Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy

Permalink https://escholarship.org/uc/item/98s7p4v1

Author Benenson, P.

Publication Date 1977-08-01

Peer reviewed

Energy Research & Development Administration

LBL-6817 C. 2 UC-95c TID 4500-R65

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Savings of Water and Related Energy

Peter Benenson

Energy Analysis Program August 1977

Lawrence

Berkeley

.aboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5716

BERKELY LABORATORY

OCT 18 1977

LIBRARY AND DOCUMENTS SECTION CBL-6817 C.2

A WATER CONSERVATION SCENARIO FOR THE RESIDENTIAL AND INDUSTRIAL SECTORS IN CALIFORNIA: POTENTIAL SAVINGS OF WATER AND RELATED ENERGY

Peter Benenson

August 1977

Energy Analysis Program Energy & Environment Division Lawrence Berkeley Laboratory Berkeley, California 94720

લ ન

्व भ

-

1

CONTENTS

GUIDE TO THE READER	•	•	.•	ii
ACKNOWLEDGMENTS	•	•	•	iii
LIST OF TABLES	• ,	•	•	iv
LIST OF FIGURES	. •	•	•	v
SUMMARY	•	•	•	1
INTRODUCTION	•	•	•	5
OBJECTIVES OF THE STUDY	•	•	•	5
APPROACH	•	•	•	6
Residential Scenario Construction				8 13
FINDINGS AND POLICY IMPLICATIONS	•	•	•	15
APPENDIX A - INDUSTRY CONSERVATION MEASURES	•	•	•	29
APPENDIX B - METHODOLOGY AND DATA FLOW	•	•	•	42
APPENDIX C - DERIVATION OF ENERGY REQUIREMENTS FOR WATER DELIVERY, DISTRIBUTION, HEATING AND			•	
WASTEWATER TREATMENT	•	•	•	48
APPENDIX D - RESIDENTIAL AND INDUSTRIAL WATER AND RELATED ENERGY CONSUMPTION BY RESIDENTIAL END USE, INDUCTRIAL CHOROD AND UNDERLOCIC CONUNY ADDA				55
INDUSTRIAL SECTOR, AND HYDROLOGIC STUDY AREA	•	•	•	22
APPENDIX E - WATER CONSUMPTION IN 1976 AND 1977 FOR SELECTED MONTHS AND WATER DISTRICTS	•	•	• .	61
BIBLIOGRAPHY	•	•	•	67

· . .

*

GUIDE TO THE READER

This study is written in three levels of detail: the summary, the main report, and the appendices. The summary highlights what was accomplished and presents the major results and policy implications. It is designed to provide an overview in a fifteen minute reading. The main body of the report contains the major components of the study, but the detailed data and calculations that may not interest every reader have been extracted. The main report includes the study scope placed in the context of the total California water situation, the study objectives, a description of the approach, a detailed report of the findings, and a discussion of the policy implications. The most detailed material is presented in the appendices. These are designed only for the reader who wishes either to use the data collected or to see the detailed derivations of the estimates. . . •

ACKNOWLEDGMENTS

Several people contributed to the research for this study. Lauran Vincent compiled the industry conservation measures and most of the data for the industrial sector. Betsy Krieg estimated the energy requirements for surface water deliveries, groundwater pumping, and water distribution. Barbara Greene researched the interior and exterior residential water use estimates and, with Robert Clear, computed the energy requirements for water heating. Henry Ruderman wrote the computer programs for the water conservation scenarios. Yvonne Howell edited the text and made helpful suggestions to improve the clarity and continuity of the presentation.

I am grateful for review and comment from Eugene Eno, Trancuilo Canton, John Harte, Edward Kahn, Laura Nader, Ronald Ritschard, Edwin Roberts, Glenn Sawyer, Lee Schipper, Stephen Schneider, William Siri, Zach Willey, Fred Winyard, and Ronald West.

LIST OF TABLES

Table No.	Table Title	Page
1	Residential Interior Water Use	8
2	Energy Requirements for Water Use	10
3	Residential Water Conservation by End Use	12
4	Water Conservation Measures Applicable to Industry	14
. 5	Water and Associated Energy Consumption by Hydrologic Study Area	16
6	Residential Water and Associated Energy Consumption by End Use	17
7	Industrial Water and Associated Energy Use by Sector	17
8	Summary of Estimated Change in Municipal Water Consumption: 1976 to 1977	19
9	Preliminary Results from the Water Conservation Program at the Lawrence Berkeley Laboratory	21
10	Water Savings Reported by Selected California Firms	22
11	Estimated 1977 Population by Hydrologic Study Area	44
12	Energy Requirements for Urban Water Deliveries	50
13	Energy Requirements for Water Distribution Within the San Francisco and South Coastal Hydrologic Study Areas	52
14	Wastewater Treatment Facilities: Assumed Plant Size and Level of Treatment	54

)

LIST OF FIGURES

Figure No.	Figure Title	Page
1	Water Storage and Conveyance Facilities	7
2	Hydrologic Study Area Boundaries	9
3	Residential Sector Scenario Construction	45
4	Industrial Sector Scenario Construction	47

. . . .

SUMMARY

-1-

A residential and industrial water conservation scenario for California has been constructed in which water consumption has been disaggregated by residential end-use, industrial sector, and hydrologic study area. The energy use associated with this water use was estimated for surface and groundwater delivery, distribution, heating, and wastewater treatment. For each end-use and sector, water conservation measures have been delineated and their potential savings in terms of both water and attendant energy use have been estimated. This material has been combined to estimate the total water and energy savings potential by end-use, sector, and HSA. This potential is then compared with the reported water savings to date, and finally, some conclusions and policy implications are drawn from the results. The general findings are discussed first, followed by a listing of the more important detailed results.

There are several important links between water and energy. In California, water is a major source of energy supply: in 1975, 25% of total electric energy was supplied by hydroelectric power. Water is also needed for power plant cooling and fossil fuel extraction and refining. Energy is required to extract, convey, purify, and heat water prior to use, and to treat wastewater. Thus water conservation results in water and energy savings. The estimates from this study indicate that approximately 1.8 million acre feet of water, 2.6 billion kWh of electricity, and 0.5 billion therms of natural gas could be saved this year from implementing the water conservation measures presented in Tables 3 and 4. This constitutes 38% of the estimated residential and industrial water use (approximately 5% of Statewide water use), 2% of Statewide electricity consumption, and 3% of Statewide natural gas consumption. The electricity savings would lead to a decreased consumption of nonrenewable fuels and to decreased pollution emissions.

The estimated savings potential is thought to be conservative because several water districts and industries have already reported far greater savings. However, the lack of data for the industrial sector prevented any further estimates. A comparison of the estimated water savings potential with the savings actually reported shows that while the estimated potential is attainable, and in some cases has been exceeded, overall only 1/3 of the conservation potential derived in this study has been reached. Moreover, the actual gap is probably even greater due to the conservative nature of our estimates.

This significant conservation potential can be regarded as an alternative to constructing water supply systems for protection against water scarcity. For example, in the San Francisco HSA the estimated annual water savings potential of 410,000 acre feet exceeds the estimated deliveries from the major proposed water supply projects there. In the South Coastal HSA the estimated potential savings of 820,000 acre feet annually is more than twice as large as the current short run overdraft in the Owens Valley. Statewide, the estimated potential savings is approximately 40% of urban fresh water use in 1972.

Therefore, for optimal water supply planning, the pros and cons of both dams and water conservation should be considered. Dams regulate the water supply and provide flood control, hydroelectric power, and lakes for recreation. But they are costly, employ few people relative to other projects of comparable costs, and have many negative environmental impacts (e.g., they destroy natural habitats and accelerate eutrophication). Water conservation eases the water scarcity and has none of the environmental impacts associated with dams. Many measures can be implemented cheaply and quickly.

One of the main difficulties to relying on water conservation is the potential for sustained consumer resistance to behavioral change. The residential and industrial consumer directly perceives the inconvenience of water conservation, but not of dam construction. In the latter case, local residents absorb most of the inconvenience and the financial cost is borne by the taxpayers. Generally, the costs of these two alternatives are not equally apparent; this hinders the

-2-

process of evaluation of the alternatives, and hence of rational water supply planning.

The objection of potential consumer resistance to behavioral change applies mainly to conservation measures that require continuous attention to the resource in question. But large savings are possible from conservation measures that require a one-time installment of a technological device. As savings accrue from these types of measures, the likelihood of reaching full conservation potential will be easier to assess because we will have more experience with conservation. The possibilities include such diverse outcomes as rejection of any effort to conserve and complete integration of water conserving behavior into daily routines.

Presently, although conservation cannot be relied upon with certainty as an option equivalent to its full potential for protection against water scarcity, it cannot be ignored as often has been the case in the past. Although surplus capacity for water supply has large economic and social value, to plan for water supply based on historic water consumption patterns would result in suboptimal water supply planning. Given the advantages and disadvantages of dam construction and water conservation, a rational water supply planning process requires reassessment of plans for construction of additional water supply systems that were made prior to the availability of recent evidence on water conservation potential.

The more detailed results upon which these general conclusions are based are summarized below:

- Overall residential water consumption can be reduced by 44% of average use by implementing the measures in Table 3. Electricity and natural gas consumption associated with this water use could be reduced by about the same percentage.
- Exterior water use, toilet flushing, and bathing are the largest residential water uses. Conservation efforts applied to these end uses will result in the largest reductions in residential water consumption.

• The highest per capita electricity consumption associated with water use occurs in the South Coastal HSA where 57% of the State's population resides.

- Of the four energy components considered, energy for water heating dominates the energy uses associated with water consumption. Potential natural gas savings are greater than potential electricity savings because gas hot water heaters are more prevalent than electric water heaters in California.
- Bathing and laundry rank first and second for energy consumption among residential water uses because of the high volume of hot water used.
- Accordingly, water conservation measures that reduce water for bathing and laundry, and all measures that reduce water consumption in the South Coastal and San Francisco HSAs (where the energy required for water delivery is relatively high) would have the largest impacts in water-related energy savings.
- Industrial water consumption and the associated energy requirements for water delivery and distribution can be reduced by at least 19% and 23%, respectively. This is thought to be a conservative estimate.
- The conservation measures that can be applied most immediately are housekeeping measures, some closed cycle cooling water reductions, and reuse of process water where extensive retrofitting of equipment is not required.
- The centers of industrial water consumption are the South Coastal and San Francisco HSAs. Water-related energy use also is highest here because of the energy requirements for delivery and distribution. So relatively large and immediate water and energy savings can be made by implementing the above mentioned water conservation measures in these areas.
- So far the largest savings potentials reported are in the paper and petroleum sectors. Food processing should be given special attention because it is the largest industrial water user.

INTRODUCTION

-5-

This study of the use and conservation of water and water-related energy was made in conjunction with a broader examination of the effects of the drought on energy consumption and peak electrical generating capacity in California [17]. The initial work focused on the water, energy, and power situation during the summer of 1977.

The link between drought, energy consumption, and peak electrical capacity involves both water and energy supply demand. Water is a major source of energy supply in California; in 1975, 25% of total electrical energy supply for the State was generated by hydroelectric power. Water is also needed for power plant cooling.

On the demand side, energy is required to extract, convey, purify, and heat fresh water, as well as to treat waste water. There is also a direct relationship between water demand and peak power demand since some water use always occurs during periods of peak electrical demand. Moreover, during a drought, the energy requirements for groundwater pumping increase, because the supply of surface water is reduced and because the water table is lower. In agriculture, this increase in the energy needed for pumping water may be reduced either by a decrease in the acreage planted or by water conservation; and in urban areas, by water conservation.

OBJECTIVES OF THE STUDY

The total California water demand in 1972 (a typical water year) was apportioned as follows:

residential sector - 9%

industrial sector - 2% (excluding brackish water use) agricultural sector - 85%[6, p. 89; 8, p. 14]*

The annual electricity consumption associated with water use in the residential and industrial sectors is about 6.5 billion kWh; for agriculture, it is about 4 billion kWh. These energy requirements for

* Numbers in square brackets [] refer to items in the bibliography.

water use are comparatively small when viewed in the context of the total electricity consumption in California — 4% and 3% of the total, respectively. However, if these percentages are significantly altered, they could impact both the electrical capacity reserve margins and fuel use required for electricity generation. The impact of changes in water consumption is relatively larger than for electricity consumption, owing to the larger percentages of total water use attributable to these sectors.

Accordingly, the objectives in this study are to determine the impact of current and potential water conservation efforts for reducing both water consumption and the attendant energy and peak power demand, to pinpoint the water conservation strategies that are likely to have the largest impacts on energy and water demand, and to highlight some of the complementarities between water and energy use.

APPROACH

To accomplish these objectives, it is first necessary to determine present water use in major geographic regions of California by residential end-use and by industrial sector, and to trace the energy use associated with this water, from its extraction and delivery to wastewater treatment.

