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Abstract

Tools& Strategies for Social Data Analysis

by

Wesley JayWille

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Maneesh Agrawala, Chair

Data analysis is o en a complex, iterative process that involves a variety of stakeholders and re-

quires a range of technical and professional competencies. However, in practice, tools for visual-

izing, analyzing, and communicating insights from data have primarily been designed to support

individual users.

In the past decade a handful of research systems like sense.us and Many Eyes have begun to ex-

plore how web-based visualization tools can allow larger groups of users to participate in analy-

ses. Commercial data visualization tools such as Tableau and Spotfire have also begun to embrace

the increasingly social web with support for sharing, discussion, and embedding for wider audi-

ences. Social data analysis tools like these mark the beginning of a great sea change in the way we

think about data, its impact on our lives, and theways inwhichwe interactwith it. These systems

point towards a future in which large teams, communities, and crowds can participate in the col-

lection, discussion, and analysis of data, and benefit from it. Collaborative tools will also improve

the quality of analyses by allowing analysis teams to work together more closely—sharing ideas,

hypotheses, andfindings—and allowing groupswith heterogeneous expertise to bring their indi-

vidual strengths to bear to solve data-driven problems.
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However, tools for collaboratively authoring, sharing, and exploring visualizations remain embry-

onic. The design space of tools for collaborative visual analysis is still largely unexplored andmod-

els forunderstanding the collaborationbetweenanalysts, domain experts, andnoviceparticipants

are limited. This thesis contributes a suite of systems and experiments that explore key aspects

of social data analysis and investigate how collaborative data analysis tools can support multiple

classes of stakeholders.

First, we explore the design of asynchronous tools for team-based collaboration and analysis and

examine how they can facilitate more productive collaboration. We present an interactive tool,

CommentSpace, that allows analysts to discuss visualizations and other analytic content. Using

CommentSpace, we explore how lightweight collaboration mechanisms like tagging and linking

can help collaborators organize their findings and build common ground.

The growing ubiquity of sensing and analysis tools also opens the door to a range of new non-

traditional participants in data analysis. We explore the role of social data analysis tools in citizen

science—a domainwhere novice communitymembers are increasingly engaged in data collection

and have the potential to contribute to analysis as well. We examine how analysis tools can be

tailored to scaffold novice users into the process of data analysis, encouraging participation and

understandingwhile contributing valuable local insights.

Finally, we exploremechanisms for scaling and parallelizing data analysis, even in the absence of a

dedicatedcommunityor teamofanalysts. We investigatehowindividual analystscancrowdsource

pieces of social data analysis tasks using paid workers in order to leverage the collective effort of

many participants. We demonstrate how large groups ofworkers can perform cognitively complex

tasks like generating and rating hypotheses, and provide tools to help analystsmanage the results

of this process.

These tools and strategies, along with our evaluations of them, highlight the potential of social

data analysis in a variety of se ings with different kinds of stakeholders. Moreover, our findings

suggest leverage points for future social data analysis systems.
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Chapter 1

Introduction

There is an overwhelming amount of data all around us. Big data. Personal data. Data that only

people can explain. Data that needs to be examined, considered, and evaluated at a scale larger

than that of a single analyst, and that requiresmore than one individual’s expertise. Visualization

and statistical analysis tools can augment the process of data analysis and can support cognition

and problem solving [17]. However, individuals o en don’t have the time, knowledge, technical

expertise, or diversity of perspectives to tackle large data analysis tasks on their own. As a result,

traditional data analysis tools and tools for visual analysis must evolve to support many types of

collaborators [46].

The need to collaborate around data can emerge in many different situations. Multiple analysts

working on a dataset may need to share questions or views of the data with one another or gather

their findings for presentation. Alternatively, communitieswith local knowledge or a vested stake

in the datamaywish to engage in the analysis process. Analystsmay alsowish to call upondomain

experts to answer specific questions about their data. For large datasets, analystsmay enlist pools

of crowdworkers to perform specific analysis tasks at scale.

Despite this, current state-of-the art analysis tools remain targeted mostly at trained data ana-

lysts—individuals with statistical and analytical expertise and proficiency with analysis tools

and methods. As we enter a world where sensor data, social information, business metrics, and

a multitude of other measures and models are ubiquitous, these analysis tools and the strategies

withwhich they are deployed need to transform. Future tools need to support social dataanalysis, in

which groups of people come together to explore andmake sense of data in a collaborative fashion.
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Social data analysis assumes that sensemaking is not only a perceptual and cognitive activity, but

also a social one, in which group interpretation and deliberation are essential components of the

social data analysis process. As analysts collaborate, they contribute their own contextual knowl-

edge and extend thework of others [48, 104, 82]. Such collaboration distributes the effort required

to examine large data sets and helps analysts develop a shared interpretation of the data.

While some recent tools have begun to offer analysts the ability to collaborate around visualiza-

tions and share their work via social media, researchers have just begun to explore how this col-

laboration impacts the outcomes of analysis. As a next step, we need to understand the kinds of

activities that take place during social data analysis and design tools that improve analytic out-

comes help analysts build common ground and connect important observations.

By focusing primarily on trained analysts, existing tools have alsomade li le effort to engage new

andnovice stakeholders or explore how analysis tools can support a variety of different users. Col-

laborative sensemaking tools must support group exploration and evidence gathering tasks by

helping users build on one another’s findings and pool their efforts to collectively organize and

synthesize them. However, current tools do li le to support the integration of effort frommulti-

ple individuals. Moreover, current systemsdonot structure the analysisprocess inways thatmake

it easy to take advantage of largenewpools of collaborators, includingnovice communitymembers

and paid crowds.

Good collaborative analysis requires utilizing collaborators in ways that effectively allocate their

abilities. Making sense of datasets requires more than just looking at them. Rather, data analysis

is a complex, iterative process in which participants must search for important features in data,

generate and test hypotheses, make inferences, and evaluate relationships between sources and

datasets [83]. As such, the next generations of analysis tools must make it easier for collaborators

to engage in the analysis process inways that leverage their relative strengths and encourage good

analytic outcomes.

This thesis focusesonsupportingandunderstandingtheprocessof collaboratively analyzingdata.

We explore this process through thedesign of a series of social data analysis systems andvia experi-

ments involving a variety of differentuser groups. To set the stage,we revisit priorwork in collabo-

rative visual analysis. Nextwe explore each of our core research questions by iteratively designing,

building, and testing a set of collaborative visual analysis tools. We evaluate each of these systems

via experiments and live deployments using communities and crowds and we present new tools

and strategies for social data analysis based on our experience. This work is focused around three
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core research thrusts, each of which examines the design of social data analysis tools through a

different lens:

1. Providing social tools that let analysts organize findings and facilitate deeper analytic reasoning.

We first consider the design of social data analysis tools intended to support teams of ana-

lysts. We introduce CommentSpace, a collaborative system in which analysts comment on vi-

sualizations and websites. In CommentSpace, we introduce comment tags and

links—lightweight organization tools that analysts can use to organize their findings and

identify others’ contributions. We then describe experiments that explore how tag and link

structure can facilitate productive collaboration. In a pair of studies comparing

CommentSpace to a system without support for tags and links, we find that a small, fixed

vocabulary of tags (question, hypothesis, to-do) and links (evidence-for, evidence-against) helps ana-

lysts more consistently and accurately classify evidence and establish common ground. We

alsofindthatmanagingand incentivizingparticipation is important for analysts toprogress

from exploratory analysis to deeper analytical tasks. Finally, we demonstrate that tags and

links can help teams complete evidence gathering and synthesis tasks and that organizing

comments using tags and links improves analytic results.

2. Scaffolding analysis in novice communities to enable participation and cultivate local insights.

As data collection and visualization tools becomemore widespread, non-professional users

andnovicecommunitymembersarealso increasinglybecoming involved insensingandanal-

ysis activities. This emergent “citizen sensing” movement has the potential to engage vast

communities of novice users and tap these communities’ unique local knowledge and expe-

rience. We explore how collaboration tools can be tailored to support novice communities

and scaffold novice users into the process of data analysis. We present design principles and

a framework for data collection and knowledge generation in citizen science se ings. We

also describe Common Sense Community, a community tool for analyzing air quality data. Un-

like prior systems, ours breaks analysis tasks into small, discrete applications designed to

facilitate novice contributions. These applications use novices’ interest in their own expo-

sure to air quality as an entry point and provide gateways to encourage users to annotate,

inspect, and validate their community’s data. An evaluationwe conductedwith community

members in an area with air quality concerns indicates that these applications help partici-

pants identify relevant phenomena and generate local knowledge contributions.
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3. Parallelizing analysis by using paid crowds to generate and assess explanations.

Many datasets and analyses are too large to be managed by a single analyst or even a small

team. While somedata analysisproblemshavenatural communities of interestwhocanhelp

make sense of data, this is o en not the case. Moreover, analysts o en have no easy way of

motivating large numbers of users to participate or ensuring that users make high-quality

analytic contributions. Consequently, we also investigate methods for incorporating paid

crowdworkers into the process of data analysis. We propose aworkflow inwhich an analyst

selects a set of charts and asks paid crowd workers to explain specific visual features like

outliers, trends, and pa erns. We expose this information in an explanation-management

interface that allows analysts to interactively filter and sort responses, select themost plau-

sible explanations and decidewhich directions to explore further. Based on our experiences

deploying thisworkflow,weoutline strategies for increasing thequality of crowdsourced re-

sults, collecting explanation provenance, and handling redundancy and validate them

through a series of experiments.

Finally, we propose additional extensions and future work not addressed in the thesis, including

possible alternatemodels for crowdsourcing analysis, strategies for engaging domain experts, and

supporting ad hoc analysis via socialmedia. We also consider how future social data analysis tools

might help usersmove beyond analysis to support data-driven presentations and storytelling.
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Chapter 2

Related Work

This thesis builds on prior work in the analysis and information visualization communities, as

well as more recent work on citizen sensing and crowdsourcing.

2.1 Sensemaking

At the core of data analysis is sensemaking—the iterative process bywhichwe collect, parse, filter,

organize, and manipulate data to solve problems, make decisions, and communicate results [83].

Prior research offers a number of lenses throughwhichwe can analyze the process of sensemaking

anddesigntosupport it. EarlyworkbyRussel et al. [88] introduceda formalmodel thatsegmented

theprocess of sensemaking into a four-stage “learning loop” inwhichusers looking at aproblemor

dataset (1) search for possible representations, (2) collect data and use it to instantiate those rep-

resentations, (3) shi , merge, and otherwise adjust representations, and (4) consume the results

to process data or make decisions. The learning loopmodel provides a very high-level overview for

describing a variety of problem solving tasks. It also highlights steps in the sensemaking process

(data extraction, clustering results, etc.) where automated tools can make a difference for many

kinds of learning tasks.

While Russel, et al. frame sensemaking broadly, Pirolli and Card [83] refine their model from a

data analysis perspective. Based on cognitive task analyses conducted with intelligence analysts,

Pirolli andCard introduce amorenuanced sensemakingmodel (Figure 2.1). Thismodel breaks the

loop into two sub-cycles—a foraging loop and a sensemaking loop, each with discrete sub-steps,
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Figure 2.1: Pirolli and Card’s sensemaking cycle for intelligence analysts (originally published in [83]).

The model breaks the sensemaking process into two sub-cycles—a foraging loop and a sensemaking

loop, each with discrete sub-steps.

and highlights specific data mining and analysis tasks like generating hypotheses and colliecting

evidence. Meanwhile, Card et al. [17] underscore the importance of visualization and interaction

to the sensemaking process. They illustrate how data visualizations can bring human perception

tobear to identify trends andoutliers, filter and refinedatasets to identify key elements of interest,

and engage in iterative refinement to solve data-driven problems.

Together, this prior work [83, 17] emphasizes the iterative and multi-stage nature of sensemak-

ing. This work also highlights how visualization and organization tools can serve a key role at

specific stages in the sensemakingprocess. Historically, the sensemaking literature tended to con-

sider sensemaking largely fromasingle-userperspective. However, because thesemodelsbreak the

analysis process into discrete steps, they can help developers identify opportunities for collabora-
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Figure 2.2: A screenshot of Heer et al.’s Sense.us system (originally published in [48]). Sense.us pairs an

interactive visualization of the U.S. labor force (left) with discussion tools (right). The visualization is a

stacked time-series showing the U.S. labor force, broken down by occupation and gender. The current

view shows the percentage of the workforce employed in the military.

tion andparallelizationwithin the analysis process. Analysis steps such as generatinghypotheses,

searching for evidence, and organizing content are all amenable to parallelization and can benefit

from the diverse perspectives and expertise of multiple collaborators.

2.2 Social Data Analysis

The past half-decade has seen considerable research on tools for supporting sharing and collabora-

tion using visualizations, both in academia and in the commercial sector. Heer and Agrawala [46]

survey a wide range of asynchronous collaboration tools and discuss design considerations for

these collaborative visualization tools. Our work is positioned squarely in this space.
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The systems and strategies we explore build upon prior web-based tools for social data analysis

including sense.us [48], Many Eyes [111, 27] that support forum-style discussion around interac-

tive data visualizations. Both of these tools pair interactive data visualizations with integrated

commenting and discussion tools. Sense.us (Figure 2.2) focuses on providing a set of highly-

interactive visualizations of US census data paired with threaded comments that can be a ached

to individual views and graphical annotation tools that let users sketch and addhighlights on top

of the visualizations. Many Eyes, in contrast, focuses on providing a set of visualization templates

that users on theweb can populate with their own data. These visualizations appear on theMany

Eyes site, but can also be embedded in outside web pages. The tool makes complex visualizations

like interactive bubble charts and word diagrams available to a wide audience and, over the past

five years, has allowed many thousands of users to generate and share visualizations across the

web. Both Sense.us andMany Eyes demonstrate the power and potential of web-based data analy-

siswithmanyparticipants, but theyalsohighlightsomeof theshortcomingsassociatedwiththese

tools. Integrating commenting and discussion with visualization is difficult—Many Eyes places

commenting below-the-fold where it is o enmissed, while comments in Sense.us are a ached to

individual views and can be difficult to find or organize. Incentivizing users and ge ing good an-

alytic results from groups can also be difficult, since users may not have a good understanding of

the analysis process andmay not engage productively with one another.

Other recent tools and frameworks for systematizing the analysis process have also included a

social component. Perer and Schneiderman’s Systematic-Yet-Flexible (SYF) framework [80]walks

analysts step-by-step through a set of guided tasks in order to analyze a dataset. In the process,

SYF users can create and share annotations that are associated with free text discussion. Eccles,

et al.’s GeoTime Stories [33] pairs a geospatial and timeline visualization tool and also adds sup-

port for annotation via a shared document editor. However, the social features in these tools have

tended to be ancillary, rather than the core thrust of the system. Thus far li le research has ex-

plored the tradeoffs associatedwith including social tools or encouraging collaborationduring the

analysis process.

At the same time, anumber of commercial visualization tools allowusers to commentonvisualiza-

tions online, but do so in a limited way. Tableau Server [102] allows analysts to share workbooks

that include annotation layers on top of visualizations, while SpotFire Decision Site Posters [105]

support comments alongside visualization posters on theweb. The past half-decade has also seen

the rise of numerous “YouTubes for Data,” including Data360.org [28], Swivel.com [101], Verifi-

able.com [110], andmore recently BuzzData.com [16] and Visual.ly [113]. These sites have focused
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onallowingusers to share and commenton simple visualizations and infographics, butmanyhave

failed to garner significant usage and a large number of these services have subsequently folded.

These efforts serve as a testament to the widespread enthusiasm for social data analysis, but also

illustrate some of the problems it poses. While adding support for sharing or commenting toweb-

based visualizationsmakes collaboration possible, it does not ensure that collaborationwill occur

or that it will be fruitful. To produce knowledge from shared observation, we must understand

how to organize users aswell as the insights they produce. Weneed to identify points in the sense-

making process (Figure 2.1) that can benefit from the efforts ofmultiple users. Moreover, wemust

learnhowtoscaffoldboth individualusersandbroadercommunities intothesensemaking process.

2.3 Designing for Collaboration and Analysis

Just as theories of perception guide the design of visualizations, we look to theories of social inter-

action to guide the design of the social analysis tools around them. Our thinking about collabora-

tion and analysis behavior draws heavily on the sensemaking literature, but builds on other social

theories as well. For example, Clark and Brennan’s [22] research on common ground—the shared

understanding needed for successful communication—implies that collaborators are more effec-

tive when they can refer to a shared visual environment to ground each other’s actions and com-

ments [39]. This observation has led designers of collaborative analysis systems to support syn-

chronous view sharing [5] as well as asynchronous sharing and reference through bookmarking

and graphical annotation of visualization states [33, 61].

In the context of asynchronous collaboration, work is o en broken down into units that can be

completed inparallel. In suchsituations, collaboratorsneedmechanisms tomaintain awareness [18,

31] of eachother’s actions and to synthesize individual contributions [6]. In collaborative visual anal-

ysis, synthesis o en means integrating comments and annotations associated with particular vi-

sualization states or data subsets. To reduce the cost of integration, recent systems have provided

keyword search of collected comments and tagging of datasets with arbitrary keyword labels [48,

80, 102]. Others support the creation of “topic hubs” [111] for organizing analyses around topical

themes. These systems simplify the process of finding commentary relevant to a topic of interest.

To facilitatemore consistent results, contributionsmayalsobemademore formal; tagvocabularies

canbe (partially) standardized toprovide a shared lexicon for important features of the comments,

e.g., to note the presence of a hypothesis or action item [30, 44].



10

A different approach is to use a shared editing (wiki) model rather than a discussion model. For

example, Pathfinder [68] provides wiki-style semi-structured “Milestones” (akin to Wikipedia’s

Template Messages [118]) to encourage collaboration. More recent extensions to Many Eyes have

also included “wikified” service that enables visualizations to be embedded inwiki text [71]. Sim-

ilarly, Eccles et al.’s GeoTime Stories uses a single text story that contains links to specific visual-

ization states as a means to share analysis stories [33]. These systems integrate contributions via

shared editing and the model remains largely informal: contributions can be arbitrary in nature

and analysts perform the integrationmanually in the text.

Researchershavealsoexploredhighly formalizedschemes for integratinganalyticwork. Argumen-

tation systems [44, 14, 81] typicallymodelhypotheses andevidence in anetwork structurebutpro-

vide rigid constraints on the forms of input that analysts canmake. These highly-formalizedmod-

els can support computational aggregation and inference. However, formalized models can also

increase “viscosity” of the system—making it more difficult to reorganize and manipulate—and

place high cognitive demand on users[9], making it more difficult to contribute.

Some systems incorporate similar schemes in a more lightweight fashion: for example, the Ana-

lyst’s Sandbox [123] allows analysts to tag observations as evidence for or against a hypothesis

using direct manipulation gestures. Tree Trellis and Table Trellis [21] support aggregation and

comparison of linked free-text claims, but are intended largely for introspecting existing sets of

claims rather than supporting ongoing analysis. Evidence matrices are a similar approach moti-

vated by the theory of Alternative CompetingHypotheses [8]. Multiple hypotheses constitute the

rows of the matrix, while collected evidence constitutes the columns. Similar to argumentation

structures, the cells of the matrix are populated with scores representing the degree to which the

evidence confirms or disputes the hypothesis. Such formal systems may lead to premature com-

mitment since they can force analysts to think synthetically from the start rather than building

on exploratory analysis. In contrast, we use a more lightweight model in which analysts can cat-

egorize and connect contributions in an ad hoc fashion, supporting both information foraging

and synthesis [82].
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2.4 Citizen Science and Environmental Monitoring

While early thinking on sensemaking and social data analysis originated largely in the context of

business and intelligence analysis, amore grassroots emphasis on data collection and analysis has

recently emerged under the banner of citizen science.

Community-based environmentalmonitoring efforts have a deep and varied history that has been

well documented in the environmental justice literature, illustrated by numerous examples of

“backpack studies” and volunteermonitoring programs [24]. These examples have demonstrated

the effectiveness of community participation in the collection of environmental data. O’Rourke

andMacey discuss theuse of “bucket brigade” sampling inwhich amix of participants indifferent

roles coordinate to carry out observation, sampling, and analysis of refinery emissions [78]. Other

work has documented the use of community air quality sensing to identify polluters and enforce

standards for diesel bus emissions [72, 66]. This citizen-centric ethos has also begun to surface in

governmentmonitoring programs for water quality andwaste [74].

Over the past few years, the intersection of the citizen sensing movement and mobile technology

has produced an abundance of new tools for distributed, citizen-led collection of environmental

data [58, 87, 13, 99].However, these initiativeshaveprimarily engaged citizens in theprocess of data

collection, deferring data analysis scientists and domain experts.

Luther et al.’s Pathfinder [68] is unique in that it integrates both collaboration and visualization

tools to support citizen science tasks. Pathfinder allows communities to share data and use a set

of wiki-based collaboration tools to pose hypotheses and discuss findings. However, the system

focusesprimarily onproviding tools for organizingwiki discussions and including visualizations,

and does not a empt to scaffold novice users into the analysis process.

2.5 Crowdsourcing

The rise of online labor marketplaces such as Amazon’s Mechanical Turk (www.mturk.com) also

has deep implications for data analysis. Human computation—the integration of humans into

computational processes to solve problems that computers are not yet well suited for [86]—of-

fers a new set of tools, interactionmodels, and incentive structures that help us to parallelize and

systematize data-driven problem solving.
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In the human-computer interaction literature, researchers have focused on the use of paid crowd-

sourcing to supplement purely computational approaches to problem solving and user testing

[86, 59, 37]. In the context of visualization, recentwork has used crowdsourcedworkers to perform

graphicalperceptionexperimentson the effectivenessof charts andgraphs [47, 62] andtoannotate

data sets for computer vision [95]. Other work has examined how to incorporate human compu-

tation into larger workflows. Soylent [7] uses paid workers to perform document editing tasks

within a word processor, using a Find-Fix-Verify pa ern to break editing tasks into smaller sub-

tasks. We also take inspiration fromhuman computation frameworks like Crowd-Forge [60], Jab-

berwocky [1], and TurKit [67] that provide general-purposeMapReduce-style programmingmod-

els for leveraging crowds to perform complex tasks. We explore how these kinds of techniques can

be applied directly to help break down complex data analysis operations into microtasks so that

an analyst can enlist manyworkers to perform in parallel.

