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Abstract  

Spontaneous Emission Rate Enhancement Using Optical Antennas 

 by  

Nikhil Kumar 

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University 
of California, Berkeley  

Professor Eli Yablonovitch, Chair 

 

The miniaturization of electronics has relentlessly followed Moore’s law for the past several 
decades, allowing greater computational power and interconnectivity than ever before. However, 
limitations on power consumption on chip have put practical limits on speed. This dissertation 
describes the role that optical antennas can play in reducing power consumption and increasing 
efficiency and speed for on-chip optical interconnects.  

High speed optical communication has been dependent on the laser for its narrow linewidth and 
high modulation bandwidth. It has long outperformed the LED for both practical reasons and 
very suitable physical characteristics. Lasers however have some downsides when considering 
short distance communications which may not require narrow linewidths. Typically, they require 
high powers, take up more space and the rate is inherently limited by gain saturation. Light 
Emitting Diodes (LEDs) on the other hand are limited by spontaneous emission, a rate that is 
dependent upon its electromagnetic environment. The use of metallic optical nano-antennas can 
significantly increase a light emitters coupling to its environment and potentially achieve a rate 
orders of magnitude faster than stimulated emission. Coupling a light emitter into an efficient 
nano-optical antenna serves three purposes – 1) a much faster modulation speed can be achieved 
due to a faster rate of spontaneous emission, 2) the footprint of such a device would be shrunk to 
the nano-scale, ultimately necessary for large scale integration and 3) the overall efficiency of 
the emitter can be increased.  
 
While the main motivation behind this work is for short distance communications, optical 
antennas can serve in a host of applications including photodetectors, solar cells, nano-imaging, 
bio-sensing and data storage. 
 
In this thesis we derive the theory behind optical antennas and experimentally show an enhanced 
spontaneous emission rate. 
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Chapter 1: Introduction 
This thesis describes our efforts to engineer and increase the rate of spontaneous emission using 
optical antennas while concurrently improving quantum efficiency.  We will show theoretically 
and experimentally that semiconductors coupled to antennas can efficiently radiate at a faster 
rate and that they can potentially eclipse lasers in speed while drawing less power. The main 
motivation behind the project is ultrafast and efficient optical communications for intra-chip and 
inter-chip interconnects. However, other applications for optical antennas exist and the design 
rules and physics can potentially be applied to a variety of photonics applications including 
Surface Enhanced Raman Scattering, fast photo-detectors and solar cells. 

This dissertation is organized in the following way: 

Chapter 1 discusses the motivation of optical antennas and spontaneous hyper emission and its 
potential role in interconnects. It then details necessary concurrent technologies to make it 
viable, as well as competing technologies in this space. 

Chapter 2 discusses the theory, designs and figures of merit for semiconductor optical antennas.  

Chapter 3 is devoted to the fabrication challenges and experimental setup used to characterize the 
devices 

Chapter 4 details the experimental characterization and analysis of the devices 

Chapter 5 proposes future work on semiconductor optical antennas 

 

1.1 Motivation 

In the last several years energy considerations have quickly placed a limit on speed in 
microprocessors (Fig 1.1). Chief in power consumption are electrical interconnects, detailed in 
the 2007 ITRS report – “…at 0.13um approximately 51% of microprocessor power was 
consumed by interconnects… without changes in design philosophy, in the next five years up to 
80%”[1]. Moore’s law dictates why a growing percentage of power consumption is in 
interconnects. While capacitances for devices shrink with each node, the capacitance of an 
interconnect is stuck at 1-3pF/cm. This is because the capacitance of a wire depends only 
logarithmically on the ratio conductor spacing, so C ~ εr, and thus CV2 ~ 1pJ/bit for a 5mm wire. 
Optical interconnects present a very attractive option as long as the system power budget comes 
in at less than 1pJ/bit due to further limitations in electrical interconnects.	  
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Fig 1.1 Power consumption as a function of process node [2] 

1.2 Limitations of Electrical Interconnects 

Electrical interconnects have been incredibly successful in routing complex signals at low cost, 
and has enabled a boom in information processing in the last several decades. However, moving 
towards faster and more power efficient electronics there lie a few limitations. 

Firstly, amongst the three core energy consumers on chip; logic operations, memory and 
interconnects, electrical interconnects are most power hungry due to the need to charge and 
discharge wires. Secondly, compared to optics, metal wires suffer from signal attenuation due to 
resistance and dielectric loss, effecting higher frequencies worse and distorting signals. One 
solution is to make the cross sectional area larger to reduce the resistance; however, this imposes 
a limit on the density of the wiring as interconnects quickly can take up all available space. For 
long wires this also increases cost. On the other hand, scaling down the wires in all 3 dimensions 
does not improve the RC time constant and thus the bitrate stays the same as seen below where ρ 
is the resistivity, L is the length and A is the cross sectional area. 

1.1     𝑅 =
𝜌𝐿
𝐴  

1.2     𝐶  ~  𝜖𝐿 
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The capacitance C depends only logarithmically on the ratio of wire size to separation and thus 
the bandwidth can be written as in eq. (1.3) where BO is a constant equal to ~ 1016 for RC limited 
lines on chip and ~1017 for off-chip lines[3].  

1.3   𝐵 ≤ 𝐵!  
𝐿!

𝐴  

Thus the bandwidth of the system is limited when wiring takes up all the available space and the 
energy of the system is determined by the charging and discharging of these wires.  

The limitations of electrical wires have been known since the early 1980’s and in present days 
even with sophisticated techniques electronic systems already experience these limits prompting 
the shift to the lower resistance copper and the line to be split up into segments. This does 
increase the bandwidth but significantly increases delay caused by repeater circuits. Furthermore 
it does not overcome the fundamental limitations imposed by electrical interconnects. For that, 
optics is considered a viable approach to bypass these limitations. 

1.3 Advantages and challenges for Optical Interconnects 

Fiber optic cables are of course already widespread in long distance communications and are 
increasingly being adopted in data centers due to the sheer amount of information that can be 
compressed and relayed on a single fiber. A single mode fiber can carry tens of terabits per 
second in principle, while other factors such as the availability of high speed transmitters, 
receivers and repeaters, as well as material effects such as dispersion and non-linear processes 
put a practical limit on the available bandwidth.  

Free space communications don’t suffer from dispersion or non-linear processes that take place 
in a fiber medium; however in the optical regime it requires line of sight due to absorption and 
reflection from materials. While seemingly a more “radical” option, this may be path forward in 
the future for high-speed board-to-board communications. Free space components such as micro-
lenses, MEMs mirrors and liquid crystals, which debuted as consumer products for the flat 
screen televisions have found a viable market in telecom. System vendors such as Finisar and 
JDSU use these as commercial technologies in wavelength-selective switches, a key component 
in reconfigurable add drop multiplexers [4].  

Far more useful is waveguided optics and these companies are increasingly becoming more 
interested in planar lightwave circuits or PLCs which has promise in cutting costs from 
packaging and the bill of materials by integrating all components onto one mass producible chip. 
Additionally, these technologies can be smaller and faster and require fewer discrete components 
such as splitters, polarization rotators and lenses, which obviate the need for hermetic sealing. 
The promise of integration also introduces a new set of functions that would be difficult or costly 
to implement traditionally, such as the ability to reroute traffic without dropping any 
information. 
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Fig 1.2 Schematic of a wavelength selective switch controlled by MEMS mirrors. [5] 

Most recently, there has been a strong push towards silicon photonics – integrating photonics 
onto a silicon platform. Leveraging decades of silicon processing in CMOS foundries for 
computer chips, silicon is cheap, scalable and is readily developed. Silicon has the added benefit 
of transparency at infrared wavelengths – allowing it to be used as a waveguide medium and 
with germanium growth now becoming a widespread foundry process – detectors can made at 
these wavelength. Side by side, CMOS electronics integrated with a silicon photonic layer 
appears to be a viable future technology. Industry players include Luxtera, IBM, Intel, Kotura 
(recently acquired by Mellanox) and in the past 5 years Aurrion and Skorpios. Luxtera, which 
uses an external laser, couples light into its silicon platform and has achieved a 4x28Gbps 
transceiver targeted towards the datacom market. More recently start-up lightwire was purchased 
by Cisco for its low-cost, small form factor and power efficient silicon-based modulator which is 
now offered as a product. Even more promising is the ability to integrate III-V material onto 
silicon using a variety of bonding techniques including direct semiconductor bonding, metal to 
metal bonding and adhesives. Currently, Skorpios and Aurrion hope to achieve complete 
integration using CMOS compatible processes and thus far both have demonstrated lasers 
directly integrated onto silicon. 
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Fig 1.3 Skorpios’ integrated tunable CMOS-compatible laser with an external cavity [6] 

With the limitations of electrical interconnects discussed earlier, it is not a far leap to imagine 
integrating light emitters for ultrafast and power efficient on chip or chip-to-chip 
communications. Moreover, as just described companies are already attempting the same for the 
telecom and datacom markets proving the validity of this research path. The light could be 
created, modulated and detected on chip without ever requiring active alignment or coupling to 
an external source. One solution to making an ultrafast, efficient emitters stems from optical 
antennas. 

	  

1.4 Introduction to Optical Antennas 

Antennas are well established in many areas of modern technology from consumer based 
electronics, such as wireless routing and cell phones, to the high end business and defense 
markets such as satellites and radar. Traditionally these applications have been in the 
microwave/RF regime and techniques for their optimizations and have been heavily studied and 
are well known. But despite their widespread use and firm theoretical foundation, until recently 
designing and fabricating antennas in the optical regime has not been possible. This is primarily 
due to the small length scales required for an optical antenna, since the characteristic length of an 
antenna is on the order of a half-wavelength in the medium. In the last decades these nanoscale 
structures have become accessible with tools such as electron beam lithography and even optical 
lithography in top-down fabrication approaches. 

The primary function of an optical antenna is the same as its traditional microwave counterpart – 
to convert localized energy, stored in electromagnetic currents, to the free-space radiation field in 
the case of transmission, or vice versa in the case of a receiving antenna. This allows the 
focusing of light to hotspots that are much beyond the diffraction limit. There are a host of 
applications for a well designed optical antenna. A few will described here while the main 
application – for ultrafast, low power and efficient nanoLEDs and the main research – 
spontaneous hyper emission will be described in the rest of this work. 
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Integrated Tunable CMOS Laser for Si Photonics 
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Abstract: An integrated tunable C band laser fabricated in a commercial CMOS foundry is 
discussed. The laser is embedded in the silicon chip, and is hermetically sealed. Preliminary 
optical characterization results are presented. 
OCIS codes: (250.5960) Semiconductor Lasers; (250.5300) Photonic Integrated Circuits; (140.3600) Lasers, tunable 

 
1. Introduction 

Silicon Photonics holds the promise of high speed, high capacity, and low cost optical communication systems. A 
key component vital for the realization of this vision is still missing, however: a tunable CMOS-compatible 
integrated laser. Since silicon is an indirect band gap material, integration of III-V materials and silicon for the 
creation of coherent light sources has been explored [1-3].  

In this paper, we present an integrated tunable CMOS laser, operating in the C band, and fabricated in a 
commercial foundry. The III-V epitaxial material is embedded in the silicon on insulator (SOI) chip, metal-bonded 
directly onto the silicon substrate, and planar with the silicon device layer. Advantages of this approach include 
good thermal conductivity through the silicon substrate, avoidance of strains associated with lattice mismatch, and 
high efficiency direct optical coupling to the adjacent silicon waveguides. Furthermore, having the III-V epitaxial 
material hermetically sealed under silicon dioxide presents new opportunities in commercialization of Silicon 
Photonics, as the constraint of high cost hermetic packages is removed. The device configuration, its fabrication, and 
characterization are discussed below.  

2.  Device Configuration 

An illustration of the integrated CMOS tunable laser device is shown in Fig. 1(a), and a cross-section view is given 
in Fig. 1(b). Epitaxial III-V (AlGaInAs multiple quantum wells) gain material pieces are metal-bonded within etched 
pit receptor sites inside the SOI wafer, onto the silicon substrate. The metal bond serves as the bottom electrical 
contact, as well as provides a low thermal resistance path into the silicon substrate. Moreover, the metal bond avoids 
lattice mismatch issues. As a gap is inherently formed between the gain medium and the crystalline silicon, an 
integrated waveguide coupler, as seen in Fig. 1(b), is used to achieve efficient coupling between the gain waveguide 
and the crystalline silicon waveguide. The integrated coupler forms a connection between the two waveguides by 
reconstructing the buried oxide (BOX) layer in the gap and building an amorphous silicon waveguide with identical 
cross section to that of the crystalline silicon. The gain waveguide is at an angle to the interface with the crystalline 
silicon waveguide to suppress unwanted reflections into the cavity.  

 

 
 

Fig. 1. (a) Illustration of the integrated tunable CMOS laser. (b) Cross-section view of the geometry. 
 

Two gratings are connected via a multimode interference device (MMI), and provide tuning using the Vernier 
effect [4]. Integrated heaters tune the refractive index of each grating using the thermo-optic effect. An additional 
heater on the main cavity provides phase shifting of the longitudinal modes for better overlap with the grating peaks. 
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1.4.1 Photodetectors and Solar Cells 

Traditionally the area of a photodetector is bounded by the diffraction limited optics that focus 
light upon it. Consequently the noise associated with the detector has a lower limit as the dark 
current scales with area and the shot noise associated with this, scales as the square root of the 
area. As will be seen in chapter 2, an antenna has the ability of capturing light outside its 
physical dimensions and focusing it to a small spot thus reducing the required area of the 
absorbing material. This factor can be 100x or more and since the signal remains the same, the 
antenna boosts the signal to noise ratio of the detector by 10x. Additionally the thickness of the 
absorbing layer can be reduced as the antenna focuses the light in the 3rd dimension as well. This 
factor in thickness plays an important role in the speed of the device, since this depends on the 
time it takes carriers to be swept through the device. 

 

Fig1.4. From [7], a) a schematic view of an antenna fabricated on Ge b) cross section through 1. 
c) cross section through 2 

It is a little less obvious if there is a benefit to solar cells from optical antennas. It can reduce the 
thickness required of the absorbing layer, but antennas are resonant structures, which inherently 
have a finite bandwidth as opposed to the wide bandwidth that is optimal for solar cells. In the 
optical regime, antennas also suffer from loss, which can erase any gains from the antenna itself. 
Nevertheless, researchers are working on it to improve efficiencies and reduce thicknesses [8]. 

