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Mobile robot sensing for environmental applications
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Summary. This paper reports the first application of iterative expenital design methodol-
ogy for high spatiotemporal resolution characterizatibriver and lake aquatic systems per-
formed using mobile robot sensing systems. Both applinatiovolve dynamic phenomena
spread over large spatial domain: 1) Characterization nfagninant concentration and flow
at the confluence of two major rivers displaying dynamics tulow of the water; and 2)
Characterization of rapidly evolving biological processeich as phytoplankton dynamics in
a lake system. We describe the development and applicdtemnew general purpose method
for mobile robot sensing in such environments - Iterativpegiment Design for Environ-
mental Applications (IDEA). IDEA introduces in-field adagibn of mobile robotic sensing
system. Analysis of the complex spatial and temporal atrestassociated with each observed
environment is presented. Detailed characterizationebtiserved environment using IDEA
methodology is used as an informed prior to improve the perdmce of the existing adaptive
experimental design approaches for mobile robotic systestratified adaptive sampling and
hierarchical non-stationary Gaussian Processes.

1 Introduction

A broad class of environmental sensing applications, lertlestrial and aquatic, re-
quire observing an environment that displays significatgiogeneity in both space
and time. As an example, river observations are useful fewaring the questions
pertaining to the hydraulics and multi-dimensional rivesdrling [1], geomorphol-
ogy, sediment transport and riparian habitat restorarilhese require high gran-
ularity measurements of coupled velocity and water qupbtyameters in river cross-
sections. Flow of water in the rivers result in temporal hegeneity while mixing
of the two streams at a confluence zone results in spatialdysteeity. Fig. 1 dis-
plays the temperature distribution observed in a lake amddihtaminant distribution
in terms of specific conductivity (in space and time) at a agrfte of two rivers,
displaying the high degree of heterogeneity in such enviremts.

Traditionally, aquatic environments were observed spaiiseboth space and
time because of the difficulties and the associated cost mfiragously accessing
these environments [3]. Over the last few years, with theebg@ment of various
robotic and sensor network platforms, several prototyjséesys have been used for
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Fig. 1: Spatio-temporal heterogeneity in environmenta&mmena (Points represent observa-
tion locations)

sensing the aquatic environments at different scales. &lay moored platforms
now exist which can provide vertical profiling capabilitigh high temporal reso-
lution over long time periods at key locations [4]. Mobiléadic platforms such as
boats [4], Autonomous Underwater Vehicles [5, 6] and calbtdubtic systems [7],
each suited for a specific environment, have resulted in f@gblution sampling in
both space and time. However, literature survey reveatshisis the first time an
actuated sensing system has been used for detailed chieattd@ of applications
such as phytoplankton growth in lake environment and calfdev and water qual-
ity parameters in river environment.

In this paper, we present IDEA - lterative experiment DeggnEnvironmen-
tal Applications; an approach for characterizing an unkmewironment under the
constraints of rapidly evolving phenomena. This involvegafield adaptation in the
experiment design: to capture phenomena dynamics exgoitbservations from
prior models, iteratively executed experiments and theabieh of the underlying
control processes (if known). We discuss how such an approac optimize the
limited campaign time and acquire data that characterimespatiotemporal distri-
bution of the observed phenomena with high fidelity.

To illustrate IDEA and its validation in real world applidgats, we present case
studies of two environmental sensing campaigns where suepproach was suc-
cessfully followed and validated. The first campaign wasated at the confluence
of two rivers, Merced river and San Joaquin river, in Califarfrom August 21-25,
2006 (hereafter referred to as SJ deployment). The secanpaign was executed
at a lake located in a sub alpine (1,600 m) coniferous for@siimthe San Jacinto
mountains of Southern California [8] from August 28-31, 8Qbereafter referred
to as Fulmor deployment). Information collected using IDE®thodology is used
to demonstrate the improvement in performance of two of #igtiag adaptive ex-
periment design approaches: 1) Stratified adaptive sagfdinand 2) Hierarchical
non-stationary Gaussian Process based modeling apprb@ct].

