PROCEEDINGS OF THE FORTIETH ANNUAL MEETING OF THE
BERKELEY LINGUISTICS SOCIETY

February 7-9, 2014

General Session

Special Session
Approaches to the Syntax-Phonology Interface

Parasessions
Semantic Theory in Underdescribed Languages
Language, Inequality, and Globalization

Editors
Herman Leung
Zachary O’Hagan
Sarah Bakst
Auburn Lutzross
Jonathan Manker
Nicholas Rolle
Katie Sardinha

Berkeley Linguistics Society
Berkeley, CA, USA
Contents

Acknowledgments v

Foreword vii

Weak Crossover and the Syntax-Phonology Interface
Calixto Agüero Bautista ... 1

Irrealis as verbal non-specificity in Koro (Oceanic)
Jessica Cleary-Kemp ... 20

Subjectification in the Development of Clitic Doubling: A Diachronic Study of Romanian and Spanish
Oana A. David ... 42

Reportativity, (not-)at-issueness, and assertion
Martina Faller ... 62

When Phonology Undergenerates: Evidence from Asturian Enclitic Structures
Francisco J. Fernández-Rubiera ... 85

Contour Tones and Prosodic Structure in Medumba
Kathryn H. Franich ... 102

Asymmetric Correlations between English Verb Transitivity and Stress
Michelle A. Fullwood ... 125

Micro-Variation within Bizkaiera Basque: Evidence from RCs
Ager Gondra ... 139

Scandinavian Object Shift: The Interface between Syntax, Phonology, and Information Structure
Mayumi Hosono ... 159

The Unit Phrase in Mandarin
Yu-Yin Hsu ... 182
On the Category of Speaker Expectation of Interlocutor Knowledge in Kurtöp
Gwendolyn Hyslop ... 201

The Effect of Duration and Glottalization on the Perception of Rhythm
Niamh Kelly, Megan Crowhurst, and Crystal Cobb 215

The Syntax of Tone in Guinean Kpelle
Maria Konoshenko ... 233

The Three Degrees of Definiteness
Maria Kyriakaki .. 253

Possessive Structures as Evidence for DP in West Greenlandic
Kathleen Langr .. 270

The Pragmatics and Syntax of German Inalienable Possession Constructions
Vera Lee-Schoenfeld and Gabriele Diewald 286

Case and agreement in Cupeño: Morphology obscures a simple syntax
Theodore Levin and Ryo Masuda ... 311

Revisiting the Phonology and Morphosyntax of Chechen and Ingush Verb Doubling
Ryo Masuda .. 336

The role of morphological markedness in inclusive/exclusive pronouns
Beata Moskal ... 354

Toward a Comprehensive Model for Nahuatl Language Research and Revitalization
Justyna Olko and John Sullivan ... 369

More learnable than thou? Testing metrical phonology representations with child-directed speech
Lisa Pearl, Timothy Ho, and Zephyr Detrano 398

The Rhetorics of Urban Aboriginal Place-Making: Studying Aboriginal and Non-Aboriginal Relationship Building in the Intercultural Speaking Event
Stephen K.H. Peters .. 423

Encoding Contrast, Inviting Disapproval: The Place of Ata in Belizian Krio
William Salmon ... 437

Whose Krio is Moa Beta? Prestige and Dialects of Krio in Belize
William Salmon and Jennifer Gómez Menjívar 456

Implicative organization facilitates morphological learning
Scott Seyfarth, Farrell Ackerman, and Robert Malouf 480
The Prosody of Split and Glued Verb Constructions in Chácobo (Pano)
Adam J. Tallman ... 495

Only and Focus in Imbabura Quichua
Jos Tellings ... 523

Stative versus Eventive Predicates and vP-internal Structure
Jozina Vander Klok and Rose-Marie Déchaine 545
Acknowledgments

The Executive Committee of the 40th Annual Meeting of the Berkeley Linguistics Society is grateful to conference participants, our volunteers, session chairs, and the faculty, all of whom made the event an intellectually stimulating and enriching event. Special thanks go to Paula Floro and Belén Flores, without whose grace and administrative dexterity BLS40 would not have been possible.

Financial support came from the following funders at the University of California, Berkeley.

Department of Linguistics
Student Opportunity Fund
Graduate Assembly
Department of Psychology
Department of Spanish & Portuguese
Center for African Studies
Department of Philosophy
Anthropology Department
Department of Slavic Languages and Literatures
Department of German
Berkeley Language Center
Foreword

This monograph contains 28 of the 51 talks given at the 40th Annual Meeting of the Berkeley Linguistics Society, held in Berkeley, California, February 7-9, 2014. The conference included a General Session, one Special Session entitled *Approaches to the Syntax-Phonology Interface*, and two Parasessions entitled *Semantic Theory in Underdescribed Languages* and *Language, Inequality, and Globalization*. It was planned and run by all then second-year graduate students in the Department of Linguistics at the University of California, Berkeley. The members of the Executive Committee were Sarah Bakst, Herman Leung, Auburn Lutzross, Jonathan Manker, Zachary O’Hagan, Orchid Pusey, Nicholas Rolle, and Katie Sardinha.