1.4.2 Nano-imaging 

The analogy between optical probes and antennas came after near-field optical microscopy had 
become a mature technology and tip-enhanced fluorescence from NSOMs had been observed 

Nanometre-scale germanium
photodetector enhanced by a
near-infrared dipole antenna

LIANG TANG1*, SUKRU EKIN KOCABAS1, SALMAN LATIF1, ALI K. OKYAY2, DANY-SEBASTIEN
LY-GAGNON1, KRISHNA C. SARASWAT2 AND DAVID A. B. MILLER1

1Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
2Center for Integrated Systems, Stanford University, Stanford, California 94305, USA

*e-mail: luke_tang@stanford.edu

Published online: 16 March 2008; doi:10.1038/nphoton.2008.30

A critical challenge for the convergence of optics and electronics is
that the micrometre scale of optics is significantly larger than the
nanometre scale of modern electronic devices. In the conversion
from photons to electrons by photodetectors, this size
incompatibility often leads to substantial penalties in power
dissipation, area, latency and noise1–4. A photodetector can be
made smaller by using a subwavelength active region; however,
this can result in very low responsivity because of the diffraction
limit of the light. Here we exploit the idea of a half-wave Hertz
dipole antenna (length! 380 nm) from radio waves, but at
near-infrared wavelengths (length! 1.3 mm), to concentrate
radiation into a nanometre-scale germanium photodetector. This
gives a polarization contrast of a factor of 20 in the resulting
photocurrent in the subwavelength germanium element, which
has an active volume of 0.00072 mm3, a size that is two orders of
magnitude smaller than previously demonstrated detectors at
such wavelengths.

The interaction of light with nanostructured metals has been
studied extensively in recent years5–10. The resulting near-field
optical intensity can be two to three orders of magnitude higher
than the incident intensity. However, very little research has been
carried out into the interaction of these strong near fields with
semiconductors and the further transformation of the optical
energy into electricity11–13. It has recently been demonstrated that
the photogeneration of carriers in silicon can be enhanced by a
surface-plasmon antenna at a wavelength of 840 nm (ref. 12).
This method has the practical limitation that the entire grating
structure necessary for exciting a surface-plasmon resonance
occupies a large area in terms of wavelengths. Alternatively, a
C-shaped aperture has been used to enhance photodetection
locally without exciting long-range surface-plasmon resonances13.
However, for easy integration and high-speed, low-capacitance
operation, it is generally advantageous to design planar devices
such as the metal–semiconductor–metal (MSM) detectors that
are widely used in high-speed optical receivers14.

Resonant antennas can confine strong optical near fields in a
subwavelength volume, as demonstrated recently for bow-tie
antennas and dipole antennas at visible wavelengths using the
resulting scattered light15,16. The optical properties of the
structures largely depend on the size and shape of the antennas.

Using the principle of high field enhancement by an antenna, we
present a deeply subwavelength MSM photodetector. Figure 1
shows a schematic of the device structure. The open-sleeve dipole
antenna made of gold consists of a dipole oriented along the
y direction and two line electrodes (sleeves) along the x direction.
A germanium nanowire lies under the two line electrodes and in
the gap region between the two dipole arms. Open-sleeve dipole
antennas were initially proposed17 for radio frequencies to
increase the bandwidth of an ordinary dipole antenna. In our
device, the dipole was used to collect light from a large area
and concentrate it into the small subwavelength region of the
germanium. The sleeves were used to extract photocurrent
without substantially changing the antenna characteristics (from
a bare dipole). Crystalline germanium was chosen to be the
active material of our photodetector because of its high
responsivity at near-infrared wavelengths and its compatibility
with standard silicon technology18. Previous research has shown
that use of a substrate with a high dielectric constant significantly
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Figure 1 A schematic of the device. a, Top view of the open-sleeve dipole
antenna consisting of a dipole antenna oriented in the y direction and two line

electrodes (sleeves) in the x direction. b, Cross-section of the germanium
nanowire (through line 1 in panel a) lying under the two line electrodes.
c, Cross-section (corresponding to line 2 in panel a) showing germanium in the
gap region between the two antenna arms.
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[9]. However, the concepts can be readily applied and understood and 10-50nm features can be 
resolved. The first of these experiments involved scanning a spherical gold particle to a probes 
close to fluorescent molecules enhancing the fluorescence and reducing lifetimes [10][11][12]. 

 

Fig 1.4. From [12]. An schematic and SEM image of a nanoparticle of gold upon an optical 
probe 

 

1.4.3 Bio-sensing 

Although the previously described experiments do support bio sensing, ideally there would be 
platform upon which aqueous molecules can be detected, which would replace mass 
spectroscopy as the choice of molecular detection. To this end researchers have focused their 
efforts on engineering Surface Enhanced Raman Scattering (SERS) by fabricating antennas with 
gaps in them such that dilute molecules could easily be sensed. Antennas seem ideally suited for 
SERS as the molecules experience an enhancement in the pump intensity as well as an 
enhancement in the emission since typically most antennas have a bandwidth that covers both 
peaks [13] [14]. 

1.4.4 Data storage 

Perhaps closest to commercial production is the use of optical antennas in heat-assisted magnetic 
recording (HAMR). Much like Moore’s law, in order to scale hard-drive capacity the density of 

and the excitation wavelength are key parameters in determining the maximal enhancement of
fluorescence caused by the antenna.
As shown in Fig. 1, we use a simple antenna geometry in the form of a spherical metal (gold

or silver) nanoparticle attached to a glass tip. This choice makes the theoretical modeling of the
system less challenging and the experimental fabrication of the antennas reproducible. In the
next section, we theoretically analyze the fluorescence rate of a molecule placed near a metal
nanoparticle. In particular, we present approximate analytical solutions that elucidate the role
of the particle’s surface plasmon resonances on the radiative and non-radiative decay rates of
the molecule. In section 3 we present our experimental results and compare the results with
theory.

2. Theory

The fluorescence rate γem of a single molecule can be expressed as the product of excitation
rate γexc and quantum yield q, defined as the fraction of radiative transitions from excited to
ground state to the total decay rate. Treating the excitation and emission processes indepen-
dently is legitimate because there is no coherence between the two processes. The fluorescence
enhancement can then be expressed as

γem
γoem

=
γexc
γoexc

q
qo

, (1)

where the superscript ‘o’ indicates the corresponding free-space quantity. Below saturation, the
excitation rate γexc is proportional to |E · p|2, with E being the local electric field and p the
transition dipole moment. On the other hand, within the validity of Fermi’s Golden Rule, the
decay rate of the excitedmolecule is expressed by the weighted sum of possible decay channels.
The latter corresponds to the electromagnetic density of states defined by the Green’s function
of the system that is embedding the molecule. Because the Green’s function is the response of a

200nm

(a)

ro

2a 

rp

(b)

p

z

ω1 ω2

Fig. 1. (a) Schematic of the experiment. An optical antenna in the form of a gold or silver
nanoparticle attached to the end of a pointed glass tip is interacting with individual fluores-
cent molecules excited at frequency ω1 and emitting at frequency ω2. The inset shows an
SEM image of a 80nm gold particle attached to an HF etched glass tip. (b) Definition of
coordinates used in the theoretical analysis.

#87205 - $15.00 USD Received 5 Sep 2007; revised 9 Oct 2007; accepted 9 Oct 2007; published 12 Oct 2007
(C) 2007 OSA 17 October 2007 / Vol. 15,  No. 21 / OPTICS EXPRESS  14268
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bits stored per unit area. Simply decreasing the grain size of the magnetic medium increases its 
instability to random thermal fluctuations. To overcome this the magentocyrstalline anisotropy 
energy must be increased, the downside being a required increase in magnetic field from the 
write head.  

 

Fig 1.5. In this Seagate configuration, a laser is focused upon a grating which is adiabatically 
tapered to a lollipop antenna. The antenna provides the local heating required to flip the magnetic 
bit [15]. 

The write heads cannot achieve such high fields due to material limits. Fortunately, the 
anisotropy is heavily temperature dependent, and thus local heating the grain allows the bit to be 
flipped. The grain sizes in question are ~30nm and thus due to the diffraction limit laser heating 
is not an option. Near-field devices such as optical antennas on the other hand can provide an 
electromagnetic and consequently a thermal hotspot on the nanoscale and therefore are the 
leading candidates for this technology. 

 
 
 
 

 

Figure'14:'Seagate’s'HAMR'optical'system:'a'parabolic'slab'waveguide'that'focuses'with'two'beams'with'a'180O'
relative'phase'offset'and'excites'a'quadrupole'disk'antenna'coupled'to'the'hard'disk'media'[4,5].'

'
'

3. A Simple Solution for Sub-Wavelength Energy Delivery  

This final section discusses results from FDTD electromagnetic simulations and the application of the proposed 
Inverse Electromagnetic Design algorithm to finding a better solution for HAMR. A simpler optical system for 
HAMR may be a planar antenna excited by a rectangular waveguide, as shown in Figures 15 and 16. There are 
many advantages to using a rectangular waveguide versus Seagate’s parabolic condenser: easier coupling from a 
Laser, simpler fabrication and no requirement of phase matching. Another advantage, not shown in this paper’s 
graphics, is that a single waveguide can easily circumnavigate the magnetic write-pole, which is integrated on the 
same chip as the optical system. The magnetic write-pole in Seagate’s HAMR system in Figure 14 actually pokes 
through the middle of the parabolic slab waveguide between the grating couplers and the antenna, partially blocking 
the intended light path. 

The difficulty in designing an optical system that uses a rectangular waveguide is to determine what antenna will 
radiates with a mode profile similar to a waveguide mode. This seemingly simple question has prevented previous 
works from implementing a simple planar antenna but rather studying more complicated shapes like the 3D taper or 
C-Aperture antenna [7,8], neither of which can be made in a simple top-down process. The key design decision for a 
useful planar antenna to couple with the waveguide is to use a large antenna, one that supports a higher-order 
resonance mode like the hexapole or octopole modes. Antennas used by Seagate are commonly a quadrupole. These 
higher-order resonance modes offer opportunity for a very directive antenna and offer a better impedance match 
between the waveguide and the antenna’s high-impedance load, a tiny volume of the hard disk media. The initial 
antenna shapes that were supplied to the Inverse Electromagnetic Design software was a flat 40 nm gold layer with 
the simple pattern of a 650 x 150 nm2 rectangle (antenna arm) and a 50 x 50 nm2

 square (antenna peg or tip), shown 
floating above the waveguides in Figures 15 and 16. 

The shapes of the optical antennas were optimized for both cases of illumination, TE and TM rectangular waveguide 
modes. The Figure of Merit to characterize antenna performance for HAMR was taken as electromagnetic 
absorption in 100 x 100 x 10 nm3 of the storage layer of the hard disk media, whose layers are shown in Figure 20,  
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1.5 LEDS vs Lasers 

Both LEDs and Lasers are dependent on a semiconductors ability to radiate light. This ability 
stems from the materials intrinsic dipole matrix element, a factor that determines the interaction 
between light and matter. Completely analogous to a classical radiating dipole and described in 
chapter 2, this dipole length is short in materials <1nm compared to its emission wavelength and 
thus most semiconductors, atoms and molecules are weak and slow.  
 
Lasers make up for this by relying upon stimulated emission, which depends on high intensities 
of light being trapped in the material, instigating stimulated emission. The stimulated emission 
rate still depends upon the intrinsic dipole, which is fixed, but also upon the density of photons in 
the material. This allows for high powers, as this rate can be fast and for practical reasons, the 
laser has long outperformed the LED. However, the modulation speed of lasers is inherently 
limited by the rate of stimulated emission in the device and typical devices reach speeds in the 
10's of Ghz due to gain saturation. Additionally lasers are power hungry. First, in order to get 
significant amounts of stimulated emission, it must be biased above its threshold which requires 
a significant amount of current. And second, the modulation bandwidth is proportional to the 
square root of the energy density, requiring greater pumping to achieve higher bandwidths. 
 
LEDs on the other hand rely upon spontaneous emission. Unlike lasers, its rate is not dependent 
upon incident light and as mention previously its rate, has been slow ~1ns leading to a 100Mhz 
modulated LEDs. However it is depend on its electromagnetic environment i.e. the density of 
optical states. Described by Purcell in 1948, imagining an emitter trapped in a cavity one can 
deduce the spontaneous emission increases by ~Q/V where Q is the quality factor of the cavity 
and V is the effective volume. The use of metallic optical nano-antennas can confine these 
modes into volumes much smaller than the diffraction limit of light with moderate Qs. This can 
potentially yield orders of magnitude in enhancement but until recently, engineering this optical 
density of states has not been explored due to limitations in fabrication. The enhancement works 
two fold, 1) the rate of emission is increased leading to higher modulation bandwidths and 2) the 
radiative rate is increased compared to non-radiative recombination and the efficiency is 
increased.  Thus the oft forgotten LED has the potentially to outperform lasers in speed, 
efficiency and size.  
 
One key distinction between Lasers and LEDs is the linewidth of the emission. The success of 
long-haul optical communication has been dependent on this, as it allows dense wavelength 
division multiplexing (DWDM) with minimal cross-talk and dispersion in the optical fiber. The 
current ITU grid in the c-band (the wavelengths surrounding 1550nm) limits the spacing between 
wavelengths to 50Ghz and this is expected to decrease to 25Ghz and even further as bandwidth 
becomes more in demand. Additionally lasers emit light that is coherent allowing balanced 
detectors which significantly improve the signal to noise ratio. 
 
A nanoLEDs cannot compete with either of these and so is not suitable for high-speed 
transmission along a fiber for long distance communications. The linewidth of a nanoLED is 
reduced due to less of a build up in carrier concentrations for a given injection current; however 
is still too broad to be used in WDM systems. Where they do have a niche, is for efficient, high 
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speed on-board or-on chip optical communications where distances are short and dispersion may 
not be as big of an issue. 
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Chapter 2: Antenna Theory and Spontaneous Hyper 
Emission 
2.1 Antenna history 

The first demonstrated wireless electromagnetic system dates back to 1886 in which Heinrich 
Hertz successfully transmitted and received electromagnetic radiation with antennas. He 
produced a spark in the gap of a 4m long λ/2 dipole which was sensed by a nearby loop antenna 
creating spark in the gap of a loop. Fueled by the first success of spark gap antennas, much work 
went on in the late 1800’s but it was not until 1901 Marconi demonstrated the first transatlantic 
transmission of the letter ‘S’ in Morse code from England to Newfoundland, a distance of 2,200 
miles[16]. The transmitting antenna was set up with 50 vertical wires acting at a wavelength at 
what is believed to be ~350m and the receiving antenna was a ~200m wire pulled by a kite.  
Although crude and facing much skepticism, he later went on to build more convincing systems 
and prove that wireless communication could span 100s of kilometers, ultimately winning the 
Nobel prize in physics in 1909 for his contributions in radio [17]. 

