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ABSTRACT OF THE DISSERTATION

Data Mining Students’ Ordinary Handwritten Coursework

by

James Thomas Herold

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2013

Dr. Thomas F. Stahovich, Chairperson

Educational Data Mining is a nascent, but rapidly growing field in which data

mining techniques are applied to educational data to discover patterns in the ways that

students learn. Research in this field has typically been applied to educational data

extracted from digital systems such as Learning Content Management Systems and

Intelligent Tutoring Systems. The research thus far has been able to identify interesting

patterns in the ways students learn when using these systems, but an analysis of students’

ordinary problem-solving processes remains unexplored.

In this work we apply data mining and machine learning techniques to a digital

data set of students’ ordinary, handwritten coursework in the context of a Mechanical

Engineering course. This work makes four major contributions. It is the first, to our

knowledge, study in which data mining and machine learning techniques have been

applied to students’ problem-solving processes in their ordinary learning environment,

using pen and paper at home or in the classroom. Because the data set is unique, we

provide an in-depth description of the large digital collection of students’ handwritten

vii



coursework we have collected. Second, we investigate novel, discrete and numerical rep-

resentations of students’ handwritten coursework which characterize different aspects of

students’ ordinary problem-solving processes. Third, we identify patterns in these rep-

resentations as well as correlations between them and course performance using various

machine learning and data mining techniques. Last and most important, we present

insights may be gained from these patterns and correlations. These insights enable

instructors of the course, which we have investigated in this work, to improve future

offerings.
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Chapter 1

Introduction

In this work we apply data mining and machine learning techniques to digital

records of students’ ordinary, handwritten coursework. This thesis makes four important

contributions:

1. The data set investigated in this work is the first of its kind. We present, in great

detail, the large digital data set of students’ handwritten coursework which we

collected over the past three years.

2. We investigate novel, discrete and numerical representations of students’ handwrit-

ten coursework which characterize different aspects of students’ ordinary problem-

solving processes.

3. We identify patterns in these representations as well as correlations between them

and performance in the course by applying a breadth of machine learning and data

mining techniques.

4. Most importantly, we present interesting insights that may gained from these

1



patterns and correlations. These insights allow instructors of the course, which we

investigate in this work, to both rapidly asses students’ learning as well as improve

future course offerings.

We begin with a motivating example of how data mining has been used to

identify interesting patterns in a data set of ant behavior. Mersch et al. [90] mined data

collected from ants to identify interesting social organization patterns. The authors

physically applied a tiny, unique marker to the backs of ants which, using a video camera,

allowed the authors to individually track the location and orientation of each ant within

the confines of a nest chamber. Using the location and orientation data the authors

were able to both track the ants’ trajectories each day as well as infer when two ants

interacted with one another. The authors represented the data using a graph structure

and applied a network analysis technique that allowed them to identify three distinct

social groups: nurses, cleaners, and foragers. This is quite interesting, as it shows that

by digitally instrumenting (in this case, by placing markers on) ants’ ordinary behavior,

the authors were able to discover new ways in which ants interact with one another.

The question then becomes, if this type of knowledge discovery can be accomplished for

ants, why not do so for college students?

While applying markers to students’ backs may not feasible, instrumenting

their ordinary learning behavior is a tractable task that, as we show in this work, leads

to interesting knowledge discovery about students’ problem-solving habits.

In fact, Educational Data Mining is a nascent, but rapidly growing field in

which data mining techniques are applied to educational data to discover patterns in

the ways that students learn. Current research has typically focused on educational
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data extracted from either Learning Content Management Systems or Intelligent Tu-

toring Systems. Both of these environments are digital and do not always directly

represent a students’ natural learning environment. These digital environments are con-

venient though, as some form of digital instrument is required to digitally record the

students’ learning processes. A primary goal of the research presented in this thesis is to

instead use a minimally intrusive digital device that records students’ work as they solve

problems they way they would if left to their own devices. We use LiveScribe� digital

pens for this purpose. These pens digitize students’ handwriting, allowing them to solve

problems as they ordinarily would with pen and paper and on their own schedule.

In this thesis we explore a breadth of analyses that have hitherto not been

possible. The goal is to investigate both novel representations of students’ handwrit-

ten coursework as well as analysis techniques to identify the types of correlations and

patterns that can be identified in this unique data base.

We begin, in chapter two, by placing our work in the context of related work.

This research comprises an intersection of quite a few research areas: pedagogical re-

search, general purpose data mining and machine learning, and educational data mining.

Next, in chapter three, we provide an in-depth description of the data we have

collected. Additionally, several experiments were conducted during the data collection

process each year. We describe each of these experiments and their purposes.

Lastly, in chapters four through nine, we present each of the novel data mining

and machine learning techniques and data representations we have developed. Each

chapter comprises a different combination of data representation and analysis technique.

Table 1.1 summarizes each chapter and the data representation and analysis technique
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Chapter Data Representation Analysis Publication

4 2011 Homework Text Info. Extraction [55]

5 2011 Homework Prob. No. Sequence N-Gram [56]

6 2012 Homework Action Sequence Pattern Mining [51]

7 2012 Exams Solution Bitmap Clustering [58]

8 2012 Homework Effort-based features Linear Regression [57]

9 2012 Homework Effort-based features Decision Stump n/a

Table 1.1: An overview of the research presented in each chapter. Each row corresponds
to a chapter and shows for that chapter: the year and type of data used (Data column);
the way the data was represented (Rep. column); the data mining or machine learning
technique used to analyze that representation (Analysis column); and the publication
in which this research has appeared if one exists (Publication column).

used, as well as which portion of the data that was used.

In chapter ten, we take a detour to describe novel, machine learning based

sketch processing techniques. These low-level techniques serve as a preprocessing step

in several of the educational data mining techniques presented in this thesis, and addi-

tionally may be used other sketch understanding tasks.

Lastly, we discuss the review the insights gained by applying each of our Edu-

cational Data Mining techniques and compare them to one another in chapter eleven.
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Chapter 2

Related Work

2.1 Theories of Learning

Chi et al. [24] argue that “the metacognitive component of training is important

in that it allows students to understand and take control of their learning process.”

Metacognition is the ability to be aware of one’s own learning process and it serves as

a major foundation for the research we have performed on self-explanation described in

Chapters 4 and 5.

Chi et al. [24] made comparisons between two groups of students: “poor” and

“good” performing students. These students were asked to generate self-explanation af-

ter studying worked out example problems. The results of this study demonstrated that

students who perform poorly are typically unable to generate sufficient self-explanation

of the worked out example problems.

Steif et al. [116] present and evaluate a strategy for teaching statics concepts

which focuses on student’s conceptual knowledge. During instruction, students are given
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example free body diagrams and asked whether they are correct. Students are then

shown a video explaining what errors are present in the diagram. Additionally, students

in an experimental group are asked questions eliciting an explanation from the student

pertaining to the relationships between the diagram and the forces which act upon it.

This work showed a significantly lower error rate amongst students who generated self-

explanation. Additionally though, the analysis of the content of self-explanations which

we present in Chapter 4. Our method enables automatic analysis of the content of self-

explanation, which may enable the creation of intelligent tutoring systems that probe a

student’s understanding if that student’s self-explanation is lacking.

Numerous studies have demonstrated the positive impact self-explanation has

on student performance. Bielaczyc et al. [9] studied the impact of different self-explanation

strategies on a student’s ability to learn LISP programming. In their experiment, stu-

dents were given instruction via an intelligent tutoring system. Some students were

also trained to ask themselves a series of questions regarding their own understand-

ing of worked out examples they viewed with the tutorial. The experiment revealed

a significant difference between the learning gains from the pre- to posttest between

students that did and did not generate self-explanation. This differs from the way in

which we presented students with self-explanation, as in our study, students generate

self-explanation throughout their entire problem-solving process.

Chi et al. [23] stated that, “generating explanations to oneself facilitates the

integration of new knowledge.” To verify this statement, the authors conducted a study

in which eighth grade students were asked to provide self-explanation as they read

passages from a text on the circulatory system. This demonstrates that students who
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generated self-explanation performed significantly better than those who did not. This

study differs from ours in that students explained passages they read, whereas in our

study, students explained their own solution processes.

Weerasinghe and Mitrovic[127] investigated the impact that self-explanation,

paired with the use of an intelligent tutor, has on student performance in a database

design course. In the study, students in the experimental group were prompted for self-

explanation by the tutoring system whenever the student made a mistake. This protocol

was used as the authors claim that prompting students to explain most of their problem

steps would be “too burdensome,” although no evidence for this is provided. Because

there was no statistical analysis, the results were inconclusive.

Hall and Vance [46] investigated the impact that self-explanation has on student

performance as well as self-efficacy in a statistics course. Students in the experimental

group collaboratively solved problems in teams of three, providing self-explanations of

the reasoning behind their answers to one another. Students in a control group solved

the same problems individually. This study showed that students who generated collab-

orative self-explanation perform significantly better at solving problems than students

who did not.

These studies demonstrate that self-explanation can have a strong positive im-

pact on students’ learning. In the current research, we are interested in using our unique

database of students’ handwritten coursework to identify not only that self-explanation

can lead to improved performance, but we seek to discover changes in behavior caused

by generating self-explanation that may provide insight as to why self-explanation can

lead to improved performance
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Mayer [87] examine differences between retention and transfer. The former is

the application of knowledge from one problem to an identical problem, while the latter

is the application of that knowledge to a different problem. Mayer argues that metaskill,

the ability to control and monitor the cognitive processes, is an essential part of transfer.

Metaskill strategies may be taught just as any other skill such as arithmetic via strategy

instruction. For example, students who are taught basic reading skills as well strategies

for summarizing their own reading, perform better on transfer questions[16]. In later

chapters, we use the results of various data mining and machine learning techniques to

better understand the types of knowledge transfer which students make from homework

problems to exam problems. In this sense, the idea of transfer provides a foundation for

interpreting our results.

2.2 Data Mining

Information extraction (IE) is the process by which target relations are ex-

tracted from machine readable documents, such as text transcripts. This is distinguish-

able from attempting to understand the entire content of such documents. There is a

long history of research in IE techniques [63]. Older techniques have typically relied a

great deal on domain dependent attributes and were usually rule-based[91] or applied

machine learning techniques[28]. While these systems achieved high accuracy, their do-

main dependent nature required a great deal of manual effort in order to adapt them

to new domains. More recently, researchers have focused on automatic IE techniques

intended for use with the world wide web. These techniques are more general and exten-
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sible than prior methods and are thus called open IE techniques. We apply an open IE

technique in Chapter 4 to automtaically identify the content type present in transcripts

of students’ self-explanations.

Sequential pattern mining [2] is a technique used to identify significant patterns

in sequences of discrete items, e.g., consumer transaction records [2] or DNA transcripts

[8]. These techniques have typically been used to mine patterns from a single database

of sequences. In Educational Data Mining, it is often the case that researchers seek

to find patterns that best distinguish students who do and do not perform well in the

course. Thus there is a need for novel pattern mining techniques aimed at differentiating

between two databases of sequences.

More recently, Ye and Keogh [139] developed a novel technique which identi-

fies patterns which best separate two time-series databases. This technique identifies

frequently occurring patterns within each database, as traditional pattern mining tech-

niques have, but furthermore evaluates each pattern by using it to separate sequences

from the two databases. If a sequence contains the pattern, that sequence is identified

as being part of the same database that the pattern came from. The pattern which

provides the greatest information gain is kept as the “shapelet” that best separates the

two databases. We apply a similar sequential pattern mining technique to sequences of

the actions student took while solving homework problems in Chapter 6.
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2.3 Educational Data Mining

Data-driven educational research has traditionally been limited by the time-

consuming process of monitoring students’ learning. For example, substantial research

has been performed which investigates the correlation between performance and the

amount of time and effort spent on homework assignments [5, 14, 31, 103, 112]. Manually

watching each student solve each homework assignment would require an intractable

amount of time and, additionally, may skew the results of the study. Instead, each of

these researchers relied on students or their parents to self-report the amount of time

spent on each homework assignment.

Cooper et al. [26] compared the results of each of these studies and found an

average correlation of r = 0.14 with a range from −0.25 to 0.65. Cooper et al. summarize

this inconsistency in findings when they state that, “to date, the role of research in form-

ing homework policies and practices has been minimal. This is because the influences

on homework are complex, and no simple, general finding applicable to all students is

possible.” This underlies the impact that Educational Data Mining can have on the

educational research community. By instrumenting students’ natural problem-solving

processes, we are able to capture a precise measurement of the actions students perform

when solving their homework assignments.

More recently, researchers have applied data mining techniques to Intelligent

Tutoring System (ITS) and Course Management System (CMS) data. For example,

Romero et al. [105] applied data mining techniques to data collected with the Moo-

dle CMS. This system allows students to both view and submit various assignments,
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e.g., homework and exams, and records detailed logs of students’ interactions. These

interaction logs were mined for rare association rules, that is, patterns which appear

infrequently in the data. The resulting rules were then manually inspected to identify

fringe behaviors exhibited by students.

Similarly Mostow et al. [92] applied data mining techniques to interaction logs

taken from Project LISTEN’s Reading Tutor, an ITS. This system tutors young students

as they learn to read by listening to them read stories aloud and providing feedback.

The authors developed a system which automatically identified meaningful features from

these logs which were then used to train classifiers to predict students’ future behavior

with the system.

Similarly, Kinnebrew and Biswas [75] have developed a novel differential pat-

tern mining technique used to identify patterns that differentiate between the interac-

tions of different groups of students with the Betty’s Brain ITS. This technique begins

by using SPAM [7] to identify patterns that occur in a significant number of sequences

in either database. A t-test for each pattern is then performed to determine if there is

a significant difference in the frequency of that pattern in each sequence of each of the

two databases. This algorithm can identify patterns that occur significantly frequently

in one database and not the other.

The work of Oviatt et al. [97] suggests that natural work environments are

critical to student performance. Their examination of computer interfaces for complet-

ing geometry problems suggests that, “as the interfaces departed more from familiar

work practice..., students would experience greater cognitive load such that perfor-

mance would deteriorate in speed, attentional focus, meta-cognitive control, correctness
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of problem solutions, and memory.” Thus, our goal is to apply Educational Data Mining

techniques to data collected in natural work environments.

To that end, recent research has focused on mining ordinary, handwritten

coursework data. For example, Van Arsdale and Stahovich [124] demonstrated that

a correlation exists between the temporal and spatial organization of students’ hand-

written problem solutions and the correctness of the work. The organization of exam

solutions was characterized by a set of quantitative features, which were then used to

predict performance on those problems. On average these features accounted for 40.0%

of the variance in students’ performance on exam problems.

Our work continues this trend of instrumenting students’ learning behaviors so

that those processes may be mined, but we employ a minimally invasive device which

allows us to capture students’ ordinary learning.
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Chapter 3

Data and Experimentation

3.1 Introduction

Since 2010 we have digitized and stored students’ ordinary, handwritten course-

work collected from an undergraduate Mechanical Engineering course. This course is

offered at the University of California, Riverside as ME 10 Statics. The course de-

scription reads, “Covers equilibrium of coplanar force systems; analysis of frames and

trusses; noncoplanar force systems; friction; and distributed loads.” While ME 02 is the

first course to cover core Statics concepts, it does so briefly, with approximately three

lectures on the topic. ME 10, on the other hand provides students with their first in-

depth coverage of Statics concepts and provides a crucial foundation for several other

courses in Mechanical Engineering, such as, Dynamics, Strength and Materials, Machine

Design, Senior Design, and even Fluids.

Students who took this course during the winter quarters of 2010, 2011, 2012,
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and 20131 received Livescribe� digital pens with which they completed their coursework.

These pens serve as traditional pens, allowing students to solve problems by writing ink

on paper, but additionally digitize the writing, producing a time-stamped, digital record

of the students’ work. Figure 3.1 a digital pen and the special paper it is used with.

This technology requires students to write on special Anoto� paper. Each page in a

notebook of this paper contains a unique dot-matrix pattern. An integrated camera

reads tiny regions of this pattern enabling the digital pen to identify both its location

on the page as well as the page (in a notebook) on which it is writing.

Each year, students were given a pen and notebook of Anoto� paper at the

beginning of the quarter starting in week three. Students were asked to complete all

coursework with the pens, including quizzes, midterms, homework assignments, and

final exams. Some years, students were grouped into different experiments, with students

from each group, for example, receiving variations in homework assignments throughout

the year.

In the following sections the details of the data collected each year are pre-

sented, as well as an in-depth explanation of each of the experiments.

3.2 Homework Descriptions

Students completed seven of their nine homework assignments in the 2010 year

with their digital pens. Below is a brief explanation of the types of problems students

were asked to solve and an example problem for each assignment. We finish by explaining

1The data collected from the 2013 winter quarter is still being processed, and thus is not discussed
in this work.
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Figure 3.1: The Livescribe� digital pen. This pen allows users to write ink on paper,
but additionally digitizes the writing, producing a time-stamped record of the ink. This
technology is enabled by the special Anoto� paper on which the user must write. This
paper comprises a tiny dot-matrix pattern which a tiny camera, located near the tip of
the digital pen, uses to determine where on the page the pen is writing.

how the assignments from the 2011 and 2012 years are similar and different from those

given in 2010.

We begin by showing a sample problem that characterizes the general problem-

solving process required by students in this course. Figure 3.2 shows a typical problem

from this course. Problems always include a picture of a two or three dimensional system

in a state of equilibrium under the action of forces. Students are shown forces which act
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Figure 3.2: A typical Statics problem. The problem statement reads, “The device shown
is used for cutting PVC pipe. If a force, F = 15lb, is applied to each handle as shown,
determine the cutting force T . Also, determine the magnitude and the direction of the
force that the pivot at A applies to the blade.”

upon that system and are then required to solve for the unknown forces.

Students typically begin solving a problem by drawing a free body diagram

(FBD) representing the boundary of the system and the forces which act upon it. The

FBD is then used as a guide for constructing force and moment equilibrium equations.

Most pen strokes in a solution correspond to either a free body diagram, an equation,

or a cross-out. Because the Livescribe pens use ink, students cannot erase errors and

must instead cross them out. Figure 3.3 shows a hypothetical2 solution to the Statics

problem in Figure 3.2.

Students were typically given a week to complete each assignment which com-

prised five to eight problems.

2To protect the identity of the students who generated this data we do not show any of their original
handwritten work here. Instead we present a redrawing that is similar to the students’ work. This is
true of all handwritten examples shown in the remainder of the paper.
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Figure 3.3: A hypothetical solution to a typical Statics problem. The color of each
pen stroke identifies the type of solution element: cyan = FBD, green = equation, and
cross-out = black.

Homework assignment three provided students with their first opportunity to

practice core Statics concepts. They were required to solve for unknown forces acting

on simple, single-body systems in equilibrium. A typical problem from this assignment

is shown in Figure 3.4 in which students are asked to solve for the maximum load that

can be supported by a bracket.

Homework assignment four was similar to assignment three, in that students

were again required to solve for unknown forces acting on a simple system. In this case

however the systems were three dimensional. A typical problem from this assignment is

shown in Figure 3.5 in which students are asked to solve for the loads acting on a pipe.
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Figure 3.4: Typical problem from homework assignment three from 2010 taken from
[89]. The problem description reads, “The oil drum weighs 620 lb when full and has
a mass center at G. Calculate the vertical force P required to maintain equilibrium of
the drum and dolly in the position shown. The weight of the dolly may be neglected
compared with that of the drum.”

Figure 3.5: Typical problem from homework assignment four from 2010. The problem
description reads, “A 50 N force is applied to the pipe wrench attached to the pipe
system shown. If the pipe is in equilibrium, determine the loads acting on the pipe at
support A.”
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Homework assignment five required students to solve more complicated three

dimensional single-body problems and additionally required students to model tension

forces as three dimensional vectors. A typical problem from this assignment is shown in

Figure 3.6 in which students are asked to compute the tension in a wire holding a door

open.

Figure 3.6: Typical problem from homework assignment five from 2010 taken from [89].
The problem description reads, “The uniform ventilator door has a mass of 200 kg and
is hinged at the corners A and B of its upper edge. The door is held open in a horizontal
position by the wire from C to point D in the vertical wall. Compute the tension in the
wire and the forces normal to the hinge axis supported by the hinge pins at A and B.”

Homework assignment six required students to solve multi-body frame and

machine systems. These systems often included two-force members. A typical problem

from this assignment is shown in Figure 3.7 in which students are asked to determine
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Figure 3.7: Typical problem from homework assignment six from 2010 taken from [89].
The problem description reads, “The upper jaw D of the toggle press slides with neg-
ligible frictional resistance along the fixed vertical column. Calculate the compressive
force R exerted on the cylinder E and the force supported by the pin at A if a force F
= 200 N is applied to the handle at an angle of θ = 75o”

the torque exerted by a motor.
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Homework assignment seven required students to solve truss problems and

identify whether two-force members were in tension or compression. A typical problem

from this assignment is shown in Figure 3.8 in which students were asked determine the

force in all members of a truss.

Figure 3.8: Typical problem from homework assignment seven from 2010 taken from
[89]. The problem description reads, “The equiangular truss is loaded and supported as
shown. Use joint method to determine the force in all members in terms of the horizontal
load L. State if the members are in tension or compression.”

Homework assignment eight required students to identify the centroids of two

dimensional areas and three dimensional volumes. A typical problem from this assign-

ment is shown in Figure 3.9.
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Figure 3.9: Typical problem from homework assignment eight from 2010 taken from
[89]. The problem description reads, “Calculate the coordinates of the centroid of the
area shown.”
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Homework assignment nine required students to solve systems involving fric-

tion. A typical problem from this assignment is shown in Figure 3.10 in which students

are asked to find the minimum coefficient of static friction between a block and the

incline upon which it rests.

Figure 3.10: Typical problem from homework assignment nine from 2010 taken from
[61]. The problem description reads, “The brake is designed to be self-locking, that is, it
will not rotate when no load P is applied to it when the disk is subjected to a clockwise
couple moment Mo. Determine the distance d of the lever that will allow this to happen.
The coefficient of static friction at B is 0.5.”

Nine homework assignments were assigned in 2010 and eight were assigned in

both 2011 and 2012. In all three years, homework assignments one through three covered

the same topics using similar problems. Homework assignment four from 2011 and 2012

covered the topics and problems presented in assignments four and five from 2010. As
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Assignment No. of Students

Homework 3 82

Homework 4 74

Homework 5 76

Homework 6 79

Homework 7 74

Homework 8 69

Homework 9 66

Quiz 1 59

Quiz 2 72

Quiz 3 77

Quiz 4 73

Quiz 5 79

Quiz 6 78

Quiz 7 76

Midterm 1 84

Midterm 2 83

Final 85

Table 3.1: The number of students who completed each assignment with their digital
pen from the 2010 course offering. For example, no students completed Homework as-
signment one with their digital pen while 77 students did complete Quiz three. Students
were not instructed to complete assignments one or two with their digital pen.

a result, homework assignments six, seven, eight, and nine from 2010 corresponded to

homework assignments five, six, seven and eight from 2011 and 2012 respectively.

3.3 2012 Midterm Grading Rubric

During the 2012 course, problem one from midterm one and all problems from

midterm two were each graded using a rigorous, fine-grained rubric. Each rubric com-

prised an exhaustive list of errors that could be made while solving a given midterm

problem. Each error is binary with one indicating that a student made a particular
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Assignment Ga Gb Gc Gd Total

Homework 3 34 33 34 15 116

Homework 4 34 31 32 17 114

Homework 5 26 31 33 15 120

Homework 6 27 30 32 18 107

Homework 7 22 27 30 17 96

Homework 8 24 30 31 13 98

Quiz 2 23 28 22 11 84

Quiz 3 27 27 28 12 94

Quiz 4 25 30 28 14 97

Quiz 5 25 29 30 16 100

Quiz 6 20 28 27 12 87

Quiz 7 19 26 27 12 84

Midterm 1 36 33 36 17 122

Midterm 2 28 31 34 18 111

Final 25 31 33 16 105

Table 3.2: The number of students in each group who completed each assignment with
their digital pen from the 2011 course offering. For example, 24 students from Ga, 30
students from Gb, 31 students from Gc, and 13 students from Gd, completed homework
assignment eight with their digital pen. The group numbers, Ga through Gd, correspond
to the experiment groupings described in Section 3.6. Students were not instructed to
complete assignments one or two or quiz one with their digital pen.
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Assignment G1 G2 G3 G4 G5 G6 Total

Homework 3 23 22 21 17 19 19 121

Homework 4 23 23 20 19 18 17 120

Homework 5 20 23 19 18 18 14 112

Homework 6 23 23 21 18 20 18 123

Homework 7 22 21 20 19 17 18 117

Homework 8 22 20 16 16 17 11 102

Quiz 3 17 18 15 10 12 9 81

Quiz 4 18 19 15 11 16 10 89

Quiz 5 17 18 17 13 18 12 95

Quiz 6 19 17 18 13 17 13 97

Quiz 7 19 18 15 12 16 14 94

Midterm 1 22 22 19 16 19 15 113

Midterm 2 21 20 20 15 18 12 106

Final 22 23 20 16 19 15 115

Table 3.3: The number of students in each group who completed each assignment with
their digital pen from the 2012 course offering. For example, 22 students from G1, 20
students from G2, 16 students from G3, and 16 students from G4, 17 students from G5,
and 11 students from G6 completed homework assignment eight with their digital pen.
The group numbers, G1 through G6, correspond to the experiment groupings described
in Section 3.6. Students were not instructed to complete assignments one or two or
quizzes one or two with their digital pen.
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error and a zero indicating that the student did not. Each error is also associated with a

penalty value which indicates the number of points a student would lose if he or she made

that particular error. Grading these midterm problems was accomplished by checking

for the presence of each error and summing their penalty values. These errors provide

a rich source of data for the analyses presented in Chapter 9. The full list of errors

and their descriptions are shown in Table 3.4, Table 3.5, Table 3.6, and Table 3.7 for

midterm one problem one, midterm two problem one, midterm two problem two, and

midterm two problem three respectively. Each error in the tables is given a brief de-

scription, along with a category and subcategory. The category identifies which solution

element the error corresponds to, e.g., FBD or equation. The subcategory distinguishes

between different types of the same solution element, e.g., there is more than one type

of equation in a typical solution, namely the sum of forces in the x- and y-direction

equations and the sum of the moments equation.

3.4 Digital Data and Labeling

In this section, we describe the underlying representation of the sketch data

as well as describe the semantic labeling that was either automatically or manually

performed.

Each sketch corresponds to a single page of work from a student. Each sketch,

K = {s1, ..., sm}, comprises a series of pen strokes. Each pen stroke, si = {p1, ..., pn},

comprises a series of points. Each point pj = {x, y, t} is a triple where x and y are two-
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No. Category Subcategory Description

1 FBD FBD Missing

2 FBD FBD Diagram does not qualify as an FBD

3 FBD Body Incorrect body selected

4 FBD Pivot Missing

5 FBD Pivot Incorrect

6 FBD Tension Missing

7 FBD Tension Incorrect

8 FBD Boom Weight Missing

9 FBD Boom Weight Incorrect

10 FBD Bulldozer Weight Missing

11 FBD Bulldozer Weight Incorrect

12 Angle Tension
Angle for tension at C
incorrectly calculated

13 Angle Tension Angle for tension at C not calculated

14 Equation Moments about A Sum of moments about A missing

15 Equation Moments about A Horizontal distance A

16 Equation Moments about A Tx term missing

17 Equation Moments about A Tx term incorrect

18 Equation Moments about A Ty term missing

19 Equation Moments about A Ty term incorrect

20 Equation Moments about A Weight of boom term missing

21 Equation Moments about A Weight of boom term incorrect

22 Equation Moments about A Weight of bull dozer term missing

23 Equation Moments about A Weight of bull dozer term incorrect

24 Equation Moments about A Included extraneous force

25 Equation Sum of X-Forces
Sum of forces in the

x-direction equation missing

26 Equation Sum of X-Forces Dx term missing

27 Equation Sum of X-Forces Dx term incorrect

28 Equation Sum of X-Forces Tx term missing

29 Equation Sum of X-Forces Tx term incorrect

30 Equation Sum of X-Forces Included extraneous force

31 Equation Sum of X-Forces
Sum of forces in the

y-direction equation missing

32 Equation Sum of Y-Forces Dy term missing

33 Equation Sum of Y-Forces Dy term incorrect

34 Equation Sum of Y-Forces Ty term missing

35 Equation Sum of Y-Forces Ty term incorrect

36 Equation Sum of Y-Forces Weight of boom term missing

37 Equation Sum of Y-Forces Weight of boom term incorrect

38 Equation Sum of Y-Forces Weight of bull dozer term missing

39 Equation Sum of Y-Forces Weight of bull dozer term incorrect

40 Equation Sum of Y-Forces Included extraneous force

41 Magnitude Magnitude of D No calculation of the magnitude at D

42 Magnitude Magnitude of D
Incorrect calculation
of the magnitude at D

43 Algebra Algebra Minor algebra error

44 Algebra Algebra Major algebra error

Table 3.4: List of the errors used to grade problems from the first problem of the first
midterm from the 2012 course.
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Category Subcategory Description

1 1st FBD FBD Missing

2 1st FBD FBD
Diagram does not
qualify as a FBD

3 1st FBD Body Incorrect body selected

4 1st FBD Reaction Missing

5 1st FBD Reaction Incorrect

6 1st FBD Reaction Extra

7 1st FBD Reaction Included internal forces

8 2nd FBD FBD Missing

9 2nd FBD FBD
Diagram does not
qualify as a FBD

10 2nd FBD Body Incorrect body selected

11 2nd FBD Reaction Missing

12 2nd FBD Reaction Incorrect

13 2nd FBD Reaction Extra

14 2nd FBD Reaction Included internal forces

15 Equation Sum of Moments
Sum of moments
equation missing

16 Equation Sum of Moments Moment arm incorrect

17 Equation Sum of Moments Term missing

18 Equation Sum of Moments Extra term

19 Equation Sum of Moments Force component incorrect

20 Equation Sum of Moments Direction incorrect

21 Equation Sum of Moments Other error

22 Equation Sum of X-Forces
Sum of forces in the

x-direction equation missing

23 Equation Sum of X-Forces Term missing

24 Equation Sum of X-Forces Term incorrect

25 Equation Sum of X-Forces Extra term

26 Equation Sum of Y-Forces
Sum of forces in the

y-direction equation missing

27 Equation Sum of Y-Forces Term missing

28 Equation Sum of Y-Forces Term incorrect

29 Equation Sum of Y-Forces Extra term

30 Algebra Algebra Minor algebra error

31 Answer Algebra Did not solve Equation

32 Answer Algebra Incorrectly solved Equation

33 Answer 2-force member
Incorrectly identified
tension or compression

Table 3.5: List of the errors used to grade problems from the first problem of the second
midterm from the 2012 course. The No. column provides a unique number for each
error. The Category and Subcategory provide a simple grouping of errors by the problem
solving component to which they refer. Lastly, the Description column presents a simple
explanation of what the error entailed.
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No. Category Subcategory Description

1 FBD FBD Missing

2 FBD FBD Not qualify as an FBD

3 FBD Body Incorrect body selected

4 FBD Force Applied force missing

5 FBD Force Applied force incorrect

6 FBD Force Normal at B missing

7 FBD Force Normal at B incorrect

8 FBD Force Normal at A missing

9 FBD Force Normal at A incorrect

10 FBD Moment Moment at A missing

11 FBD Moment Moment at A incorrect

12 FBD Moment Applied moment missing

13 FBD Moment Applied incorrect

14 Angle Point A Angle at A incorrect

15 Angle Point B Angle at B Incorrect

16 Eqn. Sum Mom. Sum of moments missing

17 Eqn. Sum Mom. Normal x- term missing

18 Eqn. Sum Mom. Normal x- term incorrect

19 Eqn. Sum Mom. Normal y- term missing

20 Eqn. Sum Mom. Normal y- term incorrect

21 Eqn. Sum Mom. Applied moment term missing

22 Eqn. Sum Mom. Applied moment term incorrect

23 Eqn. Sum Mom. Reaction moment at A term missing

24 Eqn. Sum Mom. Reaction moment at A term incorrect

25 Eqn. Sum Mom. Included extraneous term

26 Eqn. Sum X-For. X-forces eqn. missing

27 Eqn. Sum X-For. NAx term missing

28 Eqn. Sum X-For. NAx term incorrect

29 Eqn. Sum X-For. NBx term missing

30 Eqn. Sum X-For. NBx term incorrect

31 Eqn. Sum X-For. Included extraneous force

32 Eqn. Sum X-For. Y-forces eqn. missing
33 Eqn. Sum Y-For. NAy term missing

34 Eqn. Sum Y-For. NAy term incorrect

35 Eqn. Sum Y-For. NBy term missing

36 Eqn. Sum Y-For. NBy term incorrect

37 Eqn. Sum Y-For. Applied force term missing

38 Eqn. Sum Y-For. Applied force incorrect

39 Eqn. Sol. Sim. Eqn.
No calculation to

simultaneously solve equation

40 Eqn. Sol. Sim. Eqn.
Error in calculation to

simultaneously solve equation

41 Algebra Algebra Minor algebra error

42 Algebra Algebra Major algebra error

Table 3.6: List of the errors used to grade problems from the second problem of the
second midterm from the 2012 course.
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No. Category Subcategory Description

1 1st FBD FBD Missing

2 1st FBD FBD Diagram does not qualify as a FBD

3 1st FBD Body Incorrect body selected

4 1st FBD Reaction Missing

5 1st FBD Reaction Incorrect

6 1st FBD Reaction Extra

7 1st FBD Reaction Included internal forces

8 2nd FBD FBD Missing

9 2nd FBD FBD Diagram does not qualify as a FBD

10 2nd FBD Body Incorrect body selected

11 2nd FBD Reaction Missing

12 2nd FBD Reaction Incorrect

13 2nd FBD Reaction Extra

14 2nd FBD Reaction Included internal forces

15 3rd FBD FBD Missing

16 3rd FBD FBD Diagram does not qualify as a FBD

17 3rd FBD Body Incorrect body selected

18 3rd FBD Reaction Missing

19 3rd FBD Reaction Incorrect

20 3rd FBD Reaction Extra

21 3rd FBD Reaction Included internal forces

22 Eqn. Sum Mom. Sum of moments equation missing

23 Eqn. Sum Mom. Moment arm incorrect

24 Eqn. Sum Mom. Term missing

25 Eqn. Sum Mom. Extra term

26 Eqn. Sum Mom. Force component incorrect

27 Eqn. Sum Mom. Direction incorrect

28 Eqn. Sum Mom. Other error

29 Eqn. Sum X-For. Sum of forces in the x-direction equation missing

30 Eqn. Sum X-For. Term missing

31 Eqn. Sum X-For. Term incorrect

32 Eqn. Sum X-For. Extra term

33 Eqn. Sum Y-For. Sum of forces in the y-direction equation missing

34 Eqn. Sum Y-For. Term missing

35 Eqn. Sum Y-For. Term incorrect

36 Eqn. Sum Y-For. Extra term

37 Algebra Algebra Minor algebra error

38 Answer Algebra Did not solve equation

39 Answer Algebra Incorrectly solved equation

40 Answer 2FM Incorrectly identified tension or compression

41 Angle Angle the angle of forces at ED and EC incorrect

Table 3.7: List of the errors used to grade problems from the third problem of the second
midterm from the 2012 course.
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dimensional Cartesian coordinates, and t is the time-stamp of that point. All points

within a pen stroke, and all pen strokes within a sketch, are ordered by increasing time-

stamp. The time-stamp of the first point in a pen stroke signifies the start time of that

pen stroke and the last point is used to signify its end time.

3.4.1 2010 Labeling Scheme

This data has been automatically labeled using the technique developed by

Lung et al. [48]. This produced a sequence of labels for each sketch, L = {l1, ..., lm}|l ∈

{FBD,EQN,CRO}. Each label, li, identifies stroke, si, by its semantic content: free

body diagram (FBD), equation (EQN), or cross-out (CRO).

3.4.2 2011 Labeling Scheme

None of the homework assignments from this course have been labeled, but all

quizzes, midterms, and the final exam were manually labeled. This produced a sequence

of labels. L, for each sketch:

L = {l1, ..., lm}|l ∈ {FBD,EQN,EQNm, EQNf , EXP,ORG,

CRO,PID, SUMm, SUMf , GEOf , GEOe, PRB,PST,DIRm,DIRf}

Each label, li, identifies stroke, si, by its semantic content: free body dia-

gram (FBD); general equations not including force and moment equations (EQN);

moment equations (EQNm); force equations (EQNf ); unprompted written explanation

of a student’s problem-solving process (EXP ); organizational writing, e.g., boxing an-

swers (ORG); cross-out pen strokes (CRO); personally identifying information, such
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as a student’s name (PID)3; sum of moment equation declaration, typically a student

will begin solving a moment equation by labeling it as
∑

M = 0 (SUMm); sum of

forces equation declaration, typically a student will begin solving a force equation by

labeling it as
∑

Fx = 0 or
∑

Fy = 0 (SUMf ); geometric figures used to assist with

trigonometric calculations (GEOf ); equations accompanying geometric figures (GEOe);

problem number labels (PRB); rewritten copy of the problem statement text (PST );

moment direction symbol which indicates the direction of positive moments (DIRm);

force direction symbol which indicates the positive direction of the forces (DIRf ). Typ-

ical examples of each label are shown in Figure 3.11 through Figure 3.17; differences in

pen stroke color for each diagram is used to distinguish pen strokes of different labels.

3.4.3 2012 Labeling Schemes

All data from this course were manually labeled; quizzes, midterms, and the

final exam were labeled with a different scheme than the homework assignments.

For the homework assignments, this produced a sequence of labels for each

sketch, L = {l1, ..., lm}|l ∈ {FBD,EQN,CRO}. Each label, li, identifies stroke, si, by

its semantic content: free body diagram (FBD), equation (EQN), or cross-out (CRO).

For the quizzes, midterms and final exam, this produced a sequence of labels for

each sketch, L = {l1, ..., lm}|l ∈ {FBD,EQN,EXP,ORG,CRO,PID,GEO,PRB,PST}.

3All personally identifying information has been removed from all data (not just the 2011 data set)
to protect the anonymity of the students who generated this data

33



(a) Example of a free body dia-

gram pen stroke, labeled as FBD

in all data sets.

(b) Example of a free body dia-

gram pen stroke, labeled as FBD

in all data sets.

(c) Example of a free body dia-

gram pen stroke, labeled as FBD

in all data sets.

Figure 3.11: Examples of pen strokes labeled as FBD.
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(a) General equation example,

labeled as EQN for all data sets.

(b) Moment equation example,

labeled as: EQN for the 2010

data set; EQNm for the 2011

data set; EQN for the 2012

homework and exam data sets.

(c) Force equation example, la-

beled as: EQN for the 2010 data

set; EQNf for the 2011 data set;

EQN for the 2012 homework and

exam data sets.

Figure 3.12: Examples different pen strokes labeled as equation.
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(a) Example of explanation pen

strokes, labeled as: EQN for the

2010 data set; EXP for the 2011

and 2012 exam data set; EQN

for the 2012 homework data set.

(b) Organization pen stroke ex-

ample, labeled as: either FBD

or EQN for the 2010 and 2012

homework data set, depending

upon whether or not the pen

stroke was used to organize FBD

or equation work respectively;

ORG for the 2011 and 2012 exam

data set.

(c) Cross-out example, labeled as

CRO in all data sets.

Figure 3.13: Examples pen strokes labeled as organziation, explanation and cross-out.
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(a) Example of sum of moment

label pen strokes, labeled as:

EQN in the 2010 and both 2012

data sets; SUMm in the 2011

data set.

(b) Example of sum of force label

pen strokes, labeled as: EQN in

the 2010 and both 2012 datasets;

SUMf in the 2011 data set.

Figure 3.14: Examples of the pen strokes labeled as sum-of-moments and sum-of-forces.
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(a) Example of geometry figure

pen strokes, labeled as: FBD

in the 2010 and 2012 homework

data set; GEOf in the 2011 data

set; GEO in the 2012 data set.

(b) Example of geometry equa-

tion pen strokes, labeled as:

FBD in the 2010 and 2012 home-

work data set; GEOe in the 2011

data set; GEO in the 2012 data

set.

Figure 3.15: Examples of pen strokes labeled as geometry figure and and geometry text.
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(a) Example of moment direction

pen strokes, labeled as: DIRm in

the 2011 data set; EQN in the

2010 and both 2012 data sets.

(b) Example of force direction

pen strokes, labeled as: DIRf in

the 2011 data set; EQN in the

2010 and both 2012 data sets.

Figure 3.16: Examples of pen strokes labeled as moment and force direction.

Figure 3.17: Example of pen strokes labeled as problem statement, labeled as: PST in
the 2011 and 2012 exam data sets; EQN in the 2010 and 2012 homework data sets.
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Each label, li, identifies stroke, si, by its semantic content: free body diagram (FBD); all

equations pen strokes (EQN); unprompted written explanation of a student’s problem-

solving process (EXP ); organizational writing, e.g., boxing answers (ORG); cross-

out pen strokes (CRO); personally identifying information, such as a student’s name

(PID)4; geometric figures and equations used to assist with trigonometric calculations

(GEO); problem number labels (PRB); rewritten copy of the problem statement text

(PST ).

3.5 Descriptive Statistics

As this data set is the first of its kind, we present in this section, a rigorous

set of descriptive statistics for simple numerical features. These features are simply

the amount of time spent and ink written on each homework problem. We compute the

mean and standard deviation for these features and present them in Figure 3.18 through

Figure 3.41. For example, Figure 3.18 presents the average and standard deviation of

the total ink written on every problem of every homework assignment. We present an

extensive collection of the histograms for each feature in the Appendix. This analy-

sis provides instructors with a very precise window into how students complete their

homework assignments in this course.

4All personally identifying information has since been removed from all data (not just the 2011 data
set) to protect the anonymity of the students who generated this data
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Figure 3.18: Average total ink written for each assignment from the 2010 data. Each
bar shows the average amount of ink written on a single homework problem. The label
given to each bar indicates the homework number and problem number, for example,
H2P6 corresponds to homework two problem six.
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Figure 3.19: Average total time spent writing for each assignment from the 2010 data.
Each bar shows the average amount of time spent writing on a single homework problem.
The label given to each bar indicates the homework number and problem number, for
example, H2P6 corresponds to homework two problem six.
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Figure 3.20: Average cross-out ink written for each assignment from the 2010 data. Each
bar shows the average amount of cross-out ink written on a single homework problem.
The label given to each bar indicates the homework number and problem number, for
example, H2P6 corresponds to homework two problem six.
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Figure 3.21: Average time spent writing cross-outs for each assignment from the 2010
data. Each bar shows the average time spent writing cross-outs on a single homework
problem. The label given to each bar indicates the homework number and problem
number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.22: Average duration (time from the first to last stroke in an assignment) of
each assignment from the 2010 data. Each bar shows the average duration (time from
the first pen stroke to the last of a homework solution) of a single homework problem
solution. The label given to each bar indicates the homework number and problem
number, for example, H2P6 corresponds to homework two problem six.

0

50

100

150

200

250

300

350

H
2
P
6

H
2
P
5

H
2
P
4

H
2
P
1

H
6
P
8

H
3
P
3

H
6
P
5

H
8
P
6

H
4
P
2

H
3
P
1

H
5
P
6

H
6
P
7

H
3
P
7

H
8
P
4

H
6
P
1

H
3
P
2

H
2
P
2

H
2
P
3

H
3
P
8

H
8
P
7

H
8
P
5

H
3
P
4

H
3
P
6

H
8
P
3

H
3
P
5

H
6
P
4

H
5
P
2

H
8
P
1

H
7
P
4

H
6
P
3

H
5
P
4

H
2
P
7

H
8
P
2

H
5
P
1

H
5
P
3

H
7
P
3

H
6
P
2

H
4
P
1

H
7
P
5

H
5
P
5

H
7
P
1

H
7
P
2

In
k

 W
ri

tt
e

n
 (

in
ch

e
s)

Eqn Ink Avg

Figure 3.23: Average equation ink written on each assignment from the 2010 data. Each
bar shows the average amount of equation ink written on a single homework problem.
The label given to each bar indicates the homework number and problem number, for
example, H2P6 corresponds to homework two problem six.
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Figure 3.24: Average time spent writing equations on each assignment from the 2010
data. Each bar shows the average time spent writing equations on a single homework
problem. The label given to each bar indicates the homework number and problem
number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.25: Average FBD ink written for each assignment from the 2010 data. Each bar
shows the average amount of FBD ink written on a single homework problem. The label
given to each bar indicates the homework number and problem number, for example,
H2P6 corresponds to homework two problem six.
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Figure 3.26: Average time spent writing FBDs for each assignment from the 2010 data.
Each bar shows the average time spent writing FBDs on a single homework problem.
The label given to each bar indicates the homework number and problem number, for
example, H2P6 corresponds to homework two problem six.
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Figure 3.27: Average number of sheets taken to solve each problem of each assignment
from the 2010 data. Each bar shows the average number of sheets written on for a single
homework problem. The label given to each bar indicates the homework number and
problem number, for example, H2P6 corresponds to homework two problem six.

