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Abstract

In this work, we develop convolutional neural generative cod-
ing (Conv-NGC), a generalization of predictive coding to the
case of convolution/deconvolution-based computation. Specif-
ically, we concretely implement a flexible neurobiologically-
motivated algorithm that progressively refines latent state fea-
ture maps in order to dynamically form a more accurate internal
representation/reconstruction model of natural images. The
performance of the resulting sensory processing system is eval-
uated on complex datasets such as Color-MNIST, CIFAR-10,
and SVHN. We study the effectiveness of our brain-inspired
model on the tasks of reconstruction and image denoising and
find that it is competitive with convolutional auto-encoding
systems trained by backpropagation of errors and outperforms
them with respect to out-of-distribution reconstruction (includ-
ing the full 90k CINIC-10 test set).
Keywords: Predictive coding; Brain-inspired learning; Com-
puter vision, neuromorphic hardware, convolution

Introduction
The algorithm known as backpropagation of errors (Werbos,
1981; Linnainmaa, 1970) (or backprop) has served as a cru-
cial element behind the tremendous progress that has been
made in recent machine learning research, progress which has
been accelerated by advances made in computational hard-
ware as well as the increasing availability of vast quantities
of data. Nevertheless, despite reaching or surpassing human-
level performance on many different tasks ranging from those
in computer vision (He, Zhang, Ren, & Sun, 2015) to game-
playing (Silver et al., 2016) to generative modeling (Rombach,
Blattmann, Lorenz, Esser, & Ommer, 2022), the field still has
a long way to go towards developing artificial general intelli-
gence. In order to increase task-level performance, the size of
deep networks has increased greatly over the years, up to hun-
dreds of billions of synaptic parameters as seen in modern-day
transformer networks (Floridi & Chiriatti, 2020). However,
this trend has started to raise concerns related to energy con-
sumption (Patterson et al., 2021) and as to whether such large
systems can attain the flexible, generalization ability of the
human brain (Brown et al., 2020). Furthermore, backprop
itself imposes additional limitations beyond its long-argued
biological implausibility (Crick, 1989; Gardner, 1993; Shep-
herd, 1990), such as its dependence on a global error feedback
pathway for determining each neuron’s individual contribution
to a deep network’s overall performance resulting in sequential
backward, non-local updates that make parallelization difficult
(which stands in strong contrast to how learning occurs in the

brain (Jaderberg et al., 2016; A. G. Ororbia, Mali, Kifer, &
Giles, 2018; A. G. Ororbia & Mali, 2019)). The limitations
imposed by the prohibitively large size of these systems as
well as the constraints imposed by their workhorse training
algorithm, backprop, have motivated the investigation and
development of alternative methodology.

Some of the most promising pathways come from the emerg-
ing domain of research known as brain-inspired computa-
tion, which seeks to develop neural architectures and their
respective credit assignment algorithms that leverage only
local information, motivated strongly by how learning is con-
ducted by the brain. The promise of brain-inspired comput-
ing brings with it synaptic adjustment mechanisms that are
neurobiologically-grounded (Hebb, 1949) as well as neural
computation and inference that is flexible, capable of conduct-
ing a wide variety of operations (A. Ororbia & Kifer, 2022)
at biologically more faithful levels (Maass, 1997; A. Oror-
bia, 2019), facilitating massive algorithmic parallelization (at
scale) and adaption on analog and neuromorphic hardware
(Furber, 2016; Roy, Jaiswal, & Panda, 2019; Kendall, Pantone,
Manickavasagam, Bengio, & Scellier, 2020).