In developing the scenarios for this study, the data have been disaggregated by residential end-use, industrial sector, and hydrologic study area (HSA). The sector and end-use disaggregations are used to determine the potential for energy and water savings from specific water conservation measures. The geographic disaggregation helps capture the variability across the State in energy requirements for water delivery. These energy requirements vary because, in general, the major sources of water in the State are not located near the major points of use. The map of water storage and conveyance facilities (Fig. 1) clearly illustrates this situation. Water is conveyed from northern California to southern California, from the Sierra to the Central Valley and San Francisco, from the Owens Valley to Los Angeles, and from the

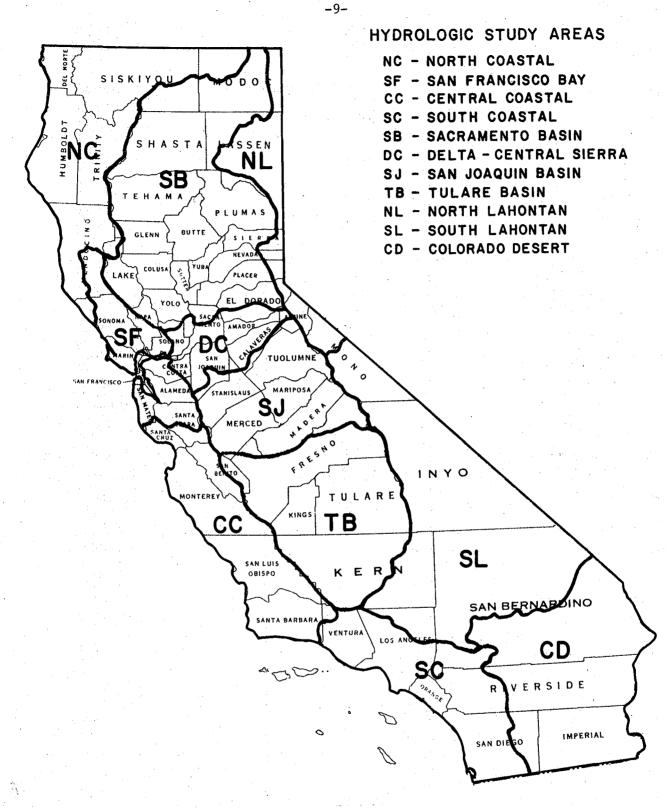
Figure 1 Water Storage and Conveyance Facilities in California

Source: [18]

Colorado River to San Diego and Los Angeles, Also, there are regional differences in the energy required for groundwater pumping. The HSA boundaries are shown in Fig. 2.

Once the water and associated energy use are determined, the next steps are to find how water can be saved in each end-use and industrial sector, and to estimate how much can be saved. Finally, this information is combined to construct a scenario of water and attendant energy use before and after water conservation. The details of this approach are described separately for each sector in the text below and in Appendix B.

Residential Scenario Construction


The scenario for the residential sector begins with an estimate of interior and exterior water use; interior use is broken down into detailed end-uses such as toilet flushing, bathing, etc. (Table 1).

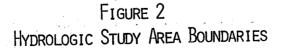

	<u></u>	
Temperature °F	Gallons/ Person/ Year	Comments
60	9125	5-gallon toilet flushed 5 times per day
105	7300	5 showers per person per week, 5 gallons per minute, 5-6 minutes per shower
130	3194	62 gallons per person per week
105-140	1369	
60	1095	
105	730	
105	456	
	23,269	
	°F 60 105 130 105–140 60 105	 [°]F Person/ Year 60 9125 105 7300 130 3194 105-140 1369 60 1095 105 730 105 456

Table l

RESIDENTIAL INTERIOR WATER USE

Sources: [28, 30, 33, 34]

XBL 776-8970 A

IADLE J	ГΑ	BLE	3
---------	----	-----	---

-12-

Sav	verall ings from	
	Water servation	Derivation and Sources
m-11-1	009	man
Toilet	28%	Two quart plastic bottles in 5-gallon tank (10%). Reduce number of flushes per day from 5 to 4 (20%).
Bathing ^a	57%	Flow control restrictors (40%). Reduce showering time from 5.6 to 4.6 minutes (18%)
Laundry ^b	14%	Existing stock: Wash full loads, check for leaks, and save and reuse cleanest rinse
an an an Anna an Anna Anna an Anna an		water (5%). Wash on shortest cycle and eliminate prewash (10%). <u>New machines</u> : Buy the most water-efficient.
Dishwashing ^{b,c}	41%	Existing stock: By machine: plug leaks and
2101110111116	41/0	wash only full loads (5%). By hand: aerator
and a start of the		(50%), plug leaks and shut off water when not in use (5%). Dishwasher saturation assumed to be 24% [8,p.18].
2. 3 2	50%	New stock: Buy the most water-efficient.
Cooking, drinking	5%	Reuse boiling water in soups or other cooking and save unused drinking water (5%).
Bathroom sink ^C	50%	Collect running water while waiting for water to get hot; turn off water while not
		in use, e.g. while lathering hands and face or brushing teeth; use cup for brushing teeth; install aerator.
Utility sink	50%	Install aerators and apply all relevant measures give for bathroom sink.
Exterior use	50%	Landscape watering: Use household grey- water. Water with soak hose or drip
		irrigators. Eliminate use of sprinklers. Water during low wind periods. Do not overwater plants.
		Plant drought-resistant varieties.
	•	Collect rainwater in barrels. <u>Sidewalks</u> : Sweep, don't wash. <u>Swimming pools</u> : Cover to reduce
· · ·		evaporation loss. Empty pool. Car wash: Wash and rinse with bucket, not hose.

RESIDENTIAL WATER CONSERVATION BY END USE

^a[75]

[32]

Industrial Scenario Construction

The industrial sector scenario begins with the selection of the largest industrial water users. In decreasing order of fresh water use in 1970 these are:

- Food and kindred products
- Paper and allied products
- Petroleum and coal products
- Chemical and allied products
- Lumber and wood products
- Stone, clay, and glass products
- Primary metals

These users account for 86% of the industrial water consumption in California [40, Table 6]. The rest of the industries are aggregated into a category called "Other industries."

For each industrial category, estimates are made of the water use, both fresh and brackish, as well as the energy needed for water delivery in each HSA and for delivery plus distribution in the San Francisco and South Coastal HSAs. After energy and water use per employee are calculated, total water and associated energy use for 1977 are estimated from an extrapolation of employment in each industry [41,62].

Then the water conservation potential in each industrial sector is estimated. The water conservation measures for the industrial sectors are broken down by industry and by three generic categories — housekeeping, cooling, and effluent reduction for reuse. These categories, defined in Table 4 and Appendix A, correspond to the three ways that industry can conserve water: for the water that is now being wasted, the housekeeping measures apply; where the water temperature is being increased, it can be cooled for reuse; where its quality is decreased, it can be used in processes that tolerate lower quality water or it can be purified and reused. Table 4 summarizes the applicability of these water conserving measures to the seven largest water-consuming industries and also shows the estimated potential for water conservation in each industry; the industry-specific conservation measures from which this generic compilation was made are presented in Appendix A.

	Food and kindred products	Paper and allied products	Petroleum and coal products	Chemicals and allied products	Lumber and wood products	Stone, clay and glass	Primary metals
Water consumption ^b (10 ⁶ gallons fresh	83852	55646	55043	26185	22013	15167	10335
vater in 1970)							
Percentage of total industrial water use	27	18	18	8	7	5	3
Type of Conservation	Measure ^C						
1. Housekeeping						*	
Leak plugging	x	x	x		x		x
Waste reduction	x	x	x	· ·	x	x	
2. Cooling					· · · ·	· · ·	
Dry		•	x			x	
Wet	x	x	x	x	x	x	х
Spray ponds				•			x
3. Effluent reduction	n for re-use						
Filter	x		x		x	x	x
Reverse osmosis				the second second			x
Flocculent		•			•	x	x
Counter flow Re-use as is	x				x x		x x
Wetting agents	x	x		x	A		x
Closed systems			x	х .	x		x
High pressure s	team x		Α	A .	x		x
Savings of water and							
energy from water	5 - 7	10 - 50	24 - 48	†	ŧ	t .	, †
conservation (%) ^d							

-14-

WATER CONSERVATION MEASURES APPLICABLE TO INDUSTRY^a

TABLE 4

Because the conditions in each firm within an industry vary greatly with respect to the age and quality of capital stock, water conservation measures previously implemented, geographical locations, and quality of water available, a range rather than a point estimate was obtained for the savings potential due to water conservation. For some industries, data on potential savings were unavailable. In these cases, it was assumed that a minimum of 5% savings of water and associated energy is obtainable simply by improving housekeeping practices, reusing process water to a limited extent, and reducing blowdown and evaporation losses in cooling towers through regular tower maintenance, installation of extra filters, increasing concentration in the cooling water where conditions permit, and installing automatic control of cooling water temperatures. The potential savings in cooling towers alone can be substantial, ranging between 10% and 50% of the cooling water intake normally used. Presently, these savings are not quantified because of the lack of data on water used for closed-cycle cooling in each industry. For these reasons the savings estimates are conservative.

Once the savings potential is estimated, calculations are made (as for the residential sector) of the water and associated energy consumption expected this year without water conservation, and the consumption that would result with full conservation implementation.

FINDINGS AND POLICY IMPLICATIONS

The results of the above calculations yield estimates of the residential and industrial water and associated energy consumption, by end-use and sector, respectively, and by HSA before and after water conservation. These detailed estimates are presented in Appendix D. The summary totals, aggregated over residential end-uses and industrial sectors or across HSAs, are given in Tables 5-7.

The total estimated consumption for 1977 without water conservation is 1568 billion gallons of water, 6.5 billion kWh of electricity, and 1.4 billion therms of natural gas. This represents approximately 13%, 4%, and 8%, respectively, of the Statewide consumption of these resources (including brackish water use in industry).

-15-

		Without	: Water Conse	rvation —		Wi	th 100% Water	Conservatio	n Implemer	tation
Hydrologic	·	Residential		Ind	ustrial		Residential		Indu	strial
study area	Water 10 ⁹ gal	Electricity 10 ⁶ kWh	Natural gas 10 ⁶ therms	Water 10 ⁹ gal	Electricity 10 ⁶ kWh	Water 10 ⁹ gal	Electricity 10 ⁶ kWh	Natural gas 10 ⁶ therms	Water 10 ⁹ gal	Electricity 10 ⁶ kWh
1. North Coastal	11	63	20	30	7	6	38	13	19	4
2. San Francisco Bay	219	1216	321	140	138	125	716	191	99	104
3. Central Coastal	44	211	61	18	4	25	126	36	14	3
4. South Coastal	553	3648	786	132	242	315	2148	468	103	198
5. Sacramento Basin	105	284	84	30	7	57	169	50	25	6
6. Delta-Central Sierra	31	109	33	46	15	17	64	20	35	13
7. San Joaquin Basin	42	114	32	24	15	. 22	67	19	22	14
8. Tulare Basin	78	234	55	19	20	. 42	134	33	18	19
9. North Lahontan	3	10	3	. 2	1	2	6	2	2	1
0. South Lahontan	20	85	21	8	7	11	50	13	7	7
1. Colorado Desert	13	43	11	1	1	7	25	7	1	1
2. Total California	1119	6017	1427	449	457	629	3542	850	345	368

WATER AND ASSOCIATED ENERGY CONSUMPTION BY HYDROLOGIC STUDY AREA

TABLE 5

-16-

	With	out Water Conse	ervation	With 100% Wat	With 100% Water Conservation Implementat			
End Use	Water 10 ⁹ gal	Electricity 10 ⁶ kWh	Natural Gas 10 ⁶ therms	Water 10 ⁹ gal	Electricity 10 ⁶ kWh	Natural Gas 10 ⁶ therms		
foilet	194	482	0	140	347	0		
Bathing	155	2271.	699	67	977	• 301		
Laundry	68	1451	481	58	1248	414		
Dishwashing	29	424	132	17	250	78		
Cooking and drinking	23	59	0	22	56	0		
Bathroom sink	16	228	70	8	114	35		
Utility sink	10	141	45	5.	71	22		
Exterior	624	960	0	312	480	0		
TOTAL	1119	6017	1427	629	3542	850		

 TABLE 6

 RESIDENTIAL WATER AND ASSOCIATED ENERGY CONSUMPTION BY END USE

TABLE 7

INDUSTRIAL WATER AND ASSOCIATED ENERGY USE BY SECTOR

	Without Wat	ter Conservation		.00% Water Implementation
Sector	Water 10 ⁹ gal	Electricity 10 ⁶ kWh	Water 10 ⁹ gal	Electricity 10 ⁶ kWh
Food and kindred products	115	124	.107	115
Lumber and wood products	30	14	28	13
Paper and allied products	84	61	42	31
Chemicals and allied products	53	43	50	41
Petroleum and coal products	98	83	51	43
Stone, clay and glass products	16	26	15	25
Primary metals	10	19	9	18
Other industries	44	87	41	83
TOTAL	449	457	345	368

A comparison of water consumption during the first four months of 1977 in major urban areas with information for the same time period in 1976 yields an estimate of water conservation that is presently being implemented [55]. The Statewide reduction is 13%; application of this figure to the 1977 estimates yields a savings of 204 billion gallons of water, 0.9 billion kWh of electricity, and 0.2 billion therms of natural gas (2%, 0.6%, and 1%, respectively, of Statewide resource consumption).