2 System Description

An actuated mobile robotic system, Rapidly Deployable Meked Info Mechanical
System [7] (hereafter called NIMS), was used during eaclhefio campaigns to
navigate a sensor payload anywhere within the two dimeasionss-sections of
the aquatic environments. Fig. 2a shows the schematicatiagf the system with
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Fig. 2: NIMS system with basic cable setup

the basic cable setup. It consists of three main cables:t#tie €able supporting
the shuttle and the vertical node platform, a horizontal ancertical cable used
to control the corresponding motion of the sensor payloagl. Zb displays major
system components that include the mounting hardwareat@tumodule and a
shuttle. The static cable is used to support the mountindweme which in turn is
used to attach the actuation module at one end of the traasdchorizontal and
vertical cables at the other end.

The static cable is specified to support a maximum tensioi @ Pounds while
the maximum tension on our system was close to 750 poundsioreéng spring at
one end keeps the horizontal cable loop tight and preveifitsrit slipping on the
spool on the other side. The vertical cable was tensionedialignThis proved to be
sufficient, since the vertical cable was also kept undeidertsy the sensor payload.
The shuttle and the vertical node platform are actuateditfiréhe horizontal and the
vertical cables using two motors located inside the aainatiodule. Both of these
motors are controlled simultaneously using a serial iataf

Several parameters of the phenomena were measured, usimgezoially avail-
able sensors [12-14], to validate and advance the unddistpof interrelated phys-
ical, chemical and biological processes in the observeidr@mwents. These in-
clude temperature, pH, specific conductivity, Photosyiithly Active Radiation
(PAR), depth, oxidation reduction potential, turbidityrhinescent Dissolved Oxy-
gen (LDO), nitrate, fluorometer and flow velocity among oghekdditionally, a
physical sampling device, designed and developed at UClekiipally for these
campaigns, was used to collect water samples for detaiteainalysis and measure-
ment of other required parameters for which no commerciaé@es are available.
The device uses dual spring loaded syringes to collect gareples when actuated
at any location within the two dimensional cross-sectiothefaquatic system.

This system architecture is an improvement from first gai@raystem intro-
ducedin[15]. It allows for reduced node mass, increaseid tiotal and vertical node
speed, constant and convenient access to the actuatiowlamotdule and rapid yet
flexible deployments. Use of cable based system enabledspriecalization and
ability to actuate heavy sensor payload. System desigmi@g and implementation
details are providedin [7].

Software architecture included system for monitoring & time data stream
to provide immediate fault detection as well as to moniter ¥ariability in the ob-
served phenomena distribution in real time. Additionallgorithms for adaptive ex-
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Fig. 3: Schematic view of IDEA methodology

perimental design, adjusting to the observed phenometrédison, were integrated
in the field with the existing architecture to provide autormus system operation.

3 IDEA (lterative experimental Design for Environmental
Applications) Methodology

IDEA provides a methodology for in-field adaptation of expegntal design to per-
form detailed characterization of the spatiotemporatitigtion of the observed en-
vironment. The two successful campaigns discussed in #psipdisplay the utility
of IDEA methodology for actuating the mobile robotic systenperform such char-
acterization. Fig. 3 displays the schematic view of IDEA noetology. Following is
the detailed discussion of each module of IDEA methodoloiyly @n illustration of
their general applicability to different sensing systems.

3.1 Characterizing the spatial variability

Dense spatial sampling is required to characterize théasplisgtribution with high
fidelity. In the case of statically distributed sensing ewst this requires a dense,
uniform distribution of sensor network. On the other handhwan actuated sens-
ing system such as NIMS, this requires performing detestimidense raster scans
discounting the temporal variation in the phenomena thstion. In both cases, the
initial spatial density can be decided based on the knowracheristics of the ob-
served phenomena. This can then be iteratively improvieitl il sufficient to com-
pletely characterize the spatial variability in the obserphenomena with high fi-
delity. For each of our aquatic sensing applications, defeterministic scans (raster
scans) were performed by actuating NIMS to navigate thessgrasy/load in the two-
dimensional cross-section of the observed environmerg.demsity of these raster
scans was decided in consultation with the environmentahtsts and aquatic bi-
ologists and was influenced by prior experiments in the sameament. This was
found to be sufficient for high fidelity characterization edn the observed phe-
nomena distribution.

