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Exact Seismic Velocities for VTI and HTI Media and Extended

Thomsen Formulas for Stronger Anisotropies

James G. Berryman1, ∗

1University of California, Lawrence Berkeley National Laboratory,

1 Cyclotron Road, MS 90R1116, Berkeley, CA 94720, USA

Abstract

I explore a different type of approximation to the exact anisotropic wave velocities as a

function of incidence angle in vertically transversely isotropic (VTI) media. This method

extends the Thomsen weak anisotropy approach to stronger anisotropy without significantly

affecting the simplicity of the formulas. One important improvement is that the peak of the

quasi-SV-wave speed vsv(θ) is located at the correct incidence angle θ = θmax, rather than

always being at the position θ = 45o, which universally holds for Thomsen’s approximation

— although θmax = 45o is actually never correct for any VTI anisotropic medium. The

magnitudes of all the wave speeds are also more closely approximated for all values of the

incidence angle. Furthermore, the value of θmax (which is needed in the new formulas)

can be deduced from the same data that are typically used in the weak anisotropy data

analysis. The two examples presented are based on systems having vertical fractures. The

first set of model fractures has their axes of symmetry randomly oriented in the horizontal

plane. Such a system is then isotropic in the horizontal plane and, therefore, exhibits

vertical transverse isotropic (VTI) symmetry. The second set of fractures also has axes

of symmetry in the horizontal plane, but it is assumed these axes are aligned so that the

system exhibits horizontal transverse isotropic (HTI) symmetry. Both types of systems are

easily treated with the new wave speed formulation.

∗JGBerryman@LBL.GOV
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INTRODUCTION

Thomsen’s weak anisotropy method (Thomsen, 1986) was originally formulated for media

having vertical transversely isotropic (VTI) symmetry. This method is independent of the

mechanism of nature producing the anisotropy, whether it be due to layering, or horizontal

fractures, or randomly oriented vertical fractures, or some other source. So the method has

wide applicability for use in exploration problems. However, when the results of the original

formulation are compared to exact results for the same VTI media, it is easy to see that there

are some deficiencies. In particular, the vertically polarized (SV) shear wave will always have

a peak (or possibly a trough) somewhere in the range 0 ≤ θ ≤ π/2 = 90o. Thomsen’s weak

anisotropy formulation always puts this extreme point exactly at θm = π/2 = 45o. However,

this location of θm never occurs for any interesting degree of VTI anisotropy, although it

may be close to the truth for extremely weak anisotropy (very low horizontal crack density

is one example of this). In an effort to determine whether it was possible to improve on

this approximation, I have found that a relatively small modification of Thomsen’s formulas

places the extreme vsv point at the right location θm, and also improves the fit of both vsv(θ)

and vp(θ) to the exact VTI curves. The ultimate cost of this improvement is negligible since

the data required to estimate the location of θm are exactly the same as the data used

to determine Thomsen’s other parameters for weak anisotropy. The method can also be

used with only minor modifications for media have horizontal transversely isotropic (HTI)

symmetry, such as reservoirs having aligned vertical fractures. The paper focuses on the

general theory and uses other recent work relating fracture influence parameters (Sayers

and Kachanov, 1991; Berryman and Grechka, 2006) to provide some useful examples of the

applicability of the new method.

The next section reviews the standard results for wave speeds in a VTI medium, and also

presents the Thomsen weak anisotropy results. The following section presents the analysis

leading to the extended anisotropy method, that allows the wave speed formulas to reflect

more accurately the correct behavior near the extremes (greatest excursions from the values

at normal incidence and near horizontal incidence). The next section shows how to determine

the value of θm (the incidence angle at which the extreme SV -wave behavior occurs) from

the same data already used in Thomsen’s formulas. Then, normal moveout corrections are

recomputed for the new formulation, and it is found that the results are identical to those for
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Thomsen formulation; thus, no new corrections are needed near normal incidence. Finally,

models of VTI and HTI reservoirs having vertical fractures are computed using the new

wave speed formulation and compared to prior results. Appendix A computes the quasi-SV-

wave speed at θ = θm, exactly and at two levels of approximation in order to have values to

check against the results in the main text. Appendix B collects some trigonometric identities

needed in the main text. Appendix C discusses how to get HTI results simply and directly

from VTI results, both for the exact wave speeds and for the new approximate wave speed

formulas.

THOMSEN’S WEAK ANISOTROPY METHOD FOR SEISMIC WAVES

Thomsen’s weak anisotropy method (Thomsen, 1986), being an approximation designed

specifically for use in velocity analysis for exploration geophysics, is clearly not exact. Ap-

proximations incorporated into the formulas become most apparent for angles θ greater than

about 15o from the vertical, especially for compressional and vertically polarized shear wave

velocities vp(θ) and vsv(θ), respectively. Angle θ is measured from the ẑ-vector pointing into

the earth.

