
UC Irvine
UC Irvine Previously Published Works

Title
Automatic Performance Visualization of Distributed Real-time systems

Permalink
https://escholarship.org/uc/item/9817b9zv

Journal
Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC 2006), 9

Authors
Harmon, Trevor
Klefstad, Raymond

Publication Date
2006-04-01

DOI
10.1109/ISORC.2006.22

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9817b9zv
https://escholarship.org
http://www.cdlib.org/

Automatic Performance Visualization
of Distributed Real-Time Systems

Trevor Harmon and Raymond Klefstad
Department of Electrical Engineering and Computer Science

The Henry Samueli School of Engineering
University of California, Irvine

608 Engineering Tower, Irvine, California 92697-2625
{tharmon, klefstad}@uci.edu

Abstract

For distributed real-time systems, adequate profiling
tools are exceedingly rare. The sheer variety and low-level
nature of these systems impede the adoption of standard,
general-purpose tools for performance analysis and visual-
ization. Although much research has been devoted to pro-
filing parallel clusters and supercomputers, the literature
virtually ignores the real-time domain. Correspondingly, a
handful of commercial tools is available for profiling real-
time software, but they invariably make a single-node as-
sumption and are unable to cope with distributed environ-
ments.

We examine the state of performance analysis and dis-
cuss why profilers are conspicuously absent in the field of
distributed real-time systems. We then explore how devel-
opers of these systems could benefit from graphical profil-
ing tools with automatic instrumentation and data collec-
tion. Toward that end, we demonstrate the prototype of a
performance visualization tool called “Bacara,” the second
addition to our suite of tools for Visual Analysis of Dis-

tributed Real-time systems, or VADR (vā'd�r).

1 Background

Over the last twenty years, software profilers have

become commonplace on the programmer’s workbench.

These tools help focus optimization efforts on selecting the

right algorithms and tuning time-critical code, often result-

ing in large overall performance gains. Profiling software

can also help reveal performance problems that may lie far

from where programmer’s intuition expects them to be, sav-

ing development time that would be wasted chasing down

false bottlenecks.

Finding and eliminating these buried bottlenecks natu-

rally makes any software run faster, but for real-time sys-

tems, the benefits can be dramatic. Specifically, optimiza-

tion through profiling can lower resource requirements to a

point where additional features and services can be added.

Consider, for example, a real-time cryptography system that

supports only moderate encryption because a longer key

length would exceed the abilities of the embedded proces-

sor. With sufficient profiling, a developer could reduce CPU

utilization to a point where the encryption strength could

be increased. Thus, performance analysis is vital not only

for improving the observed performance of a system; it can

also be the catalyst for new capabilities of the software that

would otherwise be impossible.

For these reasons, profilers are now standard in many

desktop software development kits. Such tools have im-

proved substantially since gprof [7], the first general-

purpose profiler, was introduced in 1982. Since then,

performance analysis software has greatly matured and

has brought together an impressive assortment of fea-

tures: detailed graphs of call stack depth, method call fre-

quency, memory allocations, context switches, cache hits

and misses, and a variety of other performance metrics.

These tools can also augment high-level source code with

the relative execution time of each line, showing precisely

which areas need optimization. Some of the more sophisti-

cated profilers offer tuning advice (i.e., the ability not just to

detect bottlenecks but to suggest how to remove them) and

even perform an exhaustive “sub-instruction-level” analy-

sis of the application code, detailing the utilization of each

individual functional unit and dispatch slot within the pro-

cessor.

Despite the complexity and variety of modern profilers,

they all collect data in one of two basic ways: instrumen-
tation and sampling. With instrumentation, profilers inject

code into key points of the system (such as at the top of

every method call); this code then records the event at run-

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

time for subsequent analysis by the profiler. With sampling,

the system remains unmodified and is instead halted peri-

odically by the profiler, allowing inspection of such metrics

as the amount of memory allocated.

These seemingly powerful techniques have an Achilles’

heel. Although they have proven successful for analyzing

desktop software and parallel computers, instrumentation

and sampling can be enormously problematic for real-time

systems. The fundamental flaw is that profilers cannot per-

form their work in zero time, and thus any injected code or

delays due to sampling will alter the temporal behavior of

the system under test. In other words, the very act of ob-

servation disturbs the system’s real-time characteristics in a

way that may cause missed deadlines and scheduling con-

flicts that would not occur under normal execution. This

situation is not unlike the effect of observation on quantum

particles described by Heisenberg’s Uncertainty Principle,

leading some researchers to dub the condition a “Heisen-

bug.” [8] Whatever the name, these probe effects are one of

the reasons why real-time developers lack adequate profil-

ing tools.