3.2 Characterizing the temporal variability

Temporal variation in the phenomena distribution shouldteracterized at differ-
ent scales. When using static sensor network, samplingérezy should be guided
by observed temporal variation. These static sensors millide both the short term
and long term temporal variations. Though such measurewégltbe restricted to
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only a few locations in the observed environment (high res@eost makes it im-
practical to deploy highly dense static sensor networkgalse of actuated systems,
diurnal variation should be characterized by repeatingittrese raster scans at dif-
ferent times of the day. Such scans will also provide peciedimpling checks for
post deployment calibration, data integrity etc. and a lbasdo characterize the
performance of any adaptive sampling approach. At each ofvancampaigns we
performed repeated raster scans at different times of théeaa nights at Lake Ful-
mor), using NIMS, that enabled us to understand the mixifecef across different
layers of water column.

Dwelling time at each sensing location, while performingtea scans, should
be selected so as to satisfy both the requirements for abgestiort term tempo-
ral variations across the complete observed environmehtfam response time of
the sensing system. For the San Joaquin deployment, dg/éitive during each of
the raster scans was selected to be 30 seconds to accourgtaraniability due to
constant flow in the river. On the other hand, for the physjicsthatic Lake Fulmor
environment, the dwelling time for each of the raster scaas selected to be 10
seconds. Observed standard deviation at each of the séasaigns confirmed that
these dwelling times for our campaign were sufficient tos§atboth the demands
for sampling short term temporal distribution and the resgatime of the sensors.

3.3 Interplay between sensing system and observed envirommt

In addition to characterizing the observed environmenpeexnents must be de-
signed to characterize the constraints of the samplingesystuch as localization
drift, interference in the observed environment and otharsh that the integrity of

the collected data can be established. For example, dugkeg Eulmor campaign we
designed experiments to characterize the mixing of watersadifferent layers of

water column due to the motion of NIMS inside the water. Ondtieer hand, during

San Joaquin deployment with significant flow of the river, vesigned experiments
to characterize the static deflection of the suspended yteusisensor system while
making observations inside water.

3.4 Adaptive experimental design and validation

Finally, interspersed with these experiments, adaptiygesments should be de-
signed to enable sampling with larger spatial coverageowitdiscounting the tem-
poral dynamics in the phenomena. During the two campaigasjegigned several
experiments that adapted to the specific observed distiibbly varying the sam-

pling density and dwelling time besides others. Post deptoyt, the collected data
should be used to validate the known understanding of thereéd environments
and hypothesize the deviations. The detailed charactienizperformed using IDEA

methodology can be used as informed prior for the designfe€&fe adaptive sam-
pling approaches.

4 Observations following IDEA methodology

We present here the analysis from several experimentsrpagtbby actuating NIMS
in the two dimensional cross-section of the aquatic enwirents, following the
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Fig. 4: Experimental results from San Joaquin deployment
IDEA methodology. Piecewise bilinear interpolation isfoemed between the ob-
served locations to create the surface distributions. Boh esurface distribution,
the mean for all the observations is considered as the cddemlue at that loca-
tion. Points in the surface distributions, wherever agtile, represent the obser-
vation locations. As per the coordinate system, x-axisaggmt distance along the
cross-section of the aquatic environment, while y-axigesent distance along the
depth ¢ = 0 represent the water surface). For the San Joaquin depldyhewater
stream on the near side (lower x coordinate value) is comg the Merced River
while the water stream on the far side is coming from San Joaduer. Due to the
space constraints here we only present the analysis frone@dynent. Detailed
characterization of both SJ deployment and Fulmor deployiisaliscussed in [16].
Additionally, only a subset of the observed variables amshfor each campaign.
However, it is important to note that these are represemtati the similar trends
shown by all other observed parameters in each of the two a@gmeg.

The scientific objective for the San Joaquin campaign washtoacterize the
transport and mixing phenomena at the confluence of twondistivers - Merced
river (relatively low salinity) and the agricultural draige-impacted San Joaquin
River (relatively high salinity) by observing several paters that may control the
mixing behavior of the two streams. Multiple river crosstiens were observed dur-
ing the campaign. These transects were chosen based ombpsienvations [17] in
the same environment. Sampling density was selected inuttatisn with the scien-
tists to be 1 meter across the river and 0.6 meters along f{iith desulting in a total
of 250 and 293 observation locations respectively at thettamsects. Dwelling time
at each of the observed location was selected to be 30 seconds

4.1 Spatial Trends

Fig. 1c and 4a show the spatial distribution of specific catigity and nitrate con-
centration respectively. Each of these observed distabsis uniform towards each
end of the cross-section while displaying dynamic varigbih the mixing zone
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in the middle, resulting in vertical stratification. Moresycomparing Fig. 4d, that
displays the distribution of specific conductivity at th@ss-section of the second
transect (closer to the confluence point of the two river#) wig. 1c, one can ob-

serve increased mixing of water downstream at the first é@mnesulting in reduced

gradient in specific conductivity between the two ends ofriver.