For reference purposes, we include here the exact velocity formulas for P, SV, and SH

seismic waves at all angles in a VTI elastic medium. These results are available in many

places (Rüger, 2002; Thomsen, 2002; Musgrave, 1959, 2003), but were taken specifically from

Berryman (1979) with some minor changes of notation. The results are:

v2
p(θ) =

1

2ρ

{[

(c11 + c44) sin2 θ + (c33 + c44) cos2 θ
]

+ R(θ)
}

(1)

and

v2
sv(θ) =

1

2ρ

{[

(c11 + c44) sin2 θ + (c33 + c44) cos2 θ
]

− R(θ)
}

, (2)

where

R(θ) =

√

[

(c11 − c44) sin2 θ − (c33 − c44) cos2 θ
]2

+ 4 (c13 + c44)
2 sin2 θ cos2 θ (3)

and, finally,

v2
sh(θ) =

1

ρ

[

c44 + (c66 − c44) sin2 θ
]

. (4)
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The stiffness matrix cij is defined for i, j = 1, . . . , 6 by

cij =



























c11 c12 c13

c12 c11 c13

c13 c13 c33

c44

c44

c66



























, (5)

where — for VTI symmetry – c12 = c11 − 2c66. In an isotropic system (which is a more

restrictive case than our current interests), c12 = c13 = λ, c44 = c66 = µ, and c11 = c33 =

λ + 2µ, where λ and µ are the usual Lamé constants. The definition (5) makes use of the

Voigt notation, (i.e., 6 × 6 matrix instead of 4th order tensor), and relates stress σij to

strain εij via σij = Σkcikεkj. For VTI symmetry, we take x3 = z (the vertical) as the axis of

symmetry. But, for HTI symmetry, we may choose x3 to be some other direction (such as

horizontal directions x or y, or some linear combination).

Expressions for phase velocities in Thomsen’s weak anisotropy limit can be found in

many places, including Thomsen (1986, 2002) and Rüger (2002). The pertinent expressions

for phase velocities in VTI media as a function of angle θ, measured as previously mentioned

from the vertical direction, are

vp(θ) ' vp(0)
(

1 + ε sin2 θ − (ε − δ) sin2 θ cos2 θ
)

, (6)

vsv(θ) ' vs(0)
(

1 +
[

v2
p(0)/v2

s(0)
]

(ε − δ) sin2 θ cos2 θ
)

, (7)

and

vsh(θ) ' vs(0)
(

1 + γ sin2 θ
)

. (8)

In our present context, vs(0) =
√

c44/ρ0, and vp(0) =
√

c33/ρ0, where c33, c44, and ρ0 are two

stiffnesses of the cracked medium and the mass density of the isotropic host elastic medium.

We assume that the cracks have insufficient volume to affect the mass density significantly.

The three Thomsen (1986) seismic parameters appearing in (6)–(8) for weak anisotropy with

VTI symmetry are γ = (c66 − c44)/2c44, ε = (c11 − c33)/2c33, and

δ =
(c13 + c44)

2 − (c33 − c44)
2

2c33(c33 − c44)
=

(

c33 + c13

2c33

) (

c13 + 2c44 − c33

c33 − c44

)

. (9)
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All three of these parameters can play important roles in the velocities given by (6)-(8)

when the crack densities are high enough. If crack densities are very low, then the SV shear

wave will actually have no dependence on angle of wave propagation. Note that the so-called

anellipticity parameter, A = ε − δ, vanishes when ε ≡ δ — which we will see does happen

for low crack densities.

For each of these velocities, the derivation of Thomsen’s approximation has included a

step that removes the square on the left-hand side of the equation, by expanding a square

root of the right hand side. This step introduces a factor of 1
2

multiplying the sin2 θ terms

on the right hand side, and — for example — immediately explains how equation (8) is

obtained from (4). The other two equations for vp(θ) and vsv(θ), i.e., (6) & (7), involve

additional approximations. More details about the nature of these approximations follow.