The papers contained herein were, upon first submission, edited principally for style by members of the Executive Committee. These edited versions were incorporated by Herman Leung and Zachary O’Hagan into a draft manuscript that was circulated among authors either for their approval or for further editing. Following resubmission, final versions of papers were incorporated by Zachary O’Hagan into the monograph found here. Our goal has been the speedy publication of these proceedings, and as such, certain aspects – e.g., the complete unification of formatting – have been sacrificed. It is our belief that this does not detract from the final publication in any way.

The Executive Committee
October 2014
The Effect of Duration and Glottalization on the Perception of Rhythm

NIAMH KELLY, MEGAN CROWHURST, CRYSTAL COBB
The University of Texas at Austin

1 Introduction

Humans are finely attuned to rhythm in many physical domains, from the purely anatomical to the perception of acoustic fluctuations in the speech signal. In fact, humans tend to hear rhythmic patterns even when sequences of sounds are physically indistinct, such as the clicking of a metronome or dripping water (e.g. Bolton 1894, Iversen et al. 2008, Fletcher 2010, Crowhurst and Teodocio 2014). Human languages exhibit rhythmic patterns expressed in the alternation of stressed and unstressed syllables (e.g. Bolton 1894; Halle 1973; Prince 1983; Hayes 1980, 1995, among many others). Researchers have therefore been keenly interested in understanding the perceptual factors that might underlie rhythmic distinctions in the speech domain. One significant body of research has investigated the physical correlates of stressed and unstressed syllables in various languages, and their consequences for the perception of stressed syllables. An early theme in the psychoacoustic research of the late 19th century, now seeing renewed interest, pertains to the perception of natural groupings of sounds. In this paper, we report the outcome of a study that is aligned with research in the second category. We studied the influence of varying vowel duration and glottalization on listeners’ preferred syllable pairings in multisyllabic alternating sequences.

1.1 Rhythmic Grouping and the Iambic-Trochaic Law

Early research on the psychology of grouping produced the two generalizations in (1), now known to phonologists as the Iambic-Trochaic Law, or ITL (Bolton 1894; Woodrow 1909; Hayes 1995).

(1) The Iambic-Trochaic Law (adapted from Hayes 1995)

a. The intensity principle: Elements contrasting in intensity naturally form groupings with initial prominence (trochees).

b. The duration principle: Elements contrasting in duration naturally form groupings with final prominence (iambs).

Modern experimental studies using both nonspeech and speech-like stimuli have confirmed the intensity principle. Successful experiments using nonspeech stimuli have tested speakers of Japanese (Kusumoto and Moreton 1997; Iversen et al. 2008); English (Rice 1992; Kusumoto and Moreton 1997; Hay and Diehl 2007; Iversen et al. 2008); and French (Hay and
Diehl 2007). The key studies for speech have tested speakers of English (Hay and Diehl 2007; Crowhurst 2013; Crowhurst and Teodocio 2014), French (Hay and Diehl 2007; Bhatara et al. 2013), German (Bhatara et al. 2013), Spanish (Crowhurst 2013), and Zapotec (Crowhurst and Teodocio 2014). While the research of greatest relevance for the work reported here has used a forced choice subjective grouping methodology, Morgan et al (2013), using a serial recall study, found that English speakers were better able to remember a list of six loud and soft syllables organized in trochaic pairs than when they were presented as iambics.

The findings for duration have been more mixed and suggest that the perception of rhythm may be affected by one's native language. Some recent studies have reported a short-long grouping preference for multisyllabic sequences alternating in duration among speakers of English, French, German, Spanish (see references for these languages cited in the last paragraph), and Italian (Bion et al. 2011). Trainor and Adams (2000) report results suggesting that American English speaking adults and eight month olds perceived increased vowel duration as marking ends of short-short-long groupings. Hay and Diehl (2007) also found a short-long grouping preference with English- and French speakers who were tested with alternating non-speech sequences. In contrast, two studies have found grouping biases that conflict with the duration principle in (1b). Japanese speaking participants tasked with grouping duration-varying tonal sequences in Iversen et al. (2008) fell into three groups: one displaying a short-long preference; one with a long-short bias; and the third having no strong preference. Among the studies using speech-like stimuli, Crowhurst and Teodocio (2014) found a clear preference for long-short groupings among the Zapotec-speaking participants in their study, when duration was the only parameter manipulated.

While the studies described above have been limited in testing the influence of varying intensity and duration singly, at least three modern studies have tested the joint influence of intensity and duration on grouping. Streeter (1978) found that cues to duration were more important than intensity in signaling prosodic boundaries at the phrasal level. Two more recent subjective grouping studies have found the opposite: when speakers of American English and Spanish (Crowhurst 2013) and speakers of American English and Zapotec (Crowhurst and Teodocio 2014) were tasked with grouping rhythmic multisyllabic sequences in which both intensity and duration were manipulated, the results suggested that intensity was a stronger predictor of listeners' grouping tendencies than was duration. These studies had different goals, however. The focus of Streeter (1978) was in relative salience of cues signaling phrase boundaries. On the other hand, the materials used in Crowhurst (2013) and Crowhurst and Teodocio (2014) (as well as subjective grouping studies described in the previous paragraphs) were meant to simulate binary rhythms that are more characteristic of iterative stress systems.