4.2 Temporal trends

Fig. 4c shows the distribution of specific conductivity ategoth of 1.2 meters during
different times of the day. As the day progresses, gradieapecific conductivity
between the two flows reduces. Fig. 4b shows the contour ptdh& standard de-
viation observed at each of the sensing locations durin@@hseconds of dwelling
time. As expected, maximum standard deviation (which issigntificant) is in the
mixing zone in the middle. To characterize the temporalatanms at point locations,
as would have been captured by a static sensing device, 18 Ntanning pattern
included a dwell for 5 minutes at several locations alongctiess-section at a depth
of 1.2 meters. Fig. 1b shows this distribution at three sachtions while Fig. 4e dis-
plays the mean specific conductivity observed at each oetleestions during the
observation time of 5 minutes. As can be observed, there igastvariation during
this short time towards the middle of the river (x=30) as caneg to near end of the
transect (x=15). This further confirms higher standard atew and larger dynamic
range in the middle mixing zone observed during raster scans

4.3 Adaptive Experiments

Based on the observed uniformity in the spatial distributamd higher temporal
variability in the mixing region, an adaptive experimentvwiesigned where the to-
tal time of the experiment was fixed at 1 hour and the dwellimg tat each location
(only the locations at depths 1.2 meters and 2.4 meters vasea for this exper-
iment) was selected based on the observed standard dayiatstead of keeping
it uniform. Such an approach reduced the dwelling time towarach shore to 10
seconds while increasing the dwelling time in the middldardo as high as 80
seconds. This experiment was performed from 16:20 to 1/#@Qfze results can be
seen in Fig. 4c, labeled accordingly. Comparing it with delascan performed the
previous day around the same time (17:30 - 20:00), one cagnabshat reducing
the dwelling time towards each shore end provides similsultg to a deterministic
scan while requiring substantially lower total observatione.

Interplay between the robotic sensing system and obserwgtbament, in this
case, involves a possible static deflection of the suspepa@edulous sensor system
due to the flow of water in the river. Since this may induce ali@aation error along
the vertical (y) axis, measures must be taken to ensurehisastprecisely character-
ized to be accounted for in any actuation algorithm. Thughdsensor was used,
and integrated with the sensor payload, to directly deteerdepth. Fig. 4f presents a
comparison of depth reported by the actuation system (oontgpossible deflection
error), and the actual system localization determined byrttegrated depth sensor.

5 Informed priors for improved adaptive approaches

Here, we discuss how two previously proposed adaptive agpies for environment
sensing: (1) Stratified Adaptive Sampling [9]; and (2) Hiehacal Gaussian Process
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Based Modeling [10]; displayed improved performance wheorpnformation re-
garding the spatial distribution of phenomena, as chariaettusing IDEA method-
ology, is known as an input.

5.1 Stratified Adaptive Sampling

Several adaptive sampling approaches have been propo$tatature that hierar-
chically stratify the observed environment, thus perfargnilense sampling only in
the regions of interest (regions of high phenomena vaitgpjP]. For this purpose,
a sparse scan of the environment is required in the first stegpdract the regions of
high variability. In the second stage, dense observationmparformed only in these
regions. If the phenomena shows considerable variablilégy this approach will re-
sult in poor performance. However, if some information dlibe spatial structure
of the phenomena distribution is available as a prior, theam be used to bias the
first stage sampling accordingly.