EXTENDED APPROXIMATIONS FOR ANISOTROPIC WAVE SPEEDS

The biggest and most obvious problem with Thomsen’s approximations to the wave

speeds generally occurs in vsv(θ). The key issue is that Thomsen’s approximation for vsv(θ)

is completely symmetric around θ = π/4 = 45o, while this is generally not true of the actual

wave speeds vsv(θ). This error may seem innocuous in itself, but it also can lead to large over

or under estimates of wave speeds in the neighborhood of θ = 45o. To correct this problem

while still making use of a practical approximation to the wave speed, we reconsider an

approach originally proposed by Berryman (1979). In particular, notice that the square root

formula for R(θ) can be conveniently, and exactly, rewritten as:

R(θ) = [(c11 − c44) sin2 θ + (c33 − c44) cos2 θ]
√

1 − ζ(θ), (10)

where

ζ(θ) ≡ 4
[(c11 − c44)(c33 − c44) − (c13 + c44)

2] sin2 θ cos2 θ

[(c11 − c44) sin2 θ + (c33 − c44) cos2 θ]2
. (11)

To simplify this expression, first notice that ζ has an absolute maximum value, which occurs

when θ takes the value θm determined by

tan2 θm =
c33 − c44

c11 − c44
. (12)

This maximum value of ζ is given by

ζm = 1 − (c13 + c44)
2

(c11 − c44)(c33 − c44)
= (ε − δ)

2c33

c11 − c44
, (13)
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where the second expression relates ζm to the difference between the Thomsen parameters

ε and δ. Then, ζ(θ) can be rewritten as

ζ(θ) =
2ζm

1 + χ(θ)
, (14)

where

χ(θ) =
1

2

[

tan2 θ

tan2 θm

+
tan2 θm

tan2 θ

]

. (15)

An alternative expression for χ(θ) is given by

χ(θ) ≡ cosh a(θ), (16)

where

a(θ) = ln

[

c11 − c44

c33 − c44
tan2 θ

]

= ln

[

tan2 θ

tan2 θm

]

. (17)

For realistic systems, it is always true that 0 ≤ ζ(θ) ≤ 1. So, we can expand the square

root in (10), keeping just its first order Taylor series correction, which is

√

1 − ζ(θ) ' 1 − ζ(θ)

2
= 1 − ζm

1 + χ(θ)
. (18)

Results for vp(θ) and vsv(θ) then become:

v2
p(θ) '

1

ρ

{

[

c11 sin2 θ + c33 cos2 θ
]

− ζm[(c11 − c44) sin2 θ + (c33 − c44) cos2 θ]

2[1 + χ(θ)]

}

(19)

and

v2
sv(θ) '

1

ρ

{

c44 +
ζm[(c11 − c44) sin2 θ + (c33 − c44) cos2 θ]

2[1 + χ(θ)]

}

. (20)

Note that the only approximation made in arriving at (19) and (20) was the approximation

of the square root in (18).

Further progress can be made by first noting that the quantity 1 + χ(θ) may be written

as a perfect square:

1 + χ(θ) =

[

1√
2

(

tan θ

tan θm

+
tan θm

tan θ

)]2

. (21)

This expression is simplified using trigonometric identities in Appendix B.

Making use of (55), our final result for ζ(θ) is

ζ(θ) =
ζm sin2 2θm sin2 2θ

[1 − cos 2θm cos 2θ]2
. (22)

Note that no approximations were made in arriving at (22). [Remark: The only approxima-

tions made to the wave speeds in this paper involve Taylor expansions of square roots.]
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Combining (22) with definition (11), we also can show that

[(c11 − c44) sin2 θ + (c33 − c44) cos2 θ]2 = (c11 − c44)(c33 − c44)
4ζm sin2 θ cos2 θ

ζ(θ)

= (c11 − c44)(c33 − c44)
[1 − cos 2θm cos 2θ]2

sin2 2θm

= (c11 − c44)
2 tan2 θm

[1 − cos 2θm cos 2θ]2

4 sin2 θm cos2 θm

= (c11 − c44)
2 [1 − cos 2θm cos 2θ]2

4 cos4 θm

.

So it follows that

sin2 θ + tan2 θm cos2 θ =
[1 − cos 2θm cos 2θ]

2 cos2 θm

, (23)

which is another useful identity that can be checked directly.

Then, making use of the identity sin2 2θm/ cos2 θm = 4 sin2 θm, the speed of the SV-wave

is given by

ρv2
sv(θ) ' c44 + (c11 − c44)ζm

2 sin2 θm sin2 θ cos2 θ

[1 − cos 2θm cos 2θ]
. (24)

Similarly, the speed of the P-wave is given by

ρv2
p ' c33 + (c11 − c33) sin2 θ − (c11 − c44)ζm

2 sin2 θm sin2 θ cos2 θ

[1 − cos 2θm cos 2θ]
. (25)

Again, the only approximation made in these two expressions is the one due to expanding

the square root in (18).