The dilemma does not end there, however. As soon as

a real-time system is distributed across a network, the in-

effectiveness of today’s profilers becomes even more pro-

nounced. Typically designed for monolithic, stand-alone

applications, they fail to address the unique requirements

of networked software. While some profilers can attach to

processes remotely through a network, this does not solve

the problem, as profiling still takes place within a single

node. Other tools, such as Ethereal,1 can provide perfor-

mance analysis of a network by examining individual pack-

ets, but this low level of detail is generally not useful for

developers of distributed real-time applications, who often

need to answer higher-level questions such as:

• Which process in my system is causing the most net-

work congestion?

• Where and when does my system miss its real-time

deadlines?

• Why does CPU utilization on this one node suddenly

rise every three seconds?

• Or simply: What in the world is my system doing?

Even the latest, most advanced performance analysis

tools are ill-equipped to answer these questions. They sim-

ply cannot handle multiple pieces of code on multiple de-

vices, all running independently. With this type of concur-

rency, the system state is unpredictable; performance bot-

tlenecks may occur one day and disappear the next. In the

future, the analysis problem will only grow worse: Dis-

tributed, real-time systems are becoming increasingly com-

plex, and without better profiling tools, developers will find

increasing difficulty in solving performance problems.

1http://www.ethereal.com/

2 Motivation

Through our experience designing middleware for real-

time Java, such as RTZen [13], we have observed first-

hand the limitations of current performance analysis tools.

The most sophisticated profiler at our disposal is the sim-

ple System.currentTimeMillis() command. We

can, for example, determine the round-trip time of a remote

method call by inserting two such commands, one before

and one after the call, and then computing the difference.

In order to analyze the performance of a distributed ap-

plication that uses our middleware, we must scatter dozens

of these command pairs throughout a distributed system,

hoping to collect enough timing data that tells us where the

bottlenecks lie. It is a tedious and error-prone task: Insert

too many statements, and the timing trace becomes nearly

unreadable; insert too few, and a vital piece of timing data

may be lost. And no matter how effective our logs are,

we are still faced with a monumental maintenance problem.

Whenever our code changes, the logging statements may

have to change as well, wasting time and possibly breaking

the delicate performance traces we had constructed.

We knew that this method of performance analysis was

both inadequate and inefficient, and we have been inves-

tigating alternative techniques. Our research in this area

has led us to what we believe is the key to effective per-

formance analysis of distributed real-time applications: the

power of visualization. With a highly graphical depiction

of a system—a visual model of the actual nodes and their

relationships—developers could more easily examine per-

formance data to pinpoint bottlenecks, detect missed dead-

lines, and ensure that performance requirements are met.

Thus, our approach would provide something like a “CAT

scan” for distributed real-time systems, a scenario in which

the system is the patient and the developer is the doctor.

With this motivation in mind, we have taken the initial

steps in developing and refining our visual approach to per-

formance analysis. We are implementing a suite of profil-

ing tools, which we refer to collectively as VADR (vā'd�r),

or Visual Analysis of Distributed Real-time systems. These

tools are analogous to traditional debugging and profiling

tools, but they are specialized for the unique requirements

of distributed real-time systems. With VADR, the objective

is to provide a user-friendly graphical view of highly com-

plex distributed systems, augmented with low-level perfor-

mance metrics, without overwhelming the developer with

stack traces and timing logs.

The visual approach we advocate here should not be con-

fused with the graphical user interfaces already available

for many profiling tools. KProf,2 for instance, is a graph-

ical front-end that can translate the flat text dumps gener-

2http://kprof.sourceforge.net/

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

ated by gprof or FunctionCheck3 into two-dimensional

call graphs. Massif,4 another graphical profiler, can pro-

duce charts showing heap memory consumption over time.

While these graphical depictions can be useful, they typi-

cally provide too much detail. With no application-specific

knowledge, they must assume that all data is important, re-

sulting in complex graphs and hierarchies that can bury the

user in an avalanche of information. And unlike VADR,

they ignore the problem of distributed applications and gen-

erate data only for a single local process.