46



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

H
8
P
3

H
4
P
7

H
7
P
6

H
7
P
7

H
3
P
7

H
7
P
5

H
7
P
3

H
3
P
3

H
5
P
8

H
3
P
1

H
7
P
1

H
3
P
8

H
5
P
6

H
7
P
2

H
7
P
4

H
8
P
2

H
3
P
4

H
5
P
7

H
3
P
5

H
6
P
4

H
3
P
2

H
5
P
2

H
8
P
5

H
4
P
2

H
4
P
6

H
3
P
6

H
8
P
1

H
5
P
1

H
4
P
5

H
4
P
3

H
6
P
5

H
4
P
4

H
6
P
3

H
8
P
4

H
5
P
4

H
5
P
5

H
6
P
6

H
4
P
1

H
5
P
3

H
6
P
1

H
6
P
2

T
im

e
 (

m
s)

Time Ave

Figure 3.28: Average time spent writing each problem of each assignment from the 2011
data. Each bar shows the average amount of ink written on a single homework problem.
The label given to each bar indicates the homework number and problem number, for
example, H2P6 corresponds to homework two problem six.
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Figure 3.29: Average number of sheets taken to solve each problem of each assignment
from the 2011 data. Each bar shows the average number of sheets used in solving a
single homework problem. The label given to each bar indicates the homework number
and problem number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.30: Average amount of ink written on each problem of each assignment from
the 2011 data. Each bar shows the average amount of ink written on a single homework
problem. The label given to each bar indicates the homework number and problem
number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.31: Average duration (time from the first to last stroke) of each problem from
each assignment of the 2011 data. Each bar shows the average solution duration (time
from first pen stroke to last) for a single homework problem. The label given to each bar
indicates the homework number and problem number, for example, H2P6 corresponds
to homework two problem six.
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Figure 3.32: Average time taken to solve each problem of each assignment from the 2012
data. Each bar shows the average amount of time spent writing on a single homework
problem. The label given to each bar indicates the homework number and problem
number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.33: Average total amount of ink written to solve each problem of each assign-
ment from the 2012 data. Each bar shows the average amount of ink written on a single
homework problem. The label given to each bar indicates the homework number and
problem number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.34: Average number of pages taken to solve each problem of each assignment
from the 2012 data. Each bar shows to the average number of pages of a solution to a
single homework problem. The label given to each bar indicates the homework number
and problem number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.35: Average amount of time spent writing FBDs for each problem of each
assignment from the 2012 data. Each bar shows the average amount of time spent
writing FBDs on a single homework problem. The label given to each bar indicates the
homework number and problem number, for example, H2P6 corresponds to homework
two problem six.
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Figure 3.36: Average amount of ink written FBDs for each problem of each assignment
from the 2012 data. Each bar shows the average amount of FBD ink written on a single
homework problem. The label given to each bar indicates the homework number and
problem number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.37: Average amount of time spent writing equations for each problem of each
assignment from the 2012 data. Each bar shows the amount of time spent writing
equations on a single homework problem. The label given to each bar indicates the
homework number and problem number, for example, H2P6 corresponds to homework
two problem six.
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Figure 3.38: Average amount of equation ink written for each problem of each assignment
from the 2012 data. Each bar shows the average amount of equation ink written on a
single homework problem. The label given to each bar indicates the homework number
and problem number, for example, H2P6 corresponds to homework two problem six.

53



-6000

-4000

-2000

0

2000

4000

6000

8000

10000

12000

T
im

e
 (

m
in

u
te

s)
Durati�n Ave

Figure 3.39: Average duration (time from the first to last stroke) of each problem of each
assignment from the 2012 data. Each bar shows the average duration of a solution to a
single homework problem. The label given to each bar indicates the homework number
and problem number, for example, H2P6 corresponds to homework two problem six.
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Figure 3.40: Average time spent crossing out work for each problem of each assignment
from the 2012 data. Each bar shows the average amount of time spent writing cross-
outs on a single homework problem. The label given to each bar indicates the homework
number and problem number, for example, H2P6 corresponds to homework two problem
six.
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Figure 3.41: Average amount of cross-out ink written for each problem of each assign-
ment from the 2012 data. Each bar shows the average amount of cross-out ink written on
a single homework problem. The label given to each bar indicates the homework number
and problem number, for example, H2P6 corresponds to homework two problem six.
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3.6 Experimental Studies

The students enrolled in the 2011 and 2012 course offerings were split into

different groups, each of which was given a different experimental treatment. There

were no experimental treatments given to students enrolled in the 2010 course, and thus

no groupings either. These treatments were typically supplemental learning tasks, such

as spending time with a tutoring system. In this section, we describe each of the groups

from each course offering and the experimental treatments they received.

3.6.1 2011 Experimental Studies

The students from this course were organized into four experimental groups

according to their discussion section. While all students enrolled in this course attended

the same lecture led by the course professor, there were four mandatory discussion sec-

tions in which students received supplemental material from a teaching assistant. Each

discussion section constituted an experimental group. Thus there were four experimental

groups for this course offering, identified as: Ga, Gb, Gc, and Gd. Students in Ga were

the control group, and received no special instructional materials during the course. Ga

comprised 36 students. Students in Gb were given supplemental instruction with New-

ton’s Pen II [79], an intelligent, pen-based Statics tutoring system. Group Gb comprised

37 students. The final two groups, Gc and Gd, were given self-explanation prompts along

with homework assignments three, four, five, six, and eight. These prompts elicited from

students a handwritten explanation of the reasoning behind their problem-solving steps

on each homework problem. Students were told to respond to these prompts for each
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problem after completing that problem. Gc comprised 37 students and Gd comprised

20.

To ground later analyses, we asked three experts to complete homework assign-

ments three and eight as well as generate self-explanations. These experts comprised

one graduate and two undergraduate mechanical engineering students, the latter two of

whom had solved these exact homework problems two years prior. We manually tran-

scribed the student and expert self-explanations. Spelling errors were corrected, but

grammatical errors were left as is. The experts’ self-explanation transcripts exemplify

the types of responses we expect from students who possess an expert-stance on statics

concepts.

We elicited self-explanations only for those homework assignments that dealt

primarily with equilibrium. We excluded, for example, the first two assignments which

covered prerequisite topics such as vectors and moments. Students from Gc and Gd

generated self-explanation for homework assignments three, four, five, six, and eight.

The prompts for homework assignment four were:

1. Why did you select the system that you used for your free-body diagram?

2. Could you have selected some other system and still solved the problem?

3. How did you model each of the reaction forces? For example, did you consider the

reaction to be a pivot, roller, contact with friction, etc?

4. When computing moments for the moment equilibrium equation(s), why did you

choose the particular point that you used to compute moments about? For exam-

ple, if you computed moments about point A, why did you pick A and not some
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other point?

5. Could you have simplified the analysis by picking some other point to take moments

about?

6. Why did you choose to solve the equilibrium equations in the order that you did?

For example, if you solved the x-equilibrium equation first, the moment equilibrium

equation about the z-axis second, and so on, why did you choose this particular

order?

The prompts for homework assignment five were as follows:

1. Why did you decompose the system into the particular set of free body diagrams

that you used?

2. Which bodies are two-force members?

3. Why did you analyze the free body diagrams in the order that you did? For

example, if you analyzed the equilibrium conditions for bar A first, and bar B

second, why did you choose this order?

4. When computing moments for a moment equilibrium equation, why did you choose

the particular point that you used to compute moments about? For example, if

you computed moments about point A, why did you pick A and not some other

point?

The prompts for homework assignment six were only required for problems five

and six and were as follows:
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1. Why did you decompose the system into the particular set of free body diagrams

that you used?

2. Which bodies are two-force members?

3. Why did you analyze the free body diagrams in the order that you did? For

example, if you analyzed the equilibrium conditions for bar A first, and bar B

second, why did you choose this order?

4. When computing moments for a moment equilibrium equation, why did you choose

the particular point that you used to compute moments about? For example, if

you computed moments about point A, why did you pick A and not some other

point?

The prompts for homework assignment eight were as follows:

1. To begin your solution, you must make several assumptions. Which surfaces, if

any, did you assume were on the verge of slip? Why did you think these surfaces

were on the verge of slip?

2. If slip did occur, which direction would each slipping member move?

3. For problem 3 only: Why is the device self-locking?

3.6.2 2012 Experimental Studies

In 2012, we made several extensions to the self-explanation study conducted

in the 2011 course offering.
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First, there were six groups instead of four. These six groups were assigned

at random, instead of based upon section number,and are identified as G1, G2, G3,

G4, G5, and G6. G2 received no self-explanation prompts but instead received several

treatments with the Newton’s Pen II[79] tutorial system. G3, G4, G5, G6 all received

self-explanation prompts on homework assignments three, four, five, and eight, though a

different set of prompts was assigned to each group for each assignment. The differences

between the prompts given to each group comprise the sequencing and degree to which

those prompts were scaffolded. Scaffolding is a pedagogical approach in which a student

is guided but not told the correct solution. Finally, G1 was the “delayed self-explanation”

group, meaning that they received no self-explanation prompts on assignments three and

four, but received the same prompts as did G3 for assignments five and eight.

3.6.2.1 Homework Three Self-Explanation Prompts

Below are the self-explanation prompts that G3 received for homework three.

None of the prompts are scaffolded.

1. Why did you select the system that you used for your free-body diagram? Could

you have selected some other system and still solved the problem?

2. How did you model each of the reaction forces?

3. When computing moments for the equilibrium, why did you choose the particular

point that you used to compute moments about? For example, if you computed

moments about A, why did you pick A and not some other point? Could you have

simplified the analysis by picking some other point to take moments about?
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Hw - Prob. G1 G2 G3 G4 G5 G6

3 - 1 N N U U S S

3 - 2 N N U S U S

3 - 3 N N U U U S

3 - 4 N N U U S S

3 - 5 N N U S U S

3 - 6 N N U U U S

3 - 7 N N U U U U

3 - 8 N N U U U U

4 - 1 N N U U U U

4 - 2 N N U U S S

4 - 3 N N U S U S

4 - 4 N N U U U U

4 - 5 N N U U S S

4 -6 N N U S U S

4 - 4 N N U U U U

4 - 5 N N U U U U

4 - 6 N N U U U U

4 - 7 N N U U U U

4 - 8 N N U U U U

5 - 1 N U U U U U

5 - 2 N U U U S S

5 - 3 N U U S U S

5 - 4 N U U U U U

5 - 5 N U U U S S

5 - 6 N U U S U S

5 - 7 N U U U U U

5 - 8 N U U U U U

8 - 1 N U U U U U

8 - 2 N U U U U U

8 - 3 N U U U U U

8 - 4 N U U U U U

8 - 5 N U U U U U

Table 3.8: This table presents an overview of which students received scaffolded self-
explanation prompts on particular homework assignment problems. Each row corre-
sponds to a single homework assignment problem. Each column of that row indicates
whether a particular group received a scaffolded self-explanation prompt (S) or a prompt
that was unscaffolded (U), or received no self-explanation prompt (N)
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4. Why did you choose to solve the equilibrium equations in the order that you did?

For example, if you solved the x-equilibrium equation, then the y-equilibrium

equation, and finally the moment equilibrium equation, why did you chose this

order?

Below are the self-explanation prompts for problem one of homework three,

which were given to G5 and G6. The second prompt is scaffolded.

1. Why did you select the system that you used for your free-body diagram? Could

you have selected some other system and still solved the problem?

2. Reaction forces can be modeled as contact with smooth or rough surfaces, roller

supports, freely sliding guides, pin connections, fixed supports, and connections to

flexible elements. How did you model the reactions forces at A and B? Why?

3. When computing moments for the equilibrium equation, why did you choose the

particular point that you used to compute moments about? For example, if you

computed moments about A, why did you pick A and not some other point? Could

you have simplified the analysis by picking some other point to take moments

about?

4. Why did you choose to solve the equilibrium equations in the order that you did?

For example, if you solved the x-equilibrium equation, then the y-equilibrium

equation, and finally the moment equilibrium equation, why did you choose this

order?
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Below are the self-explanation prompts for problem two of homework three

which were given to G4 and G6. The second prompt is scaffolded.

1. Why did you select the system that you used for your free-body diagram? Could

you have selected some other system and still solved the problem?

2. Reaction forces can be modeled as contact with smooth or rough surfaces, roller

supports, freely sliding guides, pin connections, fixed supports, and connections

to flexible elements. How did you model the reaction forces at A and at the nail?

Why?

3. When computing moments for the equilibrium, why did you choose the particular

point that you used to compute moments about? For example, if you computed

moments about A, why did you pick A and not some other point? Could you have

simplified the analysis by picking some other point to take moments about?

4. Why did you choose to solve the equilibrium equations in the order that you did?

For example, if you solved the x-equilibrium equation, then the y-equilibrium

equation, and finally the moment equilibrium equation, why did you chose this

order?

Below are the self-explanation prompts for problem four of homework three

which were given to G5 and G6. The first and second prompts are scaffolded.

1. Below are three examples of systems that you could select for a free-body diagram.

Each system is highlighted in green. Which is the best? Why? What is lacking or

incorrect about the remaining two choices?
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Figure 3.42: Self-explanation prompt for homework three problem four. Students were
shown different potential FBDs to consider in their self-explanation.

2. Reaction forces can be modeled as contact with smooth or rough surfaces, roller

supports, freely sliding guides, pin connections, fixed supports, and connections to

flexible elements. How did you model the reactions forces at A and B? Why?

3. When computing moments for the equilibrium equation, why did you choose the

particular point that you used to compute moments about? For example, if you

computed moments about A, why did you pick A and not some other point? Could

you have simplified the analysis by picking some other point to take moments

about?

4. Why did you choose to solve the equilibrium equations in the order that you did?

For example, if you solved the x-equilibrium equation, then the y-equilibrium

equation, and finally the moment equilibrium equation, why did you choose this
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order?

Below are the self-explanation prompts for problem five of homework three

which were given to G5 and G6. The first prompt is scaffolded.

1. Below are three examples of systems that you could select for a free-body diagram.

Each system is highlighted in green. Which is the best? Why? What is lacking or

incorrect about the remaining two choices?

Figure 3.43: Self-explanation prompt for homework three problem five. Students were
shown different potential FBDs to consider in their self-explanation.

2. How did you model each of the reaction forces?

3. When computing moments for the equilibrium, why did you choose the particular

point that you used to compute moments about? For example, if you computed

moments about A, why did you pick A and not some other point? Could you have

simplified the analysis by picking some other point to take moments about?

4. Why did you choose to solve the equilibrium equations in the order that you did?

For example, if you solved the x-equilibrium equation, then the y-equilibrium
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equation, and finally the moment equilibrium equation, why did you chose this

order?

3.6.2.2 Homework Four Self-Explanation Prompts

G3 received the following prompts for each problem on homework four:

1. Why did you select the system that you used for your free-body diagram? Could

you have selected some other system and still solved the problem?

2. How did you model each of the reaction forces?

3. When computing moments for the equilibrium equation, why did you choose the

particular points or axes that you used to compute moments about? Could you

have simplified the analysis by picking some other point or axis to take moments

about?

4. If you solved this problem with the scalar approach, why did you choose to solve the

equilibrium equations in the order that you did? For example, if you first solved the

x-equilibrium equation and then solved the moment equilibrium equation about

the z-axis, why did you choose this order?

Below are the self-explanation prompts for problem two of homework four

which were given to G5 and G6. The second and third prompts are scaffolded.

1. Why did you select the system that you used for your free-body diagram? Could

you have selected some other system and still solved the problem?
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2. Reaction forces can be modeled as contact with smooth or rough surfaces, ball-and-

socket joints, fixed connections, thrust or non-thrust bearings, or flexible elements.

How did you model the reaction forces at A, B, and C? Why?

3. If a moment is computed about point A, which unknowns will remain? If a moment

is computed about the z-axis, which unknowns will remain? Which points or axes

did you chose to take moments about for your equilibrium equations? Why?

4. If you solved this problem with the scalar approach, why did you choose to solve the

equilibrium equations in the order that you did? For example, if you first solved the

x-equilibrium equation and then solved the moment equilibrium equation about

the z-axis, why did you choose this order?

Below are the self-explanation prompts for problem three of homework four

which were given to G4 and G6. The second and third prompts are scaffolded.

1. Why did you select the system that you used for your free-body diagram? Could

you have selected some other system and still solved the problem?

2. Reaction forces can be modeled as contact with smooth or rough surfaces, ball-and-

socket joints, fixed connections, thrust or non-thrust bearings, or flexible elements.

How did you model the reaction forces at A, C, and D? Why?

3. If a moment is computed about point A, which unknowns will remain? If a moment

is computed about the x-axis, which unknowns will remain? Which points or axes

did you chose to take moments about for your equilibrium equation? Why?

4. If you solved this problem with the scalar approach, why did you choose to solve the
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equilibrium equations in the order that you did? For example, if you first solved the

x-equilibrium equation and then solved the moment equilibrium equation about

the z-axis, why did you choose this order?

Below are the self-explanation prompts for problem five of homework four which

were given to G5 and G6. The second and third prompts are scaffolded.

1. Why did you select the system that you used for your free-body diagram? Could

you have selected some other system and still solved the problem?

2. Reaction forces can be modeled as contact with smooth or rough surfaces, ball-and-

socket joints, fixed connections, thrust or non-thrust bearings, or flexible elements.

How did you model the reaction forces at A, B, and C? Why?

3. If a moment is computed about C, which unknowns will remain? If a moment is

computed about the z-axis, which unknowns will remain? Which points or axes

did you chose to take moments about for your equilibrium equations? Why?

4. If you solved this problem with the scalar approach, why did you choose to solve the

equilibrium equations in the order that you did? For example, if you first solved the

x-equilibrium equation and then solved the moment equilibrium equation about

the z-axis, why did you choose this order?

Below are the self-explanation prompts for problem six of homework four which

were given to G4 and G6. The second and third prompts are scaffolded.

1. Why did you select the system that you used for your free-body diagram? Could

you have selected some other system and still solved the problem?
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2. Reaction forces can be modeled as contact with smooth or rough surfaces, ball-and-

socket joints, fixed connections, thrust or non-thrust bearings, or flexible elements.

How did you model the reaction forces at O and A? Why?

3. If a moment is computed about point A, which unknowns will remain? If a moment

is computed about point O, which unknowns will remain? What points or axes

did you chose to take moments about for your equilibrium equations? Why?

4. Why did you choose to solve the equilibrium equations in the order that you did?

For example, if you solved the x-equilibrium equation, then the y-equilibrium

equation, and finally the moment equilibrium equation, why did you choose this

order?

3.6.2.3 Homework Five Self-Explanation Prompts

Below are the self-explanation prompts given to G3 and G2 for each problem

on homework five. None of the prompts are scaffolded.

1. Why did you decompose the system into the particular set of free body diagrams

that you used?

2. Which bodies are two-force members?

3. Why did you analyze the free body diagrams in the order that you did?

4. When computing moments for your first moment equilibrium equation, why did

you choose the particular point that you used to compute moments about?
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Below are the self-explanation prompts for problem three of homework five

which were given to G4 and G6. The second and third prompts are scaffolded.

1. Why did you decompose the system into the particular set of free body diagrams

that you used?

2. Below are the components that comprise the pipe cutter. How many forces act on

Component A? How many forces act on Component B? How many forces act on

Component C? How many forces act on Component D? In your solution, which of

these components, if any, did you model as a two-force member?

Figure 3.44: Self-explanation prompt for homework five problem three. Students were
shown the individual components comprising a device and were asked to indicate which
were two-force members.

3. Why did you analyze the free body diagrams in the order that you did?

4. When computing moments for your first moment equilibrium equation, why did

you choose the particular point that you used to compute moments about?
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Below are the self-explanation prompts for problem six of homework five which

were given to G4 and G6. The second and third prompts are scaffolded.

1. Why did you decompose the system into the particular set of free body diagrams

that you used?

2. Below are the components that comprise the device in problem 6. How many

forces act on Component A? How many forces act on Component B? How many

forces act on Component C? In your solution, which of these components, if any,

did you model as a two-force member?

Figure 3.45: Self-explanation prompt for homework five problem six. Students were
shown the individual components comprising a device and were asked to indicate which
were two-force members.

3. Why did you analyze the free body diagrams in the order that you did?
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4. When computing moments for your first moment equilibrium equation, why did

you choose the particular point that you used to compute moments about?

Self-explanation prompts for problem two given to G5 and G6: Below are the

self-explanation prompts for problem two of homework five which were given to G5 and

G6. The second and third prompts are scaffolded.

1. Why did you decompose the system into the particular set of free body diagrams

that you used?

2. Below are the components that comprise the vise. How many forces act on Com-

ponent A? How many forces act on Component B? How many forces act on Com-

ponent C? How many forces act on Component D? In your solution, which of these

components, if any, did you model as a two-force member?

3. Why did you analyze the free body diagrams in the order that you did?

4. When computing moments for your first moment equilibrium equation, why did

you choose the particular point that you used to compute moments about?

Self-explanation prompts for problem 5 given to G5 and G6. None of the

prompts are scaffolded.

1. Why did you decompose the system into the particular set of free body diagrams

that you used?

2. Below are the components that comprise the log hoist. How many forces act on

Component A? How many forces act on Component B? How many forces act on
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Figure 3.46: Self-explanation prompt for homework five problem two. Students were
shown the components comprising a device and were asked to indicate which were two-
force members.

Component C? How many forces act on Component D? How many forces act on

Component E? In your solution, which of these components, if any, did you model

as a two-force member?

3. Why did you analyze the free body diagrams in the order that you did?

4. When computing moments for your first moment equilibrium equation, why did

you choose the particular point that you used to compute moments about?
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Figure 3.47: Self-explanation prompt for homework five problem five. Students were
shown the components comprising a device and were asked to indicate which were two-
force members.

3.6.2.4 Homework Eight Self-Explanation Prompts

G2, G3, G4, G5, and G6 were all given the following prompts for all problems

on homework assignment eight. None of these prompts were scaffolded.

1. To begin your solution, you must make several assumptions. Which surfaces, if

any, did you assume were on the verge of slip? Why did you think these surfaces

were on the verge of slip?

2. If slip did occur, which direction would each slipping member move?

3. For problem 3 only: Why is the device self-locking?
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Chapter 4

Open IE and Self-Explanation

Transcripts

4.1 Introduction

Research has demonstrated that self-explanation hones student’s metacogni-

tive skills and increases student performance. We have found, however, that not all

self-explanation is substantive. Our goal, in this chapter, is to develop computational

techniques capable of determining if a student’s explanation is relevant or not. This

will enable, for example, a system to automatically process students’ handwritten self-

explanations and present to the instructor those that are and are not relevant, providing

the instructor with an opportunity to rapidly address deficiencies in students’ under-

standing. Additionally, this technique may enable an interactive tutoring system to

prompt students to continue their explanations when necessary. This is a tractable task

as self-explanations typically contain only a small number of possible concepts. The
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language used to express concepts in each self-explanation can vary greatly, but our

task is only to identify the existence of the concepts, not to perform general machine

interpretation. In this chapter, we present work on the automatic understanding of

students’ handwritten self-explanation of their solutions to homework problems.

In this chapter1, we examine data extracted from the 2011 course offering.

In particular, we investigate the self-explanations of students from Gc as described in

Section 3.6.1.

To provide a benchmark for the self-explanations, we asked three experts to

solve some of the same problems and generate their own self-explanations. We manually

analyzed these and identified the concepts used. We found that the experts used only

a small set of concepts in their explanation of any particular problem-solving step. We

would expect that a student with an expert-stance would utilize the same set of concepts

in their explanations.

We employ an information extraction technique to automatically identify whether

a student’s self-explanation responses contain the same concepts used by the experts.

For example, this technique can determine if a student assumed that bodies in a fric-

tion problem were on the verge of slip, a concept that experts often included in their

self-explanations.

In our experiments, this technique has proven to be quite reliable, achieving

an accuracy of up to 97% on a particular explanation. This level of accuracy can be

attributed to the regular nature of the students’ self-explanation. Furthermore this

high-level of accuracy suggests that it may be feasible to develop automated systems to

1The work presented in this chapter has been published and appears in [55]
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elicit meaningful self-explanations from students.

4.2 Open Information Extraction Algorithm

For our analysis, we implemented the open IE algorithm developed by Soder-

land et al. [113]. This technique learns a set of rules which maps self-explanations to

content types. These rules comprise constraints on the existence of words in the self-

explanations and the locations of those words. If the correct set of words exists in the

correct locations, the rule assumes that a particular concept has been expressed.

This technique begins by using the TextRunner software package [35] to extract

all noun phrases present in each self-explanation sentence. Noun phrases take the form

of a tuple, (arg1, pred, arg2), where arg1 is the subject, pred is the predicate, and arg2

is the object.

A variety of words can be used to express the same concepts. For example, “on

the verge of slip” and “impending slip” have the same meaning. To accommodate these

sorts of variations, Soderland’s algorithm relies on lists of synonymous words. More

precisely, it requires the identification of word classes, and the enumeration of the words

within those classes. Table 4.1 lists the word classes we use in our analysis. For example,

the variable class contains the various words that are frequently used to describe the

unknown forces to be computed in a statics problem. These words include “variable,”

“force,” “unknown,” and “component.” Note that identifying the existence of a concept

in a self-explanation is more complex than simply identifying the existence of specific

words. The relationships between those words is essential.
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HWK-Prompt Class Name Words in Class

3-1,3-4 Eliminate
cancel eliminate, rid

ignore, took out, avoid

3-1 Contains contains, touches

3-1 Need need, require, necessary

3-1, 3-4 Variable variable, force, unknown, component

3-1 Only only

3-4 Only Unknown only unknown, only one

3-4 Direct direct, one step

3-4 Solve solve, give, gave

8-3 Assumption assume, occur, think, assumption

8-3 Slip slip

8-3 FBD Component
block, point, arm, crate

brake, surface, member, box

8-3 Negative wasn’t, isn’t, didn’t, not

8-3 Verge verge, impend, about

Table 4.1: The word classes and the words they contain for the self-explanation prompts
for the problems in homework assignments three and eight.

A rule learning process is used to learn these relationships. The rules attempt

to infer the commonalities between different expressions of the same concept. Initially,

the technique creates an overly-specified rule for each tuple. The rule, in effect, assumes

that for another tuple to have the same meaning, it must have the same words in the

same order. More precisely, the rule contains a constraint for every word class and

preposition found in both that tuple and the sentence that contains it. The constraints

govern both the existence and locations of those words. This technique recognizes five

possible locations for word classes and prepositions: arg1, pred, arg2, the portion of the

sentence preceding the tuple, and the portion proceeding. Each overly-specific rule will

likely match only a few other tuples in the training data, if any. To find a more accurate

rule, the technique repeatedly relaxes constraints so that the rule has higher precision

in identifying the concept. Here, precision is defined as:
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precision =
true positives

true positives + false positives
(4.1)

where “true positives” are tuples that were correctly identified, and “false positives” are

tuples that were incorrectly classified as this concept.

A beam search is used to find the most precise version of a rule. This search

begins by dropping constraints from the overly-specified rule, one at at time, and com-

puting the precision of each resulting, relaxed rule over the training set. The k most

precise rules are kept, where k is called the beam width. The process repeats for each of

these k relaxed rules. The process ultimately terminates when an empty rule is reached.

In our implementation, we use a beam width of 10.

4.3 Results and Discussion

We performed leave-one-out cross-validation to train and test this technique.

In each fold of cross-validation, the data from one subject (either an expert or a student)

is selected for testing, and the data from the other subjects is used for training. In this

way, the data used to train and test the system are never the same as each other.

Table 4.2 shows the accuracy results for identifying concepts for prompt one

of homework three. For example, the technique correctly identified 30 self-explanations

that expressed the needed-forces concept, and incorrectly identified seven other self-

explanations that also expressed this concept. Thus, the technique achieved 81.1%

accuracy at identifying this concept. Overall, the technique achieved 75.9% accuracy

at identifying concepts used in the expert’s self-explanations. Similarly, the technique
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Concept Correct Incorrect Accuracy

Needed Forces 30 7 81.1%

Only One 9 4 69.2%

Least Forces 2 1 66.7%

Alternative Difficult 0 1 0.0%

All Concepts 41 13 75.9%

None 52 22 70.2%

Table 4.2: Accuracy of concept recognition in self-explanations for prompt four of home-
work three. The “All Concepts” row of the table contains the overall accuracy for iden-
tifying self-explanations that contain a concept used in the expert’s self-explanations.
The “None” row is the accuracy for identifying self-explanations that contained none of
the concepts used in the expert’s self-explanations.

achieved 70.2% accuracy at identifying self-explanations that contained none of the

concepts used in the expert’s self-explanations.

Table 4.3 contains the accuracy results for identifying concepts for prompt

four of homework three. Overall, the technique achieved 87.7% accuracy at identifying

concepts used in the expert’s self-explanations. Similarly, the technique achieved 68.6%

accuracy at identifying self-explanations that contained none of the concepts used in the

expert’s self-explanations. Finally, Table 4.4 contains the accuracy results for identifying

concepts for prompt three of homework eight. Overall, the technique achieved 84.2%

accuracy at identifying concepts used in the expert’s self-explanations. Similarly, the

technique achieved 97.3% accuracy at identifying self-explanations that contained none

of the concepts used in the expert’s self-explanations.

This technique does perform better with more training data. For example, in

Table 4.2, there were numerous examples of the needed-forces concept, and only one for

the alternative-difficult concept. The program performed accurately on the former and
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Concept Correct Incorrect Accuracy

Directly Solves 4 2 66.7%

Only Unknown 6 2 75.0%

Eliminate Forces 40 1 97.6%

All Concepts 50 7 87.7%

None 70 32 68.6%

Table 4.3: Accuracy of concept recognition in self-explanations for prompt four of home-
work three. The “All Concepts” row of the table contains the overall accuracy for iden-
tifying self-explanations that contain a concept used in the expert’s self-explanations.
The “None” row is the accuracy for identifying self-explanations that contained none of
the concepts used in the expert’s self-explanations.

Concept Correct Incorrect Accuracy

Slip 11 7 61.1%

No-slip 6 6 50.0%

Verge 63 2 96.9%

All Concepts 80 15 84.2%

None 36 1 97.3%

Table 4.4: Accuracy of concept recognition in self-explanations for prompt three of home-
work eight. The “All Concepts” row of the table contains the overall accuracy for iden-
tifying self-explanations that contain a concept used in the expert’s self-explanations.
The “None” row is the accuracy for identifying self-explanations that contained none of
the concepts used in the expert’s self-explanations.
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poorly on the latter.

This technique currently works with manual transcriptions. In order for this

technique to work in a completely automated system the manual transcriptions will need

to be replaced with automatically recognized handwritting made possible by techniques

such as the image-based recognizer[72] or the dollar recognizer [129]. Future work will

need to account for the errors that may be introduced by such processes.

4.4 Conclusion

In this chapter, we have presented a technique which is able to accurately

identify whether a student’s self-explanation contains the same concepts used in self-

explanations generated by experts. The technique correctly identified the existence

of such concepts with an accuracy that ranged from 75.9% to 87.7%. Similarly, the

technique correctly identified the lack of such concepts with an accuracy that ranged

68.6% to 97.3%.

This work has several applications. For instance in an intelligent system that

engages students to generate meaningful self-explanations of their work, thus honing

their metacognitive skills and increasing their mastery of the subject. In the future,

these techniques may be implemented within an interactive tutoring system, enabling it

to determine if a student has provided meaningful self-explanation. Such a system may

then prompt the student to continue his explanations when necessary.
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Chapter 5

N-Gram Analysis and Problem

Number Sequences

5.1 Introduction

Self-explanation is the process by which a student provides, in words, a sum-

mary of their own understanding. In related work, students have been asked to gen-

erate self-explanations of the steps of a worked-out example or the rationale behind

the students’ own solutions to a problem. These self-explanations serve a metacognitive

purpose, allowing students to evaluate and monitor their own understanding of concepts

and enabling them to guide their own learning process. We demonstrate in this chapter,

as numerous other studies have demonstrated, that self-explanation positively impacts

student performance. Additionally, we demonstrate the positive impact self-explanation

has on a student’s ordinary solution process.
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In this chapter1, we compare the course performance and homework problem-

solving behaviors of Ga and Gc. Because students in Gc generated self-explanation,

we refer to them, in this chapter, as the SE (self-explanation) group. Similarly, be-

cause students in Ga did only generated homework solutions, and did not generate

self-explanation, we refer to them as the SO (solution only) group. In addition to course

performance, we present performance results on Steif’s statics concept inventory [115]

for the two groups.

A comparison of homework performance for the two groups demonstrates the

expected result that students who generate self-explanations perform significantly better

on their homework assignments than those who did not. Similarly, a comparison of the

performance on the statics concept inventory showed that the experimental group had

significantly greater learning gains for the fundamental statics concepts than did the

control group.

While improvements in learning gains are an important result, the unique

nature of our data set – time-stamped pen strokes – enables a much richer analysis

of differences between the groups. In particular, it enables us to examine the process

by which each student completes the problems in an assignment. In this chapter, we

examine the order in which students solve the problems in each assignment.

As mentioned in the previous chapter, to ground our analysis, we asked three

experts to use digital pens to complete some of the same homework assignments our

experimental and control group students completed. We then used statistical analysis

techniques to compare the work from the control and experimental groups to that of the

1The work presented in this chapter has been published and appears in [56]
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experts. This unique form of educational informatics is enabled by our novel database

of student work. This analysis revealed that students who generated self-explanations

solved problems more like the experts than did the students in the control group.

5.2 Analysis

Our first two analyses consider student performance on both homework grades

and Steif’s concept inventory [115]. We performed repeated measures analysis of vari-

ance (ANOVA) on both the homework and concept inventory performance. A number

of the students had incomplete records. Some failed to complete all of the homework

assignments and some failed to complete both the pre- and posttest concept inventory.

As a remedy, we performed a missing values analysis to estimate missing homework

and concept inventory scores. This technique estimates missing values by regressing on

known values. The ANOVA results presented in both the Concept Inventory Analysis

and Grade Analysis sections were done using these estimated missing values.

Our second two analyses consider the order in which students completed the

problems in an assignment. We found that the experts always solved the problems in

sequential order. Consequently, our analysis examines the extent to which the students

solve problems out of order, an indication of novice behavior. To perform this analysis,

we employ two sequence analysis methods commonly used in such disciplines as natural

language processing and bioinformatics[18, 117, 107].
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5.2.1 Concept Inventory Analysis

The average number of questions students correctly answered on the concept

inventory is shown in Figure 5.1. ANOVA revealed that the difference in the pre- to

posttest learning gains between the two groups is significant (p = 0.011).

Figure 5.1: Pre/posttest scores for the SE (blue) and SO (orange) groups on the concept
inventory for the 2012 course offering.

5.2.2 Grade Analysis

Next, we compared the homework performance of the two groups. The aver-

age scores for each homework assignment are shown in Figure 5.2. It is important to

note that in this course, the grade on a homework assignment was determined by the

performance on one problem – the other problems were not graded. ANOVA revealed

that the differences between the homework grades of the two groups is significant. More

specifically, there is a significant difference (p < 0.01) in the slopes of the linear best fit
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Figure 5.2: Average score for each homework assignment of both the SE (blue) and SO
(orange) groups. The dashed lines represent the linear best fit of each. ANOVA revealed
a significant difference in the slope of these two lines.

lines for the homework scores as shown in Figure 5.2.

5.2.3 Transition Probability Analysis

To examine the order in which students solve the problems in an assignment,

we represent their work as a sequence of problem numbers. For example, if a student

begins with problem one, moves on to problem two, and then returns to problem one

before working on problem three, the sequence would be “(1, 2, 1, 3)”. In this example,

there are two out-of-order problem transitions: 2-1 and 1-3. In our analysis, we consider

three types of transitions: in-order – a transition to the immediately next problem, such

as from 3 to 4; skip – a transition to a future problem, such as from 3 to 5; and backtrack

– a transition to any earlier problem, such as from 3 to 2.

We compute the occurrences of each of these kinds of transitions for each
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student and normalize by the total number of transitions, yielding a transition frequency.

Figure 5.3 shows the average transition frequencies on each homework assignment for

both the SE and SO students. We used a t-test to determine if the differences between

transition frequencies for the two groups are significant. The problems for which the

differences are significant are indicated in the figure.

(a) Backtrack (b) In-Order

(c) Skip

Figure 5.3: Average transition frequencies for the SE and SO groups for each homework
assignment. An asterisk (*) next to the homework number indicates that the difference
between the two groups is significant (p < 0.1) as determined by a t-test.

5.2.4 N-gram Analysis

Whereas the previous analysis considered the frequency of out-of-order transi-

tions, here we consider the frequency of transitions between particular problems, using
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an N -gram analysis. An N -gram is a subsequence of length N taken from a student’s

problem number sequence. For example, a two-gram or bigram is a subsequence of

length two and a three-gram or trigram is a subsequence of length three. Consider, for

instance, the student problem number sequence (1, 2, 3, 2, 4) which contains 4 bigrams:

(1, 2), (2, 3), (3, 2), and (2, 4), and 3 trigrams: (1, 2, 3), (2, 3, 2), and (3, 2, 4).

Our analysis focuses on the likelihood that the elements in the N -gram occur

together. First we consider Dice’s coefficient, which is defined only for bigrams. Consider

two sets of bigrams: the set of bigrams in which a particular problem number, p1, is the

first element of each bigram and another set of bigrams in which some other problem

number, p2, is the second element of each bigram. Dice’s coefficient provides a measure

of “similarity” for these two sets, computed as:

S =
2|X ∪ Y |

|X|+ |Y |
(5.1)

Here, |X| is the number of times some problem, p1, appears as the first element

in a bigram, |Y | is the number of times a second problem number, p2, appears as the

second element in a bigram, and |X∪Y | is the number of times the two problems appear

in the same bigram, (p1, p2). S is a number between 0 and 1; the closer it is to unity,

the greater the similarity between the two sets, or in other words, the more likely it is

that the two problem numbers appear together.

We created two corpora, one containing every problem sequence from the SE

group and one with all sequences from the SO group. We computed Dice’s coefficient for

each bigram in these corpora separately. The differences between the Dice’s coefficients

of the SE and SO groups are shown in Figure 5.4. Here, we compare the Dice coefficients
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only for bigrams whose problem numbers were out of order. A negative value indicates

that the problem numbers in a bigram appear more frequently together in the SO corpus

than in the SE corpus. Note that we do not present results for bigrams that occur fewer

than five times as Dice’s coefficients for such cases would be unreliable.

Figure 5.4: The difference in Dice’s coefficients (SE - SO) for bigrams occurring more
than five times. Negative values indicate bigrams that are more similar in the SO than
in the SE corpus.

Because Dice’s coefficient is limited to bigrams, we consider mutual information

when examining trigrams. This measures the statistical dependence of elements in a

trigram. Mutual information can be thought of as the difference between the marginal

entropy of a random variable, and the conditional entropy of that variable given a second:

I(X;Y ) = H(X)−H(X|Y ) (5.2)

H(X) represents the uncertainty that some problem number, p1, appears as

the first element in any bigram and H(X|Y ) represents the uncertainty that, p1 is the
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first element of a bigram given the occurrence of some particular second element of that

bigram, say p2. In this case, I(X;Y ) gives an indication of the amount of information

gained from knowing that p2 follows p1. This calculation naturally generalizes to three

variables, in which it is a measure of the amount of information gained about p1 knowing

that p2 and some other problem, p3, occur after it. I(X;Y ) is also a number between

0 and 1 such that the closer it is to unity, the more those problems are dependent on

each other.

We compute mutual information separately for the SE and SO corpora. The

differences in mutual information between the two corpora for each trigram are shown in

Figure 5.5. Trigrams which appear fewer than five times do not appear in these results.

A negative value in Figure 5.5 indicates that a sequence of problem numbers appears

more frequently in the SO corpus than in the SE corpus.

Figure 5.5: Difference in mutual information values between problem sequence trigrams
of the SE and SO groups.
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5.3 Discussion

Figure 5.1 shows that students in the SE and SO groups begin with equivalent

conceptual understanding of statics concepts. The SE and SO groups on average got 5.4

and 5.04 questions right on the inventory pretest, respectively. At the end of the quarter,

students from the SE group on average correctly answered 11.5 questions, while the SO

group correctly answered on average 9.44. The difference in learning gains between the

two groups is significant as revealed by ANOVA (p = 0.011). This evidence suggests

that self-explanation may lead to greater conceptual understanding in this statics course.

This corroborates intuition that self-explanation sharpens metaskills, leading to greater

performance on transfer problems.

Figure 5.2 corroborates the well known story that self-explanation positively

impacts performance. However, there is more to this story. Figure 5.2 shows that

self-explanation can lead to a large boost in performance, but as time goes on, that

difference dwindles to an insignificant level. The difference in the grades between the

two groups is significant (p < 0.1) in the first three homework assignments, but not in

the last two. This suggests that there may be a ceiling on student performance and that

self-explanation, and the metaskills that it fosters, lead students to reach that ceiling

quicker. This is an important benefit of self-explanation, especially in the context of a

fast paced quarter system.

Our analysis of problem number sequences suggests that self-explanation can

more quickly lead students to an expert-stance in the way that they solve problems. Both

the transition, bigram, and trigram analyses show that students in the SE group typically
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solve problems out of order less frequently than the SO students. As indicated in

Figure 5.3, whenever there is a significant difference between the transition frequencies of

the two groups, SE students transition out of order less frequently. Similarly, Figure 5.4

shows that specific out-of-order bigrams appear more frequently for SO students than

for SE student. Figure 5.5 presents perhaps the clearest distinction between the two

groups; SO students always had more out-of-order trigrams than the SE students.

One possible explanation for this behavior may be related to the fact that

the homework assignments contained groups of three consecutive problems that differed

only superficially. It is possible that the SO students gained insights on subsequent

problems, enabling them to revisit earlier problems in the set to correct their work. The

SE students, on the other hand, may have better understood their work on the first

attempt of a problem, making revisits to prior work unnecessary.

5.4 Conclusion

In this chapter we have compared, through a variety of analyses, the differences

in performance and solution processes of students who did and did not generate self-

explanation with their homework solutions.

In our first analysis, we compared the homework grades and pre- and posttest

scores on the statics concept inventory. We found that students who generated self-

explanation performed better on both the homework and the concept inventory posttest.

This is an expected result, as prior work has demonstrated similar effects.

We used sequential analysis techniques commonly used in bioinformatics and
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natural language processing to discover meaningful patterns in the order in which

students solved homework problems. In doing so, we have demonstrated that self-

explanation not only leads to greater performance gains, it also leads students to solve

homework problems more like an expert.
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Chapter 6

Differential Sequence Mining and

Action Sequences

6.1 Introduction

In this chapter1, we investigate a novel representation of a student’s handwrit-

ten assignment which characterizes the sequence of actions the student took to solve

each problem. This representation comprises an alphabet of canonical actions that a

student may perform when solving a homework assignment. Each action is characterized

by its duration, problem number, and semantic content. This representation allows us

to apply traditional data mining techniques to our database of students’ handwritten

homework solutions.

Our analyses focus on two separate groups of students from the 2012 course

offering, those who scored in the top third of the class on exams, and those who scored

1The work presented in this chapter has been published and appears in [51]
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in the bottom third. We applied a differential data mining technique to the sequences

of each of these groups and identified behaviors that are more frequently exhibited by

one group than the other.

These patterns serve as the basis for a number of numeric features used to train

a linear regression model to predict students’ performance in the course. This model

achieves an R2 of 0.34. More importantly, the underlying parameters of this model

provide valuable insights as to which of the patterns most correlate with performance.

Using these patterns, we are able to gain insight into the high-level, cognitive behaviors

exhibited by the students.

6.2 Action Sequences

In this section, we describe how each sketch may be transformed into an action

sequence, comprising discrete actions, that is suitable for differential pattern mining.

Each action is an element of a predefined alphabet of canonical actions. Each element

in the alphabet represents an uninterrupted period of problem-solving performed by

a student as he or she solves a homework assignment. We seek to characterize the

duration, semantic content, and homework problem number for each action.

We begin by segmenting the pen strokes of each sketch by semantic type. To do

so, we simply identify each index, i, in L such that li 6= li+1, and segment the series of pen

strokes at each identified index. Each resulting segment contains a sequence of actions

corresponding to the same semantic type. The resulting segments do not yet satisfy the

above definition of an action, as they do not necessarily contain uninterrupted work.
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Thus, we further segment the sketch at each index, j, such that the difference between

the start time of sj and the end time of sj−1 is greater than a specified threshold. In this

chapter, we use a threshold of five minutes, which was determined a priori ; five minutes

is a sufficiently large gap to be considered an intended break in the problem-solving

process.