The conflicting effects found for duration as a predictor of listeners’ grouping behavior, described above, suggest that the effect of a particular acoustic cue on the perception of natural

1 Similar studies, Kusumoto and Moreton (1997) and Iversen et al. (2008), found no reliable preference for either short-long or long-short groupings among their Japanese-speaking participants.
groupings may be influenced by the listener's native language. At present, however, the reasons for these differences are not well understood. The number of experimental investigations into grouping preferences is limited; in particular, those using speech-like stimuli are small in number. For this reason, we have no detailed typology of speech-related cues that can affect grouping behavior because (to our knowledge) no ITL-style studies with speech have tested the influence of cues other than intensity and duration on the perception of natural groupings. The current investigation contributes to this literature by testing the influence of vowel glottalization on subjective grouping preferences with speakers of American English. The influence of vowel duration was also tested, both singly, and in combination with glottalization. Section 1.2 presents the rationale for the choice of these features. The experiment and its findings are presented in section 2, followed by a discussion of these findings and their implications in section 3.

1.2 Duration and Glottalization in English

In English, duration has been shown to be the most useful cue for the perception of stress (Fry 1955, Gay 1978). Likewise in production, duration is the most reliable cue to stress (Fry 1958, Lehiste 1970, Beckman and Edwards 1994, Campbell and Beckman 1997). Increased duration also has a demarcative function in signaling the end of constituents at all levels of the prosodic hierarchy in English and in many other languages (Gussenhoven and Rietveld 1992, Byrd et al. 2006). This phenomenon of final lengthening may well be associated with the psychoacoustic generalization in (1b).

In American and UK varieties of English, glottalization is also a demarcative feature that can signal endings of at least higher order prosodic constituents (Dilley et al. 1996, Redi and Shattuck-Hufnagel 2001). Glottalization (or laryngealization) can refer to the presence of a glottal stop or to creaky voicing. Creaky voice (also termed vocal fry) occurs when the vocal folds are tensed, or “tightly adducted but open enough along a portion of their length to allow for voicing” (Gordon and Ladefoged 2001:386). The relation between the glottal stop and creaky voice is that the presence of a glottal stop often induces creaky voice on neighboring sounds (Gordon and Ladefoged 2001). This occurs especially when the glottal closure is not complete, and instead the voicing pulses of the vocal folds are interrupted, resulting in creaky voice. Expanding on a previous categorization of glottalization by Huber (1988), Redi and Shattuck-Hufnagel (2001) describe four types, characterized according to their influence on the sound wave in speech: aperiodicity, creak, diplophonia, and glottal squeak. In an examination of glottalization in speakers of American English, Redi and Shattuck-Hufnagel (2001) found considerable variation both in terms of how much glottalization speakers used and in how it was realized. This study also found that in English, glottalization is more likely to occur at “prosodically significant locations such as phrase boundaries, utterance boundaries and pitch accents” (p. 408). American English speakers have been shown to produce more glottalization on word-initial vowels and on vowels with pitch accents (Pierrehumbert 1995), and at prosodic boundaries (Dilley et al. 1996). Glottalization can also be segmentally conditioned, being induced by surrounding glottal stops or final voiceless stops (Gordon and Ladefoged 2001).
As the experimental literature suggests that glottalization and prosody are interrelated, and in particular, that glottalization tends to signal boundaries, it is necessary to conduct further perception experiments to determine the extent to which listeners associate glottalization with finality. The current study contributes to this program of research by investigating whether the presence, and amount, of glottalization affects English speakers’ grouping of syllables.

Given that both duration and glottalization have demarcative functions, and given English speakers tend to perceive longer vowels as group-final in alternating sequences, we asked whether the variations in vowel glottalization would also shape listeners’ grouping preferences in a similar way. Our second question was whether one of these demarcative features would emerge as a more robust predictor of grouping preferences, when the two were co-varied in a way that forced listeners to intuitively choose between them.

2 The Experiment

In Experiment 1, native English speakers were exposed to speech streams in which the syllables *ba* and *ga* were alternated. Five types of sequence were included in the study. In two of these, a single feature, either vowel duration or vowel glottalization, was systematically varied. In the duration-varying set, length disparities were created by increasing the duration of the vowel in one alternating syllable (*ba* or *ga*) relative to that of the other at fixed ratios. In the glottalization-varying set, the vowel of one alternating syllable (*ga*) had a final period of creakiness. In the remaining sequences, glottalization and duration were both varied in one of two ways. In an in-phase set, the same syllables were marked by increased duration and glottalization: a short, modal syllable *ba* was alternated with a longer, creakier *ga*. In an out-of-phase set, a short, creaky *ga* was alternated with a longer, modal *ba*. Finally, the stimulus set included a “no difference” control sequence. Study participants were tasked with indicating whether they thought the sequences they heard consisted of recurrent *baga* or *gaba* syllable pairings.