A more direct comparison with Thomsen’s approximations uses (24) and (25) to arrive at

approximate formulas for vsv(θ) and vp(θ) analogous to Thomsen’s. The resulting expressions

are

vp(θ)/vp(0) ' 1 + ε sin2 θ − (ε − δ)
2 sin2 θm sin2 θ cos2 θ

[1 − cos 2θm cos 2θ]
(26)

and

vsv(θ)/vs(0) ' 1 +
[

v2
p(0)/v2

s(0)
]

(ε − δ)
2 sin2 θm sin2 θ cos2 θ

[1 − cos 2θm cos 2θ]
. (27)

Equations (26) and (27) are the two main results of this paper. So far only two approxima-

tions have been made, and these both came from expanding a square root in a Taylor series,

and retaining only the first nontrivial term.

Comparing (26) and (27) to (6) and (7), the differences are found to lie in a factor of the

form:
2 sin2 θm

[1 − cos 2θm cos 2θ]
→ 1

2 cos2 θm

as θ → θm, (28)
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which depends explicitly on the angle θm determined by tan2 θm = (c33 − c44)/(c11 − c44),

and also on θ itself. As indicated, the expression goes to 1/2 cos2 θm in the limit of θ → θm,

which is also in agreement with the results for vsv(θm) in Appendix A. But, since sin2 θm =

tan2 θm/(1 + tan2 θm) and cos 2θm = (1 − tan2 θm)/(1 + tan2 θm), useful identities are

sin2 θm =
c33 − c44

c11 + c33 − 2c44
= 1 − cos2 θm (29)

and

cos 2θm =
c11 − c33

c11 + c33 − 2c44

= 1 − 2 sin2 θm. (30)

These results can therefore be used, after deducing some of the elastic constants from our

data at near offsets, in order to extend the validity of the equations to greater angles and

farther offsets. Inversion of such data is however beyond the paper’s scope.

To make these formulas (26) and (27) look as much as possible like Thomsen’s formulas —

and thereby arrive at a somewhat different understanding of equations (6) and (7), eliminate

θm by arbitrarily setting it equal to some value such as θm = 45o, in which case 2 sin2 θm = 1

and cos 2θm = 0. Then, the θ dependence in the denominators goes away, and Thomsen’s

formulas (6) and (7) are recovered exactly. This choice of θm = 45o is however completely

unnecessary as shall be shown, and furthermore is never valid for any anisotropic medium

with c11 6= c33.

DEDUCING θm FROM SEISMIC DATA

The key quantity needed in the extended formulas for seismic data is clearly the value of

the angle θm. However, this value is quite easily determined because

tan2 θm =
c33 − c44

c11 − c44
=

v2
p(0) − v2

s(0)

c11/ρ − v2
s (0)

(31)

and

ε =
c11 − c33

2c33

=
c11/ρ − v2

p(0)

2v2
p(0)

. (32)

Therefore,

tan2 θm =
v2

p(0) − v2
s(0)

(1 + 2ε)v2
p(0) − v2

s(0)
. (33)

Thus, θm is completely determined by the same data used in the standard analysis of re-

flection seismic data that determines the various small angle wave speeds and the Thomsen

parameters.
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The pertinent factors for use in the formulas are given by

sin2 θm =
v2

p(0) − v2
s(0)

2[(1 + ε)v2
p(0) − v2

s(0)]
(34)

and

cos 2θm =
εv2

p(0)

(1 + ε)v2
p(0) − v2

s(0)
. (35)

NORMAL MOVEOUT CORRECTIONS

The altered forms of vp(θ) and vsv(θ) in equations (26) and (27) suggest that it might

also be necessary to alter the normal moveout corrections to the velocities (Tsvankin, 2005,

p. 113). It is easy to see that these corrections are now given by

VNMO,p = vp(0)
√

1 + 2δ, (36)

for the quasi-P-wave, and,

VNMO,sv = vs(0)
√

1 + 2σ, (37)

for the quasi-SV-wave, where

σ =
[

v2
p(0)/v2

s(0)
]

(ε − δ). (38)

These corrections to the NMO velocities are exactly the same as those for Thomsen’s weak

anisotropy approximation because the factor that is pertinent, and that has potential to

alter these expressions is given, in the small angle limit θ → 0, by

2 sin2 θm

1 − cos 2θm

≡ 1. (39)

Since Thomsen’s formulas accurately approximate all three wave speeds in this limit by de-

sign, the present formulas share this accuracy (and in some cases improves upon it). There-

fore, no changes are needed in short offset (small θ) data processing. The NMO correction

for the SH-wave clearly does not change either.

RESERVOIRS WITH VERTICALLY ORIENTED FRACTURES

To provide some pertinent examples of results for the types of anisotropic media most

interesting in oil and gas reservoirs, two distinct types of reservoirs having vertical fractures
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will be considered. The first case considered will have vertical fractures that are not prefer-

entially aligned, so the reservoir symmetry is vertical transverse isotropy (VTI). The second

case will also have vertical fractures but these will be preferentially aligned, so the reservoir

symmetry will be horizontal transverse isotropy and, therefore, exhibit azimuthal (angle φ

dependent) anisotropy.

