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Assessing the Impacts of Different WRF Precipitation Physics in
Hurricane Simulations

NASRIN NASROLLAHI, AMIR AGHAKOUCHAK, JIALUN LI, XIAOGANG GAO,
KUOLIN HSU, AND SOROOSH SOROOSHIAN

Center for Hydrometeorology and Remote Sensing, University of California, Irvine, Irvine, California

(Manuscript received 14 July 2010, in final form 23 February 2012)

ABSTRACT

Numerical weather prediction models play a major role in weather forecasting, especially in cases of

extreme events. The Weather Research and Forecasting Model (WRF), among others, is extensively used for

both research and practical applications. Previous studies have highlighted the sensitivity of this model to

microphysics and cumulus schemes. This study investigated the performance of the WRF in forecasting

precipitation, hurricane track, and landfall time using various microphysics and cumulus schemes. A total of

20 combinations of microphysics and cumulus schemes were used, and the model outputs were validated

against ground-based observations. While the choice of microphysics and cumulus schemes can significantly

impact model output, it is not the case that any single combination can be considered ‘‘ideal’’ for modeling all

characteristics of a hurricane, including precipitation amount, areal extent, hurricane track, and the time of

landfall. For example, the model’s ability to simulate precipitation (with the least total bias) is best achieved

using Betts–Miller–Janjić (BMJ) cumulus parameterization in combination with the WRF single-moment

five-class microphysics scheme (WSM5). It was determined that the WSM5–BMJ, WSM3 (the three-class

version of the WSM scheme)–BMJ, and Ferrier microphysics in combination with the Grell–Devenyi cumulus

scheme were the best combinations for simulation of the landfall time. However, the hurricane track was best

estimated using the Lin et al. and Kessler microphysics options with BMJ cumulus parameterization. Contrary

to previous studies, these results indicated that the use of cumulus schemes improves model outputs when the

grid size is smaller than 10 km. However, it was found that many of the differences between parameterization

schemes may be well within the uncertainty of the measurements.

1. Introduction

Atmospheric phenomena have profound impacts on

our economy and lives. Hurricanes are one of the most

severe and threatening weather events to humans, and

can cause major damage to the eastern and southeastern

United States each year. They may result in extreme

precipitation and subsequent flooding events, both of

which pose a significant concern to the population and

exert a major negative impact on economic growth.

Reliable prediction of atmospheric variables (e.g., pre-

cipitation, wind direction, and velocity) can play a sig-

nificant role in reducing the vulnerability of our society

to severe events. However, the prediction of precipi-

tation structure is extremely challenging.

Based on initial conditions, regional weather models

currently estimate the state of the near-future atmo-

sphere by solving atmosphere dynamic and thermody-

namic equations. Some weather models include different

physics options that describe the physical processes of

the atmospheric phenomena. Two of the most impor-

tant physics options are the microphysics and cumulus

parameterizations. The microphysics option provides

atmospheric heat and moisture tendencies. It also ac-

counts for the vertical flux of precipitation and the

sedimentation process (Skamarock et al. 2007). Unlike

the microphysics option, the cumulus parameterization

is used to vertically redistribute heat and moisture in-

dependent of latent heating due to precipitation.

The Weather Research and Forecasting model (WRF)

is a mesoscale modeling system designed to improve

the weather forecasts. The WRF has different physical
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(i.e., microphysical and cumulus) parameterization

schemes that influence how the state of the system

changes with time. Choosing the right model physical

parameterization can help us predict weather variables

more accurately.

Previous studies (e.g., Fovell 2006) demonstrated that

different model options may result in significant vari-

ability in the predictions. In a recent study, Fovell et al.

(2010) showed that numerical weather prediction

models are particularly sensitive to the interaction of

various microphysics and radiation schemes. Their study

revealed that the model’s sensitivity to microphysics is

significantly less when cloud radiative feedback is not

utilized. Additionally, work done by Lowrey and Yang

(2008) investigated major precipitation errors that arose

from physical and cumulus parameterizations, the buffer

zone, the initialization interval, the domain size, and the

initial and boundary conditions. The authors concluded

that precipitation is actually more sensitive to cumulus

schemes than to cloud microphysics options. Following

this, Jankov et al. (2007) examined various combinations

of cumulus convection schemes, microphysical options,

and boundary conditions. Their results showed that no

configuration was significantly better at all times. Fur-

thermore, the variability of predictions was more sig-

nificant with respect to the choice of the cumulus option.

However, to a lesser extent, the choice of microphysical

scheme affected the variability of the predictions. Gallus

(1999) and Wang and Seaman (1997) also confirmed the

influence of cumulus schemes in simulations of pre-

cipitation patterns. While the microphysical options and

cumulus schemes have been widely explored in the lit-

erature, it is important to remember this does not dis-

count the fact that there are other physical parameters

and model configuration settings that can affect the

WRF predictions (e.g., atmospheric radiation, planetary

boundary layer, lateral boundary condition, domain

size).