2.1 Method

2.1.1 Stimuli

Recordings were made of a male American English speaker producing sequences of #BA-ga-BA-ga... and #GA-ba-GA-ba... (in which capitalization indicates syllables that were emphasized naturally by the speaker). The recording took place in a sound-treated room at the University of Texas at Austin using a Shure close-talking microphone connected to a MOTU (Mark of the Unicorn) solid-state digital recorder. One clear, modal token of *ba* and one of *ga* were selected from the weaker position in the recorded sequences. The selected syllables chosen to be as closely matched as possible for pitch (both were between 97 and 101 Hz), intensity, and vowel quality. The vowels in the selected *ba* and *ga* syllables measured 217 and 250 ms, respectively.
The selected *ba* and *ga* were manipulated using standard functions in Praat (Boersma and Weenink, 2011) to produce variations in vowel duration and creakiness. Three versions of each syllable were produced, the duration of whose vowels were set to 150 ms, 200 ms, and 300 ms. Variations in duration were produced by copying and inserting, or removing full voicing cycles from the vowel in the original syllable, cutting at zero-crossing lines. Once length adjustments had been made, average intensity for all syllables was set to 65 dB by changing gain.

Glottalized versions of *ga* were created by synthesizing a creaky period at the end of the vowel. This was done as described in Frazier (2009), by reducing every second pitch point in *ga* to 35 Hz. At level 1, the final 20% of the vowel was creaky, and at level 2, the final 50% was creaky. These proportions were constant, regardless of the absolute duration of the vowel, which also varied in the in-phase and out-of-phase conditions. (The absolute duration of the creaky period of any vowel can be calculated from the information provided in Table 1.) Figures 1 and 2 show the spectrograms for the creaky versions of *ga* whose vowels measured 300 ms.

![Figure 1: Long GA, 20% final creak (level 1)](image1)

![Figure 2: Long GA, 20% final creak (level 2)](image2)

2 While Redi and Shattuck-Hufnagel (2001) found aperiodicity to be the most common type of glottalization among the speakers examined, our synthesized creak was periodic. However, a drop in pitch has been found to be a reliable cue to the perception of glottalization (Dilley et al. 1996). Figures 1 and 2 show examples of the long syllables with final creak and half creak. Gerfen and Baker (2005) also found that for speakers of Coatzapan Mixtec, a drop in f0 was a sufficient cue for vowels to be perceived as laryngealized.
The syllables were then arranged into sequences alternating for duration and/or creakiness. Sequences of 10–11 seconds in duration were created by alternating a version of *ba* and of *ga*, with a 100 ms period of silence between syllables to simulate stop onsets. Sequences consisted of whole syllable pairs, either *baga* or *gaba*, to counterbalance string-initial and string-final syllables. The first 5 seconds of each sequence was combined with white noise that faded out from an amplitude of 63 dB to 0 dB, while the syllables faded in from 0 dB to 65 dB. The end of each sequence was followed by 500 ms of white noise at 65 dB to mask the sequence-final syllable. The design for the study, including the values assigned to the syllables *ba* and *ga* in the sequences used, is shown in Table 1. The final column in Table 1 indicates the actual grouping represented by a *baga* response in each condition.

<table>
<thead>
<tr>
<th>Manipulation levels</th>
<th>baga response =</th>
<th>baga response =</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (all modal)</td>
<td>D 200</td>
<td>D 200</td>
</tr>
<tr>
<td>Duration varying</td>
<td>D 150</td>
<td>D 300</td>
</tr>
<tr>
<td>(all modal)</td>
<td>D 300</td>
<td>D 150</td>
</tr>
<tr>
<td>Creak varying</td>
<td>D 200</td>
<td>Cr 1</td>
</tr>
<tr>
<td>(modal + creaky)</td>
<td>D 200</td>
<td>Cr 2</td>
</tr>
<tr>
<td>In-phase</td>
<td>D 150 x Cr 0</td>
<td>D 300 x Cr 1</td>
</tr>
<tr>
<td></td>
<td>D 150 x Cr 0</td>
<td>D 300 x Cr 2</td>
</tr>
<tr>
<td>Out-of-phase</td>
<td>D 300 x Cr 0</td>
<td>D 150 x Cr 1</td>
</tr>
<tr>
<td></td>
<td>D 300 x Cr 0</td>
<td>D 150 x Cr 2</td>
</tr>
</tbody>
</table>

Table 1: Experimental design. Parameters assigned to alternating syllables.

2.1.2 Participants

The study participants were 24 male and female native speakers of English, aged 18-25, who had not had significant exposure to another language. These were recruited through a University-wide public events newsletter distributed by email, and they received $10 for their time.