Each segment is then labeled with an element from the alphabet of canonical

actions. If the segment comprises cross-out pen strokes, then it is given the cross-out

label, C, regardless of its length or problem number. The remaining groups are labeled

with a triple, {P, T,D}, where P represents the problem number, T represents the

semantic type, and D, represents the duration of the action. P ∈ {1, ..., 8} as there are

never more than eight problems on a given homework assignment. T ∈ {F,E} where F

represents a FBD action and E represents an equation action. Lastly, D ∈ {S,M,L},

where S, M , and L indicate an action of small, medium, or large duration respectively.

Take for example, the label <1-E-S>. This indicates a small action on the equations

from problem one of an assignment.

The cut-off points for each duration category were determined by studying the

distribution of lengths of all the FBD and equation actions. Figures 6.1 and 6.2 show a

histogram for the duration of FBD and equation actions respectively. We partition each

distribution into three segments such that the area under the curve for each segment

is equal. The resulting thresholds are 11.26 and 80.1 seconds for FBDs and 29.59

and 147.82 seconds for equations. There are 49 unique labels in the canonical action

alphabet, comprising the 48 possible combinations for a given triple and the additional
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Figure 6.1: A histogram of the durations of FBD actions across all homework assign-
ments. For example, the first (leftmost) bar indicates that approximately 6,000 FBD
actions were between zero and five seconds long.

cross-out label.

We seek to assign the action sequences of a student to a performance group

based on that student’s performance. In particular, we group a student’s action sequence

for an assignment by that student’s performance on the most relevant exam, which we

defined as the one that occurred most recently after that assignment was due.

Students completed homework assignments three and four prior to the first

midterm exam. Students completed homework assignments five and six after the first

midterm exam and before the second. Students completed homework assignment eight

after the second midterm exam and before the final exam. Each midterm exam only

comprised problems similar to those encountered on the homework assignments leading

up to it. Thus the first midterm exam required that students solve problems similar

to those found on homework assignment three and four and the second midterm exam
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Figure 6.2: A histogram of the durations of EQN actions across all homework assign-
ments. For example, the first (leftmost) bar indicates that approximately 3,500 EQN
actions were between zero and five seconds long.

required students to solve problems similar to those found on homework assignments

five and six. The final exam comprised problems similar to all those encountered on all

homework assignments.

Using this schedule of exams and homework assignments, we assign each action

sequence to a group based on performance. An action sequence is assigned to the top-

performing group if the student who performed those actions scored in the top third on

the relevant exam. Similarly, an action sequence is assigned to the bottom-performing

group if the student scored in the the bottom third of the class. The differential mining

technique employed in this chapter requires exactly two databases as input, thus the

remaining middle-performing students are excluded from our analysis to help accentuate

the differences in problem-solving behaviors of top- and bottom-performing students.

Descriptive statistics of the lengths of the action sequences for the two per-

formance group for each assignment are shown in Table 6.1. It is interesting to note
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Group Average Median Std. Dev. t-test

HW3 Bot. 89.52 88 43.30 0.21

HW3 Top 75.38 54.5 56.12 –

HW4 Bot. 130.25 128 63.97 0.00

HW4 Top 83.28 78 46.67 –

HW5 Bot. 127.88 119.5 70.89 0.01

HW5 Top 87.14 72 54.42 –

HW6 Bot. 144.73 140 52.55 0.171

HW6 Top 126.52 122 66.05 –

HW8 Bot. 82.45 72 73.94 0.17

HW8 Top 62.28 53.5 39.64 –

Table 6.1: Average, median, and standard deviation of the sequences for each grouping
of sequences on each assignment. The fourth column contains the p-value of a t-test
comparing the bottom-performing and top-performing groups on each assignment.

that the average action sequences of the bottom-performing group are always longer

than those of the top-performing group, and in two cases this difference is significant

(p < 0.01).

6.3 Differential Mining

To identify patterns that distinguish good performance from poor performance

we employ the differential pattern mining technique developed by Kinnebrew and Biswas

[75]. This algorithm identifies patterns that are differentially frequent with respect to

two databases of sequences, called the left and right databases.

This algorithm uses two metrics to measure the frequency of a pattern, s-

frequency and i-frequency. s-frequency is defined as the number of sequences in a

database that contains a specific pattern. i-frequency is defined as the number of times a

pattern appears within a single sequence. Take for example, a database of ten sequences

in which the first seven sequences contain one instance of a particular pattern and the
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last three sequences contain two instances of that same pattern. This pattern would

then have a s-frequency of 10. This pattern would have an i-frequency of one in the

first pattern and an i-frequency of two in the last pattern.

This algorithm begins by finding all patterns that meet a specified s-frequency

threshold in the left and right database separately. Each such pattern is called an

s-frequent pattern. A modified implementation of the SPAM algorithm [7] is used to

identify the initial set of s-frequent patterns constrained by the a maximum gap between

subsequent elements within a pattern. We use a maximum gap constraint of two in our

study.

The i-frequency of each s-frequent pattern is computed for each sequence in

each database. A separate t-test is computed for each s-frequent pattern to determine if

the i-frequency values computed using the left database are significantly different from

those computed for the right database. If the resulting p-value of the t-test is below

a certain threshold, called the p-value threshold, it is considered to be differentially

frequent. This algorithm identifies four types of differentially frequent patterns: those

that are s-frequent in both sets but whose average i-frequency is higher in the left

database; those that are s-frequent in both sets but whose average i-frequency is higher

in the right database; those that are are only s-frequent in the left database; and those

that are only s-frequent in the right database. In this study, we consider only the

sequences from the last two cases as they are the most most useful for distinguishing

between good- and poor-performing students.

In our implementation, we use the set of sequences from the bottom-performing

group as the left database and those from the top-performing group as the right database.
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We use a s-frequency threshold of 0.6, meaning that a pattern must appear in at least

60% of the sequences in a database in order to be considered s-frequent. We use a

p-value threshold of 0.1.

6.4 Performance Prediction

The differential pattern mining technique identified 98 patterns in total: 6

that were s-frequent in the top-performing group but not in the bottom-performing

group, and 92 that were s-frequent in the bottom-performing group but not in the

top-performing group.

Our goal is to use these 98 patterns to construct a model to distinguish be-

tween good- and poor-performing students. We represent each student with 98 binary

features. Each feature indicates whether a particular differential pattern from a partic-

ular assignment is contained within a student’s action sequence for that assignment. To

avoid computing a model that over-fits the data, we used the Correlation-based Feature

Selection (CFS) algorithm with 10-fold cross-validation to identify the subset of the 98

features with the most predictive power. Those features that were selected in more than

six of the ten folds by the CFS algorithm were included in the final feature subset. Table

6.2 shows the 20 features that were ultimately selected in this way.

We then used these 20 features to construct a linear regression model which

predicts students’ overall performance in the course. While more robust, non-linear

classifiers could have been used, e.g., AdaBoost [27] or Support Vector Machines [39],

we use a linear regression model because of the ease of interpretation; the coefficients
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HW No. Perf. Group Sequence

3 Top 1-E-M 1-F-S

3 Top 1-F-M 1-E-M

3 Bot 2-F-M 2-E-S

3 Bot C 5-E-S

3 Bot 5-E-M 5-F-S

3 Bot 5-E-S 5-F-M

3 Bot C 4-E-L

4 Bot C 1-E-M

4 Bot 1-E-L C

4 Bot C 5-E-L

4 Bot 1-E-M 1-E-S

4 Bot C C

5 Bot 4-E-S 4-E-S

6 Bot 1-F-M 1-E-S 1-E-M

6 Bot 1-E-S 1-E-M 1-F-M

6 Bot 1-F-M 1-F-S

6 Bot 1-F-S 1-F-M

8 Bot 5-F-M 5-F-S

8 Bot 5-F-S 5-E-M

8 Bot 5-F-M 5-E-S

Table 6.2: Features selected using the CFS algorithm. Each feature corresponds to a
pattern identified by the differential pattern mining algorithm. Each line shows the
homework number and group (top or bottom) from which the pattern was identified.
The final column shows the pattern that was used to compute the feature.

that comprise the model give insight into the predictive power of the features used to

train it. We used the linear regression package available in the WEKA machine learning

software suite [44] to train the model. Our predictive model achieves an R2 of 0.343 and

includes seven features with non-zero coefficients. Table 6.3 lists these seven features.

6.5 Discussion

We manually inspected each of the 98 patterns identified by the differential

pattern mining algorithm and categorized the different types of cognitive processes they
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demonstrate. We identified seven distinct categories. Difficulty is the category in which

students seem to encounter difficulties with a particular problem, evidenced by either

repeated cross-outs or repeated attempts at the same component of the same problem.

For example, the pattern <C, 1-E-S, C> describes a scenario in which the student

crossed out work, worked on equations for problem one for a short time, and then again

crossed out work.

Three categories describe patterns in which actions are repeated: Repeated

Equation, Repeated FBD, and Repeated Cross-out. For instance, <2-E-S 2-E-S> is an

example of a Repeated Equation action. Such sequences may be an indication that a

student is taking a break in the middle of a particular activity to think more carefully

before continuing with that activity.

Two categories describe patterns suggesting that a student may be revising

either a FBD (FBD Revision) or an equation (Equation revision). These patterns com-

prise a cross-out followed by either the FBD or equation they are most likely revising.

Also, when a student moves from working on an equation back to a FBD, this is likely

an indication that the FBD is being revised; students typically attempt to complete

their FBD before moving on to equations.

Lastly, is the Normal category. This is the category for all patterns in which

a FBD is followed by an equation of the same problem number. A differential pattern

belonging to the Normal category is particularly informative when one group exhibits

significantly more normal sequences – it is an indication that the other group is solving

their homework assignment out-of-order more often.

104



Sequence HW Weight Category

1-F-S 1-F-M 3 48.8 Repeated FBD

C 5-E-L 3 51.0 EQN Revision

C 5-E-S 4 51.2 EQN Revision

1-E-M 1-F-S 4 55.5 FBD Revision

C 1-E-M 6 62.7 EQN Revision

1-F-M 1-E-S 1-E-M 6 63.1 Difficulty

5-F-M 5-F-S 8 73.1 Repeated FBD

Table 6.3: Non-zero feature coefficients for the linear regression model trained to predict
student performance.

The non-zero weighted features of the linear regression model (Table 6.3) help

identify the patterns which are most predictive of students’ grades, and thus provide

insight into the behaviors which best correlate with students’ performance. In Table

6.3, Patterns 1, 4, 5, and 6 are all similar in that they comprise actions pertaining to

the first problem on a homework assignment, and suggest that a student may be having

difficulty or is frequently revising his or her work. This is an indication that when

students encounter difficulty on the first problem, which is typically the easiest problem

of the homework assignment, that they may continue to encounter those difficulties

throughout the quarter.

Patterns 2, 3, and 7 in Table 6.3 are all similar in that they pertain to problems

that are very similar to problems that appear on either a later midterm, the final exam,

or both. (These problems differ only superficially from exam problems. For example, the

geometry may be rotated.) These patterns all describe situations in which the student is

revising his or her equations or FBDs. The features suggest that students who frequently

revise problems which are similar to an exam problem are likely to have difficulty with

those problems later on during an exam.
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It would be difficult to use the linear regression model to predict performance

for students of a future section in Statics. To do so would require that the instruction,

assignments, and exams, be identical. This is not likely to be the case, as some of

the homework problems are modified each year to prevent copying solutions from the

previous offering.

Instead, the patterns and correlations discovered in this chapter may be used to

guide future offerings of this course. For example, if a student’s work contains patterns

which indicate difficulty, similar to those found in this study, on the first problem of an

assignment or on a problem which is similar to one that will appear in a future exam,

the instructor can provide targeted materials for that student to address that difficulty.

Furthermore, the results here indicate which problems have a strong bearing on students’

performance. For example, students who seemed to have difficulty constructing a FBD

on problem five of homework eight typically did not perform well in the course. This

indicates to the instructors of future offerings this course, that more time should be

spent in class reviewing how the FBD for this problem should be constructed.

6.6 Conclusion

In this chapter, we have presented a novel representation of students’ hand-

written work on an assignment which characterizes the sequence of actions the student

took to solve that problem. This representation comprises an alphabet of 49 canonical

actions that a student may make when solving his or her homework assignment. Each

action is characterized by its duration, problem number, and semantic content. This
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representation allows us for the first time, to apply traditional data mining techniques

to sequences of students’ handwritten problem solutions.

We assigned these sequences into top- and bottom-performing groups according

to performance on each sequence’s most relevant exam. The most relevant exam for a

sequence from a particular homework assignment is the exam which occurs most recently

after that homework assignment was due. Sequences from students who performed

in the top third of the class on that assignment comprise the top-performing group

and sequences from students who performed in the bottom third comprise the bottom-

performing group. We applied a differential data mining technique to the sequences from

the students in each of these groups and identified patterns that are more frequently

exhibited by one group than the other.

These patterns serve as the basis for features used to train a linear regression

model to predict students’ performance in the course. This model achieves an R2 of

0.34. Furthermore, the underlying parameters of this model provide valuable insights as

to which of the patterns best correlate with performance. From these best-correlating

patterns, we have manually identified high-level cognitive behaviors exhibited by the

students. These behaviors provide insight as to when students may be experiencing

difficulty in the course. These techniques may be applied in future sections of this

course to identify when students are having difficulty in class, enabling the instructor

to rapidly address those difficulties.
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Chapter 7

K-Means Clustering and Solution

Bitmaps

7.1 Introduction

It has been shown in prior work that both the temporal and spatial organiza-

tion of a students solution to a homework or exam problem correlates with his or her

performance on that solution. This result supports the intuition that the way in which a

student organizes his or her work provides a view into the cognitive processes by which

that student solved that problem.

In this chapter1, we seek to develop taxonomy for the organization exhibited

by students. The organizational categories we identify serve as a basis for examining

the cognitive processes employed by students as they solve homework problems. While

we could manually inspect student work to identify typical organizational patterns, such

1The work presented in this chapter has been published and appears in [58]
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an approach is prohibitively time-consuming. Also, the results may be subject to coder-

bias as they would rely on a particular inspectors judgment. Instead, we employ a

data-driven approach to automatically discover patterns latent in the organization of

students from the 2012 course offering.

To capture the spatial organization exhibited by the students, we represent each

page of a solution as a low-resolution bitmap. This process removes small variations in

the students solutions, capturing a general representation of the layout of the ink on

a page. We may then compute the distance between two bitmaps using the Hausdorff

distance, a popular bitmap distance metric. Having a distance metric for bitmaps allows

us to cluster them using the K-Means[85] clustering algorithm. This algorithm identifies

groupings of bitmaps that are more similar with one another than with the bitmaps of

other groups. Each of these groups represents a distinct spatial organization type. We

then manually examine the pages which comprise each grouping, and describe the high-

level organizational habits that are present. From these habits, we gain insights into the

cognitive processes employed by students as they solve homework problems.

7.2 Solution Bitmaps

Our approach begins by converting each handwritten solution into two binary

images: one containing ink for all FBDs and one for all equations. Figure 7.1 4 shows

an example of a students solution and the resulting two FBD and equation bitmaps. To

construct a solution bitmap, first a minimum bounding box is constructed around the

entire solution. This box is divided into a 10 x 10 bitmap. Each pixel in the bitmap is
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then marked with a value of either 1 or 0, indicating whether any ink exists in that pixel

or not respectively. This produces a coarse-grained representation of the students work

as it is effectively a down-sampling of the original sketch. This representation naturally

removes minute variances between students solutions and captures the general spatial

organization present in each solution.

7.3 Clustering

We have performed eight separate clustering processes, one for each problem

on the final exam. In each process, all pages of solutions corresponding to the same final

exam problem number are used as input to the K-Means clustering algorithm.

The clustering algorithm employs the Hasudorff distance to measure the simi-

larity between two sets. The Hausdorff distance between two bitmaps is defined as:

H(A,B) = max(h(A,B), h(B,A) (7.1)

where:

h(A,B) = argmax
a∈A

(argmin
b∈B

distance(a, b)) (7.2)

is called the directed Hausdorff distance. Note that h(A,B) 6= h(B,A). Here,

distance is the Manhattan distance between two bitmap pixels a and b. Intuitively, the

Hausdorff distance identifies the distance, d, such that each pixel in A is at most d from

some pixel in B, providing a general measure of similarity between bitmaps A and B.

The K-Means clustering algorithm is used to optimally group n objects into k clusters,
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Figure 7.1: Example of a students handwritten solution (left) and resulting equation
(green) and FBD (blue) bitmap.
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such that each object within a cluster is closer to the mean of all objects in that cluster

than the mean of objects in any other cluster. Here, the objects being clustered are

the solution bitmaps, and the distance between bitmaps is defined using the Hasudorff

distance. The number of clusters, k, must be selected a priori. We use a value of k = 9

for each run of the clustering algorithm. This value proves to be sufficiently high for the

data we have collected. We use the K-Means implementation of the WEKA[44] data

mining software suite.

7.4 Group Analysis

Presenting the clustering results for each grouping for each problem would

prove to be intractably large. Instead we present in this section a manual analysis of the

results of clustering the FBD solution bitmaps from final exam problem two and six and

discuss the high-level behaviors exhibited by the typical solutions of each group. The

results for these problems are sufficient to characterize the types of conclusions that can

be drawn using our unsupervised analysis. While we used a cluster value, k, of nine, it

is not always the case that the algorithm will identify nine meaningful groups. In some

cases, there were less than nine groupings present in the data and thus some groups are

empty, that is, they contain no solution bitmaps.

For problem two, the K-Means algorithm identified three non-empty groups.

The first group comprised 24 sketches. The FBDs of the sketches within the first group

typically were small in comparison to FBDs of other groups. Furthermore, these FBDs

typically depicted a single element comprising an outline of the entire system shown
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in the problem description image. Three typical solution bitmaps from this group are

shown in Figure 7.2. This grouping characterizes solutions by students who are having

difficulty solving the problem and are unable to divide the system into components

which allow the unknown forces to be solved.

(a) (b)

(c)

Figure 7.2: Typical solution bitmaps from group one of problem two of the final exam
from the 2012 course offering.

The second group comprised 92 sketches. The FBDs of the sketches within

this group typically spanned the entire page and were often either a single large FBD

outlining the entire problem description image or comprised several small components
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scattered across the entire page. This group is characterized by solutions written by

students who perhaps were struggling to identify the FBD that would best lead to the

correct solution, and spent an entire page testing different FBDs until they came across

an acceptable one. Three typical bitmaps from this group are shown in Figure 7.3.

(a) (b)

(c)

Figure 7.3: Typical solution bitmaps from group two of problem two of the final exam
from the 2012 course offering.

Lastly, the third group comprised 24 sketches. Sketches from this group typi-

cally contained the same FBD component redrawn at least once. This group is charac-

terized by students who made mistakes in their first FBD and had to later start over,
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perhaps indicating a lack of understanding. Three typical bitmaps from this group are

shown in Figure 7.4.

(a) (b)

(c)

Figure 7.4: Typical solution bitmaps from group three of problem two of the final exam
from the 2012 course offering.

For problem six, the K-Means clustering algorithm identified five non-empty

groups. The first group comprised 18 sketches, all of which came from the second page of

a solution to a problem. Sketches in this group typically contained a single, small FBD

in the upper left corner of the page, representing the two-force-member present in that

problem. This grouping is characterized by solutions of students who saved solving the
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two-force-member as the final step. Three typical bitmaps from this group are shown in

Figure 7.5.

(a) (b)

(c)

Figure 7.5: Typical solution bitmaps from group one of problem six of the final exam
for the 2012 course offering.

The second group comprised 42 sketches. These sketches typically contained a

single, large FBD which was simply an outline of the entire system shown in the problem

description image. This group is characterized by a lack of understanding by students,

as they were unable to identify proper boundaries which exposed the forces required to
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(a) (b)

(c)

Figure 7.6: Typical solution bitmaps from group two of problem six of the final exam
for the 2012 course offering.

solve for the unknowns. Three typical bitmaps from this group are shown in Figure 7.6.

The third group comprised 19 sketches. These sketches typically contained just

two FBDs that horizontally spanned the top of the page. This group is characterized by

students who completely finished their FBDs prior to beginning work on the equations.

Three typical images of solutions from this group are shown in Figure 7.7.

Groups four, five, and six are very similar and comprise 39, 47, and 8 sketches

respectively. Each of these groups typically contains three to four FBDs spread out
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(a) (b)

(c)

Figure 7.7: Typical solution bitmaps from group three of problem six of the final exam
for the 2012 course offering.

vertically along the left margin of the page. These groups are characterized by students

who drew a single component of the FBD, solved equilibrium equations for that compo-

nent, then moved on to the next component, and so forth. Three typical bitmaps from

this group are shown in Figure 7.8.
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(a) (b)

(c)

Figure 7.8: Typical solution bitmaps from groups four, five, and six of problem six of
the final exam for the 2012 course offering.

7.5 Discussion

It is important to note that the results presented in the previous section concern

typical templates from each grouping and are not a generalization that necessarily applies

to every template in a single grouping. We strove to manually identify common themes

present in many of the templates but which may not hold true for all templates in that

group.

Furthermore, the clustering results do not directly reflect the quality or content
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of the FBDs or equations written by the students. For example, two FBDs of similar

shape, size, and location, drawn by two different students, would be grouped together

by this algorithm, even if those FBDs corresponded to solutions of a student who did

and did not perform well.

Instead, these clusters identify different organizational behaviors exhibited by

students. Using these clusters, we identified the common, high-level organizational

patterns exhibited by the students via a manual inspection of the actual solutions. While

it has been shown in previous work that students organizational habits are indicative

of their performance, the goal of this work is not to automatically identify students

performance given the organization of their FBD and equation writing, but instead

to develop a taxonomy of the types of behaviors exhibited by students as they solve

problems. By better understanding the typical behaviors students employ when solving

Statics problems, instructors may gain insights into the cognitive processes employed

by students. This work paves the way for future work to analyze the performance of

students who exhibit particular organizational patterns to see if there is a significant

correlation between the types of organization employed and performance.

7.6 Conclusion

In this work, we have taken first steps towards developing a taxonomy for

the spatial organization employed by students. We applied educational informatics

techniques to automatically identify groupings of students who organized their solutions

in a similar way.
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We represent each page of a solution as a low-resolution bitmap. We compute

distances between bitmaps using the Hausdorff distance and cluster the bitmaps by that

distance using the K-Means clustering algorithm. This algorithm identifies groupings of

bitmaps that are similar with one another and distinct from bitmaps of other groups.

Each of these groups represents a distinct spatial organization type. Having examined

the pages which comprise each grouping, we were able to describe the higher-level orga-

nizational habits exhibited by the students. These habits have important pedagogical

implications for instructors, and provide insights into the process by which students

solve their problems.
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Chapter 8

Linear Regression and

Effort-Based, Numerical Features

8.1 Introduction

Homework serves a number of purposes. It provides students with an oppor-

tunity to practice methods they have learned in the classroom, familiarizes them with

new material before it is covered in lecture, and helps them synthesize concepts and

apply them in new ways. Despite its widespread use, there is contention as to whether

homework leads to better course performance. Numerous studies have examined the

existence of correlations between a students effort on homework and performance in a

course, yet the results of these studies are mixed.

Variations in the nature of these studies may partially account for these incon-

sistencies. For example, these studies vary in the grade-level of the students, the type

of homework assigned, and the subject matter. Additionally, bias and inconsistencies
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in the measurement of homework effort may also confound the results. Most previous

work relies on the students themselves, or their parents, to report the amount of time

spent on homework.

In this chapter1, we present more precise and objective measures of homework

effort enabled by the pen data extracted from the 2012 course offering. We compute

numerical features from these records which estimate the effort students expended on

each homework assignment. We use these features to predict students performance via

a number of measures, including homework, quiz, and exam scores. We show that these

effort-based features explain up to 39.9% of the variance in the students performance.

These results have several pedagogical implications. The correlations we identify provide

insights into the types of transfer students make from homework to exam problems. The

results can also be used to evaluate the effectiveness of homework assignments, allowing

instructors to improve homework assignments for future course offerings. Lastly, our

analyses can be used to identify patterns of homework effort exhibited by students who

perform well in the course.

8.2 Computing an Estimation of Student Effort

Here we describe the two types of novel quantitative features we use to estimate

students effort on homework. The overall-effort features are coarse-grained, and char-

acterize the total effort a student spent on a particular assignment. The per-problem

features are fine-grained, and characterize the amount of effort spent on each individual

problem.

1The work presented in this chapter has been published and appears in [57]
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8.3 Overall-Effort Features and Performance Models

The overall-effort features characterize the distribution of effort a student ex-

pends on his or her homework assignment. For example, some students may begin an

assignment early and put substantial work into it each day, resulting in several home-

work “episodes.” Conversely, other students may put off the homework until shortly

before it is due, resulting in a single, large homework episode.

To compute the overall-effort features, we first create a time-series representing

the effort a student exerted on an assignment . The series begins with the first pen stroke

written and ends with the last. This time span is divided into five-minute intervals. Each

interval is characterized by the amount of ink written, which is defined as the distance

the pen tip travels on the paper during that interval. In this way, effort is characterized

by the amount of writing rather than simply the amount of time elapsed.

Figure 8.1 shows a typical effort time-series. Effort time-series are typically flat

and punctuated with a few, large episodes of activity. We compute four features from

each time-series. The first feature is the total amount of ink written, which characterizes

the total effort spent on that assignment. The remaining three features characterize the

distribution of this effort. To compute these features, we first identify active episodes,

in which a student is writing, and inactive episodes in which no writing occurs. Each

contiguous sequence of non-zero intervals (i.e,. intervals containing writing) forms an

active episode. To prevent small breaks in writing from splitting an episode, active

episodes may contain subsequences of up to two zero-valued intervals. Thus a break of

ten minutes or less does not break a problem-solving episode. All remaining contiguous
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Figure 8.1: Typical effort time-series of a single student on a single assignment. The
abscissa denotes the index of the five-minute intervals, not the actual time stamp of
the interval. For example, interval one comprises the first five minutes of the students
problem solution. The ordinate denotes the total ink written during a given five-minute
interval.

sequences of zero-valued intervals are identified as inactive episodes. The effort time-

series is characterized by the number of active episodes, the average length of the active

episodes, and the average length of the inactive episodes. Figure 8.1 shows the active

and inactive episodes for the effort time-series from Figure 8.1.

We used the four overall-effort features to construct models relating students

effort on a particular assignment to performance on that assignment. We computed these

models using the linear regression package in the WEKA Data Mining Software suite[44].

Figure 8.3 presents the coefficient of determination for the models constructed for each

homework assignment. WEKAs linear regression package employs a greedy feature

selection algorithm. Features are removed from the model until there is no improvement

in the error estimation, as determined by the Akaike information criterion[4]. The
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Figure 8.2: Effort time-series previously shown in Figure Figure 8.1 with active (green
regions ) and inactive (red regions) episodes identified.

HW No. Avg. Act. Length Avg. Inact. Length No. Act. Intervals Ink (in.)

3 Selected

4 Selected

5 Selected Selected

6 Selected Selected

7 Selected Selected

8 Selected Selected

Table 8.1: Overall-effort features selected for linear regression models for homework
performance.

features selected for each homework model are presented in Table 8.1.

We also used WEKAs implementation of the expectation maximization (EM)

clustering[30] algorithm to group students by similarities in both the effort they exerted

on a homework assignment and they performance they achieved on it. The clusters

identified for each assignment are listed in Table 8.2 through Table 8.7. Each cluster

is characterized by the average and standard deviation of the homework grade (the
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Figure 8.3: Coefficients of determination for linear regression models relating overall-
effort features to homework performance. The average coefficient of determination is
0.231.

maximum grade is 10.0) and the overall-effort features of the data points contained in

that cluster.

8.4 Per-Problem Features

We use the overall-effort features to examine the relationship between the total

effort on an assignment and performance on that assignment. Here we examine how

effort on individual homework problems relates to performance on subsequent homework

assignments, exams (midterms and final), and quizzes. We estimate the effort on a

single homework problem as the total time during which the pen is in contact with

the paper. The time between pen strokes is not included in this value. We once again

employ the linear regression package available in WEKA to compute regression models.

The resulting coefficients of determination are shown in Figure 8.4. In the figure, the

127



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

c
n

t
 

t
t

Figure 8.4: Coefficients of determination of models using per-problem features to pre-
dict performance on coursework. The average coefficient of determination is 0.239.The
coursework is listed in the order completed.

coursework is listed in the order it was completed. For example, quiz six was completed

just after homework seven was due. Furthermore, a model using the effort on each of

the problems from homework assignments three through seven predicts performance on

quiz six with a coefficient of determination of 0.32.

In a similar way, we used the per-problem effort features to predict perfor-

mance on individual problems on the midterm and the final exams. The results are

shown in Figure 8.5. The features selected by WEKAs greedy feature selection algo-

rithm provide insights about learning transfer. For example, the features selected for

predicting performance on the first problem of the first midterm were effort on home-

work assignment three, problem four; effort on homework three, problem five; and effort

on homework four, problem five. (Because of the large number of features we consider,

space constraints prevent inclusion of the complete feature selection results correspond-
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Figure 8.5: Coefficients of determination of models using per-problem features to predict
performance on individual exam problems. The average coefficient of determination is
0.161. The first problem of the final exam concerned professional ethics question and
thus was excluded from the analysis.

ing to Figure 8.4 and Figure 8.5.)

8.5 Discussion

It is important to note that our effort features capture only a portion of the

effort expended by students on studying. Other elements of studying, such as the amount

of time spent reading the textbook or working on scratch paper, are not captured by

the digital pens we use. However, we believe that the amount of time spent problem

solving on homework provides a useful measure of a students effort in a course.

The results of the linear regression analysis of the overall-effort features indicate

that students effort does account for a considerable portion of the variance in perfor-

mance. For example, in the best case, the effort-based features accounted for 33.9%
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of the variance in performance on homework. This correlation is considerably stronger

than that found in previous studies. Interestingly, the feature selection results indicate

that the number of active intervals and the total ink written are the most important

features. Each is selected for the models for at least half of the homework assignments.

This suggests that the more often a student sits down to work on an assignment and

the more writing he or she does, the more likely it is that the student will do well on

that assignment.

Each of the linear regression models showed a positive correlation between

performance and each effort feature, indicating that the more time a student spent on a

particular problem the better he or she performed. This may demonstrate that students

who spent more time on their homework were better prepared for the exam problems.

It is important to note that this may not always be the case. It is entirely possible that

a particular effort feature could negatively correlate with performance. Such a case may

indicate that a student spent a large amount of time on a problem as because he or

she had difficulty understanding it and as a result that student did not perform well on

related exam problems.

The clustering results reveal a similar story to the linear regression analysis.

The clusters with the highest average grade are typically those which also have the

highest average number of active intervals. The clustering results serve as an easy-

to-read summary of typical solution behaviors exhibited by students on a particular

assignment. Instructors can use these sorts of results to quickly determine which groups

of students are spending a sufficient amount of time on the homework. More importantly,

this analysis reveals just how much time is needed to do well on an assignment. This
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Cluster 1 2 3

Avg. Grade 5.35 6.2 7.23

Std. Grade 2.92 3.3 3.08

Avg. Active Length 393.86 14.8 100.16

Std. Active Length 412.1 9.83 45.42

Avg. Inactive Length 779.13 80.72 76.69

Std. Inactive Length 273 82.56 41.81

Avg. No. Active Intervals 2.5 2.88 2.03

Std. No. Active Intervals 0.5 1.77 0.18

Avg. Ink (Inches) 905.9 1045.4 1216.0

Std. Ink (Inches) 247.4 692.7 1168.4

Table 8.2: The average and standard deviation for each of the EM clusters for homework
assignment three.

will enable an instructor, for example, to identify when a large number of students are

performing poorly on a problem despite spending a great deal of effort on it, a strong

indication that a widespread misconception or difficulty exists in the class.

The results of the per-problem linear regression analysis reveal that the amount

of effort spent by students on individual homework problems can account for up to 39.9%

of the variance of students performance on subsequent homework assignments. Further-

more, when the per-problem features are used to predict performance on individual

exam problems, they can account for up to 31.4% of the variance in that grade. This

is an interesting result as these features do not consider the semantic content of the

students solutions.

The per-problem features selected by the final model of each linear regression

are an indication of the importance of individual homework problems. (In the present

131



Cluster 1 2 3

Avg. Grade 3.53 3.75 6.87

Std. Grade 3.57 3.36 1.48

Avg. Active Length 654.97 56.78 14.86

Std. Active Length 115.82 64.93 9.97

Avg. Inactive Length 636.38 83.58 174.18

Std. Inactive Length 119.52 86.68 115.59

Avg. No. Active Intervals 2 2.06 4.5

Std. No. Active Intervals 1.81 0.95 1.61

Avg. Ink (Inches) 804.8 1001.1 166.9

Std. Ink (Inches) 358.6 652.1 758.5

Table 8.3: The average and standard deviation for each of the EM clusters for homework
assignment four.

Cluster 1 2 3 4

Avg. Grade 5.04 5.56 2.45 1.61

Std. Grade 1.7 2 3.11 2.16

Avg. Active Length 109.08 12.23 873.58 23.12

Std. Active Length 84.55 8.3 303.81 36.64

Avg. Inactive Length 93.79 164.16 855.98 276.44

Std. Inactive Length 71.28 118.78 308.34 217.46

Avg. No. Active Intervals 1.96 4.81 2 2.93

Std. No. Active Intervals 0.62 1.69 1.77 1.03

Avg. Ink (Inches) 1088.9 176.5 675.4 925.1

Std. Ink (Inches) 680.2 756.6 401.6 539.6

Table 8.4: The average and standard deviation for each of the EM clusters for homework
assignment five.
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Cluster 1 2 3 4

Avg. Grade 5.57 8.02 3.89 8.23

Std. Grade 2.97 1.68 4.04 1.54

Avg. Active Length 973.42 10.93 97.08 33.38

Std. Active Length 408.61 5.16 86.93 22.12

Avg. Inactive Length 1149.78 168.8 109.29 27.02

Std. Inactive Length 152.99 139.52 87.22 17.19

Avg. No. Active Intervals 2.14 4.74 2.07 1.75

Std. No. Active Intervals 0.34 1.61 0.79 0.76

Avg. Ink (Inches) 1188.2 660.3 928.1 1290.1

Std. Ink (Inches) 297.1 686.4 602.6 6124.7

Table 8.5: The average and standard deviation for each of the EM clusters for homework
assignment six.

Cluster 1 2

Avg. Grade 6.38 7.36

Std. Grade 3.47 2.94

Avg. Active Length 10.02 686.56

Std. Active Length 6.26 980.46

Avg. Inactive Length 357.31 658.08

Std. Inactive Length 416.62 983.1

Avg. No. Active Intervals 3.68 2

Std. No. Active Intervals 2.3 2.17

Avg. Ink (Inches) 1237.1 1246.3

Std. Ink (Inches) 667.1 555.9

Table 8.6: The average and standard deviation for each of the EM clusters for homework
assignment seven.
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Cluster 1 2 3 4

Avg. Grade 7.61 8.09 0.78 8.81

Std. Grade 1.37 2.37 0.41 1.78

Avg. Active Length 650.91 24.07 73.21 26.36

Std. Active Length 343.74 32.02 140.13 31.26

Avg. Inactive Length 628.91 18.98 100.74 183.19

Std. Inactive Length 340.41 24.58 165.08 159.16

Avg. No. Active Intervals 2 1.24 1.43 3.01

Std. No. Active Intervals 1.07 0.43 0.64 1.05

Avg. Ink (Inches) 769.6 610 486.5 1119

Std. Ink (Inches) 343.8 202.8 293.3 342.8

Table 8.7: The average and standard deviation for each of the EM clusters for homework
assignment eight.

data, all of these features were positively correlated with performance.) The selected

features reveal which homework problems lead to success in learning particular concepts

in the course. More specifically, they reveal the transfer taking place from particular

homework problems to particular exam problems. Consider, for example, the first prob-

lem of the first midterm, shown in Figure 8.6. The amount of effort exerted on homework

three, problem four was one of the three features selected to predict the performance on

this midterm problem. Interesting, the midterm problem can be considered a rotated

version of the homework problem. This clearly shows students transferring knowledge

from the homework problem to solve the midterm problem.

These results indicate practical changes instructors can make to homework as-

signments. Namely, this suggests that exam problems which comprise simple extensions

to homework problems can be used to identify students ability to transfer knowledge.

Instructors should examine students performance on the homework problems that will

be similar to upcoming exam problems. If students are spending insufficient effort on
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(a) Homework three, problem four (b) Midterm one, problem one

Figure 8.6: An example of the knowledge transfer students made. Problem (b) is effec-
tively a rotated version of problem (a).

these problems, they should be further examined in class. This analysis can serve as an

invaluable tool to the instructor of a course. Using it, the instructor may review which

features (i.e., homework problems) are selected in the per-problem models, identify the

types of transfer students made, and use that knowledge to shape exam and homework

problems in future course offerings. A manual analysis of the transfer revealed by our

present data will be an important element of future work on this project.

Overall, the linear regression analysis results for both the overall-effort and per-

problem models provide correlations that are much stronger than those found in prior

work. As mentioned earlier, those studies typically relied on either the students or their
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parents to report the amount of time spent working on each homework assignment. The

Livescribe digital pens provide a more reliable measure of the amount of time students

spend on their homework assignments which may account for the higher coefficients of

determination we obtain.

8.6 Conclusion

In this chapter, we have presented novel, data-driven methods for analyzing

students homework habits. Namely, we have computed a number of numerical fea-

tures which characterized the effort that students exerted when solving their homework

assignments. We have applied machine learning techniques, namely a linear regression

classifier, in order to use these features to both predict and cluster students’ performance

in this course.

There were two major types of features computed: overall-effort features and

per-problem features. Four overall-effort features were computed which characterized

both the amount and distribution of effort exerted on a single assignment: the total

amount of ink written in an assignment; the number of active problem-solving episodes;

the average length of the active problem-solving episodes; and the average length of

the inactive episodes. These features were used to predict the performance on the

homework assignment from which they were computed. These overall-effort features

explain up to 33.9% of the variance in students performance on a particular assignment.

Additionally, these features and the homework assignment grade were used as input to

the EM clustering algorithm. This algorithm identified groups of students who both
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displayed similar effort behaviors and assignment performance. These groupings may

be used as behavior-performance profiles that are valuable feedback for an instructor.

The per-problem features comprised the amount of time spent writing the so-

lution to each problem of a homework assignment. These features were used to predict

performance on subsequent homework assignments, quizzes, and exams. These features

accounted for up to 39.9% of the variance on a particular item. Additionally, the per-

problem features were used to predict performance on individual exam problems. They

accounted for up to 31.4% of the variance of the performance on individual problems.

More importantly, the features selected by these linear regression models provide impor-

tant insights for the instructor, indicating which of the homework problems lead to good

performance on the exam questions. By analyzing which homework problems most ac-

count for the variance on a particular exam problem, instructors may identify the types

of transfer students make from homework to exam problems. This information is an

invaluable source of feedback for the instructor as well as a guide to how homework and

exam problems should be designed for future course offerings.
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Chapter 9

Information Gain and

Effort-Based, Numerical Features

9.1 Introduction

In this chapter we investigate the ability of the effort students expend on their

homework assignments to predict errors those students make on the midterm exams.

Based on the work presented in the previous chapter, we sought to more directly mea-

sure the predictive ability of effort on each homework assignment. Whereas in the last

chapter, we consider models which combined features from different homework problems

to predict performance, here we consider the predictive power of each feature individ-

ually. This provides a clearer understanding of the value of each feature as opposed to

considering its value when used in combination with other features. Furthermore, this

more clearly allows us to identify which homework assignments were most effective in

preparing students for the exams.
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As mentioned in Section 3.3, these exams were graded according to a precise,

error-based rubric. The goal of this work is to identify how well the amount of effort

expended on a homework assignment, estimated as ink written on that assignment,

predicts whether or not a student will make each of the errors which comprise the

rubric.

We compute features for every homework problem, which characterizes the

effort spent on that problem in terms of the amount of ink written. We then use each

feature individually to predict whether or not each student will make each particular

error on each midterm problem. This prediction is made using a simple decision stump,

which bases its decisions on the amount of information gained.

Given that there are several features computed for each homework problem and

that there are several binary errors to be predicted, we compile the large number of re-

sults from using every feature to predict every error by creating easy-to-read heat maps.

These heat maps present all the resulting information gain values in a sorted fashion

that allows the reader to quickly identify the most consistently predictive features. By

doing so, we have developed a novel method by which instructors may quickly identify

the homework problems which best lead to good performance on midterm exams. This

provides a powerful, formative assessment tool.

9.2 Method

In this section we begin by describing the features computed for each problem

of each homework assignment to characterize the amount of effort a student expended
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on that problem. Next, we describe the different ways that the target midterm errors

were grouped. Lastly, we describe how we use the information gained by each feature

to predict if a student will make each error.

9.2.1 Features

We characterized effort on each homework assignment by computing three

features: InkFBD, InkEQN , and InkE2F . InkFBD is the amount of ink, measured in

inches, spent writing FBDs on a single problem of a particular homework assignment.

InkEQN is the amount of ink, again measured in inches, spent writing equations on a

single problem of a particular homework assignment. Lastly, InkE2F is the the ratio of

the two, computed as InkEQN/(InkFBD + InkEQN ).

We use these features to predict if students will make particular errors on

midterm problems. We use only features computed from the two homework assignments

completed most recently before a midterm when predicting errors on that midterm. In

this course, the content for midterm problems was based on the two previous homework

assignments, making them the most relevant. Thus, when predicting errors for midterm

one, features from homework assignments three and four were used. Since homework as-

signment three had eight problems and homework assignment four had seven problems,

there were 45 total features ((8 + 7)× 3) considered when predicting errors on midterm

one. Similarly, when predicting errors for midterm two, features from homework assign-

ments five and six were used. Since homework assignment five had eight problems and

homework assignment six had six problems, there were 42 total features ((8 + 6) × 3)

considered when predicting errors on midterm two.
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9.2.2 Error groupings

Because the number of errors described in Section 3.3 is large compared to the

low number of students who made each individual error, we have grouped the errors.

We have investigated a number of different groupings by applying different consolidation

schemes. The idea for each scheme is to assign similar errors to the same group. Each

grouping is still binary and indicates whether a student made any of the errors in that

group (1) or made none of the errors in that group (1). The prediction task is then to

determine whether a student made any of the errors in each group or not. We describe

below the three different consolidation schemes by which we have grouped the midterm

errors.

The first scheme did not merge any errors at all and retained the fine-grained

errors exactly as they were described in Table 3.4 through Table 3.7. This is called the

fine-grained error grouping scheme.

The next scheme grouped errors as broadly as possible, this is called the cate-

gory error grouping scheme. In this grouping scheme, errors were grouped by category

(column one of Table 3.4 through Table 3.7). For example, using this scheme, midterm

one problem one was assigned five different error types, one for each error category in

Table 3.4: FBD Error, Angle Error, Equation Error, Magnitude Error, and Algebra

Error. The errors that have been placed into each group using this scheme are shown

in Table 9.1 through Table 9.4 for each of the midterm-problem pairs.

The next scheme groups errors at a level of granularity that is between the prior
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Error Group Errors in Group (Table 3.4)

FBD Error 1 - 11

Angle Error 12 - 13

Equation Error 14 - 40

Magnitude Error 41 - 42

Algebra Error 43 - 44

Table 9.1: The error groups for midterm one problem one using the category error
grouping scheme. The Error Group column shows the name of each of the five error
groups, and the Errors in Group column shows the numbers of the errors placed in each
group. These numbers refer to errors in Table 3.4.

Error Group Errors in Group (Table 3.5)

1st FBD Error 1 - 7

2nd FBD Error 8 - 14

Equation Error 15 - 29

Algebra Error 30

Answer Error 31 - 33

Table 9.2: The error groups for midterm two problem one using the category error
grouping scheme. The Error Group column shows the name of each of the five error
groups, and the Errors in Group column shows the numbers of the errors placed in each
group. These numbers refer to errors in Table 3.5.

Error Group Errors in Group (Table 3.6)

1st FBD Error 1 - 7

2nd FBD Error 8 - 14

3rd FBD Error 15 - 21

Equation Error 22 - 36

Algebra Error 37

Answer Error 38 - 41

Table 9.3: The error groups for midterm two problem two using thecategory error group-
ing scheme. The Error Group column shows the name of each of the six error groups,
and the Errors in Group column shows the numbers of the errors placed in each group.
These numbers refer to errors in Table 3.6.

142



Error Group Errors in Group (Table 3.7)

1st FBD Error 1 - 7

2nd FBD Error 8 - 14

3rd FBD Error 15 - 21

Equation Error 22 - 36

Algebra Error 37

Answer Error 38 - 41

Table 9.4: The error groups for midterm two problem three using the category error
grouping scheme. The Error Group column shows the name of each of the six error
groups, and the Errors in Group column shows the numbers of the errors placed in each
group. These numbers refer to errors in Table 3.7.

two schemes. This scheme is called the subcategory error grouping scheme. Using this

scheme, errors were grouped according to both their category and subcategory (column

two of Table 3.4 through Table 3.7). Additionally though, any error that corresponded

to a missing element was given its own error group. The errors that have been placed

into each group using this scheme are shown in Table 9.5 through Table 9.8 for each of

the midterm-problem pairs.