In addressing the challenges facing backprop-based ANNs
and in the direction of brain-inspired computing, we design a
new model for image processing, convolutional neural genera-
tive coding (Conv-NGC), which is inspired by human learning.
Human information processing is often interpreted as an inter-
action of hierarchical feedforward and feedback (backward)
projections that continuously predict and correct internal neu-
ral representations of that information (Rao & Ballard, 1999).
In computational neuroscience, this interplay is known as pre-
dictive coding (Rao & Ballard, 1999; Rainer, Rao, & Miller,
1999). Similarly, Conv-NGC includes state prediction and
correction steps that continuously generate and refine its in-
ternal representations (Figure 2). Furthermore, Conv-NGC
encodes complex visual information by incorporating blocks
of (de)convolution into a top-down directed generative model
within the framework of predictive coding (Bastos et al., 2012;
Chalasani & Principe, 2015; Clark, 2015; A. Ororbia, Mali,
Giles, & Kifer, 2022; A. Ororbia & Kifer, 2022).

Our contributions are as follows: 1) we propose a new neu-
ral perception model, Conv-NGC, which acquires robust repre-
sentations of natural images in an unsupervised fashion1, 2) to

1Code can be found at: https://github.com/ago109/conv-pc
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Figure 1: An arbitrary NGC circuit. Grey circles are state units
(deep excitatory pyramidal cells) and red diamonds are error
units (superficial pyramidal cells). Solid arrows are predictive
synapses and dashed diamond ones are error synapses.

our knowledge, this is the first work in the literature where vi-
sual inputs are processed using deep (de)convolutional layers
naturally within of framework of predictive coding, signifi-
cantly enhancing its representation power for vision-based
tasks, and, 3) we demonstrate, on natural image datasets,
that the proposed Conv-NGC is competitive with existing
backprop-based models (of similar architectural designs) on
the tasks of image reconstruction and denoising and outper-
forms them with respect to out-of-distribution prediction.

Convolutional Neural Generative Coding
We start by describing our model instantiation of convolutional
neural generative coding (Conv-NGC), which is tasked with
learning from streams of natural images in an unsupervised
fashion. Typically, in a visual recognition task, input patterns
belonging to different object classes, arranged into batches,
are presented to a processing system at different time points
for training. In this section, we describe our problem setup
and model architecture (see Appendix2 for related work, rela-
tionships with Conv-NGC, and neurobiological motivations).
Problem Setup: With respect to the problem setup, a Conv-
NGC system is tasked with processing a finite collection of
images depicting a certain set of object classes arranged in an
arbitrary order. The dataset contains a set of n input samples:
D = {(x1,y1 . . .(xn,yn)}. Here, x j ∈ R I×I×C represents the
image of the jth input sample (I× I is the 2D shape of any
single image channel and C is the number of channels, i.e.,
C = 3 for the red-green-blue channels) and y j ∈ {0,1}Y×1 is
its ground truth class label (Y is the number of classes). Note
that while we formalize the labels available in each benchmark
dataset, the models that we study in this work are unsupervised
and, as a result, never make use of the labels in D .
Notation: In this study, the symbol ∗s is used to refer to a
strided convolution where s is the stride argument (∗1 means
convolution with stride of 1, which would also be the same
as just ∗). In contrast, the symbol 	s denotes deconvolution
(or transposed convolution) with a stride of s. The Hadamard
product is denoted by � while · represents a matrix/vector
multiplication. ()T denotes the transpose operation. Flatten(z)
means that the input tensor z is converted to a column vector
with a number of rows equal to the number of elements that it
originally contained while UnFlatten(z) is its inverse (i.e., it

2Appendix can be found at: https://shorturl.at/hMN89

converts the vector back to its original tensor shape). Finally,
Dilate(v,s) is used to represent a dilation function controlled
by the dilation (integer) size (e.g., s= 2). Note that Conv-NGC
is technically made up of 4D synaptic tensors, thus, when we
write Wi j, we are saying that we are retrieving a 2D matrix
at position (i, j) in the 4D tensor W (for extracting a scalar in
W, one would write Wi jkl , without bold font).