Thus far, theuse of paid crowdsourcing for data visualization andanalysis hasbeen limited almost

exclusively to graphical perception tests [47, 62], social experiments [53], and data collection [107,

94]. However, a number of online websites have recruited volunteer workers to take part in small,

“GamesWith A Purpose”-style [2] visual analysis tasks. Sites like NASAClickworkers (discussed

in[6]),GalaxyZoo[38] , andStardust@Home[115]use redundantworkers toannotatevisualplots

of crater locations while Planet Hunters [38] and DataMarket’s “Hot or Not, for Data” [29] allow

volunteers to highlight features in time series data or mark apply a binary “Interesting/Not Inter-

esting” label to a dataset. However, none of these sites allow workers to explain the features they

havemarked or engage them in deeper analysis.

More recently, researchers have begun to explore the application of distributed collaborators to

sensemaking and analysis tasks. Fisher, et al. [36] examine how distributed collaborators it-

eratively build an understanding of information by organizing their work in shared knowledge

maps. However, they focus on small groups of collaborators performing open-ended tasks that are

less data-oriented. Other researchers have also explored “instrumenting the crowd” [89, 93] by

augmenting crowd-based tasks to track workers’ behavior and automatically assess the quality of

their work.
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Chapter 3

Structured Support for Collaborative Visual Analysis

As we design tools for social data analysis, we must consider how the systems for discussing and

communicating questions, observations, and findings support the analysis process. Prior web-

based collaborative visual analysis systems—including sense.us [48], Many Eyes [111], and De-

cisionSite Posters [105]—facilitate such collaboration by allowing analysts to link freeform text

comments andgraphic annotations to specific viewsor states of an interactive visualization. How-

ever, these systemshaveprimarily focusedonusingcomments tosharequestionsandobservations

in exploratory analysis, while ignoring more complex analytical tasks such as gathering evidence,

organizingfindings,weighing alternatives, and synthesizing results. Theyprovide onlybasic tools

for navigating and organizing the comments, either via bookmark trails [48] or general-purpose

tags/topic hubs [102, 111]. As the number of comments grow, making sense of them can become

a daunting task. Late-joining collaborators must read through lengthy discussion streams and

manually synthesize results.

We explore how visualization tools can provide stronger support for multi-user analysis via the

design of CommentSpace (Figure 3.1), a collaborative visual analysis system that enables analysts

to annotate visualizations and apply additional kinds of structure. In CommentSpace, analysts

Portions of this chapter previously published by the author, Jeffrey Heer,

Joseph M. Hellerstein, and Maneesh Agrawala in [121].
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Figure 3.1: CommentSpace provides a threaded discussion area with search and filtering controls (a,

b) alongside an interactive visualization (c). This visualization shows data from the Billboard Hot 100

chart—the current view shows the rise and fall of all top 100 hits between 1964 and 1980 by members of

the Beatles. Color-coded bars on comments indicate tags and links (e.g. hypothesis, evidence-for, etc.).

can organize discussions by adding (1) tags that consist of descriptive text a ached to comments

orviews; and(2) links thatdenote relationshipsbetweentwocommentsorbetweenacommentand

a specific visualization state or view. The resulting structure can help analysts navigate, organize,

and synthesize the comments, andmove beyond exploration tomore complex analytical tasks.

In particular, we focus on tags and links that support hypothesis generation and evidence gath-

ering—helping analysts collect and organize new evidence, identify important findings made by

others, and synthesize their collective insights. For example, an analyst may tag a comment as a

question or a to-do, indicating a point of interest or contention. Another analystmight then respond

bypostingahypothesis, towhichotheranalystsmight linkadditional commentsorviews, specifying

evidence-for or evidence-against relationships. Visualizing hypotheses and support within threaded

discussions (Figure 3.1b) canhelp analysts identify related comments and views and then connect

them into coherent arguments and narratives. Tags and links also make it easier to locate com-

ments that are relevant to particular analysis tasks. For instance, a new analyst might filter the

comments by the question tag to see a list of unanswered questions and check if she can contribute



15

answers based onher own expertise. Analysts can also use tags and links to organize existing com-

ments and gather sca ered evidence for or against a hypothesis in one location. Such structured

organization can help themweigh competing evidence and synthesize related comments.

We designed CommentSpace as a modular so ware component for authoring, structuring, and

navigating text comments. CommentSpace can run in conjunction with any interactive visual-

ization system or website that treats each view of the data as a discrete state. The system must

produce a vector of state parameters for each view it generates and be able to render a view from a

given state vector. Thus, the state vector serves as a bookmark for returning to a view and for link-

ing a view to comments. Using thismechanism, CommentSpace supports discussions that span a

variety of websites and visualization systems.

3.1 CommentSpace

CommentSpace (Figure 3.1) consists of a threaded, forum-like list of comments (a) along with

search and filtering tools (b) paired with an interactive visualization (c). The visualization pic-

tured in Figure 3.1 shows data from the Billboard Hot 100 music chart and is based on a design

from the New York Times [10]. It depicts the chart rankings of songs by various artists over time.

Viewers can observe the rise and fall of individual songs aswell as long-term trends in the ranking

of artists and genres. They can interactively browse the visualization, hiding and showing artists

and filtering to highlight individual songs.

To illustrate the use of CommentSpace, we consider a scenario in which a group of analysts are

carrying out an analysis task using this visualization.

While reading through existing comments, Jessicawonders if the breakup of popular groups o en

spawns successful solo careers for their members. She clicks the + comment bu on to open a new

comment and posts her hypothesis.
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She then tags the comment as a hypothesis by clicking the blue taggingmenu icon on the comment.

Each tag in our vocabulary is associated with a unique color. A yellow tag marker helps analysts

visually identify Jessica’s hypothesis as they browse and indicates that the comment is a candidate

for further evidence or argument. A tally next to themarker (in this case (1)) indicates the number

of analysts who have applied the same tag to this comment.

CommentSpace also supports links that indicate relationshipsbetweenpairs of comments andbe-

tween comments and views. Later, a second analyst, Jake, spots Jessica’s hypothesis and, intrigued,

begins to hunt for supporting evidence. He browses the visualization and builds a view showing

the chart success of the formermembers of California hip-hop groupN.W.A. that supports Jessica’s

claim. He then replies to the original hypothesis, specifying an evidence-for relationship, and de-

scribes this new viewwith a comment.

His new observation is threaded into the discussion. It appears below the original hypothesis and

is labeled with a small green evidence-for link marker on its le side. Jake adds the current view,

so a thumbnail of the current visualization state appears next to the comment. Clicking on this

thumbnail loads the view into the visualization panel, allowing users to quickly return to it.
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Later, Jessica searches for additional evidence relevant to her hypothesis. Using the search controls

at the top of the comment panel (Figure 3.1a), she filters to show only those comments containing

thewords “brokeup”. By clicking the legendbelowthe searchbox, she can refineher search further

to show, for example, only comments that are flagged as hypotheses or evidence-for.

Her searchuncovers another observation that shows a long string of hits by John, Paul, George, and

Ringoa er thebreakupof theBeatles (alsoshowninFigure3.1). Jessica thendrags thisobservation

to her initial comment and links it as evidence-for her original hypothesis.

CommentSpace also provides a copy-pastemechanism for linking comments that are distant from

one another or visible under different filtering conditions.

The linked comment now appears below her hypothesis in the threaded discussion. Unlike in

standard threaded discussions, such linked comments can appear in multiple places in the com-

ment tree, as the linkingmakes thempart ofmultiple threads. Thus, the original hypothesis serves

as a hub for multiple discussions and observations. Other analysts may reply to it or link in addi-

tional comments and views from elsewhere. As the set of comments grows over time, Jessica can
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quickly return to her original hypothesis comment and filter to see the evidence for and against

it. Later, when the analysts begin to organize their findings and synthesize results, they can use

tags and links to organize its children into separate chains that contain only the comments that

are relevant to their result.

3.2 Tags and Links

CommentSpace introduces a general model in which analysts can tag comments and create links

between comments, between visualizations, and between comments and visualizations. Analysts

can link comments to multiple visualization states and situate them in not just one, but many

threaded discussions. For example, the same comment can appear in an ongoing discussion as

well as in a collection of evidence for a particular claim. When multiple analysts apply the same

tag or link to a comment, the tag’s tally increases—indicating agreement on that classification

or relationship.

We focus on exploring the impact of a small, fixed vocabulary of tags and links identified through

content analyses in prior collaborative visualization systems [48, 112]. Using a breakdown of the

comment types generated in sense.us and Many Eyes as a guide, we selected a minimal set of tags

thatwere common, descriptive, and actionable. The setwe selected is tailored towards hypothesis

generation and evidence gathering tasks and includes tags for identifying questions and hypotheses as

well as links for indicating evidence-for and evidence-against a hypothesis. We also include a to-do tag

for indicating unfinishedwork. Implicit reply-to links are used tomaintain the threaded conversa-

tion structure and created-on relationships are generatedbetweencomments and the views they are

a ached to. We used this small, fixed vocabulary because more flexible free tagging vocabularies

can take time to evolve and establish tag meanings [20, 40]. A fixed, task-specific vocabulary also

limits analysts’ ability to apply tags or links whose meaning is ambiguous or generic and forces

them to articulate consistent kinds of structure. Using a fixed vocabulary allowed us to explore

the impact of tags and links on particular analysis behaviors without the added complexity of an

evolving, community-specific vocabulary.

CommentSpace supports “doubly-linked discussion” [48], whereby authors can follow links be-

tween comments and views and only the comments associated with the current view are visible.

Doubly-linkeddiscussioncan facilitate serendipitousdiscoveryofnewcommentsasusers interact
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Figure 3.2: Using the Firefox extension, CommentSpace can facilitate discussion across the web. Here,

a discussion begins on (a) a custom Flash visualization of medal counts from the Winter Olympics and

incorporates information from (b) Wikipedia, (c) a specific view from Google Public Data Explorer, (d) a

chart from swivel.com, (e) an official Olympics webpage, and (f) a view from Google Maps. Replies are

shown as grey arrows (a→d,d→e,e→f) and evidence-for links are illustrated as green arrows (a→b,b→c).

with the visualization, but makes it more difficult for discussions to span multiple views. To ad-

dress this limitation, CommentSpace allows analysts to toggle between a doubly-linked comment

panel that shows only comments for the current view and a version that shows all comments. Un-

like insense.us, thismaster comment list is visible alongside thevisualizationandusers can toggle

between the two comment panels using tabs directly above the panel (Figure 3.1b). This approach

encourages discussions that span multiple views and makes it easier to investigate other views

without losing track of the current thread.

3.3 Design Details

CommentSpace is implemented as anAdobe Flash application that can be embedded inwebpages

containing interactive visualizations or run as an extension for the Firefox web browser. When

embedded with a set of visualizations on a site, CommentSpace provides a browser-independent



20

commenting environment that can be tightly coupledwith those particular visualizations. When

used as a Firefox extension, the commenting panel is accessible via a browser sidebar rather than

embeddedwithin thepage. This version supports linking to and commenting on visualizations as

well as any view of a web page with a unique URL. Thus, it enables social discussion and evidence

gatheringacross thewebandallowscollaborators to incorporate information fromoutside sources

in their analyses, as seen in Figure 3.2.

3.3.1 State Saving and Visualization Support

CommentSpace canbepairedwithanyvisualizationthat implementsasimple interface for se ing

andge ing visualization state. The visualizationmust be able to produce a vector of state parame-

ters for each view it generates, and also render a view fromany state vector it produced. These state

vectors serve as bookmarks for returning to views or for linking views to comments. Whenever

a state change occurs, the visualization must dispatch an event, notifying CommentSpace of the

change. Whenever a tag is applied to a comment or a comment is linked to a view, CommentSpace

serializes and saves a copy of the state in JavaScript Object Notation (JSON). The CommentSpace

web service stores and indexes these state vectors andpasses themback to the visualizationwhen-

ever a state needs to be reloaded.

The browser extension treats URLs as the state vector and thereby makes it possible to link com-

ments toanywebpage. Theextension listens for changes to thecurrentURL(includingchangesaf-

ter the fragment identifier, “#”) and generates a state vector incorporating theURL. This approach

is well suited for rich Internet applications like Google Public Data Explorer [43] that provide

uniqueURLs at every visualization state, andmakes a compelling argument for designers to build

visualizations that provide statefulURLswhich update dynamicallywhen the view changes [46].

However, we also include site-specific code to extract state vectors from some useful sites like

Google Maps that can generate stateful URLs but don’t automatically update the address bar.

3.3.2 Social Sharing and Filtering

As Viégas et al. [112] observed, discussions and continued interactions around visualizations on

the web are o en more fruitful when they occur within existing communities. To support and

encourageanalysiswithinexistinggroups,CommentSpacealsoprovidesseveral social sharingand

filtering tools. Users who log into CommentSpace using a Facebook account can share individual
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Figure 3.3: Share dialog from a version of CommentSpace with Facebook integration. Copies of com-

ments posted to Facebook via this share dialog are also retained in the CommentSpace comment stream

for later analysis.

comments and visualization views via their Facebook stream (Figure 3.3) and can generate unique

URLs to share views by email or IM. They can also filter the comment graph using their Facebook

contacts, showing only comments generated by neighbors in their social network.

3.4 Evaluation

We conducted two controlled studies and a live deployment to test whether tags and links would

improve users’ performance on common analysis tasks. In the first study, we tested the impact

of tags and links on two specific analysis subtasks: (A) classifying comments le by others and

(B) gathering evidence using comments. We also examined usage in a live deployment to assess

commenting behavior during exploratory analysis. Finally, we conducted a smaller, qualitative

study inwhich analysts used CommentSpace to perform a complex, multi-stage analysis with ex-

ploration, organization, and synthesis phases.



22

Figure 3.4: Versions of the interface seen in the tag (left) and no-tag (right) conditions. Users in the tag

condition gain tag filtering controls and see colored tag and link markers on comments.

Inboth studieswe compared a versionofCommentSpacewith tags and links (the tag condition) to

a version similar to sense.us [48] that provided li le support for structuring discussion (the no-

tag condition). In the no-tag condition participants could author new comment threads, reply to

existing comments and perform text searches but could not author or view tags and links. In the

tag condition, participants could add hypothesis, question, and to-do tags along with evidence-for and

evidence-against links. Additionally, tag participants could search and filter the comments by their

tags and links. Figure 3.4 shows the commenting interfaces for the two conditions.

3.4.1 Study 1: Tagging and Linking in Analysis Subtasks

We first explored the effect of tags and links on two evidence gathering subtasks: (A) classifying

commentsmade by others and (B) authoring comments when gathering evidence.

Methods

We recruited 24 paid participants (15 female, 9male) viamailing lists and a research participation

pool. Subjectswereuniversity students fromavarietyofmajors. Weconductedabetween-subjects

study inwhich 12 participants used the no-tag interface, while the other 12 used the tag interface.
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Figure 3.5: Interactive visualization of occupation data used in tasks A and B. This stack graph shows the

size of the U.S. workforce since 1850, broken down by occupation and gender.

Task A: Identifying and Classifying Comments. Our first task examined how late-joining

analysts navigate existing discussions to find comments relevant to a given hypothesis. It also

testedwhether thepresence of tags and linkshelpsusers classify those commentsmore accurately.

We anticipated that tags would provide common ground, leading to more consistent categoriza-

tion of comments, and wouldmake filtering and searchmore productive. Specifically, we hypoth-

esized that:

(1) Userswill identify evidence relevant to a particular claimwith greater accuracywhen tags and

links are present.

(2) Users of a tag-enabled system will use filtering and search tools more extensively to identify

relevant evidence.

We gave participants a visualization of U.S. occupation data similar to the one used in sense.us

(Figure 3.5) and a corpus of 181 tagged seed comments drawn from that system [48]. The author

tagged all hypotheses, questions, or to-dos in this set and added links between each hypothesis and ev-

ery comment thatprovided evidence-for or evidence-against it. During the study,weaskedparticipants
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to identify asmanycommentsaspossible thatprovidedevidence foror againstonespecifichypoth-

esis: Stereotypically male jobs have remained almost entirely male even as women have joined the work force. The

version of the seed corpus shown to participants contained 10 comments linked as evidence-for or

evidence-against this hypothesis. It also included another 12 comments linked to other hypotheses.

We gave participants 15 minutes to examine and categorize comments that provided evidence for,

provided evidence against, or were otherwise related to the claim. Since participants in the no-

tag condition could not mark comments by tagging them, we asked all participants to write the

three-digit identification number of each comment in the appropriate column of a paper work-

sheet. Subjects were not allowed to add comments, tags, or links during this task. The total num-

ber of comments was large enough that reading every comment individually in the allo ed time

was difficult.

As a baseline, three experts (the author and two research collaborators) also independently coded

the comments using the same guidelines as the participants, but with no time limit. Out of 181

comments, the experts identified 9 comments as evidence for the claim, 24 comments as evidence

against it, and 19 comments as related but not evidence.

Task B: Gathering Evidence as Comments. We designed the second task in Study 1 to ex-

plore comment authoring in an evidence-gathering task. We instructed participants to spend 20

minutes locating views and generating comments that provided evidence for or against the claim

they investigated in Task A. We told subjects that subsequent users would see their comments

when a empting to carry out Task A, and encouraged them to organize their comments so that

later users could easily find the relevant ones. All participants began the taskwith the same set of

seed comments they had seen in Task A.

We hypothesized that tags would help users identify unanswered questions and other relevant

commentsmore easily, and that they would encourage users to organize their discussions around

those comments. Specifically, users in the tag condition would be more likely to reply to existing

threads and—in particular—more likely to reply to comments identified as hypotheses

or questions.
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Within Group Agreement

Group Evidence
For

Evidence
Against

Related Unrelated Average
Kappa

(E)xpert 0.572 0.553 0.400 0.839 0.590

(T)ag 0.273 0.417 0.113 0.405 0.302

(N)o-tag 0.264 0.285 0.136 0.363 0.262

BetweenGroup Agreement

Pair Evidence
For

Evidence
Against

Related Unrelated Average
Kappa

E-T 0.335 0.425 0.151 0.444 0.339

E-N 0.314 0.302 0.183 0.412 0.303

T-N 0.276 0.338 0.105 0.384 0.276

Table 3.1: Average Fleiss’s kappa values showing within- and between-group agreement for expert, tag,

and no tag groups. A kappa of 0 indicates no agreement, while a kappa of 1 indicates perfect agreement.

Color redundantly encodes kappa values—darker colors correspond to higher agreement.

Results

ClassifyingComments. Totestourfirsthypothesis,wecomparedthe listsof commentsclassi-

fiedby eachparticipant inTaskA. Because thedata are notnormally distributed,we reportmedian

and median absolute deviation (MAD) and we use the non-parametric Mann-Whitney U-test for

significance. Participants classified a similar number of comments in both conditions,

(Median = 26.5,MAD = 4.5) inthe tagconditionand(Median = 25,MAD = 5) inno-tagandthere

was no significant difference. However, participants in the tag condition categorized significantly

more (U = 32.5, p < 0.024) comments as evidence-against (Median = 15, MAD = 3) than those in

no-tag (Median = 10,MAD = 3), showing that tags and links impacted categorization.

To assess the accuracy of users’ categorizations, we compared the level of agreement between com-

ment categorizations made by our subjects and those made by the experts. We measured consis-

tency (agreement with others in the same condition) and accuracy (agreement with the experts) by

computing average within- and between-group Fleiss’s kappa values based on subjects’ and ex-

perts’ categorizations (Table 3.1). In general, the experts were the most consistent, followed by

subjects in the tag and then no-tag conditions. More importantly, the tag group was more accu-
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Figure 3.6: Timing of search and filtering operations in Task 1 (in seconds since the beginning of the task).

rate—agreeing with the experts more than the no-tag group across each of the categories, with the

level of agreement on evidence-againstbeing themost pronounced. This improvement indicates that

tags and links encourage consistent labeling and improve shared understanding of comments for

late-joining participants.

Filtering and Search Because they had access to additional tag and link metadata relevant to

their task, we had hypothesized that participants in the tag condition would filter and search

more extensively.

The activity logs for Task A showmore total search and filtering operations by participants in the

tag condition (Median = 10, MAD = 6) than the no-tag condition (Median = 4, MAD = 2), but

this differencewas not significant (U = 46.5, p = 0.0749). However, participants in the tag condi-

tionwere farmore likely to search andfilter early in the task. On average,more thanhalf the search

and filtering operations in the tag condition came in the first four minutes of the task, while par-

ticipants in the no-tag condition took until almost the ten minute mark to complete half of their

filtering and search operations (Figure 3.6). Participants using tags searched and filtered signifi-

cantly earlier than participants in the no-tag condition (U = 2937, p < 0.0005).

This data provides a possible hypothesis for the increased level of consistency and accuracy in the

tag condition. Because subjects in the tag condition filtered and searched earlier, they were more

likely to find clearly marked pieces of evidence early on. This evidence may have helped calibrate

their categorization,makingthemmore likely tomarkpiecesof evidence forandagainst theprompt

consistently and accurately. Meanwhile, our observations of activity traces indicate that no-tag

subjects weremore likely to scroll sequentially through the list of comments, marking comments

as evidence-for even if they were onlymarginally related.
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Gathering Evidence In Task B, we had hypothesized that users in the tag condition would be

more likely to respond to existing threads, especially those containing hypotheses or questions.

Our results showed that participants generated similar numbers of comments in both the tag

(Median = 12, MAD = 4) and no-tag (Median = 12.5, MAD = 4) conditions, but those in the tag

condition generated significantly more replies (Median = 7, MAD = 3.5) than those in no-tag

(Median = 2, MAD = 1.5) (U = 32, p = 0.0226). Moreover, a chi-square test shows that par-

ticipants were significantly more likely to reply to existing discussions when tags were present

(χ2(1,308) = 27.45, p < 0.001), confirming our hypothesis. These results suggest that tags and

links helped tag participants identify and build upon interesting observations and encouraged

them to organize their findings.

3.4.2 Live Deployments and Exploratory Analysis

We also conducted two, one-month live deployments of CommentSpace to test its social sharing

and filtering features. During these deployments, we paired CommentSpace with ten different

interactive Flash visualizations (including those shown in Figures 3.1, 3.2, 3.5, and 3.7) and made

them publicly available at www.commentspace.net. While tagging and linking were available during

most of the deployment and were explained on a help page, we did not specifically instruct users

to apply tags and links during their analysis.

Over the course of deployment, the site received about 6,000 page views from over 850 unique vis-

itors. Of those visitors, 180 created an account on the site or logged in using a Facebook ID; 32 of

those users le a total of 123 comments. While the number of registered users and comments is

relatively small, the ratio of comments per user (0.68) is higher than forMany Eyes (0.31), the only

comparable social data analysis site forwhich statistics covering a similar timeperiod a er launch

were readily available [111].

Most of the analytic behavior reflected in these comments was exploratory. Users authored ques-

tions and made observations, but few posited hypotheses or responded to prior comments with

pieces of related evidence. The lack of evidence gathering behavior was accompanied by a low level

of tagging and linking. During our deployments, users with access to tagging and linking tools

authored only 5 tags and a single link.