9.2.3 Information Gain Prediction

We use each feature individually to separate those students who did make a

particular error from those who did not. To do this given a single feature, F , and error

E, we create a data set, DFE of all the students. Each student, i, is represented in

DFE as the pair (fi, ei), where fi is that students’ feature, F , value , and ei is a binary

label identifying whether the student made error E. All students in DFE are sorted

by increasing F value. A decision stump[67] is then created which best partitions the
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Error Group Errors in Group (Table 3.4)

FBD Not Qualify 1

Incorrect Body Selected 2

Reaction Error 3 - 9

Angle Error 11 - 12

Sum of Moments Missing 13

Sum of Moments Error 14 - 23

X-Force Eqn. Missing 24

X-Force Eqn. Error 25 - 30

Y-Force Eqn. Missing 31

Y-Force Eqn. Error 32 - 39

Magnitude Error 40 - 41

Algebra Error 42 - 43

Table 9.5: The error groups for midterm one problem one using the subcategory error
grouping scheme. The Error Group column shows the name of each of the twelve error
groups, and the Errors in Group column shows the numbers of the errors placed in each
group. These numbers refer to errors in Table 3.4.

Error Group Errors in Group (Table 3.5)

1st FBD Not Qualify 2

Incorrect 1st Body Selected 3

1st FBD Reaction Error 4 - 7

2nd FBD Not Qualify 9

Incorrect 2nd Body Selected 10

2nd FBD Error 11 - 14

Moment Eqn. Missing 15

Moment Eqn. Error 16 - 21

X-Force Eqn. Missing 22

X-Force Eqn. Error 24 - 25

Y-Force Eqn. Missing 26

Y-Force Eqn. Error 27 - 29

Algebra Error 30

Answer Error 31 - 33

Table 9.6: The error groups for midterm two problem one using the subcategory error
grouping scheme. The Error Group column shows the name of each of the 14 error
groups, and the Errors in Group column shows the numbers of the errors placed in each
group. These numbers refer to errors in Table 3.5.
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Error Group Errors in Group (Table 3.6)

1st FBD Missing 1

1st FBD Not Qualify 2

Incorrect 1st Body Selected 3

1st FBD Reaction Error 4 - 7

2nd FBD Missing 8

2nd FBD Not Qualify 9

Incorrect 2nd Body Selected 10

2nd FBD Error 11 - 14

3rd FBD Missing 15

3rd FBD Not Qualify 16

Incorrect 3rd Body Selected 17

3rd FBD Error 19 - 21

Moment Eqn. Missing 22

Moment Eqn. Error 23 - 28

X-Force Eqn. Missing 29

X-Force Eqn. Error 30 - 32

Y-Force Eqn. Missing 33

Y-Force Eqn. Error 34 - 36

Algebra Error 37

Answer Error 38 - 41

Table 9.7: The error groups for midterm two problem two using the subcategory error
grouping scheme. The Error Group column shows the name of each of the 20 error
groups, and the Errors in Group column shows the numbers of the errors placed in each
group. These numbers refer to errors in Table 3.6.
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Error Group Errors in Group (Table 3.7)

1st FBD Missing 1

1st FBD Not Qualify 2

Incorrect 1st Body Selected 3

1st FBD Reaction Error 4 - 7

2nd FBD Missing 8

2nd FBD Not Qualify 9

Incorrect 2nd Body Selected 10

2nd FBD Error 11 - 14

3rd FBD Missing 15

3rd FBD Not Qualify 16

Incorrect 3rd Body Selected 17

3rd FBD Error 19 - 21

Moment Eqn. Missing 22

Moment Eqn. Error 23 - 28

X-Force Eqn. Missing 29

X-Force Eqn. Error 30 - 32

Y-Force Eqn. Missing 33

Y-Force Eqn. Error 34 - 36

Algebra Error 37

Answer Error 38 - 41

Table 9.8: The error groups for midterm two problem three using the subcategory error
grouping scheme. The Error Group column shows the name of each of the 20 error
groups, and the Errors in Group column shows the numbers of the errors placed in each
group. These numbers refer to errors in Table 3.7.
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data into two regions, left and right. The pivot used to separate the data is that which

provides the best Information Gain. This measure compares the entropy of the entire

data set to the entropy of the two partitions.

The entropy of data set, DFE, provides a measure of the uncertainty about

whether or not the students in D made E:

E(DFE) = −(p(a)log(p(a)) + p(b)log(p(b)) (9.1)

Where p(a) is the percentage of students in DFE that made error E and p(b)

is the percentage that did not. Entropy is a real-valued number ∈ [0, 1] (when using a

logarithm of base 2) where “0” signifies that there is no uncertainty, i.e., all students

in the data set either did or did not commit the error, and “1” signifies complete un-

certainty, i.e., there are as many students in the data set that did make an error as did

not.

The information gain for a given split of DFE, which results in data sets Dleft

and Dright is:

I(DFE ,Dleft,Dright) = E(DFE)− p(Dleft)E(Dleft) + p(Dright)E(Dright) (9.2)

where p(Dleft) = |Dleft|/|DFE | and p(Dright) = |Dright|/|DFE |. The informa-

tion gain then shows the amount of uncertainty that was reduced by splitting the data

set into the two groups, or said conversely, the information gained by doing so. For each

data set, the optimal pivot point is found by exhaustively computing the information

gained by splitting the data set at each student.
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9.3 Results

We have created a m× n matrix for each (midterm, problem, error grouping)

triple. Each matrix shows the information gained using each of the m features to predict

each of the n errors on a particular midterm problem given a particular error grouping

scheme. For example, consider the category error grouping scheme on midterm one

problem one. In this case, 45 effort-based features were used to predict five different

error groups, resulting in a 45× 5 matrix in which every element(i, j) is the information

gained by using feature fi to split students according to error ej . We sum the information

gain values of each row and then sort the rows of the matrix by increasing information

gain sum. Similarly, we sum the information gain values of each column and then sort the

columns of the matrix by increasing information gain sum. By sorting the matrix in this

way, the more consistently predictive features appear towards the bottom of the matrix

and the more consistently predictable errors appear towards the right of the matrix.

To illustrate this pattern, we have created colored heat-maps for each matrix. These

heat-maps are colored with a three-color gradient, which maps the lowest information

gain value to red, highest information gain value to green, and intermediate information

gain value to yellow.

We present the heat map created for each (midterm problem, consolidation

scheme) pair in the following sections.
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9.3.1 Category Error Grouping Information Gain Heat Maps

In this section we show the information gain heat maps created for midterm

one problem one and midterm two problems one through three using the category er-

ror grouping consolidation scheme. These heat maps are shown in Figure 9.1 through

Figure 9.4.

Additionally, we highlight the first and last ten features (rows) of each heat

map. The first ten rows in the matrix are those features with the smallest sum of

information gain values. These features can be considered the 10 least consistently

predictive features and will be important for the discussion that follows. Similarly, the

last ten rows of the matrix are those features with the largest sum of information gain

values. These features can be considered the 10 most consistently predictive features and

will be important for the discussion that follows. The 10 most and the 10 least predictive

features from each heat map are shown in Table 9.9 and Table 9.10 respectively. These

tables also count the number of occurrences of each feature type found in the top-10 list

for each midterm problem. This gives an indication of how often the InkEQN , InkFBD,

and InkE2F features are the most predictive of errors on a particular midterm problem.
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ErrorName Eqn Error Ang Err Mag Err FBD Err Alg Err

Hw3-Pr1-EQN 0.028 0.019 0.030 0.011 0.016

Hw3-Pr8-FBD 0.026 0.015 0.016 0.030 0.019

Hw3-Pr1-FBD 0.033 0.017 0.024 0.018 0.018

Hw3-Pr8-EQN 0.037 0.025 0.024 0.019 0.014

Hw3-Pr1-E2F 0.019 0.033 0.036 0.020 0.013

Hw3-Pr5-FBD 0.029 0.028 0.024 0.013 0.031

Hw3-Pr5-E2F 0.014 0.022 0.030 0.020 0.041

Hw3-Pr8-E2F 0.037 0.041 0.024 0.013 0.014

Hw4-Pr7-FBD 0.028 0.019 0.039 0.016 0.032

Hw4-Pr1-FBD 0.018 0.027 0.032 0.036 0.023

Hw4-Pr3-FBD 0.027 0.025 0.019 0.039 0.030

Hw4-Pr6-FBD 0.016 0.052 0.032 0.015 0.025

Hw4-Pr1-E2F 0.028 0.022 0.024 0.039 0.027

Hw4-Pr1-EQN 0.028 0.018 0.032 0.039 0.025

Hw4-Pr5-FBD 0.014 0.038 0.036 0.030 0.027

Hw3-Pr7-EQN 0.029 0.015 0.031 0.014 0.059

Hw3-Pr6-E2F 0.032 0.015 0.020 0.030 0.055

Hw3-Pr6-EQN 0.028 0.015 0.020 0.035 0.055

Hw4-Pr3-EQN 0.029 0.025 0.017 0.053 0.029

Hw3-Pr5-EQN 0.019 0.032 0.030 0.029 0.045

Hw3-Pr4-E2F 0.013 0.025 0.045 0.024 0.050

Hw3-Pr7-FBD 0.032 0.015 0.042 0.018 0.052

Hw4-Pr7-E2F 0.052 0.025 0.025 0.020 0.038

Hw3-Pr3-FBD 0.032 0.022 0.028 0.027 0.052

Hw4-Pr2-E2F 0.025 0.022 0.035 0.065 0.013

Hw3-Pr6-FBD 0.028 0.015 0.030 0.036 0.052

Hw4-Pr4-FBD 0.013 0.025 0.039 0.034 0.052

Hw4-Pr4-EQN 0.013 0.017 0.045 0.027 0.063

Hw4-Pr6-EQN 0.016 0.052 0.024 0.051 0.031

Hw3-Pr3-EQN 0.037 0.028 0.028 0.030 0.052

Hw3-Pr7-E2F 0.029 0.031 0.031 0.026 0.059

Hw4-Pr6-E2F 0.016 0.052 0.024 0.058 0.027

Hw3-Pr4-FBD 0.028 0.028 0.048 0.030 0.043

Hw3-Pr2-FBD 0.016 0.032 0.051 0.036 0.043

Hw4-Pr2-FBD 0.040 0.026 0.030 0.066 0.017

Hw3-Pr3-E2F 0.028 0.031 0.026 0.043 0.052

Hw4-Pr7-EQN 0.052 0.013 0.067 0.020 0.038

Hw4-Pr2-EQN 0.040 0.043 0.009 0.074 0.027

Hw4-Pr3-E2F 0.029 0.049 0.021 0.057 0.038

Hw4-Pr5-EQN 0.032 0.070 0.021 0.053 0.021

Hw3-Pr4-EQN 0.013 0.033 0.067 0.038 0.050

Hw4-Pr5-E2F 0.025 0.072 0.058 0.019 0.035

Hw3-Pr2-E2F 0.028 0.031 0.050 0.050 0.055

Hw3-Pr2-EQN 0.026 0.035 0.050 0.053 0.055

Hw4-Pr4-E2F 0.018 0.070 0.045 0.037 0.063

Figure 9.1: Information gain heat map for midterm one problem one using the cat-
egory error grouping scheme. Each element (i, j) is the information gain value from
using feature i to predict error j. This heat-map is colored with a three-color gradient,
which maps the lowest information gain value to red, highest information gain value
to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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ErrorName Alg Err Ans Err Fbd2 Err Fbd1 Err Eqn Err

Hw5-Pr8-EQN 0.010 0.018 0.015 0.018 0.017

Hw5-Pr8-E2F 0.019 0.020 0.011 0.020 0.017

Hw5-Pr8-FBD 0.023 0.024 0.017 0.029 0.017

Hw6-Pr5-FBD 0.012 0.020 0.017 0.034 0.037

Hw6-Pr3-FBD 0.014 0.044 0.021 0.026 0.017

Hw6-Pr2-FBD 0.015 0.040 0.011 0.031 0.026

Hw6-Pr2-EQN 0.017 0.020 0.024 0.040 0.023

Hw6-Pr1-EQN 0.039 0.018 0.009 0.051 0.015

Hw5-Pr1-E2F 0.018 0.020 0.024 0.015 0.056

Hw5-Pr5-FBD 0.025 0.027 0.020 0.019 0.043

Hw5-Pr4-E2F 0.012 0.022 0.021 0.038 0.042

Hw5-Pr2-EQN 0.028 0.014 0.035 0.020 0.039

Hw6-Pr3-E2F 0.033 0.044 0.026 0.012 0.027

Hw5-Pr2-FBD 0.020 0.012 0.035 0.053 0.030

Hw6-Pr2-E2F 0.012 0.020 0.020 0.021 0.078

Hw5-Pr4-FBD 0.012 0.043 0.017 0.032 0.048

Hw6-Pr4-FBD 0.021 0.029 0.021 0.061 0.022

Hw6-Pr3-EQN 0.020 0.044 0.032 0.029 0.031

Hw6-Pr1-FBD 0.027 0.036 0.007 0.060 0.029

Hw5-Pr7-E2F 0.019 0.025 0.014 0.049 0.053

Hw5-Pr7-EQN 0.010 0.018 0.025 0.055 0.053

Hw6-Pr5-E2F 0.018 0.019 0.048 0.024 0.055

Hw5-Pr7-FBD 0.022 0.040 0.025 0.034 0.051

Hw5-Pr5-EQN 0.025 0.027 0.047 0.029 0.043

Hw5-Pr6-E2F 0.019 0.011 0.025 0.031 0.088

Hw5-Pr2-E2F 0.037 0.041 0.035 0.023 0.039

Hw5-Pr4-EQN 0.014 0.024 0.051 0.031 0.057

Hw6-Pr6-FBD 0.019 0.033 0.038 0.047 0.049

Hw5-Pr3-FBD 0.030 0.019 0.059 0.019 0.063

Hw5-Pr1-FBD 0.030 0.009 0.034 0.051 0.066

Hw6-Pr5-EQN 0.018 0.027 0.059 0.041 0.067

Hw6-Pr1-E2F 0.064 0.055 0.037 0.045 0.016

Hw5-Pr1-EQN 0.018 0.012 0.069 0.057 0.063

Hw5-Pr3-E2F 0.040 0.027 0.047 0.015 0.090

Hw5-Pr5-E2F 0.039 0.027 0.047 0.019 0.089

Hw5-Pr3-EQN 0.047 0.020 0.048 0.027 0.080

Hw6-Pr4-EQN 0.037 0.020 0.020 0.061 0.089

Hw6-Pr6-EQN 0.022 0.029 0.064 0.033 0.080

Hw5-Pr6-EQN 0.019 0.013 0.025 0.079 0.106

Hw6-Pr4-E2F 0.022 0.025 0.053 0.061 0.090

Hw6-Pr6-E2F 0.017 0.015 0.089 0.033 0.096

Hw5-Pr6-FBD 0.022 0.057 0.031 0.068 0.089

Figure 9.2: Information gain heat map for midterm two problem one using the cat-
egory error grouping scheme. Each element (i, j) is the information gain value from
using feature i to predict error j. This heat-map is colored with a three-color gradient,
which maps the lowest information gain value to red, highest information gain value
to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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ErrorName Fbd2 Err FBD3 Err  Err n  Err Fbd1 Err Eqn Err

Hw6-Pr5-E2F 0.019 0.014 0.022 0.024 0.018 0.020

Hw6-Pr6-FBD 0.021 0.020 0.040 0.016 0.013 0.017

Hw6-Pr5-EQN 0.018 0.020 0.020 0.039 0.011 0.020

Hw6-Pr2-FBD 0.018 0.014 0.017 0.032 0.040 0.019

Hw6-Pr4-FBD 0.020 0.024 0.027 0.032 0.021 0.017

Hw5-Pr5-FBD 0.022 0.014 0.017 0.023 0.025 0.042

Hw5-Pr5-E2F 0.016 0.023 0.028 0.019 0.027 0.032

Hw6-Pr3-EQN 0.016 0.020 0.015 0.049 0.021 0.024

Hw6-Pr4-E2F 0.020 0.025 0.030 0.036 0.021 0.017

Hw5-Pr5-EQN 0.020 0.023 0.026 0.016 0.027 0.038

Hw5-Pr4-FBD 0.032 0.014 0.018 0.031 0.029 0.026

Hw5-Pr4-E2F 0.032 0.020 0.016 0.031 0.030 0.027

Hw5-Pr8-E2F 0.014 0.035 0.032 0.024 0.029 0.023

Hw6-Pr3-E2F 0.016 0.033 0.018 0.049 0.021 0.020

Hw5-Pr2-EQN 0.032 0.014 0.020 0.023 0.055 0.014

Hw5-Pr8-EQN 0.020 0.030 0.032 0.026 0.017 0.033

Hw5-Pr2-E2F 0.032 0.014 0.028 0.023 0.053 0.011

Hw5-Pr7-FBD 0.013 0.010 0.040 0.018 0.035 0.048

Hw5-Pr8-FBD 0.032 0.028 0.032 0.032 0.018 0.024

Hw6-Pr2-EQN 0.016 0.014 0.017 0.032 0.058 0.031

Hw6-Pr1-E2F 0.031 0.021 0.021 0.040 0.023 0.033

Hw6-Pr2-E2F 0.021 0.026 0.022 0.032 0.045 0.025

Hw5-Pr4-EQN 0.033 0.016 0.016 0.031 0.052 0.027

Hw6-Pr3-FBD 0.016 0.020 0.040 0.060 0.021 0.017

Hw5-Pr6-EQN 0.016 0.028 0.042 0.023 0.039 0.029

Hw5-Pr3-FBD 0.026 0.040 0.016 0.031 0.023 0.042

Hw5-Pr7-E2F 0.016 0.016 0.030 0.031 0.068 0.017

Hw6-Pr1-EQN 0.022 0.030 0.017 0.040 0.023 0.048

Hw6-Pr5-FBD 0.059 0.014 0.024 0.032 0.016 0.041

Hw5-Pr3-E2F 0.033 0.040 0.022 0.031 0.026 0.037

Hw5-Pr6-E2F 0.039 0.022 0.042 0.019 0.039 0.029

Hw5-Pr3-EQN 0.028 0.040 0.016 0.031 0.018 0.059

Hw6-Pr6-EQN 0.026 0.022 0.047 0.041 0.040 0.020

Hw6-Pr6-E2F 0.026 0.042 0.031 0.060 0.018 0.021

Hw5-Pr2-FBD 0.032 0.042 0.020 0.023 0.045 0.041

Hw6-Pr1-FBD 0.032 0.029 0.016 0.063 0.018 0.045

Hw6-Pr4-EQN 0.020 0.024 0.022 0.070 0.026 0.042

Hw5-Pr7-EQN 0.048 0.028 0.030 0.017 0.068 0.024

Hw5-Pr6-FBD 0.016 0.029 0.042 0.017 0.023 0.093

Hw5-Pr1-E2F 0.025 0.044 0.047 0.016 0.054 0.041

Hw5-Pr1-EQN 0.016 0.043 0.047 0.016 0.054 0.082

Hw5-Pr1-FBD 0.032 0.046 0.047 0.016 0.063 0.134

Figure 9.3: Information gain results for midterm two problem two using the category er-
ror grouping scheme. Each element (i, j) is the information gain value from using feature
i to predict error j. This heat-map is colored with a three-color gradient, which maps
the lowest information gain value to red, highest information gain value to green, and
intermediate information gain value to yellow. Each row is labeled by homework num-
ber, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds to the amount
of equation ink written on homework three problem two.
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ErrorName Alg Err FBD3 Err An  Err EQN Err FBD1 Err FBD2 Err

Hw5-Pr6-E2F 0.008 0.011 0.015 0.021 0.015 0.014

Hw5-Pr3-E2F 0.015 0.009 0.025 0.027 0.019 0.016

Hw5-Pr4-FBD 0.009 0.017 0.025 0.036 0.026 0.012

Hw5-Pr7-E2F 0.012 0.016 0.040 0.040 0.012 0.015

Hw6-Pr3-E2F 0.012 0.010 0.031 0.015 0.018 0.052

Hw6-Pr5-EQN 0.011 0.027 0.015 0.013 0.039 0.036

Hw6-Pr3-EQN 0.010 0.024 0.031 0.011 0.017 0.052

Hw5-Pr2-E2F 0.018 0.025 0.038 0.013 0.019 0.035

Hw6-Pr3-FBD 0.012 0.016 0.031 0.014 0.023 0.052

Hw5-Pr6-FBD 0.010 0.033 0.037 0.043 0.020 0.010

Hw5-Pr1-E2F 0.026 0.041 0.020 0.031 0.020 0.016

Hw6-Pr5-FBD 0.013 0.025 0.015 0.025 0.028 0.049

Hw6-Pr5-E2F 0.017 0.032 0.017 0.013 0.042 0.036

Hw5-Pr2-FBD 0.015 0.025 0.040 0.027 0.020 0.035

Hw5-Pr8EQN 0.006 0.025 0.047 0.042 0.014 0.029

Hw5-Pr3-FBD 0.018 0.013 0.052 0.032 0.026 0.024

Hw5-Pr3-EQN 0.018 0.024 0.047 0.032 0.031 0.016

Hw5-Pr5-FBD 0.012 0.024 0.063 0.048 0.020 0.007

Hw5-Pr7-EQN 0.011 0.038 0.040 0.052 0.020 0.016

Hw5-Pr6-EQN 0.022 0.067 0.022 0.023 0.027 0.016

Hw6-Pr1-FBD 0.025 0.016 0.037 0.033 0.024 0.044

Hw5-Pr4-EQN 0.023 0.016 0.020 0.055 0.022 0.045

Hw5-Pr2-EQN 0.015 0.025 0.039 0.024 0.045 0.035

Hw5-Pr8FBD 0.014 0.024 0.052 0.040 0.024 0.029

Hw6-Pr6-E2F 0.018 0.020 0.013 0.017 0.063 0.055

Hw5-Pr4-E2F 0.011 0.076 0.019 0.044 0.027 0.032

Hw5-Pr5-EQN 0.011 0.041 0.022 0.076 0.030 0.034

Hw5-Pr1-FBD 0.012 0.041 0.036 0.054 0.060 0.016

Hw5-Pr7-FBD 0.008 0.038 0.020 0.072 0.052 0.030

Hw5-Pr1-EQN 0.012 0.041 0.023 0.057 0.064 0.025

Hw6-Pr1-EQN 0.023 0.028 0.031 0.031 0.056 0.057

Hw5-Pr5-E2F 0.009 0.039 0.023 0.042 0.046 0.067

Hw6-Pr6-FBD 0.028 0.067 0.032 0.017 0.030 0.054

Hw5-Pr8E2F 0.013 0.047 0.047 0.040 0.048 0.036

Hw6-Pr2-FBD 0.057 0.015 0.031 0.031 0.017 0.100

Hw6-Pr1-E2F 0.020 0.050 0.031 0.035 0.066 0.050

Hw6-Pr4-FBD 0.030 0.023 0.047 0.043 0.080 0.048

Hw6-Pr2-EQN 0.046 0.028 0.031 0.035 0.037 0.100

Hw6-Pr2-E2F 0.022 0.038 0.040 0.046 0.050 0.100

Hw6-Pr6-EQN 0.032 0.091 0.037 0.032 0.061 0.072

Hw6-Pr4-E2F 0.012 0.029 0.047 0.098 0.104 0.068

Hw6-Pr4-EQN 0.013 0.059 0.047 0.071 0.104 0.079

Figure 9.4: Information gain heat map for midterm two problem three using the cat-
egory error grouping scheme. Each element (i, j) is the information gain value from
using feature i to predict error j. This heat-map is colored with a three-color gradient,
which maps the lowest information gain value to red, highest information gain value
to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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M1P1 M2P1 M2P2 M2P3

Hw3-Pr3-InkE2F Hw5-Pr1-InkEQN Hw6-Pr6-InkEQN Hw6-Pr6-InkFBD

Hw4-Pr7-InkEQN Hw5-Pr3-InkE2F Hw6-Pr6-InkE2F Hw5-Pr8-InkE2F

Hw4-Pr2-InkEQN Hw5-Pr5-InkE2F Hw5-Pr2-InkFBD Hw6-Pr2-InkFBD

Hw4-Pr3-InkE2F Hw5-Pr3-InkEQN Hw6-Pr1-InkFBD Hw6-Pr1-InkE2F

Hw4-Pr5-InkEQN Hw6-Pr4-InkEQN Hw6-Pr4-InkEQN Hw6-Pr4-InkFBD

Hw3-Pr4-InkEQN Hw6-Pr6-InkEQN Hw5-Pr7-InkEQN Hw6-Pr2-InkEQN

Hw4-Pr5-InkE2F Hw5-Pr6-InkEQN Hw5-Pr6-InkFBD Hw6-Pr2-InkE2F

Hw3-Pr2-InkE2F Hw6-Pr4-InkE2F Hw5-Pr1-InkE2F Hw6-Pr6-InkEQN

Hw3-Pr2-InkEQN Hw6-Pr6-InkE2F Hw5-Pr1-InkEQN Hw6-Pr4-InkE2F

Hw4-Pr4-InkE2F Hw5-Pr6-InkFBD Hw5-Pr1-InkFBD Hw6-Pr4-InkEQN

No. InkFBD 0 1 2 3

No. InkEQN 5 5 4 3

No. InkE2F 5 4 2 4

Table 9.9: The 10 most predictive features for each midterm and problem, for the
category error grouping scheme. The header row denotes the midterm and problem
number, e.g., M1P1 corresponds to midterm one problem one. The last three rows count
the number of features for each midterm problem that correspond to free body diagrams,
equations, and the ratio of equation to free body diagram time respectively. Each feature
is represented by three pieces of information: the homework number, problem number,
and type, e.g., Hw3-Pr3-EQN corresponds to the amount of equation ink written for
homework three problem three.

M1P1 M2P1 M2P2 M2P3

Hw3-Pr1-InkEQN Hw5-Pr8-InkEQN Hw6-Pr5-InkE2F Hw5-Pr6-InkE2F

Hw3-Pr8-InkFBD Hw5-Pr8-InkE2F Hw6-Pr6-InkFBD Hw5-Pr3-InkE2F

Hw3-Pr1-InkFBD Hw5-Pr8-InkFBD Hw6-Pr5-InkEQN Hw5-Pr4-InkFBD

Hw3-Pr8-InkEQN Hw6-Pr5-InkFBD Hw6-Pr2-InkFBD Hw5-Pr7-InkE2F

Hw3-Pr1-InkE2F Hw6-Pr3-InkFBD Hw6-Pr4-InkFBD Hw6-Pr3-InkE2F

Hw3-Pr5-InkFBD Hw6-Pr2-InkFBD Hw5-Pr5-InkFBD Hw6-Pr5-InkEQN

Hw3-Pr5-InkE2F Hw6-Pr2-InkEQN Hw5-Pr5-InkE2F Hw6-Pr3-InkEQN

Hw3-Pr8-InkE2F Hw6-Pr1-InkEQN Hw6-Pr3-InkEQN Hw5-Pr2-InkE2F

Hw4-Pr7-InkFBD Hw5-Pr1-InkE2F Hw6-Pr4-InkE2F Hw6-Pr3-InkFBD

Hw4-Pr1-InkFBD Hw5-Pr5-InkFBD Hw5-Pr5-InkEQN Hw5-Pr6-InkFBD

No. FBD 5 5 4 3

No. EQN 2 3 3 2

No. E2F 3 2 3 5

Table 9.10: The 10 least predictive features for each midterm and problem, for the
category error grouping categories. The header row denotes the midterm and problem
number, e.g., M1P1 corresponds to midterm one problem one. The last three rows count
the number of features for each midterm problem that correspond to free body diagrams,
equations, and the ratio of equation to free body diagram time respectively. Each feature
is represented by three pieces of information: the homework number, problem number,
and type, e.g., Hw3-Pr3-EQN corresponds to the amount of equation ink written for
homework three problem three.
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9.3.2 Fine-grained Error Grouping

In this section we show the information gain heat maps created for midterm

one problem one and midterm two problems one through three using the fine-grained

error grouping consolidation scheme. These heat maps are shown in Figure 9.5 through

Figure 9.8.

Additionally, we highlight the first and last ten features (rows) of each heat

map. The first ten rows in the matrix are those features with the smallest sum of

information gain values. These features can be considered the 10 least consistently

predictive features and will be important for the discussion that follows. Similarly, the

last ten rows of the matrix are those features with the largest sum of information gain

values. These features can be considered the 10 most consistently predictive features

and will be important for the discussion that follows. The top and 10 least predictive

features from each heat map are shown in Table 9.9 and Table 9.10 respectively. These

tables also count the number of each feature type found in the top-10 list for each

midterm problem. This gives an indication of how often the InkEQN , InkFBD, and

InkE2F features are the most predictive for errors on a particular midterm problem.

9.3.3 Subcategory Error Grouping

In this section we show the information gain heat maps created for midterm

one problem one and midterm two problems one through three using the subcategory
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Figure 9.5: Information gain heat maps for midterm one problem one predicting the
fine-grained error grouping scheme. Each element (i, j) is the information gain value
from using feature i to predict error j. This heat-map is colored with a three-color
gradient, which maps the lowest information gain value to red, highest information gain
value to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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Figure 9.6: Information gain heat maps for midterm two problem one predicting the
fine-grained error grouping categories. Each element (i, j) is the information gain value
from using feature i to predict error j. This heat-map is colored with a three-color
gradient, which maps the lowest information gain value to red, highest information gain
value to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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Figure 9.7: Information gain heat maps for midterm two problem two predicting the
fine-grained error grouping categories. Each element (i, j) is the information gain value
from using feature i to predict error j. This heat-map is colored with a three-color
gradient, which maps the lowest information gain value to red, highest information gain
value to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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Figure 9.8: Information gain heat maps for midterm two problem three predicting the
fine-grained error grouping categories. Each element (i, j) is the information gain value
from using feature i to predict error j. This heat-map is colored with a three-color
gradient, which maps the lowest information gain value to red, highest information gain
value to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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M1P1 M2P1 M2P2 M2P3

Hw3-Pr4-InkE2F Hw5-Pr1-InkE2F Hw5-Pr1-InkEQN Hw5-Pr3-InkFBD

Hw4-Pr1-InkE2F Hw5-Pr2-InkE2F Hw5-Pr1-InkFBD Hw5-Pr8-InkE2F

Hw4-Pr2-InkEQN Hw5-Pr2-InkEQN Hw5-Pr3-InkEQN Hw5-Pr8-InkFBD

Hw4-Pr3-InkE2F Hw5-Pr3-InkE2F Hw5-Pr6-InkFBD Hw6-Pr1-InkEQN

Hw4-Pr3-InkEQN Hw5-Pr3-InkEQN Hw6-Pr1-InkE2F Hw6-Pr4-InkE2F

Hw4-Pr5-InkE2F Hw5-Pr6-InkEQN Hw6-Pr2-InkE2F Hw6-Pr4-InkEQN

Hw4-Pr5-InkEQN Hw5-Pr6-InkFBD Hw6-Pr2-InkEQN Hw6-Pr4-InkFBD

Hw4-Pr6-InkE2F Hw5-Pr7-InkFBD Hw6-Pr3-InkE2F Hw6-Pr6-InkE2F

Hw4-Pr6-InkEQN Hw6-Pr1-InkE2F Hw6-Pr3-InkEQN Hw6-Pr6-InkEQN

Hw4-Pr6-InkFBD Hw6-Pr4-InkE2F Hw6-Pr3-InkFBD Hw6-Pr6-InkFBD

No. FBD 1 2 3 4

No. EQN 4 3 4 3

No. E2F 5 5 3 3

Table 9.11: The 10 most predictive features for each midterm and problem, for the fine-
grained error groupings. The header row denotes the midterm and problem number,
e.g., M1P1 corresponds to midterm one problem one. The last three rows count the
number of features for each midterm problem that correspond to free body diagrams,
equations, and the ratio of equation to free body diagram time respectively. Each feature
is represented by three pieces of information: the homework number, problem number,
and type, e.g., Hw3-Pr3-EQN corresponds to the amount of equation ink written for
homework three problem three.

M1P1 M2P1 M2P2 M2P3

Hw3-Pr1-InkE2F Hw5-Pr4-InkFBD Hw5-Pr2-InkFBD Hw5-Pr1-InkE2F

Hw3-Pr1-InkEQN Hw5-Pr8-InkE2F Hw5-Pr4-InkE2F Hw5-Pr2-InkFBD

Hw3-Pr1-InkFBD Hw5-Pr8-InkEQN Hw5-Pr4-InkFBD Hw5-Pr4-InkEQN

Hw3-Pr5-InkFBD Hw5-Pr8-InkFBD Hw5-Pr5-InkFBD Hw5-Pr4-InkFBD

Hw3-Pr6-InkE2F Hw6-Pr2-InkE2F Hw5-Pr7-InkE2F Hw5-Pr6-InkE2F

Hw3-Pr6-InkEQN Hw6-Pr2-InkFBD Hw5-Pr7-InkEQN Hw5-Pr6-InkFBD

Hw3-Pr6-InkFBD Hw6-Pr3-InkE2F Hw5-Pr7-InkFBD Hw5-Pr7-InkFBD

Hw3-Pr7-InkE2F Hw6-Pr5-InkE2F Hw5-Pr8-InkEQN Hw6-Pr1-InkE2F

Hw3-Pr8-InkFBD Hw6-Pr5-InkEQN Hw6-Pr2-InkFBD Hw6-Pr3-InkE2F

Hw4-Pr2-InkFBD Hw6-Pr5-InkFBD Hw6-Pr4-InkFBD Hw6-Pr3-InkFBD

No. FBD 5 4 6 5

No. EQN 2 2 2 1

No. E2F 3 4 2 4

Table 9.12: The 10 least predictive features for each midterm and problem, for the fine-
grained error groupings. The header row denotes the midterm and problem number,
e.g., M1P1 corresponds to midterm one problem one. The last three rows count the
number of features for each midterm problem that correspond to free body diagrams,
equations, and the ratio of equation to free body diagram time respectively. Each feature
is represented by three pieces of information: the homework number, problem number,
and type, e.g., Hw3-Pr3-EQN corresponds to the amount of equation ink written for
homework three problem three.
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Figure 9.9: Information gain heat map for midterm one problem one predicting the
subcategory error grouping categories. Each element (i, j) is the information gain value
from using feature i to predict error j. This heat-map is colored with a three-color
gradient, which maps the lowest information gain value to red, highest information gain
value to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.

error grouping consolidation scheme. These heat maps are shown in Figure 9.9 through

Figure 9.12.

Additionally, we highlight the first and last ten features (rows) of each heat

map. The first ten rows in the matrix are those features with the smallest sum of

information gain values. These features can be considered the 10 least consistently
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Figure 9.10: Information gain heat map for midterm two problem one predicting the
subcategory error grouping categories. Each element (i, j) is the information gain value
from using feature i to predict error j. This heat-map is colored with a three-color
gradient, which maps the lowest information gain value to red, highest information gain
value to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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Figure 9.11: Information gain heat map for midterm two problem two predicting the
subcategory error grouping categories. Each element (i, j) is the information gain value
from using feature i to predict error j. This heat-map is colored with a three-color
gradient, which maps the lowest information gain value to red, highest information gain
value to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.
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Figure 9.12: Information gain heat map for midterm two problem three predicting the
subcategory error grouping categories. Each element (i, j) is the information gain value
from using feature i to predict error j. This heat-map is colored with a three-color
gradient, which maps the lowest information gain value to red, highest information gain
value to green, and intermediate information gain value to yellow. Each row is labeled by
homework number, problem number and feature type, e.g., Hw3-Pr2-EQN corresponds
to the amount of equation ink written on homework three problem two.

predictive features and will be important for the discussion that follows. Similarly, the

last ten rows of the matrix are those features with the largest sum of information gain

values. These features can be considered the 10 most consistently predictive features

and will be important for the discussion that follows. The top and 10 least predictive

features from each heat map are shown in Table 9.13 and Table 9.14 respectively. These

tables also count the number of each feature type found in the 10 most predictive list

for each midterm problem. This gives an indication of how often the InkEQN , InkFBD,

and InkE2F features are the most predictive for errors on a particular midterm problem.

9.4 Guided Qualitative Analysis

Using the results from category error grouping seen in the previous section,

we are able to provide an analysis of the qualities of the homework problems that were
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M1P1 M2P1 M2P2 M2P3

Hw3-Pr2-InkEQN Hw5-Pr2-InkE2F Hw5-Pr1-InkEQN Hw5-Pr1-InkEQN

Hw3-Pr2-InkFBD Hw5-Pr3-InkE2F Hw5-Pr1-InkFBD Hw5-Pr3-InkFBD

Hw3-Pr3-InkEQN Hw5-Pr3-InkEQN Hw5-Pr3-InkE2F Hw5-Pr8-InkE2F

Hw3-Pr4-InkE2F Hw5-Pr6-InkE2F Hw6-Pr2-InkE2F Hw5-Pr8-InkFBD

Hw3-Pr4-InkEQN Hw5-Pr6-InkEQN Hw6-Pr2-InkEQN Hw6-Pr1-InkEQN

Hw4-Pr5-InkE2F Hw5-Pr6-InkFBD Hw6-Pr3-InkE2F Hw6-Pr1-InkFBD

Hw4-Pr5-InkEQN Hw5-Pr7-InkE2F Hw6-Pr3-InkFBD Hw6-Pr4-InkE2F

Hw4-Pr5-InkFBD Hw5-Pr7-InkEQN Hw6-Pr4-InkEQN Hw6-Pr4-InkEQN

Hw4-Pr6-InkE2F Hw6-Pr1-InkE2F Hw6-Pr5-InkE2F Hw6-Pr4-InkFBD

Hw4-Pr6-InkEQN Hw6-Pr4-InkE2F Hw6-Pr6-InkE2F Hw6-Pr6-InkEQN

No. FBD 2 1 2 4

No. EQN 5 3 3 4

No. E2F 3 6 5 2

Table 9.13: The 10 most predictive features for each midterm and problem, for the
subcategory error grouping scheme. The header row denotes the midterm and problem
number, e.g., M1P1 corresponds to midterm one problem one. The last three rows sum
the number of features for each midterm problem that correspond to free body diagrams,
equations, and the ratio of equation to free body diagram time respectively. Each feature
is represented by three pieces of information: the homework number, problem number,
and type, e.g., Hw3-Pr3-EQN corresponds to the amount of equation ink written for
homework three problem three.

M1P1 M2P1 M2P2 M2P3

Hw3-Pr1-InkE2F Hw5-Pr8-InkE2F Hw5-Pr2-InkE2F Hw5-Pr1-InkE2F

Hw3-Pr1-InkEQN Hw5-Pr8-InkEQN Hw5-Pr2-InkFBD Hw5-Pr2-InkFBD

Hw3-Pr1-InkFBD Hw6-Pr2-InkE2F Hw5-Pr3-InkFBD Hw5-Pr3-InkE2F

Hw3-Pr5-InkE2F Hw6-Pr2-InkEQN Hw5-Pr4-InkE2F Hw5-Pr4-InkEQN

Hw3-Pr6-InkE2F Hw6-Pr2-InkFBD Hw5-Pr4-InkFBD Hw5-Pr4-InkFBD

Hw3-Pr7-InkE2F Hw6-Pr3-InkEQN Hw5-Pr6-InkE2F Hw5-Pr6-InkE2F

Hw3-Pr8-InkFBD Hw6-Pr3-InkFBD Hw5-Pr7-InkFBD Hw5-Pr6-InkFBD

Hw4-Pr1-InkEQN Hw6-Pr5-InkE2F Hw5-Pr8-InkEQN Hw5-Pr7-InkFBD

Hw4-Pr2-InkE2F Hw6-Pr5-InkEQN Hw6-Pr1-InkEQN Hw6-Pr3-InkE2F

Hw4-Pr2-InkFBD Hw6-Pr6-InkEQN Hw6-Pr4-InkFBD Hw6-Pr5-InkEQN

No. FBD 3 2 5 4

No. EQN 2 5 2 2

No. E2F 5 3 3 4

Table 9.14: The 10 least predictive features for each midterm and problem, for the
subcategory error grouping. The header row denotes the midterm and problem number,
e.g., M1P1 corresponds to midterm one problem one. The last three rows sum the
number of features for each midterm problem that correspond to free body diagrams,
equations, and the ratio of equation to free body diagram time respectively. Each feature
is represented by three pieces of information: the homework number, problem number,
and type, e.g., Hw3-Pr3-EQN corresponds to the amount of equation ink written for
homework three problem three.
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found to most consistently predict whether or not students would make particular errors.

9.4.1 Midterm One Problem One

Looking at the midterm one, problem one (M1P1) column of Table 9.9 we

can see that features from certain homework problems appear more than once. This

indicates that effort spent on those problems may better predict performance on this

midterm problem. To further examine this, we show the problem description for problem

one of midterm one in Figure 9.13.

Next we examined each problem-homework pairs that appeared in the M1P1

column more than once, namely, homework three problem two and homework four

problem five, whose problem descriptions are shown in Figure 9.14 and Figure 9.15

respectively.

The problems which appeared more than once in the 10 most predictive list

for midterm one problem one which were: Homework three problem two, and homework

four problem five. The features computed from these problems that appeared in the 10

most predictive list were both InkE2F and InkEQN . This indicates that the amount of

equation ink written and the ratio of equation ink to FBD ink were the most predictive

features for errors made on midterm one problem one.

Homework three problem two is nearly identical to a rotated version of the

midterm problem, as they are both effectively a single body lever. Thus, it makes sense

that the amount of time spent on this problem would be the best predictor of whether

or not students made errors on the midterm problem.
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Figure 9.13: Problem description for problem one of midterm one which reads, ”The
crane is hoisting a 4000 kg bulldozer. The mass center of the 2000 kg boom is located at
G. The system is in equilibrium in the configuration shown. In your analysis, neglect the
width of the boom. a) Draw a large, clearly-labeled free body diagram. b) Determine
the tension T in the cable where it attaches at C. c) Determine the magnitude of the
force applied to the boom at its hinge D.”
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Figure 9.14: Problem description for problem two of homework three which reads, ”A
vertical force of 60 N is applied to one end of a crowbar to pull a nail from a floor. With
the crowbar show in the figure, find the force applied to the floor at A. How does the
answer change if the 60 N force is applied at the same location perpendicular to the
crowbar?”

Figure 9.15: Problem description for problem five of homework four which reads, ”Con-
sider the semi-circular plate shown. The plate has a 40 cm radius and weighs 100 N,
with center of gravity at (d, 0, 0). Determine the tension in the cables and at A and
B and the loads acting on the plate at C, which is a ball-and-socket connection. Note
that d = (4r)/(3π).”
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Figure 9.16: Problem description for problem one of midterm two which reads, ”De-
termine the forces in members CD, JI, and DI and indicate if they are in tension or
compression.”

Homework four problem five has very little in common with the midterm prob-

lem on the surface. Upon further inspection though, it turns out that there is an

important geometry calculation that must be done in order to successfully solve home-

work four problem five. This becomes more interesting, when, we notice that homework

four problem five is most predictive of whether or not a student will make a geometry

error on the midterm problem. This indicates that this problem may lead students to

be more proficient with their geometry calculations.

Furthermore, all features from both homework three problem one and home-

work three problem eight appeared in the list of 10 least predictive features. This

indicates that these homework assignments may be ineffective and should be modified

in the subsequent quarter.
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Figure 9.17: Problem description for problem three of homework five which reads, ”The
device shown is used for cutting PVC pipe. If a force, F = 15 lb, is applied to each
handle as shown, determine the cutting force T. Also, determine the magnitude and the
direction of the force that the pivot at A applies to the blade.”

Figure 9.18: Problem description for problem six of homework five which reads, ”De-
termine the forces acting on each of the members, and on the frame at A and D.”

9.4.2 Midterm Two Problem One

Next we examined each problem-homework pair that appeared in the M2P1

column more than once, namely: homework five problem three, homework five prob-

lem six, homework six problem four, homework six problem six, shown in Figure 9.17,

Figure 9.18, Figure 9.19, and Figure 9.20 respectively.
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Figure 9.19: Problem description for problem four of homework six which reads, ”Use
the method of sections to calculate the forces in members DI, DE and EI for the loaded
truss shown. State if the members are in tension or compression.”

Figure 9.20: Problem description for problem six of homework six which reads, ”The
figure shows a portion of a “cherry-picker,” a machine used to lift workers to elevated
locations. The worker and the bucket have a combined mass of 200 kg with mass center
at G. Determine the forces in KJ, HJ, and HI and indicate if they are in compression or
tension.”
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There were four problems which showed up more than once in the 10 most

predictive list for midterm tow problem one. Homework five problem three appeared

with InkE2F and InkEQN features. Homework five problem six appeared with InkEQN

and InkFBD features. Homework six problem four appeared with InkE2F and InkEQN

features. Homework six problem six appeared with InkE2F and InkEQN features.