If the water conservation measures listed in Tables 3 and 4 were fully implemented, water consumption would be reduced by 38% with concomitant energy savings of 40%. The energy use reductions imply water use reductions in accordance with the distribution of conservation measures given in Tables 3 and 4. This is one of many possible distributions. Consumers may place a different emphasis on particular measures e.g., greater cutbacks of exterior use and less of interior use. Hot water use may or may not be among the reductions emphasized. The estimated savings are 1.8 million acre feet of water, 2.6 billion kWh of electricity, and 0.5 billion therms of natural gas. This amounts to 2% of the State's total electricity use, 5% of its water use, and 3% of its natural gas use. These figures are within the range of savings estimated by the Department of Water Resources [8]. How attainable are these savings? To answer this, the estimated conservation potential can be compared with three sets of water consumption data presently available:

- 1. A survey conducted by LBL of major municipal water agencies throughout the State. The data pertain to water consumption for selected months of 1976 and 1977 as available.
- 2. Four-month cumulative totals for water consumption in 1976 and 1977 in selected metropolitan water agencies throughout the State [55].
- 3. A record of the water consumption at the Lawrence Berkeley Laboratory in 1976 and 1977, which includes residential, commercial, and industrial type uses.

A summary by HSA of the first two sets of data is presented in Table 8; the data for the water districts from which these summary statistics are derived are included in Appendix E. These figures show

-18-

HSA	Percentage January - May*	Change Selected ⁺
	Cumulative Total	Months
North Coastal	-18	NA
San Francisco Bay	-25	-40
Central Coastal	-19	-20
South Coastal	-3	-2
Sacramento Basin	-0.6	-18
Delta-Central Sierra	-18	-17
San Joaquin Basin	-5	-7
Tulare Basin	-11	+7
North Lahontan	NA	NA
South Lahontan	NA	NA
Colorado Desert	NA	NA
		I

SUMMARY OF ESTIMATED CHANGE IN MUNICIPAL WATER CONSUMPTION: 1976 TO 1977

Source

*[55].

†[LBL Survey].

NA [Not available].

that in a few areas of northern California the estimated savings potential has been reached and in some cases surpassed. The latter cases occur, for example, in the Marin Municipal Water District and the East Bay Municipal Utility District, where savings of more than 50% of 1976 consumption have been achieved. Statewide, however, present water savings are far below the potential estimated, as the reported water consumption in the South Coastal and Tulare Basin HSA's indicate.

Table 8

The 1977 water consumption at the Lawrence Berkeley Laboratory is 50% of what it was in 1976 (Table 9). Significant inroads were made in end-uses that span most sectors of the economy. Water use for toilets and sinks has been reduced by 27%, for cooling tower blowdown by 87%, for photographic processing by 73%, and for landscape irrigation by 87%.

The reported consumption of the Marin and East Bay water districts and the experience at LBL point to the feasibility of the water conservation potential estimated above (38% with full conservation implementation). But the Statewide savings indicate that the level of conservation currently being achieved is only about one-third of this potential. Moreover, this potential is believed to be conservative, primarily because the data for the industrial sector are inadequate to assess the full conservation potential there, and because greater savings than those estimated in this study have already been reported by the water districts mentioned above and by several industries (Table 10). Therefore, although the water saving potential is quite large and attainable, the gap between actual and potential water savings is even greater than the results of this study indicate.

This finding bears on the policy decisions for water supply planning, as it means that water conservation can be considered an alternative to construction of additional water supply systems for protection against future water scarcity. In the San Francisco HSA, for example, the estimated potential savings are 410,000 acre-feet per year. This exceeds the estimated deliveries from the major proposed urban water supply projects in this area (San Felipe - 143,000 acre-feet per year, the EBMUD portion of the Auburn Dam deliveries - 150,000 acrefeet per year, and the fourth San Joaquin pipeline to convey Tuolomne River water, 110,000 acre-feet per year). In the South Coastal HSA the potential savings are 820,000 acre feet per year, which is more than twice the present rate of short-run overdraft from the Owens Valley. Statewide, the estimated savings potential through conservation is 1.8 million acre-feet, roughly 40% of total urban fresh water use in 1972.

-20-

Table 9

PRELIMINARY RESULTS FROM THE WATER CONSERVATION PROGRAM AT THE LAWRENCE BERKELEY LABORATORY⁺ (ALL UNITS IN GALLONS PER MINUTE UNLESS OTHERWISE NOTED)

<u>Use</u>	Pre-conservation Summer Rate 1976	Use to Date After Water Conserved
Toilets, Sinks	30	22
Cooling Towers	· ·	
Blowdown	15	2
Evaporation	80	68
Photographic Processes	15	. 4
Dilution and Cleaning	10	7
Once through Cooling	65	15
Roof Soaker Cooling	10	0
Landscape Irrigation	15*	2*
TOTAL	240	120

† Source: [71]

* [Yearly Use ÷ Minutes Per Year].

Table 10

WATER SAVINGS RE	EPORTED BY SELECTED	O CALIFORNIA	FIRMS*
Industry	Savings (%)	:	
Fibreboard	77 ^a		
Canning	20-40 ^b		
Electronics	45 ^c		
Petroleum Refining	25 ^d		

- * All findings reported at the Drought Conference on Industrial Water Allocation and Conservation, Sheraton Inn-Airport. Concord, July 25, 1977.
 - a. (64)
 b. (79)
 c. (69)
 d. (88)

Thus for optimal water supply planning, the pros and cons of both dams and aqueduct construction and water conservation should be clearly set out and evaluated.

-23-

Dams regulate water supply for agricultural and urban use and provide flood control, hydroelectric power, and lakes for recreation. But they are costly to build, they employ few people for construction and operation compared with other projects of comparable cost, and the construction time is long. They also have numerous negative environmental impacts: they submerge natural habitats upstream and decrease the water supply to those below; they block movement of fish; they accelerate eutrophication by raising water temperature and trapping nutrients; they upset the saltwater-freshwater balance in estuaries by diminishing the flow rate; they change the evaporative pattern of the water system and increase its evaporation losses; they may contribute to earthquakes by lubricating faults near the dam; they sometimes break, which causes loss of life and property damage; and they eventually fill up with silt which renders them useless.

Water conservation eases the water scarcity and has none of the negative environmental impacts that are associated with dams. Reduced water flow causes problems in wastewater treatment such as clogging of sewer lines and increased concentration of wastewater effluent. The latter may in turn increase the wastewater treatment energy requirements. Also, reduced exterior residential water use negatively impacts landscape vegetation. But generally, there appear to be no negative environmental impacts from water conservation comparable to those from dam construction. In the residential sector, conservation is relatively inexpensive and can be implemented almost immediately. In the industrial sector, the cost is relatively low for housekeeping, for selected measures for cooling towers, and, in some cases, for recycling by matching water quality with water needs. These measures also can be implemented quickly. Other measures in the industrial sector have significant water and attendant energy savings but are more costly and require long lead times for installation. Implemented correctly, none of the measures in Table 4 or Appendix A result in decreased product quality or volume. To the extent that materials are needed to implement water conservation, while these represent costs to the firm or household, they result in water and energy savings that are reflected in decreased payments for these resources. They also generate income and employment

for the sectors that produce and install the materials, so that the net economic impacts may be positive or negative depending on the conservation measure in question.

One of the main objections to relying on water conservation as an alternative to constructing water supply systems for protection against water scarcity is the potential for sustained consumer resistance to behavioral change. To implement some water conservation measures, the consumer, residential or industrial, perceives some inconvenience --e.g., reducing showering time from 10 minutes to 5, or sweeping rather than washing work areas. The burden of conservation is borne by each individual. In dam and aqueduct construction this is not the case. Local residents absorb most of the inconvenience, and the financial cost is borne by the taxpayers. It is usually impossible to determine what portion of one's taxes is assignable to a particular project; besides, the water user does not pay for water at the marginal cost of new supply, but at a lesser rate that is subsidized by tax revenues. So the actions of individuals or firms to conserve water are not rewarded by the price mechanism to the full extent of the savings achieved, and the economic incentive to conserve is dampered. In sum, the costs of dam construction and water conservation are not equally apparent, which hinders the process of evaluation of the alternatives, and hence, of rational water supply planning.

In the context of this problem of potential sustained consumer resistance to water conservation, it is important to distinguish between conservation measures that require continuous attention to the resource being used (such as decreasing showering time and shutting off unused faucets), and those measures that require a one-time installation of a technological improvement (such as installing a shower flow control restrictor or a cooling tower filter). Significant savings can be made from both types of conservation measures, but the objection discussed above applies mainly to the former. The latter approach appears less inconvenient to consumers and employees; flow control restrictors, toilet dams, spring loaded faucets, pressure control valves, footpedals (instead of handles), aerators for faucets, automatic timers, filters,

-24-

and recycling systems can be installed with only an initial inconvenience. (Even these measures involve some behavioral change, though not a continuous one.)

-25-

As water savings accrue, the likelihood of reaching the full potential of water conservation will be easier to assess because our experience with water conservation will accumulate. Many outcomes are possible, several of which are discussed here. Consumers and producers could become disgusted with conservation and refuse to cooperate regardless of the cost of new water supply projects or the severity of the drought. Or they could implement technological measures to conserve water and become lax on their management of water consumption, thereby partially or fully offsetting the water savings achieved.

A third possibility is that consumer and producer awareness of present resource waste and conservation potential may increase. This awareness could serve as a stimulus for overcoming the initial inertia connected with changing a behavior pattern, such as collecting shower and sink water while waiting for it to get hot, or shutting off unused faucets in production processes. Once integrated into a daily routine, these new tasks could become no more inconvenient than the myriad of others performed each day.

More information over a long period of time is needed regarding actual water use reductions and consumer and producer attitudes toward the water situation. Some of the data on recent water consumption were discussed above. One survey is available regarding consumer attitudes toward the water problem and the consumers' willingness to conserve water [29]. The survey was conducted throughout California in March 1977. Forty-eight percent of the sample of 962 people surveyed thought the water shortage for the State as a whole was "extremely serious" and an additional 37% thought it was "somewhat serious." Fifty-two percent think there is a serious water shortage in their county, and 72% believe there may be one in the foreseeable future. Seventy percent think the State should have a Statewide water plan. Regarding personal cooperation, 87% indicated they could cut water use by 25%; about half this group said they could do it without any problem while the other half indicated it would be inconvenient but they could do it. Fortyeight percent said they could make a cutback of 50%, but most said it would be inconvenient. Fifty-one percent of the people surveyed thought a 50% reduction would be a severe problem. Ninety-three percent claimed practicing some form of water conservation: less water for bathing, 70%; less frequent car washing, 58%; reduced watering of lawns and gardens, 67%. It is interesting to note, however, that two relatively large residential water saving measures that require a one-time installation (toilet dams or plastic bottles, and shower flow control restrictors) had been installed by only 24% and 16%, respectively, of the sample interviewed. Thus the potential for large water savings easily achieved is far from exhausted.

Presently, although conservation cannot be relied upon with certainty as a water supply option equivalent to its full potential, it cannot be ignored as it often has been in past water supply planning. While it is recognized that surplus capacity for water supply, especially in times of low rainfall, has large social and economic value, to plan for water supply on the basis of past water consumption (per capita residential and per unit output industrial) would result in suboptimal water supply planning. Because of the significant potential of water conservation, its lower cost, shorter implementation time, and more benign environmental impact relative to dam construction, a rational water supply planning process requires that those plans for water supply construction made prior to the availability of recent evidence on water conservation potential should be reassessed.

An itemization of the more detailed results for each sector upon which these general conclusions are based is given below:

• Overall residential water consumption can be reduced by 44% of average use by implementing the specific water conservation measures in Table 3. The electricity and natural gas consumption associated with this water use could be reduced by approximately the same percentage. The conservation measures can be implemented immediately at minimal financial outlay per person.

- The largest residential water use occurs outside the house (landscape irrigation, car washing, etc.). Toilet flushing and bathing are the largest interior water uses. Accordingly, the largest reductions in residential water consumption can be obtained by concentrating conservation efforts on these end uses.
- The highest per capita electricity consumption associated with water use occurs in the South Coastal HSA where 57% of the State's population resides. The South Coastal and Tulare Basin HSAs have the highest energy requirements for water deliveries the former because of the long distance and predominance of surface water conveyance, the latter because of the importance and depth of groundwater pumping.
- Of the four energy components considered (delivery, distribution, heating, and wastewater treatment) energy for water heating dominates the energy uses associated with water consumption. Potential natural gas savings are significantly greater than potential electricity savings due to the more extensive use of gas hot water heaters in California.
- Bathing, the second highest interior residential water use, requires the most energy of all residential water end uses because of the high volume of hot water used; laundry ranks second for the same reason. Accordingly, water conservation measures aimed at reducing water use for bathing (e.g., flow control restrictors and shorter showers) and for laundry (washing only full loads on the shortest cycle) and all measures that reduce water use in the South Coastal and San Francisco HSAs (where the delivery energy requirements are relatively high) would have the largest impacts on water-related energy use. The exception is the Tulare Basin HSA where, due to the high energy requirements for groundwater pumping, substantial reductions in energy use could be achieved by reducing exterior water use.
- Overall industrial water consumption and the associated energy requirements for delivery and distribution can be reduced by at least 23% and 19%, respectively. This estimate is thought to be conservative for two reasons: some industries have already reported greater savings, and lack of data prevented estimates of the full savings potential for various conservation measures and industries. The conservation measures that can be applied most immediately are:
 - a. housekeeping measures such as leak plugging, waste reduction, elimination of unnecessary cleaning, turning off pumps and spigots not in use, installing spring loaded faucets and footpedals, etc.;
 - b. closed-cycle cooling water reductions such as reduction or elimination of blowdown, installation of basin filters, automatic conductivity sensing units, automatic fan control, reduction of drift losses by installing better eliminators;

c. reuse of process water where extensive retrofitting of equipment is not required.