2.1.3 Task and Testing Procedure

Participants were tested in groups of 1 to 6 in a sound-treated room in a phonetics laboratory at the University of Texas at Austin. The experiment was controlled by SuperLab 4.0 software running on a MacBook Pro computer. Listeners heard sequences in free field, over a portable Bose SoundLink speaker connected by cable to the computer. Once the experimenter had conducted informed consent procedures and provided initial instructions, a four-trial test run was conducted to ensure that participants understood the task. The sequences were presented in 8 blocks of 12 trials, whose order was randomized by the software each time a block was run. The experimenter was present to manage the software for the duration of the experiment. Participants
were given response sheets containing numbered lines printed with arbitrary sequences of alternating *ba* and *ga* syllables, and were asked to circle or bracket any two adjacent syllables that matched the pairing they heard, either “*baga*” or “*gaba*” for each sequence. In this way we were able to obtain a uniform, indirect measure of listeners’ perceptions regardless of the type of sequence being evaluated and without the need for complicated explanations. They were also instructed to provide a confidence rating by circling “yes” or “no” to the right. A representative response sheet is shown in Appendix A. Including the initial instructions, the experiment took approximately 35 minutes to complete.

2.1.4 Hypotheses

Given that both increased duration and vowel glottalization are associated with demarcation, we hypothesized that when either duration or glottalization was varied singly, the response data would reflect a bias favoring groupings in which the demarcative feature came last (that is, short-long and modal-creaky pairings). Given that the dependent variable measured *baga* responses, and that duration and glottalization were each varied on a 3-point scale, our specific hypotheses were those in (2a) and (2b).

(2) a. *Baga* responses will decrease in proportion to increases in the duration of *ba* relative to that of *ga*.

b. *Baga* responses will increase in proportion to the duration of the glottal segment in *ga*.

Hypothesis (2a) has been confirmed in prior research described in section 1, while (2b) has not been tested in earlier studies. We expected (2a) and (2b) to be confirmed in the in-phase condition as well, since here a *baga* response indicated both a modal-creaky and a short-long grouping. Since duration and glottalization cues were mutually reinforcing in the in-phase condition, we expected that the magnitude of the effect on the dependent variable in this condition would be greater overall than in either the duration-only or the glottalization-only condition. Therefore, we had the additional specific predictions in (3a) and (3b).

(3) In-phase condition

a. The strength of the bias favoring *baga* groupings will be greater than in the duration-only condition.

b. The strength of the bias favoring *baga* groupings will be greater than in the glottalization-only condition.

In the out-of-phase condition, in which a *baga* response simultaneously represented a long-short and a modal-creaky grouping, the hypotheses in (2a) and (2b) were in competition. We expected that in this condition, one of these hypotheses and not the other would be confirmed, but we had no reason to predict which cue, if any, would dominate.
2.2 Results

2.2.1 The Effect of Varying Duration and Glottalization Singly

As a first step in the analysis, trends in the response data for the control sequences and duration-only sequences (henceforth Set A) were examined.3 The primary trend in the Set A data is represented in Figure 3 as the proportion of \textit{baga} responses for points on the duration scale. In the control condition where \textit{ba} and \textit{ga} had the same duration, the proportion of \textit{baga} responses was .41. At manipulation level -1 where \textit{ba} was shorter than \textit{ga}, the proportion of \textit{baga} responses (representing a \textit{bagaa} grouping) was higher, at .56; and at manipulation level 1 where \textit{ba} was the longer syllable, the proportion of \textit{baga} responses (a \textit{baaga} grouping) was lowest, .37. Both outcomes indicate a bias favoring short-long groupings and together, they confirm the prediction in (2a).

![Figure 3: Proportion of \textit{baga} responses in the control (white) and duration conditions (Set A).](image)

To test the statistical significance of the trend associated with \textit{DURATION}, a mixed-effects logistic regression model was fitted to the Set A data using the \textit{lmer} function in the matrix library of the statistical software package R (Urbanek et al. 2012). The binary dependent variable measured the probability of choosing a \textit{baga} response, which was arbitrarily coded as 1 in the analysis. \textit{SUBJECT} was treated as a random variable. Consistent with the design in Table 1, \textit{DURATION} was coded as a 3-point scale (-1, 0, 1), on which 0 represented the "no difference" control condition. Two design variables, \textit{BLOCK} with 6 levels (one for each experimental block) and \textit{ORDER} with 2 levels (depending on the string-initial syllable) were treated as factors in the analysis. The process of model selection followed the strategy of forward addition, which begins with a model that includes only the intercept. The model that provided the best fit for the Set A

3 The response data gathered in the experiment are given in Tables 6, 7, and 8 in Appendix.
data, whose output appears in Table 2, included terms for the intercept and for the predictor DURATION. This model provided a significantly better fit for the data than the intercept-only model, and was the most parsimonious model that optimized goodness of fit. Table 2 indicates that the effect of DURATION was highly significant. The odds ratio (the exponent of the estimated coefficient) provides a measure of effect size. The odds ratio associated with DURATION in Table 2 indicates that baga response was only .73 times as likely (or 27% less likely) per unit increase in the duration of ba relative to that of ga.

| Coef (β) | Odds | SE | z | P>|z|) |
|----------|------|----|------|-----|
| INTERCEPT | -0.233 | 0.79 | 0.07 | -3.035 | 0.002 ** |
| DURATION | -0.315 | 0.73 | 0.07 | -4.491 | < 0.00001 *** |

Table 2: Output of the best-fitting statistical model for the response data in Set A.