Fig. 5a displays a typical example of temperature distidimjtobserved using
NIMS at Lake Fulmor. This field was used as an input distrimuto be observed by
the stratified adaptive algorithm, discussed in [9]. Whernmiormation was known
about the phenomena distribution, the algorithm made shtiens at 270 locations
(out of a total of 522 locations) and estimated the field withtrmean square error
of 0.04. However, when the vertical stratification inforinatwas given as prior, the
algorithm observed at only 135 locations (a significant odidn in sampling time)
and estimated the distribution with root mean square efforld (a modestincrease
in sampling error). Points in Fig. 5a represent the obsemvdbcations selected by
the algorithm when vertical stratification information wamwn as an input. Fig. 5b
represent the field distribution estimated by making oks@ms at this subset of
locations using local polynomial fitting of second order iotve observed locations.

5.2 Gaussian Process Based Modeling

A common approach in statistical methods for addressingaéiadly distributed
phenomena is to use a rich class of probabilistic modelsd@¢&@aussian Processes
(GPs) [10]. Using such models, one can quantify the inforreatss of a particular
location, in terms of the uncertainty about our predictiérthe phenomena, given
the measurements made at already visited locations. Tdifutimis uncertainty, we
used the mutual informatioMI) criterion [11]. If the phenomenon is discretized
into finitely many sensing locations, then for a set of location®, visited by the
mobile robot, theMI criterion is defined as:
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MI(P) = H(Xy\p) — H(Xy\p | Xp), (2)

whereH (X p) is the entropy of the unobserved locations, &ty p | Ap)
is the conditional entropy after observing at locatighsHence mutual information
measures the reduction in uncertainty at the unobserveti¢os.

In particular, we first learned a non-stationary GP modedin@ an extension
of [11]), by maximizing the marginal likelihood [10] usingsaibset of temperature
data at Lake Fulmor. This non-stationary process was leldogelividing the com-
plete region into smaller sub-regions and combining thallgestationary GPs from
each of these sub regions. The two algorithms compared ae:h) The observed
environment was divided into smaller sub-spaces uniforanygl (2) The sub-spaces
were selected based on horizontal stratification. For bpgiiaaches, starting from
initial greedy set of 20 locations, additional 30 locatiamns selected, again greedily,
based on the mutual information criterion given in Equafibn Greedy selection is
performed as it had been proved to provide near optimal vaflirgformation [11].
Fig. 5c compares the root mean square error in predictien afaking observations
at each of the selected locations for the two approaches.as@dbapproach with
known input information regarding the horizontal stratfion performs better than
the approach with uniformly divided observed environment.

6 Conclusions and future work

Traditional approaches for environmental sampling arecaptible of capturing the
spatiotemporal dynamics of a complex phenomena, spreadasge spatial extent,
with high resolution. In this paper we described the Iteméxperiment Design for
Environmental Applications (IDEA) approach that we depeld and used in two
recent field campaigns for observing the aquatic systemAl3bbased on an iter-
ative execution of experiments that reveal phenomena l@haith an objective to
perform detailed characterization of the dynamics in theeobed phenomena distri-
bution. We demonstrated the effectiveness of the IDEA nuiilomy by providing
a detailed characterization of two markedly different agushenomena. Literature
survey reveals that this is the first time that an iterativeegdnent design approach
is used an a mobile robot sensing system for characterinvigommental phenom-
ena. We demonstrated that with the use of actuated mobiticoystem, it is im-
perative to characterize the interplay between the serssisigm and the observed
environment such that the integrity of the collected datalmarelied upon. We illus-
trated this characterization through experiments basead-&iald observations such
as characterizing the static deflection of the suspendedupems sensor system in
an environment with significant flow Observations from suxpegiments, when in-
cluded in creating new models for experiment design, résuttcreased fidelity and
reliability in the collected data.

Finally, we also illustrated how accurate and detailed ati@rization, performed
by actuating NIMS using IDEA methodology, can be used to maprthe perfor-
mance of existing model-based or adaptive experimentaglegpproaches. This
improved performance is enabled by using the observede$gaticture as prior in-
formation for the observed environment. In the future wenpitainvestigate model
based adaptive approaches, that can use the specific spatis@mporal structure
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existing in the real environment as prior information inlréime. We also plan to
further advance the theoretical treatment of several enwiental phenomena and
incorporate these into a model based experimental desgoagh. These steps will
then extend the IDEA system to enable it to autonomouslydete the set of exper-
iments to perform based on previously collected data an#ribe/n understanding
of the observed phenomena.
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