Warm season convective storms are the most difficult

storms to model with numerical weather prediction

models (Olson et al. 1995; Zhang et al. 2006; Lowrey and

Yang 2008). The importance of capturing the space–

time variability of precipitation, as well as its impacts on

the quality of runoff predictions, is emphasized in many

previous studies (Fiener and Auerswald 2009; Corradini

and Singh 1985; Goodrich et al. 1995; Arnaud et al.

2002). The significance of microphysics and cumulus

parameterization schemes in precipitation prediction

is also highlighted in those studies that deal with warm

season convective storms (e.g., Fovell 2006; Lowrey and

Yang 2008; among others). This study will assess the

impact of different WRF parameterization schemes on

predicted precipitation, hurricane track, and time of

landfall, for Hurricane Rita. This hurricane occurred

during September 2005 and was one of the most intense

tropical cyclones recorded, causing $11.3 billion in

damage along the U.S. Gulf Coast (NHC 2007).

This paper is organized into four sections. In section 2,

the model configuration will be briefly introduced. Sec-

tion 3 will show model results, and the final section of the

paper will summarize the conclusions and final remarks.

2. Model configuration and data resources

In this study, WRF version 2.2 was used to simulate

Hurricane Rita with a domain consisting of 575 3 320

grid points, 4-km grid size, and 28 vertical levels. The

model domain is shown in Fig. 1 (delimited by a black

box), and the dashed box in the same figure represents

the area used for the model and data comparison (area:

2300 km 3 400 km with 575 3 100 grid cells of 4 km). In

all simulations, the 6-hourly analyses from the Global

Forecast System (GFS), developed by the National

Centers for Environmental Prediction (NCEP), were

used as the initial and boundary conditions of the model.

The simulation was performed in ‘‘predictive’’ mode,

with observations only updated at boundaries through-

out the simulation (i.e., no observation assimilation).

The simulation began at 1200 UTC 21 September 2005,

and continued until 1200 UTC 25 September 2005. The

model settings were based on the Noah land surface

model (Chen and Dudhia 2001), the Rapid Radiative

Transfer Model (RRTM) longwave radiation scheme

(Mlawer et al. 1997), the Dudhia shortwave radiation

model (Dudhia 1989), and the Yonsei University (YSU)

planetary boundary layer scheme (Hong et al. 2006;

Hong and Dudhia 2003).

FIG. 1. Model domain used in WRF simulations. The white-

dashed rectangular area shows a 2300 km 3 400 km area con-

taining 575 3 100 grid cells of 4 km 3 4 km where comparisons are

made with radar-derived precipitation estimates.
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In this work, various combinations of microphysics

schemes and cumulus parameterizations were tested.

Five microphysics schemes including Purdue Lin (LIN;

Lin et al. 1983), Kessler (KES; Kessler 1969), Ferrier

(FER; see Ferrier 1994), Rapid Radiative Transfer

Model WSM3 (Hong et al. 2004), and the WRF single-

moment five-class microphysics scheme (WSM5; Hong

et al. 2004) were utilized. In addition, the following

cumulus parameterization schemes were employed:

1) no cumulus parameterization (NCP), 2) Kain–Fritsch

(KF; see Kain 2004; Kain and Fritsch 1993; Kain and

Fritsch 1990), 3) Betts–Miller–Janjić (BMJ; see Janjić

1994), and 4) Grell–Devenyi (GD; see Grell and

Devenyi 2002).

The convective cumulus scheme is mainly used for

coarser grid sizes (Skamarock et al. 2007). When the grid

size is small enough, one may assume that the con-

vection may be resolved by the grid and, therefore,

a cumulus scheme may no longer be needed. Even in

finescale simulations, cumulus schemes may be help-

ful for modeling convective systems and producing re-

alistic rainfall structures (Li and Pu 2009). For example,

Li and Pu (2009) demonstrated that using a cumulus

scheme at a 9-km grid size improved the simulation re-

sults, while the effect of using such parameterization at

3-km grid size had a small impact on the result. There-

fore, for a thorough comparison among parameteriza-

tion schemes, all the cumulus schemes were employed in

the simulations. Furthermore, for grid sizes less than

10 km, mixed-phase microphysics schemes (LIN, FER)

are recommended for practical applications (Skamarock

et al. 2007), as they can account for the interaction of

water and ice particles. In this study, other micro-

physics options were also included in order to verify the

necessity of mixed-phase schemes for fine resolutions.

The positive-definite transport scheme for moisture

was not used in these simulations, even though using

this scheme has been shown to reduce the large positive

bias in surface precipitation (Skamarock and Weisman

2009).

The 18 GFS data were used in this study as the initial

conditions, which will somehow weaken the strength of

the hurricane. However, the effect of the initial condi-

tions on the model result is usually quite short, especially

for the strong synoptic-scale conditions (Vie et al. 2011).