Based on these experiences in the live deployment as well as earlier pilot studies, we suspect that

participants in our open-ended exploratory tasksdidnothave enough incentive to tag or link com-

ments. Becauseparticipants in such taskshaveno specific reason to revisit their owncomments or
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those of others, they have li le motivation to organize or label comments during exploration. The

superficial nature ofusers’ comments suggests thatmore specific tasks and incentives are required

to facilitate the transition from exploration tomore complexmodes of analysis. We revisit this ob-

servation in Chapter 5, where we demonstrate how analysts can use small monetary incentives to

encourage crowdworkers to generate explanations and candidate hypotheses enmasse.

3.4.3 Study 2: Exploration, Organization and Synthesis

Neither Study 1 nor the live deployment examined how analysts might use tags and links to syn-

thesize new findings and make decisions. In addition we found that users do not have strong in-

centives to author tags and links during open-ended exploratory analysis. Heer andAgrawala [46]

suggest that managing the division of work and providing appropriate incentives are important

considerations in designing collaborative visual analysis systems. We designed a second study to

investigate these issues.

In Study 2, teamsof participants completed a complex three-phase analysis task, consisting of a di-

rected explorationphase, an explicit organizationphase inwhichparticipantswere encouraged to

tag and link their comments as evidence for or against specific hypotheses, and a synthesis phase

in which they used the organized comments to make decisions and explain them in writing. We

managed each phase more explicitly and gave participants greater incentives than in Study 1 or

the live deployments. In particular, we gave participants smaller more specific tasks, especially in

the organization phase. As a form of social-psychological incentive, we explained how teammem-

bers would benefit from one another’s work and told participants that the best-wri en synthesis

results would receive an extramonetary reward.

Methods

We recruited 12 paid participants via campus mailing lists. We divided participants into two six-

person teams; one team worked together using the full, tag version of CommentSpace while the

other team used the no-tag version. We asked teams to carry out a series of exploration, organiza-

tion and synthesis tasks using an interactive visualization (Figure 3.7) of estimated return on in-

vestment for US college students [116]. Each team shared a comment workspace populated with

70 seed comments drawn from earlier pilot studies.
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Figure 3.7: Interactive visualization of college return on investment data used in Study 2. This view plots

universities according to their graduation rate and annualized return on investment. Color indicates public

(in-state or out-of-state) and private universities.

Wepaid all participants an initial fixed amount ($20) for participating in the study. In order to en-

courage participants to actively engage in the tasks, we also promised an additional, larger mone-

tary reward($50) to the twoparticipantswhoproduced thebest-wri en results (as scored judged

by a team of experts).

In the exploration phase, we instructed participants to explore the visualization and the existing

discussion, then leave comments documenting their findings. We encouraged participants to fo-

cus on two general areas of inquiry: “The relationship between graduation rate, the total cost of a endance,

and return on investment” and “The distribution of schools from each of the university systems in California.” We

gave participants 36 hours to complete the task, andwe instructed each participant to leave at least

10 comments.

In the organization phase, we instructed participants in the tag condition to organize their team’s

comments. We asked subjects to organize comments by topic, tag them, and link evidence to re-

lated hypotheses. To focus the task, we provided two hypotheses as prompts: “There is a clear corre-
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lation between graduation rate, the total cost of a endance, and return on investment” and “There are consistent

differences in the graduation rates, tuition, and return on investment between the University of California schools,

California State schools, and private universities in California.” We instructed the tag participants to add

links and tags until they were satisfiedwith the overall organization of the workspace. Because it

was not possible to organize content in the no-tag condition, we instead asked no-tag participants

to spend time reviewing the comments le by their teammembers. Members of each team carried

out the task asynchronously over a 24-hour period. During that time they were free to iterate and

build upon one another’s work.

Finally, in the synthesis phase, we asked all participants to complete a decision-making task us-

ing the visualization and the comments generated by their team. We posed two decision mak-

ing tasks based on the earlier prompts. In the first, we asked each subject to “Produce a ranking of

the top schools based on the relationship between graduation rate, the total cost of a endance, and return on invest-

ment.” In the second,we asked students to “Distributeapool of imaginary fundsamongst thepublic, in-state,

and out-of-state schools inCalifornia.” We chose these questions to force participants to think critically

and construct an argument that built on the exploratory analysis and organization they had com-

pleted. We asked participants to provide a short (1-2 paragraph) response to each prompt and to

cite the ID numbers of each of the comments that informed their decision. Participants authored

their synthesized responses in a web form, rather than in CommentSpace itself. During this task,

participants used CommentSpace to revisit comments and views. They could also copy and paste

references to comments directly into their responses. These citations, along with post-study sur-

veys and interviewswith select participants, allowed us to connect the synthesis behavior in this

phase to the exploration and organization in the earlier phases.

Results

All 12 of our recruits completed the exploration and organization tasks. Of these, ten (6 tag, 4 no-

tag) completed the synthesis task. The two remainingparticipants dropped out due to scheduling

conflicts. We examined all comments generatedby theparticipants and scored themto assess their

length, quality, and relevance to topic. We removed one participant in the tag condition who pro-

duced short, incomplete comments a er the task deadlines had expired.

Because of the scope and duration of Study 2, we used a smaller number of participants than in

Study 1. Due to the small sample size, most numerical results of this study do not achieve statisti-
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cal significance. Nevertheless, we believe the qualitative results and feedback from interviews are

indicative of real-world usage by teams of analysts.

Exploration. During exploratory analysis, participants in both conditions authored roughly

theminimumnumber of comments (Median = 10,MAD = 0). Three tag subjects applied at least

one tag, but noparticipants taggedheavily, andnone authored links. Thismirrors the results from

our live deployment and suggests that organization requires additionalmotivation. However, our

current study does not rule out the possibility that these low numbers could be the result of us-

ability issues or a cognitivemismatch between the task and the tool.

Organization. In the organization task, the five tag participants applied 84 tags and 15 links

across 60 of the 138 comments in the workspace. Tag participants added the majority of their tags

(83%) to comments authored by other users, indicating that they actively considered comments

other than their own. There was also very li le disagreement when tagging. Two or more users

added identical tags to 14 comments, but no two users ever added competing tags or links to the

same comment. This result suggests that, even without explicit coordination, users can author

tags and links that organize the content without conflictingwith one another.

While we also asked participants in the no-tag condition to review the comments le by other par-

ticipants during the second phase, our logs show that no-tag participants spent less time in this

phase (Median = 12 minutes, MAD = 6 minutes) than tag participants (Median = 23 minutes,

MAD = 13minutes) and examined fewer comments.

Synthesis. We found that tag participants produced longer responses in the synthesis task

(Median = 3082 total characters,MAD = 574) than those in the no-tag condition (Median = 1480

total characters,MAD = 487). To compare the quality of the responses, three independent expert

evaluators (one of whomwas an author) rank-ordered the anonymized responses from best (1) to

worst (9) based on their clarity, consistency, anduse of comment citations. The average Spearman’s

rank correlation coefficientbetween the evaluatorswas0.70, indicating good inter-rater reliability.

For each response, we averaged the rankings from all three evaluators to compute an average rank.

Comparing the average ranks of all responses, we found that tag participants ranked significantly

be er (Median = 3.83,MAD = 0.5) than those in the no tag group (Median = 6.17,MAD = 1) us-

ing a Mann-Whitney U test (U = 5.5, p < 0.0013). Tag participants also cited more comments in
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their responses (Median = 10, MAD = 3) than the no-tag participants (Median = 6, MAD = 1).

In addition, 79%of the comments cited by tagparticipants had been tagged or linked in the organi-

zation step and comments that hadbeen tagged or linkedwere nearly three timesmore likely to be

cited than those that had not. These resultsmirror our post-study interviews, which suggest that

the organization task helped tag participants gain a be er understanding of the findings, which

they carried over to the synthesis task.

The stronger synthesis responses authored by tag participants reflect both their use of tags and

link structures during synthesis and the increased awareness of the comments they gained in the

organizationtask. Tagparticipants spentmore time intheorganizationtaskthantheirno-tag coun-

terparts andvisitedmore comments andviewswhiledoing so. However, tagparticipants also cited

comments that had been linked together during organization, but had not previously been adja-

cent to one another, suggesting that they used the tag and link structure directlywhen generating

their result.

3.5 Discussion

Our studies demonstrate that tags and links can help participants identify and organize informa-

tion in a collaborative visual analysis tool. We offer a few concrete takeaways regarding the use of

tags and links for collaborative evidence gathering and synthesis tasks:

1. Analysts using tags and links weremore consistent andmore accurate when classifying comments. This re-

sult suggests that tags and links are usefulwhen establishing commonground and canhelp

late-joining participants get up to speed in ongoing discussions. Wenote however, that con-

sensusamonganalysts isnotalwaysdesirableandmaybesymptomaticofgroupthink. Com-

peting and divergent interpretations are o en desired, in which case tag vocabularies need

to be designed to encourage this.

2. Analysts using tags and links searched and filtered significantly earlier and classified contentmore accurately

than no-tag participants. Tags and links affect how analysts explore and help them calibrate

the way they categorize findings. Developers should be careful to select tags and links that

encourage desired types of contributions.
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3. Analysts were significantly more likely to reply to existing discussions when tags were present. This result

showsthat tags and links encourage contributionandcontinueddiscussionandcanbeused

in collaborative visual analysis systems to promotemore focused dialog.

4. In our live deployments andpilots studies, analysts didnot have enough incentive to tag or link comments dur-

ing open-ended exploration. Because analysts in such tasks o en have no immediate reason to

revisit their comments, they have li le motivation to author additional structure, even if

that structuremay be useful later. Developers andmanagers need to guide participation us-

ing explicit tasks and incentives in order to facilitate the shi from exploratory analysis to

deeper analytical tasks like organization and synthesis. We consider one approach to incen-

tivizing participation in Chapter 5, in whichwe pay paid crowdworkers to perform highly-

structured hypothesis-generation and organization tasks.

5. Tagging and linking resulted in be er synthesis when conducted as part of an explicit organization task than

when conductedduring emergent exploratoryanalysis. This result suggests a staged approach to col-

laborative analysis, wherein users first explore a data set, identifying interesting pa erns

and outliers, then organize those observations to facilitate deeper analysis. Such behaviors

have precedent in Wikipedia, where an entire class of contributors categorize articles writ-

ten by other editors [114]. The lightweight structure provided by tags and links makes this

staging possible.

The stronger resultsproducedby tagparticipants likely reflectboth theiruse of tags and link

structuresduring synthesis and the increasedawareness of the comments theygained in the

organization task. In Study 2, Tagparticipants spentmore time in both the organization and

synthesis task andvisitedmore comments andviewswhile doing so. In several cases, tagpar-

ticipantscitedcomments thathadbeen linkedtogether intheorganizationstep, buthadnot

previouslybeenadjacent tooneanother, suggesting that theyusedthe tagand linkstructure

directlywhengenerating their result. Onedirection for futurework is comparing the impor-

tance of authoring the structure versus referencing it. For example,wouldparticipantsperform

as well if the task of organizing the data was performed by a single moderator, rather than

distributed amongst the entire team?

Finally, while we have considered a small set of tags and links tailored to hypothesis generation

and evidence gathering, other tasks may be be er served by free tagging or by other custom vo-

cabularies. Tasks like clustering, for example, might benefit from tags like interesting and links like
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related-to that serve as flags or bookmarks and allow collaborators to quickly organize ideas but im-

ply less about the comments’ content or relationships between them. In very large workspaces,

tags and links like irrelevant and unrelated could allow analysts to dismiss comments and prune un-

wanted structure. These dismissal tags could also help combat groupthink and errant tagging by

providing analysts asked to curate an entireworkspacewith an alternatemeaningful actionwhen

no tags apply.
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Chapter 4

Scaffolding Mobile Sensing and Analysis for Novices

The addition of social tools to data analysis environments allows analysts to exchange ideas and

pool their analytic effort. However, as tools for collecting and distributing data grow more

widespread, newsocialdata analysis applications seemlikely to emergeoutsideof traditional anal-

ysis environments and with non-traditional, potentially novice users. Due to the increased avail-

ability of sensing technologies, citizens and novice users have new opportunities to pursue the

kinds of data collection and analysis that were once handled almost exclusively by professional

scientists and analysts [26]. Leveraging this citizen engagement effectively, however, requires not

only tools for data collection but alsomechanisms for understanding and utilizing citizens’ “local

knowledge”—the experiential and cultural context, insights, and expertise unearthed through

collaboration between locals and experts [24]. For example, while sensing systemsmay be able to

detect the presence of a pollution source, local insight may be required to identify the source or

reveal populations affected by it.

However, in the domain of air quality monitoring, most mobile monitoring systems [34, 57, 79]

have tended to emphasize improving environmental awareness, or have taken creative approaches

Previously published by the author, Paul Aoki, Neil Kumar, Sushmita Subramanian, and Allison Woodruff in [119].
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Figure 4.1: A personal air quality sensor (left). Community members with sensors (right).

to presenting and collecting this data through artful visual presentation [84], provocative plat-

forms [25], and gameplay [76]. These systems have not focused on enabling direct citizen engage-

ment in the data analysis process.

Meanwhile, most tools for viewing and analyzing sensed data do not explicitly support collabo-

ration and are not designed to elicit or compile these kinds of local insights. Analysis tools are

generally not accessible to novice users, since they tend to assume a high level of technical and sci-

entific literacy. We seek to understand how interactive systems for supporting citizen science can

facilitate input from novice users and provide scaffolding that allows them to make greater local

knowledge contributions.

This researchwas conducted as par of the broaderCommon Sense project [4, 32] , amobile sensing

program that aimed to deploy distributed air quality sensors in the service of practical action. The

Common Sense project served as a research testbed to explore participatory sensing, examining

issues such as the relative accuracy and resolutionof community-senseddata versusdata collected

in professional fixed installations. The project also focused on developing models for facilitating

engagement andcooperationbetween communitymembers, citizen scientists, activists, andother

stakeholders in the air quality ecosystem.

Whereas traditional air quality monitoring organizations utilize coarse, representative measure-

ments from a relatively small network of fixed sensors, we focus instead on amobile participatory

sensing [15] approach in which large numbers of personal, mobile sensors are deployed within

communities. This approach allows the community members impacted by poor air quality to en-
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gage in the process of locating pollution sources and exploring local variations in air quality. It

leverages citizens’ desire to understand personal exposure and knowledge of their communities

to help effect change.

4.1 Motivating Fieldwork

Before deploying our mobile sensing platform with community members, we wanted to under-

stand how thosemembers factor into discussions about air quality andwhat roles they could play

in data collection, analysis, and outreach. To gauge this, we conducted a concentrated investiga-

tion of the communities we hoped to engage with.

4.1.1 Methods

Over the course of several months, we interviewed novice community members as well as scien-

tists, remediation consultants, government representatives and other stakeholders in order to un-

derstandtheirperspectivesonairqualityandassess the role that technological interventionscould

play in their environmental decision-making processes [4]. This included 14 formal, in-person in-

terviews and approximately 30 informal interviews conducted either in person, by phone, or at

community meetings. In these interviews, we discussed existing practices and used prototype

sensors and interface mockups to explore people’s reactions to potential mobile sensing tools. We

recorded the formal interviews and took detailed field notes describing all of our interactions. Us-

ing these, we performed affinity clustering to identify a general set of emergent themes and design

principles. We also performedmore targeted clustering to identify common user needs, tasks, and

motivations for community participation and engagementwith environmental data.

4.1.2 Personas

Based on this fieldwork, we developed a set of personas to characterize the relevant stakeholders

and identified a set of common tasks and questions associatedwith each. Because the system pre-

sented here is targeted primarily at community members and novice users, we will limit our dis-

cussion to the threemost relevantpersonas: an activistor communityorganizer responsible for orches-

tratingactionsandpublicizingenvironmental issues, a browserwhohasan interest inenvironmen-

tal quality but is not directly involvedwith sensing, and a novice communitymemberwhomight
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act as a data collector (Table 4.1). While we focus here on tools for these community members and

novice users, we believe it is also valuable to provide tools for (and promote dialog with) expert

stakeholders with different needs, including scientists and government regulators.

Activist/Organizer Browser DataCollector

Motivation

Specific concerns about
the community with an
emphasis on political
change.

Likely to be interested
in environmental
and/or societal issues.
Possibly concerned
with political change.

Likely to have personal
health issues.

Goals

Prove there is a problem.
Determine neighborhood
exposure. Pursue
political change.

Understand broader
environmental and
societal impacts. See
trends.

See personal, immedi-
ate data. Modify per-
sonal behavior. Pursue
political change.

Desired Tools
Tool for community
understanding and
presentation.

Summaries,
Interactive tools for
exploring data.

Glanceable summaries,
Alarms, Forecasting.

Table 4.1: Some of the key personas derived from our initial fieldwork.

4.1.3 Design Principles

Based on our fieldwork, we also extracted a set of design principles for developing tools to support

visual analysis of sensed data. Some of the key issues are:

Support specific, goal-directed tasks. Participants were highly goal-oriented and motivated by specific

issues such as “What is my personal exposure throughout the day?” or “What are hotspots in this

area?”. “General” exploration did not engage them. As one interviewee put it, “You don’t want to

look at the interface and say, ’What is this supposed to tell me?”’

Show local and personally relevant data. Participants were most interested in data close to their homes

and other locations they frequented, rather than the aggregate regional data typically provided by

current air qualitymonitoring solutions. The interviews further suggest thatmany usersmay not

engageunless theyaredrivenbyhealthconcernsor someother issue thatpersonally connects them
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to the data. As one participant said, “Make the data as local as possible. People want to see their

house, their block, not a general neighborhood, not a general area.”

Elicit latent explanations and expectations. Community members have local knowledge and expertise,

such as beliefs about sources of pollution in their neighborhood. However, our interviews sug-

gest that it is o en difficult for them to translate this knowledge into specific queries. While com-

munity members were good at generating high-level or vague questions (e.g. “How does the free-

way impact air quality?”), they had fewer immediate instincts about how to break these questions

down. Therefore, it is important toprovide tools thathelp communitymembersdrawon their per-

sonal knowledge, for example by proactively prompting userswith possible queries or bywalking

them step-by-step through an exploration of the data.

Prompt realizations. As mentioned above, community members have significant local knowledge

thatcouldbehelpful in interpreting local environmentaldata. Accordingly, it isvaluable topresent

viewsof thedata thatareperceptually suggestiveofvariouspossiblepa erns, andthereforeprompt

spontaneous realizations that draw on the users’ local knowledge. For example, a view that aligns

readings frommultiple days may prompt a user to realize that repeated spikes at a site are the re-

sult of a recurring event—for example, a delivery truck unloading.

Beware of “language” barriers. Current tools to which community members have access, such as the

EPA EnviroMapper [35], are technically complex and require a moderate level of scientific knowl-

edge (for example an understanding of pollutant concentrations in parts per million). Novice

users may benefit from scaffolding to introduce scientific language, and tools that target novice

users should not require an understanding of such language.

Avoid inundating users. Understandably, participants did not want to be overwhelmed with unnec-

essary information and complexity (particularly if the informationwas somewhat new to them or

was beyond their level of expertise). Therefore, staged or gradual presentation of information is

desirable.

4.1.4 A Framework for Knowledge Generation in Citizen Science

Drawing on our personas and design principles, we derived a framework (Figure 4.2/Table 4.2)

for describing data collection and local knowledge generation in a citizen science se ing. This

framework does not just describe the existing ecosystem or citizen science applications. Rather,
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it builds on the key findings and user needs we indentified in our fieldwork and describes opera-

tions an ideal citizen science solutionmight address. As such, the framework serves as a potential

blueprint for designing new citizen science tools and for assessing existing ones.

Figure 4.2: Our framework for knowledge generation in

citizen science (right). Personas (left) are shown in

their intended phases.

In this framework, we divide the pro-

cess of collecting, analyzing, and syn-

thesizing environmental data and local

insights into six phases: collect, anno-

tate, question/observe, predict/infer, validate,

and synthesize. While these phases can

build on one another, they are not nec-

essarily linear and individual partici-

pants do not necessarily participate in

all of them. Rather, each involved stake-

holder may engage in the process at a

few phases and the various members of

the community together carry out ac-

tivities at allphases. Thevariousphases

each serve different functions and can

build on one another but do not always

do so. These phases may also be it-

erative—for example, answering ques-

tions and validating predictions may

require additional data collection.

Thephasesdetailedheredovetailwith formulations of the scientificmethod, and somesteps (ques-

tion, predict, and validate) echo the question-hypothesize-test formulations seen in the science edu-

cation literature. The collection, inference, validation, and synthesis stages in the framework also

have analogues in the sensemaking cycle (Section 2.1). Rather than describe the process of sense-

making, however, our framework outlines stages throughwhichnovice usersmayprogress as they

engagewith the process of citizen science. We developed the framework to help developers and or-

ganizers envision the stages atwhich various stakeholders participate in citizen science and iden-

tify leverage points for scaffolding novices into the analysis process. As a result, the framework’s

stages are more general than those in the scientific method or sensemaking cycle, and describe ac-

tivities that need not necessarily be formulated in the language of scientific discourse. Questions,
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6. Synthesize.

Participants, with professional analysts, domain experts, and regula-
tors, integrate data and knowledge generated in prior phases to pro-
duce summary documentation that can support activism, inform pol-
icy decisions, and impact regulations.

5. Validate.

Greater overlap between participants collecting data and other stake-
holders. Participants may look for additional data to corroborate their
ownfindingsandorganizersmayalsomakerequests foradditionaldata
or enlist the help of outside entities including domain experts andpro-
fessional analysts to help verify insights and predictions.

4. Infer/Predict.

Building on questions and observations, participants make predic-
tions and inferences about the observed phenomena (“I think values
get worse around rush hour.”, “Higher counts here seem to indicate a
nesting site.”). These may be less clearly articulated than in a formal
analysis, but can contain local insights. In these predictions, regard-
less of their precise formulation, lie some of themost important pieces
of local knowledge that communitymembers can contribute.

3. Question/Observe.

Using their own data and data collected by other participants, partici-
pants canbegin to askbasicquestions and identify trends. These canbe
introspective (“What ismy personal exposure to pollutants?”, “Is there
graffiti near my home?”) or generally inquisitive (“Are there parcel by
parcel trends in the appearance of a particular bird species?”).

2. Annotate.
Participants add additional insights to contextualize and supplement
data (e.g. when, where, and under what conditions was the data col-
lected) and provide indicators of data quality.