.

Because some conservation measures for water recycling require retrofitting or new equipment, not all the savings estimated in this study could be realized in the short run.

The centers of industrial water consumption are the San Francisco and South Coastal HSA s. Due to the high energy requirements for delivery and distribution, the greatest water-related energy use also occurs in these regions. Accordingly, relatively large and immediate water savings can be made by implementing the conservation measures listed above in these areas. From the data gathered thus far, the greatest savings potential among the large industrial water users occurs in the Paper and Petroleum sectors. Therefore, a tentative conclusion is that large savings could be effected by concentrating waterconservation efforts in these sectors. This bears further investigation and does not imply that significant savings are not achievable in other sectors. Special attention should be given to food processing because it is the largest industrial water user.

APPENDIX A

-29-

INDUSTRY CONSERVATION MEASURES

The following industry-specific water conservation measures were compiled from the EPA Development Documents for Proposed Effluent Limitations Guidelines [45] and from [43]. They are the basis for Table 4, Water Conservation Measures Applicable to Industry. They are included to provide an indication of the possibilities for industrial water conservation; however, it is important to keep in mind that each firm is a specific case with its own water quality, atmospheric, capital equipment, and quality control problems that require individual examination and application of the water conservation principles listed.

A section at the end of this appendix is devoted to water conservation in closed-cycle cooling towers. This material is derived from the water conservation measures implemented at the Lawrence Berkeley Laboratory cooling towers.

CONSERVATION MEASURE -SECTOR **INDUSTRY** REFERENCE 1) Food A) Canned, cured, [45a, frozen pp 83-91] 1) Housekeeping/Waste a) Automatic shut-off valves in evaporators, boilers, cookers 2) Cooling a) Cooling towers b) Using cooling tower blowdown 3) Effluent Reduction a) Bulk unloaders to reuse conveyance & rinsewaters b) Cleaning of plants with a high pressure steam cleaning system. "Counter-current" flow system c) B) Sugar [45b, pp 77-81] Refining 1) Housekeeping/Waste Ч С a) Recover spilled sugar by sweeping instead of washing b) Recover all floor, wash drains, sweet water c) Recovery of waste water with lower sucrose concentration d) Reduction in volume of wash water used to sweeten off bone char & carbon columns 2) Cooling a) Cooling towers to recycle barometric condenser cooling water 3) Effluent Reduction a) Elimination or reduction in use of ion exchange as an organic color remover b) Minimum contact time between sugar beets & flume water [45c, pp 62-65] c) Dry handling procedures d) Flume water recycling e) Dry pulp conveyor system

SECTOR	INDUSTRY		CONSERVATION MEASURE	REFERENCE
1) Food	B) Sugar Refining	3)	Effluent Reduction (continued) f) Handling of lime muds: 1) Low water dilution/air pump conveyance 2) Recovered, recalcinated for reuse	
	C) Dairy	1)	Housekeeping/Waste a) Water shut off valves	[45d] pg 75
		2)	<u>Cooling</u> None	
		3)	Effluent Reduction a) Cone-type silo tank b) Filler drip shield c) Interlock control d) Ice cream filler drip shields e) Novelty collection system f) Product recovery can system	pg 75 " pg 76 "
			 g) Non-leak portable damage package unit h) Case washer control i) C.I.P. systems-reuse type j) Automated continuous processing k) H.T.S.T. recovery system 	" <u>2</u> pg 77 ¹ "
			 Product rinse recovery m) Post-rinse utilization n) Air blowdown o) Ice cream rerun system 	" " pg 78 "
	D) Meat	1)	Housekeeping/Waste	[50f] pg 72
		- - -	 a) Replace all wash water valves with squeeze or press-to-open valves b) Install foot-pedal hand-washing and drinking fountain water valves 	
· · ·			c) Replace all drilled spray pipe systems with spray nozzd) Install automatic control for sprays	les

SECTOR		INDUSTRY		CONSERVATION MEASURE	REFERENCE
	• •				
		· · ·	2)	Cooling	
		•	, 11 t	a) Replace product chillers with chillers using	pg 72
		•		a cryogenic liquid	
				b) High pressure water spray systems	4 11
			· · ·		
			3)	Effluent Reduction	
				a) Reuse boiler blowdown	
				b) Automatic I. P. system	
		· · · · ·		c) Use lowest quality of water satisfactory for	- 14
				the process	
			•		
0) .					,
2) Petrol					
and Co			1		
Produc	E .			and the second	
	4.2	Detrelar Def	• •		
	A)	Petroleum Ref:	1)	Housekeeping/Waste	[43]
			L)	a) Substitute broom, shovel, and dry chemical	Pg 97
,			· . ·	for wash down water	18 97
				IOI wash down water	
			2)	Cooling	
			2)	a) Substituting an air exchanger in place of cooling	
				water sprays	pg 95
			· ·	b) Substitution of air in place of water coolers	pg 98
				c) Blowing down from a high pressure level of	pg 90
				steam generation to a lower level	pg 96
			· · ·	d) Use of vacuum pumps in place of steam jet ejectors	
				e) Reuse of process condensate	р т. ТТ.
				f) Install level gauge on water blowdown points	pg 97
				g) Replace water seal on a flarestack with a	r 0 -
				molecular seal	

-32-

_	SECTOR	INDUSTRY		CONSERVATION MEASURE	REFERENCE	3
			3)	Effluent Reduction	[43]	
				 a) Vessels containing heavy oils should be flushed with a lighter oil before cleaning b) Separate water and oil drains on pump and compressor pads 	pg 97 "	
•		• • •		 c) Cleaning water drained to a sump with skimming device 	pg 98	an a
4						
3)	Pulp and Paper					
	A)	Pulp and Paper	1)		57513	
		• •	I)	Housekeeping/Waste a) Self cleaning showers	[45h] pg 103	
			2)	Cooling a) Utilize vacuum water for cooling of heat exchanger	pg 102	
			3)	Effluent Reduction a) Recycle white water b) Reuse of clarified effluent c) Reduction of seal water	pg 100 pg 101 pg 102	ا ن ن ن
•	· .		* 		10	
4)	Chemical and Allied	• •			·.	
	Products A)	Chemicals	1)	Housekeeping/ Waste a) None listed		
			2)	Cooling a) Cooling towers	[40] pg 79	
			3)	Effluent Reduction a) Recycle direct contact process water	pg 81	

ì

•

۰

-	SECTOR	_	INDUSTRY	-			CONSERVATION MEASURE	REFERENCE
		B)	Soaps and	Detergents	1)	Hous	sekeeping/Waste None listed	
				•	2)	<u>Coo</u>] a)	Ling Change operating techniques associated with barometric condensors or replace them with surface condeners	[45k] pg 93
					3)		luent Reduction Installation of additional water recycling Piping and tankage Identify and untangle waste water lines which lead to sewers	11
5)	Lumber and Wood Pro- duct	A)	Millwork, and Relate	Plywood d Products				
					1) 2)	·	sekeeping/Waste None listed Ling	

-) <u>Cooling</u> None listed
- 3) Effluent Reduction
 - a) Process water recycle with blowdown to control suspended solids and dissolved organics
 - b) Process water recycle through a primary clarifier with blowdown of some clarifier effluent & recycle sludge

[45m] pg 174

11

-34-

	SECTOR		INDUSTRY			CONSERVATION MEASURE	REFERENCE
5)	Taunham and						
5)	Lumber and						
	Wood Pro-						
	ducts	A \	Millerente Diese d		·		
- 1		A)	Millwork, Plywood & Related Products				
	1		& Related Products	2)	nce	1 and Dall attack (and the shi	
				- 3)		luent Reduction (continued)	[/ =]
		-			C)	Process water recycle through primary	[45m]
						clarifier with blowdown being evaporated	pg 174
	· ·					and some evaporator condensate being	
			· · · · · · · · · · · · · · · · · · ·			utilized for makeup.	TI
					d)		
•						through chemical coagulation system	· .
		B)	Sawmills &				
			Planing Mills	- •			.
		•		1)	Hou	sekeeping/Waste	[451]
					a)		pg 242
					b)	All mill clean-up without use of water	ft -
					c)	Store unprocessed wood on land, sprinkle	pg 240
						with water	
					d)	Install special flow control systems	pg 242
		·		2)	Coo	ling	11
				4)	$\frac{000}{a}$	Cooling water discharged in cooling pumps,	
					а)	turbines, or condensers by way of closed	
	•					conduits	
			· · · · · · · · · · · · · · · · · · ·		b)	Saw cooling water usage and chain belt	
		· .		•	, נט	lubricating water usage should be minimized	pg 243
			· .	• .		Inditating water usage should be minimized	pg 245
				3)	Eff	luent_Reduction	
	40 - L				a)	Dip vats covered to keep out precipitation	pg 242
						and equipped with an apron to catch all drips	
			· · ·		b)		. 11 .
					c)	High pressure steam hoses	pg_243
					d)	Scraping mixing tanks & other surfaces to	. 11
					-	remove glue residue	
					e)	Wash water recycle	TT
					•		•

• •

-35--

.

	SECTOR	INDUSTRY	CONSERVATION MEASURE	REFERENCE
5)	Lumber and Wood Pro- ducts			
	B)	Sawmills & Planing Mills	3) <u>Effluent Reduction</u> (continued) f) Split-Recycle System (for single-product plants)	pg 266
			g) Use of primary clarifierh) Use of diatomaceous earth filteri) Use of spray nozzles to keep logs moist	pg 268 "
6)	Stone, Clay, Glass A)	Flat Glass	1) <u>Housekeeping/Waste</u> None listed	
			2) <u>Cooling</u> a) Air cooling water rather than quenching	[45p] pg 79
			 <u>Effluent Reduction</u> a) Recycling washers b) Diatomaceous earth filters 	21 11
	B)	Cement	 <u>Housekeeping/Waste</u> a) Removing accumulation of dust from roofs & buildings for return to process b) Paving areas for vehicles to minimize solid spillage 	[450] pg 53 "
-			<pre>2) <u>Cooling</u> a) Cooling Towers b) Spray Ponds</pre>	pg 52
•			 <u>Effluent Reduction</u> a) Use slurry water to handle some waste water generated 	pg 53
	•			

-36-

	•					
	. SECTOR		INDUSTRY		CONSERVATION MEASURE	REFERENCE
7)	Primary					
	Metals	A)	Blast Furnace &	•		
			Basic Steel Products	1)	Housekeeping/Waste	[45q]
					a) Use of steam to remove volatile compounds	pg 174
				2)	Cooling	
			2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		a) Cooling Towers	pg 175
						175,200,246
		•			c) Recycle quench wastes	pg 175
	,				d) Reuse blowdown water in a non-sensitive procee) Add make-up water and recycling water into	u 10,217,210,220
•					spark-box spray system	
					f) Demineralize blowdown and return condensate	pg 200,203
					to system	
				3)	Effluent Reduction	
					a) Distillation & incineration of coke plant	pg 175
					waste loads in controlled combustion system	- 37
					b) Carbon absorption	• • • • • • • • • • • • • • • • • • •
					c) Waste water recycle systemd) Gas scrubber water on a tight recycle system	pg 200
					d) Gas scrubber water on a tight recycle system	pg 194
		B)	Primary Metals			
			(Non-Ferrous)	1 \		5/5 1
			•	1)	Housekeeping/Waste a) Flow Restrictors in Waste Water Feed Lines	[45r]
						pg 77
				2)	Cooling	100
					a) Freezing	pg 100
					b) Add wetting agent to rinse waterc) Install air or ultrasonic agitation	pg 82 "
				3)	Effluent Reduction	
				-/	a) Installing counter flow rinse tanks &	pg 77
					ion exchange b) Evaporation recovery	pg 88
					c) Reverse osmosis	pg 100
			•			ro

-

• 1 • 1

SECTOR INDUSTRY CONSERVATION MEASURE REFERENCE 7) Primary Metals b) Primary Metals (non-ferrous) 3) Effluent Reduction (continued) d) Electrodialysis pg 101 Electrolytic Stripping pg 104 e) pg 107 pg 107 f) Carbon Adsorption Liquid-Liquid Extraction g) Drag-Out Reduction pg 82 pg 82 h) Use of Conductivity Meters in Final Rinse i)

-38-

Water Conservation Potential for Closed Cycle Cooling Towers

Water losses from closed-cycle cooling towers occur from blowdown, evaporation and drift loss. Blowdown is the deliberate expulsion of water from the basin to prevent excessive buildup of salt concentration in the tower water. Evaporation occurs as the water falls through the cooling tower. The rate of evaporation depends upon the heat load imposed upon the tower and upon the atmospheric conditions. Drift losses consist of the tiny droplets of water which are thrown out of the tower stack by the action of the tower fan.

The conservation measures listed below are designed to reduce blowdown, evaporation and drift losses to a minimum. They have been implemented on 37 cooling towers at LBL. Most of these towers have a cooling capacity of approximately four megawatts.

It should be pointed out that each facility has its own particular cooling requirements, types of equipment, makeup water quality, atmospheric conditions, etc. so that it is difficult to generalize about conservation procedures. The following is to illustrate what measures can be explored. Specific procedures must be developed on a case by case basis.