Deep Convolutional Neural Coding
Conv-NGC is a generalization of the NGC computational
framework in (A. Ororbia & Kifer, 2022) to the case of natural
image data. The underlying process of Conv-NGC can be
divided into three components: 1) local prediction and error
unit map calculation, 2) latent state map correction, and 3)
local synaptic adjustment. See Figure 1 for a depiction of a
general NGC circuit (and see Figure 2 for Conv-NGC).
The Neural Coding Process: Fundamentally, Conv-NGC
consists of a set of L predictive layers (typically arranged
hierarchically, though this is not a strict architectural require-
ment, e.g., Figure 1 depicts a non-hierarchical NGC circuit)
that are designed to learn latent representations of observed
patterns. It is important to note that, unlike the bottom-up
forward propagation of a standard convolutional neural net-
work (CNN), neural layers within a Conv-NGC system make
top-down predictions, the errors of which are then used to sub-
sequently correct the layers’ own values. In effect, this means
that the layers in Conv-NGC are stateful and their computation
within a forward pass can be further broken down into distinct
computations – top-down prediction and state correction.

First, in the top-down prediction phase, given its current
state z` (which abstractly models the functionality of deep
excitatory pyramidal cells), each layer ` of our model tries to
predict the state of the layer below it, yielding prediction z̄`−1.
At the bottom-most layer, the model predicts z̄0

x for the input
data pattern (x). Following this, a set of error neurons (which
abstractly model the functionality of superficial pyramidal
cells) compute the mismatch between this prediction and the
actual state z`−1, i.e., e`−1 = (z`−1− z̄`−1).

Second, in the correction phase, the model’s internal state
layers are corrected based on how accurate their top-down
guesses turned out to be. The error/mismatch signal e`−1

computed during the prediction phase is subsequently used to
adjust the current values of the state z` that originally made
the prediction z̄`−1. This local error correction, which is not
present in traditional feedforward ANNs, helps to nudge the
state z` towards a configuration (i.e., set of values) that better
predicts the layer below in the future and thus moves the layer
towards a better representation/higher-level abstraction of the
input. This correction is “local” in the sense that each layer’s
update depends only on a top-down error signal, which is
produced by comparing its own values with the predictions
made by the layer above it, and a bottom-up error signal, which
is produced by comparing its predictions of a nearby layer’s
activity values and that state’s current actual values.

Given the description of the two general computations
above, we may now describe how Conv-NGC processes data.
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Unlike a standard feedforward ANN, which predicts y j given
x j (or, in the case of auto-encoding, the ANN attempts to
reconstruct x j itself given x j as input) with a single forward
pass, our model works in multiple steps. First, a Conv-NGC
network predicts the value of z0 = x j from z1 (which gener-
ates prediction z̄0), z1 from z2 (which generates prediction z̄1),
etc. As each prediction is made, the corresponding set of error
neurons compute the mismatch between the predicted value
and its target state layer.3 Next, the neural system then cor-
rects the values of its states {z1,z2, · · · ,zL} given the current
values of the error neurons. These two steps are then repeated
for several iterations, i.e., over a stimulus window of T steps,
to arrive at a set of internal representations that accurately
represent the input. This means that each layer/region ` of any
NGC circuit tries to satisfy two main objectives: 1) to uncover
a better latent representation in order to predict a nearby neural
region/layer (a bottom-up adjustment), and 2) to be closer to
what the layer above (zl+1) predicted its state should be (a top-
down expectation). By performing several steps of top-down
prediction and state correction, the model minimizes layer-
specific predictions while optimizing its global representation
for the current dataset. Implementation details of the above
processes, specifically generalized to the case of feature maps
and (de)convolution, are provided in the next section.

Neural Coding Training and Inference
In this section, we provide concrete implementation details
of the neural coding process described earlier, depicting how
layer-wise state prediction, state-correction, and synaptic pa-
rameter updating occur specifically in the context of visual
object reconstruction. The first two steps iteratively predict
and correct the representations of the Conv-NGC model for
observed input values (natural images) of the current dataset.
After T iterations, the final step entails adjusting model synap-
tic efficacies using simple Hebbian-like updates. We start by
providing the mechanics of the three above steps and then
describe the objective function that our model dynamically
optimizes. The full algorithmic specification of Conv-NGC is
presented in the pseudocode in the Appendix and an example
3-layer Conv-NGC model is visually depicted in Figure 2.