1. Collect.
Participants use sensors to record raw data or observe phenomena
and make manual observations. Most existing citizen science places a
strong emphasis on this collection phase.

Table 4.2: Framework phases in detail.
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predictions, and inferences generated by community members can contribute valuable insights

that inform a more formal and rigorous process of scientific analysis without necessarily being

framed as such.

Finally, while we frame this process in terms of air quality monitoring for the sake of this discus-

sion, the framework itself is applicable to a broad range of citizen science projects including other

environmental and healthmonitoring efforts.

Collect

In this phase, data collectors engage in various data collection activities, including using sensors

to record rawdataor observingphenomenaandmanually recordingobservations (as in traditional

citizen science activities like theChristmas BirdCount [50]). Most existing citizen science places

a strong emphasis on this collect phase.

Annotate

A er data has been recorded, data collectors provide additional insights that contextualize and

supplement it. Collectors can include additional information that helps explain the data; for ex-

ample, if a peak in the data corresponds to an event they observed during collection. They can also

include information about the data gathering process (when, where, and under what conditions

was the data collected) or comments about data quality.

Question/Observe

Using their owndata and data collected by other participants, data collectors (aswell as browsers

and activists) can begin to ask basic questions and identify trends. These questions can be in-

trospective (“What is my personal exposure to pollutants?”, “Is air quality bad at my home?”) or

generally inquisitive (“Where is air quality good and bad?”, “Are there block-by-block trends in air

quality?”). Some of these questions, including those dealing with personal exposure, can o en be

answered directly using the collected data, while others aremore abstract. These questions can be

implicit or explicit and may be driven by the data or by existing assumptions and expectations.

Users may also observe and note apparent trends (for example, higher levels of a pollutant at dif-

ferent times of day) or other phenomena of interest (high levels at an unexpected intersection).
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Infer/Predict

Building on these questions and observations, data collectors, browsers, and activists can begin

tomake predictions and inferences about the observed phenomena (“I think valueswill getworse

towards this intersection.”, “Higher readings here seem to indicate a source.”). The observations

and inferencesmade by communitymembersmay be less clearly articulated than in a formal anal-

ysis, but can contain local insights. While this phase o en resembles the “hypothesize” stage seen

in formulations of the scientific method, participants’ predictions and insights may not necessar-

ily be framed as clearly testable hypotheses. They may only suggest the existence of a trend or its

repeatability rather than proposing a mechanism for it. In these predictions, regardless of their

precise formulation, lie some of the most important pieces of local knowledge that community

members can contribute.

Validate

At this phase, contributions from data collectors are more likely to overlap with those of activists

and organizers. Here, data collectors, browsers, and organizersmay look for additional data to cor-

roborate their own findings and organizersmay alsomake requests for additional data. Addition-

ally, organizers may enlist the help of outside entities including domain experts and professional

analysts to help verify insights and predictions generated by collectors and browsers.

Synthesize

At the highest level, activists and organizers must integrate the data and knowledge generated

in prior phases to produce documentation, reports and other deliverables. Again, organizers may

involve domain experts and professional analysts, along with administrators and regulators, in

order to generate summary documentation that can be used to support activism, inform policy

decisions, and enforce regulations.

This framework (and particularly the annotate, question/observe, and infer/predict phases) provides a

blueprint for scaffolding novice users’ progression from initial elicitation through more involved

and integrated questions and contributions. In this chapter, we focus on applications that engage

novice users and guide them through these initial phases. We defer discussion of validation and

synthesis, which tend to utilize more specialized sets of tools for more expert users.
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4.2 The Common Sense Community Site

Building on the framework and our design principles, we designed and built the Common Sense

Community site, a suite of task-oriented applications that allow community members to partic-

ipate in the collaborative analysis of local air quality data. While the site is targeted primarily at

novice data collectors in a low-income urban area, it is also designed to be accessible to more spe-

cialized participants (browsers, organizers, scientists, administrators, and regulators) who may

engage in the analytic process at different phases.

The set of visualizations is designed specifically to facilitate the incremental progression of novice

community members throughmultiple phases of analysis. A personmay begin by collecting data

oraskingquestionsaboutdatacollectedbyothercommunitymembersandprogress throughstruc-

turedphases, triggeringnewkindsof insights. Over time, engaging inthisprocesscanallownovices

to becomemore adept contributors.

Providing a suite of simple task-oriented applications rather than amore general analysis tool has

several benefits. First, it lowers barriers to entry. Participants do not need to learn a complicated

tool in order to contribute. In turn, engaging in this process encourages legitimate peripheral par-

ticipation [64] and allows novice users and participants with li le computing experience to take

part. Whereas more general analysis tools such as Excel, Tableau [102], or Matlab require greater

familiaritywith formal analysisprocesses, these individual applicationsallowusers toanswerspe-

cific questions and can guide them towards particular kinds of insights. Figure 4.3 shows approx-

imatemapping between our applications and the framework discussed previously.

4.2.1 Collecting Data

Users collect air quality data usingmobile sensors designed as part of the broader Common Sense

project [32]. These sensors (Figure 4.1) are designed to be self-contained and unobtrusive moni-

toring devices that can be clipped to a bag or carried as an accessory. The units feature a custom

board design and embedded so ware that can be deployedwith commercial carbonmonoxide, ni-

trogen oxides, and ozone gas sensors. As users carry these sensors with them throughout the day,

the units transmit live sensor reading and GPS data to a database server over a GSM data network

connection. Users can also upload data from offline air quality sensors.
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Figure 4.3: Our framework for knowledge generation in citizen science with our applications (right) shown

in their intended phases.

4.2.2 Applications

To display this data, we built simple visual analysis applications (Figure 4.4) that target com-

mon, representative tasks and questions thatwe identified through our fieldwork. These applica-

tions included: monitoring personal exposure, inspecting recorded tracks, identifying locations

with poor air quality, and eliciting possible sources. These targeted applications exemplify our ap-

proach todesigning for citizen science—modular, accessible applications that serve specificneeds

and which together scaffold the process of local knowledge production. Users begin by selecting

an application that serves a particular need (e.g. “see my personal exposure”) from a portal site.

They then move between applications via a tabbed interface. We also provide gateways designed

to allow participants to build familiarity with simpler, more targeted tools and then transition

in a natural way to more complex tools designed to elicit different types of insights. This facili-

tates the transitions between annotation and questioning or questioning and inference we described in

our framework.
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Figure 4.4: The Common Sense Community Site showing data collected by a single user. TheMy Exposure

widget (a) and Tracks visualization (b) are visible along with the commenting panel (c).

In each of these applications, users can record their questions and insights by leaving comments

a ached to individual views of data. Each application includes an embedded version of the Com-

mentSpace commentingpanel (Figure4.4c) thatparticipants canuse to annotate anddiscuss their

findings. To encourage deeper participationwe augmented the defaultCommentSpace panelwith

dynamic prompts designed to elicit questions and observations, along with educational prompts

designed to help scaffold novice users’ understanding of the domain. We describe several applica-

tions in detail below.

My Exposure

Our first application is a widget that helps users answer one of the most common questions we

observed in our fieldwork: “What ismy exposure to a pollutant?” Many of the community members

we interviewed suffered from allergies or respiratory disease exacerbated by the poor air quality

in their neighborhood, and expressed a desire for tools that would help them gauge and mitigate



47

their exposure. Tomeet this need, we developed the My Exposure widget (Figure 4.5, Figure 4.4a).

My Exposure shows a single aggregatedmeasure of the pollutantsmeasured by a participant’s sen-

sor, normalized over time to the EPA’s Air Quality Index (AQI) [73]. Because themajority of people

are not familiarwith rawpollutant concentrations, all of the visualizations on the site also use the

AQI color encodings and category descriptors—“Good” (green ), “Moderate” (yellow ), “Un-

healthy for Sensitive Groups” (orange ), “Unhealthy” (red ), “Very Unhealthy” (purple ),

and “Hazardous” (maroon )—in addition to providing actual values.

Figure 4.5: Two views of the

My Exposure application.

For community members carrying our air quality sensors,

this application acts as an entry point to the site and

serves an ongoing need that is likely to garner repeat vis-

its. To encourage participants who are initially only curi-

ous about their exposure to further explore their data, we

placed the My Exposure view adjacent to the Tracks applica-

tion (discussedmomentarily).

Tracks

The Tracks application (Figure 4.4b) provides a simple way

for novice users to observe and ask questions about pollu-

tion data from their own sensor. In this visualization, pol-

lution measurements are plo ed on a map and also appear

in a timeline below the map view. The application behaves

like amedia player and provides a play/pause bu on, a play-

back speed control, and a draggable thumb on the timeline

that can be used to scrub back and forth in the dataset.

As mentioned above, in each of our applications, participants use the commenting panel (Fig-

ure 4.4c) to annotate and discuss their findings. This panel is collapsed by default to avoid over-

whelming the user, but expands to display intelligent prompts designed to elicit questions and

observations. For example, when a participant plays back data from their own sensor in the Tracks

application, the interface pauses brieflywhenever a dramatic spike occurs in the data and actively

prompts the user to document the change. The user can choose to either enter a comment or con-

tinue playback. If no action is taken, playback resumes a er a brief interval. Users can also pause

playback at any point to enter comments or questions.
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Places

Our fieldwork indicated that users’ initial inquiries about air quality are o en location-centric

(“What is air quality like in my neighborhood?”, “Are we protecting our ’treasures’, our schools,

hospitals, libraries, parks, etc.?”). Tohelp facilitatequestions andobservationsof this type,wepro-

vide a location-centricPlaces visualization. When auser starts the visualization, they are prompted

to enter an address and a time range. The application then produces an interactive map showing

all data collected by any sensor near the specified address during those times. Whereas the Tracks

application is designed tomimic the functionality of a media player, Places is designed to feel sim-

ilar to online mapping tools like Google Maps [41]. The map can be panned and zoomed and the

data points plo ed on it can be played back chronologically.

We includegateways that allowusers to enter thePlacesviewfromwithinother applications. When

using another application, a user can click a “seemore for this location” bu on to transition to the

Places view, centered on the location visible in their current application.

Hotspots

TheHotspotsvisualization(Figure4.6)helpsusers identify regionswith thebest andworst airqual-

ity over a period of time. The application is intended to help users answer questions about where

andwhen levels are high and low. It draws on the notion, frequently seen in our initial interviews,

that “worse things are exciting” and uses this to provoke insights regarding new locations and

unexpected sources.

Using a range slider, users selectwhether to show regionswith high or lowpollution levels. Read-

ings that match the specified thresholds are then plo ed on a map similar to the one used in the

Places view. Users can also transition to this visualization by clicking the “see other places with

readings this high/low” gateway fromwithin the Tracks or Places applications.

Comparisons

TheComparisons visualization (Figure 4.7) is designed to support inference and help users identify

repeated sources and relationships between them. The Comparisons visualization presents users

with a set of discrete “episodes”—short windows of time in which some notable event occurred

in the recorded air quality data. These episodes can be the largest spikes seen in an area over the

course of a period of time, or the periods of timewith the highest variance.
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Figure 4.6: The Common Sense Community Hotspots visualization. Users can adjust a range slider to find

areas where readings from multiple different sensors are regularly high or low.

Two observations from our fieldwork led us to focus on identifying spikes. First, we noted that

people o en wanted to “examine an event, not a timeline,” seeing detailed data at the scale where

the event was apparent, rather than at the level of the entire dataset. Second, we anticipated that

by grouping together sets of episodes that would otherwise appear separately, this view would

prompt noticings and inferences that might not emerge otherwise. In the Comparisons view, these

episodes are displayed as a set of small multiples [108] alongside a map that also plots that same

data. The small multiples are linked to themap so that brushing a plot focuses that event in both

views. This allows users to compare the events spatially as well as temporally.
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Figure 4.7: The Common Sense Community Comparisons visualization. Small multiples of the timeline

(right) showing the 10 highest episodes recorded during the past day. Hovering a timeline jumps to the

portion of the map showing those readings. The commenting panel is hidden at right.

Discussions

In addition to the collapsible commenting pane that accompanies each one of the visualizations,

the site features a Discussions view—a separate instance of CommentSpace that serves as a cen-

tral location for viewing all comments and provides a forum-like interface for further discussion.

All comments and annotations le by users in the other applications are visible here as separate

threads andusers can compare andbuildonobservations and insights frommultiple applications.
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4.3 Evaluation

Wedeployedanearlyversionof thesitewithcommunitymembers ina low-incomeurbanneighbor-

hood with poor air quality. There, we carried out interviews and think-aloud assessments to help

characterize participants’ use of the tools. We wanted to understand which visualizations were

perceived to be useful and approachable and assess whether this set of tools facilitated activities

at the various phases identified in our framework, such as emergent prediction and observation.

4.3.1 Methods

During our assessment we carried out seven interviews with nine community members. We re-

cruited participants through a local non-profit organization that focuses on environmental mon-

itoring and awareness. Five of the participants were affiliated with the non-profit and had partic-

ipated in air quality monitoring activities through the organization. Most of the participants we

surveyed were members of a small and relatively tightly knit community and the majority knew

one another in some capacity. Participant ranged in age from the mid-teens to late 40’s and had a

varietyof education levels, including fourmiddle- andhigh-school studentsandsomeparticipants

without high school degrees.

We conducted all of the interviews at the office of the non-profit. We started each session with a

brief interviewdesignedtoassessparticipants’knowledgeofairquality issuesandthe impactof air

quality on their community. In our discussions, we emphasized the impacts of particulate ma er

and described its sources. We then gave the participants a particulate ma er sensor and asked

them to take samples in a several block radius around the office. We asked participants to choose

a route that they thoughtwouldmaximize the amount of particulatema er detected. During the

sampling process, the interviewer walked with the participants and asked them to describe their

route choice and identify potential sources in the area. We used a commercial particulate ma er

sensor rather than our custom hardware since particle pollution is of particular interest in the

target neighborhood.

Once they returned to the non-profit, participants used an early version of the Common Sense

Community site to examine their data as well as data gathered by other participants. We con-

ducted a one-hour think-aloud evaluation with each participant in which they were instructed

to interact with the site and verbally relate their thought processes and any questions or insights

that occurred to them. Participants used a version of the site that included the Tracks, Places, and
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Comparisons visualizations detailed above. In the Places andComparisons views, each participant had

access to his or her own measurements as well as measurements taken by all of the previous par-

ticipants. Because users only had access to data collected by a small group of participants in short

windowsover the course of a fewdays,wewere unable to test theHotspots visualization,whichwas

designed to leverage larger datasets.

We recorded each of these interviews and coded participants’ interactions with the site to assess

whether ornot theyfitwithinour framework. Wealsoperformedclustering to extractkeyfindings

that emerged.

4.3.2 Scaffolding and Navigation Strategies

Most participants were able to explore the visualizations and inspect the data that they had col-

lected without much confusion. The majority began by identifying their current location on the

map and followed the track they had recorded, looking for peaks either on the map or in the time-

line. Most voiced questions and observations about the data and a fewmade additional inferences

or predictions. We report key observations that correspond to each of thephases in our framework.

Collect. Duringtheir interviews, almostall of theusers identifiedanearby freewayandtrucking

lots as the most likely sources of pollution and most chose routes that took them along a nearby

frontage road. The students we interviewed all observed the readouts on their sensors a entively

as they walked, looking for spikes and actively seeking out areas with higher readings. All other

participantsused the sensormorepassively and traversed areas that theypredictedwouldbemore

pollutedwithout actively noting the levels there.

Annotate. Using the Tracks view, several participants observed distinct peaks and verbally as-

cribed them to events that occurred or features that they passedwhile theywerewalking (“All the

trucks [get on the highway there].”, “That’s the new construction there.”). Participants also tended

to note readings taken adjacent to locations that interested them (“At least we don’t have any red

marksnear thepark...”). In twocases, participantshadobserved increasedparticulatema er levels

on the sensor as they walked and directly a ributed a peak to a particular source.
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Question/Observe. Most participants asked questions and made remarks about locations

(“Where was that again?”), data (“Was [that spike] at an intersection?”), and other participants

(“Where did she go?”, “Which person did that come from?”). Participants also asked broader ques-

tions about day-to-day and month-to-month trends. For example, one wondered whether pollu-

tion levelswould change during the rainy season and another asked “Would it be different if there

was wind?” A few participants also noted locations on themapwithout data and contributed ad-

ditional anecdotes and pieces of information about them.

Infer/Predict. Based on the data and their initial questions and observations, several partici-

pants made inferences about the behavior of phenomena they observed. For example, one partici-

pant compared her readings with those from a participant earlier in the day and noticed that her

ownwere higher. She inferred that the level of particulatema ermight be impacted by the change

in temperature.

Another participant investigated the data he had collected and extrapolated from it to predict air

quality readings further alongthe frontage roadsaying, “Iwouldn’tdoubt that it getsworsearound

thebend.” Talking about a several-block radius, he alsomade aprediction about thehealth impacts

of pollutants in the area. He noted, “Just in this radius I can honestly say [...] at least half the kids

have asthma. At least half.” He supplemented this prediction with a quick calculation, “Fi een

residences per area so ... that’s probably about a good 500 kids.”

ValidateandSynthesize. This set of interviews involvedonlynovice communitymembers and

incorporated only data collected during those participants’ sessions. As such, we did not empha-

size the validate and synthesize phases in this study.

4.3.3 Usability

Based on our fieldwork, weweremindful in our design process of the computer literacy of the tar-

get population. As one participant in our initial interviews noted, “There’s still that big digital

divide in [our city] and all poor neighborhoods.” Therefore, we were pleased that the system was

generally usable by all participants. The study did reveal a few straightforward usability issues,

which we are addressing, such as the need to make the playback controls more visible. These is-

sues did not appear to impact the results discussed below.
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4.4 Discussion

Here we discuss trends and activities we observed across all of our interviews.

4.4.1 Health and Personal Safety

As expected, displays tailored to personal use seemed to be an effective tool for engaging users in

theprocessof citizenscience. Themost interestedandreceptiveparticipantseachhadapersonalor

familyhealth concern (asthma, allergies, or someother reaction) that they a ributed to air quality.

One asthmatic participant who bicycles and does not own a car expressed a desire to use the data

to vet safe cycling routes, stating, “This has brought tomind—you’re gonna get exercise, butwhat

are you breathing in?” Participants with small children also expressed a strong desire to use the

tool on a regular basis to helpminimize exposure.

4.4.2 Socializing

Althoughwe conducted interviews separately and the sequential nature of the interviews did not

facilitate conversations or dialogues using the commenting tools, we did see social interactions

between participants when they viewed one another’s data. Several participants asked questions

like, “Which person did these come from?” and “Whose was whose?” and were eager to compare

their tracks against those recorded by previous participants. In particular, those from the same

social circle were interested in knowing which of their friends had collected data, where they had

walked, and how “well” they had done. For example, one participant located a friend’s track and

followed it for the entire length, noting each location she had visited and commenting, “She was

pre y good, [she found a few orange ones].” Comparing tracks in a competitivewaywas also com-

mon, particularly among the students we interviewed. One group of younger students, for exam-

ple, was excited to discover that their readings were higher than those of other participants. This

excitement suggests a competitive impulse that we might also leverage to encourage participa-

tion—possibly by introducing game-like elements to the collection and annotation processes.

During the interviews, several participants a ributed their continued awareness and investment

in air quality to a particular community organizer. One participant observed, “You could say she’s

our resource when things are happening. If she feels we need to know, then it’s up to us to get

involved.” These comments suggest that, at least within this community, maintaining long-term

interest and investment depends, in part, on leveraging these kinds of key communitymembers.
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Whileweobservedusers’ reactions to one another’s data, the linearnature of our interviewsdidnot

allowus to observe exchanges or evolving social use of the system. A longitudinal studywithmore

users is needed to understand these social aspects of the system and to gauge the impact of larger

amounts of data and discussion on the analyses that participants undertake.

4.4.3 Exposing Preconceived Notions

A number of our participants approached the data not from an inquisitive standpoint, but rather

expecting to find validation of their expectations about air quality. We noted comments from a

number of participants that suggested implicit assumptions about areas (“On Fourth Street, that

makes sense.”—referring to an area adjacent to a major freeway) and expectations about how bad

pollution levels would be (“[If you sampled this area] you’d see lots of red”). One participant,

in particular, was surprised that the level of particulate ma er she recorded was low, stating, “I

feel like it should be a li le stronger with picking up certain particulates and fumes. I know there

should be a lot more out there because there are a lot of businesses and industrial stuff.” To test

their assumption, the participant requested to take the sensor out again and collected

additional data.

Insomecases thesekindsofassumptionsmay functionas impliedhypothesesandpredictionsthat

participants can immediately begin to validate and build on. However, as in the case of the la er

participant, preconceptions can sometimes generate mistrust in sensors and tools that do not re-

inforce these existing notions. Understanding how to circumvent these preconceptions and help

novices build an informed understanding of these tools remains an important area for

future work.

4.4.4 Visualizations as a Catalyst for Discussion

We also observed several participants who used the map extensively as a catalyst for discussion.

These users would point and navigate to areas with strong personal relevance including their

homes, schools, andpublic areas, evenwhennoairqualitydata for thatparticular regionwaspresent.

One interviewee, inparticular, usedthemaptodiscusspollutionsourcesoutsidethezone inwhich

he had collected data and tomake predictions about sources and impacts there. He first predicted

that there might be “really high values” in main intersections adjacent to a nearby port and ship-

ping terminal, stating, “I can only imagine [it gets worse toward the intersections.]” He then con-

tributed a number of anecdotes about locations in and around the port including spots where
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diesel trucks idle, areas where water quality has been impacted by dredging, and an isolated resi-

dential building in the industrial zone. These anecdotes were o en very specific and drew on his

experience as a port worker and volunteer air monitor—for example:

“Here—definitely this intersection—wedidsomeofthesurvey inthisarealastyear. Here, righthere—this

is a fuel station. It’s a truck fuel station. This iswhere all the trucks get on the freeway. All the trucks are

always right here—along [Street 1] and [Street 2] and um, [Street 3] and [Street 2]. I know for sure,

these monitors are not going to catch moderate here. Lucky enough, nobody lives on these blocks. All

business, all industry.”

These kinds of observations are key examples of the types of local insights community members

may bring to the table andwhichwe hope to elicit.

4.5 Additional Design Considerations

While we have explored community analysis and sensemaking in the context of air quality moni-

toring, we believe our framework is applicable across awider range of citizen science domains. De-

pending on the nature and limitations of a particular community and domain, several additional

considerationsmay impact the application of our framework.