In other words, the use of GFS data as the initial con-

ditions will not significantly affect the landed rainfall

caused by the hurricane. It should be mentioned that the

modeled rainfall differences (and errors in comparison

with reference data) from this study may not only come

from the different combinations of microphysics and

convective parameterization schemes, but may also

come from the nonlinear effects of domain setup and

the steep lateral interpolations (downscaling) from 18

GFS data directly onto 4-km WRF grid points. It may

also be due to the interactions of the above-mentioned

three factors. The effects and interactions are significant

especially under strong synoptic-scale circulation con-

ditions like hurricanes (Vie et al. 2011). Using GFS data

might also affect the intensity and size of the storm

vortex. Previous studies (e.g., Wang et al. 2010) indicate

that there is an ‘‘inevitable’’ error in simulating hur-

ricane track, whichever lateral boundary schemes are

adjusted in the model.

In this study, the reference (i.e., observed) preci-

pitation measurements are based on the stage IV pre-

cipitation data (multisensor radar-based gauge-adjusted

precipitation data available from NCEP).

3. Results and discussion

a. Precipitation

The stage IV estimates are available at an hourly

temporal resolution over the contiguous United States.

In this section, the comparisons between the observed

and modeled precipitation were performed on hourly

and daily bases, as well as throughout the entire period

of the model run (4 days). Figure 2 presents the observed

and modeled precipitation patterns (in units of mm h21)

using various combinations of cumulus and microphys-

ics schemes at 1000 UTC 24 September 2005. This time

step (at 1000 UTC 24 September 2005) is selected as in

this time step the entire storm is within the radar cov-

erage. In Fig. 2, each row represents the model results

for one microphysical scheme and the different columns

show the results of different cumulus parameterizations.

Figure 2a displays the stage IV rainfall data in milli-

meters per hour (i.e., reference dataset). The cumulus

scheme represents the subgrid-scale effects of convec-

tive and/or shallow clouds due to unresolved updrafts

and downdrafts, as shown in Fig. 2, and it has great in-

fluence on the distribution of precipitation. It is notable

that the KF scheme results in the smallest spatial extent

of precipitation, while the LIN–KF simulation exhibits

the strongest precipitation over the region. It should be

mentioned that although Fig. 2 shows the results for

the third day of simulation, some of the models (e.g.,

WSM3–GD and WSM3–BMJ) can capture the maxi-

mum precipitation rate in the northeastern quadrant

of the storm.

Table 1 summarizes the results of different model

options including the areal extent (km2), and the av-

erage and maximum precipitation (in mm h21) as

an average of 6 h of model results (from 1000 UTC

24 September 2005 until 1600 UTC 24 September 2005).
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FIG. 2. (top) Observed and (bottom) simulated precipitation patterns (mm h21) at 1000 UTC on 24 Sep 2005 with

different combinations of microphysics and cumulus parameterizations: FER, KES, LIN, WSM3 and WSM5

microphysics; and NCP, KF, BMJ, and GD cumulus parameterizations.
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It should be noted that the observations are ground-

based measurements and do not cover the entire Gulf

region. Therefore, a region between 288 and 328N (within

radar coverage) was selected to compare model results

with observations. The comparison region is shown with

a dashed box in Fig. 1.

The areal extent of the storm was calculated as the

number of grid pixels (WRF grid point, hereafter pixel)

that exceed a specified rainfall threshold, multiplied by

the pixel size. The areas of pixels are calculated using the

same map projection for both datasets using ArcGIS.

Table 1 lists the areal extents computed based on three

thresholds (1, 2, and 10 mm h21). Table 2 presents the

error (%) of the modeled precipitation with respect

to the observations. For rainfall values above all three

thresholds, WSM5–NCP and KES–NCP result in the

least error in the storm’s areal extent. Table 2 also in-

dicates that FER–KF, FER–KF, and KES–GD exhibit

the highest error in areal extent simulation for the

precipitation thresholds of 1, 2, and 10 mm h21, re-

spectively. With respect to the mean and maximum

precipitation, KES–NCP is superior to the others.

Figure 3 displays similar comparisons among hourly

model results and observations for rainfall values above

the 90th percentile, respectively. The 90th percentile

was calculated for each simulation with respect to hourly

precipitation values above the 1 mm h21 threshold (hence

different for different simulations). One can see that,

for a high threshold (heavy precipitation), the modeled

precipitation patterns are very different than the ob-

servations. The results indicate that none of the para-

meterization schemes provide reasonable estimates of

extreme patterns and locations. With respect to the

magnitudes, while the observation shows precipitation

up to ;20 mm h21, the LIN scheme predicted higher

values, on the order of 50 mm h21. Overall, the KES–

BMJ scheme was superior with respect to the magni-

tudes of extremes.

Figure 4 presents the daily average precipitation rates

(in mm h21) from 0000 to 2400 UTC 24 September 2005.