3 The VADR Concept

Our goal for performance analysis is fundamentally dif-

ferent from these existing tools. We want to abolish the

traditional, rigid concept of a profiler as nothing more than

a histogram of function call frequency or a table of some

other performance metric. The computing power available

today, even in commodity desktop workstations, is capable

of much more sophisticated algorithms for analyzing and

visualizing performance data. Powerful 3D rendering hard-

ware, for example, is popular for games and scientific vi-

sualization, but it is underutilized as a software engineering

tool. By exploiting these highly optimized graphics proces-

sors for the task of visualizing performance data, analysis of

system behavior as a whole could be greatly improved, as

shown by Dwyer’s work [5] with three-dimensional UML

diagrams (see Figure 1).

Although Dwyer was only interested in structural analy-

sis, we want to apply similar ideas to performance visual-

ization in our VADR research. For example, the inter-node

connections of this UML diagram could be augmented with

color coding to indicate the utilization—red for high, blue

for low—of the links. As the number of nodes increases, the

distributed system would become more complex, and the

amount of performance data would grow, but these intuitive

visual cues would remain easily seen, making performance

analysis a more tractable task.

To achieve this goal, we intend to attack the problem

of distributed real-time system profiling from two angles:

structural visualization and temporal visualization.

3.1 Structural Visualization

Instead of basic tables and charts, we want to present

performance data in a more natural, real-world style. Like

Dwyer’s 3D UML diagrams, we envision performance data

as a three-dimensional virtual world that the user can ex-

plore and view from any angle. Each node in the distributed

system would appear as a sphere in this virtual world, and

3http://www710.univ-lyon1.fr/ỹperret/fnccheck/profiler.html
4http://valgrind.org/docs/manual/ms-manual.html

Figure 1. A visual depiction of a distributed
system, such as this three-dimensional UML
diagram developed by Dwyer [5], can make
system analysis a much easier task. Dwyer
showed in usability studies that 3D UML di-
agrams convey information more intuitively
and efficiently than their 2D counterparts.

lines running between the spheres would represent con-

nections between nodes (e.g., serial lines or Ethernet ca-

bles). This representation of the distributed system is po-

tentially more natural and intuitive than traditional perfor-

mance analysis techniques, for it views the distributed sys-

tem as a whole, rather than the loosely coupled collection

of individual performance metrics provided by profilers of

today.

With lines and spheres representing the structure of the

distributed system, we would augment this virtual environ-

ment with performance data, drawing as much inspiration

as possible from the natural world. For example, congested

(“hot”) resources, such as a network link full of packets,

would be represented by red colors; underutilized (“cold”)

resources, such as an idle processor, would be blue. Net-

work bandwidth would be depicted by line size: low-baud

serial lines are thin, while Ethernet connections are fat.

Higher CPU utilization on a node would increase the size

of the sphere; lower utilization would decrease it.

With this “bird’s-eye-view” of a distributed system, de-

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

velopers could avoid information overload and see at a

glance where the system is underperforming. The approach

could also reveal interactions between nodes that conven-

tional profilers would miss, such as increased CPU utiliza-

tion in one area of the system causing network congestion

in another.

While a global level of detail is often exactly what a de-

veloper needs when profiling a system, situations may arise

in which a finer grain of performance data is necessary. For

example, the developer of the distributed system may wish

to see more data about the performance of a particular node.

This local-only level of analysis would not be prevented by

a VADR approach; in fact, we believe it should be integrated

directly into a VADR tool suite. A simple mouse click on

a sphere, for instance, could open a window showing per-

formance data, including function call and memory usage

graphs, generated by a traditional profiling tool as described

in Section 1.

Thus, the VADR approach we are working toward is

a hybrid of high-level and low-level visualization, elimi-

nating the tedious and error-prone task of sifting through

text-based performance data. Although there remain open

questions of scalability—for instance, how best to organize

and navigate these potentially large-scale visualizations—

we believe that this approach will combine the best of both

worlds: a highly informative yet easily digestible look at

the system as a whole, plus fine-grained performance met-

rics available when needed.

3.2 Temporal Visualization

As defined thus far, tools based on the VADR approach

would address the problem of distributed performance anal-

ysis, but they would not provide any profiling of real-time

behavior. In this section, we refine the VADR approach for

visualization and analysis of the temporal characteristics of

distributed and real-time systems.