 

Fig 2.1 A schematic of the first demonstrated transmitter and receiver developed by Hertz. 
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Until the 1940s antennas resembled the wires and frequencies (up to UHF) that Marconi used. 
Only the technological advances spurred by the crisis of World War II really launched antenna 
technology into the modern age. The advent of the magnetron allowed high powered 1GHz 
signals and above to be produced and new elements such as waveguide apertures, horns, phased 
arrays, reflectors and new radar designs were introduced [18][19]. So crucial were these 
advances during that war, that it could be claimed that the historic battle of Britain was won 
based almost entirely upon the allies more advanced radar systems. 

In the 1960’s through 1980’s advances in computer technology made it possible to use numerical 
methods such as Finite-Difference, Finite Element, the method of moments and the geometrical 
theories of diffraction to solve complex electromagnetic antenna problems.  While they cannot 
replace intuition and the knowledge gained during the World War II era, they play a significant 
role in today’s design of antenna systems and can predict operation to a great deal of accuracy 
obviating the need for intermediate testing in some cases [18]. 

In the 1970’s the microstrip and patch antenna were introduced, an extremely useful design that 
is typically is printed on circuit boards for the UHF band(300Mhz to 3Ghz). Its simple, 
lightweight, inexpensive, and rugged design have superseded its disadvantages which are lower 
efficiency and narrow bandwidth [18]. They are commonly found in GPS systems, RFIDs, 
airplanes, missiles and satellites. 

As described in chapter 1, recently antenna design has been reintroduced to optical frequencies 
as nano-scale processing has now made antennas at these dimensions attainable. The rest of 
chapter 2 will describe fundamentals of antenna theory, semiconductors and enhanced 
spontaneous emission rate. 

2.2 Antenna Theory and Design Concepts 

2.2.1 Larmour formula for a dipole 

An antennas characteristic to radiate comes simply from the fact that an accelerating charge 
radiates energy. The derivation was first given in 1887 by J.J Larmour who calculated the total 
power from an accelerating charge. Edward Purcell in 1960 found the solution to this problem 
using geometry and intuition, which will be reproduced here. 

Consider a point charge moving at a speed vo<<c that decelerates uniformly in time to. At time 
T>>to, the distance this “information” or change in field has traveled is R=cT, represented by the 
inside of shaded region.  Now the ratio of the transverse electrical field to the radial electrical 
field can be found through geometry: 

 
𝐸!
𝐸!

=
𝑣!𝑇𝑠𝑖𝑛𝜃
𝑐𝑡!

=
𝑎𝑅𝑠𝑖𝑛𝜃
𝑐!  
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where c is the speed of light, a is the magnitude of acceleration, ET is the transverse electric field, 
ER is the radial electric field and θ is the angle of the particle to the point in question. 

	  

Fig 2.2 Geometry of the electric field lines emanating from a moving charge at time 0 and T [20] 

Since ER is given by coulomb’s law, ET is: 

𝐸! =
𝑎𝑅𝑠𝑖𝑛𝜃
𝑐!

𝑞
4𝜋𝜀!𝑅!

=
𝑎𝑞𝑠𝑖𝑛𝜃
4𝜋𝜀!𝑐𝑅

 

Notice that this field falls off as 1/R. The power radiated will necessarily fall off as 1/R2 since 
power is proportional to |E|2 and so the total energy within the shaded region will always remain 
constant. Now taking the pointing vector and integrating over all angles yields the larmour 
radiation formula 

𝑆 = 𝜀!𝑐 𝐸 !   

𝑃 =
𝑞!𝑎!

6𝜋𝜀!𝑐!
                                                                                                                                        (2.1) 

Thus any accelerating charged particle radiates energy. Likewise, an oscillating dipole or the 
time varying currents in an antenna have electrons accelerating and decelerating, necessarily 
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emitting radiation. For the case of a time varying dipole, with qx = qxocos(ωt), where x is the 
electron’s position, The larmour formula accurately predicts the time-averaged power radiated as 
follows: 

𝑃 =
𝑞!(2𝑥!)!𝜔!

12𝜋𝜀!𝑐!
=
𝜋
3

𝜇!
𝜀!

2𝑥!
𝜆

!

(𝑞𝜔)!                                                                              (2.2) 

On the right side of Eq2.4, the terms are rearranged to provide some insight. The term √µ/ε =Zo 
~377Ω is the impedance of free space, the ratio between the electric and magnetic fields. The 
term (xo/λ)2 is a scaling factor based on the size of the dipole and its emission wavelength. 
Finally, the term (qω) represents the magnitude of the current due to the oscillating dipole. For 
the case of only one charge moving instead of a dipole, the current is (qω/2). Note that this is the 
total amount of power emitted from the antenna. In general, the antenna will radiate more power 
in some directions compared to others and needs a full vector analysis to derive (see appendix 1). 
Intuitively though, in the case of a upright linear antenna (fig 2.3), looking down the z-axis we 
do not see an acceleration by the electron and thus the antenna radiates only in the x and y plane.  

 

Fig 2.3. A constant E-field diagram of an oscillating dipole oriented along the z axis. Emission is 
preferentially radiated in the x and y directions. 
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Typically, in antenna problems the power is broken into its constituent parts as P=(1/2)*I2Rrad 
where I is the driving current and Rrad is the radiation resistance, a figure of merit signifying the 
amount of power emitted as radiation.  In this case, we see that: 

𝑅!"# =   
2𝜋
3 𝑍𝑜

2𝑥𝑜
𝜆

2

                                                                                                                    (2.3)	  

It is clear that small dipoles on the order of 1nm (such as molecules) are poor radiators at optical 
frequencies as their radiation resistances can be <0.01Ω. Electrically driven short dipole antennas 
in the microwave region may have radiation resistances of 1Ω, also poor radiators. Longer 
antennas such as the λ/2 dipole, require a more lengthy derivations as the current is not uniform 
along the length of the wire [18], but generally radiate much better. Here we will stress the 
importance of reciprocity in these device i.e. an antennas properties in transmission mode will be 
the same as that in receiving mode. This applies to radiation characteristics, bandwidth, matching 
networks and so forth. Typically an antenna will also have an imaginary component, Xant that 
symbolizes either capacitance or inductance in the antenna. 

2.2.2 Q of an electrically small Antenna 

Another important figure of merit is the quality factor or Q of the antenna.  

𝑄 = 2𝜋
𝑒𝑛𝑒𝑟𝑔𝑦  𝑠𝑡𝑜𝑟𝑒𝑑

𝑒𝑛𝑒𝑟𝑔𝑦  𝑙𝑜𝑠𝑡  𝑝𝑒𝑟  𝑐𝑦𝑐𝑙𝑒 =
𝜔
𝛥𝜔                                                                               (2.4) 

Good antennas will have Q=1, yielding a broadband operation. Certain structures, such as the 
infinite bowtie antenna or log periodic antennas are also known to have very broadband 
operation and are considered “infinitely broadband”. In general, smaller antennas will have 
higher quality factors, a phenomenon that has an effect on optical antennas, which by necessity 
are smaller than a half-wavelength. More on this will be described in a later section. Wheeler 
was the first to thoroughly investigate this phenomenon placing a limit on the lowest possible Q 
of small antennas [21], which was later verified by other works such as Lopez.  

A short antenna, defined by wheeler as the length l<λ/(2π), can be represented as a RC circuit 
since it is small compared to a wavelength and is in the quasi-static regime. In the case where it 
is purely capacitive, we can write Q as:  

𝑄 =
1

𝜔𝑅𝐶                                                                                                                                       (2.5) 

 

The capacitance can be written as: 
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𝐶 = 𝜀!
𝑘𝐴
𝑥!
                                                                                                                                    (2.6) 

where A is the area, xo is the distance and k is a factor that includes fringing fields. The actual 
determination of A and d are not so important now as these will be lumped into an “effective 
volume”. Substituting Rrad from Eq 2.3 and C from Eq 2.6 into the formula for Q in Eq 2.5, and 
we get Eq 2.6. Notice that in this case xo is both the plate separation as well as the total distance 
of the oscillating dipole. 

𝑄 =
𝑥!

𝜔 2𝜋3
𝜇!
𝜀!

𝑥!
𝜆

!
𝜀!𝑘𝐴

 

𝑄 =
𝜆𝑥!

4𝜋!
3 𝑐 𝜇!

𝜀!
𝑥!
𝜆

!
𝜀!𝑘𝐴

 

𝑄 =
3𝜆!

4𝜋!𝑥!𝑘𝐴
=

3
4𝜋!

𝜆!

𝑉!""
                                                                                                (2.10) 

Veff is the effective volume of the antenna, which can vary depending on the field intensity 
outside the physical structure. The major point is that scaling down the volume of the antenna 
necessarily increases the Q. For optical antennas which are typically smaller than a half-
wavelength  

2.2.3 Circuit Model and Maximum power transfer 

	   

 

 

 

 

 

 

 

 

Fig 2.4 A receiving antenna circuit model 
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To simplify the characteristics of an antenna, a receiving or transmitting mode antenna can be 
structured as an equivalent circuit. In the case of receiving, the antenna is lumped as Rrad and 
XAnt, while the load is represented as Rload and Xload. 

The current flowing through the circuit is: 

𝐼!"#$ =
𝑉!"

𝑅!"# + 𝑅!"#$ + 𝑗(𝑋!"# + 𝑋!!"#)
 

And the time-average power transferred to the load is: 

𝑃!"#$ =
1
2 𝐼!"#$

!𝑅!"#$ 

𝑃!"#$ =
𝑉!"!𝑅!"#$

𝑅!"# + 𝑅!"#$ ! + (𝑋!"# + 𝑋!"#$)!
 

Given a fixed Rrad which is what captures the power, we can calculate the value of Rload and Xload 
that will maximize Pload by differentiating with respect to Rload and equating to 0. Doing so gives 
us the conjugate matching conditions for maximum power transfer: 

𝑅!"#$ = 𝑅!"# 

𝑋!"#$ = −𝑋!"#                                                                                                                            (2.11) 

 

 

 

 

 

 

 

 

Fig 2.5 A transmitting antenna circuit 

The same is true for a transmitting antenna with a fixed source impedance. In this case: 

𝑅!"#$%& = 𝑅!"# 

𝑋!"#$%& = −𝑋!"# 
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It is important to note that this is true only for a fixed output impedance i.e. Rrad in the case of a 
receiving circuit and Rsource for a transmitting circuit. This does not mean to achieve maximum 
power transfer to the source resistance should be increased to match Rrad. Also maximum power 
transfer does not equate to maximum efficiency as shown below. If η is the efficiency of the 
antenna it can be written as: 

𝜂 =
𝑅!"#

𝑅!"# + 𝑅!"#$%&
                                                                                                                    (2.12) 

At maximum power transfer Rrad=Rload, η=.5 and the power is: 

𝑃!"#$ =
1
2

𝑉!"!𝑅!"#$
𝑅!"# + 𝑅!"#$ ! 

𝑃!"#$ =
1
8
𝑉!"!

𝑅!"#
 

Thus half of the power is transferred to the load and the other half is lost to Rrad in the form of 
scattering. The graph below exemplifies the trade off between power delivery and efficiency: 

 

Fig 2.6 Plots of the efficiency and power transfer as a function of RL/RSource applicable to any 
circuit with a source and load[22]. Note the semilog scale. 

The value of η increases as the ratio of RLoad/RSource increases, however the source sees a larger 
resistance and the overall current in the circuit falls, decreasing the power transmitted to the load. 
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2.2.4 Capture Cross Section and Directivity 

Another important important parameter is the capture cross section of an antenna, that is the ratio 
between the power captured and the impinging light intensity. Interestingly, this ratio is more or 
less constant for a matched network, meaning the power captured is roughly independent of the 
size of the antenna. For small antennas we can see why this might be the case. 

 

Fig 2.7 A schematic of Electric flux lines upon a metallic particle, illustrating that a small 
particle can capture a energy density reaching past its physical size. 

𝐴!"" =
𝑃!"#$%&'(
𝑆!"#!$%"&

                                                                                                                             2.13  

𝑃!"#$%&'( =
𝑉!"!

8𝑅!"#
 

Here Voc is the open circuit voltage incident on the antenna from the incoming electric field and 
can be written as Voc=Eincl . Recalling reciprocity we can also say that captured power depends 
on Rrad given in eq. 2.6. Therefore, 

𝑃!"#$%&'( =
(𝐸!"#𝑙)!

8 2𝜋3 𝑍!
𝑙
𝜆

! =
3
8𝜋

𝐸!"#!

2𝑍!
𝜆! 

and is independent of length, a strikingly unintuitive result which will be discussed after 
introducing the Directivity below. The incident flux density is: 

𝑆!"# =
𝐸!"#!

2𝑍!
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Therefore the capture cross section is: 

𝐴!"" =
3
8𝜋 𝜆

!                                                                                                                            (2.14) 

We described the voltage seen across the antenna as Voc=Eincl. This necessarily assumes that the 
electric field is 1) polarized parallel to the antenna so that the electric field induces movement of 
charge and 2) the incident radiation is coming from a direction that can be absorbed. For 
example, as we described earlier a linear upright antenna will not radiate or capture power up or 
down, parallel with the axis of the antenna. This fact has very real life implications. Car antennas 
for example receive wavelengths in the FM/AM corresponding to 3-300m and cell phones 
operate with antennas much shorter than their wavelength of operation which is ~ 30cm. Despite 
their size they are able to reliably receive and emit radiation. 

For the short dipole, it can only capture power in 2 of the 3 directions. Thus at the direction of 
maximum radiation it experiences 1.5 times as much power as an ideal equivalent antenna that 
radiates isotropically. This characteristic is described as directivity and is defined as: 

𝐷 =
𝑆!"#
𝑆!"