Inference: Predicting and Correcting Neural States
For each layer of a Conv-NGC system, note that the full state
of any given layer ` is represented by a set of C` feature
state maps, i.e., {z`1,z`2, ...,z`C`

} where each state map z`i is
essentially a block/cluster of neurons (that encode a partial dis-
tributed representation of the detected input below), meaning
that any layer consists of C` channels. To initialize each state
map, instead of setting each to be a grid of zero values (similar
to how neural vectors are initialized in fully-connected predic-
tive coding models (A. Ororbia & Kifer, 2022)), we initialize
the states with a top-down ancestral projection pass by first
sampling a random noise value for the top-most set of latent

3These predictions and error neuron calculations, although pre-
sented as occurring sequentially, can naturally be made in parallel
given that they depend on immediately/locally available values.

state maps, i.e., zL
c ∼ N (µz,σz), c = 1, ...,CL (we set µz = 5

and σz = 0.05 in this work), and then project this sampled
state down along the Conv-NGC network to obtain the initial
values of the other layers (see Appendix for details).
Layer-wise State Map Prediction: At each layer, the ith
feature map state z`i is used to (partially) predict the jth fea-
ture map state of the layer below it, producing the prediction
z̄`−1

j . Note that a vector representation of a layer’s entire state
is the concatenation of all of its C (flattened) feature maps, i.e.,
z` = [z`1,z

`
2, · · · ,z`C]. These local layer-wise predictors perform

their computation independently (in parallel) and are coordi-
nated through error units at each layer ` for each feature map.
Specifically, the error neurons e`−1

j at layer `−1 (for the jth
channel) compute the difference between the prediction z̄`−1

j

(from the layer ` above) and the target map activity z`−1
j . This

error message, in turn, is used to (partially) adjust the state
representation z` at layer `. Formally, the predictor and error
neurons are computed on a per-feature map basis as follows:

z̄`−1
j = g`

(( C`

∑
i

W`
i j 	s φ

`(z`i )
)
+b`

j

)
, e`−1

j = (z`−1
j − z̄`−1

j ),

(1)

where φ`() is the nonlinear activation activation applied to
the state activity map z`i , W`

i j is the jth learnable kernel for
the ith input state map, and b j is the jth bias map applied
to the prediction/output map z̄`j. g`() is the predictive output
nonlinearity applied to the result z̄`j (chosen according to the
distribution that is chosen to model the state of `−1, e.g., the
identity for a multivariate Gaussian model). Notice in Equa-
tion 1, for Conv-NGC, that what would be a scalar state value
in the models of (Rao & Ballard, 1999; A. Ororbia & Kifer,
2022)) is now a 2D matrix (channel) of state activities that
gets expanded through the application of kernel parameters
W`

i j with stride s (each predictive synapse of (Rao & Ballard,
1999; A. Ororbia & Kifer, 2022)) is replaced with a kernel).

Note that in the above equation, in a (de)convolutional layer,
a final complete prediction of the jth output channel involves
the summation/aggregation of multiple filters applied to each
(input) state feature map of layer ` (up to C` input channels).
Extending the prediction operation of Figure 1 to make use
of stacks of operations, such as within a residual block, is de-
tailed in the Appendix (which contains a biologically-plausible
scheme for handling credit assignment for operation blocks).
State Map Correction: During this step, the (i-th) state
feature map z`i is refined using the values of the error neurons
of the current and previous layers, i.e., ` and `−1. For the top-
most layer, the error eL

i of any feature map i does not exist so it
is not computationally modeled/simulated. Formally, the `-th
predictor (or rather, its (i-th) map z`i ) corrects its state values
using both the bottom-up and top-down error messages/signals
according to the following (Euler) integration scheme below:

z`i ←
(
z`i +βd`

i − γz`i
)
,where d`

i =−e`i +
C`−1

∑
j

E`
ji ∗s e`−1

j ,

(2)
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Figure 2: A 3-layer convolutional neural generative coding network. Each latent state map z`i generates a prediction of each latent
map z`−1

j in the layer below via deconvolution. In non-transparent colors, a possible prediction pathway within the circuit is
shown (transparent colors indicate no involvement in this pathway), i.e., state maps z2