To explore the effect of varying glottalization singly, data Set B was prepared by combining response data for the control and glottalization-only sequences (see Table 7 in the Appendix). All vowels had the same duration (200 ms) in this condition. On the three point glottalization scale, level 0 represented a fully modal sequence, 1 represented sequences in which ga ended in a short period of creakiness (gaʔ), and 2 represented a sequence in which the second half of the vowel in ga was creaky, (gaʔʔ) (see Figures 1 and 2). Figure 4 reveals that the proportion of baga responses increased with increases in glottalization, as predicted by the hypothesis in (2b). However, while the presence of a creaky period increases baga responses, the difference between levels 1 and 2 was very small (.58 vs. .61). Pearson’s chi-square test showed that this difference was not significant ($X^2 = 0.443$, df = 1, p = .51).

![Figure 4: Proportion of baga responses in the control (white) and glottalization conditions (Set B).](image)

As before, a mixed-effects logistic regression model was fitted to the Set B response data to test the statistical significance of the trend associated with glottalization. The statistical
procedures used were as described for Set A with the exception that the predictor variable was now CREAK, treated as a scale with 3 levels (0, 1, 2). The output of the best-fitting model is shown in Table 3.

| Coef (β) | Odds | SE | z | P(>|z|) |
|----------|------|-----|------|---------|
| INTERCEPT | -0.317 | .73 | 0.184 | -1.724 | = 0.0848 |
| scale (CREAK) | 0.469 | 1.60 | 0.090 | 5.244 | < 0.00001*** |

Table 3: Output of the best-fitting statistical model for the response data in Set B.

This model, which included terms for the intercept and for CREAK, provided a significantly better fit for the data than the intercept-only model. No other variable contributed significantly to goodness of fit. The odds ratio associated with CREAK in Table 3 indicates that a baga response was 1.6 times more likely per unit of increase on the glottalization scale, an effect that was highly significant.

2.2.2 The Effect of Varying Duration and Glottalization Together

In the remaining two conditions, duration and glottalization were co-varied in the same sequences. In the in-phase sequences, a short, modal ba alternated with a longer, creakier ga (i.e. gaaʔ or gaaʔʔ). In the out-of-phase sequences, a long, modal ba (or baa) alternated with a short, creakier ga (i.e. gaʔ or gaʔʔ). The response data for these conditions occupy Table 8 in Appendix B.

We expected that in the in-phase condition, the proportion of baga responses would be higher than when either duration or glottalization was varied singly (see the hypotheses in 3a and 3b). However in the in-phase condition, a baga response represented both a short-long and a modal-creaky grouping. Should our prediction be confirmed, we were therefore also interested to know the relative contributions of duration and glottalization to the observed outcome. To examine these issues, data Set C was assembled from the response data for the duration-only subcondition in which ga was the longer syllable (manipulation level 1 in Figure 3), the glottalization-only condition, and the in-phase condition. The Set C results are charted in Figure 5. Labels beneath columns in the graph indicate properties of the groupings represented by a baga response in each condition and subcondition (“7” represents glottalization in Figures 5-7). In the comparison between bagaa (the duration-only sequence, white column) vs. bagaʔ and bagaʔʔ (the glottalization-only sequences, light grey), the chart reveals that a glottalization disparity produced more baga groupings than did a duration disparity. When ga was long, the proportion of baga responses was indeed higher when it was also creaky (dark grey columns) than when it was fully modal (the white column). And when ga was creaky, adding length (dark grey) increased baga responses in comparison to the glottalization-only condition (light grey), in which ga was short. However, consistent with the finding for the glottalization-only condition, the difference between the two in-phase subconditions was very small (proportion baga = .66, vs. .68). Again, Pearson’s chi-square test revealed that this difference did not reach significance.
Overall, Figure 5 reveals that our hypotheses in (3a) and (3b) were confirmed by the response data.

Figure 5: Proportion of baga responses in Set C. (White: duration-varying with long ga; Light grey: glottalization-only; Dark grey: in-phase)

The significance of any trends associated with duration and glottalization in the Set C data was tested using the procedures described for Sets A and B. As before, SUBJECT was treated as a random variable and the design variables ORDER and BLOCK were coded as factors. The predictor variables were CREAK coded as a 3 level scale (0-2), and GA.DURATION with two levels (0, 1), determined by the length of the syllable ga. The output of the best-fitting model is shown in Table 4. This model, which included terms for the intercept and both predictor variables, provided a significantly better fit for the data than models without either GA.DURATION or CREAK. Neither design variable contributed significantly to goodness of fit.

| | Coef (β) | Odds | SE | z | P(>|z|) |
|----------------|----------|------|-----|--------|---------|
| INTERCEPT | 0.379 | 1.46 | 0.183 | 2.072 | 0.0382* |
| GA.DURATION | 0.298 | 1.35 | 0.124 | 2.400 | 0.0164* |
| scale (CREAK) | 0.120 | 1.13 | 0.061 | 3.275 | 0.0011**|

Table 4: Output of the best-fitting statistical model for the response data in Set C.