 

where Smax and Sav are the maximum and average time-average Poynting vector. 

𝐷 =
𝑆!"#

1
4𝜋 𝑆 𝑅,𝜃,𝜙 𝑑𝛺!!

 

If we factor out Smax we can write this in terms of a normalized radiation intensity Fmax=1 and 
F(R,θ,ϕ). 

𝐷 =
1

1
4𝜋 𝐹 𝑅,𝜃,𝜙 𝑑𝛺!!

=
4𝜋
𝛺!

 

where Ωp is the pattern solid angle that the antenna radiates into. For a completely isotropic 
antenna, Ωp=4π. For a short dipole D=1.5. 

In terms of D, capture cross section for a short dipole results in the following: 

𝐴!"" =
𝜆!𝐷
4𝜋                                                                                                                     (2.15) 

This is true in general for any reciprocal antenna, and leads to some surprising results. Namely, 
the capture cross section of the antenna is roughly independent of antenna size, and as computed 
before so is the power captured. However, the results from Wheeler tell us to expect higher Qs 
from smaller antennas. The following figure summarizes these results: 
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Fig 2.8 The capture cross-section of an electrically short antenna (red) and a long antenna (blue) 
centered at the same resonance frequency. Note that the peak values are the same, indicating on 
resonance the captured power by both is equivalent. 

We can explain some of this intuitively looking at the circuit model again. At resonance ω 
=1/√(LC) and jωL=1/jωC, thus the reactive part is completely canceled out and the voltage is 
dropped only across the radiation resistance and the load, leading to our conclusion that the 
power captured is independent of size. However off resonance the voltage is dropped across the 
reactive part as well. For a high Q structure, a small detuning results in a large decrease in 
voltage across the load explaining the figure above. 

2.3 Metal Optics 

2.3.1 The origin of Kinetic Inductance 

At optical frequencies metals behave differently compared to at microwave frequencies. While 
we can still use the theory presented for optical antennas, these differences cannot be ignored and 
must be factored into our calculations. At the heart of the issue is kinetic inductance – the inertia 
of oscillating charges contributing to an additional series inductance in a metal. To see where this 
comes from consider the relation between conductivity – a traditionally DC and microwave 
parameter and the permittivity of a material – typically thought of as an optical property. 

∇×𝐻 = 𝐽 +
𝑑𝐷
𝐷𝑡  

This can be written completely in terms of a complex permittivity. 

26 
 

4.3 - Antenna Capture Cross-section 
 
In the previous section we saw that from the Wheeler limit, electrically small antennas have 
higher 's than their larger counterparts. Since the quality factor is defined as the ratio of total 
energy stored in a harmonic system to the energy lost in one cycle of oscillation, it would seem 
that compared to larger antennas,  electrically small antennas have a harder time reradiating 
energy. By reciprocity (for a lossless antenna) this also means that an electrically small antenna 
captures less power than a larger antenna, and is thus less effective. This is usually the case, 
unless the antenna is operating exactly on resonance, in which case the capture cross-section 
becomes independent of antenna dimensions37. This rather unintuitive result is summarized 
graphically in Fig. 12. 

 

Figure 12: Invariance of capture cross-section for electrically small (red curve) and large (blue 
curve) antennas with the same central frequency . 

An electrically large antenna (blue line) has a much lower  than an electrically small antenna 
(red line) that resonates at the same center frequency . At the center frequency however, both 
antennas have the same capture cross-section  4⁄ . The invariance of capture cross-section 
with antenna dimensions is the reason why cell phones can get away with antennas a few 
centimeters long even though they operate around 1 GHz ( = 30 cm), and car antennas can pick 
up FM and AM broadcast even though they use  = 3-300 m carrier wavelengths. To get a 
qualitative feel for what is happening, we once again draw on the RLC resonator analogy. 
Ignoring Ohmic losses, an antenna can be thought of as an RLC resonator: R is the radiation 
resistance of the antenna, C is the capacitance associated with the electric field distribution in the 
near-field of the antenna, and L is the inductance associated with the magnetic field distribution 
in the near-field of the antenna and may include a kinetic inductance contribution. When the RLC 
circuit (i.e. the antenna) is driven by an AC signal, energy is shuffled from the near-field 
inductance (currents on the surface of the antenna) to the near-field capacitance (charge 
distribution along the length of the antenna) and energy is lost as the current flows through the 
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∇×𝐻 = 𝑗𝜔𝜀!(𝜔)𝜀!𝐸 

Equivalently, it can be written in terms of only currents and charges, eliminating the dielectric 
response: 

∇×𝐻 = 𝜎(𝜔)𝐸 + 𝑗𝜔𝜀!𝐸 

Equating the two, gives us the following: 

𝜎 𝜔 = 𝑗𝜔𝜀! 𝜀! − 1                                                                                                               (2.16) 

This complex conductivity is an alternate and completely legitimate form describing currents as 
well as the dielectric response in any material. The initial separation between the two is arbitrary 
and mostly due to convention. Usually, the contribution to polarization due to bound charges is 
lumped into ε whereas contribution to the current from free charges is described in σ. However, 
at optical frequencies and especially for metals the distinction between the two is blurred.  For 
the case of a metallic wire the impedance can now be written as: 

𝑍 =
1

𝜎(𝜔)
𝑙
𝐴 

As will be described in the next section, σ(ω) = nq2τ/(m+iωmτ), yielding: 

𝑍 =
𝑚 + 𝑗𝜔𝑚𝜏
𝑛𝑞!𝜏

𝑙
𝐴 

𝑍 =
𝑚
𝑛𝑞!𝜏

𝑙
𝐴 + 𝑗𝜔

𝑚
𝑛𝑞!

𝑙
𝐴 

𝑍 = 𝑅 + 𝑗𝜔𝐿!                                                                                                                             (2.17) 

where R is the classical DC resistance and Lk is the inductance due to the inertia of the electron. 
Due to its ωl/A dependence, this inductance becomes important at optical frequencies at the 
nanometer scale. 

 

2.3.2 Drude model 

Known as the drude model, the optical properties of metals can be modeled by a free electron gas 
moving through a lattice of positive ions. The electron cloud oscillates in response to an applied 
AC electromagnetic field while their motion is damped through collisions with a characteristic 
rate of 1/τ. Starting with the equation of motion F=ma, using F=-qE and adding in collision we 
have: 
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−𝑞𝐸(𝑡) = 𝑚𝑥 +
𝑚
𝜏 𝑥 

where x is the electrons position. For a field E(t)=Ee-iωt, the solution to x is: 

𝑥 𝑡 =
−𝑞

𝑚 𝜔! + 𝑖𝜔𝜏
𝐸(𝑡) 

The oscillating charges create an effective dipole contributing to the macroscopic polarization 
P=-nqx, written explicitly as: 

𝑃 = −
𝑛𝑞!

𝑚 𝜔! + 𝑖𝜔𝜏
𝐸 

The electric flux density D=P+εoE is then yields: 

𝐷 = 𝜀! 1−
𝑛𝑞!

𝑚𝜀! 𝜔! + 𝑖𝜔𝜏
𝐸 = 𝜀! 1−

𝜔!!

𝜔! + 𝑖𝜔𝜏
𝐸 

where ωp is the plasma frequency given by: 

𝜔!! =
𝑛𝑞!

𝜀!𝑚
                                                                                                                                          (2.18) 

Finally we can obtain the frequency dependent complex permittivity of the metal: 

𝜀! 𝜔 = 1−
𝜔!!

𝜔! + 𝑖𝜔𝜏
                                                                                                (2.19) 

Splitting this into real and imaginary components ε1 and ε2 respectively, we arrive at 

𝜀! 𝜔 = 1−
𝜔!!

𝜔! + 1
𝜏!

 

𝜀! 𝜔 =
𝜔!!𝜏!

𝜔(1+ 𝜔!𝜏!)                                                                                                             (2.20) 

For most metals 1/τ ≈100Thz and at frequencies close to ωp, which is typically in the visible or 
UV for common metals, the damping is negligible and ε1 is close to 0. From our everyday 
experience, we know metals are highly reflective in the visible. This is because the field 
penetration into the metal is low. At low frequencies ε2 dominates and the metal is mainly 
regarded as a good conductor. 
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Fig 2.9 The dielectric function of Gold with data from Johnson and Christy. Interband transitions 
limit the validity of this model at high frequencies [23][24]  

 

Fig 2.10 The dielectric function of silver with data from Johnson and Christy[23][24]. 

A consequence of the dielectric function is that in AC, regardless of low or high frequency, there 
is a skin depth associated with how deep into the metal the electromagnetic field goes. We can 
derive this quantity recognizing that the refractive index n is the square root of the permittivity. 
Doing so yields the following relations: 

𝜀! 𝜔 = 𝑛! − 𝜅! 

𝜀! 𝜔 = 2𝑛𝜅 

𝑛! =
𝜀!
2 +

1
2 𝜀!! + 𝜀!! 

𝜅 =
𝜀!
2𝑛                                                                                                                                               (2.21) 
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where κ is the extinction coefficient and determines the optical absorption of the electric field 
through the material. Using the usual harmonic time dependence of electromagnetic waves, this 
is linked to the absorption coefficient of intensity (i.e. I(x)=I0e-αx)  by: 

𝛼 𝜔 =
2𝜅 𝜔 𝜔

𝑐                                                                                                                     (2.22) 

This relation can also be used to define a skin depth over which the field decays into the metal to 
1/e its initial value (i.e E(z)=E0e-z/δ) 

𝛿 𝜔 =
2

𝛼 𝜔                                                                                                                                 (2.23) 

This model is valid as long as the mean free path of the electron is less than the skin depth. For 
gold at optical frequencies this skin depth tends to be ~25nm or so and the mean free path of the 
electron is ~10nm. This mean free path is heavily dependent on grain boundaries as well as 
corners. For the case that this isn’t satisfied (potentially optical antennas), the anomalous skin 
effect must be taken into account which can increase the losses in an antenna [25].  

 

2.4 Spontaneous emission rate Enhancement 

2.4.1 Quantum Mechanical Description of Spontaneous emission 

One very interesting characteristic of spontaneous emission, unlike stimulated emission, is that 
its rate is dependent on the electromagnetic environment. We can see this arising from Fermi’s 
golden rule for a 2 level system between electronic states m and n: 

1
𝜏!"

=
2𝜋
ℏ 𝑚 𝑞𝐱 ∙ 𝑬 𝑛 ! 𝑑𝑁

𝑑𝐸                                                                                             (2.24) 

Where dN/dE is the photonic density of states i.e the number available photon states per energy 
level. For free space, we can assume a large 3D box with sides of length L in which the photon 
must reside as a standing wave. Since, the solution to this requires sin(kL)=0, the 
electromagnetic wave=vector k must be an integer multiple of π/L. Now we can approximate the 
number of modes in k-space as sphere in k space divided by the spacing between each mode. We 
resistrict ourselves to only positive values of k and multiply by 2 to account for both 
polarizations: 
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Fig 2.11 Blue points represent states in k-space while the points inside the sphere represent the 
total number of states for a given energy. 

𝑁 𝑘 =
4
3𝜋𝑘

! ∗ 2 ∗ 18
𝜋
𝐿

!  

We also know that E=ℏω and ω = ckn,  and so k= nE/ℏω. Rewriting as a function of E: 

𝑁 𝐸 =
1
3𝑛

!𝐸!𝑉
𝜋!ℏ!𝑐!  

where V is the volume of the box. Now we take the derivative with respect to E to get the photon 
density of states and rewrite it in terms of ω. 

𝑑𝑁
𝑑𝐸 =

𝑛!𝜔!𝑉
ℏ𝑐!𝜋!                                                                                                                                 (2.25) 

Calculating the matrix element in this system requires 2nd quantization, which involves 
quantizing the electromagnetic field subject to normalization. Doing so gives us the electric field: 
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𝑬 = 𝑖
ℏ𝜔
2𝜀𝑉        𝒂

!𝑒!!𝒌∙𝒓!!"# + 𝒂𝑒!𝒌∙𝒓!!"# 𝒆 

where a+ and a are the raising and lowering operators for photon states respectively and V is the 
volume. The polarization is represented by ê. Evaluating the matrix element using the raising and 
lowering operators gives us: 

𝐱 ∙ 𝑬 ! =    𝒂! + 𝒂 ! ℏ𝜔 2𝑛!𝜀!𝑉 

The dot product between the vectors yields a cosine and when averaged over solid angle gives 
1/3. This is also equivalent to averaging over polarizations. If we consider the case that state m 
has 1 photon and state n has none, the spontaneous emission rate from Fermi's golden rule is then 

1
𝜏!"

=
2𝜋
3ℏ 1,𝑚 𝑞𝐱 𝒂! + 𝒂 0,𝑛 ! ℏ𝜔

2𝑛!𝜀𝑉
𝑛!𝜔!𝑉
ℏ𝑐!𝜋!  

Remembering that the raising and lowering operators act only on photon states, 1,𝑚 𝒂! +
𝒂 0,𝑛 = 1 and rearranging terms we arrive at: 

1
𝜏!"

=
𝑛𝜔!

3𝜋𝑐!𝜀!ℏ
∙ qx !                                                                                                                              (2.26) 

This spontaneous emission rate is correct for a 2-level system such as that in an atom or 
molecule in the weak coupling regime in an infinite homogenous medium. For semiconductor 
with a continuum of bands, we must take into account the electronic density of states, which will 
be detailed in the next section. Comparing this to the result we got classically for a short 
radiating dipole in eq. 2.5 we see that it only produces half of the rate computed by the quantum 
mechanical treatment because in eq 2.26 the position is spatially averaged. The other half is due 
to vacuum fluctuations or radiation reaction, essentially the field emitted by the dipole exerted on 
itself. [26]The details on this are available in appendix 2. 

2.4.2 The Purcell Effect 

Now imagine that rather than emitting into free space, the spontaneous emission is radiating into 
a cavity with only 1 mode. Purcell first calculated this in 1946 and his result is derived 
below[27]. Again we start with Fermi’s golden rule, but consider the case where there is only 1 
available photon mode into a finite energy interval ℏ𝛥𝜔. First we must correctly normalize this 
new density of states i.e. integrating over energy must yield 1 photon mode.  

𝑑𝑁
𝑑𝐸

!