1. Reduce blowdown to a minimum.

The quality of the makeup water at LBL is quite good so that the blowdown can be reduced to a very low value. One effective method to accomplish this is to control the rate of blowdown with a solenoid value actuated automatically when the salt concentration of the basin water exceeds a predetermined value. This value of salt concentration (conductivity) can be set as high as is practicable without causing undue scaling or otherwise adversely affecting the tower operation. This reduction in blowdown has resulted in savings at LBL of approximately 1700 gallons per day per tower. In addition to salt concentration, dust, weedseeds, debris etc. also adversely affect the water in the tower basin. The following procedures were implemented at LBL to alleviate this situation:

- a. Screens and side stream filters (progressively 50, 10 and 1 micron) were installed to remove suspended solids.
- b. These screens and filters were monitored, cleaned, maintained and replaced at regular intervals.
- c. The tower basins are drained and cleaned yearly. It is highly recommended that new basins be constructed with sloping sides to facilitate cleaning.
- d. The tower water is checked daily for concentration of calcium and magnesium, for conductivity and for pH. The tower is also examined for the presence of algae.
- e. Chemical treatment for prevention of corrosion and scale formation and for pH control is being controlled automatically in some towers. Algae control may also be automatic if chlorine is used.
- f. Dispersing agents are added to the tower water to keep solids in suspension so that they may be removed during the slipstream filtration.
- g. Sludge from the cleaning of the tower basins or from the filters are collected in barrels and disposed of in a controlled dump.

Consideration has been given to eliminating blowdown altogether and simply recycling the basin water through ion exchange or reverse osmosis units to remove the undesirable constituents. It may be difficult at this time to justify this procedure in terms of the monetary cost.

2. Reduce water losses by controlling the speed of the tower water fan.

Install automatic water controls such that the temperature of

the tower basin water (tower water supply to equipment) will determine the speed of the cooling tower fan.

By determining the highest tower water supply temperature which can be used to cool the particular equipment, and using this as the basin water set temperature for the fan controls, one can avoid running the fan unnecessarily or at excessive speeds. This will save electricity, will reduce the drift loss (which is caused by the air movement from the fan) and will probably reduce evaporation.

If this procedure is used, heaters should be installed in the fan motors to prevent condensation when the motors are not running.

3. Drift losses can also be reduced by improving the efficiency of the drift eliminators. The Cooling Tower Institute Code limits drift loss to 0.2% of the circulation rate of water over the tower.

APPENDIX B

METHODOLOGY AND DATA FLOW

Residential Sector Scenario Construction

The calculation of residential water and energy use and water conservation potential entails the following steps:

- Present interior and exterior water use per person is estimated for each HSA. Interior use per person is assumed to remain constant over geographical regions of the State, but exterior use is calculated separately for each HSA because water use for landscape irrigation and swimming pools differs widely across the State. Interior use is then broken down into major end uses: toilet flushing, bathing, laundry, dishwashing, cooking, bathroom sink, utility sink.
- For each water end use the associated energy use is estimated on an HSA basis for the following categories: delivery from surface and groundwater, distribution, heating, and wastewater treatment. For exterior use, only delivery and distribution energy use apply. Distribution requirements were calculated only for the two most populated HSA's (San Francisco and South Coast) because of the paucity of data. Energy use for delivery for each HSA was calculated separately because of differences in the distances over which surface water is conveyed, the depth of groundwater, and the proportion of ground-to-surface water use. Energy use for waste water treatment was also estimated for each HSA based on the estimated degree of treatment in each HSA and the size of the treatment plant. The derivation of the estimates for the energy requirements associated with water use are given in Appendix C.

- Next, water conservation measures for each end use were listed and the approximate reductions in water use from their implementation were estimated. Per Capita water and energy consumption for each end use were extrapolated to 1977. The 1977 population for each HSA was estimated by aggregating 1975 county population figures [22, p. 7] to HSA's [19], then projecting these figures at the average annual statewide population growth rate for the period 1970-1975. This rate is 1.06 per cent per year [22, p. 7]. Estimated 1977 population by HSA is presented in Table 11.
- The savings of water and energy due to the water conservation measures were calculated and a revised estimate was made of water and energy consumption with water conservation factored in. These estimates scale with the rate of conservation implementation; i.e. the savings at 100% implementation are twice those realized at 50% implementation.

The steps outlined above are displayed in the following flow chart (Figure 3). The chart also denotes the source of data for each component in the calculation.

Industrial Sector Scenario Construction

The estimation of water and associated energy use in the industrial sector proceeds on the basis of sectoral rather than end use categories.

- First the industries that account for most of the industrial water consumption in California are determined and examined individually.
- Fresh and brackish water use by industry and HSA are estimated for 1970, the most recent year that data are available [40].

Table 11

Estimated 1977 Population by Hydrologic Study Area

HYDRO	HYDROLOGIC STUDY AREA POPULATION										
1.	NORTH COASTAL	291,705									
2.	SAN FRANCISCO BAY	4,788,974									
3.	CENTRAL COASTAL	909,065									
4.	SOUTH COASTAL	11,723,888									
5.	SACRAMENTO BASIN	1,257,227									
6.	DELTA-CENTRAL SIERRA	499,634									
7.	SAN JOAQUIN BASIN	471,286									
8.	TULARE BASIN	820,302									
9.	NORTH LAHONTAN	44,525									
10.	SOUTH LAHONTAN	318,723									
11.	COLORADO DESERT	165,507									
	TOTAL	21,290,836									

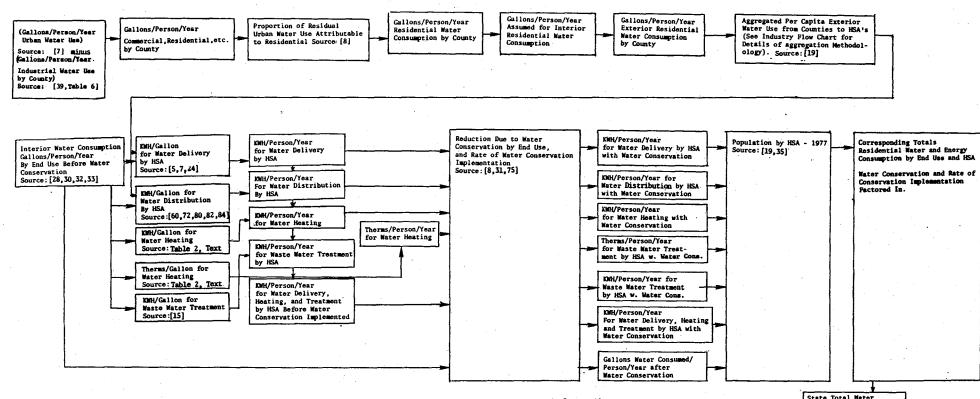


Figure 3. Residential Sector Scenario Construction

State Total Mater and Associated Energy Consumption after Nater Conservation -45-

- Next, the energy cost for the delivery and distribution of this water are calculated. The breakdown between surface and groundwater is assumed to be the same for industry as for the rest of urban use. All brackish water is assumed to be pumped from rivers with an average required lift of five feet. The energy cost for industrial wastewater treatment has not yet been estimated because of data limitations. On-site treatment varies with each firm and location as does the proportion subsequently discharged to municipal treatment plants. This information is not available through published sources.
- Water conserving measures are then indicated, and wherever possible, quantitative estimates of the savings potential are obtained. Water and the associated energy use by industry and HSA are then extrapolated to the summer of 1977. The extrapolation is based on seasonally adjusted employment figures in each industry [62].
- Finally, an estimate is made of the potential reductions of water and energy consumption as water conserving measures are applied.

These calculations are presented in the following flow chart. (Figure 4) The source for each component is also indicated.

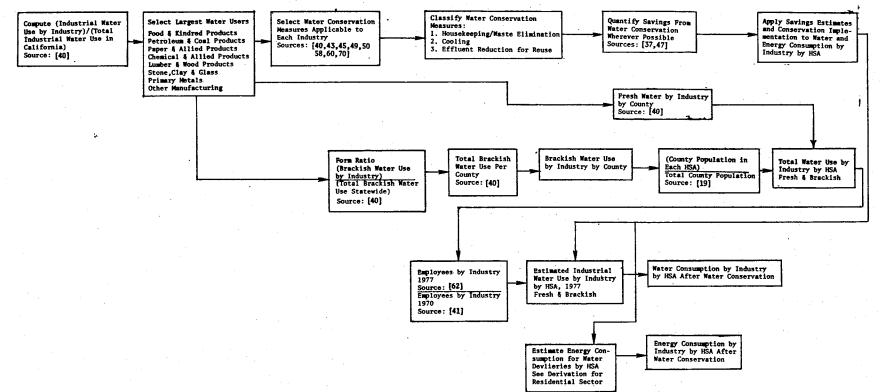


Figure 4. Industrial Sector Scenario Construction

-47-

APPENDIX C

DERIVATION OF ENERGY REQUIREMENTS FOR WATER DELIVERY, DISTRIBUTION, HEATING, AND WASTEWATER TREATMENT

Water Delivery

Calculation of the energy requirements for water deliveries requires three types of information:

- (1) the water sources for each area, both ground and surface;
- (2) the energy requirements for delivery from each source; and
- (3) the fraction that each source constitutes of total urban water deliveries in each area.

The major sources of urban water in California are the Central Valley Project (CVP), the State Water Project (SWP), local surface supplies, imports from out of state, and groundwater. The deliveries are estimated by HSAs. These are shown in Figure 2. For each HSA, water deliveries and the associated energy requirements by the CVP and SWP are estimated. The estimates are based partially on published sources [5, pp. 24, 32; 23, pp. 4,7] and partially on discussions with personnel connected with operation or use of the projects [48, 52, 60, 68, 72, 78, 89]. Since the SWP does not break out urban water deliveries by HSA, total deliveries were distributed to the appropriate HSA and split between urban and agricultural use based on the location and name of the agencies to which water was delivered. Water delivered to irrigation districts was assumed to be entirely for agricultural use, and water to municipal water districts entirely for urban use. The resulting distribution was compared with the totals for agricultural and urban water use in Ref. 5 p. 36. The distribution was adjusted based on probable water use and population density in each geographic location.

Local surface water supplies and imports with the attendant energy requirements were included where data are readily available—the Hetch Hetchy and Mokelumne Aqueducts in the San Francisco HSA [60, 65] and the Los Angeles and Colorado River Aqueducts in the South Coastal HSA [3, 14, 15]. These were added to the estimates for the CVP and SWP to obtain total estimated surface water deliveries by HSA and the associated energy requirements (see Table 12). Water deliveries and the attendant energy requirements from the California Aqueduct to the South Coastal HSA were excluded from the calculation because these deliveries were stopped on March 1, 1977.

To calculate groundwater use in each HSA, the surface water deliveries estimated above were subtracted from total urban water use in each HSA [7, p. 7]. It is assumed that the entire residual is attributable to groundwater supply; the amount attributable to local surface water supplies, aside from the four major aqueducts discussed above, was not estimated due to the lack of data. The surface water deliveries used for groundwater recharge that is subsequently pumped again for urban use is ignored, but the control total for urban water use agrees with the published figure in [7]. Estimates of the energy required for groundwater pumping are based on the average groundwater depth in each HSA [16, p.7], and on an assumed pump efficiency of 59.5% [16, p. 5]. The average well depth in each area pertains to agricultural wells. The average depth for urban use may vary from this estimate. The data on groundwater depth are reported by Hydrologic Planning Basin rather than by HSA. The correspondence between the two is shown in Table 12. Also shown for each HSA are the estimated energy requirements for groundwater pumping, average groundwater depth, and total urban water use. The estimated energy requirements for groundwater pumping weighted by the estimated fraction of total urban water use supplied from groundwater, are combined with the energy requirements for surface water deliveries, weighted by the corresponding fraction for surface water use. This yields an overall energy requirement for urban water delivery in each HSA (Table 12).

An additional energy requirement is included for the industrial sector to account for pumping of brackish water. A five foot lift and a pumping efficiency of 79% is assumed for all brackish water consumption; the resulting energy requirement is .02 Wh per gallon.