The statistical analysis revealed that the fixed effect of GA.DURATION was significant and that the effect of CREAK was highly significant. In other words, glottalization and duration did not contribute in equal proportion to increases in baga responses, a finding that is evident on close inspection of Figure 5 (in the comparison between the conditions represented by the white and light grey columns). We interpret this to mean that of the two features, glottalization was the stronger predictor of listeners’ grouping biases. This interpretation is supported by the odds ratios associated with the terms GA.DURATION and CREAK.
Turning to the out-of-phase sequences, glottalization and increased duration were marked on different syllables in this condition, and for this reason, our specific hypotheses in (2a) and (2b) were in competition. The question of interest was whether one of these cues would prove to be a more reliable predictor of RESPONSE than the other. To explore trends related to the out-of-phase sequences, data Set D, was constructed from the response data for the duration-only subcondition in which ba was the longer syllable (manipulation level -1 in Figure 3), the glottalization-only condition, and the out-of-phase condition. The Set D results are charted in Figure 6. Here we see that the proportion of baga responses is highest in the glottalization-only condition, represented by the light grey columns. Baga responses were greatly decreased in all conditions in which ba was long. Informally, it appears that making the modal syllable longer washed out the influence of glottalization observed when no duration disparity was present.

![Figure 6: Proportion of baga responses in Set D. (White: duration-varying with long ba; Light grey: glottalization-only; Dark grey: Out-of-phase)](image)

The Set D data was submitted to the same statistical analysis as described for Set C, with the exception that GA.DURATION was replaced with BA.DURATION. The best-fitting logistic model for the data as a whole was the model that contained only the intercept term (significant; coefficient = -0.4645, Odds = 0.63, SE = 0.163, z = -2.845, p(>|z|) = 0.0044). No other variable (whether predictor or design) contributed significantly to the model. The fact that the fixed effects of CREAK and BA.DURATION were not significant is consistent with our interpretation that they “cancelled one another out” in the out-of-phase condition.

To study the effect of glottalization in the conditions where ba was long, a data set (Set E) was constructed by removing the response data for the glottalization-only condition (light grey) from Set D, leaving only the response data for the conditions represented by the white and dark grey columns in Figure 6. The best-fitting model for the Set E data set was again the one that included only the intercept term (significant; coefficient = -0.640, Odds = 0.53, SE = 0.298, z = -2.148, p(>|z|) = 0.0317). Pairwise tests (Pearson’s Chi-square) indicated that there was no significant difference between the baaga, baagaʔ, and baagaʔʔ conditions being compared. In
other words, when ba was long, increasing glottalization on ga (from ga to gaʔ or gaʔʔ) did not significantly increase baga groupings, even though a weak trend seems to be evident in Figure 6.

To study effect of lengthening ba in the conditions where ga was creaky, the data for the glottalization-only (light grey) and out-of-phase (dark grey) conditions were combined and submitted to the same statistical test as was used for Sets A-E, with BA.DURATION as the predictor variable. Table 5, which contains the output of the best-fitting model, reveals that the effect of duration was highly significant: adding length to modal ba when ga was creaky lowered the odds of a modal-creaky grouping by 56%.

| Coef (β) | Odds | SE | z | P(>|z|) |
|-----------|------|-----|-----|----------|
| INTERCEPT | 0.424| 1.53| 0.143| 2.965 | 0.003** |
| BA.DURATION | -0.818| .44| 0.124| -6.951 | <0.00001*** |

Table 5: Output of the best-fitting statistical model for the response data in Set C.

Finally, the outcomes for sequences in the same glottalization classes are shown in Figure 7. Pairwise tests (Pearson’s chi-square) indicated that the difference between the glottalization-only and out-of-phase conditions was significant at both manipulation levels (bagaʔ vs. baagaʔ: $X^2 = 19.812$, df = 1, $p < 0.00001$; bagaʔʔ vs. baagaʔʔ: $X^2 = 19.257$, df = 1, $p < 0.00001$). However, there were no significant differences between the glottalization-only and in-phase conditions, although the difference between bagaʔ vs. bagaaʔ approached significance (bagaʔ vs. bagaaʔ: $X^2 = 3.287$, df = 1, $p = 0.06981$; bagaʔʔ vs. bagaaʔʔ: $X^2 = 2.659$, df = 1, $p = 0.103$).

![Figure 7. Proportion of baga responses for glottalized sequences. (White = glottalization only; light grey = out-of-phase; dark grey = in-phase)](image)

These findings are interpreted in the discussion, which follows in section 3.
3 Discussion

In this study, we studied the perceptual influence of phonetic cues to duration and glottalization on English-speaking listeners’ judgments of natural syllable grouping. The technique we used was to introduce systematic disparities in the duration and/or creakiness of the vowels in streams of recurrently alternating syllables, *ba* and *ga*. Our results indicate that disparities in duration produce the perception of short-long groupings, and disparities in glottalization produce the perception of modal-creaky groupings, as compared with a baseline condition in which neither feature was varied. These effects were highly significant in conditions in which these cues were varied singly. We further expected that when the duration of the glottalized period was increased, participants would be even more likely to choose groupings where the creaky syllable was in final position. While the data indicated a small trend in this direction, it did not reach significance in any condition in which glottalization was manipulated.