1 and z2
2 each contribute to the prediction z̄1

1
of map z1

1 while state maps z1
1 and z1

2 each contribute to the prediction z̄0
2 of map z0

2 (note: in the bottom layer, each z0
j map could

represent a particular color channel of an input image). Error unit map e1
1 encodes the mismatch between prediction z̄1

1 and the
value of latent map z1

1 while error unit map e0
2 encodes the mismatch between prediction z̄0

2 and the value of latent map z0
2. Green

squares depict latent unit maps, blue squares depict prediction output maps, and orange/yellow squares depict error unit maps.

where ← denotes a variable override and the modula-
tion/adjustment factor β is a constant value, which controls the
state correction rate, and −γz`i is the leak variable, controlled
by the strength factor γ (set to a small value such as 0.001, also
serving as a form of light regularization applied to the latent
state map neurons). The (4D) error kernel tensor E` models
a learnable feedback pathway that is responsible for transmit-
ting the error from the layer `−1 to the layer `. This means
that the bottom-up error message/perturbation is produced by
aggregating across the C`−1 output channels/state maps that
make up layer `− 1, i.e., a convolution must be applied to
each output channel j as follows: E`

ji ∗s e`−1
j , meaning that the

prediction of each lower-level state map that was (partially)
made by the state map/predictor z`i contributes equally to its
final value, resulting in a state map correction (which is further
modulated by the top-down pressure e`i , exerted by the layer
above z`+1). Although having separate error kernels for trans-
mitting error message signals resolves the weight transport
problem that characterizes backprop-based learning (and is
thus more biologically plausible), this comes at an increased
memory footprint and additional computation which is needed
for updating the error filters themselves. Thus, we set the error
filters, in this work, to be E`

ji = (W`
i j)

T , to speed up simula-
tion (not observing any noticeable change in performance).
Note that, for test time inference, we do not adjust synaptic
efficacies and either clamp or initialize the bottom state z0 = x.
To obtain a prediction, the neural system will conduct T steps
of state prediction and correction, eventually outputting z̄0.

Training: Updating Model Parameters
Neural Coding Synaptic Update: After T iterations of state
prediction and correction (as in the previous section), the
updates to each state prediction filter W`

i j and error filter E`
ji

are computed according to a Hebbian-like update:

∆W`
i j = e`−1

j ∗1 Dilate
((

φ
`(z`i )

)T
,s
)
,

∆E`
ji = λ

(
Dilate

((
φ
`(z`i )

)T
,s
)
∗1 e`−1

j

)
where λ is modulation factor meant to control the time scale
of the evolution of the error filters (and generally set to < 1.0,
e.g., 0.9) - note that this part of the update rule is discarded
if E`

ji = (W`
i j)