-49-

	ENERGY REQUIREMENTS FOR URBAN WATER DELIVERIES												
Notes		North Coastal	San Francisco	Central Coastal	South Coastal	Sacramento Basin	Delta Central Sierra	San Joaquin Basin	Tulare Basin	North Lahontan	South Lahontan	Colorado Desert	Total
<u>.</u>	Surface							an an tao amin' amin' Amin' amin' amin				* . • .	
	Water deliveries (AF)	954	685,990	0	1,674,000	1,545	54,743	9,454	47,108	0	0	0	2,473,794
	Energy required (kWh × 10^6) 0.39	179	0	1,326	(2.45)	13.24	2.47	25.80	0	0	0	
a,b	Energy per gallon (Wh/gal)	(1.26)	0.80	0	1.94	(4.86)	0.74	0.80	1.68	0	0	0	
<u>(</u>	Ground		·	• • •									· .
с	Estimated ground water use (AF)	103,171	268,706	175,279	575,508	472,993	97,922	199,307	345,947	23,605	82,117	97,337	2,441,892
	Average depth (ft)	43	86	103	105	53	89	123	181	54	181	124	
	Energy per gallon (Wh/gal)	0.23	0.45	0.54	0.54	0.28	0.47	0.65	0.96	0.29	0.96	0.66	. · · · ·
	Portion of urban water use from groundwater (%)	99	26	100	26	99	64	95	88	100	100	100	
	Overall energy requirement for delivery (Wh/gal)	0.22	0.71	0.54	1.97	0.23	0.57	0.66	1.05	0.29	0.96	0.66	
	Other data required for calculations												
đ	Estimated 1972 population (people)	178,296	4,628,250	807,738	11,247,540	1,207,746	432,280	427,788	965,736	42,840	240,108	230,112	20,408,434
e	Urban water use (AF)	104,125	925,650	175,279	2,249,508	474,538	152,665	208,761	393,055	23,605	82,117	97,337	4,886,640

4A,4B,8,9

5C

5D

5B

5A

-50-

.7A,7B

6B

6A

TABLE 12

325,851 gallons per acre foot. Notes: a

> < > energy generated. Ъ

Hydrologic planning basin 1A,1B

Urban water use minus surface water deliveries. с

1970 population from [7,p.7] increased by 2%. d

Based on annual per capita urban water use from [7,p.7] е

2

3

Distribution

The unit energy requirements for water distribution within urban areas are calculated from estimates of both water deliveries by municipal water departments and the attendant energy expenditures. As there appear to be no published sources for the energy data, personal communications with water department personnel were relied upon. The lack of published data prevented estimation of the distribution energy requirements for all urban areas in the time alloted for this study. Estimates were made for the San Francisco and South Coastal HSAs where three-quarters of the State's population resides. The data are shown in Table 13. The unit energy requirement is obtained by dividing total electricity requirements for each HSA by the corresponding urban water deliveries.

Water Heating

A statewide saturation of 85% gas hot water heaters and 11% electric water heaters is assumed (based on [2]). The calculation of the energy consumption for heating water is based on assumptions of 70% efficiency for gas hot water heaters, 99.5% efficiency for electric hot water heaters, and 8.32 Btus per gallon per degree fahrenheit to heat water from 60°F to 140°F (source: [27], Tables for Heat Capacity of Water). The estimates are for the incremental energy requirements only and do not include standby losses from the water heater. The calculation is made as follows:

((8.32 Btu/G/°F × 80°F)/.7)/100,000 Btu/Th = .00952 Th/G/°F ((8.32 Btu/G/°F × 80°F)/.995)3413 Btu/kWh = .196 KWh/G/°F

Wastewater Treatment

Estimates of the energy consumption per gallon of wastewater treated are taken from reference [15], Table 5. The figures do not include energy recovered from digester gas, offsite energy for chemical production, or energy for construction of the plant. Exfiltration from

TABLE 13

<u>HSA</u>	Water Department	Water Deliver (acre-feet)		Total Energy Required 106 _{kWh}	Unit Energy Required Wh/gal
San Francisco	San Francisco City Water Dept.	105,852 ^a		49 ^b	
	East Bay Municipal Utility District	250,000 ^c		48 ^c	
	TOTAL	355,852		97	.84 ^d
South Coastal	Los Angeles Aqueduct	480,000	. •	199 ^e	
	Colorado Aqueduct	1,212,000	:	0 [£]	
	San Diego City Water Dept.	180,700		13.6 ^g	
	TOTAL	1,872,700		212.6	.35
a. [83].		e	. [72].	- <u> </u>	
ъ. [84].	•	f	. [76].		
c. [60].		ę	, [82].		
d. 325,851	l gallons per acre foot	•			

ENERGY REQUIREMENTS FOR WATER DISTRIBUTION WITHIN THE SAN FRANCISCO AND SOUTH COASTAL HYDROLOGIC STUDY AREAS

-52-

interior residential use is ignored. All water used inside the house is assumed treated. The pairing of HSAs with the type of wastewater treatment is based on conversations with Professor William Oswald [54] and Dr. David Spath [53]. The estimates reflect the present type of treatment, or the type expected when construction in progress is complete. The size of the plants was estimated from inspection of the average daily flow data for municipal waste water treatment facilities in each HSA [39, Table 1]. The size and type of treatment assumed for each HSA are summarized in Table 14.

Table 14

<u>HSA</u>	<u>Size</u> 10 ⁶ Gallons per Day	Level of Treatment
North Coastal	1	Secondary
San Francisco Bay	100	Primary
Central Coastal	1	Secondary
South Coastal	100	Secondary
Sacramento Basin	1	Secondary
Delta-Central Sierra	100	Primary
San Joaquin Basin	1	Primary
Tulare Basin	1	Primary
North Lahontan	. 1	Secondary
South Lahontan	· 1	Secondary
Colorado Desert	1	Secondary

WASTEWATER TREATMENT FACILITIES: ASSUMED PLANT SIZE AND LEVEL OF TREATMENT

APPENDIX D

RESIDENTIAL AND INDUSTRIAL WATER AND RELATED ENERGY CONSUMPTION BY RESIDENTIAL END USE, INDUSTRIAL SECTOR,

AND HYDROLOGIC STUDY AREA

					DISH		BATHROOM	JTILITY		*
	· ·	TOILLT	BATHING	LAUNDRY	WASHING	COOKING	SINC	SINK	EXTERIOR	TOTAL
1	NORTH COASTA_	2662	2123	932	399	319	21.3	133	4146	10934
2	SAN FRANCISCJ BAY	43699	34960	15296	6556	5244	3496	2184	107852	219287
3	CENTRAL COASTAL	8295	6636	2964	1245	995	6ó 4	415	22962	44115
4	SOUTH COASTA_	166980	85584	37446	16050	12833	8558	5346	280693	553496
5	SACRAMENTO BASIN	11472	9178	4016	1721	1377	91.8	573	76060	105314
-6	DELTA-CENTRAL SI RRA	4559	3647	1596	684	547	355	228	19370	30996
7	SAN JJAQUIN BASIN	4368	344)	1505	645	516	344	215	30610	41576
8	TULARE BASIN	7485	5 388	2620	1123	898	599	374	59114	78202
9	NURTH LAHONTAN	406	325	142	61	49	33	20	1713	2749
Íu	SOUTH LAHONTAN	2968	2327	1018	436	349	233	145	12447	19864
11	COLORADO DESERT	1510	1208	529	227	181	121	75	8866	12717
12	TOTAL CALIFO NIA	194279	155423	68003	29147	23313	15542	9709	€23834	1119250
				1				· · · · ·	10 A. 10 A	

RLSIDLNTIAL WATER CONSUMPTION DURING 1977 (MILLIONS OF GALLONS)

RESIDENTIAL WATER CONSUMPTION AT 100 PERCENT IMPLEMENTATION (MILLIONS OF GALLONS)

		TOILET	BATHING	LAUNDRY	DISH Washing	COOKING	BATHRCIM SINK	JTILITY SINK	LXTERIOR	TOTAL
1	NORTH COASTAL	1917	916	801	236	303	1]6	67	2073	6419
2	SAN FRANCISCO BAY	31464	15033	13155	3868	4982	17+8	1892	53926	125267
3	CENTRAL COASTAL	5973	2854	2497	734	346	33 2	207	11481	25023
4	SOUTH COASTAL	77026	36831	32204	9470	12196	4279	2673	140347	314995
5	SACRAMENTO BASIN	8260	3946	3453	1015	1308	459	287	38030	56759
6	DELTA-CENTRAL SIERRA	3283	1568	1 37 2	464	526	132	114	96 85	17128
7	SAN JOAQUIN BASIN	3096	. 1479	1295	381	490	172	107	15365	22325
8	TULARL BASIN	5389	2575	2253	663	353	299	187	29557	41777
9	NORTH LAHONTAN	293	143	122	36	46	16	10	857	1520
10	SOUTH LAHONTAN	2094	1000	875	257	332	11.5	73	6224	10972
11	COLORADO DESURT	1.87	526	455	1.34	172	50	38	4433	6898
12	TOTAL CALIFORNIA	139881	66832	58483	17197	22148	7771	4854	311917	629082

-56-

ELECTRICITY CONSUMPTION FOR RESIDENTAIL WATER USE (MILLIONS OF KILOWATT-HOURS)

					DISH		BATHRCOM	JTILITY		
		TOILET	BATHING	LAUNDRY .	WASHING	COOKING	SINC	SINK	LXTERICR	TOTAL
1	NURTH COASTA_	4	29	19	- 5	0.	3	2	1	63
2	SAN FRANCISCO BAY	73	483	315	90	. 9	+ 8	. 30	167	1216
3	CENTRAL COASTAL	14	92	60	17	2	9	6	12	211
4	SOUTH CUASTAL	349	1318	828	246	42	13.2	82	651	3648
5	SACRAMENTO BASIN	16	124	61	23	Z	12	8	17	284
6	DELTA-CENTRAL SIERRA	3	47	31	9	0	5	. 3	11	189
7	SAN JOAQUIN BASIN	- 4	45	3 Ú	8	G	5	3	20	114
8	TULARE BASIN	10	80	53	15	. 1	8	5	62	234
9	NORTH LAHONT-N	1	4.	3	1	j.	G	0	ũ	10
10	SOUTH LAHONTAN	6	33	21	6	1	3	2	12	85
11	COLORADO DESERT	3	17	11	3	a	2	1	6	43
12	TUTAL CALIFOINIA	482	2271	1451	424	59	22 8	141	960	6017

ELECTRICITY CONSUMPTION AT 10L PERCENT IMPLEMENTATION (MILLIGNS OF KILOWATT-HOURS)

-57-

		TOILET	BATHING	LAUNDRY	DISH WASHING	COOKING	BATHRODM SINK	JTILITY SINK	LXTERIOR	TOTAL
1	NORTH COASTA_	3	:2	16	3	0	- 1	1	6	38
2	SAN FRANCISCO BAY	53	2.8	271	53	. 9	24	15	84	716
3	CENTRAL COASTAL	10	39	51	10	2	5	. 3	6	126
4	SOUTH COASTAL	252	567	712	145	40	56	41	325	2148
5	SACRAMENTO BASIN	11	53	76	14	2	6	4	9	169
6	DELTA-CLNTRAL SILRKA	2	2C	27	. 5	0	2	1	6	64
7	SAN JUAQUIN BASIN	. 3	19	26	5	0	. 2	1	10	67
8	TULARE BASIN	7	34	45	9	1	4	3	31	134
- 9	NORTH LAHONTAN	Ű	2	2	C	0	J	٥	D	- 6
10	SOUTH LAHONTAN	· . 4	14	18	4	1	2	1	6	50
11	COLORADO DE SERT	2	7	9	2	Û	1	. 1	3	25
12	TOTAL CALIFORNIA	347	977	1248	250	56	114	71	4 80	3542

NATURAL GAS CONSUMPTION FOR RESIDENTIAL WATER USE (MILLIONS OF THERMS)

					DISH		BATHRCOM	JTILITY		
		TOILET	BATHING	LAUNDRY	WASHING	COOKING	SINC	SINK	LXTERIOR	TOTAL
1	NORTH COASTA.	í.	10	. 7	2	0	1	1	0	29
2	SAN FRANCISCO BAY	0	157	108	30	۵	16	10	0	321
3	CENTRAL COASTAL	L	30	21	6	3	3	2.	5 . U	61
4	SOUTH COASTA_	Û	385	265	73	0	39	25	. 0	785
5	SACRAMENTO BASIN	ù ·	41	28	8	3	4	3	C	84
6	DELTA-CUNTRAL SIGRA	ن	16	. 11	. 3	Э	Ż	1.	Ű	33
7	SAN JOAQUIN BASIN	с . С	15	11	3	Û	2	1	0	32
8	TULARE BASIN	ان ا	27	19	5	0	3	2	0	55
9	NORTH LAHONTAN		1	1	C	0	. 0	0	G	3
14	SOUTH LAHONTAN	C	1 J	7	· 2	0	1	1	. 0	21
11	COLORADO DES.RT	ë	5	4	1	0	1	C	ũ	11
12	TOTAL CALIFGENIA	Ĝ	. 699	481	1 32	0	70	45	0	1427

NATURAL GAS CONSUMPTION AT 100 PERCENT IMPLEMENTATION (MILLIONS OF THERMS)

-58-

		TOILET	BATHING	LAUNDRY	DISH	COOKING	BATHRODM SINK	JTILITY SINK	EXTERIOR	TOTAL
			L	6	1	3	. G	. 9	0	12
1	NORTH COASTAL	, v		07	18	a	8	5	0	191
2	SAN FRANCISCO BAY	. .	68	93	10			-	ñ	36
3	CENTRAL COASTAL	5	. 13	18	. 5	0	1			• -
,	SOUTH COASTAL	¢ .	166	228	43	6	19	12	. J	468
4			1 8	24	5	2	2	1	0	. 50
5	SACRAMENTO BASIN	e	10	40		ä	1	1	8	20
6	DELTA-CLINTRAL SILRRA		(10	2		-	-	n	19
7	SAN JOAQUIN BASIN	. U	7	9	2	U	1			77
	TULARE BASIN	· C	12	16	3	0	1	1	U	33
				1	. <u></u>	0	3	· 0	Ú	2
9	NORTH LAHONTAN	0	-	-			1	6	G	13
10	SOUTH LAHONTAN	e	2	<u> </u>	1		ā ·	· a	a	7
11	COLORADO DESERT	3	2	3	1	U,	u T		0	850
12	TOTAL CALIFO-NIA	G	361	414	76	Ű		22	u	090

INJUSTRIAL TOTAL WATER CONSUMPTION DURING 1977 (MILLIONS OF GALLONS)