Homework five problem three has little in common with midterm two problem

one. The major overlap between the two problems is that homework five problem three

has a two force member that students must properly model in order to correctly solve.

The body in midterm two problem one is comprised entirely of two force members.

Furthermore, Homework five problem three is one of the first opportunities students

have to solve a problem with a two force member in it. This may indicate that students

who spent more time to learn to solve problems with two force members as soon as they

were available, are better equipped later on to solve similar problems.

Similarly to homework five problem three, homework five problem six has little

in common with midterm two problem one. The most apparent similarity between these

problems is the types of joints present in each: both have exactly one pin (element A in

homework five problem six and element H in midterm two problem one) and one roller

joint (element D in homework five problem six and element G in midterm two problem

one).

In contrast with the previous two problems, homework six problem four has a

great deal in common with midterm two problem one; in fact, the solution path for each

is nearly identical.

Lastly, homework six problem six shares a great deal in common with midterm
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two problem one even though the former is a machine problem and the latter is a truss

problem.

Interestingly, all the problems identified as the most predictive of success on

this midterm problem share one important trait in common that may explain why they

were the most predictive. Midterm two problem one is best solved using the “method

of sections” which requires students to decompose the truss into sections by “cutting”

through elements. Solving a truss problem in this way requires that a student have a

stronger mastery of concepts than the alternative solution approach, called “method

of joints.” These homework problems are all similar in that they require students to

carefully identify their solution path before attempting to solve the problem, knowing the

order in which components and equations will be solved ahead of time. This foresight is

a crucial component of the “method of sections” approach to solving; this may indicate

that students who spend more time on problems which require them to better plan

ahead in their solution will perform better on this midterm problem.

Furthermore, all features from homework five, problem eight appeared in the

list of 10 least predictive features. This indicates that this homework assignment problem

may be ineffective and should be modified or replaced in the subsequent quarter.

9.4.3 Midterm Two Problem Two

Next we examined each problem-homework pair that appeared in the M2P2

column more than once, namely, homework five problem one and homework six problem

six, whose problem descriptions are shown in Figure 9.22 and Figure 9.20 respectively.
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Figure 9.21: Problem description for problem two of midterm two which reads, ”The
800-lb crate is held in equilibrium by the lifting device. (a) Determine the forces in
members CE and ED and indicate if they are in tension or compression. (b) Determine
the force in member AB and indicate if it is in tension or compression. ”
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Figure 9.22: Problem description for problem one of homework five which reads, ”The
device shown is used to remove nails. When a force is applied to the handle, the device
grips the nail and extracts it from the board. In this case, a horizontal force F = 10 lb
is required to extract the nail. (a) Determine the axial force applied to the nail by the
puller. (b) Determine the clamping force that each jaw of the puller applies to the nail.
(c) Determine the magnitude and direction of the reaction force at A.”
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There were two problems whose features appeared more than once in the 10

most predictive feature list for midterm two problem two. Homework five problem one

appeared with InkEQN and InkFBD features. Homework six problem six appeared with

InkE2F and InkEQN features.

Homework five problem one two important elements in common with midterm

two problem two. First, both problems requires students to correctly model two force

members in order to solve the problem. Secondly, and more interestingly, homework five

problem one requires students to solve for the clamping force of the jars on the nail at

C; midterm two problem two similarly requires students to solve for the clamping force

of the jaws on the box. This may indicate that students who spend time on problems

with two force members and clamping forces may do better on this midterm problem.

Homework six problem six shares a great deal in common with midterm two

problem two; even though the figures are quite different looking, the solution path for

both is quite similar.

Furthermore, all features from homework five problem five appeared in the list

of 10 least predictive features. This indicates that this homework assignment problem

may be ineffective and should be modified or replaced in the subsequent course offering.

9.4.4 Midterm Two Problem Three

Next we examined each problem-homework pair that appeared in the M2P3

column more than once, namely, homework six problem two, homework six problem

four, and homework six problem six, shown in Figure 9.24, Figure 9.19 and Figure 9.20
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Figure 9.23: Problem description for problem three of midterm two which reads, ”The
tractor shovel carries a 600-kg load of soil, having a center of gravity at G. EJ = 100mm.
JH = 100mm. (a) Identify all of the bodies that are two-force members. List them by
the points on the bodies, e.g., DFG. (b) Determine the force in hydraulic cylinder BC
and indicate if it is in tension or compression. (c) Determine the magnitude of the force
acting on the shovel at point F. (d) Determine the force in hydraulic cylinder IJ and
indicate if it is in tension or compression. ”

respectively.

There were three problems whose features appeared more than once in the

list of the 10 most predictive features for midterm two problem three. Homework six

problem two appeared with InkE2F , InkEQN , and InkFBD features. Homework six

problem four appeared with InkE2F , InkEQN , and InkFBD features. Homework six

Figure 9.24: Problem description for problem two of homework six which reads, ”Use
the method of joints to determine the force in each member of the truss. State if the
members are in tension or compression.”
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problem six appeared with InkEQN and InkFBD features.

In all cases, these homework problems are most effectively solved using the

method of sections, as is the case with midterm two problem three. This may indicate

that students who spend more time on homework assignments which lend themselves to

being solved via the method of sections are less likely to make errors on this midterm

problem.

9.4.5 Common Qualities of Predictive Homework Problems

In comparing each of the homework problems identified as being most predic-

tive on each midterm problem, we find two interesting patterns worth discussing.

First, homework six problem six appears as the most predictive problem for

every one of the midterm two problems. This is a clear indication that this is problem

is effective in teaching students important statics concepts. This problem had the most

in common with each of the midterm problems, especially since the solution paths of

homework six problem six and each of the midterm problems were very similar.

Secondly, in comparing each of the prompts of the identified homework prob-

lems, nearly all of them require students to solve for most if not all of the elements

present in the figure. This is a contrast to most homework assignment problems which

require students to only solve for a single element in the problem. This, is an exciting

discovery as it suggests that students in this class should be presented with problems

that require them to identify all unknown forces in a problem, instead of having them

only solve for a single unknown.
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9.5 Conclusion

In this work, we have presented an automated technique for identifying which

homework problems assigned to students in a Statics course were most predictive of

students performance on midterm exam problems. Using semantically labeled pen stroke

data from students homework solutions, we computed the amount of ink written on

each problem corresponding to either free body diagrams and equations. We used these

amounts as simple features which were used to predict which errors students would

make on each problem of their midterms. We did this by using each feature to compute

the amount of information gained about a particular error using the information gain

algorithm. We then created a information gain heat map which, for each midterm

problem, contained the amount of information gained by each feature for each error.

We sorted this matrix by the sum of the row and column values, resulting in a matrix

in which the most predictive features appeared at the bottom of the matrix and the

least predictive appeared at the top. Using these matrices, we identified the homework

assignment problems which were most predictive of performance on a midterm problem

as the homework assignments whose features appeared more than twice in the top feature

list for that midterm problem. This top feature list guided a qualitative analysis, in

which the most predictive homework problems were manually compared to the midterm

problem so as to understand why each homework problem was most predictive of errors

on that exam problem.

This analysis technique has several implications both within the Statics course

for which it was developed as well as for the Educational Data Mining community.
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Within the context of the Statics course, we have identified the homework

problems which are most and least predictive of performance on midterm problems.

By comparing these homework problems, we are able to identify the types of transfer

students likely made when solving the midterm exam. This knowledge may be used to

develop new, similar homework problems that will lead to the same types of transfer

and hopefully be even more predictive of students performance next year.

The results of this study present an easy-to-read digest form of the amount

of effort students spent on each assignment and resulting performance. This technique

will be valuable in future years in which the digital pens are distributed to students to

provide the instructor with formative assessments (after each midterm and each quiz)

that can be used to guide both the current course and help develop the next one.

More importantly, this is a generalizable technique that is of interest to the

entire educational data mining community. Any instructor capable of providing his or

her students with digital pens with which those students may complete their homework

assignments, may apply this technique to better understand the relationship between

the homework assignments students complete and their performance. More importantly,

the results of this technique are applicable not only to that instructor but also to any

instructor in that subject matter.
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Chapter 10

Machine Learning Based Sketch

Processing Techniques

10.1 Introduction

In this chapter, we present techniques used to process low-level representations

of handwritten pen strokes. In particular we present three techniques: one to segment

pen strokes, one to recognize single-stroke gestures, and one to align each pen stroke to

the speech with which it is associated. These techniques are all important first steps in

larger systems which accept users handwritten sketching as input. We have found, as we

will show in the subsequent related work sections, that prior approaches typically rely

on heuristic-based approaches. It is the goal of our work, presented in this chapter, to

show the effectiveness of general and extensible machine learning based approaches to

replace these prior approaches. First we present the 1¢ recognizer, an easy-to-implement

gesture recognition technique which is enabled by a simple nearest neighbor search. Next
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we present ClassySeg, which employs a statistical classifier to detect intended points of

segmentation in hand written pen strokes. Lastly we present a machine learning based

stroke-speech alignment technique. This technique is intended for multimodal (speech

and sketch) interfaces, and identifies aligns speech with the pen strokes to which it refers.

10.2 User Study Data Set

We used the pen stroke data from the study described in [59] to evaluate the

performance of 1¢ and benchmark it against $1. In that study, an HP TC4400 Tablet

PC with a digitizer resolution of 1024x768 pixels was used for data collection. The

participants were asked to draw each of the ten symbols in Figure 10.1 18 times. Thus,

there were 180 strokes drawn by each participant, yielding 2,520 strokes in total.

The participants were informed that the purpose of the study was to collect

data to evaluate the performance of an algorithm. Participants were instructed to “draw

naturally with ordinary accuracy,” and to not attempt to “trick or break the system.”

Before beginning the exercise, each participant was given a few minutes to practice

drawing on the Tablet PC.

Each point from the data set is a triple containing an x-coordinate, y-coordinate,

and time value. To facilitate training and testing of algorithms, the true segment points

on each pen stroke were manually labeled using an approach analogous to that in [132].

Specifically, the pen stroke data was initially segmented using the segmentation tech-

nique described in [114]. Then segment points were manually added, deleted, and moved

as necessary to achieve the correct segmentation. Additionally, each gesture was manu-
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Figure 10.1: The ten shapes used to evaluate our sketch processing techniques: triangle,
rectangle, omega, sigma, square root, resistor, star, inductor, stoop, not.

ally labeled according to its shape.

10.3 The 1¢ Recognizer

10.3.1 Introduction

Gesture recognition is a primary enabling technology in pen-based computer

interfaces and sketch understanding1. Gesture recognition is the process by which a

user’s handwritten pen stroke is recognized as being one of a number of predefined

gesture types.

As we show in the related work section, numerous handwritten gesture recogni-

tion techniques have been developed. Arguably, the most popular of these is the Dollar

1This work originally appeared in [60]
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Recognizer ($1). This aptly named technique’s popularity can be attributed to its ease

of implementation, efficiency, and high performance.

In this work, we improve on $1 by introducing the One Cent Recognizer (1¢),
a technique that requires less code, is more efficient, and performs at least as well as $1.
This technique is enabled by a novel transformation of raw pen stroke data into a one-

dimensional feature vector. A simple time series classification technique can then be used

to find a feature vector’s closest match in a training corpus. This novel transformation

is intrinsically rotation invariant, eliminating the need for rotate-and-check searches

typically employed in previous approaches, resulting in a substantial speed advantage

for the 1¢ technique.

We perform two rigorous train-and-test cross-validation schemes to evaluate

the efficiency and accuracy of 1¢ and $1. The first is a user-dependent scheme, which

demonstrates each recognizer’s performance when the testing and training data are

both generated by the same participant. The second is a user-independent scheme,

which demonstrates each recognizer’s performance when the testing data comes from a

participant who generated none of the training data. These tests show that 1¢ is always

at least as accurate as $1, and is always two orders of magnitude faster.

In the following section we discuss related work in handwritten gesture recog-

nition as well as time series classification techniques that serve as inspiration for 1¢. In
Section 10.3.3 we provide the algorithmic details of our technique. The results of the

user-dependent and user-independent evaluations are presented in Section 10.3.4. We

discuss the results and present conclusions in Section 10.3.5 and Section 10.3.6. Lastly,

in the Appendix, we present concise pseudocode for 1¢ that can be used to quickly im-
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plement this technique. Additionally, the appendix contains the URL to an open-source

implementation of 1¢.
10.3.2 Related Work

Wobbrock et al. [129] developed $1, which is so called because of its ease of

implementation; the pseudocode for $1 contains only 72 functioning lines. This hand-

written gesture recognition technique comprises two major steps: transformation and

recognition. In the first step, a raw stroke is transformed into a template. This transfor-

mation begins by resampling a stroke to a fixed number of points such that the distances

between all successive pairs of points are equal. Next, the resampled stroke is rotated so

that its indicative angle lies at 0◦. Lastly, the points are scaled to a fixed-size square and

the points are translated so that their centroid is at the origin. These transformations

effectively normalize the pen stroke so that comparisons are scale and position invariant.

In the second step, the templatized candidate stroke is compared to a number of training

templates in order to find its best match. In order to be rotation invariant, $1 employs

golden section search during this step to determine the best angular alignment of the

candidate with each template.

Rubine [106] developed one of the earliest handwritten gesture recognizers in

his seminal paper. This technique begins by representing a pen stroke using 13 geometric

features, such as the sum of the curvature values at each point of the stroke, the angle

at the first point of the gesture, and the size of the stroke’s bounding box. Gestures are

recognized using a simple linear classifier, which is trained on these features. While this

approach achieved good accuracy, it was not rotation invariant.
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The Image-Based Recognizer [72] applies popular image recognition techniques.

The Image-Based Recognizer converts each candidate stroke into a fixed-size binary

bitmap. The distance between two bitmaps is computed using four traditional bitmap

distances, e.g., the Hausdorff distance. Similar to $1, when a candidate template is

compared to a training template, a search is employed to find the angular orientation

that minimizes the distance to that training template. While this technique is typically

more accurate than $1, it is much more complex in its implementation and is far less

efficient; operations on bitmaps are typically O(N2).

These techniques have several features in common. Most importantly, they are

all template-based. The unknown candidate must be compared to each of the templates

in the training corpus to determine the best match. Also, $1 and Rubine’s method can

recognize only single-stroke gestures. For example, they cannot recognize the letter “t”

if it is drawn with two strokes.

While the Image-Based recognizer can recognize multi-stroke symbols, the set

of strokes comprising the symbol must be distinguished from the other strokes in the

sketch by some other process. Sezgin and Davis [108] developed a technique which

uses Hidden Markov Models (HMMs) to identify all of the symbols in a sketch without

preprocessing. By considering sequences of pen strokes, the HMMs naturally identify

multi-stroke symbols. This approach begins by processing strokes using the Toolkit from

[109]. This toolkit segments pen strokes into their constituent geometric primitives, such

as lines and arcs. The segmented output is then converted into a sequence of discrete

observations. A separate HMM is trained for each symbol class. Candidate sequences

are classified according to the HMM that best recognizes the candidate sequence, i.e.,

185



returns the highest probability using the Forward-Backward algorithm.

While machine learning approaches such as linear classifiers and HMMs, are

frequently used for sketch understanding techniques, time series classification techniques

[22, 49, 22] have not been widely used. This is surprising as pen strokes are a time se-

ries of (x,y) values. Xi et al. [134] have shown that simple first-nearest-neighbor (1NN)

Euclidean distance and Dynamic TimeWarping (DTW) approaches are often more accu-

rate than more complex time series classification techniques, with DTW being the more

accurate of the two. Tappert [121] used DTW to implement a handwriting recognition

technique which was used as a benchmark for $1. It was found that $1 typically per-

formed as well as DTW and was much more efficient and easier to implement. However,

DTW is much more expensive than Euclidean 1NN approaches. Our goal is develop an

efficient gesture recognizer using a simple, Euclidean 1NN approach.

The key to using a Euclidean 1NN approach is developing a one-dimensional

time series that allows for accurate recognition. The representation used in this chap-

ter is based on that found in [135] which was used to recognize digitized hieroglyphs.

We have significantly modified this representation to handle handwritten gestures. The

hieroglyphs always formed a closed contour, which is rarely the case for handwritten

gestures. Additionally, while the hieroglyph bitmaps contain no timing information,

handwritten gestures do, and this may be leveraged to achieve greater accuracy. Further-

more, the one-dimensional hieroglyph representation is intrinsically sensitive to angular

orientation, and thus, just as with $1, search is required to determine the best angu-

lar orientation. As we show in Section 10.3.3, our representation is rotation invariant,

eliminating the need for such a search.
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10.3.3 Approach

1¢ comprises two major steps. In the first step, the raw pen stroke data is

transformed into a fixed-length, one-dimensional vector which we call a template. In

the second step, distances are computed between the candidate and training templates

to find the closest match.

10.3.3.1 Resample

A simple Euclidean distance comparison of two time series requires that both

series be the same length. Thus, the first step in templatizing a pen stroke is to resample

it to a fixed number of points, N , such that the distance between all pairs of successive

points is equal. We accomplish this using the same approach used in [129]. To be

consistent with the implementation of $1 we use N = 64 in this chapter, although as we

show in the results section, any value of N between 16 and 128 is acceptable.

10.3.3.2 One Dimensional Representation

Next, we transform the three dimensional (x,y,t) data of each stroke into a one-

dimensional vector, d. We begin by computing the centroid, c, of the points comprising

the stroke, i.e., (µx, µy). We then compute the Euclidean distance from c to each

resampled point in the stroke. The resulting series of distances, d, ordered by time,

characterizes the stroke:

d = {d1, ..., dN} s.t. di = ||pi − c|| (10.1)
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Because this representation is based on the centroid of the gesture, it is intrinsi-

cally rotation invariant. Consider the example in Figure 10.2: a rotation transformation

does not change a point’s distance to the centroid. This allows our technique to avoid

expensive search that other methods require to find the optimal angular alignment.

Additionally, this transformation is intrinsically position invariant, allowing for strokes

drawn anywhere on a page to be compared to each other.

c
D1 D2

D2

D1

c

Figure 10.2: Rotation invariance of our one-dimensional pen stroke representation. Ro-
tating the star gesture does not change the distance from the centroid (point “C”) to
points on the stroke such as points D1 and D2.

Next, we z-normalize d to ensure scale invariance:

z = {z1, ..., zN } s.t. zi =
di − µd

σd
(10.2)

where µd is the average of the stroke’s di values, and σd is the standard deviation.

This z-normalized distance vector, z, is the template used to represent the

candidate pen stroke. Figure 10.3 illustrates each of the major steps of this templatizing

process.
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(A) (B)

(C) (D)

Figure 10.3: The templatizing process. The raw candidate pen stroke (A) is first re-
sampled into N points (B). Next the centroid (red point) of the resampled points is
computed (C) and the distance from it to every resampled point on the stroke is com-
puted (blue lines). This sequence of distances is z-normalized and the resulting vector
is the template for the candidate stroke.

10.3.3.3 Comparing Templates

Because all distance vectors are the same length and z-normalized, they may

be directly compared. We use the L2 distance to compare vectors. More formally, the

distance between two vectors, v1 and v2 is defined as:

L2(v1,v2) = ||v1 − v2||
2 (10.3)

Using this distance, we apply a simple 1NN approach to recognize gestures. A

templatized candidate (unknown) stroke, U , is compared to each training template, T ,

in the training set. The matching training template, T ∗, is the one which minimizes the

L2 distance:

T ∗ = argmin
T

L2(U, T ) (10.4)
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n $1 Tot. 1¢ Tot. $1 Ave. 1¢ Ave.

1 5.20 0.16 2.22 0.07

2 10.20 0.21 4.35 0.09

3 15.22 0.25 6.50 0.11

4 20.07 0.30 8.57 0.13

5 25.28 0.38 10.80 0.16

6 29.96 0.41 12.80 0.17

7 35.14 0.47 15.01 0.20

8 40.39 0.54 17.26 0.23

9 45.53 0.57 19.45 0.24

Table 10.1: Computation times for $1 and 1¢ as the number of examples (n) of each
gesture used for training is varied. The second and third columns are the total time
required by $1 and 1¢ to recognize all 2340 test gestures (seconds). The last two columns
are the average times to recognize a single gesture (milliseconds).

10.3.4 Results

We present here an analysis of the efficiency and accuracy of both $1 and

1¢. Two separate validation schemes were used, a user-independent scheme and a user-

dependent one. In each fold of the user-independent scheme, n examples of each gesture

from one participant were used for training, and all gestures from the other participants

were used for testing. As there were 14 participants, we performed 14-folds of cross-

validation for varying values of n. In each case, 2,340 gestures (13 participants x 180

gestures) were used for testing. The accuracy achieved by both recognizers for varying

values of n are shown in Figure 10.4. Recognition timing results are shown in Table 10.1.

In the user-dependent scheme, a separate cross-validation is performed for each

participant, with testing and training data from only that participant. We performed
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Figure 10.4: Average accuracy as a function of the number of training examples (n) for
each gesture type for both $1 and 1¢. In each case the difference between the groups is
significant (p < 0.01)

18-folds of cross-validation for each participant. In each fold, one example of each gesture

type is used for training and the others are used for testing (each gesture was used for

training exactly one time). Because each participant drew 180 strokes, there were 170

strokes tested in each fold. Performing 18 folds resulted in 3,060 test recognitions. We

averaged the accuracy for each participant across their 18-folds, producing the results

in Figure 10.5.

Figure 10.6 presents the accuracy for both $1 and 1¢ for each gesture type. Here

accuracy is computed with the user-independent scheme with nine training templates

for each gesture type (n = 9). The per-shape confusion matrix of the user-independent

evaluation for 1¢ and $1 are shown in Table 10.2 and Table 10.3 respectively. These

tables show how often each shape was recognized as each other shape, which is useful
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Figure 10.5: Accuracy results for each participant under the user-dependent scheme.
Accuracy for a participant is averaged across 18-folds of cross-validation. An asterisk
indicates that the difference in accuracies of the two methods for a particular participant
is statistically significant(p < 0.05).

Induc. Not Omega Rect. Resist. Sigma Sqrt Star Stoop Triang.

Induc. 3245 0 0 0 5 0 26 0 0 0

Not 0 2089 96 435 0 133 22 51 161 289

Omega 3 3 2791 0 238 0 37 0 73 131

Rect. 0 144 33 2822 0 0 5 149 84 39

Resist. 319 0 0 0 2952 0 5 0 0 0

Sigma 153 0 3 0 4 3073 41 0 0 2

Sqrt 533 0 2 0 27 2 2712 0 0 0

Star 0 59 15 325 34 5 0 2776 43 19

Stoop 0 111 1052 374 0 186 11 53 1192 297

Triang. 0 143 182 45 0 104 0 7 63 2732

Table 10.2: Per-shape confusion matrix of 1¢ on the user-independent scheme.

in understanding cases where the two recognizers perform poorly.

Table 10.4 presents the accuracy of each method across varying values of N .

The difference between the accuracy of 1¢ for N = 16 and N = 128 is not significant

(p = 0.61). Similarly, the difference between the accuracy of $1 for N = 16 and N = 128

is not significant (p = 0.94). Additionally, the difference in accuracy of the two methods
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Induc. Not Omega Rect. Resist. Sigma Sqrt Star Stoop Triang.

Induc. 3043 0 0 0 27 42 164 0 0 0

Not 33 1217 60 861 23 503 210 59 126 184

Omega 82 36 2755 305 0 13 53 18 1 13

Rect. 0 3 214 2185 0 333 38 0 253 250

Resist. 154 0 0 0 3109 12 1 0 0 0

Sigma 5 1 0 0 0 3260 9 0 0 1

Sqrt 150 73 118 118 0 169 2635 0 0 13

Star 1 680 34 10 191 319 7 1997 25 12

Stoop 0 6 509 1144 0 213 13 6 798 587

Triang. 0 1 264 444 0 338 5 0 316 1908

Table 10.3: Per-shape confusion matrix of $1 on the user-independent scheme.$1 1¢ p

N = 16 94.8 94.2 0.68

N = 32 94.8 93.8 0.55

N = 64 94.7 93.4 0.43

N = 128 94.7 93.2 0.38

Table 10.4: Average accuracy of each technique across varying values of N , the resam-
pling size, using the user-dependent method. The p column represents the p-value of a
student t-test of the accuracies of the two techniques.

for each value of N is never significant (p > 0.38). These results demonstrate that the

accuracy of either method is insensitive to this parameter and thus any value within

this range is acceptable.

We repeated all of the above analyses, rotating the testing templates before

recognition for increasing angles of rotation. We found in all such experiments that the

rotation angle never affected the accuracy of either $1 or 1¢, demonstrating a theoretical

rotation invariance. A user study in which participants are asked to draw symbols

at varying angles would be required to determine if, in practice, these methods were

intolerant of additional transformations caused by drawing gestures at an angle.
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Figure 10.6: Average per shape accuracy results from the user-independent scheme with
n = 9 training templates per gesture type. The difference in accuracy between the two
methods is significant for each shape (p < 0.03).

10.3.5 Discussion

The user-independent scheme simulates off-the-shelf performance of each rec-

ognizer. One might imagine supplying a number of training examples with these rec-

ognizers so that a user can deploy them without needing to supply her own training

examples. The user-independent evaluation considers the kind of performance that

would be achieved in this circumstance. As Figure 10.4 indicates, user-independent ac-

curacy increases slightly with the number of training templates used. Furthermore, 1¢
performs significantly better than $1 for this scheme.

Figure 10.6 provides additional insight into the difference in accuracy of the

two recognizers when using the user-dependent scheme. For some gestures, the two

recognizers achieve similar accuracy. On others, such as the not and star gestures, 1¢
performs much better than $1. Empirically, it seems that $1 often misinterprets gestures
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that form closed contours as other closed contour gestures, whereas 1¢ is intrinsically

well suited for recognizing such shapes.

Table 10.1 shows the expected result that computation time linearly increases

with the number of training templates. Most importantly though, the computation time

of 1¢ is consistently two orders of magnitude less than that of $1.
The user-dependent scheme simulates user-optimized performance for both rec-

ognizers. Figure 10.5 suggests that the two recognizers perform nearly equally well; in

only four cases is the accuracy between the two techniques significant, and in three of

those cases, $1 performs better than 1¢.
10.3.6 Conclusion

We have presented 1¢, a fast, accurate, and easy-to-implement handwritten

gesture recognizer. Our technique applies simple, yet effective techniques adapted from

the time series classification literature. The key enabling component of our algorithm

is our novel one-dimensional representation of handwritten strokes. This representation

is intrinsically rotation invariant, eliminating the need for the expensive search-based

angular alignment computation previous template-based gesture recognition techniques

have required.

We have evaluated 1¢ on a large database containing 2,520 strokes and com-

pared its accuracy to that of $1. By applying both user-dependent and user-independent

cross-validation schemes, we evaluated accuracy on 75,600 test cases. Our results show

that in the user-dependent scheme, both recognizers performed nearly as well as each

other. In the user-independent scheme, 1¢ always performs significantly better than
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$1. These results suggest that both recognizers are able to take advantage of users’

individual drawing styles but 1¢ is more tolerant of drawing styles not encountered in

the training corpus. Additionally, our results show that 1¢ is consistently two orders of

magnitude faster than $1. Just as important for developers, 1¢ requires considerably

less effort to implement than $1; 1¢ comprises 37 lines of pseudocode while $1 comprises

72.

10.4 ClassySeg

10.4.1 Introduction

Automatic pen stroke segmentation is the process by which a digital pen stroke

is segmented into its constituent lines and arcs2. For example, stroke segmentation

would decompose a hand-drawn triangle into the three straight lines that comprise it.

The challenge in this process is determining which bumps and bends in the stroke are

intended corners and which are not. It has been shown that curvature information alone

is an unreliable indicator of segmentation [109], and thus a more sophisticated approach

is required.

Stroke segmentation is an essential first step in shape recognition [80, 102]

and thus is a crucial part of sketch-based interfaces. Decomposing a stroke into its

constituent geometric primitives also facilitates beautification, in which the hand-drawn

primitives are replaced by mathematically precise shapes to produce a neater final result

[70, 68].

2This work was originally published in [53]
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Existing segmentation techniques typically rely on heuristic algorithms and

empirically determined parameters. ClassySeg provides greater extensibility and gen-

erality than these previous methods by employing general machine learning techniques

to identify the segment points in a stroke. ClassySeg begins by identifying a set of

candidate points consisting of all curvature maxima. Next, speed, curvature, and other

geometric features are computed for each candidate point. These features are taken from

previous segmentation approaches, effectively combining their strengths. The features

are used to train a statistical classifier which determines which candidate points are true

segment points and which are not. To optimize performance, a beam search was used to

identify the subset of features that produces the most accurate classifier. ClassySeg was

evaluated on a large data set of pen strokes from [59] and is more accurate than previous

techniques for user-independent training conditions. Just as important, ClassySeg can

be easily extended to include other features and is highly tunable. For example, it can

be optimized for different kinds of shapes and can be tuned for individual users and

various drawing hardware.

The next section places our approach in the context of previous work. Next,

the dataset used to evaluate ClassySeg and benchmark it against prior techniques is

described. This is followed by a discussion of the main components of the ClassySeg

approach, including candidate point selection, feature computation, classifier training,

and feature subset selection. Finally, ClassySeg’s accuracy is compared to that of three

previous segmentation approaches, and to a baseline, näıve segmentation approach.
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10.4.2 Related Work

Pen stroke segmentation is a well researched topic, and numerous methods

have been developed. Yu and Cai’s [141] technique first attempts to fit a stroke with

a single primitive. If the fit is poor, the stroke is segmented at the point of highest

curvature, and the two pieces are then recursively processed. Segments are merged in a

post-processing phase, but the criteria for doing this are not specified.

The technique of Sezgin et al.[109], which we call SSD, uses speed and curvature

to segment pen strokes. Segment points are located at points of minimum speed and

maximum curvature. This work demonstrated the usefulness of pen speed data for

segmentation, and showed that curvature data alone is inadequate. SSD is suitable for

segmenting pen strokes into sequences of line segments, but cannot handle arcs.

Wolin et al. [130] developed ShortStraw, which begins by resampling the pen

stroke, and then computes the “straw value” for each point, which gives an indication

of the local curvature. All points with a straw value below an empirically determined

threshold are considered candidate segment points. A top-down phase then examines

the segments between each pair of consecutive candidate points to evaluate the quality

of the line fit. If the fit is poor, segment points are added.

Xiong and La Viola [137] developed iStraw, which improves upon the Short-

Straw approach by including timing information and curvature detection. iStraw achieves

better accuracy than ShortStraw and is able to handle curve and arc segments, which

ShortStraw cannot.

Wolin et. al’s [131] Sort, Merge, Repeat (SMR) technique begins just as SSD
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does, by locating candidate segment points at speed minima and curvature maxima.

The algorithm then finds the shortest segment and merges it with one of its neighboring

segments in an attempt to remove false positives. This process is repeated until the line

and arc fit errors of the segments are below an empirically determined threshold.

Recently, Herold and Stahovich [59] presented SpeedSeg. This approach also

identifies the initial candidate segment points at speed minima and curvature maxima.

A set of heuristics are then used to both merge and split the initial segmentation to

produce a more accurate final result. The heuristics employ several geometric and

speed-based features with empirical thresholds. These threshold can be optimized to

improve performance.

Nearly all of these approaches rely on heuristics and empirical parameters,

which limit their extensibility. In many cases, there is no automated procedure for

selecting optimal parameter values. By contrast, ClassySeg uses a general purpose ma-

chine learning approach that naturally extends to incorporate any number of features.

Here, we use the approach with a collection of features derived from multiple existing

segmentation techniques, but other features can be directly added. Furthermore, Classy-

Seg is highly optimizable. It can both determine the optimal subset of features to use

and identify optimal parameter values (via a trained classifier). As a result, ClassySeg

can be easily tuned for specific users, specific classes of shapes, and specific drawing

hardware.
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10.4.3 Approach

ClassySeg uses a C4.5 decision tree to determine which of the initial candidate

segment points are true segment points. The candidates consist of the curvature maxima.

The decision tree is trained using 48 features, many of which are taken from existing

segmentation techniques. To improve performance, a beam search is used to identify

the subset of features that results in the best-performing decision tree.

The sections that follow describe the approach in more detail, including the

identification of candidate segment points, the features used for classification, and the

approach used for training.

10.4.3.1 Candidate Point Selection

In the data set described in Section 10.2, only 2.61% of the data points are

segment points. Training a classifier to detect such rare cases can be difficult [128].

There are a number of common ways to address this kind of problem, such as resampling

schemes [69] and the use of sophisticated objective functions for training the classifier

[77].

However, for the segmentation task, there is a more direct approach to over-

come this problem: most segment points are maxima of curvature. In the data set we

consider, only 0.20% of actual segment points are not maxima. Furthermore, 19.91%

of the maxima are true segment points, which is a sufficiently high frequency to enable

accurate classification.

ClassySeg identifies candidate segment points using the curvature computation

in Section 10.4.3.3. As described there, this computation actually computes the absolute
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value of curvature. Thus, all curvature extrema, regardless of the direction of concavity

are selected as initial candidate segment points.

ClassySeg currently uses 48 features. Some describe basic geometric properties

of the pen stroke such as arc length and the quality of fit of the line and arc segments.

Others are adapted from SSD [109], Kim and Kim’s method [74], ShortStraw [130],

iStraw [137], and SpeedSeg [59]. The details of these features are described below.

10.4.3.2 Arc Length

The ends of a pen stroke often require special handling because of the presence

of hooks [59]. Thus, we characterize each candidate segment point by a number of arc

length features. The arc length, di, of a point, pi, is defined as:

di = Σi
j=1
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∣
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∣
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∣

∣

∣

(10.5)

where ~Pj is the coordinates of the jth data point. The first data point has index j = 0

and d0 = 0.

The arc length is computed between each candidate point and both the next

candidate point (faln) and the previous candidate point (falp). The ratio of faln to falp

is included as feature falnpr. A short arc length between consecutive candidate segment

points may indicate that one, or both, is not a true segment point. To enable the classifier

to properly handle the ends of a stroke, the arc length from the candidate point to both

the the start point (fals) and end point of the stroke (fale) are also computed.

To obtain arc length features that are independent of the size of the pen stroke,

a second set of features is obtained by normalizing the above features by the arc length
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of the stroke. The resulting four features are denoted by the addition of an “n” to the

subscript: falnn, falpn, falsn, falen. (falnpr is already normalized.)

10.4.3.3 Curvature

We compute curvature using the approach from [59]. As all extrema of cur-

vature are potential corners, ClassySeg works with the absolute value of curvature. In

this way, all extrema are detected simply as maxima. For convenience, we use term

“curvature” to mean the “absolute value of the curvature.”

The curvature, c, is computed as the derivative of the tangent angle, θ, with

respect to arc length:

c =

∣

∣

∣

∣

δθ

δs

∣

∣

∣

∣

(10.6)

The feature fc is defined to be equal to c

To construct the tangent angle at a point, a least squares line is constructed

using the point and the five points on each side. This method naturally smooths the

often noisy curvature data. If the line fit is inaccurate, i.e., if the average distance

from the 11 points to the least squares line is greater than 10% of the arc length of

the window of 11 points, a least squares circle is instead used to establish the tangent.

The derivative of the tangent angle is also computed using a least squares line fit to the

graph of the tangent angle vs. the arc length. The slope of this line gives the curvature

in units of radians per pixel.

To provide the classifier with additional context about the curvature near a

candidate segment point, the curvature of the points immediately preceding and pro-

202



ceeding the candidate point are used as features fcp and fcn.

The curvature at a corner can be arbitrarily large. Thus, to better characterize

the shape, we compute two normalized curvature features. For the first (fcmm), the

curvature is normalized by the minimum and maximum curvature along the stroke:

fcmm =
(fc − cmin)

cmax

(10.7)

where cmin is the minimum curvature value over all points in the stroke, and cmax is the

maximum. This normalized curvature value for the points immediately preceding and

proceeding each candidate point are included as features: fcmmp and fcmmn. Likewise,

the feature fca is obtained by normalizing the curvature by the average curvature of the

stroke, cave:

fca =
fc
cave

(10.8)

Again, the average-normalized curvature of the points immediately preceding and pro-

ceeding each candidate point are also included as features: fcap and fcan.

10.4.3.4 Straw

The ShortStraw algorithm of Wolin et al. [130] uses the “straw value”, which

is analogous to curvature, to identify corners. The straw value at a point, pi, is equal

to the Euclidean distance between the points pi−w and pi+w:

strawi = |pi−w, pi+w| (10.9)
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where w is a constant. Figure 10.7 shows an example of the straw value of both a

segment point and a non-segment point. A small straw value is indicative of a true

segment point.

Figure 10.7: Straw values at a point P which is a true segment point (left) and a point
Q which is not (right). (w = 2.) The straw value for a true segment point is much
smaller than for a non-segment point.

With ShortStraw, the straw value is not well-behaved at the ends of the stroke.

The iStraw algorithm [137] uses a more general definition of the straw to remedy this:

straw0 = 0

strawN−1 = 0

straw1 = |p0, p1+w| ×
2w

(w + 1)

straw2 = |p0, p2+w| ×
2w

(w + 2)

strawN−2 = |pN−1, pN−2−w| ×
2w

(w + 1)

strawN−3 = |pN−1, pN−3−w| ×
2w

(w + 2)
(10.10)

We compute the straw value using the iStraw approach. Before computing the

straw value, both ShortStraw and iStraw resample the ink to produce equally spaced

data points. We compute straw values two ways, first using the original data points,

then using resampled data points. Additionally, we compute straw values using four
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different values of w (w = 1, 2, 3, and 4), resulting in four straw features based on

the original data points (fst1, fst2, fst3, and fst4) and four based on the resampled data

points (fstr1, fstr2, fstr3, and fstr4).

Both ShortStraw and iStraw work with resampled data and do not classify the

original data points. By contrast, our goal is to identify which of the original data points

are true segment points. Thus, when resampling the ink to compute the straw value,

we do a local computation that preserves the data point in question, and computes

equally-spaced sample points on either side of it. We use the resampling technique used

in [129].

10.4.3.5 Alpha and Beta

iStraw [137] uses two angles, α and β, to help distinguish true corners from

smooth curves. Like the straw value, these angles are computed using a pair of resampled

points, one on each side of the point in question. Angle β is computed using data points

near the point in question, while angle α is computed using points that are farther.

Our features fα and fβ are similar to angles α and β, except that our features

are computed from the actual data points, rather than resampled ones. Also, we use a

different offset for selecting the points that define the angles. As shown in Figure 10.8,

we compute fβ as the angle between the line segment joining pi and pi−1 and the line

segment joining pi and pi+1. Similarly, we compute fα as the angle between the line

segment joining pi and pi−2 and the line segment joining pi and pi+2.

In iStraw, the difference between α and β is used to distinguish corners. The
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Figure 10.8: α and β values of a point, Pi, in the event of a corner (left) and curve (right).
The difference between α and β is near zero in the case of a corner and relatively large
in the case of a curve.

difference between α and β tends to be small in the case of true corners, and large in

the case of curves. For this purpose, we use the feature fαβ, which is defined as the

difference between fα and fβ.

We compute a second set of angle features (fαr, fβr, and fαβr) using resampled

ink. We resample the ink just as we do to compute the straw features in Section 10.4.3.4.

10.4.3.6 Region of Support

In their stroke segmentation approach, Kim and Kim [74] use a curvature esti-

mation technique which combines the signed curvature values of the k-nearest neighbors

of a point — called region of support — to determine the curvature at that point.

We define the region of support for a candidate point as the set of neighboring

points that are locally convex to it. More precisely, we compute two region of support
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features as illustrated in Figure 10.9: fasp is the arc length from the candidate point to

the previous curvature minima, while fasn is the arc length from the candidate point

to the next curvature minima. The larger these features, the more likely it is that the

candidate point is a segment point.
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Figure 10.9: Region of support features for the red candidate point: fasp and fasn are
the arc length to the next and previous curvature minima (green points).

10.4.3.7 Speed

People typically decrease pen speed when making deliberate corners [109].

Thus, low speed at a candidate point is often good evidence that the point is a true

segment point.

We compute pen speed using a centered, finite difference approach from [59].
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The speed at point pi is initially computed as:

si =
di+1 − di−1

ti+1 − ti−1

(10.11)

where, ti and di are the time stamp and arc length, respectively, of point pi. Because

the speed data is noisy, we apply a simple filter: the speed at each point is averaged

with that of the two points on either side. The feature fs is defined as the value of the

smoothed pen speed.

Just as with the curvature features, we also compute several normalized speed

features. First, speed is normalized by the minimum and maximum pen speed of the

stroke: fsmm. The minimum/maximum-normalized speed of the points immediately

preceding and proceeding each candidate point are also included as features: fsmmp and

fsmmn. Likewise, the feature fsa is obtained by normalizing the speed by the average

speed of the stroke. Finally, the average-normalized speed of the points immediately

preceding and proceeding each candidate point are included as features: fsap and fsan.

10.4.3.8 Arc and Line Fit

One measure of the quality of the segmentation is the degree to which the

segments can be fit by geometric primitives. The approach in [141], for instance, recur-

sively splits the segmentation until a good a good fit is achieved. Thus, we compute

least squares arcs for the segments on either side of a candidate segment point. The

features fafp and fafn are defined as the error of fit between these arcs and the actual

data points. The features flfp and flfn are defined analogously, but represent the error

of fit to least squares lines. If the next and previous segments form a single contiguous
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line, the candidate segment point may be a false segment point. Thus, we compute a

single least squares line fit to the ink spanning from the previous to the next candidate

segment points. If the error of fit of this combined segment (flfw) is small, the candidate

is likely a false segment point.

10.4.3.9 Classifier Training

The features and manually assigned labels of each candidate point were used

to train a C4.5 decision tree classifier [104] implemented in WEKA [44]. The trained

classifier is then used to predict if a given candidate point is a true segment point.

Using the full set of features may not yield the best accuracy. For example,

if two features contain redundant information, this can adversely affect the classifier’s

accuracy. While a decision tree automatically determines which feature values best

separate true positives from false positives, a separate process is required to determine

the subset of features most useful in training the classifier. To approximate the optimal

subset of features, we used a traditional beam search approach [10, 29] with a beam

width of 10.

Beam search [142] is a modified best-first search used here to explore the large

space of possible feature subsets to determine the one that produces the best classifica-

tion accuracy. The search begins by training and evaluating all possible single-feature

classifiers. The 10 single-feature subsets producing the highest accuracy are then ex-

panded to create a set of two-feature classifiers. The 10 best of these are then expanded

to create a set of three-feature classifiers, and so on, until the set of all features is

reached. The best-performing subset is used as the optimal feature subset.
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Two cross-validation schemes were used to evaluate ClassySeg. The first is

a user agnostic scheme which evaluates ClassySeg’s performance under conditions in

which the training set excludes data from the subject used for the testing set. The

second is a user optimized scheme in which the training and testing data are from the

same subject, but are still distinct. In both schemes, a beam search is performed in

each testing-training fold. The classifiers created in the beam search are both trained

and evaluated using the full training set of that fold.

In the user agnostic scheme, a 14-fold, “user-holdout” cross-validation was

performed. In each fold, the data from one subject was selected for testing, and the

data from the 13 other subjects was used for training. To begin each fold, a beam

search was performed to determine the optimal feature set. The optimal features were

then used to train the final C4.5 decision tree on the complete training set.

In the user optimized scheme, a 60-fold, “stroke-holdout” cross-validation was

performed for each of the 14 subjects. In each fold of “stroke-holdout,” one of the

subject’s strokes was used for testing, and the other 59 were used for training. Here

again, a beam search was performed using the training set of each fold to determine the

optimal feature set prior to training of the final C4.5 decision tree.

In both schemes, beam search found subsets containing eight to sixteen fea-

tures. The following features occur in a majority of the feature subsets: flfw, fsmmp,

fcn, fstr1. The following features appear in none of the feature subsets: flfp, falnpr, fβ,

falsn, fst1, fst2, fst3, fstr3, fst4, fstr4, fα. These latter features may be redundant with

other features, or may not be useful.
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10.4.4 Results

We report accuracy using a number of measures common for other segmen-

tation tasks (e.g., speech segmentation [41]): precision, recall, f-measure, and all-or-

nothing accuracy. Precision, P , is the fraction of the predicted segment points that are

true segment points:

P =
true positives

(true positives + false positives)
(10.12)

Here, true positives are true segment points that were classified as such by ClassySeg,

while false positives are points that were erroneously classified as segment points.

Recall, R, is the fraction of the true segment points that were correctly iden-

tified:

R =
true positives

(true positives + false negatives)
(10.13)

Here, false negatives are true segment points that were incorrectly classified as not being

segment points.