The daily precipitation accumulations clearly highlight

the differences between the choices of parameterization

schemes. Figure 4 indicates that most parameterization

schemes overestimate the amount of rainfall and the

extent of high rainfall values (e.g., compare LIN–NCP

with observed data). Furthermore, some physics and

cumulus options may result in the mislocation of high

precipitation values (cf. FER–GD with the observa-

tions).

Figure 5 presents the hourly averaged rainfall rates

before and after the landfall. This figure shows the

hourly averaged precipitation (mm h21) area-averaged

over the dashed rectangular region that was presented in

Fig. 1. The vertical solid line in Fig. 5 represents the time

of landfall (0740 UTC 24 September 2005). Figure 5

indicates that the precipitation rates vary significantly

TABLE 1. Averaged values of areal extent, mean, and maximum of observed and simulated precipitation for the time period between 1000

and 1600 UTC 24 Sep 2005 over the selected area shown in Fig. 1.

Areal extent (km2)

Mean precipitation

(mm h21)

Max precipitation

(mm h21)

Rainfall threshold (mm h21)

1 2 10

FER–NCP 140 504 112 147 31 925 2.6 49.0

FER–KF 92 853 77 747 31 651 2.4 56.7

FER–BMJ 116 037 95 755 23 459 2.1 49.1

FER–GD 124 448 97 949 30 771 2.6 62.8

KES–NCP 152 357 120 301 40 213 3.4 102.0

KES–KF 96 907 78 011 27 939 2.4 76.7

KES–BMJ 128 323 103 101 34 493 2.9 75.3

KES–GD 128 123 102 811 20 696 2.1 69.1

LIN–NCP 121 317 107 373 53 496 4.1 79.8

LIN–KF 94 381 81 725 43 384 4.0 82.6

LIN–BMJ 144 995 114 453 45 021 4.3 118.1

LIN–GD 103 306 82 862 26 654 2.1 64.1

WSM3–NCP 138 061 108 544 29 731 2.4 53.1

WSM3–KF 116 387 96 440 35 037 2.7 74.6

WSM3–BMJ 174 504 140 027 28 413 2.9 69.4

WSM3–GD 177 994 143 527 29 294 2.9 69.4

WSM5–NCP 156 319 123 429 41 259 3.3 101.7

WSM5–KF 137 869 107 933 33 664 2.9 88.5

WSM5–BMJ 139 347 118 245 37 829 3.3 81.6

WSM5–GD 100 688 80 763 25 979 2.1 62.7

Obs 159 467 130 549 40 179 3.6 104.5
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with different model specifications. Figure 5 reveals that

the FER and WSM3 microphysics configurations are

less variable to the choice of cumulus scheme, while the

LIN option shows higher variability of precipitation

forecasts with respect to the choice of cumulus param-

eterizations (cf. Figs. 5a and 5c). Figure 5 also shows

that most parameterization options overestimate the

amount of precipitation during the last 15 h of simula-

tion. Though the WSM3 scheme both underestimates

the total precipitation at the time of landfall and over-

estimates for the time steps following the landfall, it

exhibits better agreement with the observations. It is

noted that comparing precipitation amounts for each

model run at its respective landfall time would lead

to slightly different results (see Table 3 for time of

landfall of each simulation and Fig. 5 for hourly rainfall

rates).

Figure 6 presents the biases of precipitation accumu-

lations for all 20 combinations of parameterizations

before and after the landfall. The top panel in Fig. 6

shows the 24-h bias (prior to landfall) and 12-h bias

(after landfall), whereas the bottom panel displays the

total bias (96 h: 1200 UTC 21 September–1200 UTC

25 September). Bias is an indication of systematic error,

resulting from poor model configuration, model para-

meterization, deficiencies, parameters, and numerical

approximations (Mölders 2008). Another factor that

contributes to bias is the fact that a positive-definite

transport scheme for moisture was not used in these

simulations. It is noted that we have searched exten-

sively for uncertainty estimates in the stage IV pre-

cipitation data, and found only limited references to

uncertainties in this derived observation product (e.g.,

Ciach et al. 2007; AghaKouchak et al. 2010b). Since the

analysis utilized all available gauge data in conjunction

with radar observations, it was difficult to independently

estimate uncertainties. In addition, over water there are

no rain gauges for bias correction. Therefore, stage IV

data over water (near the shoreline) may be biased.

