.F. Ashby, Phil. Mag., 13, 805, (1966).

Table. I. Assumptions and Basic Equations

Assumptions:		
Obstacles: Dislocation:	randomly distributed, localized and point-like flexible string, constant line tension.	
Basic Equations:		
Quantity	Dimensional	Dimensionless
Number of Obstacles	N	N
Total Area	A	$A^{*}=N$
Stress	τ	$\tau^{*}=-1 / 3,2 \Gamma$
Radius of Bow-out	R	$R^{*}=1 /\left(2 \tau^{*}\right)$
Force on the		$\beta=F / 2 \Gamma$
obslacle		$=\cos (\psi / 2)$
Obstacle Strength	F_{c}	$\beta_{r}=\cos \left(\psi_{c} / 2\right)$

FIGURE CAPTIONS

Figure 1. Schematic illustration of the problem of yield or initial deformation in a grain or single crystal.

Figure 2. Detail of mechanical equilibrium in the i -1h obstacle configuration.

Figure 3. Geometry of randomiy distributed lacalized obstacles.(After Friedel ${ }^{(3)}$.

Figure 4. Parametrization of the area searched by circle-rolling to an angle $\theta_{c}=\pi$. The parameters θ and ϕ define the shaded area $d A^{\circ}$.

Figure 5. Division of the search area (a) into a limiting area (a_{0}) and the excess area (a_{1}) by the coordinate line $\phi=-\phi_{0}$. The position of obstacle $k+1$ to be found in area (a_{0}) is defined by the angles θ and ϕ.

Figure 6 Division of the search area into regions I, II, and III.
Figure 7. Square distribution of the obstacle strengths measured by the critical angle ψ_{1}.

Figure 8. Square distribution of the obstacle strengths measured by β_{1}.
Figure 9. A possible force-displacement relation, $\beta(x / d)$, for dislocation passage through an obstacle, which forms a simple repulsive barrier. The shaded area indicates the activation energy $\left(g_{i}^{k}\right)$ if the dislocation exerts a force $\beta_{1}{ }^{k}$ on the obstacle.

Figure 10. Dislocation glide through an array containing randomly distributed point obstacles. The dislocation starts at the bottom of the array and moves until the strongest configuration is found.

Figure 11. Flowhart explaining the essential features of the compuicr code for finding the athermal critucal resolved sheur stress.

Figure 12. Parameters for dislocation motion algorithm: a) division into subarrays, b)bow-out process.

Figure 13. Athermal glide stress versus array width for arrays contaning randomly distributed obstacles of strength, $\beta_{r}=0.01$.

Figure 14. The resistance to dislocation glide under a dimensionless stress of $\tau^{\circ}=0.001$ as a function of size of a square array of identical point barriers.

Figure 15. The histogram of forces, obtained through direct computer simulation of glide through an array co ttaining 10^{6} randomiy distributed obstacles, compared to theoretical distributions.

Figure 16. The average segmen length, $\left\langle l^{\circ}\right\rangle$, as a function of size of a square array of identical point obstacles of strength $\beta_{c}=0.01$.

Figure 17. The comparison of theoretical distribution of average segment lengths with the histogram obtained by computer simulation of an array containing 10^{6} obstacles at a stress of $\tau^{*}=0.001$.

Figure 18. The comparison of theoretical distributions of the angle ϕ to the histogram obtained through computer simulation of an array of 10^{6} obstacles at a stress of $\tau^{\circ}=0.001$.

Figure 19. Schematic distribution of forces along the strongest configuration.

Figure 20. The obstacle strength β_{1} required to prevent athermal glide under given applied stresses ($\tau^{\circ}=0.005$ and 0.001) as a function of the width of square arrays. The calculated curve is drawn from equation(VI.6).

Figure 21. Comparison of theoretical prediction and computer simulation Sor arrays containing 10^{6} obstacles at various values of stresses.

Figure 22. The strength β_{1} as a function of the width of arrays containing 250,000 obstacles at a stress $\tau^{\circ}=0.005$ and comparison with equation(VI.6).

Figure 23. The CRSS for arrays containing two types of obstacles as a function of the fraction of weak obstacles.

Figure 24. The CRSS for arrays containing two kinds of barriers as a function of the fraction of strong obstac! ς, x_{s} : a) For obstacle strengths $\beta_{S}=0.1, \beta_{\mathrm{H}}=0.05$, b) for obstacle sirengths β_{s} $=0.05, \beta_{w}=0.01 \mathrm{c}$) for obstacle strengths $\beta_{s}=0.1, \beta_{\mu}=0.01$.

Figure 25. The CRSS for arrays containing two types of obstacles as a function of array size.

Figure 26. The CRSS for arrays containing mainly weak obstacles as a function of the fraction of strong obstacles ($x_{s} \leqslant 10 \%$).

Figure 27. The CRSS for arrays containing a lot of weak, a few strong obstacles ($x_{s} \leqslant 1 \%$), as a function of the fraction of strong obstacles.