F-Measure, F , combines the precision and recall values; it is the harmonic

mean of the two:

F =
2PR

(P +R)
(10.14)

Finally, all-or-nothing accuracy, AoN , is the fraction of the pen strokes the

have been perfectly segmented:
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AoN =
perfect strokes

total strokes
(10.15)

To benchmark ClassySeg’s performance, we compared it to five other tech-

niques. Because these techniques may vary in where they place the segment point for a

given corner, we used a 20 pixel threshold in evaluating the accuracy of each method – if

a technique identified a segment point within 20 pixels of the correct location, as deter-

mined by manual labeling of the data, the segment point was considered to be correct.

Using a threshold was particularly important for iStraw, which segments a resampled

version of the stroke, rather than the original stroke data points.

The results are summarized in Table 10.5. The first technique is a näıve

one in which every candidate segment point is considered to be a true segment point.

The other four methods are more sophisticated and include: the SSD implementa-

tion from the authors of [130], the iStraw implementation from the authors of [137]

(http://www.eecs.ucf.edu/isuelab/), and the SpeedSeg implementation from the au-

thors of [59]. (We also implemented the algorithm of Yu and Cai [141]. However, it

achieved poor performance on our data set: AoN = 4.13%. This may be due to the

omission of implementation details in the article.) All techniques were evaluated using

the data described in Section 10.2. SpeedSeg’s performance is reported for both default

parameter values and parameter values optimized for each individual subject.

The high recall of the näıve method demonstrates that the set of candidate

points contains nearly all of the true segment points. The low precision, on the other

hand, reveals that the candidate segment points include many false positives, so many
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Method P R F AoN

Näıve 19.9% 99.8% 0.33 0%

SSD 84.7% 97.7% 0.91 27.8%

iStraw 93.2% 98.6% 0.96 69.9%

SpeedSeg (Default) 97.5% 96.4% 0.96 78.2%

SpeedSeg (Tuned) 88.6%

ClassySeg (UA) 95.6% 94.7% 0.95 74.6%

ClassySeg (UO) 99.0% 96.3% 0.98 85.7%

Table 10.5: Segmentation accuracy for various segmentation techniques. SpeedSeg De-
fault and Tuned are the accuracies of SpeedSeg using default parameter values and
user-optimized parameter values, respectively. ([59] reported only all-or-nothing accu-
racy for SpeedSeg Tuned.) ClassySeg UA and UO are the accuracies of ClassySeg for
user-agnostic and user optimized conditions. P = precision; R = recall; F = f-measure;
AoN = all-or-nothing accuracy.

in fact, that the näıve method did not correctly segment even a single stroke (AoN=

0%).

The remaining segmentation methods achieve much higher precision than the

näıve approach, with only a small decrease in recall. It is interesting to note the apparent

logarithmic relationship between f-measure and all-or-nothing accuracy. For low values

of f-measure, a large change in f-measure results in only a small increase in all-or-nothing

accuracy: going from an f-measure of 0.33 to 0.91 improves all-or-nothing accuracy by

only 27.8%. By contrast, at higher values, a small change in f-measure results in a large

change in all-or-nothing accuracy: going from an f-measure of 0.91 to 0.98 improves

all-or-nothing accuracy by 57.9%.

We performed an analysis of variance (ANOVA) to determine if there was a

significant difference between the all-or-nothing accuracy of ClassySeg and each of the

other segmentation techniques. This analysis focuses on all-or-nothing accuracy, as it

is the most stringent of the performance metrics. When trained in a user-independent
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fashion, ClassySeg (UA) achieves an all-or-nothing accuracy that is: significantly higher

than that of SSD (p < 0.001); not statistically different than that of iStraw and SpeedSeg

Default (p = 0.26 and p = 0.31 respectively); and significantly lower than that of

SpeedSeg Tuned (p < 0.001). In the latter comparison, ClassySeg is at a disadvantage

because SpeedSeg Tuned included user-specific training, while ClassySeg did not.

When trained on user-specific data, ClassySeg (UO) achieves an all-or-nothing

accuracy that is significantly higher than that of SSD, iStraw, and SpeedSeg Default

(p < 0.001, p = 0.003, and p = 0.03 respectively) and not significantly different than that

of SpeedSeg Tuned (p = 0.28). Here, only the latter comparison considers comparable

user-optimized evaluation conditions.

10.4.5 Conclusion

In contrast to previous stroke segmentation approaches which usually rely

on empirically determined parameters and heuristics, we present ClassySeg, an auto-

matic stroke segmentation technique that employs general-purpose machine learning

techniques. ClassySeg begins by selecting all curvature maxima as candidate segment

points. It then computes features for each candidate based on speed, curvature, and

other geometric properties. These features are adapted from numerous prior segmenta-

tion approaches, effectively combining their strengths. These features are then used as

input to a statistical classifier which is trained to distinguish true segment points from

false ones. To improve performance, beam search is used to select the optimal subset of

features to train the classifier.

When trained in a user-independent fashion, ClassySeg (UA) performed at
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least as well as existing state-of-the-art algorithms also trained in a user-independent

fashion. With user-specific training, ClassySeg (UO) performed better than existing

algorithms with user independent training, and as good as the best existing algorithm

with user-specific training.

While ClassySeg performs accurately, perhaps its most important property

is its generality. The approach can be naturally extended to include any number of

features. It is likely that even better performance can be achieved using features beyond

the initial set considered here. Additionally, because the approach utilized a statistical

classifier, it can be easily trained to optimize performance for specific users, specific

classes of shapes, and specific drawing hardware. Finally, this approach is simpler to

implement than techniques based on heuristic procedures.

10.5 Speech-Sketch Alignment

10.5.1 Introduction

Designers often communicate design concepts to each other with informal

sketches, speech, and gestures.3 While the importance of such communication has

long been recognized by designers [123], traditional design tools do not support this

in any substantive way. Our long term goal is to remedy this by creating computa-

tional techniques to enable collaborative design tools that support natural multimodal

communication.

In previous work [10], we conducted a study to examine the nature of multi-

3This work originally appears in [54]
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modal communication in collaborative design. Specifically, we examined how designers

use natural free-form sketching and speaking to describe the structure and behavior

of a mechanical device. We found that both the sketch and speech are essential to

such descriptions, and that typically neither modality can be understood without the

other. Additionally, the wide variety of information contained in the sketches makes

them particularly challenging to interpret. While many of the pen strokes portray de-

vice structure, others are gestures, such as arrows used to indicate motion, or circles

used to single out a component being discussed. Figure 10.10(a), which depicts a pair

of C-clamp vise-grip pliers, is a typical sketch from the study. Consider the challenge

such a drawing poses for any sketch-understanding software. To understand this sketch,

it is first necessary to distinguish the gesture strokes (Figure 10.10(b)) from the object

strokes representing device structure or handwritten text (Figure 10.10(c)).

Separating strokes in this way is valuable beyond the obvious purpose of facil-

itating sketch recognition. Most, if not all, gesture strokes have only temporary value.

For example, gestures resolving deictic references or indicating the motion of a part may

be superfluous once the discussion has moved on to a new topic. But over time, such

gestures accumulate (e.g., Figure 10.10(a)), obscuring the sketch and hindering discus-

sion. Detecting these and removing them from view when they are no longer needed

may enable more efficient communication.

As part of our work in [10], we developed a technique for distinguishing gesture

strokes from object strokes. The technique employs a statistical classifier that uses fea-

tures of both the sketch and speech. The sketch features compute geometric properties
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(a)

(b) (c)

Figure 10.10: (a) Sketch of C-clamp vise-grip pliers. (b) Gesture pen strokes (c) Pen
strokes representing device structure and text.
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of the strokes, and the spatial and temporal relationships between them. The speech

features compute statistical properties of the speech aligned with each stroke. Exper-

iments with the technique indicated that the speech modality is more important than

the sketch modality for gesture/object classification: the single most effective feature

for classification was a speech feature.

The importance of speech for gesture/object classification suggests that the

accuracy of the speech-sketch alignment process is critical to gesture classification. The

work in [10], used a “three-second” alignment technique, in which the speech and sketch

input were aligned based on temporal correlation. Each stroke was associated with the

words that at least partially coincided with a temporal window extending three seconds

on either side of the stroke. Our present work is focused on measuring the performance

of this three-second alignment technique, and developing a new alignment technique to

overcome some of its limitations, thus enabling more accurate gesture/object classifica-

tion.

To evaluate the three-second alignment technique, we began by manually align-

ing the speech and sketch from the study in [10], as illustrated in Figure 10.11. We did

this by first segmenting the speech primarily into clauses, and then aligning these with

the strokes to which they refer. Comparison of the three-second and manual alignment

revealed that the former has substantial room for improvement. For example, for 41%

of pen strokes, there was no intersection between the three-second alignment and the

correct (manual) alignment.

Consequently, we sought to develop an improved alignment technique, which
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Figure 10.11: Example of the alignment of strokes with the speech that refers to them.
The bold arrows link the word groups with the associated pen strokes.

we modeled on our manual alignment process. The new technique employs an explicit

speech segmentation process, followed by a segment-stroke alignment process. Because

both processes employ statistical classifiers, we call our technique “classifier-based align-

ment” (“CBA”). Evaluation of the new technique demonstrated that it produces con-

siderably more accurate alignment than the three-second technique. More importantly,

however, it results in substantially better gesture classification accuracy.

This work makes several contributions. First, we developed a technique for

segmenting speech into meaningful clauses. The technique is well suited to the ungram-

matical speech characteristic of multimodal dialog. The technique is effective, in part,

because it uses information from the sketch input to help process the speech. Second, we

developed a novel technique for aligning the segmented speech with the pen strokes to

which it refers. These two efforts combine to produce an effective and accurate speech-

sketch alignment technique for multimodal dialog. Finally, we demonstrated that the
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new alignment technique enables accurate classification of gesture and object strokes in

a multimodal dialog.

The next section places this work in the context of related work. This is

followed in Section 10.5.3 by a description of our study from [10] and the gesture clas-

sification technique we developed in that work. Section 10.5.5 describes our manual

speech-sketch alignment process and presents an evaluation of the alignment accu-

racy of the three-second technique. Next, Section 10.5.8 describes our classifier-based

speech-sketch alignment technique, including the speech segmentation technique it em-

ploys. Section 10.5.10 presents the gesture classification accuracy obtained using the

two speech-sketch alignment techniques and compares this to the accuracy achieved via

manual alignment. After a discussion of these results in Section 10.3.5, conclusions are

presented in Section 10.3.6.

10.5.2 Related Work

Multimodal systems date back at least to the work of Brown et al. [17], with

subsequent early multimodal systems incorporating typed language and pointing with

mouse or light-pen [126, 133]. Bolt’s Put-that-there system [13] was the first to incorpo-

rate early speech and 3D pointing recognizers. Quickset [25] explores a general architec-

ture for multimodal fusion, but unlike our work, QuickSet is a command-based system,

i.e., the utterances are used as verbal replacements for mouse/menu commands. The

iMap system handles free-hand gestures in a map-control user interface, using prosody

cues to improve gesture recognition [76]. The system in [71] provides a speech and

pen interface to restaurant and subway information for New York City, but it is not a
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sketching system and has only text recognition and basic circling and pointing gestures

for the graphical input modality.

Other applications of speaking and sketching include an early effort that used a

diagram and written English text [94], interesting in part because it used a blackboard

to help establish the reference relationships between the graphical and text entities.

BBN’s Portable Voice Assistant [96] uses pen and voice input to enter and retrieve

information on the World Wide Web. Their system integrates simultaneous speech and

gesture inputs using a frame-based system. The Human-Centric Word Processor [98]

enables radiologists to use pen-based selection gestures and command-based speech for

post-dictation correction of transcriptions. nuSketch COA Creator [38] is designed as

a general-purpose multimodal architecture, allowing users to sketch and talk to add

symbols to a military map using commands like “add severely restricted terrain.” This

system too uses command-based speech, and is focused on issues of reasoning about the

content of the sketch rather than on recognition — the user assigns symbolic labels to

the sketched objects.

Many systems have benefited from the series of empirical studies of multimodal

communication in [99]. Cassell was among the first to argue that natural, free-hand ges-

tures can be relevant to human computer interaction, and presented a helpful framework

for gestural interaction in [19]. Oviatt et al. [100] have demonstrated advantages of mul-

timodal interfaces, noting that multimodal input simplifies the users’ vocabulary and

improves accuracy with accented speakers.

Our work is grounded in insights about how people use multimodal explana-

tions to describe devices. Ullman [123] found that engineers commonly use five different
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categories of pen strokes in a sketch. His “support” and “draw” strokes are analo-

gous to our categories of gesture and object strokes. Heiser [50] concluded that when

there are numerous arrow gestures in a sketch, students can more easily understand the

functionality of a device, illustrating the importance of gestures in a design sketch.

Much of the previous work in understanding descriptions of mechanical devices

has focused solely on sketching of structure (e.g., [12, 86]). By contrast, GIDeS++ [111]

is a multimodal system specifically designed to understand descriptions of mechanical

devices, but it uses pen strokes to replace mouse functionality rather than attempting

to maintain a natural sketching environment. Likewise, ASSISTANCE [95] incorporates

spoken behavioral descriptions to supplement the understanding of mechanical device

sketches. However, it relies on limited vocabularies of speech patterns that must be

explicitly identified in advance, where our system can adapt to new patterns via user-

provided training data.

Hand and arm gestures have long been a topic of research. Kendon [73] provides

an overview of the study of gesture, dating back to work by Quintilianus (circa the first

century) in which he details how an orator ought to use gesture in discourse. More

relevant to our work, Kendon explores the organization of speech and gestures. He finds

that speech is organized into “idea units” marked by prosodic features, such as pitch

level and loudness, rather than by lexical properties. Similarly, gestures are organized

into “gesture units.” This suggests the need to segment our speech prior to aligning it

with pen strokes. However, we segment speech based primarily on lexical considerations,

and align each pen stroke with at most one speech segment.

Efron [32] classifies hand/arm gestures across three dimensions: the trajectory
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of the gesture, whether the gesture involves the listener, and whether the gesture inher-

ently contains semantic information. In our domain, gestures do not directly involve a

listener, but they do contain semantic information which is frequently conveyed through

shape.

We find parallels between the pen stroke gestures considered in our work and

the hand and arm gestures studied by McNeill [88]. In McNeill’s classification scheme,

hand/arm gestures describing objects or actions are called imagistic, while those that

do not evoke imagery are non-imagistic. Imagistic gestures are further subdivided into

iconic or metaphoric gestures. The former represent concrete concepts, such as a speaker

illustrating how they threw a baseball by mimicking the action of throwing. The latter

present abstract imagery, such a person balling their fists and then quickly spreading

their fingers to convey a metaphoric “explosion,” illustrating frustration about the topic

of discussion [88]. Non-imagistic gestures are also divided into two categories: deictic

and beats. The former are pointing gestures, while the latter are typically involuntary

movements of the hands made while speaking, and which carry no meaning.

Gestures are often understood in the context of accompanying speech. Ovi-

att [99] studied humans interacting with dynamic mapping software, quantifying the

likelihood that speaking or sketching would occur first, or that they would start si-

multaneously. This work was extended by Adler [1] for design descriptions, who found

consistent time delay patterns between when a pen stroke was drawn and when the

related speech was spoken. The three-second speech-sketch alignment technique in [10]

builds on this.

The findings of Oviatt and Adler are at odds with findings of McNeill [88]
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which suggest that speech always co-occurs with its referent gesture. This discrepancy

is likely due to the differences in the domains considered. Oviatt and Adler consider

speaking and drawing, while McNeill [88] considers hand and arm gestures made during

typical conversation. While hand/arm gestures are often made with minimal effort

or concentration, drawing can often require enough concentration so as to interrupt

speaking. Likewise, drawing is inherently slower than hand/arm gesturing, which may

contribute significantly to the differences in gesture/speech alignment between the two

domains.

Work in [20, 21] sets interaction in the context of a dialogue, using context,

semantics and linguistic principles to resolve gestural references. Our task is different

in that we must differentiate between gesture and object pen strokes, and we consider

ungrammatical, disfluent speech, while they assume the speech is unambiguous. Further-

more, they interpret interaction in the context of a predefined image, while we consider

an incrementally created sketch whose meaning is not known in advance.

There have been several prior efforts focused on segmenting speech into phrases

and sentences. For example, Nakai and Shimodaira [93] describe a method that uses

prosodic features to segment speech into accent phrases. A least squares approach is

used to find the optimum match between the speech and pitch pattern templates. 97%

segmentation accuracy is reported for a case in which the 30 best candidate segmenta-

tions are considered.

Most current techniques for identifying sentence boundaries in speech tran-

scriptions are based on a hidden Markov model (HMM) [118, 119, 41, 66]. An n-gram

language model is used to describe the joint distribution of words and sentence bound-
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aries, which are modeled as events that occur between words. Many methods also use

prosodic features for locating sentence boundaries. For example, Gotoh and Renals [41]

combine their n-gram language model with a prosodic model based on pause duration.

Likewise, Kim andWoodland [66] use a prosodic model based on 10 features. Stolcke and

Shriberg [118] included part-of-speech information in an n-gram language model, and

found that this improves accuracy. In later work, Stolcke et al. [119] augmented their n-

gram language model with turn boundaries (change in speaker) and long pauses. All of

these methods for locating sentence boundaries have been applied to telephone conver-

sation and news broadcasts, while we consider a multimodal context with both speaking

and sketching. Also, while these methods classify interword events as boundaries and

non-boundaries, we classify words according to their position in a speech segment. As

described in Section 10.5.8.1, this allows us to take advantage of the frequent occurrence

of single-word segments.

Sentence boundary detection methods vary in the way they combine the lan-

guage and prosodic models. Stolcke et al. [119] explore a variety of combination tech-

niques including model interpolation, independent model combination, and joint mod-

eling. In the latter case, a decision tree is used to combine posterior probabilities from

the language model with prosodic features. Similarly, Liu et al. [83] use a maximum

entropy model to combine prosodic and word-level features. We do not use an explicit

language model, but instead use a single classifier (Ada-boosted C4.5 decision tree) to

directly combine word-based, prosodic (pause), and sketch-based features.

Our gesture classifier [10] is related to the work of Patel [101] and Bishop

[11] on separating text strokes from non-text strokes. These works differ from ours in
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considering only features from the sketch, where we examine the accompanying speech.

Additionally, in their work, text consists of a consistent set of letter and number glyphs,

where the gestures in our domain are often unique, and frequently have the same shapes

as object strokes.

Our gesture classifier also builds on work in shape recognition by using the

kinds of features used by feature-based recognizers, as for example in [106, 101]. Our

system relies on some of the features these systems use, but also extracts new features

to address the special nature of identifying free-form gestures.

In examining properties of the accompanying speech, our gesture classifier does

not try to understand it, but instead simply identify it as that which accompanies either

a gesture or object stroke. We do this with Bayesian Filters (as in [42]) and Markovian

Filters (as in [140]).

In summary, our work differs from much of the work in multi-modal interfaces

in that we consider free-form speech and sketching, rather than a predefined vocabulary.

Similarly, while most multi-modal systems use speech and sketch input as a substitute

for mouse/menu commands, we consider the task of classifying sketch input as gesture

and object strokes. While many speech segmentation techniques exist, ours is novel in

that it uses information from the sketch modality. Also, it uses a single classifier to

directly combine word-based, prosodic (pause), and sketch-based features. Finally, our

speech-sketch alignment technique is novel in that it works from segmented speech and

uses classifiers to detect and repair common alignment errors.
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10.5.3 Background: Distinguishing Gesture and Object Strokes

As described in [10], we conducted a study to characterize how designers use

natural free-form sketching, speaking, and gesturing to communicate design descriptions

to each other.4 The study involved descriptions of four devices: C-clamp vise-grip pliers,

bolt cutters, an air pump for inflating balls, and a door lock (Figures 10.10, 10.11, and

10.12). The participants were 16 graduate and senior undergraduate mechanical engi-

neering students at UC Riverside. Four were female. English was the primary language

for nine participants, but the speech of ten participants was indistinguishable from that

of native English speakers. Eleven participants received their engineering instruction

in English. There were only four participants that both did not have English as their

primary language and did not receive engineering instruction in English. Fourteen par-

ticipants had previously taken a course in engineering drawing, and seven had completed

a team-based project-design course.

Each study session involved a pair of participants placed in separate rooms and

allowed to communicate using Tablet PCs, microphones, and headphones. The tablets

provided a shared drawing environment with a pen, highlighter, and eraser, and the

ability to select from several ink colors. The audio and drawing were recorded with

timestamps.

During a session, one participant was asked to describe a device to his or

her partner, who could ask clarifying questions. At the end of the description, both

participants were asked survey questions about the structure and behavior of the device.

4This section presents an overview of work from [10]. For complete details, refer to [10].
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(a) (b)

Figure 10.12: Two of the devices from the study. (a) Air pump for inflating balls. (b)
Door lock.

To motivate effective dialog, the participants were informed that their compensation

would be based on the accuracy of their answers. (All participants were in fact given

the maximum compensation.) The two participants repeated this process three times,

switching roles, so that each participant described two devices. In all, a total of 48

device descriptions were collected.

Figures 10.10, 10.11, and 10.12 show typical examples of sketches collected in

the study. As discussed above, these sketches contain two types of pen strokes: object

strokes and gesture strokes. The former depict device structure or comprise text. The

latter can be classified into two categories, adopted from the terminology developed

by McNeill [88]. Strokes that demonstrate an action, such as an arrow illustrating the

direction in which the handles of a pair of vice grips may move, are iconic gestures.
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Similarly, strokes that resolve deictic references from the speech modality are deictic

gestures. These gestures may take many forms, such as tapping, circling, highlighting,

and tracing. Object strokes could be considered iconic gestures, as they provide a

representation of an object. However, we distinguish between object strokes and other

iconic gesture strokes as our goal is to separate the representation of a device’s structure

from the description of its behavior.

10.5.3.1 Classifier Design

As Figure 10.10 illustrates, there can be a comparable number of gesture and

object strokes in a sketch, making it challenging to understand the final image. There

is a clear need for techniques to separate the two types of strokes. This would at first

appear to be a shape recognition problem solvable with standard shape recognizers such

as those in [72, 129]. However, this problem is not amenable to such approaches for

several reasons. First, gesture and object strokes can have arbitrary shapes, but shape

recognizers require a predefined set of shapes. Second, gesture and object strokes may be

identical, and thus shape alone does not distinguish between the two classes of strokes.

For example, a common selection gesture consists of tracing the shape of an object.

For these reasons, the gesture/object classifier described in [10] does not ex-

plicitly consider the shape of the pen stroke. Instead, each pen stroke is represented

by features that are computed from both the sketch and speech input. The sketch fea-

tures describe properties of the pen strokes, and the spatial and temporal relationships

between them. The speech features describe properties of the speech aligned with each

stroke. These features serve as inputs to a neural network which classifies a stroke as a

229



gesture or object stroke.

10.5.3.2 Sketch Features

The complete set of sketch features used for gesture/object classification is

listed in Table 10.6. The first six features concern individual strokes. DSL is the length

of the pen stroke, while DSED is the distance between its first and last points. DAC

is the sum of the absolute value of the curvature along a stroke. DDC is similar to

curvature, but is biased toward diagonal drawing directions. The ink density, DID, is a

measure of the compactness of the stroke. The highlighter feature, DHL, has a value of

one if the stroke was made with a highlighter rather than an ordinary pen, and is zero

otherwise.

The remaining 10 features describe the temporal and spatial relationships be-

tween strokes. DDPS and DDNS are the distance to the previous and next strokes.

Similarly, DTPS and DTNS are the time between the stroke and the previous and next

strokes. DTCS is the time between the stroke and the closest previously-drawn stroke,

while DET is the total elapsed time. The underlying color similarity, DUCS , measures

the extent to which earlier nearby strokes have the same color as the stroke. Under-

lying ink density, DUID, is the density of the ink from other earlier pen strokes in the

neighborhood (expanded bounding box) of the stroke. The two Hausdorff features [72]

measure the extent to which a stroke traces underlying strokes. For each point on the

stroke, the closest distance to a point on another earlier stroke is computed. DMHD is

the maximum of these closest distances, while DAHD is the average.
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Name Description Units

DSL Stroke length Pixel

DSED Start to end distance Pixel

DAC Total absolute curvature Radian

DDC Diagonally-biased curvature Radian

DID Ink density %

DHL Highlighter Boolean

DDPS Distance to previous stroke Pixel

DDNS Distance to the next stroke Pixel

DTPS Time to the previous stroke ms

DTNS The time to the next stroke ms

DTCS Time to closest prior stroke ms

DET Total elapsed time ms

DUCS Underlying color similarity %

DUID Underlying ink density %

DMHD Max. Hausdorff distance to underlying ink Pixel

DAHD Ave. Hausdorff distance to underlying ink Pixel

WTPS Time to previous speaker ms

WWC No. of words in temporal window Word

WBF Bayesian filter Probability

WTBF Thesaurus Bayesian filter Probability

WMF Markovian filter Probability

Table 10.6: Features for gesture/object classification: Dx = sketch (drawing) feature;
Wx = speech (word) feature.

231



10.5.3.3 Speech Features

To compute the speech features, it was first necessary to align the speech and

sketch input, i.e., determine which words are associated with each pen stroke. The

“three-second” alignment technique presented in [10] was grounded in observations in

[1] and [99] suggesting that there is a strong temporal correlation between speaking and

drawing. This technique employs a temporal window extending three seconds before

and after the stroke. It is assumed that any words falling at least partially within this

window are associated with the stroke. It is possible that a word may be associated

with more than one stroke, or that a stroke may have no words associated with it.

The speech features associated with a pen stroke (Table 10.6) are computed

from the speech aligned with it. To avoid inaccuracies inherent in current state-of-the-art

speech-to-text tools, the speech was manually transcribed and then Sphinx [65] was used

to align the text with the recorded audio to find timestamps for the words. The words

were also labeled with the identity of the speaker. Using manual transcriptions provides

an upper bound on the contribution of the speech content to gesture classification.

However, the speech may contain other valuable information, such as prosody, which

was not considered.

The simplest speech feature are the time to the previous speaker, WTPS , and

the number of words aligned with the stroke, WWC . The other speech features concern

the words themselves. Understanding grammatically correct speech is difficult enough;

the speech considered here is ungrammatical, filled with pauses, repetitions, and disflu-
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encies like “um” and “ah.” Trying to perform semantic analysis on such ungrammatical

text is intractable at present. As an alternative, statistical models are used to predict

whether a set of words corresponds to a gesture or object stroke.

The first statistical speech feature, WBF , is based on a Bayesian filter, a form

of näıve Bayesian classifier that has had some success in spam recognition [42]. To

construct the Bayesian filter, it is necessary to learn the conditional probability that a

stroke is a gesture, given a specific word, wi. Pr (Gesture | wi) can be estimated from

training data using Bayes’ Theorem:

pi =
Pr (wi | Gesture) · Pr (Gesture)

Pr (wi)
(10.16)

where Pr (wi | Gesture) is the conditional probability that word wi will be observed,

given that a gesture stroke is observed; Pr (Gesture) is the prior probability of observing

a gesture; and Pr (wi) is the prior probability of observing word wi.

Participants in the study used a varied vocabulary to describe the same objects

and gestures. If the Bayesian filter encounters a word that was not in the training

corpus, it is unable to produce a probability. The Thesaurus Bayesian filter feature,

WTBF , provides a remedy for this situation. It is computed much like WBF , except that

a thesaurus is used to generalize the training data. One strength of these two features is

that they learn which words are most likely to coincide with gesture or object strokes.

However, these features do not consider word order. The Markovian filter feature, MMF ,

is analogous to the Bayesian filter features, but considers word sequences rather than

individual words.
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10.5.4 Results: Gesture/Object Classification Accuracy

In [10], a form of holdout-validation was used to evaluate the accuracy of the

gesture classifier. The holdout set was comprised of 39 randomly selected sketches for

training, and 10 for testing. A conventional beam search approach [3, 43, 29] was

used to determine which sets of features are the most effective at classification. To

provide additional insights about which features are the most important, this process

was performed three times: once considering only sketch features, once considering only

speech features, and once considering both.

The best single sketch-feature classifier used DTNS and achieved 69.5% accu-

racy. The best sketch-only classifier achieved 76.2% accuracy using nine features: DSL,

DDPS, DUID, DMHD, DAHD, DHL, DET , DAC , and DDC . The best single speech-

feature classifier used WBF and achieved 77.7%. The best speech-only classifier achieved

78.2% accuracy using three features: WBF , WTBF , and WWC . The best classifier con-

sidering all features achieved 81.9% accuracy using six features: DTCS , DMHD, DHL,

DET , WBF , WTPS.

In [10], this process was actually performed for four holdout sets. For all sets,

the results were similar: the single best feature in all cases was either WBF or WTBF .

Similarly, for multi-feature classifiers employing speech features, the best feature sets

always contained at least one of these two features.

10.5.5 Evaluation of Three-Second Technique

As the results in the previous section demonstrate, the speech modality plays an

important role in identifying gestures. For example, the two Bayesian filter features were
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the most important single features for classifying pen strokes as gesture or object strokes.

The importance of speech suggests the need to examine the validity of the speech-sketch

alignment technique which serves as the foundation for the speech features.

As the name suggests, the three-second alignment approach uses only temporal

correlation to align the speech and sketch input. It is possible for this technique to asso-

ciate speech with a stroke that is not logically related to it. To evaluate the performance

of the three-second technique, we manually aligned the speech and pen strokes based on

semantic information. We then compared the resulting alignment with that produced by

the three-second technique. We also used the manually aligned speech to compute the

speech features for our gesture classifier to determine if more accurate alignment would

improve classification accuracy. The latter results are presented in Section 10.5.10.

10.5.6 Manual Alignment

We manually aligned the speech and sketch modalities using a two-step ap-

proach. We first segmented the speech into small, meaningful statements. We then

aligned each statement with the pen strokes, if any, to which it referred. The segmen-

tation step proved to be difficult because the speech was terribly ungrammatical and

disfluent, as is commonly the case in multimodal descriptions [1]. Because of the nature

of the speech, we could not use a simple segmentation strategy, such as decomposing the

speech into grammatically correct clauses. Oviatt et al. [99] suggest that in multimodal

interactions, spoken phrases often follow a subject-verb-object (SVO) pattern. We used

this as the starting point for developing our manual segmentation approach. Our ap-

proach is similar to the Simple Metadata Annotation Specification [120], but considers
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information from the sketch input.

Our manual segmentation is comprised of: single “clauses” consisting of a

subject, verb, and object; multiple logically related, sequential clauses; partial clauses;

and filled pauses such as “uh” and “um”. Note that filled pauses are identified purely

on lexical grounds and are not prosodic features of the speech. Whenever possible, we

segmented the speech into subject-verb-object “clauses.” However, if the speaker moved

on to a new thought before completing a clause, we segmented the incomplete thought

into a partial clause. Likewise, a change in speaker before the completion of a clause

also resulted in a partial clause.

Filled pauses could either comprise an entire segment, or be included in a larger

clause, depending on the circumstances. If the filled pause was in the middle of a set

of words that otherwise formed a clause, the pause was grouped with that set of words.

For example, “this handle uh moves here” is considered a single clause. Likewise, if

the filled pause occurred immediately before the start of a clause, it was grouped with

it. For example, “uh this handle moves here” would be segmented as a single clause if

there were little delay between “uh” and “this.” In all other cases, filled pauses were

considered to form their own segments.

There were two occasional exceptions to our segmentation strategy. Two or

more clauses were joined if they referred to the same pen stroke. We did this so that each

stroke would be aligned with at most one speech segment. Also, if a clause had multiple

objects referring to different strokes, the objects were split into separate clauses. These

two cases are the primary differences between our segmentation approach and that in

[120].
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Figure 10.13 shows an example of the manual segmentation results. The first

segment consists of the filled pause “uh.” This pause was not combined with the sub-

sequent clause because the time gap was too large. “it’s kind of for cutting stuff” is a

typical clause with subject “it”, verb “is”, and object “for cutting stuff”. “when they

uh attach” is also considered to be a clause with subject “they” and intransitive verb

“attach”. Also, the filled pause “uh” is included in the segment because it occurs in-

side an otherwise valid clause. “uh huh” is a segment consisting of two filled pauses in

close succession. The phrase “and both sides move the” is a partial clause; the speaker

changed thoughts before completing it. The word “these” is again a partial clause rep-

resenting a new idea. Finally, the phrase “this moves” is a clause with a subject and

verb, but no object.

Figure 10.13: Example of manual segmentation. (left) Raw speech. (right) Segmented
speech.

As this example illustrates, manually segmenting the speech required consid-

erable judgment. The task was performed by two researchers. Each segmented one half

of the speech and then verified the segmentation accuracy of the other half. Once the

segmentation was completed, the two researchers then manually aligned the segments
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Attribute Count

Words 34,354

Segments 7,454

Strokes 6,470

Words/Segment, Ave. 4.6

Words/Associated Segment, Ave. 8.3

Segments Associated w/Strokes 22.5%

Strokes Associated w/Segments 78.8%

Table 10.7: Properties of manually aligned speech from user study.

and pen strokes. Each stroke was aligned with at most one speech segment. However, a

speech segment could be aligned with multiple strokes. As with the segmentation, the

researchers divided the task and verified each other’s work.

An alternative approach for annotating our data would have been for each

researcher to annotate the entire corpus individually and then arbitrate the single, final

annotation. This approach can lead to a more consistent annotation of the corpus than

the cross-validation approach we used [6]. We opted for our approach in the interest of

expediency, and note that any inconsistencies between the two halves of the annotation

will only hamper the performance of our statistical classifier.

Table 10.7 tabulates the results of the manual segmentation and alignment

process. The data from the study contained 34,354 words forming 7,454 speech segments.

78.8% of the 6,470 pen strokes were aligned with speech segments, but only 22.5% of

the segments were aligned with strokes. On average there were 4.6 words per speech

segment, but for segments aligned with strokes there was a much higher average of 8.3

words per segment.

238



10.5.7 Alignment Accuracy of Three-Second Technique

We evaluated the accuracy of the three-second alignment technique by direct

comparison with the manual alignment, which constitutes the correct result. Specifically,

we compared the set of words associated with each pen stroke in the two cases. Note

that the three-second technique does not have an explicit segmentation step. Rather,

any words that fall at least partially within the three-second temporal window of a

stroke are associated with it. Thus, there is no notion of segmentation accuracy, and

it is possible to evaluate accuracy only for those words that are associated with a pen

stroke.

To illustrate the analysis, consider the speech and the accompanying gesture

in Figure 10.14. The three-second approach has associated with this stroke the words

“faces the other way this is uh like a”. The correct association determined by the manual

alignment process is “this is uh like a handle”. In this case the three-second association

begins too early and does not extend long enough. This situation occurred on average

for 6% of the strokes (the average is computed over the 48 sketches).

There are a total of 14 possible relative arrangements of the three-second as-

sociation and the correct (manual) association as shown in Figure 10.15. Each cell in

the figure represents one of the possible arrangements. For example, cell 4 represents

the arrangement from Figure 10.14. For clarity, the stroke itself is not represented in

the various cells in Figure 10.15.

Cases 1 through 11 in Figure 10.15 are all cases in which the three-second

approach associates words with strokes that should have associated words. Case 1 is
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Figure 10.14: A gesture pen stroke and the speech associated with it by the three-second
technique (top bar) and the manual alignment process (bottom bar).

when the three-second association exactly matches the correct result. This occurred

on average for 2% of the strokes. Cases 2 through 9 are overlapping associations that

do not perfectly match. These cases represent on average 56% of the strokes. Cases

10 and 11 are cases in which there is no overlap between the three-second association

and the correct one. These cases represent on average 10% of the strokes. Case 12

describes strokes that should have no associated speech, but the three-second approach

has made an association. This occurred on average for 26% of the strokes. Case 13

is the converse case in which there should be associated speech, but the three-second

approach has associated none. This occurred on average for 5% of the strokes. Finally,

case 14 describes situations in which the three-second approach has correctly associated

no speech with a stroke. This case did not occur. On average, the three-second approach

achieved the correct answer only 2% of the time (case 1), and 41% of the time the three-

second association was completely disjoint from the correct result (cases 10 – 13).
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Figure 10.15: Accuracy of the three-second technique. In each cell, the top bar represents
the speech associated with a stroke by the three-second technique, while the bottom bar
represents the manual (correct) association. Each cell represents a distinct relative
arrangement of the associations and the frequency with which it occurs. Results are
averaged over the 48 sketches. Standard deviations are included in parenthesis.
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10.5.8 Classifier-Based Alignment

As Figure 10.15 illustrates, the three-second technique does not accurately

align the speech and sketch modalities. Consequently, we sought to develop an improved

automatic alignment technique. We modeled the new technique on our manual process:

the technique employs an explicit speech segmentation process, followed by a segment-

stroke alignment process. Because both processes employ statistical classifiers, we call

our alignment technique “classifier-based alignment” (CBA).

10.5.8.1 Speech Segmentation

Our approach to automatic segmentation uses a statistical classifier to classify

words according to their position in a segment. We consider four classes of words: start,

middle, end, and only words. As the names suggest, start and end words represent the

start and end of a clause, respectively. All words in a clause other than these are defined

as middle words. Only words are segments consisting of a single word, which is typically

a filled pause. Figure 10.16 shows an example of the word classification for a passage of

speech.

Figure 10.16: The classification of the words in a spoken passage. “S” = start, “M” =
middle, “E” = end, and “O” = only.

The word classifications are used to directly construct the speech segmentation.
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First, all valid segments are formed. Specifically, each only word is labeled as a segment.

Likewise, each sequence of words that begins with a start word, ends with an end word,

and has only middle words (if any) in between, is labeled as a segment.

Once all valid segments have been formed, a repair process is used to segment

any remaining speech. The first and last words of the speech are always considered start

and end words, respectively. Any unsegmented word immediately after a segment is

treated as a start word, while any unsegmented word immediately before a segment is

treated as an end word. A single word directly between two valid segments is considered

an only word. After updating the word classifications in this fashion, any new valid

segments are formed. The repair process is then repeated until all words have been

segmented.

Consider a passage of speech that has been classified as: start, middle, end,

middle, middle, end. In the initial segmentation pass, the first three words will be formed

into a valid segment. Then, during the repair pass, the fourth word will be treated as a

start word so that the last three words form a segment.

Our segmentation approach is based on four word classes. Many speech seg-

mentation approaches such as [118, 119, 41, 66] classify interword boundaries as segment

events or non-segment events. These approaches were developed for unimodal dialog

such as the SWITCHBOARD corpus [40]. We consider multimodal dialog in which the

speech is highly disfluent and filled pauses are common. We designed our four-class

approach to take advantage of the discriminatory power of single-word segments. This

approach is also consistent with work in [64, 84] suggesting that for some classification

problems, decomposing a class into subclasses can result in higher accuracy.
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10.5.8.2 Segmentation Classifier and Features

Our segmentation classifier is an Ada-boosted C4.5 decision tree computed

with WEKA [44]. Each word is characterized by 25 features listed in Table 10.8. (The

classifier considers the features of the word in question, as well as those of the word on

either side.) The simplest feature is the word itself, Ws. Each word is also characterized

by the parts of speech that it could possibly have in legal English usage, which is queried

from the dictionary in the Stanford part-of-speech tagger [122]. The rationale for these

features is that different parts of speech may be more likely to occur in particular

locations within a speech segment. For example, a verb is unlikely to be the first

word in a segment. We define nine boolean part-of-speech features indicating if the

word could be a coordinating conjunction (WCCN ), determiner (WDET ), preposition

(WPRP ), adjective (WADJ), personal pronoun (WPP ), adverb (WADV ), verb (WV RB),

wh-determiner (WWHD), or wh-adverb (WWHA). Wh-determiners are the words “what”

and “which” used as determiners. Wh-adverbs are the words “how,” “when,” “whence,”

“where,” and “why” used as adverbs. Note that we use the possible parts of speech,

rather than the actual part of speech, as the latter is difficult to determine because the

speech is highly ungrammatical and the sentence boundaries are as yet unknown.

Four of the features compute temporal relationships between the words. WTNW

and WTPW are the time to the next and previous words, respectively. To obtain a

measure of the relative size of the time gap after a word, we compute the ratio of

WTNW to the sum of the values of WTNW for the word and its two successors. We call

this feature WTNR. WTPR is an analogous feature that concerns the relative size of the
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gap before the word. A time gap that is large compared to the neighboring gaps (i.e., a

large ratio) could indicate a segment boundary.

A change in speaker usually corresponds to a new segment. Thus, two features

track changes in the “author” of the speech. WACN is a boolean feature that is true

only when there is an author change immediately after the word. Similarly, WACP is

true only when there is an author change immediately before the word.

A novel property of our segmentation technique is that we use information

from the sketch modality. Specifically, we compute properties of the pen stroke drawn

closest in time to the word. We refer to this as the “coincident stroke”, although the

word and stroke may not actually overlap in time. We characterize this stroke with

three intrinsic properties: its arc length (DSL), start to end distance (DSED), and

duration (DDUR). The first two of these features are the same as those used with the

gesture/object classifier described in Section 10.5.3.1.

Four features describe the temporal relationships between the coincident stroke

and the other strokes. These features are analogous to those used to describe the tem-

poral relationships between the words. DTNS and DTPS are the time to the next and

previous strokes, respectively. Again, to obtain a measure of the relative size of the time

gap after the coincident stroke, we compute the ratio of DTNS to the sum of the values

of DTNS for the stroke and its two successors. We call this feature DTNR. DTPR is an

analogous feature that concerns the relative size of the time gap before the stroke.

The final two features track changes in the “author” of the pen strokes. DACN

is a boolean feature that is true only when there is an author change immediately

after the coincident stroke, while DACP is true only when there is an author change
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Name Description Units

WTNW Time to Next Word ms

WTPW Time to Previous Word ms

WTNR Time to Next Ratio *

WTPR Time to Previous Ratio *

WS The Word Text

WCCN Coordinating Conjunction Boolean

WDET Determiner Boolean

WPRP Preposition Boolean

WADJ Adjective Boolean

WPP Personal Pronoun Boolean

WADV Adverb Boolean

WV RB Verb Boolean

WWHD Wh-Determiner Boolean

WWHA Wh-Adverb Boolean

WACN Author Change Next Boolean

WACP Author Change Previous Boolean

DTNS Time to Next Stroke ms

DTPS Time to Previous Stroke ms

DTNR Time to Next Ratio *

DTPR Time to Previous Ratio *

DACN Author Change Next Boolean

DACP Author Change Previous Boolean

DSL Stroke Length Pixel

DSED Start to End Distance Pixel

DDUR Stroke Duration ms

Table 10.8: Features for speech segmenter: Dx = sketch (drawing) feature; Wx = speech
(word) feature. * = dimensionless quantity.

immediately before it.
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10.5.8.3 Segmentation Accuracy

We performed leave-one-out cross-validation to evaluate our speech segmenter.5

In each iteration of the cross-validation, the data from all but one sketch was used to

train our classifier. We then used the trained classifier to predict the segment boundaries

for the remaining sketch. The technique achieved an average accuracy of 92.7% at

classifying words as start, middle, end, and only words.

To provide a more informative measure of accuracy, we directly compared

our “classifier-based segmentation” (CBS) with the manual segmentation. Specifically,

we computed the fraction of the classifier-based segments that matched the manual

segments within a tolerance ranging from zero to three words. The results are shown in

Figure 10.17. On average, about 33.9% of the classifier-based segments exactly matched

a manual segment, and about 75.9% matched within three words. In the latter case,

the errors could be distributed on both ends of the segment so long as the total number

of errors did not exceed three. For example, compared to the manual segment, the

classifier-based segment could be missing one word at the beginning, and have two extra

words at the end, or vice versa.

5Cross-validation is a process of partitioning a dataset into complementary training and testing sets.
Multiple alternative partionings are considered, and the results from them are averaged.
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Figure 10.17: Percentage of classifier-based segments matching (correct) manual seg-
ments within a tolerance. Results averaged over the 48 sketches.
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10.5.9 Stroke-Speech Alignment

Once the speech has been segmented, the next step is to align the segments

with the pen strokes. We do this with a two-step process. First, segments are aligned

with strokes based on simple temporal correlation. Then, we use a classifier to detect

and repair two common alignment errors. The initial alignment borrows from the three-

second approach. Each stroke is associated with the segment that has the greatest

overlap with the stroke’s three-second temporal window, i.e., a window that extends

three seconds before and after the stroke.

Using an analysis similar to that described in Figures 10.14 and 10.15, we

computed the accuracy of the initial alignment to determine what improvements are

necessary. The results are illustrated in Figure 10.18. The two most frequent problems

are case 10 in which the initial association follows the correct association, and case 12

in which there is an association when there should be none. Case 10 occurs on average

for 18% of pen strokes, while case 12 occurs for 26%.

Because of the prevalence of these two cases, we developed classifiers to detect

them. The two classifiers are applied to each initial association. If a case-10 error is

detected, the association of the pen stroke is changed to the next earlier segment. If a

case-12 error is detected, the association for the stroke is removed. In this fashion, the

classifiers enable an efficient approach to improving the initial alignment.