These two reservoir fracture models will be built up using results from recent numerical

experiments by Grechka and Kachanov (2006a,b). Those results were analyzed by Berryman

and Grechka (2006) in light of the crack influence parameter formalism of Kachanov (1980)

and Sayers and Kachanov (1991). The significance of these crack influence parameters for

the case of aligned horizontal cracks for lower crack densities ρc = na3 (where n = N/V is

the number density of cracks and for penny-shaped cracks a is the radius of the penny while

b/a is the aspect ratio) is:

∆S
(1H)
ij = ρc



























0 0 η1

0 0 η1

η1 η1 2(η1 + η2)

2η2

2η2

0



























. (40)

Typical values of crack density ρc for reserviors are ρc ≤ 0.1. The matrix ∆S
(1H)
ij is the

lowest order compliance correction matrix and should be added to the isotropic compliance

matrix

∆S
(0)
ij =



























1/E −ν/E −ν/E

−ν/E 1/E −ν/E

−ν/E −ν/E 1/E

1/G

1/G

1/G



























, (41)

where ν = λ/2(λ + µ) is Poisson’s ratio, G = µ is the shear modulus, and E = 2(1 + ν)G is

Young’s modulus of the (assumed) isotropic background medium. Summing (41) and (40)

produces the compliance matrix for a horizontally cracked, VTI elastic medium. We can

use this combined matrix to compute the behavior of a simple HTI reservoir with aligned

vertical cracks using the methods described in Appendix C.
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For vertical fractures with randomly oriented axes of symmetry, the resulting VTI medium

has a low crack density correction matrix of the form

∆S
(1V )
ij = ρc



























(η1 + η2) η1 η1/2

η1 (η1 + η2) η1/2

η1/2 η1/2 0

η2

η2

2η2



























, (42)

in which the η’s have the same values as those in (40) if the only difference between the

cracks in (42) and (40) is their orientation. Note that 2∆S
(1V )
ij + ∆S

(1H)
ij is an isotropic

correction matrix for a system having crack density 3ρc. Summing (41) and (42) produces

the compliance matrix for a vertically cracked VTI elastic medium, in which the crack

normals are randomly and/or uniformly distributed in the horizontal plane.

Higher order corrections (i.e., second order in powers of ρc) in the Sayers and Kachanov

(1991) formulation take the form:

∆S
(2H)
ij = ρ2

c



























0 0 η4

0 0 η4

η4 η4 2(η3 + η4 + η5)

2η5

2η5

0



























(43)

for horizontal fractures — i.e., to be combined with (40). Similarly,

∆S
(2V )
ij = ρ2

c



























(η3 + η4 + η5) η4 η4/2

η4 (η3 + η4 + η5) η4/2

η4/2 η4/2 0

η5

η5

2(η3 + η5)



























(44)

for the random vertical fractures producing VTI symmetry – to be combined with (42)

Examples of values of all five of these crack influence parameters have been obtained based

on the numerical studies of Grechka and Kachanov (2006a,b) by Berryman and Grechka
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(2006). The two models considered have very different Poisson’s ratios for the isotropic

background media: (1) ν0 = 0.00 and (2) ν0 = 0.4375. We will call these two models,

respectively, the first model and the second model. The first model has background stiffness

matrix values c11 = c22 = c33 = 13.75 GPa, c12 = c13 = c23 = 0.00 GPa, and c44 = c55 = c66 =

6.875 GPa. Bulk modulus for this model is therefore K0 = 4.583 GPa and shear modulus is

G0 = 6.875 GPa. The second model has stiffness matrix values c11 = c22 = c33 = 19.80 GPa,

c12 = c13 = c23 = 15.40 GPa, and c44 = c55 = c66 = 2.20 GPa. Bulk modulus for this model

is therefore K0 = 16.86 GPa and shear modulus is G0 = 2.20 GPa. The second model also

corresponds to a background material having compressional wave speed Vp = 3 km/s, shear

wave speed Vs = 1 km/s, and mass density ρm = 2200.0 kg/m3. Detailed discussion of the

method used to obtain the crack influence parameters is given by Berryman and Grechka

(2006), and will not be repeated here. Results are listed in Table 1.

In all the following plots, the exact curves (as computed for the model cij ’s) are plot-

ted first in black, then the Thomsen approximation is plotted in red, and finally the new

approximation is plotted in blue. Thus, in those examples where red curves appear to be

missing, this happens because the blue curves lie right on top of the red ones (to graphical

accuracy). This overlay effect is expected whenever θm approaches 45o, which can happen

at low crack densities since the background medium has been taken to be isotropic.