!
𝑑𝐸 = 1 

Assuming a Lorentzian lineshape the normalization condition is satisfied when, 
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𝑑𝑁
𝑑𝐸 =

2
𝜋ℏ𝛥𝜔   

ℏ𝛥𝜔!

4ℏ(𝜔 − 𝜔!)! + ℏ𝛥𝜔!                                                                         (2.27) 

where ωc is the resonance frequency of the cavity. If ω=ωc we arrive at: 

𝑑𝑁
𝑑𝐸 =

2
𝜋ℏ𝛥𝜔                                                                                                                             (2.28) 

 

Fig 2.12 The density of states function dN/dE for the cavity. The frequency of the mode is ωc 
and the FWHM is Δω    

Plugging this into fermi’s golden rule we have 

1
𝜏!"

=
2𝜋
ℏ 𝑚 𝑞𝐱 ∙ 𝑬𝒎𝒂𝒙 𝑛 ! 2

𝜋ℏ𝛥𝜔 

where Emax is the maximum electric field in the cavity exciting the transition. The zero-point 
field is the driving force behind the emission so necessarily the energy in the cavity must be 
equivalent to ℏ𝜔/2. 

𝜀𝐸!𝑑𝑉 =
ℏ𝜔
2  

Then we can normalize the effective volume in the following way:  

𝑉!"" =
𝜀𝐸!𝑑𝑉
𝜀𝐸!"#!

                                                                                                                          (2.29) 

Doing so allows us to write Emax as a function of Veff, very similar to the result that would have 
been obtained in 2nd quantization of a free electric field. 

𝐸!"#! =
ℏ𝜔

2𝜀𝑉!""
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The spontaneous emission rate in a cavity is now given and recognizing that the cavity Q is 
simply ω/Δω we have: 

1
𝜏!"

=
2𝜋
ℏ 𝑞𝑥 ! ℏ𝜔

2𝜀𝑉!""
2

𝜋ℏ𝛥𝜔 

1
𝜏!"

=
2
ℏ𝜀 𝑞𝑥

! 𝑄
𝑉!""

                                                                                                        (2.30) 

Dividing by the rate of spontaneous emission in free space, we arrive at the Purcell factor or the 
rate enhancement of spontaneous emission due to a cavity: 

𝐹 =
1
𝜏!",!

/
1

𝜏!",!"##  !"#$%
 

𝐹 =
3
4𝜋!

𝑄(𝜆/𝑛)!

𝑉!""
                                                                                                                          (2.31) 

Clearly the rate enhancement of spontaneous emission is dependent on Q/Veff, however we must 
be careful since a high quality factor will also trap photons inside the cavity. If the goal is to 
increase the total rate of emission from the cavity, the Q cannot be so high that the photons are 
not released. Therefore, recognizing that the cavity bandwidth is equivalent to 1 over the decay 
time, 1/τsp = 1/τcav = Δωcav for the fastest rate of emission. A faster rate of spontaneous emission 
rate will put us in the strong coupling regime where fermi’s golden rule no longer applies. 
Applying this to eq (2.30): 

1
𝜏!",!"#!

=
2
ℏ𝜀 𝑞𝑥

! 𝜔
𝑉!""

 

We can subdivide this into parts as follows: 

1
𝜏!",!"#!

=
𝑞!

4𝜋𝜀!ℏ𝑐
2 ∗ 4𝜋𝑐𝜔|𝑥|!

𝜀!𝑉!""
 

The term in front is the fine structure constant α≈1/137 

1
𝜏!",!"#

= 𝛼
4𝜔!|𝑥|!𝜆𝑛
𝜀!𝑉!""

 

1
𝜏!",!"#

= 2𝜔 𝛼
|𝑥|!𝜆
𝑛𝑉!""

 

which gives us the optimal Q for a given cavity size: 
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𝑄!"# =
𝜔
1

𝜏!",!"#

=
1
2 𝛼

𝑛𝑉!""
𝑥 !𝜆                                                                                               (2.32) 

Thus the maximum spontaneous emission rate from a cavity is dependent on ω as well as a 
volume factor. The optimal Q gives us a clue as to the type of structure that is needed for this 
rate. For example, for high Q cavities such as photonic crystals, the effective volume is quite 
large ~(λ/2n)3, but the Q can be extremely high ~ 106. Merely looking at the equation given by 
the Purcell effect would lead you to conclude that it could enhance the rate by 5 or 6 orders of 
magntitude. However, using Qopt we see that without going into strong coupling, we get a net 
enhancement of only 2 to 3 orders of magnitude. On the other hand optical antennas can have 
moderate Qs and very low effective volumes, reaching 6 or even 7 orders of magnitude in rate 
enhancement. The analysis of this will be given in the next section. 

 

Fig 2.13 Contour plots of modulation speed as a function of Vn = Veff/(λ/2n)3 and Q. The optimal 
Q is on the border of the shaded region and white region which represents the transition to strong 
coupling [28].  

2.4.3 Optical Antenna assisted spontaneous hyper emission 

To see how an optical antenna enhances the spontaneous emission rate consider a dipole 
oscillating in the gap of an antenna.  

approximation of Eq. (2) and Eq. (3). The response will be dominated by two first-order poles 
from the 1) enhanced spontaneous emission rate and 2) photon decay rate. The small-signal 
frequency response H(Ȧ) will be 
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where H is defined as the change in photon density ǻS per change in current ǻJ, Ȗp is the 
photon decay rate, Ȗsp = Fȕ/Ĳsp0 is the enhanced modal SpE rate, and Ĳsp = 1/Ȗsp is the Purcell-
reduced modal SpE lifetime. To find the 3-dB bandwidth, we find the frequency at which 
|H(Ȧ)|2 is half the DC response. This yields a 3-dB bandwidth of 
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where Ĳp = 1/Ȗp = Q/Ȧ0 is the photon lifetime, Ȧ0 is the optical cavity frequency, Ĳsp0 is the 
bulk SpE lifetime, and ȕ is the fraction of SpE that couples to the main optical mode. The 
bandwidths for a wide range of nLEDs with different Qs and volumes are shown in Fig. 2(a). 
Note that the photon lifetime Ĳp and Purcell-reduced spontaneous emission lifetime Ĳsp are 
proportional and inversely-proportional to Q, respectively. Hence, increasing cavity Q will 
enhance the spontaneous emission rate (via the Purcell effect), but the photons will remain in 
the cavity for a longer time. Hence Q must be optimized to achieve the highest bandwidth for 
a given modal volume. The optimal Q can be found by solving d(f3dB,max)/dQ = 0. This 
optimal Q occurs when the photon and SpE lifetimes are equal: 
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where ȕ § 1 for Vn < 1. By replacing Ĳp and Ĳsp in Eq. (5) to show their explicit Q-dependence 
and inserting Eq. (6), we see that the optimal bandwidth is proportional to Vn
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Fig. 2. (a) Contour plot of optimal 3-dB bandwidth for various nLED cavities with different modal volumes and 
quality factors. Bandwidth enhancement is found for small modal volumes, where there is a high Purcell 
enhancement. The dotted line (Qopt) separates devices dominated by strong (above dotted line) and weak (below 
dotted line) coupling regimes. The strong-coupling regime is shaded, as it demonstrates richer dynamics and 
cannot be simply described by bandwidth. (b) Optimum 3-dB bandwidth and Q versus cavity volume. 
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Fig 2. Dipole at the feedgap of an antenna with currents oscillating parallel to the long axis of the 
antenna 

In the simplest model, the dipole acts as a current source with I=qωxo/d as given by the 
Shockley-Ramo theorem[29][30] upon the leads of the antenna, where xo is the dipole length and 
d is the gap distance. The power output is still I2Rrad/2 and dividing by the energy of a photon, 
ℏ𝜔 we arrive at the rate of emission due to the dipole coupled antenna: 

𝑃
ℏ𝜔 =

1
𝜏!"#

=
1

2ℏ𝜔
𝑞𝜔𝑥!
𝑑

!

𝑅!"# 

 

Fig 2.14 Simulations using CST Microwave studio of Enhancement vs gap distance. The 
emission wavelength was kept fixed at 1300nm and Q ~8. The efficiency is roughly constant 
when using a gold data from Johnson and Cristy. 

The ratio of 1/τant to 1/τdipole is the rate enhancement factor. 
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1/𝜏!"#
1/𝜏!"#$%&

=
1
2
𝑞𝜔𝑥!
𝑑

!
𝑅!"#

𝜋
3ℏ𝜔 𝑍!

𝑥!
𝜆

!
(𝑞𝜔/2)!

 

1/𝜏!"#
1/𝜏!"#$%&

=
3
2𝜋

𝑅!"#
𝑍!

𝜆
𝑑

!

 

Depending on the specifics of the wavelength chosen, the gap spacing and the antenna design, 
this enhancement can be in the 100s and even 1000s potentially reaching Thz regime 
modulation. For some specific numbers we can plug in the radiation resistance due to a short 
antenna of length l, given below 

𝑅!"# =
𝜋
6 𝑍!

𝑙
𝜆

!

 

Comparing the equation above to the radiation resistance of a hertzian dipole (eq2.6), we notice 
that it is exactly 4 times less. This is due to the non-uniform current distribution along the leads.  
The total rate is now: 

𝑃
ℏ𝜔 =

1
𝜏!"#

=
1
2
𝑞𝜔𝑥!
𝑑

! 𝜋
6ℏ𝜔 𝑍!

𝑙
𝜆

!

 

And the enhancement after much cancellation is: 

1/𝜏!"#
1/𝜏!"#$%&

=
1
4

𝑙
𝑑

!

 

Note for all these cases, the enhancement and rate are due to a correctly oriented dipole. If the 
dipoles are randomly oriented, then the enhancement must be divided by a factor of 3.  

2.4.4 Relating Purcell Enhancement to Antenna Enhancement 

We have seen two different ways by which the spontaneous emission rate can be enhanced. The 
two can be related by finding an effective volume of the antenna. From before the definition of 
effective volume is: 

𝜀𝐸!"#!𝑉!"" = 𝜀𝐸!𝑑𝑉 

For a short antenna this energy is stored in the capacitance. The feed gap provides a capacitance 
of Cgap=εA/d, where A is the cross sectional area of the antenna and d is the gap spacing. Since 
the antenna arms are good conductors we can assume that most of voltage falls directly across 
the gap and therefore Emax is the electric field in the gap. Rewriting this in terms of capacitance 
then gives us: 
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1
2𝐶!"#𝑉

!

𝐴𝑑 𝑉!"" =
1
2𝐶!"!#$𝑉

! 

On the right we have divided the total energy stored in the gap capacitance by the volume of gap 
to find the energy density. Solving for Veff yields, 

𝑉!"" =
𝐶!"!#$
𝐶!"#

𝐴𝑑 

The total capacitance of any linear conductor will typically be proportional to ε x length with 
some factor on bottom dependent on only a natural log of the dimensions. For a more detailed 
model that yield very similar results, we can assume that the field lines from a charge dQ (in 
interval dr) on one arm follow a semicircular path to the opposite charge on the other arm.  

 

Fig 2.15 An approximation to electric field lines emanating from a short dipole antenna. 

Drawing a Gaussian surface over only the field lines enclosed in a solid half-angle θ, encloses 
only the charge dQ. The electric field is then  

𝐸 =
𝑑𝑄

2𝜋𝜖!𝑟𝑠𝑖𝑛𝜃𝑑𝑟
 

Now integrating over one semicircular path gives us the voltage: 
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𝑉 = 2 𝐸𝑟𝑑𝜃 =
𝑑𝑄
𝑑𝑟𝜋𝜀!

!/!

!!"#

𝑑𝜃
𝑠𝑖𝑛𝜃

!/!

!/!
=

𝑑𝑄
𝑑𝑟𝜋𝜀!

ln  [tan
𝜃
2 ]!/!

!/! 

𝑉 =
𝑑𝑄
𝑑𝑟𝜋𝜀!

ln  [
2𝑟
𝑎 ] 

Above we have taken the charge density as roughly constant along the length, which is a 
reasonable approximation for short antennas. However, the voltage difference between the two 
arms should not be dependent on the path taken, which is an artifact from the model. Since the 
voltage is only dependent on the natural log though, we can take average value and set r=l/4. 
Doing so and dividing by dQ gives us the capacitance per unit length: 

𝑑𝐶 =
𝜋𝜀!𝑑𝑟

ln 𝑙
2𝑎

 

Finally, 

𝐶!"# =
𝜋𝜀!𝑙

2ln 𝑙
2𝑎

= 𝜀!𝑙! 

where lc is an effective capacitive length which as mentioned earlier is roughly εol. If we go back 
and compute Veff now with a=d and lc≫a, Cant=Ctotal, 

𝑉!"" =
𝜀!𝑙!

𝜀!𝑎!/𝑑
𝑎!𝑑 = 𝑙!𝑑! 

which is approximately the physical volume of the entire antenna. We can relate this to the 
Purcell effect, by noting that Q=ωRtotalCtotal in an parallel RLC circuit. In the absence of losses, 
Rtotal = Rrad and 1/τ = 1/τant  

1
𝜏 =

1
2ℏ𝜔

𝑞𝜔𝑥!
𝑑

!

𝑅!"!#$ 

1
𝜏 =

1
2ℏ𝜔

𝑞𝜔𝑥!
𝑑

! 𝑄
𝜔𝐶!"!#$

   

Now using Ctotal = VeffCgap/Ad and rearranging terms we arrive at: 

1
𝜏 =

𝑞𝑥! !

2ℏ𝜀!
𝑄
𝑉!""

   

which is off by a factor of 4 from the Purcell effect probably due to time/spatial averaging and 
the aforementioned vacuum fluctuations/radiation reaction. 
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2.4.5 Enhanced Modulation Speed 

As alluded to in chapter 1, the photon decay rate is responsible for the maximum speed of 
modulation in a device. To understand the carrier dynamics behind this we provide the rate 
equation for an LED, with carrier density N. 

𝑑𝑁
𝑑𝑡 = 𝐺!"# − (𝑅!" + 𝑅!" + 𝑅!"#$#%" + 𝑅!") 

where Ggen is the generation rate of carriers from electrical or optical pumping, while Rsp is the 
spontaneous emission rate, Rnr is the non-radiative recombination rate, Rleakage is the leakage due 
to diffusion and Rst is the stimulated emission rate. In the absence of a large photon density as 
will be the case for an optical antenna Rst is small and can be neglected. We can now rewrite this 
equation with its dependence on N that these rates have. 