The “case-10” and “case-12” classifiers are Ada-boosted C4.5 decision trees

computed with WEKA [44]. They consider features of both the speech segment and

the initially associated pen stroke. There are a total of 11 features which are listed in
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Figure 10.18: Alignment accuracy after the first step of classifier-based alignment
(CBA), i.e., before the final processing step. In each cell, the top bar represents the
speech associated with a stroke by the first step of CBA, while the bottom bar represents
the manual (correct) association. Each cell represents a distinct relative arrangement of
the associations and the frequency with which it occurs. Results are averaged over the
48 sketches. Standard deviations are included in parenthesis.

Table 10.9.

SWC is the number of words in the segment, and SDUR is its duration. SSC is

the number of strokes associated with the segment — the segment may also initially be

associated with other strokes. SNV is a boolean feature indicating if any of the words in

the segment were tagged as a noun or verb by the Stanford part-of-speech tagger [122].6

The intuition is that segments containing no nouns or verbs are generally uninformative

and are unlikely to refer to a stroke. The initially associated pen stroke is characterized

by its arc length (DSL), duration (DDUR), and the time to the next stroke (DTNS).

6At this point in the computation, the speech has been segmented into phrases, thus enabling the
part-of-speech tagger to determine the actual part of speech of each word.
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Name Description Units

DSL Arc Length Pixel

DTNS Time to Next Stroke ms

DDUR Stroke Duration ms

SDUR Segment Duration ms

SNV Contains Noun/Verb Boolean

SWC Word Count Word

SSC Stroke Count Stroke

SSE Stroke Start End Duration ms

SSS Stroke Start Start Duration ms

STN Time to Next Segment ms

STP Time to Previous Segment ms

Table 10.9: Features used for segment-stroke alignment: Dx = sketch (drawing) feature;
Sx = segment feature.

Four other features describe temporal relationships. STN is the time to the

next segment, while STP is the time to the previous one. SSE is the time between the

start of the segment and the end of the associated stroke. Likewise, SSS is the time from

the start of the segment to the start of the associated stroke. Both of these features can

have positive or negative values.

To train the case-10 classifier, all of the initial associations in the training set

are labeled with a binary value indicating whether or not they are a case-10 error. An

analogous approach is used to train the case-12 classifier.

10.5.9.1 Stroke-Speech Alignment Accuracy

To evaluate the performance of our two-step segment-stroke alignment tech-

nique, we again performed a leave-one-out cross-validation. In each iteration of the

cross-validation, one sketch with speech was used for testing, while the others were used

for training. We averaged the results across the 48 testing/training combinations.
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Figure 10.19: Accuracy of the classifier-based alignment (“CBA”) technique. In each
cell, the top bar represents the speech associated with a stroke by CBA, while the
bottom bar represents the manual (correct) association. Each cell represents a distinct
relative arrangement of the associations and the frequency with which it occurs. Results
averaged over the 48 sketches. Standard deviations are presented in parenthesis.

Figure 10.19 compares the final alignment to the correct (manual) alignment.

The case-10 and case-12 classifiers were clearly effective. The case-10 errors have been

reduced from an average of 18% in Figure 10.18 to an average of only 8%. Likewise,

the case-12 errors have been reduced from an average of 26% to an average of only

5%. Overall, after the second step of alignment, an average of 39% of the associations

are perfect (cases 1 and 14). Furthermore, on average only 29% of the associations are

completely disjoint from the correct associations (cases 10 through 13).

To provide a more detailed evaluation of the alignment accuracy, we also com-

puted the number of missing and extra words in each association. Extra words are those

252



associated with the pen stroke that should not have been. Conversely, missing words

are those that should have been associated but were not. Consider the hypothetical

example7 in Figure 10.20. The stroke is associated with the words “faces the other way

this is uh like a”. The correct association (as determined by manual alignment) is the

clause “this is uh like a handle.” In this case, the words “faces the other way” are extra

words, and “handle” is a missing word.

Figure 10.20: Missing and extra words in speech aligned with a pen stroke. The top bar
indicates the words actually associated with the pen stroke; the bottom bar indicates
the words that should have been associated.

Figure 10.21 presents the missing/extra accuracy of both the three-second and

classifier-based alignment techniques. On average, the three-second approach has about

12 extra words and two missing words per stroke, while our classifier-based approach

has only about two extra and four missing. Overall, the three-second approach has an

average of 14 incorrect (missing plus extra) words per stroke, while our new approach

7The speech is taken directly from the user study data. The hypothetical stroke was designed to
monotonically increase along the horizontal axis, thus suggesting a drawing process evolving in time.
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has only six. This is a 57% reduction in errors.
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Figure 10.21: Average number of words incorrectly aligned with each stroke for the
three-second and classifier-based alignment techniques. Averages are computed over the
48 sketches.
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10.5.10 Gesture/Object Classification Accuracy

Our purpose in creating an improved technique for speech-sketch alignment is

to enable more accurate identification of gesture pen strokes like those in Figure 10.10(b).

Thus, to evaluate our classifier-based alignment technique, we computed the gesture clas-

sification accuracy using our technique and compared this to the accuracy achieved with

the three-second alignment technique. We also computed the accuracy using manual

alignment to obtain an upper bound on the achievable gesture classification accuracy.

For this analysis, we used the gesture classifier just as described in Section 10.5.3.1,

except that we used an Ada-boosted C4.5 decision tree computed withWEKA [44] rather

than using a neural network. The sketch features were computed as before, while the

speech features were computed using the speech-sketch alignment technique in question.

We computed accuracy via leave-one-out cross-validation, with one sketch used

for testing and the others used for training. Our results are the average across the 48

testing/training combinations. We evaluated classification accuracy for four sets of

features: (a) the thesaurus Bayesian filter feature (WTBF ), (b) the five most important

features, (c) the 10 most important features, and (d) all features. We determined the top

five and top 10 features using an information gain algorithm [29, 136] as implemented by

WEKA.8 The top five features include: the two Bayesian filter features (WTBF , WBF ),

the total elapsed time (DET ), the time to the closest prior stroke (DTCS), and the time

to the next stroke (DTNS). The top 10 features additionally include: the time to the

previous stroke (DTPS), the distance to previous stroke (DDPS), the distance to the

8As discussed in Section 10.5.4, the work in [10] employed a beam search approach to determine the
best features. While that approach may be more reliable, here we use information gain in the interest
of expediency.
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next stroke (DDNS), the maximum Hausdorff distance to the underlying ink (DMHD),

and the average Hausdorff distance to the underlying ink (DAHD).

The gesture/object classification results are shown in Figure 10.22. (The accu-

racy in Figure 10.22 differs from that in [10] because different classifiers were used, i.e.,

a neural network vs. Ada-boosted decision tree.) Typically, for a given set of features,

the classifier-based alignment resulted in better accuracy than the three-second align-

ment, and the manual alignment resulted in the best accuracy. Likewise, using more

features typically resulted in better accuracy. There was one exception. The three-

second approach achieved nearly its best accuracy when only the thesaurus Bayesian

filter feature was used. For this single-feature case, the three-second approach actually

achieved better accuracy than even the manual alignment. This is discussed in the next

section.
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Figure 10.22: Gesture/object classification accuracy vs. speech-sketch alignment tech-
nique and number of features. “THB” = thesaurus Bayesian feature. Results are aver-
aged over the 48 sketches.
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10.5.11 Discussion

Our speech segmenter achieved an average accuracy of 92.7% in classifying

words as start, middle, end, and only words. While the classification accuracy is high, a

more important measure of accuracy is the segmentation accuracy: on average, 75.9%

of the computed segments matched correct (manual) segments within a three-word tol-

erance.

Liu et al. [82] define a per-boundary-based metric for speech segmentation ac-

curacy. This is defined as the sum of the false positive and false negative sentence bound-

aries normalized by the total number of interword boundaries. With their state-of-the-

art technique based on a conditional random field model, they achieve a boundary-based

accuracy of 95.4% on conversational telephone speech. (They achieve higher accuracy on

broadcast news which is more grammatical than telephone conversation.) We achieve

86.8% accuracy on multimodal dialog that includes both speech and sketching. Our

results compare favorably with theirs for several reasons. First, sentence boundaries

occur less frequently in their data than in ours: in their dataset only 15.7% of interword

boundaries are actually sentence boundaries, whereas in our dataset 21.8% are. Thus, a

näıve classifier would perform better on their data than on ours. Also, their accuracy is

likely to benefit from a greater amount of training data: they trained on 480,000 words,

whereas we trained on about 33,000. Finally, we consider different kinds of speech:

theirs is unimodal while ours is multimodal.

Our speech segmentation approach is unique in that it demonstrates the useful-

ness of sketch features for locating segment boundaries in multimodal dialog. Also, we
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use a single classifier to directly combine word-based, prosodic (pause between words),9

and sketch-based features. Unlike many existing approaches (e.g., [118, 119, 41, 66]), we

use a four-class (start, middle, end, and only) approach to locating segment boundaries.

This approach was designed to take advantage of the discriminatory power of single-

word segments. In future work, we plan to compare the performance of this approach

to that of a more traditional approach in which interword boundaries are classified as

either segment boundaries or non-boundaries. Also, unlike traditional approaches, we

do not explicitly consider word sequence — we have no n-gram language model. When

processing a given word, our classifier does consider the previous and next words, but

we do not use a Markovian approach. In future work, we plan to combine our technique

with an explicit language model, but this will likely require a much larger dataset. For

example, to provide a benchmark for our results, we implemented the technique in [118]

using a trigram language model. This approach performed poorly on our data: of the

hypothesized segment boundaries, on average only 1.3% were true boundaries, while for

our approach 79% were. It is likely that our corpus containing only about 34,000 words

is too small to train the trigram model.

Our classification-based speech-sketch alignment technique performed signifi-

cantly better than the three-second technique as indicated by multiple measures. On

average, CBA aligned only six incorrect words (missing plus extra) per pen stroke,

whereas the three-second approach had 14. Comparison of Figures 10.15 and 10.19 fur-

ther illustrates the superiority of the CBA technique. For example, on average, CBA

perfectly aligned the speech (cases 1 and 14) for 39% of pen strokes, whereas the three-

9The filled pauses discussed in Section 10.5.6 are not prosodic features but instead are a lexical
concept. The time elapsed between words is the only prosodic feature we use.
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second approach did this for only 2% of strokes. Similarly, for CBA an average of only

29% of the associations were completely disjoint from the correct associations (cases 10

– 13), whereas for the three-second approach 41% were. Likewise, for CBA an average

of only 31% of the associations were partially disjoint (cases 3 – 9), whereas for the

three-second approach 56% were. Note that for some particular completely or partially

disjoint cases, the three-second approach did have fewer errors than CBA. However, on

the whole, CBA had far fewer completely and partially disjoint cases, and thus overall

is significantly more accurate than the three-second approach.

Leaving aside the case of the single-feature classifier, the results in Figure 10.22

support our hypothesis that better speech-sketch alignment leads to better accuracy for

classifying pen strokes as gestures or object strokes. Our classification-based alignment

technique resulted in much greater accuracy than the three-second approach, and per-

formed nearly as well as the manual alignment.

The single-feature case, however, is an interesting anomaly. To understand

why the three-second alignment technique outperformed even the manual alignment

when the classifier used only the thesaurus Bayesian filter feature, we examined the

distribution of the values of this feature for the three alignment methods as shown in

Figure 10.23. Comparatively speaking, the three-second alignment results in a bimodal

distribution in which each stroke is either a gesture (feature value of 1) or not (feature

value of 0). The other two methods, by contrast, have a greater percentage of cases

with a probability of 0.5, which indicates that a stroke is equally likely to be a gesture

or object stroke. Thus, with more accurate alignment, the thesaurus Bayesian filter is
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Figure 10.23: Histograms of the values of the thesaurus Bayesian filter feature for dif-
ferent alignment techniques.

able to make predictions about fewer strokes.

Examining Figure 10.21 gives some additional insight into this anomaly. The

three-second alignment technique tends to align many extra words with each pen stroke.

These extra words may allow the thesaurus Bayesian filter to make predictions for strokes

that do not actually have associated speech. For strokes that do have associated speech,

we would expect that better alignment would result in better classification accuracy. To

test this hypothesis, we evaluated gesture/object classification accuracy for only those

strokes with associated speech as determined by the manual alignment. Here again, we

computed accuracy via leave-one-out cross-validation, with one sketch used for testing

and the others used for training. However, in this case only strokes with associated

speech were included in the testing and training sets.

The results are shown in Figure 10.24. For strokes with associated speech,

improved alignment does result in improved accuracy, even when only the thesaurus

Bayesian filter is used. It appears that the over-association of words by the three-
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second approach is useful when only speech is used for gesture/object classification.

However, the benefit is quickly lost as additional features are used. Apparently, the

noise introduced by over-alignment degrades the performance of the other features.
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Figure 10.24: Gesture/object classification accuracy for strokes known to have associated
speech. Classification based on only the thesaurus Bayesian filter feature.

Currently, our system is designed to be applied once the device description

has been completed. An important next step will be to adapt our system to work in

real-time so that strokes are classified as they are drawn. All of the features used for

the various classifiers can be computed on the fly as they depend only on prior informa-

tion. Thus, the primary challenge in creating a real-time system will be the problem of

automatic speech recognition. The state-of-the-art Sphinx-4 speech recognition system

[125] achieves a word error rate of 7% with a vocabulary of 5,000 words and a word
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error rate of 19% with a vocabulary of 60,000 words. The errors inherent in automatic

speech recognition will clearly present challenges. However, we may be able to compen-

sate for these errors by using additional prosodic features (we currently use only pause

duration).

We evaluated our techniques using a nearly user-independent approach. The

training data used when testing on a particular sketch was comprised of 44 sketches by

other authors, and only three sketches from the primary author of the test sketch. It is

likely that increasing the amount of user-specific training data will increase the accuracy

of the system. Such training data has proven beneficial for other recognition tasks, such

as hand-drawn symbol recognition [36].

We have developed our techniques within the domain of collaborative engi-

neering design, but they should generalize to many other domains. None of the features

used by our classifiers are specific to mechanical devices or the task of designing, thus

we believe our techniques should be suitable for any domain in which the task involves

drawing a sketch or diagram and explaining its elements. Examples of such domains in-

clude giving driving directions, explaining the solution to a problem in a physics lecture,

and explaining a sports play.

10.5.12 Conclusion

We have presented a new technique for aligning speech and sketch input in

multimodal dialog. It is designed for use in classifying pen strokes as gesture and object

strokes. The technique, which we call classifier-based alignment, employs a two-step

process: the speech is first segmented into meaningful pieces (typically clauses), then
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the segments are aligned with pen strokes. Our speech segmenter uses a statistical

classifier to classify words according to their position in a segment. We consider four

classes of words: start, middle, end, and only words. The word classifications are then

used to form speech segments. The segment-stroke alignment step initially uses temporal

correlation to align segments with pen strokes. Classifiers are then used to detect and

correct two common alignment errors.

Our classification-based speech-sketch alignment technique performed signif-

icantly better than the existing “three-second” alignment technique, which is based

solely on temporal correlation and has no explicit segmentation step. On average, our

technique perfectly aligned the speech for 39% of pen strokes, whereas the three-second

technique did this for only 2% of strokes. Furthermore, for our technique the aligned

speech had no overlap with the correct alignment, on average, for only 29% of strokes.

However, for the three-second technique there was no overlap for 41% of strokes. Finally,

our technique had on average only six incorrectly aligned words (missing plus extra) per

pen stroke, whereas the three-second approach had 14.

Our alignment technique is novel in that it uses information from the sketch

modality for both the speech segmentation and alignment steps. Our results indeed

demonstrate that features from the sketch input are valuable for segmenting speech.

Our purpose in developing an effective speech-sketch alignment technique was

to enable accurate identification of gesture pen strokes in multimodal dialog. Our gesture

classifier uses features of the pen strokes and the speech aligned with them. Experiments

with this classifier demonstrated that, when multiple speech and sketch features are

used for classification, better alignment accuracy does lead to more accurate gesture
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classification. More precisely, when multiple features are used, our alignment technique

resulted in much greater gesture classification accuracy than the three-second approach,

and performed nearly as well as manual alignment. Inaccurate alignment was beneficial

only when the gesture classifier used just a single statistical speech feature. In this case,

the tendency of the three-second alignment technique to erroneously associate extra

words with pen strokes allowed the gesture classifier to make predictions about pen

strokes that in reality had no associated speech. Thus, in all but one unusual case, our

new alignment technique enables substantially more accurate gesture classification than

the prior technique.
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Chapter 11

Conclusions

In this work, we have applied a breadth of machine learning and data mining

techniques to students’ ordinary, handwritten coursework. Educational Data Mining

research requires digital instrumentation of students’ learning processes. So far, prior

work has typically considered educational data extracted from either Learning Content

Management Systems or Intelligent Tutoring Systems. This has led to interesting discov-

eries in the ways students interact with these systems, but an investigation of students’

problem-solving processes in their ordinary learning environment, i.e., working with pen

and paper on their own schedule, has hitherto been unexplored.

In Chapter 3, we presented an in-depth description of our unique database of

students’ ordinary, handwritten coursework. For the past four years, students in an

undergraduate Mechanical Engineering course at the University of California, River-

side have been given LiveScribe� digital pens. These pens function as traditional ink

pens, allowing students to write on paper. Additionally though, these pens digitize the

work, generating a digital, time-stamped record of every pen stroke written. Students
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were asked to complete all coursework each year with these pens, including homework,

quizzes, midterms, and exams. By doing so, we have generated an electronic record

of each students’ problem-solving in the course. This record is, to our knowledge, the

first of its kind. We have presented a systematic set of descriptive statistics and his-

tograms which characterize the amount of time students spent on different parts of the

coursework. This provides unique insights into how students solve problems in the con-

text of this course. Furthermore, we have built experiments into some of the course

offerings. Namely, during the 2011 and 2012 years, some students were provided with

self-explanation prompts while others were not. Self-explanation has been demonstrated

to positively impact students’ learning gains, and by electronically capturing the hand-

written work of those students who did and did not generate self-explanation we have

begun to understand how this exercise affects students’ problem-solving behavior.

We have found that not all self-explanation generated by the students was

substantive. Thus, in Chapter 4, we applied an open information extraction technique

to automatically determine if a student’s self-explanation contained concepts that were

also found in self-explanations generated by experts. This technique has proven to be

quite reliable, achieving an accuracy of up to 97% at identifying the concepts on a

particular explanation. This paves the way for an automated system which processes a

student’s self-explanation immediately after it is written and then prompts the student

for further self-explanation if it is not substantive. It will be interesting in future work

to study if the content of students’ self-explanation correlates with performance.

Beyond identifying the content present within the transcripts of students’ self-

explanations, in Chapter 5, we sought to identify the ways in which students’ problem-
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solving behaviors were modified as a result of generating self-explanation. The same

experts who generated self-explanations in Chapter 4 also solved the same homework

assignments as the students. We found that these experts always completed problems

in the order assigned, e.g., completing problem one before problem two, then problem

three, and so on. Using this intuition, we investigated the problem number sequences

of those students who did and did not generate self-explanations. We used an n-gram

analysis, common in natural language processing tasks, to identify those problem number

subsequences, or n-grams, which occurred more frequently in one group of students

than in the other. This technique revealed that students who did not generate self-

explanation were more likely to “bounce” back-and-forth between solving a particular

problem and the previous problem. On the other hand, students who did generate self-

explanation were more likely to solve problems in the order assigned, and thus, more like

an expert. This study has demonstrated not only that self-explanation leads to improved

learning gains, but also that considering the sequential aspect of students solutions can

be used to distinguish between experimental groups. It will be interesting, in future

work, to consider sequences beyond those that just consider problem number order

and instead characterize other aspects of students’ problem solving, such as semantic

content. This will enable studies to identify further differences in the ways students

who do and do not generate self-explanations solve their problems. Furthermore, this

technique is general enough that it may be applied to studies considering treatments

other than self-explanation.

In Chapter 6 we expanded our investigation of sequences. We broadened our

focus and considered not only the problem numbers that students worked on, but also
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the semantic content of the writing and its duration. We developed an alphabet of

canonical actions a student could make while solving a homework problem. Each ac-

tion represented an uninterrupted period of problem-solving performed by the student

and was characterized by duration, semantic content, and homework number. We have

developed 49 unique actions. We then represented each student’s solution to an entire

homework problem as a sequence of these actions, called an action sequence. Instead

of comparing the experimental groups, as in Chapter 5, here we compared the highest

and lowest performing students. We applied a differential mining technique, previously

developed by the educational data mining community, to identify those patterns that

appear significantly more often in one group of students than in the other. This al-

lowed us to capture behaviors exhibited by good- and poor-performing students. These

behaviors provide insight into the problems and concepts that students may be having

difficulty with. For example, we found that poor-performing students often repeatedly

attempted the free body diagram portion of the first problem in a homework assign-

ment. This may indicate that students who have difficulty completing their free body

diagram, especially when it is the first in the assignment, are likely to not do well on

that assignment, and thus should be targeted with instructional materials that guide

them in their free body diagram construction. This work has shown that expanding the

sequence information to consider semantic content and duration in addition to prob-

lem number provides greater insights into students’ problem-solving behaviors. So far,

the techniques described which seek out sequential patterns in students’ work has been

applied only to their homework solutions. It would be interesting in future work to con-

sider sequences that appear in their exam work, and even more interesting to compare
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the homework and exam sequences.

In related work, it was shown that the spatial organization students used when

solving exam problems was indicative of their performance on those problems, but what

are the ways in which students organize their solutions? To investigate this question

in Chapter 7, we have applied an unsupervised learning technique to down-sampled

bitmaps of the students’ solutions. By greatly down-sampling, we abstract away minute

differences between students’ writing and capture the overall organization. We compute

distances between these bitmaps using the Hausdorff distance, a common image-based

metric. We were then able to then apply K-Means clustering to group the bitmaps by

their distances to each other. Each group discovered with this algorithm can be con-

sidered its own distinct organizational category. We have compared the performance of

students in each group and have found that often, there is a significant difference in their

performance corresponding to the spatial organization of their solution. Furthermore,

these groups characterize the different solution paths that students may take to solve

particular problems and are the beginnings of a taxonomy of the solutions generated

by students in the context of this course. This work demonstrates the regular nature of

students’ spatial organization on final exam problem. The techniques used in this study,

K-Means clustering with the Hausdorff distance, can be improved in future work by ap-

plying more rigorous clustering methods, e.g., EM clustering, and more rigorous distance

metrics, e.g., comparing the Z-order curves of the bitmaps. Furthermore, it would be

interesting in future work to consider how different spatial organization groups perform

in the class, by perhaps computing features based on the organizational groups that

were used to train a statistical classifier to predict performance in the course.
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In Chapter 6, we used the differential patterns to construct features to train a

linear regression model which predicted students’ performance in the course. We then

used the underlying parameters of that model as indicators of which features, and sub-

sequently patterns, were most indicative of good or bad performance. We continue with

this idea of using model parameters to guide later analysis in Chapters 8 and 9. Instead

of using sequential information, as in Chapter 6, in Chapters 8 and 9 we instead use

numerical features. In particular, we use features which estimate the amount of effort

expended by students on their homework assignments, namely, the total amount of ink

written on different components of each homework assignment. In Chapter 8 we used

the amount of ink written on each individual homework problem as its own feature.

Furthermore, we computed four features which characterized how students distributed

their effort during the problem-solving process. We used these features to train mod-

els which predicted both overall performance in the course as well as performance on

individual exam problems. Again, we used the underlying parameters of those models

to determine which features, and in turn homework problems, were most indicative of

good and poor performance. This demonstrated, for example, that if students expended

a great deal of effort on problem three of homework four, then they were more likely to

do well on midterm one, problem one. By comparing these two problem descriptions,

we were able to make conjectures about the types of knowledge transfer students made

from particular homework problems to particular midterm problems that enabled them

to do well on the midterm problems. This work is important, as it shows that the mod-

els computed from students handwritten coursework guide discoveries about the ways

students’ learn, and indicate which factors are most important to their success in the
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course.

In Chapter 9, we used more fine-grained features than those used in Chapter 8

to predict more fine-grained performance metrics. The features investigated in Chapter

9 were the amount of free body diagram and equation ink written on each problem of

each homework assignment. By considering these features, we are given a microscopic

view into what students are spending their time and effort working on. Instead of pre-

dicting overall performance on exams, we use these features to predict if students will

make specific errors on four of the midterm problems from the 2012 course offering.

These errors are binary and indicate whether or not a student made that error in his or

her solution. Furthermore, Chapter 9 expands upon Chapter 8 in the way that features

are used to predict performance. In Chapter 8, a linear regression model that consid-

ered all effort-based features was computed, and then important homework problems

were identified using the underlying parameters of that model. Instead in Chapter 9, we

individually compute the information gained about each target error using each feature

individually. In doing so, we lose information about interactions between these fea-

tures, but our goal is to identify relationships between individual homework problems

and midterm problems. This analysis revealed the features, and subsequently home-

work problems, that were most consistently predictive of student performance on each

midterm problem. As a result, we have developed a technique for a microscopic study of

which problems students should spend the most time working on and the characteristics

of homework problems that instructors should employ in future offerings of the course.

This work, and that of Chapter 8, has shown that the amount of ink spent writing on

homework, which may be a rough estimation of effort, does indeed correlate with per-

271



formance in the course. Furthermore, this work shows that the more fine-grained the

features and target metrics, the stronger the correlations between them. Future work

should continue to consider the most fine-grain errors and numerical features possible.

In this study, we have only considered amount-of-ink-based features. It will be interest-

ing in future work to combine spatial, sequential, and temporal features and determine

how well they predict performance when used together.

In this work, we have shown, for the first time, that one may infer a student’s

problem-solving process from his or her ordinary handwriting when captured with times-

tamps. We have demonstrated that scalable data mining and machine learning analyses

of the sequential, spatial, and temporal characteristics of students’ problem-solving pro-

cess provide novel insights into the way students learn. By considering the problem

number sequence of students’ homework solutions, we were able to identify that gener-

ating self-explanations causes students to solve their assignments more like an expert.

Additionally, by considering the action sequences of high- and low-performing students,

we have identified problem-solving behaviors that both provide insights to the instruc-

tor and also may be used in an automated system to identify when students are having

difficulty on their homework assignments. By applying an unsupervised learning tech-

nique to the spatial organization of students’ exam solutions, we have revealed different

solution organization styles which we have shown are indicative of performance. This is

a low-cost method for predicting students’ performance by considering the organization

of the ink on the page. Lastly, by considering the amount of ink written on students’

homework assignments, we have shown that effort spent on homework assignments cor-

relates with performance on exam problems. Furthermore, this analysis revealed the
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problems that most correlated with exam performance, in turn identifying the transfer

that students made from homework to exams. In the future, this will enable a system

to provide instructors with rapid feedback concerning the effectiveness of homework

problems and the concepts students have learned.
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Appendix - Histograms

Figure .1: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem one for the 2010 course offering.

286



Figure .2: Histogram of the amount of ink, in inches, written, for each student on
homework two problem one for the 2010 course offering.

Figure .3: Histogram of the number of pages written on by each student to solve home-
work two problem one for the 2010 course offering.
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Figure .4: Histogram of the amount of time spent writing by each student on homework
two problem one for the 2010 course offering.

Figure .5: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem two for the 2010 course offering.

Figure .6: Histogram of the amount of ink, in inches, written, for each student on
homework two problem two for the 2010 course offering.
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Figure .7: Histogram of the number of pages written on by each student to solve home-
work two problem two for the 2010 course offering.

Figure .8: Histogram of the amount of time spent writing by each student on homework
two problem two for the 2010 course offering.

Figure .9: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem three for the 2010 course offering.
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Figure .10: Histogram of the amount of ink, in inches, written, for each student on
homework two problem three for the 2010 course offering.

Figure .11: Histogram of the number of pages written on by each student to solve
homework two problem three for the 2010 course offering.
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Figure .12: Histogram of the amount of time spent writing by each student on homework
two problem three for the 2010 course offering.

Figure .13: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem four for the 2010 course offering.
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Figure .14: Histogram of the amount of ink, in inches, written, for each student on
homework two problem four for the 2010 course offering.

Figure .15: Histogram of the number of pages written on by each student to solve
homework two problem four for the 2010 course offering.

Figure .16: Histogram of the amount of time spent writing by each student on homework
two problem four for the 2010 course offering.
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Figure .17: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem five for the 2010 course offering.

Figure .18: Histogram of the amount of ink, in inches, written, for each student on
homework two problem five for the 2010 course offering.

Figure .19: Histogram of the number of pages written on by each student to solve
homework two problem five for the 2010 course offering.
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Figure .20: Histogram of the amount of time spent writing by each student on homework
two problem five for the 2010 course offering.

Figure .21: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem six for the 2010 course offering.
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Figure .22: Histogram of the amount of ink, in inches, written, for each student on
homework two problem six for the 2010 course offering.

Figure .23: Histogram of the number of pages written on by each student to solve
homework two problem six for the 2010 course offering.
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Figure .24: Histogram of the amount of time spent writing by each student on homework
two problem six for the 2010 course offering.

Figure .25: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem seven for the 2010 course offering.

Figure .26: Histogram of the amount of ink, in inches, written, for each student on
homework two problem seven for the 2010 course offering.
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Figure .27: Histogram of the number of pages written on by each student to solve
homework two problem seven for the 2010 course offering.

Figure .28: Histogram of the amount of time spent writing by each student on homework
two problem seven for the 2010 course offering.

Figure .29: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem one for the 2010 course offering.
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Figure .30: Histogram of the amount of ink, in inches, written, for each student on
homework three problem one for the 2010 course offering.

Figure .31: Histogram of the number of pages written on by each student to solve
homework three problem one for the 2010 course offering.
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Figure .32: Histogram of the amount of time spent writing by each student on homework
three problem one for the 2010 course offering.

Figure .33: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem two for the 2010 course offering.
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Figure .34: Histogram of the amount of ink, in inches, written, for each student on
homework three problem two for the 2010 course offering.

Figure .35: Histogram of the number of pages written on by each student to solve
homework three problem two for the 2010 course offering.

Figure .36: Histogram of the amount of time spent writing by each student on homework
three problem two for the 2010 course offering.
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Figure .37: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem three for the 2010 course offering.

Figure .38: Histogram of the amount of ink, in inches, written, for each student on
homework three problem three for the 2010 course offering.

Figure .39: Histogram of the number of pages written on by each student to solve
homework three problem three for the 2010 course offering.
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Figure .40: Histogram of the amount of time spent writing by each student on homework
three problem three for the 2010 course offering.

Figure .41: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem three for the 2010 course offering.
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Figure .42: Histogram of the amount of ink, in inches, written, for each student on
homework three problem four for the 2010 course offering.

Figure .43: Histogram of the number of pages written on by each student to solve
homework three problem four for the 2010 course offering.
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Figure .44: Histogram of the amount of time spent writing by each student on homework
three problem four for the 2010 course offering.

Figure .45: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem five for the 2010 course offering.

Figure .46: Histogram of the amount of ink, in inches, written, for each student on
homework three problem five for the 2010 course offering.
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Figure .47: Histogram of the number of pages written on by each student to solve
homework three problem five for the 2010 course offering.

Figure .48: Histogram of the amount of time spent writing by each student on homework
three problem five for the 2010 course offering.

Figure .49: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem six for the 2010 course offering.
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Figure .50: Histogram of the amount of ink, in inches, written, for each student on
homework three problem six for the 2010 course offering.

Figure .51: Histogram of the number of pages written on by each student to solve
homework three problem six for the 2010 course offering.
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Figure .52: Histogram of the amount of time spent writing by each student on homework
three problem six for the 2010 course offering.

Figure .53: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem seven for the 2010 course offering.
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Figure .54: Histogram of the amount of ink, in inches, written, for each student on
homework three problem seven for the 2010 course offering.

Figure .55: Histogram of the number of pages written on by each student to solve
homework three problem seven for the 2010 course offering.

Figure .56: Histogram of the amount of time spent writing by each student on homework
three problem seven for the 2010 course offering.
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Figure .57: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem eight for the 2010 course offering.

Figure .58: Histogram of the amount of ink, in inches, written, for each student on
homework three problem eight for the 2010 course offering.

Figure .59: Histogram of the number of pages written on by each student to solve
homework three problem eight for the 2010 course offering.
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Figure .60: Histogram of the amount of time spent writing by each student on homework
three problem eight for the 2010 course offering.

Figure .61: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem one for the 2010 course offering.
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Figure .62: Histogram of the amount of ink, in inches, written, for each student on
homework four problem one for the 2010 course offering.

Figure .63: Histogram of the number of pages written on by each student to solve
homework four problem one for the 2010 course offering.
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Figure .64: Histogram of the amount of time spent writing by each student on homework
four problem one for the 2010 course offering.

Figure .65: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem two for the 2010 course offering.

Figure .66: Histogram of the amount of ink, in inches, written, for each student on
homework four problem two for the 2010 course offering.

312



Figure .67: Histogram of the number of pages written on by each student to solve
homework four problem two for the 2010 course offering.

Figure .68: Histogram of the amount of time spent writing by each student on homework
four problem two for the 2010 course offering.

Figure .69: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem one for the 2010 course offering.
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Figure .70: Histogram of the amount of ink, in inches, written, for each student on
homework five problem one for the 2010 course offering.

Figure .71: Histogram of the number of pages written on by each student to solve
homework five problem one for the 2010 course offering.
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Figure .72: Histogram of the amount of time spent writing by each student on homework
five problem one for the 2010 course offering.

Figure .73: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem two for the 2010 course offering.
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Figure .74: Histogram of the amount of ink, in inches, written, for each student on
homework five problem two for the 2010 course offering.

Figure .75: Histogram of the number of pages written on by each student to solve
homework five problem two for the 2010 course offering.

Figure .76: Histogram of the amount of time spent writing by each student on homework
five problem two for the 2010 course offering.
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Figure .77: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem three for the 2010 course offering.

Figure .78: Histogram of the amount of ink, in inches, written, for each student on
homework five problem three for the 2010 course offering.

Figure .79: Histogram of the number of pages written on by each student to solve
homework five problem three for the 2010 course offering.
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Figure .80: Histogram of the amount of time spent writing by each student on homework
five problem three for the 2010 course offering.

Figure .81: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem four for the 2010 course offering.
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Figure .82: Histogram of the amount of ink, in inches, written, for each student on
homework five problem four for the 2010 course offering.

Figure .83: Histogram of the number of pages written on by each student to solve
homework five problem four for the 2010 course offering.

319



Figure .84: Histogram of the amount of time spent writing by each student on homework
five problem four for the 2010 course offering.

Figure .85: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem five for the 2010 course offering.

Figure .86: Histogram of the amount of ink, in inches, written, for each student on
homework five problem five for the 2010 course offering.
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Figure .87: Histogram of the number of pages written on by each student to solve
homework five problem five for the 2010 course offering.

Figure .88: Histogram of the amount of time spent writing by each student on homework
five problem five for the 2010 course offering.

Figure .89: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem six for the 2010 course offering.
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Figure .90: Histogram of the amount of ink, in inches, written, for each student on
homework five problem six for the 2010 course offering.

Figure .91: Histogram of the number of pages written on by each student to solve
homework five problem six for the 2010 course offering.
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Figure .92: Histogram of the amount of time spent writing by each student on homework
five problem six for the 2010 course offering.

Figure .93: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem one for the 2010 course offering.
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Figure .94: Histogram of the amount of ink, in inches, written, for each student on
homework six problem one for the 2010 course offering.

Figure .95: Histogram of the number of pages written on by each student to solve
homework six problem one for the 2010 course offering.

Figure .96: Histogram of the amount of time spent writing by each student on homework
six problem one for the 2010 course offering.
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Figure .97: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem two for the 2010 course offering.

Figure .98: Histogram of the amount of ink, in inches, written, for each student on
homework six problem two for the 2010 course offering.

Figure .99: Histogram of the number of pages written on by each student to solve
homework six problem two for the 2010 course offering.
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Figure .100: Histogram of the amount of time spent writing by each student on home-
work six problem two for the 2010 course offering.

Figure .101: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem three for the 2010 course offering.
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Figure .102: Histogram of the amount of ink, in inches, written, for each student on
homework six problem three for the 2010 course offering.

Figure .103: Histogram of the number of pages written on by each student to solve
homework six problem three for the 2010 course offering.
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Figure .104: Histogram of the amount of time spent writing by each student on home-
work six problem three for the 2010 course offering.

Figure .105: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem four for the 2010 course offering.

Figure .106: Histogram of the amount of ink, in inches, written, for each student on
homework six problem four for the 2010 course offering.
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Figure .107: Histogram of the number of pages written on by each student to solve
homework six problem four for the 2010 course offering.

Figure .108: Histogram of the amount of time spent writing by each student on home-
work six problem four for the 2010 course offering.

Figure .109: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem five for the 2010 course offering.
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Figure .110: Histogram of the amount of ink, in inches, written, for each student on
homework six problem five for the 2010 course offering.

Figure .111: Histogram of the number of pages written on by each student to solve
homework six problem five for the 2010 course offering.
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Figure .112: Histogram of the amount of time spent writing by each student on home-
work six problem five for the 2010 course offering.

Figure .113: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem six for the 2010 course offering.
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Figure .114: Histogram of the amount of ink, in inches, written, for each student on
homework six problem six for the 2010 course offering.

Figure .115: Histogram of the number of pages written on by each student to solve
homework six problem six for the 2010 course offering.

Figure .116: Histogram of the amount of time spent writing by each student on home-
work six problem six for the 2010 course offering.
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Figure .117: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem seven for the 2010 course offering.

Figure .118: Histogram of the amount of ink, in inches, written, for each student on
homework six problem seven for the 2010 course offering.

Figure .119: Histogram of the number of pages written on by each student to solve
homework six problem seven for the 2010 course offering.
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Figure .120: Histogram of the amount of time spent writing by each student on home-
work six problem seven for the 2010 course offering.

Figure .121: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem eight for the 2010 course offering.
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Figure .122: Histogram of the amount of ink, in inches, written, for each student on
homework six problem eight for the 2010 course offering.

Figure .123: Histogram of the number of pages written on by each student to solve
homework six problem eight for the 2010 course offering.
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Figure .124: Histogram of the amount of time spent writing by each student on home-
work six problem eight for the 2010 course offering.

Figure .125: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem one for the 2010 course offering.

Figure .126: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem one for the 2010 course offering.
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Figure .127: Histogram of the number of pages written on by each student to solve
homework seven problem one for the 2010 course offering.

Figure .128: Histogram of the amount of time spent writing by each student on home-
work seven problem one for the 2010 course offering.

Figure .129: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem two for the 2010 course offering.
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Figure .130: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem two for the 2010 course offering.

Figure .131: Histogram of the number of pages written on by each student to solve
homework seven problem two for the 2010 course offering.
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Figure .132: Histogram of the amount of time spent writing by each student on home-
work seven problem two for the 2010 course offering.

Figure .133: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem three for the 2010 course offering.
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Figure .134: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem three for the 2010 course offering.

Figure .135: Histogram of the number of pages written on by each student to solve
homework seven problem three for the 2010 course offering.

Figure .136: Histogram of the amount of time spent writing by each student on home-
work seven problem three for the 2010 course offering.

340



Figure .137: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem four for the 2010 course offering.

Figure .138: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem four for the 2010 course offering.

Figure .139: Histogram of the number of pages written on by each student to solve
homework seven problem four for the 2010 course offering.
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Figure .140: Histogram of the amount of time spent writing by each student on home-
work seven problem four for the 2010 course offering.

Figure .141: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem five for the 2010 course offering.
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Figure .142: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem five for the 2010 course offering.

Figure .143: Histogram of the number of pages written on by each student to solve
homework seven problem five for the 2010 course offering.
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Figure .144: Histogram of the amount of time spent writing by each student on home-
work seven problem five for the 2010 course offering.

Figure .145: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem one for the 2010 course offering.

Figure .146: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem one for the 2010 course offering.
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Figure .147: Histogram of the number of pages written on by each student to solve
homework eight problem one for the 2010 course offering.

Figure .148: Histogram of the amount of time spent writing by each student on home-
work eight problem one for the 2010 course offering.

Figure .149: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem two for the 2010 course offering.
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Figure .150: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem two for the 2010 course offering.

Figure .151: Histogram of the number of pages written on by each student to solve
homework eight problem two for the 2010 course offering.
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Figure .152: Histogram of the amount of time spent writing by each student on home-
work eight problem two for the 2010 course offering.

Figure .153: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem three for the 2010 course offering.
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Figure .154: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem three for the 2010 course offering.

Figure .155: Histogram of the number of pages written on by each student to solve
homework eight problem three for the 2010 course offering.

Figure .156: Histogram of the amount of time spent writing by each student on home-
work eight problem three for the 2010 course offering.
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Figure .157: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem four for the 2010 course offering.

Figure .158: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem four for the 2010 course offering.

Figure .159: Histogram of the number of pages written on by each student to solve
homework eight problem four for the 2010 course offering.
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Figure .160: Histogram of the amount of time spent writing by each student on home-
work eight problem four for the 2010 course offering.

Figure .161: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem five for the 2010 course offering.
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Figure .162: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem five for the 2010 course offering.

Figure .163: Histogram of the number of pages written on by each student to solve
homework eight problem five for the 2010 course offering.
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Figure .164: Histogram of the amount of time spent writing by each student on home-
work eight problem five for the 2010 course offering.

Figure .165: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem six for the 2010 course offering.

Figure .166: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem six for the 2010 course offering.
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Figure .167: Histogram of the number of pages written on by each student to solve
homework eight problem six for the 2010 course offering.

Figure .168: Histogram of the amount of time spent writing by each student on home-
work eight problem six for the 2010 course offering.

Figure .169: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem seven for the 2010 course offering.
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Figure .170: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem seven for the 2010 course offering.

Figure .171: Histogram of the number of pages written on by each student to solve
homework eight problem seven for the 2010 course offering.
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Figure .172: Histogram of the amount of time spent writing by each student on home-
work eight problem seven for the 2010 course offering.

Figure .173: Histogram of the duration, time from first to last pen stroke for all students
for homework nine problem one for the 2010 course offering.
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Figure .174: Histogram of the amount of ink, in inches, written, for each student on
homework nine problem one for the 2010 course offering.

Figure .175: Histogram of the number of pages written on by each student to solve
homework nine problem one for the 2010 course offering.

Figure .176: Histogram of the amount of time spent writing by each student on home-
work nine problem one for the 2010 course offering.
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Figure .177: Histogram of the duration, time from first to last pen stroke for all students
for homework nine problem two for the 2010 course offering.

Figure .178: Histogram of the amount of ink, in inches, written, for each student on
homework nine problem two for the 2010 course offering.

Figure .179: Histogram of the number of pages written on by each student to solve
homework nine problem two for the 2010 course offering.
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Figure .180: Histogram of the amount of time spent writing by each student on home-
work nine problem two for the 2010 course offering.

Figure .181: Histogram of the duration, time from first to last pen stroke for all students
for homework nine problem three for the 2010 course offering.
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Figure .182: Histogram of the amount of ink, in inches, written, for each student on
homework nine problem three for the 2010 course offering.

Figure .183: Histogram of the number of pages written on by each student to solve
homework nine problem three for the 2010 course offering.
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Figure .184: Histogram of the amount of time spent writing by each student on home-
work nine problem three for the 2010 course offering.

Figure .185: Histogram of the duration, time from first to last pen stroke for all students
for homework nine problem four for the 2010 course offering.

Figure .186: Histogram of the amount of ink, in inches, written, for each student on
homework nine problem four for the 2010 course offering.
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Figure .187: Histogram of the number of pages written on by each student to solve
homework nine problem four for the 2010 course offering.

Figure .188: Histogram of the amount of time spent writing by each student on home-
work nine problem four for the 2010 course offering.

Figure .189: Histogram of the duration, time from first to last pen stroke for all students
for homework nine problem five for the 2010 course offering.
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Figure .190: Histogram of the amount of ink, in inches, written, for each student on
homework nine problem five for the 2010 course offering.

Figure .191: Histogram of the number of pages written on by each student to solve
homework nine problem five for the 2010 course offering.
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Figure .192: Histogram of the amount of time spent writing by each student on home-
work nine problem five for the 2010 course offering.

Figure .193: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem one for the 2011 course offering.
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Figure .194: Histogram of the amount of ink, in inches, written, for each student on
homework one problem one for the 2011 course offering.

Figure .195: Histogram of the number of pages written on by each student to solve
homework one problem one for the 2011 course offering.
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Figure .196: Histogram of the amount of time spent writing by each student on home-
work one problem one for the 2011 course offering.

Figure .197: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem two for the 2011 course offering.

Figure .198: Histogram of the amount of ink, in inches, written, for each student on
homework one problem two for the 2011 course offering.
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Figure .199: Histogram of the number of pages written on by each student to solve
homework one problem two for the 2011 course offering.

Figure .200: Histogram of the amount of time spent writing by each student on home-
work one problem two for the 2011 course offering.