For different combinations of WRF parameteriza-

tion schemes, the bias values were computed as the ratio

of the total predicted to observed rainfall (stage IV

precipitation data). A bias of 1.0 indicates the perfect

rainfall prediction with respect to the total accumula-

tions, while a bias of more (or less) than 1.0 indicates

overestimation (or underestimation) of precipitation

accumulations. When calculating the bias value for

25 September, only 12 h of available data were consid-

ered. It is worth mentioning that the rainfall accumula-

tions were computed over the comparison region (shown

with a dashed box in Fig. 1) where observations are

available. Comparing the bias values for 25 September

2005 (after landfall) with 23 September 2005 (before

landfall) revealed that the modeled precipitation esti-

mates are more biased over land than over the Gulf (see

the top panel in Fig. 6). Comparing all simulations, the

WSM3–BMJ and KES–KF combinations resulted in the

lowest and highest bias, respectively. It should be noted

TABLE 2. Error (%) in areal extent, mean, and maximum of simulated precipitation with respect to the observation (averaged results

between 1000 and 1600 UTC 24 Sep 2005 over the selected area shown in Fig. 1.

Areal extent error (%)

Mean precipitation

error (%)

Max precipitation

error (%)

Rainfall threshold (mm h21)

1 2 10

FER–NCP 11.89 14.10 20.54 27.72 53.11

FER–KF 41.77 40.45 21.23 34.58 45.77

FER–BMJ 27.23 26.65 41.61 43.06 52.98

FER–GD 21.96 24.97 23.42 27.91 39.87

KES–NCP 4.46 7.85 20.09 7.64 2.37

KES–KF 39.23 40.24 30.46 33.56 26.65

KES–BMJ 19.53 21.03 14.15 19.77 27.95

KES–GD 19.66 21.25 48.49 41.34 33.90

LIN–NCP 23.92 17.75 233.15 214.21 23.69

LIN–KF 40.81 37.40 27.98 210.00 20.99

LIN–BMJ 9.08 12.33 212.05 219.41 213.01

LIN–GD 35.22 36.53 33.66 41.38 38.64

WSM3–NCP 13.42 16.86 26.00 33.87 49.16

WSM3–KF 27.02 26.13 12.80 25.62 28.58

WSM3–BMJ 29.43 27.26 29.28 19.94 33.56

WSM3–GD 211.62 29.94 27.09 19.94 33.56

WSM5–NCP 1.97 5.45 22.69 7.97 2.66

WSM5–KF 13.54 17.32 16.21 21.03 15.28

WSM5–BMJ 12.62 9.42 5.85 9.88 21.92

WSM5–GD 36.86 38.14 35.34 42.67 40.02
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FIG. 3. (top) Observed and (bottom) simulated precipitation patterns (mm h21) above 90 percentiles at 1000 UTC 24 Sep 2005 (FER, KES,

LIN, WSM3, WSM5, NCP, KF, BMJ, and GD). The threshold for each subfigure is shown in mm h21.
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that many of the configurations are within a factor of 2 of

the storm total observation, but when smaller time

(daily) averages were compared, some configurations fell

outside of a factor of 2 of the observations (cf. the top and

bottom panels in Fig. 6).

Some combinations of parameterizations exhibit

higher variability in bias before and after landfall. For

example, simulated rainfall magnitudes with the KES

microphysics scheme exhibit bias increases of more than

3 times before and after landfall (see KES–KF, KES–

BMJ, and KES–GD in the top panel of Fig. 6). In ad-

dition to the daily bias, the total bias was also calculated

and is shown in Fig. 6 in the bottom panel for the entire

period of the model run (from 1200 UTC 21 September

FIG. 4. (top) Observed and (bottom) simulated daily average precipitation rates (mm h21) from 0000 to 2400 UTC 24 Sep 2005 (FER,

KES, LIN, WSM3, WSM5, NCP, KF, BMJ, and GD).
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to 1200 UTC 25 September). As shown, the overall bias

ranges between 0.8 and 1.8 for the FER–BMJ model

configuration and LIN–NCP, respectively. Figure 6 in-

dicates that for any given microphysics option, simula-

tions with no convective scheme (–NCP) result in higher

bias. Furthermore, for a given microphysics scheme,

BMJ and GD exhibit a lesser bias than do NCP and

KF. Figure 6 shows that, with respect to the total bias,

LIN–GD, WSM5–BMJ, and WSM5–GD lead to a rea-

sonable bias (’1).

b. Hurricane track

Reliable prediction of a hurricane path is of particular

importance for decision making and hazard prepared-

ness. Figure 7 displays simulated hurricane tracks using

20 combinations of physics and cumulus options along

FIG. 5. Hourly averaged rainfall rates spatially averaged over the dashed rectangular region shown in Fig. 1 during

22–25 Sep 2005. Solid black line denotes time of landfall.
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with the actual observed hurricane track (denoted by

a solid black line). As shown, the differences between

the parameterization schemes become more significant

as the hurricane approaches land. When the hurricane is

far from land, most parameterization schemes make

similar predictions of the hurricane track. However, as

the hurricane reaches the land, simulated tracks start to

deviate from the observed track. Concurrent with the

distance of the hurricane to the land is the run time of

the model, which may be another reason for the in-

creased errors near land. The closer to the start of the

simulation, the smaller the error is. In should be noted

that, when the hurricane reaches the land in the third

day of simulation, the errors associated with the length

of the model run at that point will also affect the simu-

lated track.