T (which can be done to save space and mini-
mal change in performance). The above local update rule is a
generalization of the one proposed in (A. Ororbia et al., 2022;
A. Ororbia & Kifer, 2022) to the case of a (de)convolutional
filter. After the update for a particular filter has been calcu-
lated and it has been used to adjust the current physical state
of the kernel synapses, we further normalize/constrain each
kernel such that its Euclidean norm does not exceed one (see
the Appendix for the specification of the re-projection step).
This constraint ensures that Conv-NGC avoids the degenerate
solution of simply increasing its synaptic kernel values while
obtaining only small/near-zero latent activity values, much as
is done in convolutional sparse coding (Heide, Heidrich, &
Wetzstein, 2015) (this also means that one could also view
Conv-NGC as a sort of “deep” convolutional sparse coding).
Objective Function: During training, a Conv-NGC model
refines its internal states such that the output of the local pre-
dictions move as close as possible to the actual values of the
state maps, which means that the bottom-most layer stays as
close as possible to the sensory input x j. In order to do this,
Conv-NGC optimizes total discrepancy optimization (ToD)
(A. G. Ororbia, Haffner, Reitter, & Giles, 2017; A. G. Ororbia
& Mali, 2019; A. Ororbia & Kifer, 2022) via the prediction,
state correction, and synaptic adjustment steps presented in
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the earlier sub-sections. The simplest version of this optimiza-
tion function is defined as the sum of mismatches between
predictions and actual states at each level of the model:

LToD = ∑
`

(
− 1

2
||z`− z̄`||22

)
(3)

The online minimization of the discrepancy among states as
depicted in Figure 3 progressively refines the representation of
all layers in our model. Notably, the total discrepancy objec-
tive can also be viewed as approximately minimizing a form
of (variational) free energy (Friston, 2010), representing a
concrete statistical learning connection to and implementation
of a prominent neuro-mechanistic Bayesian brain theory.

Experiments
Given our specification of the Conv-NGC model’s inference
and learning processes, we next describe the experimental
setup. We compare Conv-NGC to powerful backprop-based
models such as the convolutional autoencoder (Conv-AE) and
the denoising convolutional autoencoder (Conv-DAE) as well
as the fully-connected form of neural generative coding (NGC-
PCN), which under certain conditions, recovers the unsuper-
vised form of the model in (Salvatori et al., 2021) (the hier-
archical predictive coding network, or PCN). The NGC-PCN
represents our base comparison to standard predictive coding.

With respect to the datasets used in our simulations, we
utilized Color-MNIST, CIFAR-10, and SVHN (the Street
View House Numbers database) to both train and evalu-
ate the baselines and Conv-NGC (using respective train-
ing/validation/testing splits) while CINIC-10 was only used
as an additional test set for the out-of-distribution reconstruc-
tion experiments. All datasets consisted of 32×32 complex
natural images. In the Appendix, we provide baseline model
and Conv-NGC configuration descriptions and training details,
hyperparameter settings, and dataset details.
Reconstruction and Denoising: In this set of tasks, we inves-
tigate each model’s ability to reconstruct the given input im-
ages from each dataset as well as to recover the original image
values under corruption noise. For the task of reconstruction,
we measure the mean squared error (MSE) for each input be-
tween the model’s predicted values x̂i and the original image
xi. To better probe the image quality of reconstructed outputs,
we evaluate the structural similarity index measure (SSIM).
Finally, for the more complex natural images in SVHN and
CIFAR-10, we measure peak signal-to-noise ratio (PSNR).
Note that, in the Appendix, we present the mathematical for-
mulas and details for each of these metrics. For the results of
the reconstruction and denoising tasks, see Tables 1 and 2a.
Out-of-Distribution Reconstruction: One interesting prop-
erty of auto-encoding systems that we are interested in ex-
amining is their ability to reconstruct image pattern samples
not seen in the original data distribution, particularly samples
that come from a much different distribution (violating the
typical i.i.d. assumption in statistical learning). To evaluate
out-of-distribution (OOD) reconstruction ability, we take the

(a) Original image. (b) Corrupted image. (c) Denoised image.

(d) Original image. (e) Corrupted image. (f) Denoised image.