Temporal analysis is necessary because developers in

the real-time domain often must know whether messages

passed from one node to another arrive before a specific

deadline. Typically, these messages are passed periodically,

at regular intervals, and if a missed deadline ever occurs, the

entire system may fail. Therefore, when the system is in a

development and testing phase, it is critical that the devel-

oper know exactly where missed deadlines occur and what

sequence of events led to the failure. (Continuing with the

medical analogy of Section 2, one might say that real-time

developers need to perform “autopsies” of their systems.)

The conventional approach to this problem is unfortu-

nately quite primitive. As a case in point, our research

group recently collaborated with an aerospace company on

a distributed real-time system that required high predictabil-

ity and extremely low variation in message arrival times.

Analyzing this system’s temporal performance required the

company to field test it and send us long lists of numbers

showing the round-trip times of remote method calls. As we

optimized the system, the company would re-test it and send

us new numbers, but finding evidence of the expected per-

formance increase was a tedious process. Even after calcu-

lating the timing deltas between two successive field tests,

identifying speed improvements required a time-consuming

walk through the logs.

With this experience to guide us, we were inspired to

develop a smarter approach. We desired a visual represen-

tation of these timing logs, showing us at a glance how well

a system is performing. We envisioned a timeline in which

time progresses down along the vertical axis, and messages

passed between nodes appear as diagonal lines running be-

tween the two axes. This visual depiction would not only

facilitate our understanding of the temporal behavior of a

system, but it would also allow easy performance compar-

isons between two competing implementations, simply by

overlaying one timeline with another. We took these ideas

off the drawing board and produced a working prototype,

which we called “Jango,” as shown in Figure 2. Jango be-

came the first tool in our VADR suite [9]. Simple but effec-

tive, this visual depiction of timeliness is an improvement

over the more typical practice of manual, log-based analy-

sis for real-time systems.

4 Bacara: VADR for Real-Time Java

The Jango tool provided temporal analysis of distributed

real-time systems, but it did not offer the structural view

of performance data described in Section 3.1. For the full

VADR approach to performance analysis, we needed to

construct an additional tool to complement the features al-

ready available in Jango.

Building such a tool is a formidable task. Distributed

real-time systems vary widely in language, operating sys-

tem, choice of middleware, and overall complexity. There-

fore, it is a long-term process to develop a general tool that

will automatically inspect an arbitrary system, identify its

structure, gather performance data, and finally visualize this

data.

In the near term, however, the field of distributed real-

time systems is starting to homogenize. For example, much

of the industry is moving away from the wide assortment of

proprietary operating systems and is instead tending toward

Linux with real-time extensions. [6] In the academic com-

munity, a similar movement is underway to migrate real-

time developers away from C in favor of Java and its real-

time specification, RTSJ [4]. This trend is fueled by the

hope of bringing the productivity and portability advantages

of Java into the real-time domain.

The increasing consolidation of tools for real-time de-

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Figure 2. A timeline of real-time system
events, including message-passing delays
and critical deadlines, reveals at a glance
how well a system is performing. As demon-
strated by this screenshot of Jango [9], the
timeline provides the developer with a visual
cue—the red arrow—indicating that the sys-
tem has missed a deadline.

velopment is a boon for VADR. We believe that by con-

forming to standards, such as RTSJ and RT-CORBA [1],

we can make our performance visualization tools available

to a wider audience and more easily collaborate with re-

searchers in our field, speeding development and innova-

tion. We also believe that the RTSJ in particular is on target

for bringing real-time system development to a higher level

of abstraction, and in much the same way, we want to make

performance analysis of real-time systems an easier, more

accessible task that does not rely as much on low-level in-

spection of code.

With these goals in mind, we have constructed a first-

generation prototype of a structural performance profiler

based upon the VADR approach. This accomplishment

was made possible by targeting our prototype for a specific

domain: CORBA-based [2] applications that conform to

RTSJ. By limiting ourselves to this context, we were able to

avoid many implementation details and focus instead on the

functionality of the software. The result became the second

addition to our suite of VADR tools, which we call Bacara.