4.5.1 Qualitative vs. Quantitative data collection

In cases where the data collection occursmanually or where it is qualitative rather than quantita-

tive, participants can annotate the data as they collect it. As a result, the collect and annotate steps

may overlap. In all cases, allowing participants to annotate data with additional contextual infor-

mation (notes, photos, or othermetadata) at the time of collection can provide additional insights

thatmay be lost if data is annotated post-hoc.

4.5.2 Privacy and Security

Privacy and data security are serious system-level concerns in citizen sensing tasks [24] and also

affect howusers access and explore community data. In some cases, the personal nature of the data

collected may make it problematic to share data among participants, making it more difficult to
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transition fromobservingone’s owndata to askingquestionsandmaking inferences aboutbroader

trends. For example, epidemiological monitoring in which information about participants’ med-

ical histories are collected would require further levels of anonymization or authorization. Any

activity in which participants’ location or activities are either explicitly or implicitly tracked may

also require anonymization—whichmay limitparticipants’ ability to askquestions andmakepre-

dictions—or require participants to agree tomake their data open to the community. Similarly, if

citizen-sensed data is sensitive in nature, it may be difficult to share openly, evenwithin the com-

munity. For example, the precise locations of vulnerable archaeological sites or endangered species

may need to be protected in order to ensure that the cultural or environmental resources being

tracked are not further disturbed.

4.5.3 Stakeholder Goals and Competing Interests

Multiple communities, andevenmemberswithin the samecommunitymayhavegoals that arenot

compatible. For example, both hunters and recreational birdwatchersmay be interested in track-

ing and understanding the ranges, movements, and condition of a bird species, but the communi-

tiesmaybe ideologically incompatible. If a clear, unambiguous community goal canbe articulated,

the validation and synthesis phases can be designed explicitly to support it. Otherwise it may be

important to ensure the verifiability of collected data— particularly in the validation phase—in

light of competing interests.

4.5.4 Importance of Discussion Tools

Thepresence of tightly integrateddiscussion features in community-oriented tools is critical in or-

der for constructive community-driven knowledge generation to proceed. Persistent commenting

tools enable participants to transition between the annotate, question/observe, and predict/infer

phases while still retaining access to all prior discussions and contributions. By coupling discus-

sion to the visualizations and analysis tools (and ultimately to the raw data), a system can pro-

mote fluid discussion that is grounded in the underlying data, even as the community’s analysis

becomes increasingly abstract.
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Chapter 5

Crowdsourcing Social Data Analysis

Many datasets and analyses are simply too large to be managed easily by a single analyst or even a

small team. Automated data mining tools can find recurring pa erns, outliers and other anoma-

lies in the data, and help analysts find potential points of interest in big datasets. However, only

people currently canprovide the explanations, hypotheses, and insightswhicharenecessary toun-

derstand them [83, 88]. While tools like Sense.us [48], Many Eyes [111], and CommentSpace

(Chapter 3) are designed to support large-scale analysis involving many participants, but such

analyses do not typically occur in the wild.

Outside the lab, in real-world web-based deployments, the vast majority of the visualizations in

these social data analysis tools yield very li le discussion. Even fewer visualizations elicit high-

quality analytical explanations that are clear, plausible, and relevant to a particular analysis ques-

tion. To illustrate the lack of emergent analysis, we conducted a survey in April 2012 examining

the commenting behavior on visualizations in the Many Eyes site. We found that from 2006 to

2012, Many Eyes users published 294,646 data sets but generated only 128,478 visualizations and

le only 17,340 comments. We then randomly sampled 100 of the visualizations containing com-

ments and found that just 11% of the discussions provided a plausible hypothesis or explanation

for the data in the chart. This low rate of commenting may represent a shortage of viewers or may

Portions of this chapter previously published by the author, Jeffrey Heer, and Maneesh Agrawala in [120].
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Figure 5.1: Comments on social data analysis on sites like Many Eyes (a,b) often add little value for analysts.

We show that crowd workers can reliably produce high-quality explanations (c) that analysts can build

upon as part of their broader analyses.

be due to lurking—a common web phenomenon in which visitors explore and read discussions,

but do not contribute to them [117, 75]. When comments do appear, they are o en superficial or

descriptive rather than explanatory (Figures 5.1a, 5.1b). Higher-quality analyses sometimes take

place off-site [27] but tend to occur around limited (o en single-image) views of the data curated

by a single author.

Controlled studies of social data analysis systems like sense.us [48] andCommentSpace (Chapter

3) have shown that analysts and enthusiasts in more structured environments can share the pro-

cess of exploring datasets, proposing hypotheses, and seeking out new insights. However, in these

cases, eliciting high-quality explanations of a visualization required seeding the discussion with

prompts, examples, and other starting points designed to encourage high-quality contribution.

Moreover, depending on ad-hoc exploration by loosely-coupled cadre of users can give poor cover-

age of a dataset. Users may miss important views if they only flock to the most popular or easily

accessible views of the data. Ultimately, marshaling the analytic potential of crowds calls for a

more systematic approach to social data analysis—one that explicitly encourages users to gener-

ate high-quality hypotheses and explanations.

In this chapter we show how key sensemaking tasks like generating explanations can be broken

downandperformedsystematicallybypaid crowdworkers. Wedevelopananalysisworkflow(Fig-

ure 5.2) inwhich an analyst first selects charts, thenuses crowdworkers to carry out analysismicrotasks

and ratingmicrotasks togenerate andratepossible explanationsof outliers, trendsandother features
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in the data. Our approach makes it possible to quickly generate large numbers of good candidate

explanations like the one in Figure 5.1c, in which a worker gives several specific policy changes as

possible explanations for changes in Iran’s oil output. Such analytical explanations are extremely

rare in existing social data analysis systems.

Althoughthe simplest formof the analysismicrotaskasks crowdworkers to “Explainwhyachart is in-

teresting.” prompting users this way can result in irrelevant, unclear or speculative explanations of

variable quality. The explanationmay be irrelevant to the analyst—charts o en contain many in-

teresting features (e.g. peaks, valleys, steep slopes, flat regions, overall trends) that aworker could

explain, but the analyst o en cares about one, specific feature. The worker may a empt to scam

the task or may not a end to the relevant visual features of the chart. The worker may not know

what views of the data look like orwhat is required of a high-quality explanation. The explanation

may also be based on speculation or assumptions that are not supported by outside sources.
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Figure 5.2: Our workflow for crowdsourcing data analysis. In our workflow an analyst first selects charts,

then uses crowd workers to generate possible explanations for outliers, trends and other features in the

data. Other workers then rate the explanations, check their sources, and identify redundancies, before

returning results to the analyst.
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To address these concerns, we propose a set of seven strategies that address problems encountered

when eliciting responses and improve the quality of the worker-generated explanations of data.

We also focus on helping analysts make sense of the large sets of explanations generated by crowd

workers. Workers operating in parallel o en produce many redundant responses that give the

same general explanation for a trend or outlier. Analysts must spend time filtering and condens-

ing these redundant responses to identify unique explanations and determine if redundant ex-

planations corroborate one another. Because individual workers have different competencies and

domain knowledge, some of the explanations they produce are more plausible—more likely to be

true—than others. Determining which explanations are plausible and which are not is o en dif-

ficult, in part, because workers’ explanations o en lack detailed provenance—information about

the sources used to produce the explanation. In these cases, analysts cannot determine whether a

worker’s explanation is derived from a reputable source or ismerely theworker’s own speculation.

We explore a range of criteria that analysts may use to filter and organize explanations and decide

whether or not they are plausible. We then demonstrate two sets of techniques to help analysts

manage crowdsourced explanations:

(1)We explore two strategies (distributed comparison andmanual clustering) that use crowdworkers to

detect redundant explanations. Usingourmanual clusteringapproach—inwhichmultiplework-

ers cluster explanations and we select the most-representative clustering—we can reliably generate

clusterings that are as good as those produced by experts.

(2)We help analysts gauge the plausibility of explanations by exposingmore detailed explanation

provenance. We record workers’ browsing behavior in an embedded web browser. We also intro-

ducehighlighting tasks that allowworkers tomakefiner-grained citationsbymarkingparagraphs

and sentences on the web pages they cite. Additionally, we show howworkers can help verify the

provenance of others’ explanations via source-checking tasks.

Finally, we provide an explanation-management interface that allows analysts to interactively ex-

plore clustered explanations and examine their provenance. Using this interface, analysts can

quickly group and filter responses, in order to determine which explanations should be

further considered.
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5.1 A Workflow for Crowdsourcing Data Analysis

Hypothesis (or explanation) generation is a key step of the sensemaking model (Chapter 2) and

requires human judgment. Developing good hypotheses o en involves generating a diverse set of

candidate explanationsbased onunderstandingmanydifferent viewsof thedata. When analyzing

adataset, ananalystmayneed to exploremanydifferentviewsof thedata andbuildanunderstand-

ing of them. Developing suchunderstandingusually requires generating adiverse set of candidate

explanations and hypotheses. Our techniques allow the analyst to parallelize thework of generat-

ing explanationsbydividing it into smallermicrotasks andefficientlydistributing thesemicrotasks

across a large pool of workers.

We propose a four-stage workflow (Figure 5.2) for crowdsourcing data analysis. In our workflow,

an analyst first selects charts relevant to a specific question they have about the data. Crowdworkers

then examine and explain these charts in analysis microtasks. Optionally, an analyst can ask other

workers to review these explanations in rating microtasks. Finally, the analyst can view the results of

the process, sorting and filtering the explanations based onworkers’ ratings. The analystmay also

choose to iterate the process and add additional rounds of analysis and rating to improve the qual-

ity and diversity of explanations.

Selecting Charts

Given a dataset, an analyst first selects a set of charts for analysis. The analyst may interactively

peruse the data using a visual tool like Tableau [102] to find charts that raise questions orwarrant

furtherexplanation. Alternatively, theanalystmayapplydataminingtechniques(e.g., [54, 65, 122])

toautomatically identify subsetsof thedata that require further explanation. Ingeneral, ourwork-

flow canworkwith any set of charts and is agnostic to their source.

In our experience, analysts o en know a priori that they are interested in understanding specific

features of the data such as outliers, strong peaks and valleys, or steep slopes. Therefore, our im-

plementation includesR scripts that apply basic datamining techniques to find these three kinds

of features in time-series data. Given a set of time-series charts these scripts identify and rank the

series containing the largest outliers, the strongest peaks and valleys and the steepest slopes. The

analyst can then review these charts personally or post the charts directly to crowdworkers to be-

gin eliciting explanations.
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Generating Explanations

For each selected chart, our system creates an analysismicrotask asking for a paid crowdworker to

explain thevisual featureswithin it. Eachmicrotaskcontains a single chart andaseries ofprompts

asking the worker to explain and/or annotate aspects of the chart (Figure 5.3). The analyst can

present each microtask to more than one worker to generate a more diverse set of responses. Pre-

sentingmicrotasks tomultiple workers costsmore andmay also takemore time.

5.1.1 Rating, Clustering, and Checking Explanations

If a large number ofworkers contribute explanations, the analystmay not have the time to read all

of them and may instead wish to focus on just the clearest, unique explanations, or explanations

based on the most reliable sources. In the third stage, the analyst enlists crowd workers to aid in

this sorting and filtering process.

If the quality of the explanations generated by crowdworkers is inconsistent, an analyst can have

a second group of workers complete rating microtasks (Figure 5.4) in which they score the explana-

tions. Each rating microtask includes a single chart along with a set of explanations authored by

other workers. Workers rate explanations by assigning each a binary (0-1) relevance score based on

whether it explains the desired feature of the chart. Workers also rate the clarity and readability of

each response on a numerical (1-5) scale. We combine these ratings into a numerical quality score

(0-5) thatmeasures howwell aworker’s response explains the feature theywere asked to focus on.

quality = (clarity× relevance)

Multiplying by the binary relevance score gives irrelevant responses a quality score of 0, while all

relevant responses receive a 1-5 quality score based on their clarity.

Multiple workers operating in parallel o en generate duplicate or overlapping explanations and

can create additional work for the analyst. We include redundancy microtasks in which we ask

workers to identify and consolidate these redundant explanations. Analysts may also need to de-

terminewhether or not each explanation came from a reliable source. We include source-checking

microtasks in which crowd workers check the explanations and sources generated by others and

identify direct citations.
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Figure 5.3: An example analysis microtask shows a single chart (a) along with chart-reading subtasks

(b) an annotation subtask (c) and a feature-oriented explanation prompt designed to encourage workers

to focus on the chart (d). A request for outside URLs (e), encourages workers to check their facts and

consider outside information.
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Figure 5.4: An example rating microtask showing a single chart (a) along with explanations (b) from

several workers. The task contains a chart-reading subtask (c) to help focus workers’ attention on the

charts and deter scammers, along with controls for rating individual responses (d), indicating redundant

responses (e), and summarizing responses (f).
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5.1.2 Examining and Managing Explanations

Finally, once workers have generated explanations, the analyst can view the responses in an

explanation-management interface. Using the tools provided by our management environment,

analysts can filter, sort, and organize the crowd commentary and decide which explanations and

areas of the dataset to pursue further. An analyst may also choose to have workers iterate on a

task, generating either additional unique explanations or explanations that improve on the best

responses from a prior round.

5.2 Strategies for Eliciting Good Explanations

Simply asking workers to look at a chart and explain why it is interesting may not produce good

results. We consider five types of problems that can reduce the quality of these explanations and

discuss strategies (S1-S7) designed tomitigate these problems.

Note: For illustrationwe focus our discussion of strategies around two time series datasets (Fig-

ure 5.5); historical data on world oil production by nation from 1965-2010, and US census counts

of workers by profession from 1850-2000. We considermore datasets later in Section 5.6.

5.2.1 Problem 1: Irrelevant Explanations

A chart may be interesting for many reasons, but analysts are o en interested in understanding

specific visual features such as outliers or overall trends. Without sufficiently detailed instruc-

tions, workers may explain aspects of the chart that are irrelevant to the analyst. For example,

workersmay comment on the visual design of the chart rather than the features of the data.

S1. Use feature-oriented explanation prompts . Refining the prompt to focus on the spe-

cific features that interest the analyst increases the likelihood that workers will provide relevant

explanations. Consider the line charts in Figure 5.5. An analyst may be interested in peaks and val-

leys or steep slopes andflat regions in the oil production chart because such features indicate significant

events in the oil market. Alternatively, the analyst may be interested in longer-term tendencies of

the labormarket as indicated by the overall trend of the census chart. For other charts, analystsmay

be interested in more complex features such as clusters, repeating pa erns, and correlations be-

tweenmultiple dimensions.
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Figure 5.5: Sample charts from the oil production and US census datasets used in our examples and

experiments. Depending on their interests analysts may with to focus workers’ attention on a variety of

different features of a chart, including slopes, valleys, and overall trends.

Afeature-orientedpromptmight askworkers to “explainthepeaksand/orvalleys in thechart(ifanyexist)”.

A specific prompt like this can increase the chance that workers will refer to peaks and valleys in

their explanations, and alsomakes it easier for workers to note the absence of these features.
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5.2.2 Problem 2: Unclear Expectations

Workers may not understand what typical and atypical charts look like or what kinds of explana-

tions they are expected to produce. Similarly, theymay not know how to identify specific features

like peaks or slopes.

S2. Provide good examples . To introduce users to a dataset or feature type before they begin,

analysis microtasks can include example charts showing several representative views. Similarly,

including example responsesmayhelp to establish expectations and calibrateworkers to the style

and level of detail expected in their response [12]. In our implementation, analysts can generate

examples by selecting a small set of charts (typically 2-3) and performing the analysis microtask

themselves. We then package the example chartswith the analyst’s responses and present them to

workers before they begin their firstmicrotask. To reduce the amount of work an analyst needs to

do before launching a new dataset, the examples may come from datasets analyzed earlier. How-

ever, the data, chart type, and desired features should be similar to the new dataset. More interac-

tive training, inwhichworkers complete the example tasks themselves and then compare their re-

sponses against the example responses provided by an analyst, could also be used tomore strongly

communicate the style and content of a desirable response.

5.2.3 Problem 3: Speculative Explanations

Explanationsofdata invariablydependonoutside informationnotpresent inthedata itself. O en

interpretations are speculative or based on assumptions from prior experience.

S3. Include reference gathering subtasks. To encourage validation, an analysis microtask

can require workers to provide references or links to corroborating information on the web (Fig-

ure 5.3e). Requiring such links may encourage workers to fact-check more speculative answers,

uncover useful resources that the analyst can use later in the analysis process. It also provides in-

formation about theprovenance of the explanation that analysts canusewhenassessing the expla-

nation’s quality. However, asking workers to gather outside references may also increase the time

and effort associated with a microtask, and may increase worker a rition. This strategy is best-

suited to domainswith public data and broad accessibility such as demographics, economics, and

campaign finance, or where clear citations are important to the analyst. However, finding refer-

encesmay bemore difficult in niche domains where web resources are limited.
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5.2.4 Problem 4: Inattention to Chart Detail

In an effort to increase their payment, workers may proceed quickly through the microtask with-

out thoughtfully considering the prompt. They may also a empt to scam the task by entering

junk responses. Even well-intentioned workers may not a end to the chart features specified in

the instructions.

S4. Includechart readingsubtasks. Chart readingquestions (Figure 5.3b) can focusworkers

by requiring them to inspect axes, legends or series (“What country is shown in this chart?”), to extract

a value from the chart (“Inwhat year did the number of workers peak?”), or perform a computation based

on the chart (“Howmanymoreworkers were there in 2000 than in 1900?”).

Suchquestions forceworkers to familiarize themselveswiththedataandcandrawa entionto im-

portant aspects of a particular chart likemissingdata or anon-zero baseline. Additionally, because

“gold standard” answers to such chart reading questions are known apriori, we can automatically

check workers’ answers and eliminate incorrect responses that indicate spam or workers who do

not understand the instructions. Including such gold standard questions is a well known tech-

nique for improving result quality in crowdsourcing tasks [77, 95]. In our case these questions also

helpworkers pay a ention to chart details.

S5. Include annotation subtasks . Requiring workers to visually search for and mark fea-

tures in the chart can further focus their a ention on those details. For example, the microtask

may ask that workers first annotate relevant features of a chart and then explain those features

(Figure 5.3c). Such annotations encourage a ention to details and support deixis [49], allowing

workers to ground their explanations by pointing directly to the features they are explaining. In

our implementation each annotation is labeled with a unique le er (“A”,“B”,“C”,...) so workers

can refer to them in their text explanations. The worker-drawn annotations are also amenable to

further computation. For example,when summarizing responses, a system could aggregatemarks

frommultipleworkers to highlight hot spots on aparticular chart, or to calculate a collective “best

guess” for the overall trend of a time series [46].

S6. Use pre-annotated charts . Alternatively, the analyst can pre-annotate visual features

in the chart (Figure 5.5) so that workers pay a ention to those details. Such annotations help
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focus workers on specific chart details and also reduce irrelevant explanations (Problem 1). Al-

though pre-annotating charts greatly reduces the possibility thatworkerswill a empt to explain

the wrong feature, creating such annotations may require the analyst to perform additional data

mining ormanual annotation on the dataset.

5.2.5 Problem 5: Lack of Diversity

Multiple workers may generate similar explanations for a trend while leaving the larger space of

possible explanations unexplored.

S7. Elicit explanations iteratively. Analysis microtasks can be run in multiple, sequential

stages, in which workers see a chart along with the best explanations generated in prior stages.

The analyst may elicit more diverse explanations by asking workers to generate explanations that

are different from the earlier explanations. Alternately, the analyst can increase explanation qual-

ity by askingworkers to expand and improve upon the earlier explanations.

5.3 Assessing Explanation Plausibility

Even if workers produce clear, relevant, and well-grounded explanations, it is still up to the an-

alyst to examine each one to determine if it is plausible and if she should explore it further. Be-

cause workers can generate dozens or even hundreds of candidate explanations, identifying the

most promising ones can become a time-consuming process that requires considerable effort from

the analyst.

However, we can leverage the fact that workers’ explanations are o en redundant and are usually

supported by known sources on the web. Information about explanation redundancy and prove-

nance can help an analyst prioritize sets of redundant answers and quickly assess the plausibil-

ity of the possible explanations for the same phenomenon. We present a set of additional crowd-

sourcing techniques for identifying redundant explanations and providing provenance informa-

tion that can help analysts evaluate candidate explanations.

When considering explanations for trends or outliers, an analyst’s key task is to determine if each

explanation is likely to be true and decide whether it should be discarded, retained, or explored
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further. Analysts use a number of criteria to assess how plausible a candidate explanation is. We

enumerate several key criteria:

C1: TextClarityandSpecificity. Some fractionof crowdworkers typically satisfice—theyper-

form theminimum amount of work to complete the task—andmay generate poorly-constructed,

unspecific, or logically implausible results. By comparison, well-wri en explanations that appear

internally consistent can instill greater confidence in the explanations’ veracity.

C2: Explanation Frequency. If an explanation is proposedmultiple times by different work-

ers, it may indicate that the explanation is more likely to be a good one [100]. Conversely, a lack of

redundantexplanationsmaysignal that there aremany likely answers, andtheodds that thework-

ers have found themost plausible one are lower [107]. Clustering redundant explanations and in-

dicating the frequency with which each explanation occurs can help analysts make

these assessments.

C3: ExplanationProvenance. Ananalyst canalsouse informationaboutthesource fromwhich

an explanationwas taken, in order to help determine if it is plausible. Tomake this judgment, the

analyst needs to understand both where the explanation originated and how it was collected or

generated by theworker. An analystmay use provenance data to answer a number of specific ques-

tions about an explanation:

C3.1: Does the explanation cite a reputable source? If an explanation draws from a source

the analyst is familiarwith, the analyst can also leverage his or her knowledge of the source to help

decide if an explanation is plausible. Citing a source that an analyst recognizes and trusts (for

example a known news organization or reference) may bolster the explanation’s credibility, while

citing an unknown or disreputable source may diminish it. Similarly, surfacing details about the

cited source and other resources used by the worker as they derived the explanation can help ana-

lysts make this assessment.
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C3.2: Does the content of the explanation come from the source or theworker? In our

experience, workerswho are not domain experts (includingmostworkers on crowdmarketplaces

like Mechanical Turk) are more adept at extracting good explanations from sources than they are

at producing explanations on their own. As a result, explanations that repeat or paraphrase facts

and inferences from a good source tend to be more credible than explanations based on facts or

inferences produced entirely by the worker. As such, an indication of whether or not the content

is copied or paraphrased directly from the source can help analysts assess plausibilitymore easily.

C3.3: Is the explanation corroboratedbymultiple sources? If multiple versions of the ex-

planation cite the same source, it indicates a reliance on that source. If the source is known and

trusted, this reliance can increase confidence in the explanation. Alternatively, if multiple expla-

nations cite an unknown source, it can suggest that the source is one that the analystmaywish to

consider directly. Finally, multiple versions of an explanation that cite different reputable sources

may increase confidence even further, since sources can corroborate one another [124].