Figure 3: Example image randomly sampled from a dataset
test set (Left), the same image corrupted with noise ∼
N (0,0.1) (Middle), and the Conv-NGC denoising of the cor-
rupted pattern (Right). Top row shows a sample taken from
CIFAR-10 while the bottom row shows one taken from SVHN.

models trained on the SVHN dataset (the source dataset) and
evaluate their ability to reconstruct samples from the distinct
CIFAR-10 dataset as well as the larger, more difficult CINIC-
10 database (specifically evaluating predictive ability on these
test sets). For the results of this OOD task, see Table 2b.
Discussion: As seen in our results, Conv-NGC outperforms
NGC-PCN (or PCN), as expected, and exhibits competitive be-
havior with the backprop-based autoencoder models. Notably,
in terms of reconstruction, Conv-NGC even offers improved
SSIM and PSNR, which is likely the result of its ability to
learn a reconstruction process (over a T -length window of
time). With respect to image denoising, we observe that the
Conv-NGC models works well, outperforming both the AE
and NGC models specifically on the harder natural image
datasets (CIFAR-10 and SVHN), but under-performs the DAE.
The DAE, however, was trained directly for the task of denois-
ing (with noise injected to its input nodes), so it makes sense
that it would outperform models that were not tuned to the task
(and thus serves well as a soft upper bound on performance).
See Figure 3 for visual examples of image samples that the
Conv-NGC model denoised (for CIFAR-10 and SVHN).

Note that, for the table metrics reported, pixel reconstruc-
tion/model output values were re-scaled to be between [0,255],
which better highlighted the gap between results obtained for
Conv-NGC and other baseline models. More importantly,
Conv-NGC exhibits a low variance and better visual recon-
struction comparatively as indicated by SSIM, which is a
metric that more closely correlates with human perception.

To probe the knowledge acquired in the Conv-NGC’s dis-
tributed representations, we examined the learned latent state
feature maps of trained models on sampled test images, taken
from each of the data benchmarks. Qualitatively, we observed
that Conv-NGC appears to learn a (noisy) form of the image
pyramid (Adelson, Anderson, Bergen, Burt, & Ogden, 1984)
within its latent activities (see the Appendix for visual samples
of this result). Notably, in Conv-NGC, the sensory image
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Table 1: Model reconstruction and denoising performance on the test samples of Color-MNIST (top), CIFAR-10 (middle), and
SVHN (bottom). Reported measurements are mean and standard deviation across five trials. (Note: model output values are
re-scaled to between [0,255] when calculating metrics.) In terms of performance, a lower MSE and higher SSIM are better.

Color-MNIST Reconstruction Denoising (∼N (0,0.1))
Model MSE SSIM MSE SSIM

Conv-AE 32.99±1.0680 0.9021±0.0100 176.9321±2.0923 0.6912±0.007
Conv-DAE 23.09±0.4722 0.9324±0.0060 76.8610±0.8511 0.8424±0.003
NGC-PCN 328.5659±3.5000 0.7652±0.0032 887.205±18.2500 0.5476±0.0075
Conv-NGC 11.2802±0.5008 0.9838±0.0005 202.2222±1.0511 0.6732±0.0006
CIFAR-10 Reconstruction Denoising (∼N (0,0.1))

Model MSE SSIM MSE SSIM
Conv-AE 13.6890±1.6320 0.9310±0.0030 208.4608±9.3928 0.7628±0.0003

Conv-DAE 8.8810±1.5311 0.9720±0.0010 16.7781±5.1037 0.9110±0.0020
NGC-PCN 413.5140±7.1000 0.7230±0.0003 913.2587±21.2000 0.5308±0.0025
Conv-NGC 6.3668±1.2522 0.9955±0.0009 183.8624±9.4002 0.8603±0.0007

SVHN Reconstruction Denoising (∼N (0,0.1))
Model MSE SSIM MSE SSIM

Conv-AE 7.5043±2.9351 0.8934±0.0002 154.6783±25.7555 0.7490±0.0030
Conv-DAE 2.7263±1.9286 0.9510±0.0002 87.9926±7.2091 0.9002±0.0030
NGC-PCN 67.393±9.02 0.9436±0.0028 1116.764±283.55 0.6704±0.0904
Conv-NGC 1.9500±0.5609 0.9976±0.0002 97.2695±3.5245 0.8650±0.0007

Table 2: Both in (a) and (b), mean and standard deviation of
SSIM, PSNR, and MSE are reported (over five experimental
trials). Lower MSE and higher SSIM and PSNR are better.