4.1 Implementation

The current implementation of Bacara relies on the in-

strumentation technique described in Section 1. Although

this technique is not ideal for the real-time domain, it is

sufficient for our initial prototype, assuming that the instru-

mentation code is deployed along with the final system and

is not removed, as this would affect temporal behavior. Tra-

ditional profilers take a similar approach, but these tools

typically instrument every available function in the system.

When the data is visualized, the developer can easily drown

in a sea of information.

Bacara is smarter. As a CORBA-based tool, it exploits

the fact that CORBA applications, by definition, have a

well-defined structure: Any inter-object or cross-network

method calls must be declared in strict Interface Defini-

tion Language (IDL) [3] syntax. This requirement gives

Bacara a valuable hint about which functions in the system

are of principal interest. By writing IDL, the developer has

already done the work of identifying the important meth-

ods that are candidates for performance analysis and visu-

alization. Thus, Bacara instantly gains application-specific

knowledge and can automatically filter events that are not

likely to be of interest to the developer.

Armed with this knowledge, Bacara parses the structure

of a CORBA application and identifies the method calls be-

tween objects and nodes. It then instruments these methods

using the Byte Code Engineering Library (BCEL)5 so that

the time of each call can be recorded. Finally, the devel-

oper runs the application, and Bacara logs a history of the

method calls.

In a non-real-time environment, this history is all that

would be needed to process and visualize the performance

data for analysis by the developer. It is insufficient for

VADR, however, for we are interested in the real-time char-

acteristics of the system under test. Bacara needs more in-

formation in order to visualize the most important metric

when debugging or optimizing any real-time system: When

and where does it miss its critical deadlines?

4.2 Implementation Challenges

Unfortunately, IDL provides no metadata about timing

and other real-time constraints. The developer must sup-

ply these details to Bacara manually. This inconvenience

is contrary to our VADR philosophy, which strives for auto-

matic gathering of performance data. Therefore, developing

a version of IDL that supports real-time metadata is a key

5http://jakarta.apache.org/bcel/

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

component of our future work in this area, as discussed in

Section 5.

In addition, Jango has a dangerous dependence on clock

synchronization. Performing time comparisons between

any two nodes of a distributed system requires some notion

of global time. As a result, high-precision synchronization

of the local clock on each node may be necessary for accu-

rate performance analysis and timing comparisons. Theo-

retically, true synchronization of this type is impossible due

to clock drift, and workarounds such as Lamport’s logical

clocks [10] must be employed.

In practice, we assume that clock synchronization using

the Network Time Protocol [11] is sufficient for Bacara. For

the vast majority of applications, cross-network message-

passing deadlines are typically specified on the order of mil-

liseconds, a large enough margin that NTP can guarantee.

For this reason, we ignore clock drift in Bacara’s current

implementation.

4.3 Case Study

To test Bacara’s capacity as a practical performance anal-

ysis tool, we developed a small case study. We constructed

a distributed real-time system consisting of two Sun Fire

servers running Solaris 10 and the 1.0 release of the Mack-

inac6 RTSJ virtual machine. Each was connected to the

other by an isolated Ethernet local area network. On top

of this environment, we added RTZen, configuring one Sun

Fire as the client and the other as the server. We then de-

signed a real-time system that simulates the operation of an

unmanned aerial vehicle (UAV).

The UAVServer application is composed of three

CORBA components:

• Location—Manages the (virtual) GPS device and re-

sponds to queries for the aircraft’s current position

• TargetAcquisition—Waits for incoming commands to

fire on a new target, then carries out the command

• NoFlyZone—Prevents the aircraft from flying within

certain zones as directed by the ground station

The UAVClient application simulates the ground sta-

tion and mission control entities, both of which act as clients

of the UAV. For example, GroundStation periodically

queries for the aircraft’s location, and MissionControl
asynchronously directs the aircraft to a new target.

Next, we applied Bacara to visualize the performance of

this system. The procedure was not entirely automatic be-

cause, as explained in Section 4.2, we had to perform the

extra step of specifying the round-trip deadlines for each

method call. However, this step was fairly simple; we cre-

ated an XML file containing a list of every function in our

IDL, each of which was mapped to a deadline value in

milliseconds. Bacara could then read this file and obtain

6http://research.sun.com/projects/mackinac/

enough information to visualize the performance of the en-

tire system.