𝑑𝑁
𝑑𝑡 = 𝐺!"# − 𝐵𝑁! + 𝐴𝑁 + 𝐶𝑁! − 𝑅!" 

Though these rates will have a non-exponential decay it is convenient to lump these parameters 
into a radiative efficiency ηr(N) and a characteristic carrier lifetime τ(N) so that we can obtain a 
simpler picture of the carrier dynamics. 

𝜂!(𝑁) =
𝑅!"

𝑅!" + 𝑅!" + 𝑅!"#$#%"
 

𝑑𝑁
𝑑𝑡 = −

𝑁
𝜏 𝑁 = − 𝐵𝑁! + 𝐴𝑁 + 𝐶𝑁!  

where we have neglected the steady state Ggen to find a decay rate with initial population Ni. The 
cubic term represents Auger recombination, which may be negligible under lower levels of 
injection. If the term AN is dominant then the solution to this is: 

𝑁(𝑡) = 𝑁!𝑒!!/! 

for which the frequency response is: 

𝑁 𝜔 =
𝑁(0)
1+ 𝑗𝜔𝜏 

As above and in general, decreasing the carrier lifetime, increases the modulation bandwidth. 
This can be achieved simply by increasing the non-radiative rate, effectively lowering the 
efficiency – a suboptimal solution with the obvious tradeoff. Enhancing spontaneous emission 
with an optical antenna; in contrast, simultaneously decreases the carrier lifetime and increases 
the efficiency.   



	   36	  

2.4.6 Spontaneous emission rate enhancement from a semiconductor 

Relating this to a semiconductor, we note that in addition to an optical density of states there is 
an electronic density of states. We first start with the equation for the rate of absorption per 
volume given by fermi’s golden rule in a 2-level system. 

𝑅!"# =
2𝜋
ℏ 𝑞𝑥!𝐸 !𝛿(𝐸! − 𝐸! − ℏ𝜔) 

where the delta function is to satisfy energy conservation. Due to the fact there are a continuum 
of states in both the conduction and the valence band in a semiconductor the delta function 
becomes: 

𝑟!"#(ℏ𝜔) =
2𝜋
ℏ 𝑞𝑥!𝐸 !𝜌!(ℏ𝜔)(𝑓! − 𝑓!) 

Here I’ve used the lower case r to describe the absorption rate per unit energy. The reduced 3D 
density of electronic states is ρr and incorporates the states due to both bands given below: 

𝜌! ℏ𝜔 =
1
2𝜋!

2𝑚!
∗

ℏ!
!/!

ℏ𝜔 − 𝐸𝑔 

The fc and fv are the distributions of electrons and holes respectively due to the quasi-Fermi 
levels, given below: 

𝑓! =
1

1+ 𝑒(!!!!!)/!"
        𝑓! =

1
1+ 𝑒(!!!!!)/!"

 

We can express this in terms the absorption coefficient which has units of cm-1, by dividing by 
the incoming photon flux S = εc|E|2/2𝑛ℏω.  

𝛼 ℏ𝜔 =
𝜋𝜔
𝑛𝜀!𝑐

𝑞𝑥! !𝜌!(ℏ𝜔)(𝑓! − 𝑓!) 

Similarly, 

𝑟!"#$(ℏ𝜔) =
2𝜋
ℏ 𝑞𝑥!𝐸 !𝜌! ℏ𝜔 𝜌!!!"!# ℏ𝜔 𝑓!(1− 𝑓!) 

Again the spontaneous emission rate is dependent on the photon density of states and integrating 
over energy gives us the total rate. By matching the emission frequency with the cavity 
frequency it is apparent that the peak rate is enhanced by the Purcell factor. 

 

 



	   37	  

Chapter 3:  Design and Fabrication 
To test the theory outlined in the previous 2 chapters, optical antennas were fabricated on the 
quarternary semiconductor InGaAsP. InGaAsP is typically used as a laser gain material for 
communications applications in the infrared and its emission wavelength can be tuned in the 
range of 1000nm to 1680nm based upon the alloy concentration. Phosphide based materials are 
attractive for use in nano-scale devices where the surface to volume ratio is large, as their surface 
recombination tends to be lower. For example InP bulk has a surface recombination velocity of 
<104 cm/s while GaAs is more than an order of magnitude higher at ~ 5x105 cm/s. This 
wavelength also allows for reasonable fabrication as length scales are in the ~100s of nm which 
can be achieved with photolithography. 

We know that increasing the density of states increases the spontaneous emission and so that as a 
proof of concept a simple cavity or antenna will work. The simplest antenna structure is just a 
metal bar which has a resonance frequency dependent upon its dimension.  Placing this in the on 
the semiconductor material allows the dipoles to couple to the ends and thus radiate. Gold is a 
commonly used material in this wavelength regime known for its low loss and while silver is less 
lossy, it is easily oxidized and so was not considered for ease of fabrication. However, future 
structures may want to incorporate silver with a capping layer of gold to increase efficiency. 

 

 

Fig 3.1 Bowtie antenna coupled to a patch of InGaAsP 

From our analysis in chapter 2, the most effective antenna is one with a small feedgap, but also 
small cross sectional area to reduce the capacitance of the gap in the circuit model and reduce the 
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overall effective volume from the viewpoint of the Purcell effect. To this end we chose a bowtie 
antenna with the InGaAsP sandwiched between them shown in figure 3.1. Additional rectangular 
wide antennas (fat dipoles) were fabricated to aid in alignment. The thickness of the InGaAsP 
layer is very well defined by epitaxial growth and not lithography so very small feedgaps can be 
made.  

 

 

 

FFF 

 

 

 

 

Fig 3.2. Fabrication procedure: 1. Spin on PMMA, Electron Beam Lithography, metal deposition 
2. Liftoff, Flip Chip to Sapphire handle with epoxy, substrate removal 3. Spin mAN, etch and 
resist removal. 

3.1 Bar Antenna Fabrication 

The fabrication for the single-sided antenna structure starts with an epitaxially grown layer of 
25nm InP/7-20nm InGaAsP/55nm InP/100nm on an InP substrate. The InP epitaxial layer on top 
is to prevent oxidation of the InGaAsP and on the back is to prevent over-etching when removing 
the substrate. The First the InP buffer on top is etched using a HCl:H3PO4 (1:1) etch for 10s 
rinsed in DI water and baked at 150C at 1min to remove any residual water. A negative e-beam 
resist, PMMA A-2, is then spun at 2000RPMs for 45s and baked at 185degrees for 90s to 
evaporate the solvents. Electron beam lithography defines arrays of rectangles with different 
lengths, which is then developed in MIBK:IPA(1:3) for 60s. Titanium (3nm) and gold (25nm) 
are deposited by e-beam evaporation and lift-off is done with acetone for a few minutes. The Ti 
is used as an adhesive layer as well as a barrier to prevent Au diffusion into the InGaAsP layer. 
The sample is then epoxied face down onto a sapphire carrier with Norlands optical adhesive 
NOA-81(refractive index=1.5) , baked in a UV oven for 10 mins and then on a hotplate for 12 
hours at 150C for a full cure. The InP substrate is then grinded down ~100um using a lapping 
tool and sandpaper. The residual InP is etched in HCl:H3PO4 (1:1) at 70C for ~ 30mins which is 
highly selective and stops at the InGaAsP etch stop. The InGaAsP is then etched with 
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H2O:H2O2:H2SO4 (1:1:10) which is highly selective against InP. Finally the InP buffer layer is 
etched in HCl:H3PO4 (1:1) to reveal the InGaAP quantum well. 

InGaAsP further from the metal nanorods will not couple to the antenna and thus when testing 
the device this excess material will show up as background signal and drown out signal from the 
antenna. Therefore, it must be etched away to provide signal only from the antenna. First a 
monolayer of HMDS is deposited for adhesion in an HMDS oven. A positive e-beam resist, 
maN-2403, is spun on at 3000 RPMs for 30s and baked at 90C for 60s yielding a resist thickness 
of ~300nm. To prevent charging during the subsequent e-beam exposure a conductive polymer, 
Aquasave, is spun on at 3500 RPMs for 30s and baked at 110C for 30s. Using registration marks 
defined on the first metal deposition, circular patches are exposed directly on top of the InGaAsP 
for use as a hardmask. The mAN-2403 is then developed in  10% TMAH in water for 60s and 
the InGaAsP layer is etched in H2O:H2O2:H2SO4 (1:8:500) for 10s as this solution etches at 
~1nm/s.  

 

Fig3.3. The schematics show the fabricated device. SEM images were taken before InGaAsP 
patch definition to prevent charging. AFM images are taken after the etch. 

Arrays of devices were fabricated with 220nm and 350nm patches and different antenna lengths. 
As a control patches with no antennas and patches with misaligned antennas were made adjacent 
to test arrays. Within the array, devices are spaced greater than half a wavelength apart (800nm) 
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to prevent coupling of the antennas. The testing methods and experimental observations and 
discussion will be discussed in the next chapter. 

3.2 Bowtie Antennas and Fat dipole Fabrication 

The same basic concept was applied to bowtie antennas and wide antennas. An extra e-beam 
alignment and mask was designed to overlay on the existing half-antenna and patches creating. 
Following the same procedure as before for e-beam lithography using PMMA A-2, exposure and 
metal deposition, the full structure was fabricated seen in Fig3.4. 

 

 

 

 

 

 

 

Fig 3.4 Continuing from fig 3.3, 4. Spin PMMA, EBL 5. Metal deposition 

The alignment accuracy for fabricated structures is nominally 10nm on the e-beam lithography 
tool, however combining charging effects from the underlying oxide as well as thickness 
variations from the epoxy this can span up to 50nm. For this reason, arrays are intentionally 
misaligned in 25nm increments both laterally and vertically to achieve reasonable alignments on 
at least some of the arrays. Ideally the InGaAsP etch mask would not require alignment(as done 
so with the circular patch) as it can be masked by the antenna arms; however doing so creates 
difficulty in testing as the pumping and emission of the etched area is greatly weakened. Note 
that on the top down SEMs one of the antenna arms is actually beneath the patch of InGaAsP and 
imbedded in epoxy. 
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Fig 3.5 Top and Side schematics of the device as well as SEMS 
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Chapter 4: Experimental Results and Discussion 
Coupling an emitter to an antenna serves two major purposes. Firstly, it speeds up the rate of 
spontaneous emission as discussed previously. And secondly, it increases the efficiency by 
increasing the radiative rate with respect to the non-radiative rate. Recalling section 2.4.5, the 
following expressions show both of these effects: 

  
𝑑𝑁
𝑑𝑡 = −

𝑁
𝜏 𝑁 = − 𝐵𝐹𝑁! + 𝐴𝑁 + 𝐶𝑁!   (4.1) 

𝜂! 𝑁 = 𝐿!"#$%&#'()
𝐹𝐷𝑅!"

𝐹𝐷𝑅!" + 𝑅!" + 𝑅!"#$#%"
(4.2) 

where F is the enhancement factor due to the antenna. Both of these consequences can be 
experimentally tested to measure the enhancement factor with caveats. In this work, we 
concentrate on measuring the second factor due to the reasons below 

The rate of recombination in a semiconductor can be measured by pulsing the material with a 
femtosecond laser and monitoring the photon emission as a function of time. It is important to 
note that the photon decay rate determines the recombination rate of all mechanisms – radiative 
as well as non-radiative since the emission is dependent on the carrier concentration seen in eq 
4.1. Thus, a faster decay rate can be achieved both by an antenna/cavity effect or by a greater 
non-radiative component. Additionally measurable decay times in the NIR with fast 
photodetectors, streak cameras or APDs are in the picosecond regime, already on the border or 
too slow to measure the recombination times and we expect to see. Additionally equipment this 
fast generally commands a hefty price tag and can be less sensitive than necessary for this 
application. Future work with this technique will be discussed in chapter 5. 

The relative efficiency on the other hand can be measured by the relative increase in light output. 
While non-radiative recombination may increase with the addition of an antenna, an increase in 
efficiency will mean a relatively greater enhancement factor, placing a lower bound on the 
enhancement. Analyzing the spectrum also confirms the resonant nature of the antenna. 
However, an increase in light output through other mechanisms, normally a bonus, can obfuscate 
the determination of the enhancement factor. An increased injection of carriers when optically 
pumping, light trapping/extraction enhancement by the non-planar surface (denoted Lextraction in 
eq 4.2), and increased output from directivity of the antenna(D in eq 4.2) all increase the light 
output. The directivity was discussed in chapter 2.2.4 and light tapping/extraction and resonant 
pumping will be discussed in the following sections.  

The basic experimental setup is a laser impinging upon the antenna array. The collected light is 
then input into a spectrometer and passed to a liquid nitrogen cooled InGaAs CCD shown in fig 
4.1. To obtain reflection data, a white light replaces the laser. 
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Fig 4.1. Schematic of the experimental setup. A Femtosecond laser is incident on an array of 
antennas coupled to InGaAsP. The PL is subsequently sent to a spectrometer. 

4.1 Light trapping and Extraction Enhancement 

Initial experiments were performed on a 20nm layer of InGaAsP on top of a 55nm layer of InP to 
determine the resonance of the antennas. White light polarized parallel to the long axis of the 
antenna will experience a dip where the resonance is, due to absorption at this frequency and 
scattering in all directions rather reflection straight up. Laser light pumped perpendicular to the 
antenna axis to avoid resonant pumping described in the next section, shows enhancement at this 
frequency shown in fig 4.2. 
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Fig 4.2. Reflectance and PL enhancement from a 160nm metal bar on 20nm InGaAsP/55nm InP 

Here we see that the resonance for a gold antenna bar of 160nm in length has a resonance 
frequency at a free space wavelength of 1480nm. The antenna is shorter than a half wavelength  
due to the fact that it lies on a half-plane with n~3.5. If we take the resonance frequency ω=1/√ 
LC, we notice that the increasing the capacitance by surrounding it dielectric decreases its 
resonance frequency, thus increasing its resonant wavelength. Additionally the kinetic 
inductance of the gold bar increases L, further increasing the resonant wavelength.   Similar 
experiments of this nature have been shown, and naively one may conclude that the enhancement 
is simply 4 from the graph. While some information may be gained about the resonance 
frequency and Q of this antenna, the enhancement factor is clouded by the fact that light can 
more readily escape through scattering.  