To numerically compare the different parameteriza-

tion schemes, an average of the track error throughout

the 4-day model simulation is computed with respect to

the observed track (presented in Fig. 8). As shown, the

best storm track forecasts are produced by the BMJ

cumulus scheme (LIN–BMJ and KES–BMJ), while the

highest mean errors are observed when FER–NCP,

WSM3–NCP, and WSM5–NCP were used. In fact, ex-

cept for when the KES physics option was used, the no-

cumulus option (combined with other physics schemes)

results in the highest mean error values. Fovell et al.

(2010) discussed the sensitivity of hurricane track to the

cloud–radiative feedback, which was not activated in

these simulations. The cloud–radiative feedback may

affect the storm structure, as well as the track of the

storm.

c. Time of landfall

In addition to the hurricane track, time of landfall was

also compared for all combinations of physics and

cumulus options. Table 3 lists the time of landfall ac-

cording to different simulations. The National Hurricane

Center (NHC) reported that 0740 UTC 24 September

2005 was the best estimate of the time of landfall. Table 3

indicates that all simulations show earlier landfall com-

pared to observations (values rounded hourly). Among

the different combinations, FER–GD, WSM3–BMJ, and

WSM5–BMJ predicted the time of landfall most accu-

rately (;2 h earlier). Conversely, FER–NCP and KES–

GD provided the least accurate estimates of the time of

landfall (;8–9 h earlier).

4. Summary and conclusions

Accuracy and reliability of weather prediction models

are vital to our economy and society. Weather pre-

diction models are extensively used for near-real-time

forecasting, warning, and decision making. Previous

studies showed that microphysics and cumulus schemes

are the most sensitive model parameterizations among

other physics options for weather prediction models

(Fovell 2006; Lowrey and Yang 2008; Jankov et al. 2007;

Gallus 1999; Wang and Seaman 1997). This study in-

tends to investigate the performance of the WRF in

forecasting precipitation, hurricane track, and time of

landfall of Hurricane Rita using different microphysics

and cumulus parameterization options. A total of 20

combinations of microphysics and cumulus schemes in-

cluding five microphysics options and three cumulus

parameterizations were investigated, as well as a no-

cumulus scheme to validate the WRF outputs against

ground-based observations.

While the results showed that model outputs largely

depend on the choice of microphysics and cumulus

schemes, no single combination can be considered ideal

for modeling precipitation amount, areal extent, hurri-

cane track, and the time of landfall. With regard to the

precipitation areal extent, the WSM3 and WSM5 phys-

ics options were superior to the others, leading to the

least error in the precipitation coverage. However, even

for various thresholds of precipitation, the best com-

bination of model parameterizations may be different.

For example, the results showed that for lower thresh-

olds (1 and 2 mm h21), the WSM5 option led to the least

amount of error in areal extent, whereas given a higher

threshold (10 mm h21), the KES scheme led to the least

error. Furthermore, the WSM5–NCP was found to have

the best approximation of mean daily precipitation.

The total amounts of daily precipitation values were

also compared with observations in order to identify

TABLE 3. Time of landfall predicted by various parameterization.

Simulation Time of landfall Error (h)

FER–NCP 0000 UTC 24 Sep 28

FER–KF 0400 UTC 24 Sep 24

FER–BMJ 0500 UTC 24 Sep 23

FER–GD 0600 UTC 24 Sep 22

KES–NCP 0100 UTC 24 Sep 27

KES–KF 0200 UTC 24 Sep 26

KES–BMJ 0200 UTC 24 Sep 26

KES–GD 2300 UTC 23 Sep 29

LIN–NCP 0100 UTC 24 Sep 27

LIN–KF 0500 UTC 24 Sep 23

LIN–BMJ 0200 UTC 24 Sep 26

LIN–GD 0500 UTC 24 Sep 23

WSM3–NCP 0100 UTC 24 Sep 27

WSM3–KF 0500 UTC 24 Sep 23

WSM3–BMJ 0600 UTC 24 Sep 22

WSM3–GD 0400 UTC 24 Sep 24

WSM5–NCP 0400 UTC 24 Sep 24

WSM5–KF 0300 UTC 24 Sep 25

WSM5–BMJ 0600 UTC 24 Sep 22

WSM5–GD 0500 UTC 24 Sep 23
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which combination can best simulate cumulative pre-

cipitation. The simulated daily precipitation accumula-

tions emphasized the differences between the choices of

physics and cumulus schemes. Generally, the simulation

scenarios were found to overestimate precipitation ac-

cumulation. Furthermore, the results revealed that the

overestimations were higher over land than over the

Gulf region. Comparing the combinations of parame-

terizations, WSM3–BMJ led to the best approximation

of precipitation over land and over the Gulf region.