The results can be seen in Figure 3. This diagram is

the actual output of Bacara showing the performance of the

UAV simulation. (To be more precise, Bacara generates out-

put in an XML format readable by OmniGraffle,7 a vector-

drawing application that we use to display the output.) The

two purple boxes represent CORBA applications—the Sun

Fire client and server in this case—and the rounded rect-

angles represent CORBA objects within those applications.

Each arrow represents method calls from a client to a server.

These interconnects between client and server objects

show how Bacara applies the VADR philosophy. In par-

ticular, the two visual properties of the arrows describe per-

formance metrics:

• Size—The thicker the arrow, the higher the frequency

of the method calls between client and server.

• Color—Red indicates that at some point during perfor-

mance monitoring, the round-trip time for this method

call missed its deadline. Green indicates that no dead-

lines were missed; yellow indicates that at least one

method call came within 10% of missing its deadline

(e.g., 45 milliseconds or higher on a 50-millisecond

deadline).

With these visual clues, one can easily see that de-

spite the high utilization of the Location object, the

TargetAcquisition object has missed its deadline and

is need of optimization and debugging.

4.4 Analysis

A deduction like this is certainly possible without the

help of Bacara. A developer could collect performance

measurements manually and arrive at the same conclusion.

The difference when using Bacara, as demonstrated by this

case study, is that a simple diagram can communicate vi-

tal performance characteristics of the system very quickly.

Without such a tool, the developer may waste valuable time

examining logs and other performance data before arriving

at the answer.

A more important benefit highlighted by this example is

automation. The existing practice of performance analysis

for distributed real-time systems is entirely manual. It fol-

lows the basic lifecycle shown in Figure 4:

1) The system under test is instrumented with logging

code; 2) the performance data is acquired by running the

system; 3) the resulting data is preprocessed (e.g., converted

into a specific file format more suitable for visualization)

and possibly filtered by removing unneeded or unwanted

information; 4) and finally, the data is organized and dis-

played on the computer screen for interactive analysis.

7http://www.omnigroup.com/applications/omnigraffle/

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

UAVClient UAVServer

Location

TargetAcquisition

NoFlyZone

GroundStation

MissionControl

Figure 3. This is actual output of the Bacara tool, as displayed by a helper application called Om-
niGraffle. It shows the performance of a distributed UAV simulation running under an RTSJ virtual
machine. The arrows, which represent method calls between distributed objects, reveal the influence
of the VADR approach to performance analysis. For example, red arrows indicate missed deadlines,
and thick arrows indicate a large number of method calls. One can quickly deduce from these visual
clues that the TargetAcquisition object requires debugging and optimization.

These steps are labor-intensive, and whenever the sys-

tem changes, many of the steps must be repeated. With

Bacara, the entire process is automated end-to-end, mak-

ing the performance analysis task faster, less tedious, and

without the need for any ad hoc logging or poring through

console traces.

5 Future Work

A single test case is not sufficient to validate the use-

fulness of both Bacara and our VADR approach to per-

formance analysis. We would prefer a more rigorous test,

such as an experiment among end-users. For instance, two

groups of distributed application developers could be pro-

vided with faulty, underperforming code; one group ana-

lyzes it with traditional tools while the other uses Bacara.

The speed and ease at which the two groups locate and re-

pair the performance problems in the system could then be

compared. Because our VADR project is still in its infancy,

however, we relegate this experiment to future work.

Our plans for VADR also include:

• Tool integration—Currently, the Jango and Bacara

tools in the VADR suite are self-contained, but there

are advantages in integrating the two. For example, a

developer using Bacara to visualize the performance

of the system as a whole could select two objects of

interest, and Jango would display a message-passing

timeline for the objects automatically. The developer

could then scroll through a complete visual history of

the interaction between two objects, providing greater

insight into the cause of a failure.

• Real-time IDL—Another component of our future

work is to provide support in Bacara for real-time

extensions to IDL. Such extensions would enable

Bacara to discover deadline constraints without ex-

tra user input, making the entire process of instru-

menting, analyzing, and visualizing the performance

of a real-time system completely automatic. Currently,

we are considering adopting and building upon the

Real-time (multimedia) Interface Definition Language

(RIDL) [12] for use with Bacara. We are also evalu-

ating the annotation feature of Java 5.0 to determine

whether it would also be appropriate for specifying

worst-case method execution deadlines.