Our design included two conditions in which disparities in glottalization and duration were introduced into the same sequences. Sequences for an in-phase condition were prepared so that increased duration and glottalization marked the same syllable. In the case of the In-phase sequences, a recurrent short-long parse was also a modal-creaky parse, and the statistical analysis revealed a significant preference for this grouping. In this condition, the contributions of duration and glottalization seemed to be additive. Interpreting that statistical comparison of the outcomes in the In-phase, glottalization-only, the duration-varying condition in which *ga* was long but not glottal (see Figure 5), we found that adding glottalization to a long modal syllable significantly increased short-long groupings and that adding length to a creaky syllable also increased modal-creaky groupings. While both effects were statistically significant, the effect of glottalization was stronger.

The finding that glottalization may have contributed more to listeners' grouping decisions in the In-phase condition is in light of our findings for the second co-varied condition, in which duration and glottalization were manipulated “out of phase”. In this condition, a short creaky syllable alternated with a long, modal one. The trends observed in the other conditions can be interpreted as indicating that the listeners preferred groupings in which the syllable with the demarcative feature came last. However, in the out-of-phase condition, these two grouping strategies were in competition: a short-long parse of an out-of-phase sequence was simultaneous a glottal-modal parse (and conversely, a modal-glottal parse was a long-short parse). A comparison between all conditions in which glottalization was manipulated indicated that adding length to the modal syllable significantly reduced modal-creaky grouping decisions, or increased short-long groupings. Interpreting the findings associated with co-varying glottalization and duration, it seems that when the two cues were working together in-phase, their contributions were additive, with glottalization contributing more. However, when the two cues were working against one another (out-of-phase), duration seems to have had a significant cancelling-out effect. Adding glottalization did not significantly increase modal-creaky grouping decisions when the modal syllable was long.
Summing up, our findings suggest at least two general outcomes that should be of interest for students of rhythm. The first is that vowel glottalization, a feature that has not been previously studied in a rhythmic context, tends to be heard as group-final. Glottalization has a demarcative function similar to that observed for duration, and the English-speaking listeners in our study used it similarly in judging natural syllable groupings. When both features are varied singly, the listeners in our study preferred groupings in which the syllable with the demarcative feature came last. The second finding of interest was that listeners seemed to use duration cues differently, depending on how duration was varied with another feature, in this case, glottalization. Interpreting our findings, in both of our co-varied conditions, increasing a duration disparity strengthened listeners’ perception of short-long syllable groupings. However, the effect of duration was much stronger when it worked against glottalization than when the two features worked together. These discoveries indicate that much can be learned from extending the study of rhythmic grouping preferences to include acoustic features other than intensity and duration, and from exploring the relative contributions of these features by testing more complex feature combinations.

4 References

229

Appendix A: Example of a response sheet

Block 1

1. … ba (ga ba) ga ba … How sure? yes no
2. … ga ba ga (ba ga) ba … How sure? yes no
3. … ga ba ga ba ga … How sure? yes no
4. … ba ga ba ga … How sure? yes no
5. … ba ga ba ga ba ga … How sure? yes no
6. … ga ba ga ba … How sure? yes no
7. … ba ga ba ga ba … How sure? yes no
8. … ga ba ga ba ga ba … How sure? yes no
9. … ga ba ga ba ga … How sure? yes no
10. … ba ga ba ga ba … How sure? yes no
11. … ba ga ba ga ba ga … How sure? yes no
12. … ga ba ga ba … How sure? yes no
Appendix B: Response data

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>bag a</td>
<td>159 (.56)</td>
<td>117 (.41)</td>
<td>106 (.37)</td>
</tr>
<tr>
<td>gab a</td>
<td>127 (.44)</td>
<td>171 (.59)</td>
<td>181 (.63)</td>
</tr>
</tbody>
</table>

Table 6: Response data for control and duration-only sequences (Set A). The scale reflects the duration of ba relative to ga.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>bag a</td>
<td>117 (.41)</td>
<td>166 (.58)</td>
<td>176 (.61)</td>
</tr>
<tr>
<td>gab a</td>
<td>171 (.59)</td>
<td>119 (.42)</td>
<td>111 (.39)</td>
</tr>
</tbody>
</table>

Table 7: Response data for control and glottalization-only sequences (Set B). The scale reflects increases in the glottal quality of ga (0 = ga, 1 = gaʔ, 2 = gaʔʔ).

<table>
<thead>
<tr>
<th></th>
<th>In-phase</th>
<th>Out-of phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bagaaʔ</td>
<td>baagaʔ</td>
</tr>
<tr>
<td>bag a</td>
<td>188 (.66)</td>
<td>111 (.39)</td>
</tr>
<tr>
<td>gab a</td>
<td>97 (.34)</td>
<td>172 (.61)</td>
</tr>
</tbody>
</table>

Table 8: Response data for in-phase sequences (included in Set C) and out-of-phase sequences (included in Set D). Column headings indicate properties of groupings represented by a baga response.