Figure .201: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem three for the 2011 course offering.
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Figure .202: Histogram of the amount of ink, in inches, written, for each student on
homework one problem three for the 2011 course offering.

Figure .203: Histogram of the number of pages written on by each student to solve
homework one problem two for the 2011 course offering.
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Figure .204: Histogram of the amount of time spent writing by each student on home-
work one problem three for the 2011 course offering.

Figure .205: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem four for the 2011 course offering.
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Figure .206: Histogram of the amount of ink, in inches, written, for each student on
homework one problem four for the 2011 course offering.

Figure .207: Histogram of the number of pages written on by each student to solve
homework one problem four for the 2011 course offering.

Figure .208: Histogram of the amount of time spent writing by each student on home-
work one problem four for the 2011 course offering.
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Figure .209: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem five for the 2011 course offering.

Figure .210: Histogram of the amount of ink, in inches, written, for each student on
homework one problem five for the 2011 course offering.

Figure .211: Histogram of the number of pages written on by each student to solve
homework one problem five for the 2011 course offering.
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Figure .212: Histogram of the amount of time spent writing by each student on home-
work one problem five for the 2011 course offering.

Figure .213: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem one for the 2011 course offering.
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Figure .214: Histogram of the amount of ink, in inches, written, for each student on
homework two problem one for the 2011 course offering.

Figure .215: Histogram of the number of pages written on by each student to solve
homework two problem one for the 2011 course offering.
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Figure .216: Histogram of the amount of time spent writing by each student on home-
work two problem one for the 2011 course offering.

Figure .217: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem two for the 2011 course offering.

Figure .218: Histogram of the amount of ink, in inches, written, for each student on
homework two problem two for the 2011 course offering.
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Figure .219: Histogram of the number of pages written on by each student to solve
homework two problem two for the 2011 course offering.

Figure .220: Histogram of the amount of time spent writing by each student on home-
work two problem two for the 2011 course offering.

Figure .221: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem three for the 2011 course offering.
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Figure .222: Histogram of the amount of ink, in inches, written, for each student on
homework two problem three for the 2011 course offering.

Figure .223: Histogram of the number of pages written on by each student to solve
homework two problem three for the 2011 course offering.
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Figure .224: Histogram of the amount of time spent writing by each student on home-
work two problem three for the 2011 course offering.

Figure .225: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem four for the 2011 course offering.
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Figure .226: Histogram of the amount of ink, in inches, written, for each student on
homework two problem four for the 2011 course offering.

Figure .227: Histogram of the number of pages written on by each student to solve
homework two problem four for the 2011 course offering.

Figure .228: Histogram of the amount of time spent writing by each student on home-
work two problem four for the 2011 course offering.
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Figure .229: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem five for the 2011 course offering.

Figure .230: Histogram of the amount of ink, in inches, written, for each student on
homework two problem five for the 2011 course offering.

Figure .231: Histogram of the number of pages written on by each student to solve
homework two problem five for the 2011 course offering.
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Figure .232: Histogram of the amount of time spent writing by each student on home-
work two problem five for the 2011 course offering.

Figure .233: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem six for the 2011 course offering.
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Figure .234: Histogram of the amount of ink, in inches, written, for each student on
homework two problem six for the 2011 course offering.

Figure .235: Histogram of the number of pages written on by each student to solve
homework two problem six for the 2011 course offering.
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Figure .236: Histogram of the amount of time spent writing by each student on home-
work two problem six for the 2011 course offering.

Figure .237: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem seven for the 2011 course offering.

Figure .238: Histogram of the amount of ink, in inches, written, for each student on
homework two problem seven for the 2011 course offering.
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Figure .239: Histogram of the number of pages written on by each student to solve
homework two problem seven for the 2011 course offering.

Figure .240: Histogram of the amount of time spent writing by each student on home-
work two problem seven for the 2011 course offering.

Figure .241: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem eight for the 2011 course offering.
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Figure .242: Histogram of the amount of ink, in inches, written, for each student on
homework two problem eight for the 2011 course offering.

Figure .243: Histogram of the number of pages written on by each student to solve
homework two problem eight for the 2011 course offering.
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Figure .244: Histogram of the amount of time spent writing by each student on home-
work two problem eight for the 2011 course offering.

Figure .245: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem one for the 2011 course offering.
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Figure .246: Histogram of the amount of ink, in inches, written, for each student on
homework three problem one for the 2011 course offering.

Figure .247: Histogram of the number of pages written on by each student to solve
homework three problem one for the 2011 course offering.

Figure .248: Histogram of the amount of time spent writing by each student on home-
work three problem one for the 2011 course offering.
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Figure .249: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem two for the 2011 course offering.

Figure .250: Histogram of the amount of ink, in inches, written, for each student on
homework three problem two for the 2011 course offering.

Figure .251: Histogram of the number of pages written on by each student to solve
homework three problem two for the 2011 course offering.
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Figure .252: Histogram of the amount of time spent writing by each student on home-
work three problem two for the 2011 course offering.

Figure .253: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem three for the 2011 course offering.
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Figure .254: Histogram of the amount of ink, in inches, written, for each student on
homework three problem three for the 2011 course offering.

Figure .255: Histogram of the number of pages written on by each student to solve
homework three problem three for the 2011 course offering.
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Figure .256: Histogram of the amount of time spent writing by each student on home-
work three problem three for the 2011 course offering.

Figure .257: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem four for the 2011 course offering.

Figure .258: Histogram of the amount of ink, in inches, written, for each student on
homework three problem four for the 2011 course offering.
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Figure .259: Histogram of the number of pages written on by each student to solve
homework three problem four for the 2011 course offering.

Figure .260: Histogram of the amount of time spent writing by each student on home-
work three problem four for the 2011 course offering.

Figure .261: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem five for the 2011 course offering.
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Figure .262: Histogram of the amount of ink, in inches, written, for each student on
homework three problem five for the 2011 course offering.

Figure .263: Histogram of the number of pages written on by each student to solve
homework three problem five for the 2011 course offering.
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Figure .264: Histogram of the amount of time spent writing by each student on home-
work three problem five for the 2011 course offering.

Figure .265: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem six for the 2011 course offering.
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Figure .266: Histogram of the amount of ink, in inches, written, for each student on
homework three problem six for the 2011 course offering.

Figure .267: Histogram of the number of pages written on by each student to solve
homework three problem six for the 2011 course offering.

Figure .268: Histogram of the amount of time spent writing by each student on home-
work three problem six for the 2011 course offering.
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Figure .269: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem seven for the 2011 course offering.

Figure .270: Histogram of the amount of ink, in inches, written, for each student on
homework three problem seven for the 2011 course offering.

Figure .271: Histogram of the number of pages written on by each student to solve
homework three problem seven for the 2011 course offering.
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Figure .272: Histogram of the amount of time spent writing by each student on home-
work three problem seven for the 2011 course offering.

Figure .273: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem eight for the 2011 course offering.
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Figure .274: Histogram of the amount of ink, in inches, written, for each student on
homework three problem eight for the 2011 course offering.

Figure .275: Histogram of the number of pages written on by each student to solve
homework three problem eight for the 2011 course offering.
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Figure .276: Histogram of the amount of time spent writing by each student on home-
work three problem eight for the 2011 course offering.

Figure .277: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem one for the 2011 course offering.

Figure .278: Histogram of the amount of ink, in inches, written, for each student on
homework four problem one for the 2011 course offering.
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Figure .279: Histogram of the number of pages written on by each student to solve
homework four problem one for the 2011 course offering.

Figure .280: Histogram of the amount of time spent writing by each student on home-
work four problem one for the 2011 course offering.

Figure .281: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem two for the 2011 course offering.
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Figure .282: Histogram of the amount of ink, in inches, written, for each student on
homework four problem two for the 2011 course offering.

Figure .283: Histogram of the number of pages written on by each student to solve
homework four problem two for the 2011 course offering.
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Figure .284: Histogram of the amount of time spent writing by each student on home-
work four problem two for the 2011 course offering.

Figure .285: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem three for the 2011 course offering.
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Figure .286: Histogram of the amount of ink, in inches, written, for each student on
homework four problem three for the 2011 course offering.

Figure .287: Histogram of the number of pages written on by each student to solve
homework four problem three for the 2011 course offering.

Figure .288: Histogram of the amount of time spent writing by each student on home-
work four problem three for the 2011 course offering.
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Figure .289: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem four for the 2011 course offering.

Figure .290: Histogram of the amount of ink, in inches, written, for each student on
homework four problem four for the 2011 course offering.

Figure .291: Histogram of the number of pages written on by each student to solve
homework four problem four for the 2011 course offering.
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Figure .292: Histogram of the amount of time spent writing by each student on home-
work four problem four for the 2011 course offering.

Figure .293: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem five for the 2011 course offering.
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Figure .294: Histogram of the amount of ink, in inches, written, for each student on
homework four problem five for the 2011 course offering.

Figure .295: Histogram of the number of pages written on by each student to solve
homework four problem five for the 2011 course offering.
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Figure .296: Histogram of the amount of time spent writing by each student on home-
work four problem five for the 2011 course offering.

Figure .297: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem six for the 2011 course offering.

Figure .298: Histogram of the amount of ink, in inches, written, for each student on
homework four problem six for the 2011 course offering.
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Figure .299: Histogram of the number of pages written on by each student to solve
homework four problem six for the 2011 course offering.

Figure .300: Histogram of the amount of time spent writing by each student on home-
work four problem six for the 2011 course offering.

Figure .301: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem seven for the 2011 course offering.

406



Figure .302: Histogram of the amount of ink, in inches, written, for each student on
homework four problem seven for the 2011 course offering.

Figure .303: Histogram of the number of pages written on by each student to solve
homework four problem seven for the 2011 course offering.
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Figure .304: Histogram of the amount of time spent writing by each student on home-
work four problem seven for the 2011 course offering.

Figure .305: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem one for the 2011 course offering.
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Figure .306: Histogram of the amount of ink, in inches, written, for each student on
homework five problem one for the 2011 course offering.

Figure .307: Histogram of the number of pages written on by each student to solve
homework five problem one for the 2011 course offering.

Figure .308: Histogram of the amount of time spent writing by each student on home-
work five problem one for the 2011 course offering.
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Figure .309: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem two for the 2011 course offering.

Figure .310: Histogram of the amount of ink, in inches, written, for each student on
homework five problem two for the 2011 course offering.

Figure .311: Histogram of the number of pages written on by each student to solve
homework five problem two for the 2011 course offering.
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Figure .312: Histogram of the amount of time spent writing by each student on home-
work five problem two for the 2011 course offering.

Figure .313: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem three for the 2011 course offering.
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Figure .314: Histogram of the amount of ink, in inches, written, for each student on
homework five problem three for the 2011 course offering.

Figure .315: Histogram of the number of pages written on by each student to solve
homework five problem three for the 2011 course offering.
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Figure .316: Histogram of the amount of time spent writing by each student on home-
work five problem three for the 2011 course offering.

Figure .317: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem four for the 2011 course offering.

Figure .318: Histogram of the amount of ink, in inches, written, for each student on
homework five problem four for the 2011 course offering.
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Figure .319: Histogram of the number of pages written on by each student to solve
homework five problem four for the 2011 course offering.

Figure .320: Histogram of the amount of time spent writing by each student on home-
work five problem four for the 2011 course offering.

Figure .321: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem five for the 2011 course offering.
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Figure .322: Histogram of the amount of ink, in inches, written, for each student on
homework five problem five for the 2011 course offering.

Figure .323: Histogram of the number of pages written on by each student to solve
homework five problem five for the 2011 course offering.
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Figure .324: Histogram of the amount of time spent writing by each student on home-
work five problem five for the 2011 course offering.

Figure .325: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem six for the 2011 course offering.
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Figure .326: Histogram of the amount of ink, in inches, written, for each student on
homework five problem six for the 2011 course offering.

Figure .327: Histogram of the number of pages written on by each student to solve
homework five problem six for the 2011 course offering.

Figure .328: Histogram of the amount of time spent writing by each student on home-
work five problem six for the 2011 course offering.
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Figure .329: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem seven for the 2011 course offering.

Figure .330: Histogram of the amount of ink, in inches, written, for each student on
homework five problem seven for the 2011 course offering.

Figure .331: Histogram of the number of pages written on by each student to solve
homework five problem seven for the 2011 course offering.
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Figure .332: Histogram of the amount of time spent writing by each student on home-
work five problem seven for the 2011 course offering.

Figure .333: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem eight for the 2011 course offering.
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Figure .334: Histogram of the amount of ink, in inches, written, for each student on
homework five problem eight for the 2011 course offering.

Figure .335: Histogram of the number of pages written on by each student to solve
homework five problem eight for the 2011 course offering.
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Figure .336: Histogram of the amount of time spent writing by each student on home-
work five problem eight for the 2011 course offering.

Figure .337: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem one for the 2011 course offering.

Figure .338: Histogram of the amount of ink, in inches, written, for each student on
homework six problem one for the 2011 course offering.
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Figure .339: Histogram of the number of pages written on by each student to solve
homework six problem one for the 2011 course offering.

Figure .340: Histogram of the amount of time spent writing by each student on home-
work six problem one for the 2011 course offering.

Figure .341: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem two for the 2011 course offering.
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Figure .342: Histogram of the amount of ink, in inches, written, for each student on
homework six problem two for the 2011 course offering.

Figure .343: Histogram of the number of pages written on by each student to solve
homework six problem two for the 2011 course offering.
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Figure .344: Histogram of the amount of time spent writing by each student on home-
work six problem two for the 2011 course offering.

Figure .345: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem three for the 2011 course offering.

424



Figure .346: Histogram of the amount of ink, in inches, written, for each student on
homework six problem three for the 2011 course offering.

Figure .347: Histogram of the number of pages written on by each student to solve
homework six problem three for the 2011 course offering.

Figure .348: Histogram of the amount of time spent writing by each student on home-
work six problem three for the 2011 course offering.
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Figure .349: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem four for the 2011 course offering.

Figure .350: Histogram of the amount of ink, in inches, written, for each student on
homework six problem four for the 2011 course offering.

Figure .351: Histogram of the number of pages written on by each student to solve
homework six problem four for the 2011 course offering.
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Figure .352: Histogram of the amount of time spent writing by each student on home-
work six problem four for the 2011 course offering.

Figure .353: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem five for the 2011 course offering.
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Figure .354: Histogram of the amount of ink, in inches, written, for each student on
homework six problem five for the 2011 course offering.

Figure .355: Histogram of the number of pages written on by each student to solve
homework six problem five for the 2011 course offering.
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Figure .356: Histogram of the amount of time spent writing by each student on home-
work six problem five for the 2011 course offering.

Figure .357: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem six for the 2011 course offering.

Figure .358: Histogram of the amount of ink, in inches, written, for each student on
homework six problem six for the 2011 course offering.
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Figure .359: Histogram of the number of pages written on by each student to solve
homework six problem six for the 2011 course offering.

Figure .360: Histogram of the amount of time spent writing by each student on home-
work six problem six for the 2011 course offering.

Figure .361: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem one for the 2011 course offering.
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Figure .362: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem one for the 2011 course offering.

Figure .363: Histogram of the number of pages written on by each student to solve
homework six problem seven for the 2011 course offering.
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Figure .364: Histogram of the amount of time spent writing by each student on home-
work seven problem one for the 2011 course offering.

Figure .365: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem two for the 2011 course offering.
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Figure .366: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem two for the 2011 course offering.

Figure .367: Histogram of the number of pages written on by each student to solve
homework seven problem one for the 2011 course offering.

Figure .368: Histogram of the amount of time spent writing by each student on home-
work seven problem two for the 2011 course offering.
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Figure .369: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem three for the 2011 course offering.

Figure .370: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem three for the 2011 course offering.

Figure .371: Histogram of the number of pages written on by each student to solve
homework seven problem three for the 2011 course offering.
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Figure .372: Histogram of the amount of time spent writing by each student on home-
work seven problem three for the 2011 course offering.

Figure .373: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem four for the 2011 course offering.
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Figure .374: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem four for the 2011 course offering.

Figure .375: Histogram of the number of pages written on by each student to solve
homework seven problem four for the 2011 course offering.
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Figure .376: Histogram of the amount of time spent writing by each student on home-
work seven problem four for the 2011 course offering.

Figure .377: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem five for the 2011 course offering.

Figure .378: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem five for the 2011 course offering.
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Figure .379: Histogram of the number of pages written on by each student to solve
homework seven problem five for the 2011 course offering.

Figure .380: Histogram of the amount of time spent writing by each student on home-
work seven problem five for the 2011 course offering.

Figure .381: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem six for the 2011 course offering.
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Figure .382: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem six for the 2011 course offering.

Figure .383: Histogram of the number of pages written on by each student to solve
homework seven problem six for the 2011 course offering.
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Figure .384: Histogram of the amount of time spent writing by each student on home-
work seven problem six for the 2011 course offering.

Figure .385: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem seven for the 2011 course offering.
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Figure .386: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem seven for the 2011 course offering.

Figure .387: Histogram of the number of pages written on by each student to solve
homework seven problem seven for the 2011 course offering.

Figure .388: Histogram of the amount of time spent writing by each student on home-
work seven problem seven for the 2011 course offering.
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Figure .389: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem one for the 2011 course offering.

Figure .390: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem one for the 2011 course offering.

Figure .391: Histogram of the number of pages written on by each student to solve
homework eight problem one for the 2011 course offering.
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Figure .392: Histogram of the amount of time spent writing by each student on home-
work eight problem one for the 2011 course offering.

Figure .393: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem two for the 2011 course offering.
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Figure .394: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem two for the 2011 course offering.

Figure .395: Histogram of the number of pages written on by each student to solve
homework eight problem two for the 2011 course offering.
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Figure .396: Histogram of the amount of time spent writing by each student on home-
work eight problem two for the 2011 course offering.

Figure .397: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem three for the 2011 course offering.

Figure .398: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem three for the 2011 course offering.
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Figure .399: Histogram of the number of pages written on by each student to solve
homework eight problem three for the 2011 course offering.

Figure .400: Histogram of the amount of time spent writing by each student on home-
work eight problem three for the 2011 course offering.

Figure .401: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem four for the 2011 course offering.
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Figure .402: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem four for the 2011 course offering.

Figure .403: Histogram of the number of pages written on by each student to solve
homework eight problem four for the 2011 course offering.
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Figure .404: Histogram of the amount of time spent writing by each student on home-
work eight problem four for the 2011 course offering.

Figure .405: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem five for the 2011 course offering.
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Figure .406: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem five for the 2011 course offering.

Figure .407: Histogram of the number of pages written on by each student to solve
homework eight problem five for the 2011 course offering.

Figure .408: Histogram of the amount of time spent writing by each student on home-
work eight problem five for the 2011 course offering.
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Figure .409: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem one for the 2012 course offering.
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Figure .410: Histogram of the amount of ink, in inches, written, for each student on
homework one problem one for the 2012 course offering.

Figure .411: Histogram of the number of pages written on by each student to solve
homework one problem one for the 2012 course offering.
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Figure .412: Histogram of the amount of time spent writing by each student on home-
work one problem one for the 2012 course offering.

Figure .413: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem two for the 2012 course offering.

Figure .414: Histogram of the amount of ink, in inches, written, for each student on
homework one problem two for the 2012 course offering.
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Figure .415: Histogram of the number of pages written on by each student to solve
homework one problem two for the 2012 course offering.

Figure .416: Histogram of the amount of time spent writing by each student on home-
work one problem two for the 2012 course offering.

Figure .417: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem three for the 2012 course offering.
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Figure .418: Histogram of the amount of ink, in inches, written, for each student on
homework one problem three for the 2012 course offering.

Figure .419: Histogram of the number of pages written on by each student to solve
homework one problem three for the 2012 course offering.
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Figure .420: Histogram of the amount of time spent writing by each student on home-
work one problem three for the 2012 course offering.

Figure .421: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem four for the 2012 course offering.
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Figure .422: Histogram of the amount of ink, in inches, written, for each student on
homework one problem four for the 2012 course offering.

Figure .423: Histogram of the number of pages written on by each student to solve
homework one problem four for the 2012 course offering.

Figure .424: Histogram of the amount of time spent writing by each student on home-
work one problem four for the 2012 course offering.

456



Figure .425: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem five for the 2012 course offering.

Figure .426: Histogram of the amount of ink, in inches, written, for each student on
homework one problem five for the 2012 course offering.

Figure .427: Histogram of the number of pages written on by each student to solve
homework one problem five for the 2012 course offering.
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Figure .428: Histogram of the amount of time spent writing by each student on home-
work one problem five for the 2012 course offering.

Figure .429: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem six for the 2012 course offering.
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Figure .430: Histogram of the amount of ink, in inches, written, for each student on
homework one problem six for the 2012 course offering.

Figure .431: Histogram of the number of pages written on by each student to solve
homework one problem six for the 2012 course offering.
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Figure .432: Histogram of the amount of time spent writing by each student on home-
work one problem six for the 2012 course offering.

Figure .433: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem seven for the 2012 course offering.

Figure .434: Histogram of the amount of ink, in inches, written, for each student on
homework one problem seven for the 2012 course offering.
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Figure .435: Histogram of the number of pages written on by each student to solve
homework seven problem one for the 2012 course offering.

Figure .436: Histogram of the amount of time spent writing by each student on home-
work one problem seven for the 2012 course offering.

Figure .437: Histogram of the duration, time from first to last pen stroke for all students
for homework one problem eight for the 2012 course offering.
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Figure .438: Histogram of the amount of ink, in inches, written, for each student on
homework one problem eight for the 2012 course offering.

Figure .439: Histogram of the number of pages written on by each student to solve
homework one problem eight for the 2012 course offering.

462



Figure .440: Histogram of the amount of time spent writing by each student on home-
work one problem eight for the 2012 course offering.

Figure .441: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem one for the 2012 course offering.
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Figure .442: Histogram of the amount of ink, in inches, written, for each student on
homework two problem one for the 2012 course offering.

Figure .443: Histogram of the number of pages written on by each student to solve
homework two problem one for the 2012 course offering.

Figure .444: Histogram of the amount of time spent writing by each student on home-
work two problem one for the 2012 course offering.
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Figure .445: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem two for the 2012 course offering.

Figure .446: Histogram of the amount of ink, in inches, written, for each student on
homework two problem two for the 2012 course offering.

Figure .447: Histogram of the number of pages written on by each student to solve
homework two problem two for the 2012 course offering.
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Figure .448: Histogram of the amount of time spent writing by each student on home-
work two problem two for the 2012 course offering.

Figure .449: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem three for the 2012 course offering.
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Figure .450: Histogram of the amount of ink, in inches, written, for each student on
homework two problem three for the 2012 course offering.

Figure .451: Histogram of the number of pages written on by each student to solve
homework two problem three for the 2012 course offering.
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Figure .452: Histogram of the amount of time spent writing by each student on home-
work two problem three for the 2012 course offering.

Figure .453: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem four for the 2012 course offering.

Figure .454: Histogram of the amount of ink, in inches, written, for each student on
homework two problem four for the 2012 course offering.
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Figure .455: Histogram of the number of pages written on by each student to solve
homework two problem four for the 2012 course offering.

Figure .456: Histogram of the amount of time spent writing by each student on home-
work two problem four for the 2012 course offering.

Figure .457: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem five for the 2012 course offering.
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Figure .458: Histogram of the amount of ink, in inches, written, for each student on
homework two problem five for the 2012 course offering.

Figure .459: Histogram of the number of pages written on by each student to solve
homework two problem five for the 2012 course offering.
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Figure .460: Histogram of the amount of time spent writing by each student on home-
work two problem five for the 2012 course offering.

Figure .461: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem six for the 2012 course offering.
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Figure .462: Histogram of the amount of ink, in inches, written, for each student on
homework two problem six for the 2012 course offering.

Figure .463: Histogram of the number of pages written on by each student to solve
homework two problem six for the 2012 course offering.

Figure .464: Histogram of the amount of time spent writing by each student on home-
work two problem six for the 2012 course offering.
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Figure .465: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem seven for the 2012 course offering.

Figure .466: Histogram of the amount of ink, in inches, written, for each student on
homework two problem seven for the 2012 course offering.

Figure .467: Histogram of the number of pages written on by each student to solve
homework two problem seven for the 2012 course offering.
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Figure .468: Histogram of the amount of time spent writing by each student on home-
work two problem seven for the 2012 course offering.

Figure .469: Histogram of the duration, time from first to last pen stroke for all students
for homework two problem eight for the 2012 course offering.
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Figure .470: Histogram of the amount of ink, in inches, written, for each student on
homework two problem eight for the 2012 course offering.

Figure .471: Histogram of the number of pages written on by each student to solve
homework two problem eight for the 2012 course offering.
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Figure .472: Histogram of the amount of time spent writing by each student on home-
work two problem eight for the 2012 course offering.

Figure .473: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem one for the 2012 course offering.

Figure .474: Histogram of the amount of ink, in inches, written, for each student on
homework three problem one for the 2012 course offering.
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Figure .475: Histogram of the number of pages written on by each student to solve
homework three problem one for the 2012 course offering.

Figure .476: Histogram of the amount of time spent writing by each student on home-
work three problem one for the 2012 course offering.

Figure .477: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem two for the 2012 course offering.
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Figure .478: Histogram of the amount of ink, in inches, written, for each student on
homework three problem two for the 2012 course offering.

Figure .479: Histogram of the number of pages written on by each student to solve
homework three problem two for the 2012 course offering.
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Figure .480: Histogram of the amount of time spent writing by each student on home-
work three problem two for the 2012 course offering.

Figure .481: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem three for the 2012 course offering.
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Figure .482: Histogram of the amount of ink, in inches, written, for each student on
homework three problem three for the 2012 course offering.

Figure .483: Histogram of the number of pages written on by each student to solve
homework three problem three for the 2012 course offering.

Figure .484: Histogram of the amount of time spent writing by each student on home-
work three problem three for the 2012 course offering.
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Figure .485: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem four for the 2012 course offering.

Figure .486: Histogram of the amount of ink, in inches, written, for each student on
homework three problem four for the 2012 course offering.

Figure .487: Histogram of the number of pages written on by each student to solve
homework three problem four for the 2012 course offering.
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Figure .488: Histogram of the amount of time spent writing by each student on home-
work three problem four for the 2012 course offering.

Figure .489: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem five for the 2012 course offering.
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Figure .490: Histogram of the amount of ink, in inches, written, for each student on
homework three problem five for the 2012 course offering.

Figure .491: Histogram of the number of pages written on by each student to solve
homework three problem five for the 2012 course offering.
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Figure .492: Histogram of the amount of time spent writing by each student on home-
work three problem five for the 2012 course offering.

Figure .493: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem six for the 2012 course offering.

Figure .494: Histogram of the amount of ink, in inches, written, for each student on
homework three problem six for the 2012 course offering.
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Figure .495: Histogram of the number of pages written on by each student to solve
homework three problem six for the 2012 course offering.

Figure .496: Histogram of the amount of time spent writing by each student on home-
work three problem six for the 2012 course offering.

Figure .497: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem seven for the 2012 course offering.
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Figure .498: Histogram of the amount of ink, in inches, written, for each student on
homework three problem seven for the 2012 course offering.

Figure .499: Histogram of the number of pages written on by each student to solve
homework three problem seven for the 2012 course offering.
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Figure .500: Histogram of the amount of time spent writing by each student on home-
work three problem seven for the 2012 course offering.

Figure .501: Histogram of the duration, time from first to last pen stroke for all students
for homework three problem eight for the 2012 course offering.
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Figure .502: Histogram of the amount of ink, in inches, written, for each student on
homework three problem eight for the 2012 course offering.

Figure .503: Histogram of the number of pages written on by each student to solve
homework three problem eight for the 2012 course offering.

Figure .504: Histogram of the amount of time spent writing by each student on home-
work three problem eight for the 2012 course offering.
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Figure .505: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem one for the 2012 course offering.

Figure .506: Histogram of the amount of ink, in inches, written, for each student on
homework four problem one for the 2012 course offering.

Figure .507: Histogram of the number of pages written on by each student to solve
homework four problem one for the 2012 course offering.
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Figure .508: Histogram of the amount of time spent writing by each student on home-
work four problem one for the 2012 course offering.

Figure .509: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem two for the 2012 course offering.
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Figure .510: Histogram of the amount of ink, in inches, written, for each student on
homework four problem two for the 2012 course offering.

Figure .511: Histogram of the number of pages written on by each student to solve
homework four problem two for the 2012 course offering.
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Figure .512: Histogram of the amount of time spent writing by each student on home-
work four problem two for the 2012 course offering.

Figure .513: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem three for the 2012 course offering.

Figure .514: Histogram of the amount of ink, in inches, written, for each student on
homework four problem three for the 2012 course offering.
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Figure .515: Histogram of the number of pages written on by each student to solve
homework four problem three for the 2012 course offering.

Figure .516: Histogram of the amount of time spent writing by each student on home-
work four problem three for the 2012 course offering.

Figure .517: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem four for the 2012 course offering.
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Figure .518: Histogram of the amount of ink, in inches, written, for each student on
homework four problem four for the 2012 course offering.

Figure .519: Histogram of the number of pages written on by each student to solve
homework four problem four for the 2012 course offering.
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Figure .520: Histogram of the amount of time spent writing by each student on home-
work four problem four for the 2012 course offering.

Figure .521: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem five for the 2012 course offering.
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Figure .522: Histogram of the amount of ink, in inches, written, for each student on
homework four problem five for the 2012 course offering.

Figure .523: Histogram of the number of pages written on by each student to solve
homework four problem five for the 2012 course offering.

Figure .524: Histogram of the amount of time spent writing by each student on home-
work four problem five for the 2012 course offering.
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Figure .525: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem six for the 2012 course offering.

Figure .526: Histogram of the amount of ink, in inches, written, for each student on
homework four problem six for the 2012 course offering.

Figure .527: Histogram of the number of pages written on by each student to solve
homework four problem six for the 2012 course offering.
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Figure .528: Histogram of the amount of time spent writing by each student on home-
work four problem six for the 2012 course offering.

Figure .529: Histogram of the duration, time from first to last pen stroke for all students
for homework four problem seven for the 2012 course offering.
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Figure .530: Histogram of the amount of ink, in inches, written, for each student on
homework four problem seven for the 2012 course offering.

Figure .531: Histogram of the number of pages written on by each student to solve
homework four problem seven for the 2012 course offering.
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Figure .532: Histogram of the amount of time spent writing by each student on home-
work four problem seven for the 2012 course offering.

Figure .533: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem one for the 2012 course offering.

Figure .534: Histogram of the amount of ink, in inches, written, for each student on
homework five problem one for the 2012 course offering.
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Figure .535: Histogram of the number of pages written on by each student to solve
homework five problem one for the 2012 course offering.

Figure .536: Histogram of the amount of time spent writing by each student on home-
work five problem one for the 2012 course offering.

Figure .537: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem two for the 2012 course offering.
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Figure .538: Histogram of the amount of ink, in inches, written, for each student on
homework five problem two for the 2012 course offering.

Figure .539: Histogram of the number of pages written on by each student to solve
homework five problem two for the 2012 course offering.
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Figure .540: Histogram of the amount of time spent writing by each student on home-
work five problem two for the 2012 course offering.

Figure .541: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem three for the 2012 course offering.
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Figure .542: Histogram of the amount of ink, in inches, written, for each student on
homework five problem three for the 2012 course offering.

Figure .543: Histogram of the number of pages written on by each student to solve
homework five problem three for the 2012 course offering.

Figure .544: Histogram of the amount of time spent writing by each student on home-
work five problem three for the 2012 course offering.
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Figure .545: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem four for the 2012 course offering.

Figure .546: Histogram of the amount of ink, in inches, written, for each student on
homework five problem four for the 2012 course offering.

Figure .547: Histogram of the number of pages written on by each student to solve
homework five problem four for the 2012 course offering.
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Figure .548: Histogram of the amount of time spent writing by each student on home-
work five problem four for the 2012 course offering.

Figure .549: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem five for the 2012 course offering.
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Figure .550: Histogram of the amount of ink, in inches, written, for each student on
homework five problem five for the 2012 course offering.

Figure .551: Histogram of the number of pages written on by each student to solve
homework five problem five for the 2012 course offering.
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Figure .552: Histogram of the amount of time spent writing by each student on home-
work five problem five for the 2012 course offering.

Figure .553: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem six for the 2012 course offering.

Figure .554: Histogram of the amount of ink, in inches, written, for each student on
homework five problem six for the 2012 course offering.
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Figure .555: Histogram of the number of pages written on by each student to solve
homework five problem six for the 2012 course offering.

Figure .556: Histogram of the amount of time spent writing by each student on home-
work five problem six for the 2012 course offering.

Figure .557: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem seven for the 2012 course offering.
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Figure .558: Histogram of the amount of ink, in inches, written, for each student on
homework five problem seven for the 2012 course offering.

Figure .559: Histogram of the number of pages written on by each student to solve
homework five problem seven for the 2012 course offering.
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Figure .560: Histogram of the amount of time spent writing by each student on home-
work five problem seven for the 2012 course offering.

Figure .561: Histogram of the duration, time from first to last pen stroke for all students
for homework five problem eight for the 2012 course offering.
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Figure .562: Histogram of the amount of ink, in inches, written, for each student on
homework five problem eight for the 2012 course offering.

Figure .563: Histogram of the number of pages written on by each student to solve
homework five problem eight for the 2012 course offering.

Figure .564: Histogram of the amount of time spent writing by each student on home-
work five problem eight for the 2012 course offering.
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Figure .565: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem one for the 2012 course offering.

Figure .566: Histogram of the amount of ink, in inches, written, for each student on
homework six problem one for the 2012 course offering.

Figure .567: Histogram of the number of pages written on by each student to solve
homework six problem one for the 2012 course offering.
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Figure .568: Histogram of the amount of time spent writing by each student on home-
work six problem one for the 2012 course offering.

Figure .569: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem two for the 2012 course offering.
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Figure .570: Histogram of the amount of ink, in inches, written, for each student on
homework six problem two for the 2012 course offering.

Figure .571: Histogram of the number of pages written on by each student to solve
homework six problem two for the 2012 course offering.

515



Figure .572: Histogram of the amount of time spent writing by each student on home-
work six problem two for the 2012 course offering.

Figure .573: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem three for the 2012 course offering.

Figure .574: Histogram of the amount of ink, in inches, written, for each student on
homework six problem three for the 2012 course offering.
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Figure .575: Histogram of the number of pages written on by each student to solve
homework six problem three for the 2012 course offering.

Figure .576: Histogram of the amount of time spent writing by each student on home-
work six problem three for the 2012 course offering.

Figure .577: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem four for the 2012 course offering.
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Figure .578: Histogram of the amount of ink, in inches, written, for each student on
homework six problem four for the 2012 course offering.

Figure .579: Histogram of the number of pages written on by each student to solve
homework six problem four for the 2012 course offering.
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Figure .580: Histogram of the amount of time spent writing by each student on home-
work six problem four for the 2012 course offering.

Figure .581: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem five for the 2012 course offering.

519



Figure .582: Histogram of the amount of ink, in inches, written, for each student on
homework six problem five for the 2012 course offering.

Figure .583: Histogram of the number of pages written on by each student to solve
homework six problem five for the 2012 course offering.

Figure .584: Histogram of the amount of time spent writing by each student on home-
work six problem five for the 2012 course offering.
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Figure .585: Histogram of the duration, time from first to last pen stroke for all students
for homework six problem six for the 2012 course offering.

Figure .586: Histogram of the amount of ink, in inches, written, for each student on
homework six problem six for the 2012 course offering.

Figure .587: Histogram of the number of pages written on by each student to solve
homework six problem six for the 2012 course offering.
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Figure .588: Histogram of the amount of time spent writing by each student on home-
work six problem six for the 2012 course offering.

Figure .589: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem one for the 2012 course offering.
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Figure .590: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem one for the 2012 course offering.

Figure .591: Histogram of the number of pages written on by each student to solve
homework seven problem one for the 2012 course offering.
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Figure .592: Histogram of the amount of time spent writing by each student on home-
work seven problem one for the 2012 course offering.

Figure .593: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem two for the 2012 course offering.

Figure .594: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem two for the 2012 course offering.
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Figure .595: Histogram of the number of pages written on by each student to solve
homework seven problem two for the 2012 course offering.

Figure .596: Histogram of the amount of time spent writing by each student on home-
work seven problem two for the 2012 course offering.

Figure .597: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem three for the 2012 course offering.
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Figure .598: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem three for the 2012 course offering.

Figure .599: Histogram of the number of pages written on by each student to solve
homework seven problem three for the 2012 course offering.
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Figure .600: Histogram of the amount of time spent writing by each student on home-
work seven problem three for the 2012 course offering.

Figure .601: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem four for the 2012 course offering.
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Figure .602: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem four for the 2012 course offering.

Figure .603: Histogram of the number of pages written on by each student to solve
homework seven problem four for the 2012 course offering.

Figure .604: Histogram of the amount of time spent writing by each student on home-
work seven problem four for the 2012 course offering.
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Figure .605: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem five for the 2012 course offering.

Figure .606: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem five for the 2012 course offering.

Figure .607: Histogram of the number of pages written on by each student to solve
homework seven problem five for the 2012 course offering.
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Figure .608: Histogram of the amount of time spent writing by each student on home-
work seven problem five for the 2012 course offering.

Figure .609: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem six for the 2012 course offering.
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Figure .610: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem six for the 2012 course offering.

Figure .611: Histogram of the number of pages written on by each student to solve
homework seven problem six for the 2012 course offering.
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Figure .612: Histogram of the amount of time spent writing by each student on home-
work seven problem six for the 2012 course offering.

Figure .613: Histogram of the duration, time from first to last pen stroke for all students
for homework seven problem one for the 2012 course offering.

Figure .614: Histogram of the amount of ink, in inches, written, for each student on
homework seven problem seven for the 2012 course offering.
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Figure .615: Histogram of the number of pages written on by each student to solve
homework seven problem seven for the 2012 course offering.

Figure .616: Histogram of the amount of time spent writing by each student on home-
work seven problem seven for the 2012 course offering.

Figure .617: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem one for the 2012 course offering.
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Figure .618: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem one for the 2012 course offering.

Figure .619: Histogram of the number of pages written on by each student to solve
homework eight problem one for the 2012 course offering.
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Figure .620: Histogram of the amount of time spent writing by each student on home-
work eight problem one for the 2012 course offering.

Figure .621: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem two for the 2012 course offering.
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Figure .622: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem two for the 2012 course offering.

Figure .623: Histogram of the number of pages written on by each student to solve
homework eight problem two for the 2012 course offering.

Figure .624: Histogram of the amount of time spent writing by each student on home-
work eight problem two for the 2012 course offering.

536



Figure .625: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem three for the 2012 course offering.

Figure .626: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem three for the 2012 course offering.

Figure .627: Histogram of the number of pages written on by each student to solve
homework eight problem three for the 2012 course offering.
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Figure .628: Histogram of the amount of time spent writing by each student on home-
work eight problem three for the 2012 course offering.

Figure .629: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem four for the 2012 course offering.
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Figure .630: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem four for the 2012 course offering.

Figure .631: Histogram of the number of pages written on by each student to solve
homework eight problem four for the 2012 course offering.
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Algorithm 1 Transforms a candidate stroke into a template. First the stroke is

resampled via RESAMPLE, it is then converted to a one-dimensional vector via C-

DISTANCE. Last the vector is normalized via Z-NORMALIZE.
function RESAMPLE(points, n)

I ← PATH-LENGTH(points)/(n − 1)

D ← 0

newPoints← points0

for all point pi for i ≥ 1 in points do

if D + d ≥ I then

qx ← pi−1x + ((I −D)/d)× (pix − pi−1x)

qy ← pi−1y + ((I −D)/d)× (piy − pi−1y)

APPEND(newPoints, q)

INSERT(points, i, q)

D ← 0

else

D ← D + d

end if

end for

return newPoints

end function
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Figure .632: Histogram of the amount of time spent writing by each student on home-
work eight problem four for the 2012 course offering.

Figure .633: Histogram of the duration, time from first to last pen stroke for all students
for homework eight problem five for the 2012 course offering.

Appendix - Pseudocode

The following pseudocode has been implemented in JAVA and is available at:

https://sourceforge.net/projects/onecentrec/
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Algorithm 2 Computes the path length of a stroke, computed as the sum of Euclidean

distances between each pair of consecutive points.

function PATH-LENGTH(A)

d← 0

for i from 1 to |A| step 1 do

d← d+ DISTANCE(Ai−1, Ai)

end for

return d

end function

Algorithm 3 Computes the centroid of a pen stroke.

function C-DISTANCE(points) ⊲ Equation 10.3.3.2

c← CENTROID(points) ⊲ Computes(µx, µy)

for all point p in points do

d← DISTANCE(c, p)

APPEND(distances, d)

end for

return distances

end function
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Figure .634: Histogram of the amount of ink, in inches, written, for each student on
homework eight problem five for the 2012 course offering.

Figure .635: Histogram of the number of pages written on by each student to solve
homework eight problem five for the 2012 course offering.
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Algorithm 4 Z-normalizes a vector of real values by subtracting each element in the

vector by the mean and then dividing by the standard deviation.

function Z-NORMALIZE(S) ⊲ Equation 10.3.3.2

µ = AVERAGE(S)

σ = STANDARD-DEVIATION(S)

for all d in S do

z ← (d− µ)/σ

APPEND(z, dz)

end for

return dz

end function
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Algorithm 5 The following functions comprise all the steps needed to recognize a can-

didate stroke that has been converted into a template, given a set of training templates.

function Recognize(S,Templates) ⊲ Equation 10.3.3.3

for all template T in Templates do

b← +∞

d← L2(S, T )

if d < b then

b← d

T ∗ ← T

end if

end for

return T ∗

end function

function L2(S,T) ⊲ Equation 10.3.3.3

d← 0

for all si, ti for i ≥ 1 in S,T do

d← d+ (si − ti)
2

end for

return d

end function

545


	List of Figures
	List of Tables
	Introduction
	Related Work
	Theories of Learning
	Data Mining
	Educational Data Mining

	Data and Experimentation
	Introduction
	Homework Descriptions
	2012 Midterm Grading Rubric
	Digital Data and Labeling
	2010 Labeling Scheme
	2011 Labeling Scheme
	2012 Labeling Schemes

	Descriptive Statistics
	Experimental Studies
	2011 Experimental Studies
	2012 Experimental Studies
	Homework Three Self-Explanation Prompts
	Homework Four Self-Explanation Prompts
	Homework Five Self-Explanation Prompts
	Homework Eight Self-Explanation Prompts



	Open IE and Self-Explanation Transcripts
	Introduction
	Open Information Extraction Algorithm
	Results and Discussion
	Conclusion

	N-Gram Analysis and Problem Number Sequences
	Introduction
	Analysis
	Concept Inventory Analysis
	Grade Analysis
	Transition Probability Analysis
	N-gram Analysis

	Discussion
	Conclusion

	Differential Sequence Mining and Action Sequences
	Introduction
	Action Sequences
	Differential Mining
	Performance Prediction
	Discussion
	Conclusion

	K-Means Clustering and Solution Bitmaps
	Introduction
	Solution Bitmaps
	Clustering
	Group Analysis
	Discussion
	Conclusion

	Linear Regression and Effort-Based, Numerical Features
	Introduction
	Computing an Estimation of Student Effort
	Overall-Effort Features and Performance Models
	Per-Problem Features
	Discussion
	Conclusion

	Information Gain and Effort-Based, Numerical Features
	Introduction
	Method
	Features
	Error groupings
	Information Gain Prediction

	Results
	Category Error Grouping Information Gain Heat Maps
	Fine-grained Error Grouping
	Subcategory Error Grouping

	Guided Qualitative Analysis
	Midterm One Problem One
	Midterm Two Problem One
	Midterm Two Problem Two
	Midterm Two Problem Three
	Common Qualities of Predictive Homework Problems

	Conclusion

	Machine Learning Based Sketch Processing Techniques
	Introduction
	User Study Data Set
	The 1¢ Recognizer
	Introduction
	Related Work
	Approach
	Resample
	One Dimensional Representation
	Comparing Templates

	Results
	Discussion
	Conclusion

	ClassySeg
	Introduction
	Related Work
	Approach
	Candidate Point Selection
	Arc Length
	Curvature
	Straw
	Alpha and Beta
	Region of Support
	Speed
	Arc and Line Fit
	Classifier Training

	Results
	Conclusion

	Speech-Sketch Alignment
	Introduction
	Related Work
	Background: Distinguishing Gesture and Object Strokes
	Classifier Design
	Sketch Features
	Speech Features

	Results: Gesture/Object Classification Accuracy
	Evaluation of Three-Second Technique
	Manual Alignment
	Alignment Accuracy of Three-Second Technique
	Classifier-Based Alignment
	Speech Segmentation
	Segmentation Classifier and Features
	Segmentation Accuracy

	Stroke-Speech Alignment
	Stroke-Speech Alignment Accuracy

	Gesture/Object Classification Accuracy
	Discussion
	Conclusion


	Conclusions
	Bibliography