Furthermore, the results for the BMJ and GD schemes

demonstrated lower bias than NCP and KF. Overall,

with respect to the precipitation accumulations, LIN–

GD, WSM5–BMJ, and WSM5–GD resulted in a more

reasonable bias. Moreover, the results showed that

simulations with no convective scheme lead to higher

bias in precipitation accumulations.

While several combinations of model parameteri-

zations provided reasonable estimates of precipitation,

none of the physics and cumulus options provided reli-

able estimates of heavy precipitation patterns and lo-

cations. Object-based pattern analysis methods and

geometrical indices can be employed to compare sim-

ulated and observed precipitation based on their geo-

metrical characteristics (AghaKouchak et al. 2011).

Future developments in model configurations and

schemes may be required for capturing precipitation

extremes.

FIG. 6. Average bias in (top) 12-h (0000–1200 UTC 25 Sep) and 24-h (0000–2400 UTC

23 Sep) and (bottom) 96-h (1200 UTC 21 Sep–1200 UTC 25 Sep) precipitation accumulations

for different simulations over the dashed rectangular region shown in Fig. 1.
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In addition to precipitation, the simulated hurricane

tracks were compared with the best estimate of the

hurricane track obtained from the NHC. The results

showed that the model outputs obtained with different

parameterization schemes deviated more from each

other as simulation time increased and the hurricane

approached the land. With respect to the hurricane

track, the LIN and KES microphysics options and the

BMJ cumulus scheme (LIN–BMJ and KES–BMJ) pro-

vided the best hurricane track forecasts.

In summary, the model’s ability to generate pre-

cipitation was best achieved using the BMJ cumulus pa-

rameterization combined with the WSM5 microphysics

option. In this case study, WSM5–BMJ simulated the

time of landfall with the least error. In predicting the

hurricane track, the LIN and KES microphysics and

the BMJ cumulus parameterization scheme outperformed

other schemes. Some studies have suggested that, for

grid sizes smaller than 10 km, using cumulus parame-

terizations may not be necessary [see Lowrey and Yang

(2008) and Skamarock et al. (2007) for a detailed dis-

cussion]. However, the results of this study indicate that

the use of cumulus schemes improves the model out-

put. This confirms the findings of Lowrey and Yang

(2008), which suggest that parameterization of con-

vection AT higher resolutions improves the results.

In addition to the strong sensitivity of WRF to cumulus

and physics schemes, accurate forecasting of hurricanes

may also rely on other physical options, model processes,

and grid resolutions. It should be noted that the results of

this study are based on one case study and cannot be

generalized for different climate conditions. Future

studies using different model configurations for different

climate regions are required to validate the results at dif-

ferent climate conditions. Not using the positive-definite

transport scheme for moisture may also contribute to

FIG. 7. Hurricane Rita tracks modeled using differ-

ent parameterization schemes (FER, KES, LIN,

WSM3, WSM5, NCP, KF, BMJ, and GD). The period

of tracks is from 0600 UTC 22 Sep to 2300 UTC 24 Sep

2005.

1014 W E A T H E R A N D F O R E C A S T I N G VOLUME 27



large positive bias in surface precipitation. The in-

teraction between simulated cloud and radiation that

was not used in this study may affect the track forecast

and, hence, other parameters evaluated in the paper.

It is acknowledged that radar-based datasets (e.g.,

the stage IV data) are subject to various uncertainties.

These uncertainties may arise from nonuniformity in the

vertical profiles of reflectivity (VPR), anomalous pro-

pagation, beam overshooting, partial beam filling, an

inappropriate Z–R relationship, and spatiotemporal re-

solution (Seed and Srikanthan 1999; Krajewski and

Smith 2002). On the other hand, weather condition can

also affect radar-based rainfall estimates (Steiner and

Smith 2000). Among the currently available datasets, stage

IV estimates are the best area approximation of the true

area-average rainfall patterns and values (AghaKouchak

et al. 2010a). The stage IV estimates are adjusted for

various biases using rain gauge measurements following

several quality control measures (Lin and Mitchell 2005).

Thus far, numerous studies have attempted to quantify,

describe, or adjust for bias in the radar rainfall uncertainties

(Seo et al. 1999; AghaKouchak et al. 2010c; Ciach et al.

2007). Generally, quantification of error requires extensive

independent ground-based measurements that are not

available everywhere, particularly for the stage IV data

that already include the NCEP rain gauges in its algorithm.

Furthermore, quantification of uncertainties over a certain

location (e.g., an experimental watershed) cannot be gen-

eralized to different climate regions and conditions.

Therefore, no quantitative measure of the uncertainty of

the stage IV data is provided. The presented results should

be considered as relative comparisons of simulated rainfall

fields to the best approximation of observed rainfall.
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Janjić, Z., 1994: The step-mountain eta coordinate model: Further

development of the convection, viscous sublayer, and turbu-

lence closure schemes. Mon. Wea. Rev., 122, 927–945.