VTI Symmetry

Figure 1 presents results for the case of vertical fractures having an isotropic distribu-

tion of normals (symmetry axes) in the horizontal plane. The resulting medium has VTI

symmetry.

A first observation is that the low crack density results for vsv(θ) are nearly constant,

showing that ε − δ ' 0. When this happens for vsv(θ), it is also true that vp(θ) is ap-

proximately elliptical. Of course, the exact results for vsh(θ) are always elliptical, but the

Thomsen and new approximate results are only approximately elliptical.

Secondly, all three velocity models (exact, Thomsen, and new) give very similar results

for all cases shown when ν0 = 0.4375. There are however some significant differences among

the results for ν0 = 0.00, especially for vsv(θ) and vp(θ) – the largest deviations from the

exact curves being those for Thomsen’s approximatiosn (red curves) in both cases.
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HTI Symmetry

Figure 2 presents results for vertical fractures having their normals (axes of symmetry)

aligned in some direction (say x3 = x). The fracture models considered are the same and

use the same data as for the preceding (VTI) case.

Thomsen’s approximation and the new one are virtually identical here in vsh(θ) for both

ν0 = 0.00 and ν0 = 0.4375. For vsv(θ), Thomsen’s approximation is higher than the exact

result, while the new approximation is lower.

Results for vp(θ) in both Thomsen’s and the new approximation are comparable to the

exact results for θ’s up to about 45o–50o, but are not identical to each other or to the exact

result. For ν0 = 0.4375, agreement among the three curves is good for vp(θ), but not so good

for vsv(θ) or vsh(θ).

SUMMARY AND CONCLUSIONS

The main results of the paper are summarized in equations (26) and (27). These formulas

generalize (i.e., extend the validity of) Thomsen’s weak anisotropy to wider ranges of angles,

and stronger anisotropy. These formulas have the clear advantage that they require no more

data analysis than Thomsen’s formulas for weak anisotropy, but they give more accurate

predictions of the wave speeds for longer offsets. In particular, the new formulas are designed

to give the peak (or possibly the trough) of the quasi-SV-wave in the right location, (i.e.,

the correct angle θ = θm with the vertical), even though the magnitude of these velocities

may still be a bit off. This error made in the velocity magnitude is always less than that

made using the original Thomsen formulas. Furthermore, the only new parameter needed

for implementation is the angle θm; but this value can also be determined from the same

data required to compute all the Thomsen parameters. A final advantage that is especially

helpful for the practical use of the method is that the corrections needed for all the NMO

velocities do not change, and so are exactly the same as for Thomsen’s method.

The work presented here has necessarily been restricted to VTI and HTI symmetries,

because these are the cases that correspond to the simplest and most studied cases in the

anisotropy literature. It has been noted, however, that the HTI symmetry in particular is

actually a fairly unrealistic model for seismic exploration problems (Tsvankin, 1997; Thom-
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sen, 2002; Tsvankin, 2005). The reason for this is that the earth, to a first approximation,

is often horizontally layered and such horizontal layering is well-known to produce VTI

symmetry (Backus, 1962). If aligned vertical fractures are added to this already anisotropic

background medium (unlike the isotropic background medium used in the present models),

then the resulting symmetry is likely to be closer to orthorhombic than to HTI. This view-

point no doubt provides a valid criticism of the work presented here. But the author does not

expect this paper to be the last one on this topic, and future efforts will surely be devoted

to obtaining comparable results for these more realistic cases.
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APPENDIX A: vsv(θm)

For purposes of comparison, it is useful to know the exact value and also some related

approximations to the exact value of the quasi-SV wave speed vsv(θ) at its extreme value

when θ = θm.

Evaluation gives the exact result

v2
sv(θm) =

sin2 θm

2ρ
(c11 − c44)

[

c11 + c44

c11 − c44
+

c33 + c44

c33 − c44
− 2

√

1 − ζm

]

. (45)

After substituting sin2 θm = (c33−c44)/(c11+c33−2c44), expanding the square root
√

1 − ζm '
1 − ζm/2, and several more steps of simplification, a useful approximate expression is

v2
sv(θm) ' v2

s(0)

[

1 +
ζm

2

(c11 − c44)(c33 − c44)

c44(c11 + c33 − 2c44)

]

. (46)

And finally, by approximating the square root of this expression and using (13), we have

vsv(θm)

vs(0)
' 1 +

ζm(c11 − c44) sin2 θm

4c44
= 1 +

[

v2
p(0)/v2

s(0)
]

(ε − δ)
sin2 θm

2
. (47)
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Equation (47) can be directly compared to Thomsen’s formula (7). The only difference is

a factor of 2 cos2 θm in the final term. This factor could be unity if θm = 45o, but — since

this never happens for anisotropic media — the factor always differs from unity and can be

either higher or lower than unity depending on whether θm is less than or greater than 45o.