CIFAR-10 Reconstruction Denoising (∼N (0,0.1))
Model PSNR PSNR

Conv-AE 36.7872±1.0056 24.6527±0.2001
Conv-DAE 38.6462±1.2033 36.4346±0.2021
NGC-PCN 22.8462±0.0400 19.0410±0.1203
Conv-NGC 41.0912±0.0234 25.9004±0.2004

SVHN Reconstruction Denoising (∼N (0,0.1))
Model PSNR PSNR

Conv-AE 39.3777±0.2000 26.2369±0.3000
Conv-DAE 43.7750±0.3000 28.6864±0.2000
NGC-PCN 33.2763±1.0800 19.8709±2.0800
Conv-NGC 45.2305±0.0800 28.2513±0.1600

(a) Analysis of model reconstruction and denoising ability

SVHN to CIFAR-10
Model SSIM PSNR MSE

Conv-AE 0.69±0.0010 24.03±0.26 387.02±7.82
Conv-DAE 0.77±0.0002 29.46±0.37 176.00±5.09
Conv-NGC 0.98±0.0006 35.03±0.30 26.80±2.00

SVHN to CINIC-10
Model SSIM PSNR MSE

Conv-AE 0.70±0.0050 23.74±0.31 275.09±8.02
Conv-DAE 0.79±0.0020 27.10±0.50 127.90±4.55
Conv-NGC 0.97±0.0013 32.54±0.20 47.83±2.50

(b) Out-of-distribution reconstruction performance results.

appears in some of the internal feature state maps, but is a
down-sampled, decreased resolution form of itself (much akin
to the repeated process of smoothing/sub-sampling that results
in lower spatial density images the higher up one goes within
the image pyramid). This result complements early work that
highlighted the notion that the brain processes visual infor-
mation at different resolutions (Campbell & Robson, 1968).
This biological multi-resolution analysis of the world allows
the brain to extract useful information from complex input

patterns and it appears that Conv-NGC implicitly learns to
conduct a similar type of analysis on the patterns contained in
the natural image benchmarks.

Surprisingly, with respect to the OOD experiments, Conv-
NGC outperforms all of the baseline models (including the
Conv-DAE), further corroborating the in-dataset reconstruc-
tion result(s) that Conv-NGC appears to (meta-)learn a type
of reconstruction process that works well on unseen, out-of-
distribution natural image patterns. This desirable improve-
ment is indicated by the higher trial-averaged (OOD) PSNR
as well as the (OOD) SSIM score on both problem settings: 1)
SVHN-to-CIFAR-10 reconstruction, and 2) SVHN-to-CINIC-
10 reconstruction. What is most impressive is that the Conv-
NGC model was trained on natural images (in SVHN) that did
not contain any of the objects found within either CIFAR-10
and CINIC-10 and it was still able to reconstruct with top per-
formance. This result offers a promising future direction worth
exploring for Conv-NGC/NGC predictive coding systems in
general – their ability to generalize to unseen patterns that vio-
late the assumption that they were generated by a distribution
similar to that of the training data.

Conclusion
In this work, we proposed convolutional neural generative
coding (Conv-NGC), a generalization of a computational pre-
dictive coding framework to the case of natural images. Our
experiments on three benchmark datasets, i.e., Color-MNIST,
CIFAR-10, and SVHN, demonstrate that Conv-NGC is com-
petitive with powerful backprop-based convolutional autoen-
coding models with respect to both pattern reconstruction and
image denoising and notably outperforms all of them in the
context of out-of-distribution reconstruction. Our results mark
an important step towards crafting more robust, general brain-
inspired neural architectures and learning processes capable
of handling complex machine learning tasks.
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