• Non-intrusive monitoring—The current version of

Bacara reduces the complexity of profiling a dis-

tributed real-time system, but as a result of instrumen-

tation, it does not do so without altering the tempo-

ral behavior of the system. A relatively large body of

work has aimed at solving this “Heisenbug” problem,

usually through a hardware-based technique known

as Real-time Non-Intrusive (RTNI) monitoring. This

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Instrumentation

A
cquisition

Analysis and filtering

V
is

ua
liz

at
io

n

START/FINISH

Performance
Visualization

Lifecycle

Figure 4. Visualizing the performance of a
system is a cyclical process. Developers of
distributed real-time systems must perform
all of these steps manually, but Bacara auto-
mates this visualization lifecycle end-to-end,
reducing tedium and allowing the profiling
process to become faster, more frequent, and
thus more effective.

technique is normally intended for debugging and test-

ing a real-time system, not performance analysis. We

are exploring ways of applying RTNI to profiling.

6 Conclusion

Despite the prodigious amounts of research that have

been devoted to distributed real-time systems, a remarkably

small portion of that effort has gone into learning how best

to acquire and visualize the performance of these systems.

There are a number of reasons for this discrepancy, includ-

ing the problem of the “Heisenbug,” inherent portability is-

sues, and the current lack of standard frameworks on which

to build performance analysis tools.

The increasing consolidation of the foundations for dis-

tributed real-time systems—including RTSJ, RT-CORBA,

and real-time Linux—is beginning to remedy these prob-

lems. We have found, for example, that RTSJ is a remark-

ably appropriate platform for evaluating new performance

visualization techniques. It hides many of the gory details

in real-time system development, allowing us to focus on

our key problem: building visually rich profiling tools, like

Jango and Bacara, based on the VADR concept.

Whatever form these tools take, we argue that they are

clearly necessary. The complexities of real-time develop-

ment demand a more intuitive, visceral perspective of an

application’s performance metrics. The VADR approach is

one step toward this goal and should prove useful not just

as a profiler but as a debugger as well, helping shed light

on the sometimes mysterious inner-workings of distributed

real-time systems.

References

[1] RealTime-CORBA Specification. Object Management

Group, 2.0 edition, November 2003.
[2] Common Object Request Broker Architecture: Core Speci-

fication. Object Management Group, 3.0.3 edition, March

2004.
[3] Common Object Request Broker Architecture: Core Speci-

fication, chapter 3, pages 3–1–3–74. Object Management

Group, 3.0.3 edition, March 2004.
[4] G. Bollella, B. Brosgol, J. Gosling, P. Dibble, S. Furr, and

M. Turnbull. The Real-Time Specification for Java. Addison

Wesley Longman, January 2000.
[5] T. Dwyer. Three dimensional UML using force directed lay-

out. In P. Eades and T. Pattison, editors, Australian Sympo-
sium on Information Visualisation, volume 9, pages 77–85,

Darlinghurst, Australia, 2001. Australian Computer Society,

Inc.
[6] A. Gonsalves. Linux gains support in embedded systems.

InformationWeek, December 2003.
[7] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof:

a call graph execution profiler. In SIGPLAN Symposium on
Compiler Construction, pages 120–126, 1982.

[8] J. Gray. Why do computers stop and what can be done about

it? Technical Report 85.7, Tandem Computers, 1985.
[9] T. Harmon and R. Klefstad. VADRE: A visual approach

to performance analysis of distributed, real-time systems.

In H. R. Arabnia, editor, Proceedings of the 2005 Interna-
tional Conference on Modeling, Simulation and Visualiza-
tion Methods, pages 121–126, June 2005.

[10] L. Lamport. Time, clocks and the ordering of events in a dis-

tributed system. In Communications of the ACM, volume 21,

pages 558–565. ACM Press, July 1978.
[11] D. L. Mills. Network Time Protocol (Version 3) Specifi-

cation, Implementation and Analysis. Network Working

Group, March 1992.
[12] S. T. Pope, A. Engberg, and F. Holm. The Real-time (mul-

timedia) Interface Description Language: RIDL. In Multi-
media Technology and Applications Conference, November

2001.
[13] K. Raman, Y. Zhang, M. Panahi, J. A. Colmenares, and

R. Klefstad. Patterns and tools for achieving predictability

and performance with real-time Java. In Real-Time Comput-
ing Systems and Applications, August 2005.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