A simple example of this is shown in fig 4.3. In the ray optics picture, emission that occurs 
outside the critical angle gets trapped within the semiconductor. When the surface is roughened 
the angle of emission is randomized and far more light can escape since it is not trapped. 
Similarly, a plane wave incidence will yield a higher absorption in the textured semiconductor. 
The light that would normally pass through or be reflected can potentially scatter back into the 
semiconductor and thus the path length of the photon increases.  
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Fig 4.3 Schematic of light rays emitted within a material with planar facets (top) and with a 
roughened facet (bottom) 

The two processes both rely upon the same derivation, given by Yablonovitch in 1982, and the 
enhancements are equivalent to 4n2 ~ 50x where n is the refractive index [31]. A simple random 
texture can both boost the absorption and emission by a thin semiconductor layer, an engineering 
trick that is now being employed in both solar cells as well as LEDs. In the case of a structure 
depicted in fig 4.2, the structure is sub-wavelength and the ray optics picture does not apply. The 
semiconductor layer does not support a transverse mode due to its asymmetry; however, it can 
support a leaky mode which can be partially guided before curving into the epoxy beneath it. 
Scattering centers thus will still boost the extraction efficiency but not nearly to the extent of the 
4n2 that occurs in the ray optics regime. 

Thus, to avoid enhanced absorption and extraction the excess semiconductor must be etched 
away, preventing any waveguiding. This provides the added benefit of measuring the PL of the 
InGaAsP that couples best to the antenna. 

4.2 Resonant Pump Enhancement 

Since antennas are reciprocal devices, pumping with the electric field polarization along the 
antenna’s long axis enhances the intensity at the gap or at the ends of the antenna. And since the 
absorption in the material is dependent upon the intensity, this generates more carriers leading to 
an increase in photoluminescence. While this does increase the rate, it does so by increased 
carrier injection, akin to supplying more current in an electrically pumped device, and should not 
be factored into the spontaneous emission rate enhancement due to the antenna. Even with the 
pump wavelength detuned from the antenna resonance (~800nm vs 1325nm as in fig 4.4), there 
can be non-negligible increase in pumping at the edges of the metal. 
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Fig 4.4. Spectrum of PL pumping parallel to the antenna (light red and light blue) vs pumping 
perpendicular to the antenna (dark red and dark blue). While the emission perpendicular to the 
antenna is relatively unchanged for both pumping polarizations, the emission in the parallel 
polarization is enhanced when pumped parallel to the antenna. 

For the parallel polarization the emission is much greater due to increased pumping. The peak is 
roughly 1.5x greater than the perpendicularly pumped antenna and the spectrum is shifted to 
higher frequencies indicating bandfilling. Resonant pumping of optical antennas can be useful to 
increase absorption in solar cells, photodetectors and most notably SERS in which the signal 
receives a pump enhancement as well an emission enhancement. For the case of determining 
high rate enhancements though, we sill restrict ourselves to pumping in the perpendicular 
polarization. 

4.3 Bar Antenna Results 

Bar antennas were fabricated as detailed in section 3.1 in sizes of 180nm, 200nm and 220nm on 
patches of diameter 220nm and 350nm. Additionally, bare patches and intentionally misaligned 
antennas spaced a half period away from the patches are used for control. A Ti:sapphire laser 
(Coherent chameleon) femtosecond laser pulsed at 80Mhz is pulse picked to a rep rate of 10Mhz 
is used to pump the arrays as it provides high peak power and minimizes heating of the 7nm 

1200 1250 1300 1350 1400 1450
−200

0

200

400

600

800

1000

1200

1400

1600

Wavelength

C
ou

nt
s

 

 
Bare Patches
Aligned 190nm Antennas



	   47	  

quantum well patches and antennas. It is fed into a short-pass dichroic beamsplitter, passing the 
800nm light that is focused to a ~2um spot size on the sample with a .7 NA objective. The 
spontaneous emission spectra is then collected via the same objective and reflected by the 
dichroic into a Princeton Instruments spectrometer diffracted onto a liquid nitrogen cooled 
InGaAs CCD at -110C.  The results on the 220nm patch are shown in fig 4.5 

 

Fig 4.5. Spontaneous emission spectra of singled sided Au antennas of length 180nm, 200nm, 
220nm under a InGaAsP cylindrical patch of thickness 7nm and diameter 220nm. Arrays 10um x 
10um with an 800nm period are illuminated with a 800nm femtosecond laser polarized 
perpendicular to the long axis of the antenna and measured parallel. Bare patches and misaligned 
antennas (by a half period) are shown for comparison.  

The results show an enhancement in PL, corresponding to an enhancement in rate. The 220nm 
long antenna resonance frequency is matched to the spontaneous emission frequency showing a 
12.5x enhancement. The 180nm and 200nm long antennas are too short resulting and not on 
resonance, enhancing only the tail of the PL. And the PL from the misaligned antenna is roughly 
equivalent to the bare patch indicating that simple scattering of light is not occurring. As the 
InGaAsP, suffers considerable non-radiative recombination the lifetime is roughly estimated to 
be ~50ps for the unenhanced rate and ~5ps for the enhanced rate. This is determined by 
assuming a nominal spontaneous lifetime of ~1ns and measuring 250x reduction in PL from a 
cladded InGaAsP in InP to a naked InGaAsP layer accounting for the change in absorption. The 
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reduction can be attributed to a ~10x reduction in absorption length and a 25x reduction in PL 
due to surface recombination. 

Comparing this to the PL measured perpendicular to the antenna we can get an idea of how the 
metal is affecting the patch in fig.4.6. 

 

 

Fig 4.6. Spontaneous emission spectra polarization comparison on the 220nm patches – Emission 
parallel with the antenna (left) and perpendicular (right) 

The polarization dependence of the output light, the resonance shifts dependent on antenna 
length and the equivalence of the misaligned antenna and bare patch confirm that this is indeed 
an antenna effect. The perpendicularly polarized light is slightly lower than the bare patches 
indicating that if there is an enhancement in absorption due to the off-resonance/off-polarized 
laser light, it is offset by non-radiative recombination due to the metal contact. Since the non-
radiative terms dominate, the PL enhancement is roughly equivalent to the rate enhancement. 

The 350nm patches (fig 4.7) show similar results with a lower enhancement. The near field of an 
antenna falls off very quickly and so only the closest dipole couple well. Therefore, to a rough 
approximation we can assume the excess InGaAsP surrounding the 220nm patch adds only to the 
background signal.  Only ~40% of the area is coupled well enough to the antenna to obtain a 
12.5x enhancement yielding an expected enhancement of 4.9x for the 350nm patch, in good 
agreement with the measured results.  
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Fig 4.7 Spontaneous emission spectra polarization comparison on the 350nm patches – Emission 
parallel with the antenna (left) and perpendicular (right) 

 

4.4 Bowtie Antenna results 

Our bowtie antennas were fabricated upon 125nm InGaAsP patches with the process outlined in 
chapter 3. Our detector could not resolve the PL from bare patches or signals from antennas 
measuring the perpendicularly polarized light. Nevertheless some interesting observations can be 
made. Fig 4.8 shows the PL spectrum of a bowtie antenna pumped with perpendicularly 
polarized light and measured parallel compared to pumping a patch. The spectrum shows an 
enhancement of ~20x compared to the noise floor. Rather than measuring a spectrum, the light 
can be focused down to one pixel, allowing for a better signal to noise ratio. Doing so gives us 
the plots shown in fig 4.9 in which the best antennas out of each alignment are pumped with 
perpendicularly polarized light and measured with light polarized parallel to the antenna (shown 
in blue) and light polarized perpendicular to the antenna. While the alignments can deviate 
slightly, the general trend is unambiguous. The longer the antenna is compared to the gap, the 
greater the radiation resistance according to our formula initially shown in chapter 2: 

1/𝜏!"#
1/𝜏!"#$%&

=
1
4
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Fig 4.8 Spectrum from PL(in the antenna polarization) from an antenna with half-length 200nm 
vs a bare patch of InGaAsP. 
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Fig 4.9 PL from various antenna sizes in the antenna polarization(blue) and the perpendicular 
polarization (red). The perpendicular polarization was used to pump the antennas. 

 

Since the signal is buried in the noise for a patch, we can compare the best 200nm antenna to the 
best 60nm, which will gives a lower bound on the enhancement. Doing so gives us fig 4.10:	   
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Fig 4.10 Total PL (in the antenna polarization) from an antenna with half-length of 200nm vs a 
half-length of 60nm.  

These enhancement factors are quite large, but not as large as we expect to see given the theory 
in chapter 2. It is also difficult to accurately measure the gap size due to misalignment. One 
consideration we have not touched upon yet is the diffusion of carriers. In this work we did not 
explicitly seek to improve surface recombination through passivation or other means and thus the 
diffusion length of carriers given by LDiff = (Dτ)1/2 can be quite high. Using the nominal rate that 
we expect from before, Ldiff can be on the order of 20nm. Pumping therefore produces carriers 
that non-radiatively recombine before they can diffuse to the hot spots of the antenna, weakening 
the overall enhancement. The quantum well being only 7nm thick makes surface recombination a 
serious problem. Additionally, gold is directly in contact with the semiconductor in order to 
provide the smallest gaps possible for the greatest enhancements. As seen in fig 4.11 taken 
from[32],  metals such as gold and silver greatly increase surface recombination velocity in InP 
and is expected to do the same for similar materials.  
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Fig 4.11 The recombination rate as plotted as a function of heat of reaction per metal atom. Data 
points for specific metals are plotted[32]. 

 

Therefore, future optical antennas of this nature should be passivated. Options typically involve 
an ammonium hydroxide dip to remove oxidized states, followed by various surface treatments 
including sulfur treatments [33]. Wet chemical passivation tends to last only a short while in 
atmosphere so capping layers of oxides or nitrides are a possibility[34]. A more practical use of 
optical antennas, when coupled to a waveguide may not suffer from this as much as InP reduces 
dangling bonds.  
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Chapter 5: Future Work and Conclusion 
 

Thus far we have discussed the theory behind optical antennas and the experimental work that 
showed the proof of principle. Much more can be done in this promising field, and far more 
needs to be done to make this a viable technology for short distance optical interconnects. 
Further confirmation of the high enhancements from optical antennas can be done by switching 
to lower wavelengths where detection by higher sensitivity and faster are more common place. 
Switching to a material such as InP which already boasts lower surface recombination velocities 
can greatly increase efficiencies while also making it easier to do time resolved measurements. 
Passivation can also greatly aid in experimentally verifying higher enhancements by lowering the 
surface recombination due to the metal. 

Electrical injection is also required for practical use in this field. Ideally the antenna itself would 
be used as an electrode and recent work has shown this may be possible [35] by connecting the 
leads at regions with lower near field intensities. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1 Schematic of potential Spontaneous Hyper Emitting Diode.  
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Finally, the device needs to be coupled to a waveguide. Various antenna concepts such as the 
Yagi-Uda antenna promote directional propagation and could potentially be used to couple to a 
waveguide. 

In the concept in Fig 5.1, a visual of a potential Spontaneous Hyper Emitting Diode is given. The 
bottom teal area consists of a n-doped InP waveguide with a ohmic contact for current injection. 
Atop of the waveguide is a quantum well of InGaAsP coupled to an antenna. The other strips of 
metal serve as reflectors to direct the beam into the waveguide. The top half of the antenna 
serves as the p-contact which is isolated from the surrounding material with oxide.  

With III-V bonding becoming a viable technique, this process can be transferred to Si for 
integration with CMOS compatible electronics and silicon waveguides, filters, detectors etc to 
replace aluminum/copper as communication method of choice.  
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Appendix 1: Derivation of Fields from a Hertzian 
Dipole 
Consider a conductor (with no net charge) along the z axis of length L with an oscillating current 
I0. 

𝐼 = 𝐼!cos  (𝜔𝑡) 

The magnetic vector potential is given by: 

𝑨 𝒓, 𝑡 =
𝜇!
4𝜋   

𝒋 𝒓!, 𝑡 − 𝒓− 𝒓!
𝑐

𝒓− 𝒓!   𝑑𝑉′     

For a conductor of negligible thickness we can replace j with Idz and so, 

𝑨 𝒓, 𝑡 =
𝜇!
4𝜋   

𝑰 𝑧!, 𝑡 − 𝒓− 𝑧!𝒛
𝑐

𝒓− 𝑧!𝒛   𝑑𝑧′     

In the region r≫L 

𝒓− 𝑧!𝒛 ≈ 𝑟 

and so the equation simplifies to: 

𝐴! 𝒓, 𝑡 =
𝜇!
4𝜋   

𝐼 𝑧!, 𝑡 − 𝑟𝑐
𝑟   𝑑𝑧′     

which is simply 

𝐴! 𝒓, 𝑡 =
𝜇!𝐿
4𝜋

𝐼 𝑡 − 𝑟𝑐
𝑟  

To calculate the Electric field from this we must first calculate the potential using the Lorenz 
gauge: 

∇�𝑨 = −𝜖!𝜇!
𝜕𝜙
𝜕𝑡  

Solving for ϕ, we obtain: 

𝜙 =
𝐿

4𝜋𝜖!𝑐
𝑧
𝑟
𝐼 𝑡 − 𝑟𝑐

𝑟  
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The electric field is then given by: 

𝑬 =   −
𝜕𝑨
𝜕𝑡 − ∇𝜙 

which after some algebra and switching to polar coordinates equates to: 

𝑬(𝑟,𝜃) =   −

𝜔𝐿𝐼!
4𝜋𝜖!𝑐!

𝑠𝑖𝑛𝜃 sin 𝜔 𝑡 − 𝑟𝑐
𝑟 𝜽 

Note that this varies as r-1 in the far field and is completely symmetric about the azimuthal angle 
φ. As discussed in chapter 1, we see that there is no radiation for θ = 0. 

The total power radiated is given by the Poynting vector integrated over the surface. Since the 
flux will vary as r-2 any surface chosen will do. 

B is given by: 

𝑩 = ∇×𝑨 

And the total power radiated is equivalent to: 

𝑃 = 𝑬×
𝑩
𝜇!

�𝑑𝑺 

Integrating gives us the following which is equivalent to the method derived in Chapter 2. 