APPENDIX B: Some Useful Trigonometric Relations

The following calculation is needed to evaluate ζ(θ) using (21).

It is not difficult to show (the easiest way to do this is first to reexpress the tangents

using complex exponentials and then rearrange terms) that

(

tan θ

tan θm

+
tan θm

tan θ

)

= 2

[

sin2(θ + θm) + sin2(θ − θm)

sin2(θ + θm) − sin2(θ − θm)

]

. (48)

The denominator of the right hand side of this expression can be rewritten as

[sin(θ + θm) + sin(θ − θm)][sin(θm + θ) + sin(θm − θ)] = 4 sin θ cos θm sin θm cos θ. (49)

Furthermore, the numerator can be rewritten exactly in either of two useful forms:

sin2(θ + θm) + sin2(θ − θm) = [sin(θm + θ) + sin(θm − θ)]2 − 2 sin(θm + θ) sin(θm − θ) (50)

= 4 sin2 θm cos2 θ − (cos 2θ − cos 2θm) , (51)

or

sin2(θ + θm) + sin2(θ − θm) = [sin(θm + θ) − sin(θm − θ)]2 + 2 sin(θm + θ) sin(θm − θ) (52)

= 4 sin2 θ cos θm + (cos 2θ − cos 2θm) . (53)

Having two valid but distinct expressions [i.e., (51) and (53)] for the same quantity, both

expressions can be used in arbitrary weighted averages. In particular, consider multiplying

(51) by cos2 θm and (53) by sin2 θm, then the result is

sin2(θ + θm) + sin2(θ − θm) = 4 sin2 θm cos2 θm + (cos2 θm − sin2 θm)2

− cos 2θ(cos2 θm − sin2 θm),

which conveniently simplifies to

sin2(θ + θm) + sin2(θ − θm) = 1 − cos 2θm cos 2θ. (54)
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The rather simple final expression is

(

tan θ

tan θm

+
tan θm

tan θ

)

= 2
1 − cos 2θm cos 2θ

sin 2θm sin 2θ
. (55)

To check one limit of this expression, consider the value at θ = θm. Then, the numerator

equals sin2 2θm, and the denominator equals 1
2
sin2 2θm. So the result equals 2, as it should.

APPENDIX C: HTI FORMULAS FROM VTI FORMULAS

Probably the easiest way to obtain formulas pertinent to HTI (horizontal transverse

isotropy) from VTI (vertical transverse isotropy) is to leave the stiffness matrix cij alone,

and simply reinterpret the meaning of the indices i, j. For VTI media, one typical choice

is x3 = z, where ẑ is the vertical direction at the surface of the earth, or more often the

direction down into the earth. Then, the angle of incidence θ is measured with respect to ẑ,

where θ = 0 means parallel to ẑ and pointing into the earth, and θ = π/2 means horizontal

incidence.

Considering aligned vertical fractures, with their axes of symmetry in the direction x ≡ x3,

the matrix cij itself presented in the main text need not change, but the meaning of the

angles does change. Clearly, the simplest case to study, and the only one to be analyzed

here, is the case of waves propagating at some angle to vertical but always in the direction

x3 = x, thus lying in the xz-plane perpendicular to the fracture plane. Then,

θH + θV =
π

2
, (56)

where θV corresponds exactly to the θ appearing in all the formulas up to Eq. (39) in the

main text, and θH is the effective angle in the xz-plane of incidence under consideration,

i.e., the one perpendicular to the vertical fractures in the reservoir. To obtain wave speeds

at the angle θH , we only need to substitute θ ≡ θV = π
2
− θH , or write the speeds as

Hv2
p(θ

H) ≡ v2
p(θ

V ) = v2
p(

π

2
− θH), (57)

Hv2
sv(θ

H) ≡ v2
sv(θ

V ) = v2
p(

π

2
− θH), (58)

and

Hv2
sh(θ

H) ≡ v2
sh(θ

V ) = v2
p(

π

2
− θH). (59)
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Since all the angular dependence in the exact formulas is in the form of sin2 θ and cos2 θ,

and since sin2(π
2
− θ) = cos2θ and vice versa, the entire procedure amounts to switching the

locations of sin2 θ and cos2 θ with cos2 θH and sin2 θH everywhere in the exact expressions.