5.4 Identifying Redundancy via Crowdsourcing

Grouping redundant explanations together cankeep analysts fromspending time consideringdu-

plicate explanations and can help analysts seewhich explanations are frequent or corroborated by

multiple sources. However, determining whether multiple explanations are redundant is a diffi-

cult and somewhat subjective task.

The research communityhasproducednumerous automated text similarity and topical clustering

methods [69]. However, automated approaches tend to rely on the assumption that similar expla-

nations will use similar language. These measures of explanation similarity can fail when expla-

nations use different terms to describe the same phenomenon (e.g., “layoffs” instead of “downsiz-

ing”) orwhen the connectionbetween twocomments requires outsideknowledge (e.g., thenotion

that widespread “layoffs” may be related to an “economic downturn”). Moreover workers’ expla-

nations are typically short and the total number of explanations for a single feature can be small

(sometimes less than 10 in our examples). Small text corpuses like these present a challenge for

text similarity algorithms, since word co-occurrences tend to be very sparse, making it difficult to

produce reliable clusters [96].
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In contrast to automated approaches, humanworkers can leverage semantic information and out-

side knowledge to cluster sets of textual explanations. However, the limits of human a ention en-

sure that individualworkers canonlyexaminea limitednumberof explanationsatonetime. Work-

ers may also cluster explanations differently from one another, making it challenging to integrate

clusterings obtained frommultipleworkers. As a result, crowd-based clustering approachesmust

provide ameans of distributing the clustering tasks across workers and combining their efforts.

Weexplore twodifferentcrowdsourcedapproaches forclusteringexplanations: (1) Inourdistributed

comparision approach, workers compare responses two at a time and mark any pairs of responses

that give the same explanation. Our systemthen aggregates results frommultipleworkers to clus-

ter the complete set of explanations. (2) In our manual clustering approach, multiple workers con-

sider all of the responses (around 10 in our examples) andorganize them into clusters. Our system

automatically selects the best clustering from amongst those produced by the workers.

5.4.1 Distributed Comparison

In the distributed comparison approach (Figure 5.6), we ask crowdworkers to examine pairs of expla-

nations and indicate whether or not they are redundant . Using multiple workers, we collect at

least 5 judgments for every pair of explanations, then average the binary similarity judgments to

produce an average similarity score for the pair. To limit the impact of workers who a empt to

game the task, we include pairs of gold standard explanationswith known similarity, and remove

results fromworkerswho fail tomark them correctly. We then use these similarity scores to group

the explanations in to a fixed number of clusters using k-means clustering.

One challengewhenusingk-means ispicking thenumber of target clusters, k. We chose aheuristic

for selecting k based on our own experiences clustering sets of explanations generated byworkers.

We found that the median number of clusters in the sets of explanations we considered was k =

0.7∗n, wheren is thenumber of total explanations in the set. Because theproportion of redundant

explanations can vary from set to set and is dependent on the semantics of the data, rules of this

formarean imperfect solution. However, inourexperience, ourheuristic typicallyproducesavalue

closer to the actual number of redundant clusters we observed than other common heuristics do

(Tibshirani et al. [106] provide an overview of a number of methods for selecting k). We use our

method to set k in all of our experiments that use k-means.



74

Figure 5.6: In the distributed comparison approach, we show workers pairs of explanations for a phe-

nomenon and ask them to decide whether or not the two explanations are redundant.

While this approach decomposes clustering into small tasks that are easy for workers to perform,

it scales poorly as the number of explanations increases. Assessing redundancy for all pairs re-

quires
(n

2

)
operations and the number of comparisons grows quadratically as the number of ex-

planations grows. Framing these tasks as triplet-based comparison tasks and sampling to build

a partial similarity matrix (as in Tamuz et al.’s “crowd kernel” [103]) can reduce the number of
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total comparisons. Another solution may be to use a matrix completion approach similar to the

one proposed by Yi et al. [125] to build similarity matrices without askingworkers to compare all

pairs of items. However, both of these approaches create approximations of the complete worker-

generated similarity matrix, and may produce similarity scores for some pairs that were not in-

tended by workers. As a result, we opt to build the complete similarity matrix by eliciting mul-

tiple worker comparisons for every pair of explanations. In the future, we hope to evaluate and

employ approaches like these to reduce the number of worker comparisons necessary to build the

similarity matrix.

Additionally, because workers never see all of the explanations at once, they may miss redundan-

cies that require context from other explanations in the set. For example, four responses a ribut-

ing employment growth in El Paso to (A) “a new medical complex”, (B)“a new medical center at UTEP”,

(C) “construction on the university campus”, and (D) “constructions of newbuilding on campus”might be split

into two separate clusters if considered in isolation. If presented as a series of binary comparisons,

workers are likely to group A and B together because they bothmention themedical complex, and

are likely to group C and D because they discuss university construction. However, seeing the

larger set of explanations together could give a worker the opportunity to realize that all four ex-

planations are actually a ributing growth to the same hospital construction project.

5.4.2 Manual Clustering

Due to the many issues of distributed comparison, we developed a second clustering approach in

whichworkersexamineall of theexplanations forachartandgroupthemmanually. Displayingthe

full set of explanations gives workers the opportunity to identify clusters (like the one described

above) thatmay not be obvious without additional context.

To simplify the task of specifying clusters, we created a systemwhereworkers group comments by

color-coding them. In eachmanual clustering task (Figure 5.7), workers see the full set of explana-

tions for a chart and can color code each explanation by clicking in the pale e a ached to it. When

aworker assigns the same color tomultiple responses, the systemmoves the responses next to one

another, creating visually distinct clusters. These clusters allow workers to see their clusters as

they create them and compare similar comments side by sidewithout having to rely as strongly on

their workingmemory.
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Figure 5.7: In the manual approach, we show workers all explanations for a chart and ask them to cre-

ate clusters by marking redundant explanations with the same color. Similarly-colored explanations are

grouped together on-screen, allowing workers to see their clusters in context.

Clustering explanations is a subjective task and theboundariesbetweenclusters canvarydepend-

ing on subtle interpretations of the explanation text. As a result, multiple workers—even well-

intentioned andwell-informed ones—may produce different clusterings. Becausemany different

clusteringsmay be valid, it is difficult to identify one clustering as themost correct or to combine

the clusterings produced bymultiple workers into a single clustering.
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Figure 5.8: Illustration of our algorithm to select good worker clusterings from a larger set of possible

clusterings. Workers’ manual clusterings (left) are transformed into similarity matrices (center-left) and

averaged to create an average similarity matrix (center). Individual clusterings are then compared against

the average to choose the most representative (center-right), which typically strongly resembles cluster-

ings generated by experts (right).

Todesignanalgorithmfor selecting thebest clustering fromaset,webuilt onseveral observations:

1. If multiple workers agree that a particular group of explanations should be clustered to-

gether, there is a high likelihood that that grouping indeed reflects similarities in the ex-

planations’ content [100]. As a result, we assume that the clusterings that are themost dis-

similar from all other clusterings for a given chart are likely to be bad, while the clusterings

that are themost similar to all the others are likely to be good.

2. Most systematic errors (e.g., a worker satisficing by lumping all explanations into a single

cluster) can be caught by including gold-standard tests and by eliminating workers who

complete the task in less time than it would take for a fast reader to parse all of the expla-

nations. Other errors tend to be noisy (e.g., a worker satisficing by randomly clusterings

explanations) and are not usually duplicated bymultiple workers.

3. A singleworker’s clustering ismore likely to be internally consistent andunderstandable to

the analyst, because it reflects a single set of judgments made in-context with one another.

Therefore, choosing a singleworker’s clustering is preferable to combining results frommul-

tiple workers.

Based on these insights, we designed a procedure for extracting the most-representative clusterings

from a set of clusterings generated by multiple workers (Figure 5.8). The rating scheme we use is
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based purely on the correspondences between workers’ clusterings, without any a priori knowl-

edge of the content or quality of the explanations.

First, we ask a multiple workers to cluster the explanations for a chart using the manual cluster-

ing interface (Figure 5.8 le ). We then construct a separate cluster similaritymatrix for each worker’s

clustering (Figure 5.8 center-le ). Each row and column in this matrix corresponds to one of the

explanations in the set. We initialize all elements in this matrix to 0, then assign a 1 to each ele-

ment where the worker placed the explanation on the corresponding row and the explanation on

the corresponding column into the same cluster.

Next,weaverage together thematrices fromall of theworkerswhoclustered the set. Thisproduces

a single average similaritymatrix, whichwe normalize to a range of -1 to 1 (Figure 5.8 center). Positive

values in this matrix correspond to pairs of explanations that were clustered together by the ma-

jority of workers, while negative values correspond to pairs that the majority of workers did not

put in the same cluster. This matrix gives a sense which pairs of explanations are highly likely to

belong in the same cluster andwhich are unlikely to belong together.

Finally, we select themost-representative clustering—the clustering from a single worker that most

closely matches the average similarity matrix. We treat the positive and negative values in the av-

erage similarity matrix as rewards and penalties for a single worker’s clustering as follows. We

individually multiply each worker’s binary similarity matrix with the average similarity matrix

element-wise, and sum the values of all the elements in the product to obtain a final score (Fig-

ure 5.8 center-right). We retain only the clustering which produced the highest total score. The

resulting clustering groups together the most pairs of explanations in a similar way to the major-

ity of workers, and is thus the most likely to be correct. We surface only this most representative

clustering to the analyst.

5.5 Explanation Provenance

To make judgements based on source reputability, analysts need information about the websites

workers use to produce their explanations. We consider a set of techniques to help analysts make

these assessments.
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Figure 5.9: An analysis microtask (A) is paired with an proxied web browser embedded inside the task

(B). The explanation prompts in the interface (C) are linked to highlighting tools (D) that let workers cite

specific sections of source documents.

5.5.1 Logging Activity and Sources

In addition to the basic analysis microtasks introduced previously (Figure 5.3), we also developed

a versionwith an embeddedweb browser (Figure 5.9) that provides a record of workers’ browsing

activity during each task.

Recording the sites workers visit as they performmicrotasks is difficult to implement in practice

because thesame-originpolicy [90] implementedbymodernwebbrowserspreventscode fromone

internet domain from accessingweb pages loaded fromother domains. As a result, ourmicrotasks

cannot monitor activity that occurs in browser windows or tabs that do not originate from our

site. This restriction would normally make it impossible to capture workers’ web browsing and

search activity as they complete the task.
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We circumvent the restriction by having workers browse and search for sources using a custom

webbrowser embeddedwithin the analysismicrotask (Figure 5.9B). This custombrowser consists

of a set of browser controls and an IFrame that loads web pages via our own custom proxy server.

Requesting and then serving pages via our server (Figure 5.10) allows us to log each page workers

visit and track anyweb searches theymake as they forage for sources and candidate explanations.

For technical and security reasons, we do not proxy content served using protocols other than

HTTP and do not handle third-party cookies. As a result, we cannot load content from sites that

require users to authenticate or log in. Additionally,we cannot guarantee thatworkers performall

of their browsing within our proxied interface rather than in another browser window. However,

our analysis of log data suggests thatmost of the sitesworkers visit are rendered appropriately via

the proxy and thatworkers are activewithin our browserwindow for themajority of the time they

spend on the task.

5.5.2 Supporting Fine-Grained Citations

Typically, when a worker cites a web page to support an explanation, only a small portion of the

page (a paragraph or even a few sentences) is directly relevant to their explanation. Page-level ci-

tations canmake it difficult for analysts or workers in ratingmicrotasks to assess as source, since

they may need to examine the entire web page to find the relevant text. We support finer-grained

source citations by allowingworkers to highlight specific blocks of text within pages as sources.

Web Server

Proxy Server

Embedded

Browser

Analysis

Task

Internet

Worker Log

+Source

  Highlighting
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Figure 5.10: In our instrumented tasks, analysis microtasks are loaded from our web server (1). When

workers look for evidence using the embedded web browser inside the task, page requests are redirected

via our proxy server (2). The proxy server requests pages from their source (3), then logs them and injects

custom highlighting code (4). Workers can then highlight text in embedded browser to have it included

directly in their explanations (5).
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We add highlighting controls to existing web pages by injecting custom code into each page as it

is delivered by our proxy server. When a worker identifies a block of text on a proxied page that

provides or supports their explanation, they can highlight the text and then click on an overlay

(Figure 5.9D) to mark it as a source. We save the selected text and the URL of the page along with

the explanation.

5.5.3 Detecting Copying and Paraphrasing

Understandingwhether an explanation came directly from the source or theworker can be impor-

tant when assessing the plausibility of a response. In general, we know relatively li le about the

domain expertise of workers recruited in a marketplace like Mechanical Turk. Therefore, our de-

fault assumption is that explanations that directly paraphrase a reputable source are likely to be

plausible and aremore desirable for the analyst. Whenworkers add their own ideas and inferences

to an explanation, we assume the explanation is less likely to be plausible, and the analyst may

wish to either disregard the explanation or check the source themselves.

While people can generally identify whether or not an explanation is derived or paraphrased from

a source, paraphrasing is difficult to detect automatically. However, these source-checking tasks

are readily amenable to crowdsourcing.

In our workflow, we use source-checking microtasks to determine whether or not explanations are

drawn directly from a source. In these microtasks, workers examine an explanation generated by

anotherworker, alongwith the source document fromwhich theyderived it, and indicatewhether

the explanation “is copied or paraphrased from the cited source”.

5.6 Deployment

We have deployed our crowdsourced data analysis workflow on Amazon’s Mechanical Turk and

usedworkers togenerate 850explanations for60different chartsdrawn from15differentdatasets.

Our deployment included the jobs and oil production datasets described earlier, as well as data

onworld development (UN food price indices, life expectancy data by nation), economics (US for-

eign debt, employment and housing indices for major US cities, return on investment data for US
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Figure 5.11: An example of an high-quality explanation generated by a crowd worker for a chart showing

changes in foreign holdings of US sovereign debt since 2006. Here, a worker provided a novel hypothesis

for the dramatic increase in UK holdings of US debt and cited a web site that provided further detail.

universities), and sports (teamwinning percentages from theNBA andMLB, historical ba ing av-

erages of professional baseball players, olympicmedal counts by nation, andTour de France stand-

ings). These datasets are examples of a rich class of public-interest datasets that contain valuable

insights but do not require extensive domain knowledge. As a proof-of-concept, we generated a

set of 4 or 5 charts for each dataset that exhibited a particular characteristic, such as sharp peaks,

valleys or steep slopes. In some caseswe selected charts by hand, while in otherswe used our data-

mining scripts to automatically select the charts.

Three experts (the author, along with two other researchers with analysis experience) sampled

332 of the responses generated by workers and scored their relevance and clarity. We then gen-

erated quality scores for each explanation using the quality metric described in the Section 5.1.1.

We assigned quality >= 3.5 to 220 responses (66%), indicating thatmost explanations were very

good. Throughout thedeployment,we found thatworkers consistently generatedhigh-quality ex-

planations for all datasets and provided numerous explanations that we had not previously been

aware of.
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Figure 5.12: Sample explanations generated for charts showing university tuition and graduation rates (a),

olympic medal counts by country (b), and historical batting averages (c). In each case we asked workers

to provide explanations for a single outlier on a pre-annotated chart.
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For example, one worker examining the US debt dataset suggested that a large spike in British

purchases of US debt might be due to Chinese purchases through British brokers (Figure 5.11).

Other novel insights are shown in Figure 5.12. Figure 5.12a shows one of a number of outliers in a

visualization comparing cost to graduate versus graduation rate for major US universities. Work-

ers posed common hypotheses for several low-cost, high graduation rate universities (including

the one shown in the figure—noting that they had religious ties and were o en subsidized and

selective. Figure 5.12b, shows how a worker identified an anomaly in the dataset behind a visual-

ization of Winter Olympics medal counts by nation. The dataset combined counts from East and

West Germany, which competed separately for much of the 20th century. Figure 5.12c, shows one

worker’s explanation for a valley in baseball player John Mabry’s ba ing average in 2001. Five dif-

ferent workers all independently a ributed this prominent valley to a midseason trade in 2001

that reduced his at-bats and impacted his performance. While these kinds of detailed, analytic

responses and hypotheses are extremely rare in systems like Many Eyes, our approach is able to

reliably elicit them for a wide range of datasets.

5.7 Evaluation

We conducted a series of experiments to test our strategies for eliciting good explanations, and

evaluate our approaches for detecting redundancy and gathering explanation.

A full factorial experiment to evaluate all seven strategies for eliciting explanationswould be pro-

hibitively large. Instead we evaluated the strategies as we developed them. We first tested five

initial strategies (S1-S5) together to gauge their overall impact. We then examined the more sub-

tle effects of three strategies—S1, S2, and S5—in a factorial experiment. Based on these results,

we added three additional experiments to compare reference gathering (S3), annotation strategies

(S5 and S6), and iteration (S7). We also evaluatedworkers’ performance on rating and redundancy-

detection microtasks, and tested their ability to detect copying and paraphrasing to verify expla-

nation provenance.

5.7.1 Experiment 1: Strategies S1-S5 in Two Worker Pools

To evaluate the cumulative impact of the first five strategies (S1-S5) we asked one pool of workers

to complete analysismicrotasks that included all of them (strategies condition)while a secondpool

completed the samemicrotasks but without the strategies (no-strategies condition).
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Non-US workers represent a large portion of the workers on Mechanical Turk [55] and can o en

provide results more quickly and cheaply than US-based workers, but studies of Mechanical Turk

have shown that workers from outside the United States exhibit poorer performance on content

analysis [92] and labeling tasks [19]. We designed this experiment to determine if a similar per-

formance gap exists for data analysis tasks andwhether our strategies could improve results from

these workers.

We hypothesized that (1) results fromUSworkerswould be of higher quality than results from non-

USworkers, but (2) employing strategies S1-S5would increase thequality of explanationsproduced

byworkers in both groups.

Methods

Over the course of the first experiment, we ran 200 analysis microtasks using Mechanical Turk.

We divided thesemicrotasks into 8 experimental conditions:

2 strategy variants×2 worker pools×2 datasets = 8

Themicrotask in the no-strategies condition askedworkers to “explainwhy any interesting sections

of chart might have occurred”. In the strategies condition, the microtask (Figure 5.3) included a

feature-oriented prompt (S1) asking workers to “explain why any strong peaks and/or valleys

in thechartmighthaveoccurred”. Themicrotaskwasprecededby instructions that includedthree

example charts (S2)with annotations and explanations. The strategies condition also included a

reference-gathering subtask (S3) that required workers to provide the URL of a website that

corroborated their explanation. To help safeguard against scammers, we included chart-reading

(S4) subtasks in both conditions. We also included an annotation subtask (S5) that instructed

workers to highlight the peaks and valleys they explained. We also asked workers to fill out a de-

mographic questionnaire.

We used both the oil production andUS census datasets and selected five charts from each dataset

with the largest variance. All of the resulting charts exhibited a range of features including peaks,

valleys, slopes, and large-scale trends.
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We collected five explanations for each of the charts. We also restricted eachworker to a single con-

dition (either strategies or no-strategies) and allowed workers to explain each chart only once, for a

maximumof 10 responses perworker. We paidworkers $0.05 permicrotask during some early tri-

als, but later increased the pay rate to $0.20 per microtask to reduce completion time. We based

these rates on prior studies [47, 70] which have shown that while pay rate impacts completion

time, it has li le impact on response quality.

Results

Over the course of the experiment, 104 different workers produced responses for the 200 micro-

tasks. Toassesshowwellworkersperformedthe tasks, three experts (including theauthor) scored

each response and assigned it a quality score (as described in Section 5.1.1). The experts also an-

alyzed the content of the responses, labeling each one as either an “explanation” if it explained the

chart featuresora“description” if it simplydescribedthe features. Finally, theexperts labeledwhether

ornoteachresponsereferredto “peaksorvalleys”,“steepslopesorflatregions”, or an“overall trend” in the data.

We observed no significant difference in response quality, completion time, or length between the

census and oil productions datasets in either worker population, indicating that producing ex-

planations was of similar difficulty across both datasets. Thus, we combine the results from both

datasets in all subsequent analyses.

WorkerPools. Wefoundthatworkerpoolhadasignificantmaineffectonquality (F1,198 = 12.2,

p < 0.01). Response quality scores assigned by the expertswere higher for USworkers (µ = 2.23,

σ = 1.79) than for non-US workers (µ = 1.37, σ = 1.87) (Figure 5.13), confirming our first hy-

pothesis. Quality scores for US workers were higher, in part, because 83% of US responses con-

tained relevant explanations, while only 42% of responses from non-US workers did so (per Sec-

tion5.1.1, irrelevantexplanationsreceiveaqualityscoreof0). Non-USworkers frequentlydescribed

the chart (34% of responses) rather than explaining it, or produced responses that were so poorly

wri enwecouldnot classify them, and(24%of responses). Thepoorperformanceofnon-USwork-

ers may reflect their lack of familiarity with the datasets as well as a language barrier. In our de-

mographic questionnaire, only 35% of non-US workers in the census conditions could accurately

describe the US census, versus 100% of US workers. Less than 20% of non-US workers reported

English as their native language, versus 95% of USworkers.
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Figure 5.13: Percent of responses containing an explanation(top) and average explanation qual-

ity(bottom), by worker group (US / non-US workers) and strategy condition (strategies / no-strategies)

in Experiment 1. Error bars give 95% confidence intervals.

We also found that across both the US and non-US groups, workers in the strategies condition pro-

duced higher quality responses (µ = 2.27, σ = 2.00) than those in the no-strategies condition

(µ = 1.33, σ = 1.62) (F1,198 = 14.5, p < 0.01), confirming our second hypothesis. However, the

improvement in average quality of responses for non-USworkers (196%)wasmuch larger than for

USworkers (28%).

These results suggest that using strategies S1-S5 makes a bigger difference when workers are cul-

turally unfamiliar with the task and/or dataset.

ReferencingChart Features. The introduction of strategies S1-S5 greatly increased workers’

a ention to peaks and valleys in the data. Workers in the strategies condition, which included a

feature-oriented “peaks and valleys” prompt (S1) alongwith examples (S2) and annotation subtasks

(S5) that reinforced theprompt, referred topeaksandvalleysvery consistently (90%ofUS and68%

of non-US responses). Workers in the no-strategies condition, however, referenced very few of these

features (16% of US and 6% of non-US responses). The no-strategies workers o en referred to overall

trends or slopes in the data or failed to provide an explanation at all.
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Completion Times and A rition. Across both pools, workers took significantly longer to

complete eachmicrotask in the strategies condition (Median=4minutes 11 seconds) than theydid in

the no-strategies condition (Median=2 minutes 48 seconds) (t =−3.668, p < 0.01). We computed

a rition as the percentage of participants who began amicrotask but quit without completing it

and found an a rition rate of 66% for workers in the strategies condition. A rition was less than

24% in the no-strategies condition. These results suggest that workers are less willing to complete

analysis microtasks that include additional subtasks like chart reading and reference gathering.