𝑃 =
𝑞!𝐿!𝜔!

12𝜋𝜀!𝑐!
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Appendix 2: Methods for deriving spontaneous 
emission. 
Using thermodynamics, Einstein initially predicted stimulated emission and its relation to 
absorption and spontaneous emission and his derivation is given here. Let 𝑁! and 𝑁! be the 
number of electrons in the energy levels 𝐸! and 𝐸!, in an atom. The rate at which 𝑁! changes due 
to the absorption of radiation, with the atom making an upward transition to level 𝐸!, is assumed 
to be proportional to 𝑁! and the spectral energy density 𝑊 𝜔!  at its transition frequency 
𝜔! = 𝐸! − 𝐸! ℏ: 

𝑁! !"# = 𝐵!"𝑁!𝑊 𝜔!    

Einstein proposes two kinds of emission processes by which an atom can jump from level 𝐸! to 
𝐸! with the emission of radiation of frequency 𝜔!. One is spontaneous emission, which can 
occur in the absence of any radiation and is described by the rate constant 𝐴!": 

𝑁! !"#$%&$'#(!  !"#$$#%& = 𝐴!"𝑁!   

The other is stimulated emission which is induced by electromagnetic energy, which is assumed 
to proceed at a rate proportional to both  𝑁!  and 𝜌 𝜔! : 

𝑁! !"#$%&'"()  !"#$$#%& = 𝐵!"𝑁!𝑊 𝜔!    

The principle of detailed balancing requires that in thermal equilibrium all the rates must cancel: 

𝑁! !"#$%&'($) + 𝑁! !"#$%&$'#(!  !"#$$#%& + 𝑁! !"#$%&'"()  !"#$$#%& = 0   

or 

𝐴!"𝑁! + 𝐵!"𝑁!𝑊 𝜔! = 𝐵!"𝑁!𝑊 𝜔!  

𝑊 𝜔! =
𝐴!" 𝐵!"

𝐵!" 𝐵!" 𝑒   ℏ!! !" − 1
=   

𝜌 𝜔! ℏ𝜔!
𝑒   ℏ!! !" − 1

   

 
where  𝜌 𝜔!  is the optical density of states and 𝑁! 𝑁! = 𝑒   ! !!!!! !" = 𝑒   ℏ!! !" in thermal 
equilibrium. From here we can directly deduce that for all temperatures B12 and B21 must be 
equal and A21/B21 = 𝜌 𝜔! ℏ𝜔!. The correct interpretation of this is that B21 is the rate constant 
for a single optical mode and A21 is this multiplied by the spectral density. Alternatively  we can 
look at this in the following way. At very high temperatures 𝑊 𝜔!  becomes so large that 
spontaneous emission is much less probable than stimulated emission and we must have 
𝐵!" = 𝐵!!. 
 

𝑊 𝜔! =
𝐴!" 𝐵!"

𝑒   ℏ!! !" − 1
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For 𝑘𝑇 ≫ ℏ𝜔! , furthermore, 
 

𝑊 𝜔! ≅
𝐴!"
𝐵!"

𝑘𝑇
ℏ𝜔!

   

 
This is the limit where the radiation energy quanta are so small compared with 𝑘𝑇 that the 
classical Rayleigh-Jeans law should be applicable. This  requires 𝐴!" 𝐵!" 𝑘𝑇 ℏ𝜔! =
𝜔!! 𝜋!𝑐! 𝑘𝑇, or 

 
𝐴!"
𝐵!"

=
ℏ𝜔!!

2𝜋!𝑐!   

 
and is the appropriate prefactor to the planck spectrum. 
 

Method I: Detailed Balancing 

Imagine a two-level system and consider an electric field with magnitude 𝐸!cos(𝜔𝑡)  where 𝐸! 
denotes the peak electric field. By definition then the root mean square electric field is 

𝐸!"# = 𝐸!!cos!(𝜔𝑡) = 𝐸! 2 

    𝐸!"#! = 𝐸!! 2  , 

and the root mean square energy density of the vacuum field (in 𝐽 𝑚!) ignoring dispersion is 

𝜀!
2 𝐸!"#

! +
1
2𝜇!

𝐵!"#!     . 

But, from Faraday's law, assuming a plane wave solution with field dependence ∝ 𝑒!(𝒌∙𝒓!!") 

∇×𝐸 = −
𝜕𝐵
𝜕𝑡  

      𝑖𝑘𝐸 = 𝑖𝜔𝐵 

      𝜔!𝐵! = 𝑘!𝐸! 

    
𝐵!

𝜇!
=

𝑘!

𝜇!𝜔! 𝐸
! =

𝜔!

𝜇!𝜔!𝑐 𝐸
! = 𝜀!𝐸! 

    
𝜀!
2 𝐸!"#

! +
1
2𝜇!

𝐵!"#! = 𝜀!𝐸!"#!  
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or, in some material = 𝑛!𝜀!𝐸!"#!    ( 𝐽 𝑚!)  which is just a statement that in general the electric 
and magnetic energy densities are equal. The power flux is then 

𝐺𝑟𝑜𝑢𝑝  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦   𝑚 𝑠       ×      𝐸𝑛𝑒𝑟𝑔𝑦  𝑑𝑒𝑛𝑠𝑖𝑡𝑦   𝐽 𝑚!     →       𝑃𝑜𝑤𝑒𝑟  𝑓𝑙𝑢𝑥     𝑊 𝑚! . 

Ignoring dispersion, the group velocity is the same as the phase velocity 𝑐 𝑛  , so we have 

𝑃𝑜𝑤𝑒𝑟  𝑓𝑙𝑢𝑥       =       
c
n       ×      𝑛

!𝜀!𝐸!"#!     =       𝑐𝑛𝜀!𝐸!"#!      𝑊 𝑚!   . 

The rate of absorption of energy by a two-level system is simply 

𝛼 ∙ 𝑐𝑛𝜀!𝐸!"#!      𝐽 𝑠  

where 𝛼 is the absorption coefficient and has units of 𝑚!. Equating the absorption rate to the 
transition rate from Fermi's golden rule implies that at equilibrium 

𝛼 ∙ 𝑐𝑛𝜀!𝐸!"#! =
2𝜋
ℏ ℏ𝜔 𝑞𝑥 𝐸!,! 2 ! 𝑑𝑁

𝑑𝐸  

but 

𝐸!,! 2 ! =
𝐸!,!!

4 =
1
2 ∙
𝐸!,!!

2 =
𝐸!"#,!!

2   , 

where here we only consider the 𝑥-component of polarization 

𝐸!"#,!! =
1
3 𝐸!! + 𝐸!! + 𝐸!! =

1
3𝐸!"#

!  

      𝛼 ∙ 𝑐𝑛𝜀!𝐸!"#! = 2𝜋𝜔 𝑞𝑥 ! 𝐸!"#
!

3 ∙ 2
𝑑𝑁
𝑑𝐸  

    

                                                                                                                                            𝛼 =
𝜋𝜔
3𝑐𝑛𝜀!

𝑞𝑥 ! 𝑑𝑁
𝑑𝐸     . 

Now, if the radiation has a blackbody spectrum, we have that the rate of spontaneous emission is 

1
𝜏!"

= 𝛼 ∙
8𝜋𝑛!𝑣!𝑑𝑣

𝑐!
1

𝑒!! !!! − 1!
 

                                                                              =
𝜋𝜔
3𝑐𝑛𝜀!

𝑞𝑥 ! 𝑑𝑁
𝑑𝐸 ∙

8𝜋𝑛!𝑣!𝑑𝑣
𝑐!

1
𝑒!! !!! − 1!

      . 

For a two-level system we have that 𝑑𝑁 = 𝛿(𝐸 − 𝐸!)𝑑𝐸   = 𝛿(𝑣 − 𝑣!)𝑑𝑣 and the integral 
collapses to 
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1
𝜏!"

=
2 𝑞𝑥 !

3𝜀!
∙
𝑛 4𝜋!𝑣! 𝜔

𝑐!
𝑑𝑣
𝑑𝐸

1
𝑒!! !!! − 1

    , 

where now 𝑣 = 𝑣!. Noting that 𝑑𝐸 𝑑𝑣 = ℎ  , and assuming that ℎ𝑣 ≫ 𝑘!𝑇, the expression 
simplifies to 

1
𝜏!"

≈
2
3 𝑞𝑥 ! ∙

𝜔!𝑛
𝑐!𝜀!

1
ℎ 𝑒

!!! !!!     , 

but 𝑒!!! !!! = 𝑁!/𝑁!  , which is the ratio of excited two-level systems to ground state two-level 
systems in case an ensemble of them is at hand. Thus the spontaneous emission rate per unit 
excited system is 

1
𝜏!"

≈
4
3 𝑞𝑥 ! 𝜔!𝑛

4𝜋𝜀!ℏ𝑐!
    . 

Method II: Dipole Fluctuations & Zero-Point Fluctuations 

Recall the electric potential from a charge distribution 𝜌(𝑥) is 

𝜙(𝑥) =
𝜌(𝑥!)𝑑!𝑥!

4𝜋𝜀! 𝑥 − 𝑥!
    . 

Similarly, the vector potential from a current distribution 𝑱(𝑥)  is 

𝑨(𝑥) =
𝜇!𝑱(𝑥!)𝑑!𝑥!

4𝜋 𝑥 − 𝑥!     . 

Now, for a single moving electron 

𝑱𝑑!𝑥! = 𝜌𝒗𝑑!𝑥! = 𝜌𝑑!𝑥! 𝒗 = 𝑞𝒗  , 

and it follows that the vector potential and electric field generated by such an electron are given 
by 

𝑨 𝑟 =
𝜇!𝑞𝒗
4𝜋𝑟        , 𝑬 𝑟 = −

𝜕𝑨(𝑟)
𝜕𝑡 =

𝜇!𝑞𝒗
4𝜋𝑟     . 

The radiated power is given by the product of the group velocity 𝑐 𝑛 , the energy density 
𝑛!𝜀!𝐸!"#!  , and a term 𝑠𝑖𝑛!𝜃 which describes the angular projection of power for a dipole 
radiator: 

𝑃𝑜𝑤𝑒𝑟  𝑅𝑎𝑑𝑖𝑎𝑡𝑒𝑑 =
𝑐
𝑛 ∙ 𝜀!𝑛

!𝐸!"#! ∙ 𝑠𝑖𝑛!𝜃 = 𝑐𝜀!𝑛 ∙
𝜇!𝑞𝒗
4𝜋𝑟

!

∙ 𝑠𝑖𝑛!𝜃      (𝑊 𝑚!)  . 
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Integrating over a sphere of radius 𝑟  we have 

𝑃𝑜𝑤𝑒𝑟  𝑅𝑎𝑑𝑖𝑎𝑡𝑒𝑑 =
2
3 ∙

𝑛 𝑞𝒙 !

4𝜋𝜀!𝑐!
=
2
3 ∙
𝑛𝜔! 𝑞𝒙 !

4𝜋𝜀!𝑐!
 

𝑃ℎ𝑜𝑡𝑜𝑛  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛  𝑅𝑎𝑡𝑒 =
𝑃𝑜𝑤𝑒𝑟  𝑅𝑎𝑑𝑖𝑎𝑡𝑒𝑑

ℏ𝜔 =
2
3 ∙
𝑛𝜔! 𝑞𝒙 !

4𝜋𝜀!𝑐!ℏ
    , 

which is half the standard free space spontaneous emission rate we obtained from detailed 
balancing and second quantization. Since any energy level is subject to zero-point fluctuations it 
acts as a dipole and thus radiates. This also applies to the ground state since 

𝑖 𝒙𝟐 𝑖 = 𝑖 𝒙 𝑗 𝑗 𝒙 𝑖
!

= 𝑖 𝒙 𝑗 !

!

≠ 0 

so there must be zero-point fluctuations in the ground state just as there are for an excited state: 
𝑗 𝒙𝟐 𝑗 = 𝑖 𝒙 𝑗 ! = 𝑖 𝒙𝟐 𝑖 . This still only gives us half the desired spontaneous emission 

rate. The rest comes by considering that the zero-point fluctuations are absorbed so that 

𝛼 =
4𝜋!

𝑐𝑛 𝜔
𝑞𝒙 !

3
𝑑𝑁
𝑑𝐸     . 

The power flux of zero-point energy is 𝑐 𝑛 times the zero-point-field energy density: 

                                                                                              𝑃𝑜𝑤𝑒𝑟  𝐹𝑙𝑢𝑥 =
𝑐
𝑛 ∙
ℏ𝜔
2𝑉 ∙

𝑛!𝜔!𝑉
𝜋!ℏ𝑐! 𝑑𝐸 

                                                                                              𝛼×𝑃𝑜𝑤𝑒𝑟  𝐹𝑙𝑢𝑥 =
4𝜋!

𝑐𝑛 𝜔
𝑞𝒙 !

4𝜋𝜀! ∙ 3
∙
𝑐
𝑛 ∙

𝑛!𝜔!

2𝜋!𝑐! 

𝐸𝑛𝑒𝑟𝑔𝑦  𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛  𝑅𝑎𝑡𝑒  𝑝𝑒𝑟  𝑈𝑛𝑖𝑡  𝑉𝑜𝑙𝑢𝑚𝑒 =
2
3
𝑛 𝑞𝒙 !𝜔!

4𝜋𝜀!𝑐!
 

𝑃ℎ𝑜𝑡𝑜𝑛  𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛  𝑅𝑎𝑡𝑒  𝑝𝑒𝑟  𝑈𝑛𝑖𝑡  𝑉𝑜𝑙𝑢𝑚𝑒 =
2
3
𝑛 𝑞𝒙 !𝜔!

4𝜋𝜀!𝑐!ℏ
 

Summing both contributions we obtain the expected rate 

1
𝜏!"

=
4
3 𝑞𝑥 ! 𝜔!𝑛

4𝜋𝜀!ℏ𝑐!
    . 

In other words, the electric dipole moment which vibrates at angular frequency 𝜔!, emits an 
electromagnetic wave with energy ℏ𝜔!. Also, the emitted electromagnetic wave reacts on the 
electric dipole moment. When the atom is in the excited state, the fluctuations in the vacuum 
field and the electromagnetic wave interact with the same phase, which induces spontaneous 
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emission. While the atom is in the ground state, the interaction takes place with the antiphase and 
spontaneous absorption never happens. 

 