Jankov, I., P. Schultz, C. Anderson, and S. Koch, 2007: The impact

of different physical parameterizations and their interactions

on cold season QPF in the American River basin. J. Hydro-

meteor., 8, 1141–1151.

Kain, J., 2004: The Kain–Fritsch convective parameterization: An

update. J. Appl. Meteor., 43, 170–181.

——, and J. Fritsch, 1990: A one-dimensional entraining/detraining

plume model and its application in convective parameteriza-

tion. J. Atmos. Sci., 47, 2784–2802.

——, and ——, 1993: Convective parameterization for mesoscale

models: The Kain–Fritsch scheme. The Representation of

Cumulus Convection in Numerical Models, Meteor. Monogr.,

No. 46, Amer. Meteor. Soc., 165–170.

Kessler, E., 1969: On the Distribution and Continuity of Water

Substance in Atmospheric Circulation. Meteor. Monogr., No.

32, Amer. Meteor. Soc., 84 pp.

Krajewski, W., and J. Smith, 2002: Radar hydrology: Rainfall

estimation. J. Hydrol., 25, 1387–1394.

Li, X., and Z. Pu, 2009: Sensitivity of numerical simulations of the

early rapid intensification of Hurricane Emily to cumulus

parameterization schemes in different model horizontal res-

olutions. J. Meteor. Soc. Japan, 87, 403–421.

Lin, Y., and K. Mitchell, 2005: The NCEP stage II/IV hourly pre-

cipitation analyses: Development and applications. Preprints,

19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc.,

1.2. [Available online at http://ams.confex.com/ams/pdfpapers/

83847.pdf.]

Lin, Y.-L., R. Rarley, and H. Orville, 1983: Bulk parameterization

of the snow field in a cloud model. J. Climate Appl. Meteor., 22,

1065–1092.

Lowrey, M., and Z. Yang, 2008: Assessing the capability of a

regional-scale weather model to simulate extreme pre-

cipitation patterns and flooding in central Texas. Wea. Fore-

casting, 23, 1102–1126.

Mlawer, E., S. Taubman, P. Brown, and M. Iacono, 1997: Radiative

transfer for inhomogeneous atmospheres: RRTM, a validated

correlated-k model for the longwave. J. Geophys. Res., 102
(D14), 16 663–16 682.

Mölders, N., 2008: Suitability of the Weather Research and Fore-

casting (WRF) model to predict the June 2005 fire weather for

interior Alaska. Wea. Forecasting, 23, 953–973.

NHC, 2007: November 2005 Atlantic tropical weather summary.

NOAA/National Hurricane Center, 33 pp. [Available online

at http://www.nhc.noaa.gov/pdf/TCR-AL182005_Rita.pdf.]

Olson, D. A., N. Junker, and B. Korty, 1995: Evaluation of 33 years

of quantitative precipitation forecasting. Wea. Forecasting, 10,

498–511.

Seed, A., and R. Srikanthan, 1999: A space and time model for

design storm rainfall. J. Geophys. Res., 104 (D24), 31 623–

31 630.

Seo, D.-J., J. Breidenbach, and D. Miller, 1999: Real-time adjust-

ments of mean field and range-dependent biases in WSR-88d

rainfall estimation. Preprints, 15th Int. Conf. on Interactive

Information and Processing Systems (IIPS) for Meteorology,

Oceanography, and Hydrology, Dallas, TX, Amer. Meteor.

Soc., 5.20.

Skamarock, W. C., and M. L. Weisman, 2009: The impact of positive-

definite moisture transport on NWP precipitation forecasts. Mon.

Wea. Rev., 137, 488–494.

——, J. Klemp, J. Dudhia, D. Gill, D. Barker, W. Wang, and

J. Powers, 2007: A description of the advanced research

WRF version 2. NCAR Tech. Note NCAR/TN-4681STR,

88 pp.

Steiner, M., and J. Smith, 2000: Reflectivity, rain rate, and kinetic

energy flux relationships based on raindrop spectra. J. Appl.

Meteor., 39, 1923–1940.

Vie, B., O. Nuissier, and V. Ducrocq, 2011: Cloud-resolving

ensemble simulations of Mediterranean heavy precipitation

events: Uncertainty on initial condition and lateral boundary

condition. Mon. Wea. Rev., 139, 403–419.

Wang, W., and N. Seaman, 1997: A comparison study of convec-

tive schemes in a mesoscale model. Mon. Wea. Rev., 125, 252–

278.

Wang, X., Z. Zhong, J. Hu, and H. Yuan, 2010: Effect of lateral

boundary scheme on the simulation of tropical cyclone track

in regional climate model RegCM3. Asia-Pac. J. Atmos. Sci.,

46, 221–230.

Zhang, F., A. Odins, and J. Nielsen-Gammon, 2006: Mesoscale

predictability of an extreme warm-season precipitation event.

Wea. Forecasting, 21, 149–166.

1016 W E A T H E R A N D F O R E C A S T I N G VOLUME 27