Because non-USworkers generated such low quality explanations, we used onlyUSworkers in our

subsequent experiments. Also, because we saw similar results in Experiment 1 across both the oil

production andUS census datasets, we used only the census dataset in Experiments 2-5.

5.7.2 Experiment 2: Exploring Individual Strategies

Ourexperience inExperiment1 ledustobelieve that threestrategies, feature-orientedprompts

(S1), examples (S2), and annotation subtasks (S5), had the greatest impact on response qual-

ity. To be er understand the effect of these strategies, we conducted a factorial experiment that

varied each independently. We hypothesized that:

(1) Feature-oriented explanation prompts (S1) would improve quality by increasing the propor-

tion of responses that explained the specified feature.

(2) Examples (S2)would improve quality, especiallywhen pairedwith a feature-oriented prompt,

by familiarizingworkerswith the prompt and chart type aswell as the expected length, style, and

content of good responses.

(3) Annotation subtasks (S5)would encourageworkers to refer to specific points in the chart and

improve quality by increasing the number of responses that explained prompted features.

Methods

In Experiment 2, we ran 160 explanationmicrotasks divided into 16 conditions:

4 prompts×2 examples variants×2 annotation variants = 16



89

Figure 5.14: Percent increase in the number of references to the prompted feature (left) and the average

explanation quality score(right) for each feature-oriented prompt (S1) condition in Experiment 2 over the

control condition.

Our4prompts included three feature-orientedprompts (S1) prompt-slopes, prompt-trend, and prompt-

peaks, and one control prompt, prompt-control. In the prompt-slopes conditions, we asked workers to

“explain why any sharp slopes and/or flat regions in the chart might have occurred”, while in the

prompt-trend conditionswe askedworkers to “explainwhy the overall trend in the chartmighthave

occurred”. The prompt-peaks and prompt-control conditions used the same prompts as the strategies

and no-strategies conditions from Experiment 1, respectively.

To test the examples strategy (S2), we included an examples condition that showed workers three

examples of high-quality explanations and a no-examples conditions that provided only short text

instructions. To test annotation subtasks (S5), we included a worker-annotation condition that re-

quired workers to mark features in the charts and a no-annotation condition that did not. For con-

sistencywithExperiment 1,we included reference-gathering subtasks (S3) and chart-reading sub-

tasks (S4) in all conditions.

Results

Prompts. Including a feature-oriented prompt (S1) increased the percentage of responses that

referred to that feature by between 60% and 250% compared to the control condition, depending

on the feature (Figure 5.14). Workers in the prompt-peaks (χ2 = 8.455), prompt-slopes (χ2 = 5.952),

and prompt-trend (χ2 = 37.746) were all significantly more likely (all p < 0.02) to explain their

prompted feature thanworkers in prompt-control. Similarly, including prompts increased response

quality by between 69% and 236% compared to the prompt-control. This increasewas significant for

workers in prompt-trend (U = 372.0, p < 0.001) and prompt-peaks (U = 564.5, p = 0.008), confirm-

ing our hypothesis for those two conditions. The increase in prompt-slopes (U = 624.5, p = .064)
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Figure 5.15: Average response quality by prompts (prompt-trend, prompt-peaks, prompt-slopes, or

prompt-control) and examples (examples, no-examples). Error bars show 95% confidence intervals.

was not quite significant, probably because prompt-control workers were already more likely to

explain slopes.

Providing Examples. Workers in the examples conditions produced higher quality responses

(µ = 2.41,σ = 1.78) thanworkers intheno-examplesconditions(µ = 1.91,σ = 1.77) (Figure5.15),

but the difference in quality was not significant (U = 2717.5, p = 0.09). Anecdotally, we ob-

served that providing examples improved the consistency with which workers marked and an-

notated charts. Workers in the worker-annotation condition who saw examples of high-quality re-

sponses with annotated features, emulated those examples (Figures 5.1c and 5.4), usually mark-

ing a few clear peaks, slopes, or trends. Workers who did not see such examples created annota-

tions that were more difficult to interpret and o en annotated a larger number of features than

they explained.

Annotation. In the worker-annotation condition, workers annotated chart features that were rel-

evant to the prompt in 60 of the 80 trials. Most workers added either one or two annotations to

the chart as they completed the microtask, but a few added as many as eight. Workers who re-

ceived a feature-oriented prompt aswell as an annotation subtask referred to the feature specified

in their prompt more frequently (S1 and S3: 85%) than workers who received a feature-oriented

prompt without an annotation subtask (S1 only: 72%), but the difference was not quite signifi-

cant (χ2 = 3.142, p = 0.076). Many worker-annotation workers also referred to their annotations
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by le er in their responses, providing deictic references to features. Neither the average time to

complete the explanationmicrotasknor the a rition ratewere significantly different between the

worker-annotation and no-annotation conditions.

Reference-Gathering. In Experiment 2, we asked workers in all 16 conditions to gather refer-

ences from theweb to support their responses. Out of the 160 responses, 151 included validURLs,

of which 137 were unique. We assigned each reference a quality score from 1-5 based on how well

it supported the explanation. Workers in the examples condition generated higher quality URLs

(µ = 2.73, σ = 0.96) than those in the no-examples case (µ = 2.4, σ = 1.0) but these differences

were not significant (U = 3018, p = 0.08).

5.7.3 Experiment 3: Reference Gathering

Basedon results fromExperiments 1 and2,wehypothesized that including referencegathering

(S3) would increase response quality. However we also hypothesized that the additional effort

required to complete reference gathering tasks would contribute to high a rition. To test these

hypotheses, we ran an additional experiment with 50 trials split between two conditions. The

gathering condition was identical to the strategies condition in Experiment 1, while the no-gathering

condition omi ed the reference gathering subtask but was otherwise identical.

Results

The 25 responses in the gathering condition produced 20 unique URLs and URL quality was simi-

lar to Experiment 2 (µ = 2.67, σ = 1.02). Surprisingly, however, the no-gathering condition pro-

duced significantly higher-quality explanations (µ = 3.38, σ = 1.55) than the gathering condi-

tion (µ = 2.22, σ = 1.94) (U = 211.5, p = 0.046). The a rition rate was lower (46%) in the

no-gathering than in the gathering condition (64%) but the differencewas not significant (χ2 = 2.209,

p = 0.137). Finally, we observed that themedian completion time for no-gatheringmicrotasks was

only 2 minutes 36 seconds, significantly faster than the 3 minutes 45 second median for gathering

tasks (U = 175.5, p = 0.008). Together, these results suggest thatwhile reference gathering tasks

produce useful references, they do so at the cost of speed and quality. As a result, more passive

techniques for assessing provenance like those discussed in Section 5.5, may be preferable.
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5.7.4 Experiment 4: Annotation Strategies

In our first two experiments, we found that annotation subtasks (S5) helped workers focus

on chart features and facilitated deixis. In some cases, however, the analyst may wish to pre-

annotate charts (S6) to focus workers’ a ention on specific features. To compare the trade-

offs between these two strategies, we conducted another study with 50 trials split between two

conditions—worker-annotation, in which we asked workers to mark the prompted feature before

they explained it, and pre-annotation, in which the feature was pre-marked. We hypothesized that

workers in the pre-annotation condition would generate more responses that explained the

prompted feature than those in the worker-annotation condition.

Results

We found no significant differences between the worker-annotation and pre-annotation conditions.

However the number of responses that explained the prompted feature (“peaks and valleys”) was

high in both the pre-annotation (88%) and worker-annotation (96%) cases. In 84% of the trials in the

worker-annotation condition, workersmarked the exact same peak or valley thatwe had highlighted

in the pre-annotation condition, suggesting that if the features of interest are known a priori, both

strategies performwell.

5.7.5 Experiment 5: Iteration

In our fi h experiment, we tested whether eliciting explanations iteratively (S7) could im-

prove the diversity of workers’ explanations. First, we asked one group of workers (the initial con-

dition) to generate explanations for a dataset. A er a second group rated these explanations, we

asked a third group of workers (the iteration condition) to generate additional explanations that

were different from the first set. We hypothesized that (1) the iteration condition would produce

mostly new explanations, but (2) would have a higher rate of a rition, since later workers might

feel unable to author a response that differed from the initial explanations.

We conducted 25 trials in the initial round, producing five explanations each for the five US cen-

sus charts. In the iteration round, we conducted 25 more trials, in which we showed new workers

the same five charts, along with the initial explanations. We instructed iteration workers to gen-

erate new explanations that were “different from the explanations already shown”. Both condi-

tions included pre-marked charts (S6), but were otherwise identical to the strategies condition in

Experiment 1.
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Results

Participants in the initial conditiongenerated36explanations,while those in the iteration condition

generated 35 (many responses containedmore thanone explanation). Of the iteration explanations,

71% had not been proposed in the first round. The a rition rate for the iteration condition (75.3%)

wasalso slightly lower than thea rition rate in the initial round(80.2%), indicating that iteration

can increase the diversity of explanations without increasing a rition.

5.7.6 Experiment 6: Rating

For ratingmicrotasks to provide an effectivemeans for sorting explanations,workersmust be able

to generate consistent ratings. To test consistency, we conducted a final experiment in which we

asked workers to rate a subset of the explanations generated during our broader deployment. We

hypothesizedthatquality ratingsassignedbyworkerswouldbesimilar toourownquality ratings.

Methods

We asked 243 Mechanical Turk workers to rate 192 different explanations across 37 charts. Using

the interface shown in Figure 5.4, workers rated each response according to the criteria (relevance,

clarity, and plausibility) described in Section 5.1.1. We compared these ratings against our expert

quality ratings for the same results.

Results

In total, the workers produced 1,334 individual ratings for 192 different explanations.

A Pearson’s chi-square test showed very strong agreement (χ2 = 78.81, p < 0.01) between work-

ers’ relevance scores and our own, indicating that workers were good at identifying responses that

didnot explain the requested feature. A Spearman’s rank correlation coefficient showed thatwork-

ers’ quality scores and the experts’ scores for each explanation were moderately correlated

(average ρ = 0.415).

However, we found that we could produce results that were more strongly correlated with our

ownby instead using themean score frommultiple raters. We estimated the number of raters nec-

essary to obtain a robust overall quality scoreby sampling fromone to tenworker quality scores for
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Figure 5.16: Agreement between workers’ ratings and our own increases if we use the mean or median

quality score from multiple workers. Using the mean from 5 or more workers gives strong (ρ > 0.7)
agreement.

each response. For each number of workers, we averaged all of the selected workers’ quality scores

for each response, then computed the correlation between themean quality scores and the expert

scores (Figure 5.16). We found that averaging results from five raters produced quality scores that

were strongly correlated with the expert scores (average ρ = 0.726), but adding additional work-

ers gave diminishing returns.

5.7.7 Experiment 7: Redundancy

Wealso conductedanexperiment to evaluateour twoapproaches fordetecting redundant explana-

tions. To compare our distributed comparison (Section 5.4.1) andmanual clustering (Section 5.4.2) tech-

niques we used both methods to cluster explanations for 12 different charts (each with between

10 and20 explanations). We then compared theworkers’ clusterings against clusterings produced

by the same three experts who scored explanation quality (Section 5.7.1).

In the distributed comparison condition, we created a comparison task for each pair of explanations

given for each the 12 charts. Thisproduced a total of 1,064 comparison tasks. Wegrouped tasks into

batchesof20andaskedfiveuniqueworkers tocomplete eachbatch. Wepaidworkers$0.20 for each

batch. A total of 96workers produced 5,032 comparisons. We then averaged all fiveworkers’ scores

for each comparison andused k-means clustering to produce a final set of clusters (as described in

Section 5.4.1).
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In themanual clustering condition, we asked ten different workers to cluster the complete set of ex-

planations for each of the 12 charts. Again, we paidworkers $0.20 for each task. A total of 91work-

ersparticipated, producing120total clusterings. Wethenextractedthesinglemost-representative

clustering for each chart.

To prevent workers from gaming the task, we included gold standard explanations in both condi-

tions. In each task we added two stock explanations that we knew to be redundant and a third

which we knew to be unique. We eliminated workers who failed to group the known redundant

explanations together or who grouped the unique pair.

As a baseline, we also included an unclustered explanations condition, in which we kept the com-

plete set of explanations for each chart without any clustering. We also compared our strategies

against an automated condition in which we calculated the similarity between explanations based

on theword overlap between them (using cosine similarity [96]), then clustered the explanations

using k-means.

Results

Because clustering is subjective andno objective “best” clustering exists, we compared the results

against manual clusterings generated by the the expert raters. We hypothesized that the manual

methodwould produce the clusterings that were the closest to the experts. We based our hypoth-

esis on the observation that workers in the manual clustering conditions could see the complete

sets of explanations at once and make clustering decisions with more complete context. We also

expected results fromthemanual clusteringmethod tobemore similar to the expertsbecause they

are produced by a single worker, and are likely to be more internally consistent than results pro-

duced by aggregatingmultiple workers’ comparisons.

We compare clusterings against the expert clusterings using the F-measure, a symmetric similar-

itymetric that is tolerant to small errors on large clusters, but intolerant to bi-directional impuri-

ties [3]. The Fmeasure of a single cluster is themaximal harmonic average of the precision and the

recall, and the Fmeasure of an entire clustering is theweighted average of the Fmeasures of all the

clusters. Given two clusterings L andR, theirF measure is:

F(L,R) = ∑
i

|Li|
n

·max
j

F(Li,R j)

where n is the total number of clustered elements, i ranges over the number of clusters in L and j

ranges over the clusters inR, and Li is the i’th cluster in L andR j is the j’th cluster inR.
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The functionF(Li,R j) is defined as:

F(Li,R j) =
2 ·Recall(Li,R j) ·Precision(Li,R j)

Recall(Li,R j)+Precision(Li,R j)

where:

Precision(Li,R j) =
|Li|∩R j|

|Li|

Recall(Li,R j) =
|Li|∩R j|

|R j|

The F-measure similarity for two clusterings is reported on a range from 0 to 1, where 1 indicates

that the clusterings are identical and 0 indicates that they are completely dissimilar. We scored

each clustering by computing the F-measure between it and each of the three expert clusterings,

then averaging the three results (Figure 5.17).

To calibrate our expectations,we compared the three experts clusterings against one another. On aver-

age, we found that their clusterings were quite consistent with one another (F = 0.84). Pairwise

comparisons between the individual experts (E1-E2: F = 0.84, E1-E3: F = 0.85, E2-E3: F = 0.83)

revealed that no one expert was an outlier.

An ANOVA showed a significant effect for clustering method on the average F-measure score

(F3,44 = 4.97, p < 0.01). Pairwise t-tests also showed that selecting the most-representative manual

clusteringproduced results thatwere significantly closer to the experts than the averagemanual clus-

tering (p < 0.01). Most-representativemanual clustering also produced clusters that were significantly

closer to the experts than clusters produced in the distributed comparison (p = 0.04) and automated

(p < 0.01) conditions or the results from the unclustered (p < 0.01) condition.

On average, the unclustered results were were the least similar to the experts (average F = 0.68).

This value is non-zero because even the clusters of explanations generated by experts o en con-

tain a number of singletons—explanations that do not clusterwith any other. As a result, even an

unclustered set gets the clustering right for these clusters of size one. Clusterings from the auto-

mated approach received a similarly low scores (average F = 0.67), confirming our intuition that

text-based techniques are not well suited for clustering sparse, noisy data. Clusterings produced

by the distributed comparison conditionwere somewhatmore closely alignedwith the experts’ scores
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Figure 5.17: Results for each of our clustering selectionmethods. Eachmark shows the average F-measure

similarity between the experts’ clusterings and the clusterings produced by the given clustering method.

A separate mark is shown for each chart. The black line and grey bars give the average and standard

deviation for each method.

(averageF = 0.74) than the unclustered results. The clusterings produced byworkers in theman-

ual clustering condition were also a bit be er (average F = 0.73). Choosing the most-representative

manual clustering using the procedure in Section 5.4.2, however, produced be er results across all

12 of our charts (averageF = 0.86). For almost every chart, themost-representative selection algo-

rithmchose theworker clustering thatwas the best possiblematch to the three experts. Moreover,

themost-representative clusteringwas closer, on average, to all three of the experts than the three

expertswere to one another (average inter-expertF = 0.84). These findings suggest that choosing

themost-representative clustering provides a reliable way of selecting high-quality clusterings.
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5.7.8 Experiment 8: Copying and Paraphrasing

Wealso evaluatedhowwellworkerswere able to identifyparaphrasing fromsources. To establish a

baseline forhowo enworkers’ explanations are copiedorparaphrased fromthe sources they cited,

twoof our three expert raters examined a sample containing 70 explanations fromourdeployment

that included citations. The two experts individually examined each explanation and the source

it cited and coded the explanation as either “copied or paraphrased from the cited source” or “not

copied or paraphrased from the cited source”. A erward, the two experts worked together to re-

solve any differences, and produced a single gold standard. Of the 70 explanations, the experts

marked 60% as copied or paraphrased from the source.

We then conducted an experiment to determine how reliably workers could detect paraphrasing.

We randomly sampled 20 explanations of the explanations scored by the experts and presented

each as a source-checkingmicrotask to the crowd. Five crowdworkers examined each explanation and

source and voted whether the page was or was not “copied or paraphrased from the source”. We

then tallied these votes and assigned the winning label to each explanation.

Theworkers’ final resultmatched the experts’ for 75%of the explanations. All of the incorrect cases

weobservedwere falsenegatives—workers indicated that resultswerenotdrawn fromthe source,

while the expertsdeemed that theywereparaphrased. Thehighnumber of falsenegatives suggests

that workers as a whole used amore conservative definition of paraphrasing than the experts.

5.8 The Explanation Management Interface

Once workers have rated and clustered a set of explanations, wemust surface that information in

away that allows the analyst to quickly browse the explanations and assess them. To this end, we

developed an explanation-management interface (Figure 5.18 and 5.19) that provides a number of

tools and visual cues intended to help analysts quickly find unique explanations and judge their



99

Figure 5.18: The explanation-management interface. Explanations (A) can be clustered and collapsed by

chart, topic, and source. Filtering (B) and clustering (C) controls allow the analyst to hide low-scoring

clusters and control how they are nested. Explanations, clusters, and charts, can be dragged to the

shoebox (D) and annotated for later review. Figure 5.19 shows additional detail for a single cluster.

plausibility. We tailored the interface based on the criteria (C1 through C3) that we identified in

Section 5.3:

C1 Text Clarity and Specificity

C2 Explanation Frequency

C3 Explanation Provenance

C3.1 Source Reputability

C3.2 Paraphrasing andWorker Additions

C3.3 Corroboration

Analysts can use this interface to browse, filter, and organize explanations generated by workers.

Using the explanation-management tools, they no longer need to read through each and every ex-

planation inorder. Instead, they can explore clustered results, filter thembyquality and frequency,

and get a sense of their provenance. This section describes the various features of the interface in

terms of the criteria they surface.
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By default, the interface displays a list of explanations grouped first by chart view and then by

cluster. Clusters are initially collapsed, so that only the explanation in the cluster with the high-

est quality score is visible. The clusters are also sorted based on their quality scores, so that the

clusters containing the clearest, most plausible explanations are shown first. The analyst can ex-

pand clusters to inspect their individual members, and can filter the set of clusters based on a va-

riety of a ributes. Inmany cases, the analystmaywish to save interesting explanations to a “shoe-

box” [83] in order to revisit them later in the sensemaking process. Our interface allows analysts

to save good explanations or groups by dragging them to a shoebox panel at the right of the screen

(Figure 5.18D).

Each cluster in the interface includes a set of visual indicators designed to allow the analyst to

quickly make judgements about the explanations in it, o en without even reading them. These

include explanation quality and frequency information (e.g., cluster size) as well as visual indica-

tors that allow analysts to quickly determine explanation provenance.

5.8.1 Surfacing Explanation Clarity and Specificity

The interface displays the average quality scores generated by workers in ratingmicrotasks (Section

5.1.1). We display the quality score in the upper right corner of each explanation (Figure 5.19G)

and color the score using a red-yellow-green color scale. These quality indicators allow an ana-

lyst to quickly determine which explanations are more likely to be clear and specific (criteria C1).

Analysts can also reduce the number of visible explanations by using the filtering controls at the

top of the interface to hide explanations and clusters that do not contain explanations with high

quality scores.

5.8.2 Surfacing Explanation Frequency

By default, the system collapses clusters of redundant explanations so that each cluster displays

just the highest-quality version of the explanation. Each cluster also contains a count showing the

total number of explanations in the cluster andhowmany are currently visible (Figure 5.19D). The

highest-quality explanation serves as a summary of the cluster and reduces the amount of effort an

analyst must expend to examine the explanation. An analyst can also use the cluster size to gauge

the frequency and level of support for the explanation (criteriaC2). If the analystwants to inspect

other versions of the explanation, they can expand a collapsed cluster by clicking on the cluster

size indicator. Clicking on the indicator a second time re-collapses the cluster.
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Figure 5.19: A closeup of the explanation-management interface introduced in Figure 5.18. Here we high-

light a single chart (A) with two explanation clusters. Each chart includes an indicator (B), showing the

number clusters of explanations for the chart. Each cluster (C) displays a count showing explanations it

contains (D) and an indicator showing whether the explanation is corroborated by multiple sources (E).

Each individual comment displays a source URL and provenance indicator (F) along with a color-coded

quality score (G).

5.8.3 Surfacing Explanation Provenance

Each explanation also displays an abbreviated link to any web pages it cites (Figure 5.19F). These

short links allow the analyst to quickly determine if the explanation is drawn from a source that

they trust. The analyst can also click the link to view the source page along with any sections of

the page highlighted by the worker (criteria C3.1).

If an explanation is of particular interest to the analyst, he or she can expose additional prove-

nance information by clicking the “view sources” link on the comment. Clicking the link exposes

the complete set of web pages the worker visited while generating the explanation along with de-

tailed timing information. The analyst can use this list to locate and inspect other sources that
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informed the explanation and help build an understanding of how aworker came to a conclusion

(criteria C3.2).