Figure 28. The fraction of strong obstacles on the strongest configuration $\left(c_{s}\right)$, as a function of the fraction of strong obstacies in the array, x_{s} : a) for $\beta_{s}=0.1$ and $\beta_{w}=0.05$, b) for $\beta_{s}=0.05$ and $\beta_{\kappa}=0.01$, and $\left.c\right)$ for $\beta_{s}=0.1$ and $\beta_{\kappa}=0.01$

Figure 29. The average segment length, $\left\langle i^{\circ}\right\rangle$ as a function of the fraction of strong obstacles, x_{s} : a) for $\beta_{s}=0.1$ and $\beta_{x}=0.05$, b) for $\beta_{\mathrm{s}}=0.05$ and $\beta_{n}=0.01$, and c) for $\beta_{s}=0.1$ and $\beta_{n}=0.01$.

Figure 30. The CRSS for arrays con:aining obstacles whose strength is distributed according to Figure 7, as a function of the width of the distribution ψ_{w} and the mean value, ψ_{m}

Figure 31. Same as Figure 28, but $\pi / 2 \leqslant \psi_{m} \leqslant \pi$.
Figure 32. The CRSS for arrays containing obstacles with square distribution of strengths as a function of ψ_{w} and ψ_{m}

Figure 33. Same as Figure 29, but $\pi / 2 \leqslant \psi_{m} \leqslant \pi$.
Figure 34. Average segment length for arrays containing obstacles with square distribution of strengith as a function of ψ_{x} and ψ_{m}.

Figure 35. Distribution of forces along the strongest configurations in arrays containing obstacles whose strengths is distributed according to Figure 8.

Figure 36. The stress at a given glide velocity as a function of temperature for arrays containing one kind and two kinds of obstacles.

Figure 37. The variation of stress at a given velocity as a function of temperature, for arrays containing relatively large number of weak obstacles.

Figure 38. The fraction of strong obstacles, c_{3} in arrays containing two types of obstacles, as a function of the inverse of temperature. The strongest configurations encountered during glide are also shown for high temperature (left), and for low temperature (right). The small circles represent strong obstacles whereas the weak obstacles are indicated by dots.

Figure 39. Comparison of the characteristics of gliding dislocations through obstacles between experiment (left) and computer simulation (right). The dislocation motion through irradiationinduced defects as seen in Transmission Electron Microscope (TEM) is taken from the work by Barnes ${ }^{50}$ in England.

Figure 40. Comparison between computer simulation and experimental distribution of free segment lengths along gliding dislocations in hardened copper single crystals. Experimental data from High Voltage Electron Microscope in situ deformation studies by Saimoto, Saka; and Imura ${ }^{53}$ in Japan.

Figure 41. Comparison of predicted temperature dependence of stress exponent with experimental data obtained on MgO single
crystals by Val'kouskia and Nadgorny ${ }^{41}$ in Soviet llnion

Figure 42. Comparison belleen computer simulatons and experimental distribution of segment lengths akong giting atshoations in MgO. Fxperimental data from in stu hiviM studu- by Appri. Bethge and Messerschmide "in East (iermans.

XBL 784-4906

Figure 1

0
XBL732-5721

Figure?

XBL 784-4910

Figure 4

Figure 5
XBL 784-4909

Figure 7

XBL 784-4905

Figure 8

(a)

Figure 9

XBL 782-7314A
Figure 10

COMF!TER SITHLATIOL

STAPT

conidenct AFBAY
a) Introduce rarnol distrieutioni of objtagles of spacing (S_{s})
B) As 5 IGN OBSTACLE STRENOTHS (β_{1})

COHSTRIET STRA15HT BHSLORATCH

Figure 11

PARAMETERS FOR DISLOCGTION MOTION ALGORITHM

(0)

(0)
x8. 764 -6677

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

XBL 771-~912A

Figure 20

XBL 771-49II

Figure 21

XBL 775-5439A

Figure 22

XBL $762 \cdot 6428$
Figure 23

Figure 24

Figure 25

XBL775-5440A

Figure 26

XBL 775-5441A

Figure 27

82 2.ni!d

24809-29278x

	E. $, E_{*}:+$
\vdots	
2	4
f.	- **, 16'!

n: \therefore -

Figure 29

XBL 775.5437A

Figure 30

Figure 31

Figure 32

XBL 775-5434A

Figure 33

Figure 34

Figure 35

XBL775-5458A

Figure 36

XBL 775-5459A

Figure 37

XBL 775-5457 A

Figure 38

TEM EXPERIMENT ON CU (BOrnes, 1965)

COMPITER SIMLILATION

BR

Fit ure 39

XBL 7B2-7315

Figure 40

XBL 782-4595
Figure 41

XBL775-5454
Figure 42

[^0]: This reporr was plepared as an sccount of wugk sponsured thy the Iraced Stales (rivemment Neither the (traked Shars min itr Limied Slates itepartment of aefob, nor any of dirir ermphyyed, ont any of thell
 any wartanay, ergie's os twpined. on astumes any lepal
 or tictulame al any infors ition appastilus, priduta or