This procedure is obviously very straightforward to implement. The final results analogous

to Thomsen’s formulas are:

Hvp(θ
H)/Hvp(0) ' 1 − ε

1 + 2ε
sin2 θH − ε − δ

1 + 2ε

2 cos2 θH
m sin2 θH cos2 θH

[1 − cos 2θH cos 2θH
m]

, (60)

Hvsv(θ
H)/Hvsv(0) ' 1 + [c33/c44] (ε − δ)

2 cos2 θH
m sin2 θH cos2 θH

[1 − cos 2θH cos 2θH
m]

. (61)

and

Hvsh(θ
H)/Hvsh(0) ' 1 − γ

1 + 2γ
sin2 θH . (62)

And the θH = 0 velocities are: Hvp(0) =
√

c11/ρ =
√

c33(1 + 2ε)/ρ, Hvsv(0) ≡
√

c44/ρ =

vs(0), and Hvsh(0) ≡
√

c66/ρ =
√

c44(1 + 2γ)/ρ. Also, recall that cos2 θH
m = sin2 θV

m.

For azimuthal angles φ 6= ±π
2
, the algorithm for computing the wave speeds is to replace

sin2 θV by cos2 θH sin2 φ and cos θV = 1− sin2 θV by 1− cos2 θH sin2 φ in the exact formulas,

and corresponding replacements in the approximate ones. Then, there is no angular depen-

dence when φ = 0 or π as our point of view is within the place of the fracture itself. And,

when φ = ±π
2
, the above stated results for the xz-plane hold.

Wave equation reciprocity guarantees that the polarizations of the various waves are of

the same types as this translation from VTI media to HTI media is made.

It is also worth pointing out that the designations SH and SV for the shear waves are,

however, not really valid for the HTI case. For VTI media, the quasi-SH-wave really does

have horizontal polarization at least at θ = 0 and π/2, whereas the corresponding wave for

HTI media, instead has polarization parallel (‖) to the fracture plane. For VTI media, the so-

called quasi-SV -wave has its polarization in the plane of propagation, but this polarization

direction is only truly vertical for θ = ±π
2
, at which point its polarization is both vertical

and perpendicular to the horizontal plane of symmetry. The corresponding situation for HTI

media has the wave corresponding to the SV -wave with polarization again in the plane of

propagation, but this is actually only vertical at θH = π
2
, and also parallel to the fracture

plane; however, for all other angles its polarization has a component that is perpendicular

(⊥) to the plane of the fractures. So a more accurate naming convention for these waves

17



would make use of the following designations:

Hvsh(θ
H) →H vs‖(θ

H), (63)

for the HTI wave corresponding to the quasi-SH-wave in the VTI case, and

Hvsv(θ
H) →H vs⊥(θH), (64)

for the HTI wave corresponding to the quasi-SV-wave in the VTI case. Although this notation

is hereby being recommended, it will actually not be used in the main text as the current

choices and various caveats will no doubt be sufficiently familier to most readers that it may

not be essential to make this change at this time. [Note that Thomsen (2002) uses the same

‖ and ⊥ notation for similar purposes.]
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Table 1. Values of five crack-influence parameters for the two models considered.

Crack-influence First Model Second Model

Parameters ν0 = 0.00 ν0 = 0.4375

η1(0) (GPa−1) 0.0000 -0.0192

η2(0) (GPa−1) 0.1941 0.3994

η3(0) (GPa−1) -0.3666 -1.3750

η4(0) (GPa−1) 0.0000 0.0000

η5(0) (GPa−1) 0.0917 0.5500
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FIG. 1: For vertical cracks and VTI symmetry: examples of anisotropic compressional wave speed

(vp), SH shear wave speed (vsh), and SV shear wave speed (vsv) for two values of Poisson’s ratio

ν0 of the host medium: (a)–(c) ν0 = 0.00, (d)–(f) ν0 = 0.4375. Velocity curves in black are exact

for the fracture model discussed in the text. The Thomsen weak anisotropy velocity curves for the

same fracture model are then overlain in red. Finally, the new curves for the extended Thomsen

approximation valid for stronger anisotropies are overlain in blue.
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FIG. 2: For vertical cracks and HTI symmetry: examples of anisotropic compressional wave speed

(vp), SH shear wave speed (vsh), and SV shear wave speed (vsv) for two values of Poisson’s ratio

ν0 of the host medium: (a)–(c) ν0 = 0.00, (d)–(f) ν0 = 0.4375. Velocity curves in black are exact

for the fracture model discussed in the text. The Thomsen weak anisotropy velocity curves for the

same fracture model are then overlain in red. Finally, the new curves for the extended Thomsen

approximation valid for stronger anisotropies are overlain in blue.
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