If the analyst determines that a specific domain or web page is a good source, he or she may wish

to directly explore other explanations that are drawn from that source. In our own experience,

the sources which provide the best explanation for one chart may also provide good explanations

for others (for example pages from the Bureau of Labor Statistics provide good explanations for

changes in employment in many different US cities). Therefore, our interface also allows the an-

alyst to group explanations based on the sources they cite to quickly find multiple explanations

drawn from the high-quality sources.

5.8.4 Surfacing Paraphrasing and Worker Additions

In the explanation-management interface, we provide a provenance indicator next to the source

URL (Figure 5.19F) of each explanation that more than 50% of source-checking workers identified

as being either copied or paraphrased directly from the source. This indicator allows analysts to

quickly identify explanations that are drawn directly from a source before reading them. Know-

ing an explanation was copied or paraphrased from a known source can allow an analyst to make

confidence judgments based on that source’s reputation (criteria C3.2). High-quality paraphrased

explanations also serve as leads to help analysts identify good web resources that they may wish

to utilize directly.

5.8.5 Surfacing Corroborating Explanations

An explanation that citesmultiple reliable sources ismore likely to be credible than one that sites

only a single reliable source (criteria C3.3). Therefore an analystmaywish to know ifmultiple ver-

sions of an explanation in a cluster cite the same source or refer to multiple independent ones. In

our interface, workers can assess this directly by expanding a cluster and grouping the responses

within in byURL or domain. We also provide a “multiple sources” indicator in the heading of clus-

ters that contain corroborating citations. Mousing over this indicator displays a list of sources

along with the number of explanations in the group that cite them. This indicator serves as a

shortcut for analysts, allowing them to quickly make confidence judgments based on corroborat-

ing sources without examining explanations or sources individually.
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5.9 Discussion

Based on our experience collecting, clustering, and exploring crowdsourced explanations, we offer

a few additional observations.

5.9.1 Explanation Segmentation

Our current implementation asksworkers to separate distinct explanations into separate fields in

the explanation microtask and allows them to select a different source text for each. However, in

practice, many workers still give multiple candidate explanations as part of a single paragraph or

sentence. Responses that containmultiple explanations can be difficult to group, since a each one

may include several distinct explanations that each belong in disparate clusters.

We addressed the issue of segmentation by creating the explanation-generation tasks that encour-

aged workers to enter each explanation in a separate text box. Providing separate text boxes and

clear instructions reduced the number of responses that mixed multiple explanations. However,

clean segmentation remains difficult to enforce, especially because explanations are o en interre-

lated. Another possible approachmight be to askworkers in intermediate segmentationmicrotasks to

break apart compound responses into their constituent explanations. However, these tasks intro-

duces the potential for information or intent to be lost as workers break apart or alter responses

generated by other workers.

All of these issues are related to the broader issue of task granularity when crowdsourcing open-

ended tasks. Breaking tasks into small, modular components makes it easier to compose tasks

together andprocess results systematically. Small, straightforward tasks also reduce the potential

forworker error, andmake it easier to identify and discard poor results. However, small tasksmay

inhibit contributions from talented or knowledgable workers, since they are not free to explore,

author, or contribute outside the constraints of the task and cannot bring their expertise to bear

on areas of the problem where it might be beneficial. As a result, balancing task simplicity and

flexibility in a way that suits the expertise and trustworthiness of a worker pool remains a key

challenge when designing new tasks.

5.9.2 Defining Redundancy

Whilewe assume a particular definition of redundancywhen clustering explanations, other types

of clustering may be useful for analysts. We define redundant explanations as explanations that
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give “the same general explanation for a trend or outlier”. This means that only explanations that

make the same assertion about the trend and provide the same level of detail will be clustered.

However, we observed that workers o en produce explanations that are not strictly redundant,

but are hierarchically related (for example, one explanationmight a ribute a drop in employment

statistics to “an economic downturn” while another cites job losses in a specific industry). Clus-

tering explanations hierarchically would allow analysts to consider high-level explanations and

make confidence assessments about them before examining lower-level details.

5.9.3 Crowd Composition

Our approach assumes a crowd composed largely of non-expert workers whose responses may be

of variable quality—for example, workers recruited in online task markets like Mechanical Turk.

However, more complex analyses or datasets that require specific domain knowledge may call for

theuse ofprivate crowds. Webelieve a similarworkflowcouldbeused to systematically collect and

integrate findings from large crowds of trusted workers. In trusted crowds, some quality-control

mechanisms could be relaxed, reducing the number of post-processing steps and giving workers

more freedom to explore. For example, trusted workers could be given the freedom tomanipulate

the visualization and explore alternate views of the dataset that might inform their explanations.

Trusted workers could also self-assess the quality of their explanations and sources, reducing the

number of steps in workflowwhile still providingmetadata that analysts can use to filter and re-

organize their results.

5.9.4 Economics of Crowd Work

Because crowd markets remain a new phenomenon, many questions remain about the economic

efficiency of crowd-based systems [52]. For example, it remains unclearwhether itwill be econom-

ical for analysts to employ large-numbers of novice workers on a short-term basis rather than cul-

tivate a trained cadre of analysis specialists. Designers of social data analysis systems that employ

crowdworkerswill alsoneed to consider the ethical implicationsofusingpaid crowdsandwork to

ensure thatworkers are compensated fairly and enjoy sufficient protections. This is especially im-

portant given thatmany proposed crowdsourcing platforms (including [63, 45]) employworkers

in developing regions, where income levels are lower and fewer worker protections exist. A con-

siderable body of recent research has focused on reducing the cost of crowd-basedwork, largely by

minimizing the amountpaid toworkers [51].However, future systemswillneed to strike abalance

between cheaply and accurately performing analyses and ensuring that workers are treated fairly.
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Chapter 6

Future Work

This dissertation has focused on several core research questions regarding social data analysis.

However, many additional aspects of social data analysis remain to be explored. Future work be-

yond this thesiswill support stakeholders not addressed in our examples andmake the process of

organizing, presenting, and sharing analysis more accessible.

6.1 Alternate Models for Crowdsourcing Analysis

InChapter 5, we demonstrated that paid crowdwork can be a viable tool for generating and rating

hypotheses—one key component of the data analysis process. However, other steps in the sense-

making cycle—including organizing content, comparing hypotheses, and searching for relations

between observation—may also be amenable to crowdsourcing. Until now, we have considered

parallel and iterativeprocesses inwhichworkers collaborate toproduce andgroupevidence. How-

ever, competitive models of analysis—in which workers are offered incentives for producing bet-

ter results than their peers or for disproving explanations andhypotheses created by others—also

present a fruitful are for exploration. What are the relative benefits and tradeoffs associatedwith competitive

models of analysis?

For example. we may able to produce stronger explanations by providing incentives that encour-

age workers to evaluate, challenge, and validate one another’s explanations and compete to gen-

erate the most likely or more diverse opinions. Techniques for hypothesis validation like Analy-

sis of Competing Hypotheses [8] provide a systematic way of integrating many (sometimes com-
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peting) contributions and controlling against bias. Moreover, they can be used to operational-

ize hypothesis testing into hypothesis generation, evidence collection, and cross-validation tasks

that can be carried out by multiple users working in parallel (as in CACHE system [23]). We be-

lieve there is great potential for using similar techniques to perform hypothesis testing using on-

line labor markets. For example, crowd workers could be instructed to carry out CACHE-style

tasks inwhich they generate newhypotheses and search for evidence that invalidates thehypothe-

ses generated by other workers. This approach could be paired with financial or social incentives

that reward theworkerswho successfully disprove hypotheses andwho produce hypotheses that

survive elimination.

Kaggle [56]andothercompetition-basedplatforms foranalysis representanother interestingpoint

in the space. These tools allow individuals and teamsof experts to compete toproduce solutions to

well-scoped data mining and prediction challenges—for example, developing the best algorithm

to predict consumer shopping behavior on a website or identify celestial objects in high resolu-

tion telescope imagery. Typically these competitions are targeted at small groups of analysis ex-

perts and provide monetary rewards to the winners. Kaggle’s approach is less fine-grained than

ours, with each team or individual completing the entire analysis in isolation and comparing only

their results.

We suspect that fertile ground exists in the scales between our crowdsourcing work, which relies

largely on small-scale novice labor in microtask markets, and these sorts of expert-level competi-

tions. For example, it may be more productive to have teams compete for financial incentives on

smaller pieces of the analysis, but periodically share findings and strategies. Future work should

also focus on comparing rewards structures for competitive analysis and understanding which

kinds of tasks are best suited to different competitivemodels.

6.2 Engaging Domain Experts

While ourworkhas focused largely onanalysts (Chapter 3), communitymembers (Chapter4), and

crowdworkers (Chapter 5), making sense of more complex, domain-specific datasetsmay require

the input of domain experts. One promising thread of future research involves developing tools

and strategies for identifying domain experts and incorporating their efforts. Howcanwe engagewith

outside domain experts and integrate their contributions into analyses?
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Domain experts provide valuable insights and expertise. Moreover, they may be able to answer

questions about technical subjects that other workers and even analysts cannot. However, find-

ing and engaging expert users on the web can be difficult. For example, during the development

of CommentSpace, we deployed several versions of the tool live on theweb—both on our own site

and within news stories. Despite an effort to target these visualizations at particular communi-

ties and recruit experts to use them, very few visitors commented or contributed to the analysis.

These efforts may have failed for a number of reasons. One possibility is that because the com-

menting was situated within our own site, rather than in the context of their existing commu-

nity, expert users lack sufficient incentive to contribute. This observation is consistent with Da-

nis et al.’s finding [27] that the most productive discussions in Many Eyes took place not in the

context of the site, but offsite on blogs and forums where the visualizations were used as a “com-

munity component”. Usersmay also have been deterred by the relative complexity of the interface

and the fact that the task (asking questions and generating hypotheses and evidence) was o en

ambiguous. These early deployments violated important design principles that emerged during

our subsequent work with novice communities and crowdworkers—they failed to provide clear,

feature-oriented prompts.

One approach for eliciting input from outside experts is to extend a system like CommentSpace

so that analysts can embed simple visualization views anywhere on theweb, and collect responses

and explanations in situ. Onwebsiteswith a dedicated commentingmechanism, an analyst could

embed only a visualization view and the system could collect responses by scraping the page and

extracting comments. Where no commenting mechanism exists, analysts could elicit expert feed-

back by embedded question prompts similar to our analysis microtasks (Chapter 5) along with

the visualizations. We hypothesize that embedding visualizations and questions directly in Q&A

sites, forums, blogs, and other existing communitieswill allow analysts to engage domain experts

and elicit feedback more easily. These new tools could lower the barrier to entry by incorporating

strategies from the feature-orientedmicrotasks that proved successful in our crowd research.

For example, a simple embeddable CommentSpacewebwidget (Figure 6.1) could be used to elicit

feedback from domain experts. Rather than directing experts to the CommentSpace site or em-

bedding the entire CommentSpace interface in an outside site, an expert would export a single

CommentSpace comment and its associated visualization views a self-containedwidget. Thewid-

get could be embedded directly in forums, blog posts, Q&A sites, social media, and even interper-

sonal communications like email. Each widget would feature a clear prompt and would resem-

ble the analysis microtasks used in our crowdsourcing work (Figure 5.3). On sites where no com-
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Figure 6.1: Mockup of a possible design for an embeddable CommentSpace web widget designed to

be embedded in Q&A sites, forums, and personal communications to elicit insights and feedback from

domain experts.

mentingmechanism exists, thewidgetwould also include an answer field alongwith the prompt.

Responses entered in the answer field could be submi ed directly to CommentSpace as new com-

ments or sent to crowdworkers for rating and iteration. InQ&Asites or forums, a separate answer

fieldwouldduplicate the existing functionality of the site. In these cases,we could embedonly the

visualization view(s) and the prompt, then extract experts’ responses directly from the site.

This line of research still presents a number of challenges. Identifying domain experts qualified to

explore a given dataset and an appropriate venue for eliciting explanations from them remains a

difficult task. One possible approach for identifying experts may be to use data analysis and ma-

chine learning techniques to mine the content on Q&A sites in order to identify the people most

likely to give a good response to an analysis question. Future researchwill also need to test a range

ofmonetary and social-psychological incentives in order to be er understand how tomotivate ex-

perts to contribute.

6.3 Supporting Ad Hoc Social Data Analysis

While experimental tools like sense.us [48], Many Eyes [111], and CommentSpace make visualiza-

tion tools more social by supporting embedding and commenting, they still build primarily on
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proprietary visualization and commenting tools thatmake it difficult to share, combine, andbuild

stories around data on the web.

However, a number of compelling recent examples of social data analysis have begun to occur out-

side these kinds of tools. One example which we have explored is the Google Books Ngram

viewer [42], an interactive visualization of data from the Google Books corpus (Figure 6.2). A er

it was released in December 2010, the Ngram viewer elicited thousands of tweets, Facebook posts,

and blog entries from users noting trends, commenting on data quality issues, and building nar-

ratives around their findings. This fountain of discourse was made possible by the designers’ de-

cision to provide unique, stateful URLs for every possible view of the visualization. These stateful

URLs allowedusers to share, save, and refer back to specific visualization views onTwi er, in blog

posts, and elsewhere.

The volume of discussion and participation generated by tools like the Ngram viewer illustrates

the value of designing visualization and analysis tools such that they are compatiblewith existing

social media practices. Because views of the visualization were easy to produce and share, users

not only shared them extensively, but also began to collect interesting or topicalNgrams views us-

ing lightweight blogging platforms like Tumblr [109]. Others used these as the starting point for

more detailed blog posts and explorations of particular aspects of the data relevant to particular

disciplines. This echoes one of the key findings fromMany-Eyes [27]—thatweb visualizations of-

tenwork bestwhen they serve as a “community component” that communities can readily adopt,

repurpose, and use within the context of their existing discourse. How canwe streamline the process of

designingvisualizations thatare easy toannotate, shareandembed, andwhichplaynicelywith existing socialmedia?

Developers can easily add stateful linking to simple visualizations, but adding them to visualiza-

tions that support complex navigation andfiltering o en requires considerable effort. Developers

mayhave ahard timedecidingwhichpieces of information about the visualization state are impor-

tant tomaintain andwhich are not. Moreover, information needed to reproduce the state of the vi-

sualization is o en spread between the visualization definition, interfacewidgets, and event han-

dlers,making it difficult tomanage. There are alsomanyother aspects of the chart beyond the state

that users and analystsmaywish to refer to—for example, theunderlyingdata, selections, even in-

dividual datapoints. Providing ways of linking directly to selections, data points, and other chart

elements supports deixis [49] andmay enable deeper discussion, but implementing these linking

mechanisms per-visualization requires considerable effort on the part of developers.
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Figure 6.2: Several views of the Google Books Ngram viewer [42], an interactive visualization of the entire

Google Books corpus, paired with Twitter messages discussing the views. The Ngram viewer displays

the changing use of multi-word phrases in printed English over time. Using it, users noted and shared

observations such as the sharp rise and gradual decay in references to decennial years (top) and linguistic

artifacts like the pronounced usage of the word “Guillotine” during the period surrounding the French

Revolution (bottom).
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The lack of strong pointing and linking tools in most current web visualizations suggests a need

for standards and best practices that make it easier for users to share, annotate, and build upon

datasets and visualizations within the ecosystem of the web. Currently, D3 [11], Processing [85],

and other frameworks provide easy platforms for developing visualizations. One promising ap-

proach may be to extend these of frameworks to provide toolkit-level support for deep linking,

annotation, sharing, and data provenance out-of-the-box. For example, it may be useful to provide

libraries for serializing and deserializing visualization state and providing deep linking with less

developer effort.

More research is also necessary to understand what sorts of pointing interactions have the most

valueduringcollaborativeanalysisandestablishbestpracticesandguidelines forsupportingthem.

Visualization development environments that help designers and analysts construct new visual-

izations could also increase the consistency of sharing, pointing, and linking behaviors available

across visualizations. Providing tools like these that make it easier for designers, journalists, and

other end-users to add these capabilities to their visualizations could enable social discussions

around data in a wider range of disciplines.

Another key challenge involves capturing the ad hoc discussion that occurs around visualizations

on theweb and extractingmeaning from it. Howcanwemake it possible to find and collect comments about

a visualization from theweb andwhat canwe dowith these large sets of insights oncewe have them?

One common strategy is to provide or suggest unique identifiers like hashtags, or shortenedURLs

that can be included in comments and social media posts. Comments with these identifiers can

then be retrieved by searching the target networks and via platform APIs, where they exist. Mark-

ing and then searching for content this way works well for public services like Twi er. A related

approach involves integrating tools for publishing, commenting, and sharing via social media di-

rectly into visualizations. Integrated sharing tools canmake it easy for users to post visualization

views to services like Facebook and Twi er in a standardizedway, and can simultaneously log the

views or comments that are published for later analysis. Figure 3.3 shows a custom sharing inter-

face implementedwithin CommentSpace.

However, even if it is possible to capture large amounts of ad-hoc discussion and exploration of

a dataset, it may be difficult to extract useful information from it. Ad hoc analyses like the one

spawned by the Ngrams viewer can produce thousands of potential observations spread across as

many different views of a dataset. Moreover, these observations may be much less organized than
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Figure 6.3: The CommentSpace slideshow extension allows authors to organize comments and visualiza-

tion views to tell a story, then converts the sequence into an interactive slideshow. Here, a sequence of

posts on a visualization comparing the cost of production against critic’s ratings for major motion pictures

(left) becomes an interactive slideshow (right).

observations generated by our more systematic crowdsourcing framework. Such corpora call for

new tools formining discussions andperformingmeta-analysis to extract high-level concepts and

identify themost useful andwell-supported observations..

6.4 Visualization, Presentation, and Storytelling

Finally, social interactions around data, like most other human interactions, involve storytelling.

In fact, most of the data visualizations presented on the web and in the media are constructed in

the service of a particular story [91]. Storytelling serves a dual role in visual analysis. For the ana-

lyst, storytelling represents thefinal phase of sensemaking—where observations, hypotheses, and

conclusions are synthesized into data-driven stories that communicate the results of the process.

Simultaneously, storytelling provides ameans for introducing new users to a dataset or topic and

encouraging them to explore and engage with it. Yet few tools exist to support data-driven story-

telling. Canwe provide systems that allow users to navigate, curate, and build stories out of the collective observa-

tions ofmanyusers? Canwemake it easier to transform the products of social data analysis into reports, news stories,

and presentations that allow them to communicate?

We have begun to explore this problem in the context of CommentSpace by building an exten-

sion that provide more explicit support for storytelling. The extension provides tools that allow
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users to organize sets of comments andvisualization views and then convert them into interactive

slideshows (Figure 6.3). Using the tool, authors can connect a sequence of views from one ormore

visualizations and pair each view with captions that explain and contextualize it. The tools also

allows authors to control whether or not the interactive controls for each view should be enabled.

By disabling interaction on early views that provide context and background, then enabling inter-

action on later views, authors can create “Martini Glass”-style narrative structures [91] that guide

viewers gradually into a visualization.

However, this extension provides a very limited set of toolswithwhich to author narratives based

on analytic findings. Authors can connect views together, but have li le control over the content

or styling of views. Moreover, our tools don’t provide any unifiedmechanism for highlighting, em-

phasizing, and deemphasizing particular points in a visualization—selection, editing, and high-

lighting tools are limited to those provided in the visualizations. Because visualizations them-

selves cannot be edited or reforma ed to fit the narrative, it can be difficult for authors to repur-

pose themtoaccentuate the importantparts of the storyor integrate theminto abroadernarrative.

Future tools will need to offer more powerful publishing and sharing functionality that makes it

easy for authors to create and presentmany different kinds of data-driven stories.

Social media reporting tools like Storify [97] and Storyful [98] allow users to create stories by col-

lecting posts fromTwi er and other social media streams and embedding them into news stories

and blog posts. These tools take the process of gathering social media, selecting relevant content,

and integrating it into a news story, and provide a streamlined interface that allows authors to lo-

cate content and quickly construct a story around it withoutwriting code or dealingwith layout.

In doing so, these tools enable non-expert users to quickly build on pieces of social media content

and them as core building blocks for news stories, reports, and presentations. Analogous tools

for data visualization could allow analysts and journalists to gather comments, annotations, and

other findings from data analysis and integrate them, along with tailored views of their analytic

visualizations, into their stories and presentations.

Like socialmedia reporting tools, data visualization reporting tools should allow authors to easily

collect and organize multiple views of visualizations, social media posts and other content. Un-

like social media content, however, visualizations designed for analysis tasks o en are not well

suited for public consumption. Instead, they tend to be visually complex and readers generally

need considerable context and training to interpret them. As a result, a core challenge for data

visualization reporting tools is to provide flexible end-user tools that allow authors and analysts
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to tailor visualizations for public consumption. These tools must ease the process of annotating

visualizations, selecting individual views, generating simplified and restyled representations of

interactive graphics, and simplifying interaction to illustrate specific points.
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Chapter 7

Conclusion

Human a ention and domain knowledge are inherently finite. Therefore, we expect that single-

user models of analysis will always limit analysts’ ability to make sense of datasets that are large,

complex, and span disciplinary boundaries. However—as we have noted throughout this the-

sis—the design of multi-user systems for data analysis is complex and nuanced. Designers and

developers must tailor social data analysis tools to suit the interests and competencies of their

various stakeholders, and each system o en requires considerable tuning to produce the desired

analytic results.

Over the course of this thesis we have explored several points in the design space of collaborative

data analysis tools. By focusing on a few key user groups—small analysis teams, novice communi-

ties, and paid crowds—thiswork illustrates the range and diversity of useful approaches to social

data analysis. Some analysis scenarios—for example, a journalist scouring a large public-interest

dataset—may benefit greatly from the parallelization that crowdsourcing can bring to bear. Oth-

ers—like analyses of small-scale environmental quality data—can benefit greatly from the local

knowledge of community members, even if they lack analysis expertise. Teams of more expert an-

alysts working in concert, meanwhile, can benefit from more robust techniques for organizing,

discussing, and building on one another’s findings.

The volume of data generated by governments, institutions, and individuals continues to grow

unabated. As a result, the tools we use to explore data must continue to evolve. Advances in vi-

sualization, data mining, machine learning, and information retrieval will undoubtedly improve
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the effectiveness of individual analysts. However, collaborative tools that multiply the impact of

many stakeholders promise to compound these gains even further.

This dissertation and the three social data analysis tools presented herein point towards a future

in which big data analysis tasks might engage not just one or two collaborators, but tens, hun-

dreds, or millions. Moreover, the diversity of these systems suggest that future analysis tools will

be anything but homogeneous. Rather, each new dataset or analytic problem brings with it new

constraints and new stakeholders, but also new potential. This work offers just a few possible

visions of these future tools, and suggests models for how we might pool our collective effort to

tackle the next generation of big, data-driven problems.
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