		FOCD AND KINERED PREDUCTS	LUMBER AND WOOD PRODUCTS	PAPER AND Allied Products	CHEMICAL ANC ALLIEC PRODUCTS	PETROLEUM And Coal Products	STONE CLAY AND GLASS Products	PRIMARY METALS		TOTAL INDUSTRIES
1	NURTH COASTAL	31ċ	7759	22104	4	17	18	_0	14	30232
2	SAN FRANCISCO BAY	26410	2014	27766	21171	47516	3080	2 37 4	9303	139634
ंर	CENTRAL COASTAL	5539	13	4503	4589	7 98	1504	97	821	17864
L.	SOUTH COASTAL	24182	348	15958	13056	34243	7811	6312	29665	131576
2	SACRAMEN 10 EASIN	9670	12566	5509	1075	44	308	31	376	29580
6	DELTA-CENTRAL SIERFA	16054	1004	6743	73+7	13134	842	70	641	45834
2	SAN JOAQUIN BASIN	202-8	817	623	1122	118	682	10	142	23680
8	TULARE BASIN	10750	3334		.2781	1021	669	- 65	571	19321
-	NGRTH LANGINTAN	101.50	1859	0			10	1	6	1880
9		-	89	255		762	942	+78	2027	8263
10	SOUTH LAFONTAN	198	11	36		74	280	21 8	105	1148
11	COLORADO DESERT	277				97727	16065	9656	43770	449013
12	TOTAL CALIFORNIA	1154-7	2 \$815	83527	53005	91121	16065	3050	43110	

MINIMUM INDUSTRIAL TOTAL WATER USEAGE 100 PERCENT IMPLEMENTATION (MILLIONS OF GALL (NS)

		FOCD AND	LUMBER	PAPER AND	CHEMICAL	PETROLEUM	STONE CLAY AND GLASS	PRIMARY	OTHER	TOTAL
-		KINCRED	AND WOOD	ALLIED	AND ALLIED					
		PRCDUCTS	PRODUCTS	PRODUCTS	PRODUCTS	PRODUCTS	PRODUCTS	METALS	INDUSTRIES	INDUSTRIES
1	NORTH COASTAL	293	7371	11052	4	9	17	0	13	18760
2	SAN FRANCISCO BAY	24561	1913	13883	20112	24708	2926	2255	8837	99197
3	CENTRAL COASTAL	5152	. 13	2252	435 9	415	1429	92	780	14490
4	SOUTH COASTAL	22489	331	7 97 9	1 240 4	17807	7420	5997	28181	132607
5	SACRAMENTO BASIN	9 9 9 9 3	11938	2755	1021	23	293	30	358	25409
6	CELTA-CENTRAL SIERFA	14930	954	3372	6979	6830	800	66	609	34540
7	SAN JOAQUIN BASIN	18831	776	311	1066	61	572	9	1 3 5	21761
8	TULARE EASIN	9997	31 68	14	2642	5 3 1	636	52	638	17688
9	NORTH LAHONTAN	3	17 66	0	1	0	9	1.	5	1786
10	SOUTH LAHONTAN	1.858	85	128	162 E	396	895	454	1926	7367
11	CCLGRADO DESERT	258	10	18	140	38	266	207	100	1038
12	TOTAL CALIFORNIA	107365	28324	41764	50355	50818	15262	9173	41582	344643

59-

ENERGY REQUIREMENTS FOR TOTAL MATER DEL+DIST DURING 1977 (Thousands of Kilomatt-Hours)

		FOOG AND	LUMBER	PAPER AND	CHE FICAL	PETROLEUM	STONE CLAY		· .	
		KIN (RED	AND WOCE	ALLIED	AND ALLIED	AND COAL	AND GLASS	PRIMARY	OTHER	TOTAL
		PROCUCTS	PRODUCTS	PRODUCTS	PRODUCTS	PR COUCTS	PRODUCTS	METALS	INDUSTRIES	INDUSTRIES
1	NORTH COASTAL	69	1707	4863	1	4	. 4	0	3	66 5 1
2	SAN FRANCISCO BAY	34021	3122	27927	17464	32 95 1	4721	3656	14+19	138282
3	CENTRAL COASTAL	1933	7	122	132	310	804	49	+43	3800
4	SOUTH COASTAL	50843	898	24820	17895	46600	18078	1462€	68822	242492
5	SACRAMINTO BASIN	2224	2850	1267	247	10	71	7	87	6803
6	DELTA-CENTRAL SIERKA	8199	573	1680	1989	1658	+72	36	365	14972
7	SAN JOAQUIN BASIN	13250	5 3 9	148	47 3	7	396	6	94	14913
8	TULARE BASIN	11287	3501	30	2920	1072	703	69	705	20287
9	NORTH LAHONTAN	1	539	0	0	. D	. 3	C	2	545
10	SOUTH LAHONTAN	1872	86	140	1536	448	904	459	1946	7 390
11	COLURADO DESERT	178	7	.12	. 86	18	184	144	69	699
12	TOTAL CALIFGRNIA	123879	13779	61009	42744	83077	26340	19052	86954	456835

MINIMUM ENERGY USEAGE FOR TOTAL WATER DELEDIST 100 PERCENT IMPLEMENTATION (THOUSANDS OF KILOWATT-FOURS)

-60-

		FOOD AND KINERED	LUMBER And Woce	PAPER AND ALLIED	CHEMICAL AND ALLIEE	AND COAL	STONE CLAY AND GLASS	PRIMARY	OTHER	TOTAL
		PRODUCTS	PRODUCTS	PRODUCTS	PRODUCTS	PRODUCTS	PRODUCTS	METALS	INDUSTRIES	INDUSTRIES
1	NORTH COASTAL	65	1622	24 31	1	2	- 4	G	3	4127
2	SAN FRANCISCO BAY	31639	2966	13964	16591	17135	4485	3473	1 35 98	103951
3	CENTRAL COASTAL	1798	7	61	125	161	763	- 46	421	3383
4	SOUTH COASTAL	47284	768	12410	17000	24232	17174	13895	65381	198144
5	SACRAMENTO BASIN	2068	2746	E3+	235	5	67	7	82	5 844
6	CELTA-CENTRAL SIEFRA	7625	544	840	1890	862	449	35	347	12591
7	SAN JOAQUIN BASIN	12323	512	74	44 9	3	376	6	89	1 3 8 3 3
- 8	TULARE BASIN	10497	3326	. 15	2774	557	668	- 65	669	18573
9	NORTH LAHONTAN	1	512	0	0	0	- 3	0	2	518
10	SOUTH LAHONTAN	1741	81	70	1459	2 3 3	. 859	436	1849	6727
11	COLORADO DESERT	166	7	. 6	82	9	175	137	66	548
12	TOTAL CALIFCRNIA	115207	1 30 90	30505	40607	43200	. 25023	18100	82606	368339

APPENDIX E

WATER CONSUMPTION IN 1976 AND 1977 FOR SELECTED MONTHS AND WATER DISTRICTS

APPENDIX E

COMPARISON OF 1976 TO 1977 WATER CONSUMPTION BY DISTRICT*

			1976	1977	Change
(1) North Coastal Eu Total	reka		537 537	439 439	-18
(2) San Francisco Sa	n Francisco	1/1-5/20	14067	10803	
Sa	n Jose	1/1-5/19	13967	10757	
Ea	st Bay MUD	1/1-5/19	27702	19342	
A1	ameda Co. WD	1/1-5/19	3339	2530	• •
Sa:	nta Clara	1/1-5/3	2173	1893	•
Sa	n Mateo	1/1-4/30	1286	968	
Da	ly City	1/1-5/21	1061	811	
На	yward	1/1-4/30	1487	1081	
Su	nnyvale	1/1-4/30	2172	1779	
Ма	rin MWD	1/1-5/22	2967	1452	۰.
No	. Marin MWD	1/1-5/30	754	513	•
Sa	nta Rosa	1/1-4/30	1194	934	
	ntra Costa		10559	9315	
Co Total	. WD		82728	62,178	-25
(3) Central Coastal Mon	nterey Bay	1/1-4/30	1535	988	
Sa	nta Barbara	1/1-5/1	1417	1250	
San	Luis Obispo	1/1-5/1	602	605	
San Total	nta Maria	1/1-5/1	746 4300	656 3499	-19

APPENDIX E (cont'd)

(come u)					
	ater İstrict	Period	Water Co (10 ⁶ Ga 1976	onsumption Llons) 1977	Percent Change
(4) South Coastal	Los Angeles	1/1-5/1	56894	55389	• •
	San Diego	1/1-5/1	15203	14678	
	Long Beach	1/1-5/1	11542	5976	алан (т. 1997) 1977 - Салан (т. 1997) 1977 - Салан (т. 1977)
an de la companya de La companya de la comp	Anaheim	1/1-5/1	5009	4774	
	Riverside	1/1-3/31	2724	2412	
	Oxnard	1/1-5/1	1686	1680	
	Ventura	1/1-5/1	2105	1789	
Total		_,,_	90,163	86,698	-3
(5) Sacramento Basi	n Podding	1/1-2/5	184	221	
()) Sacramento basi	in Kedding	1/1-2/5	104	221	· ·
	Chico	1/1-4/30	1076	1018	
Total	Alturas	1/1-4/30	64 1324	76 1315	6
(6) Delta-Central	Stockton	1/1-4/30	2457	2012	
Sierra To tal			2457	2012	-18
(7) San Juaquin Basin	Sacramento	1/1-4/30	6263	6065	
	Modesto	1/1-4/30	2445	2181	
	Merced	1/1-4/30	844	771	
	Sonora Jamestown	1/1-4/30	133	129	
Total			9685	9146	-6

APPENDIX	Е	
(cont'd)		

Hydrologic Study Area	Water District	Period		Consumption allons) 1977	Percent Change
(8) Tulare Ba	asin Fresno	1/1-4/30	4684	4040	
	Bakersfield	1/1-4/30	3636	3355	
Total			8320	7395	-11
STATE TOTAL			199514	172652	-13

* Source: [55]

-64-

ΒY	DIST	RICT:	SELECTED	MONTHS
		· ·		

		Water Cor	sumption		Percent
HSA	Water district	1976 (×10 ⁶ gal per month)	1977 (×10 ⁶ gal per month)	Month	change
	EBMUD	7950.0	3630.0	5	i e e e
	SFWD	7868.0	5726.0	4	
	So. SF	227.4	155.2	4	
San Francisco	San Mateo	361.2	248.2	4	
	Los Altos	337.2	255.2	4	
	San Carlos	124.8	82.5	4	$(1-2)^{-1} (\mathcal{F}_{1})$
	Total	16868.6	10097.1	5. 5.	-40
	(Santa Cruz	404.2	172.0	5	
	Santa Barba	ra 358.4	376.0	4	
Central Coastal	Salinas	251.0	242.4		
COASLAI	King City	85.1	94.0		
	l _{Total}	1098.7	884.4		-20
	LADWP	191.5	186.7	3	
	LADWP	199.9	192.9	4	· · · · ·
South	E. LA	520.7	501.7	. 4	
Coastal	Hermosa/Red	londo 380.6	343.6	4	
	Palos Verde		430.9	4	
	L Total	1695.9	1655.8		-2
	Sacramento	6707.0	5365.0	4	
	Willows	118.1	108.7	4	
Sacramento	Chico	369.6	379.8	4	
Basin	Marysville	65.2	61.7	4	
	Oroville	74.9	80.2	4	
e 1990 - Maria Maria, en 1990 1990 - Maria Maria, en 1990 1990 - Maria Maria, en 1990	Total	7334.8	5995.4		-18

continued . . .

	FABLE	15	(continued)
--	-------	----	-------------

		Water Cons	umption		
HSA	Water - district	1976 (×10 ⁶ gal per month)	1977 (×10 ⁶ gal per month)	Month	Percent change
	Stockton	761.4	639.2	5	
Delta Central	Dixon	33.9	29.3	5	
Sierra	Livermore	164.1	126.2	1-4	
j - L	Total	959.4	794.7		-17
(Fresno	25.2	30.8	1	
	Fresno	25.9	26.9	2	
	Fresno	29.6	37.1	3	
Tulare	Fresno	42.8	44.9	4	
Basin	Selma	85.6	81.3	4	
	Bakersfield	1133.8	1210.0	4	·.
	Visalia	313.7	340.3		н 1
	Total	1656.6	1771.3		+7
· · · · · · · · · · · · · · · · · · ·	Modesto	540.0	457.0	· 1 .	
	Modesto	467.0	437.0	2	
	Modesto	659.0	507.0	3	
San Joaquin 🖌	Modesto	791.0	783.0	4	
san Joaquin	Merced	166.2	247.3	3	
	Merced	301.8	301.6	4	
	Turlock	271.0	238.6	4	
	Total	3196.0	2971.5		-7

*Sources: LBL survey of above water district offices.

-66-

BIBLIOGRAPHY

<u>General</u>

- [1] Association of California Water Agencies.California Water Resources Development: Water in California and Major Water Storage and Conveyance Facilities (Map). Sacramento, CA: Association of California Water Agencies, 1975.
- [2] Berman, S.M., et al. Electrical Energy Consumption in California Data Collection and Analysis, UCID-3847. Berkeley, CA: Lawrence Berkeley, Laboratory, July 1976.
- [3] Copley International Corporation. The Market Structure of the Southern California Water Industry. Prepared for the Office of Water Resources Research, U.S. Department of the Interior. La-Jolla, CA: Copley International Corporation, June 1974.
- [4] Department of Finance, State of California. Population Projections for California Counties 1975-2020, Alternative Series D-100, E-0, D-150, C-150. Report 74 P-2. Sacramento, CA: Department of Finance, 1974.
- [5] Department of Water Resources, State of California. Bulletin 132-75: The California State Water Project. Sacramento, CA: DWR, 1975.
- [6] Department of Water Resources, State of California. Bulletin
 160-74: The California Water Plan, Outlook in 1974. Sacramento,
 CA: DWR, 1974.
- [7] Department of Water Resources, State of California. Bulletin 166-2: Urban Water Use in California. Sacramento, CA: DWR, 1975.

- Department of Water Resources, State of California. Bulletin 198: Water Conservation in California. Sacramento, CA: DWR, 1976.
- [9] Department of Water Resources, State of California. The California Drought, 1977: An Update. Sacramento, CA: DWR, February 15, 1977.
- [10] East Bay Municipal Utility District. Water Production System (Map). Oakland, CA: November 1975.
- [11] Hagen, Robert M., and Roberts Edwin B. Energy Conservation: Minimizing Energy Use in Water and Salt Management. Unpublished conference paper. Davis, CA: University of California.
- [12] Hagan, Robert M., and Roberts, Edwin B. Energy Requirements for Wastewater Treatment and Reuse. Paper presented at the CWPCA Annual Conference, April 16, 1976.
- [13] Hagan, Robert M., and Roberts, Edwin B. Energy Requirements for Wastewater Treatment. Water and Sewage Works, December 1976.
- [14] Hagan, Robert M., and Roberts, Edwin B. Energy Requirements in Water Supply, Use and Conservation. <u>Water and Sewage Works</u>, November 1976.
- [15] Hagan, Robert M., and Roberts, Edwin B. Energy Requirements of Alternatives in Water Supply and Wastewater Treatment. <u>National</u> <u>Water Supply Improvement Journal</u>, January 1977, in press.
- [16] Knutson, G., Curley, R., Roberts, E., Hagan, R., and Cervinka, V. Pumping Energy Requirements for Irrigation in California, Special Publication 3125. Davis, CA: University of California, Division of Agricultural Sciences, March 1977.

[8]

- [17] Lawrence Berkeley Laboratory. LBL 6356. Effects of the Drought on California Electricity Supply and Demand. Sathaye, Benenson, Greene, Kahn, Krieg, Lasater, Ritschard, Ruderman, Sextro, Siri, Vincent. June 1977.
- [18] Los Angeles Times. "Who'll Get the Water? California and the U.S. at Odds on Distribution." Series of Articles. Los Angeles, CA: Los Angeles Times, undated. Map by Don Clement.
- [19] Moberg, L.E. Memorandum Report, Population Alternatives 1972-2020. Sacramento, CA: Department of Water Resources. January 2, 1975.
- [20] Roberts, Edwin B., and Hagan, Robert M. Energy Requirements of Alternatives in Water Supply, Use, and Conservation: A Preliminary Report. Contribution No. 155, California Water Resources Center. Davis, CA: California Water Resources Center, December 1975.
- [21] San Francisco Department of Public Works, Hetchy Water Supply of the City and County of San Francisco, California--General Map and Profile. San Francisco, CA: Department of Public Works, January 1925.
- [22] State of California. California Statistical Abstract, 1975. Sacramento, CA: State of California Publications Office, 1975.
- [23] U.S. Bureau of Reclamation. Annual Report of the Central Valley Project, 1973. Washington, DC: GPO 1973.
- [24] U.S. Bureau of Reclamation. Central Valley Operations: Report of Operations. Sacramento, CA: Central Valley Operations Coordination Office, December 1976.

Residential Water Use

- [25] Baker, Larry K. The Relationship Between Water and Energy Use and Conservation. Paper presented at 1976 Summer Workshop of Energy Extension Service, UC Berkeley, 19-24 July 1976. Berkeley, CA: Lawrence Berkeley Laboratory, May 1977.
- [26] Baker, Larry K., Bailey, Harold E., and Sierka, Raymond A. Household Water Conservation Effects on Water, Energy, and Wastewater Management. Paper presented at the Second Annual Conference on Complete Water Reuse, Palmer House, Chicago, IL, 4-8 May 1975.
- [27] Chemical Rubber Company. Handbook of Chemistry and Physics.
- [28] Clear, Robert. Technical Aspects of Energy Conservation in Residential Hot Water Heaters. Berkeley, CA: Lawrence Berkeley Laboratory, unpublished report.
- [29] Field Institute. The California Poll, Report # 77-001, Release # 935, March, 1977.
- [30] Institute for Research on Land and Water Resources, Pennsylvania State University. Proceedings, Conference on Water Conservation and Sewage Flow Reduction and Water-Saving Devices. Information Report Number 74. University Park, PA: Pennsylvania State University, IRLWR, July 1975.
- [31] Marin Municipal Water District. Water Supply Task Force Information Sheet. Marin, CA. MMWD, July 16, 1976.

- [32] Milne, Murray. Residential Water Conservation. California Water Resources Center Report No. 35. Davis, CA: CWRC, March 1976.
- [33] Mutch, James J. Residential Water Heating, Fuel Conservation, Economics and Public Policy. The Rand Corporation, R-1498. Santa Monica, CA: The Rand Corporation.
- [34] Quinn, Richard S., Jr. The Effects of Increased Capital Expenditure as a Method of Reducing Electricity Demand for Hot Water Generation in New Homes, M.S. Thesis. Knoxville, Tennessee: University of Tennessee, August 1972.
- [35] Sharpe, William. Water Conservation and Wasteflow Reduction in the Home. University Park, PA: Pennsylvania State University Institute for Research on Land and Water Resources, 1974.

Industrial Water Use

- [36] California State Water Resources Control Board. Policy and Action Plan for Water Reclamation in California. Sacramento, CA: Water Resources Control Board, January 1977.
- [37] Canton, Trancuilo. Blow-Down and Make-Up Water Conservation. Lawrence Berkeley Laboratory Engineering Note, March 3, 1977. Berkeley, CA: Lawrence Berkeley Laboratory 1977.
- [38] Crook, James. Reliability of Wastewater Reclamation Facilities. State of California: Water Sanitation Section, Department of Health, 1976.

- [39] Department of Water Resources, State of California. Bulletin 68-73: Inventory of Waste Water Production and Waste Water Reclamation in California, 1973. Sacramento, CA DWR, 1975.
- [40] Department of Water Resources, State of California. Bulletin 124-2: Water Use by Manufacturing Industries in California, 1970. Sacramento, CA: DWR, March 1977.
- [41] Employment Development Department, State of California. Wage and Salary Workers in Nonagricultural Establishments, by Industry: California. Part A: 1966-1975. Sacramento, CA: Employment Development Department, 1976.
- [42] Okun, Daniel A. Alternatives in Water Supply. Journal of the American Water Works Association, Vol. 61, No. 5, May 1969.
- [43] Thompson, Sidney J. Techniques for Reducing Refinery Wastes. 011 and Gas Journal, October 5, 1970, pp. 93-98.
- [44] U.S. Department of Commerce, Bureau of the Census. 1972 Census of Manufactures: Water Use in Manufacturing. Special Report Series. MC72 (SR)-4. Washington, DC: GPO, 1976.
- [45] U.S. Environmental Protection Agency. Development Document for Proposed Effluent Limitations Guidelines and New Source Performance Standards for ... (industry)... Point Source Category. 440 Series. Washington, DC: EPA, January 1974; where (industry) is:

- A. Apple, Citrus and Potato
- B. Cane Sugar
- C. Beet Sugar
- D. Dairy Product Processing
- E. Poultry
- F. Red Meat Processing
- G. Petroleum Refining
- H. Unbleached Kraft and Semi-Chemical Pulp
- I. Organic Chemicals
- J. Inorganic Chemicals
- K. Soaps and Detergents
- L. Wet Storage, Sawmills, Particleboard and Insulation Board
- M. Plywood, Hardboard and Wood Preserving
- N. Wood Furniture and Fixture Manufacturing
- 0. Cement Processing
- P. Flat glass
- Q. Steel industry
- R. Copper, Nickel, Chromium and Zinc
- S. Primary Aluminum Smelting

[46] U.S. Enviromental Protection Agency. A Primer on Wastewater Treatment. Washington, DC: EPA, July 1976.

[47] U.S. National Commission on Water Quality.Report. Washington, DC: GPO, April 1976.

Personal Communications

- [48] California Water Service Company. Mr. Lorenzen (5/23/77), Deliveries, water conservation.
- [49] Canners League of California. James Bell (3/3/77). Water consumption, water conservation.
- [50] Chevron U.S.A., Richmond, California. Mr. Henderson (3/3/77) and Mr. Fuerso (4/15/77). Water consumption, water conservation.

[51] City of Sacramento. Daniel Stockton. Water conservation.

- [52] Contra Costa County Water District. Wally Allen. Delivery energy for Contra Costa Canal.
- [53] Department of Health, State of California. Dr. David Spath. Wastewater treatment facilities in California. Berkeley, CA.
- [54] Department of Sanitary Engineering, UC Berkeley, William J. Oswald. Wastewater treatment facilities in California.
- [55] Department of Water Resources, State of California. Frank Lombard (5/77). Present water conservation and consumption. Sacramento, CA.
- [56] Department of Water Resources, State of California. L.E. Moberg. Population for HSAs. Sacramento, CA.
- [57] Department of Water Resources, State of California. Jerry Vayder and Richard Wagner. Industrial cooling water, brackish water.
- [58] Dow Chemical, Pittsburg, California. Thomas Lange (3/3/77),(3/ 21/77). Water consumption, water conservation.
- [59] East Bay Municipal Utility District. Helen Burke, (8/2/77). Proposed water supply projects.
- [60] East Bay Municipal Utility District. Keith Carnes and Paul Fletcher. Deliveries, distribution energy.

[61] East Bay Municipal Utility District. Paul Fletcher. Water deliveries, energy for distribution.

- [62] Employment Development Department, State of California. Ben Traverso (5/16/77). Seasonally adjusted employment figures by industry for 1977. Sacramento, CA.
- [63] Environmental Defense fund. Thomas Graff, (8/2/77). Proposed water supply projects.
- [64] Fibreboard Corporation. Edward Oetkin, (7/25/77). Water savings at Fibreboard Corporation (reported at the Drought Conference on Industry Water Allocation and Conservation, Sheraton Inn-Airport, Concord, CA).
- [65] Fresno Water Department. Manuel Staffero (5/23/77). Deliveries, water conservation. Fresno, CA.
- [66] Hetch Hetchy Water and Power Department. James Leonard, (8/2/77). Proposed water supply projects.
- [67] Hetch Hetchy Water and Power Department. Mr. Moore, (8/2/77), Proposed water supply project.
- [68] Hetch Hetchy Water and Power Department. Harry Tracey. Delivery energy costs.

[69] Hewlett-Packard Co. Glen Affleck, (7/25/77). Water Conservation at Hewlett Packard (reported at the Drought Conference on Industry Water Allocation and Conservation, Sheraton Inn-Airport, Concord, CA).

- [70] Kaiser Steel Corporation. E.L. Relph (4/12/77), (4/13/67). Water consumption and conservation.
- [71] Lawrence Berkeley Laboratory, (Plant Engineering Department).
 Y. Kim, (7/25/77). Water Conservation at Lawrence Berkeley Laboratory.
- [72] Los Angeles Department of Water and Power. Dane Hooper. Distribution energy costs, delivery energy costs.
- [73] Los Angeles Department of Water and Power. L. Lund (3/3/77), (4/29/77). Industrial water conservation.
- [74] Los Angeles Department of Water and Power. Robert Pagan, (8/3/77). Overdraft in the Owens Valley.
- [75] Marin Municipal Water District. Water Conservation Information Office. Water savings from flow control restrictors.
- [76] Metropolitan Water District. Public Relations Department. Energy requirements for water distribution.
- [77] Metropolitan Water District. Ted Voyles. Water conservation, Los Angeles, CA.
- [78] Modesto Water Department. Richard Rodriguez (5/23/77), Deliveries, water conservation.
- [79] National Canners Association. Allen Katsuyama, (7/25/77). Water savings in the canning industry (reported at the Drought Conference on Industry Water allocation and Conservation, Sheraton Inn-Airport, Concord, CA).

- [80] Sacramento City Water. Harry Barrons (5/5/77). Distribution energy.
- [81] San Diego Water Department. (5/23/77). Water conservation.
- [82] San Diego Water Department. Gary Hogue. Distribution energy requirements.
- [83] San Francisco Water Department. Mr. Chang. Water use, energy, for water distribution.
- [84] San Francisco Water Department. Mr. Alfred Hamilton, energy consumption.
- [85] San Francisco Water Department. Mr. Vasconcellos (5/23/77). Water conservation.
- [86] Santa Barbara Water Works. William Hill (5/25/77). Water conservation and deliveries.
- [87] Santa Cruz Water Department. Tracey Bliss (5/25/77). Water conservation.
- [88] Standard Oil Refinery. James Gilliland, (7/25/77). Water savings at Standard Oil (reported at the Drought Conference on Industry Water Allocation and Conservation, Sheraton Inn-Airport, Concord, CA).
- [89] Stockton City Water Division (5/25/77). Deliveries and water conservation.