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ABSTRACT OF THE DISSERTATION

Circuit Simulation via Matrix Exponential Method

by

Shih-Hung Weng

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2013

Professor Chung-Kuan Cheng, Chair

The trend of higher integration density in VLSI has made the time-domain

circuit simulation a bottleneck in today’s IC design flows. For designs with millions

of elements, SPICE-like simulation can easily take days, even weeks, to complete

the task. Therefore, accurate yet fast circuit simulation methods have always been

one of the major demands in industry. A different aspect of solving the simulation

problem is proposed in this dissertation.

The proposed method, called Matrix Exponential Method (MEXP), is based

on the analytical solution of the ordinary different equations. The MEXP method

has the benefits of accuracy, stability, scalability, parallelizability and adaptivity

due to its analytical nature and simple kernel computation. To utilize the adaptiv-

ity of MEXP, an algorithm is proposed to dynamically determine locally optimal

step size and order of Krylov subspace at each time step to reduce the overall

computation in the simulation.

Moreover, the scaling effect of MEXP is observed. The scaling effect enables

MEXP to simulate a circuit with larger step size as the time instant moves forward.

With the scaling effect, MEXP demonstrates the comparable capability of stiffness

handling as the widely adopted backward Euler and trapezoidal methods. The

parallelism of MEXP is also demonstrated. The GPU implementation is shown in

xvi



this dissertation. The restarted MEXP is also proposed for GPU implementation

to mitigate the memory usage on resource restricted environment.

Finally, the rational Krylov subspace method is investigated. Instead of

using A as the basis, the rational Krylov subspace utilizes (I−γA)−1 as the basis.

The rational basis transforms the spectrum of a matrix to relax the stiffness con-

straint in the Krylov subspace method. Furthermore, the rational Krylov subspace

can avoid the regularization process of singular C. This dissertation applies MEXP

with the rational Krylov subspace on the power distribution network (PDN) design.

Combining with the capability of adaptivity and accuracy of MEXP, MEXP with

the rational Krylov subspace could exploit a large step size in the low-frequency

response to further improve the performance of the power grid simulation.
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I

Introduction

I.1 Circuit Simulation

Circuit simulation plays an important role in the integrated circuit (IC)

design flow. Many design tools rely on the pre-characterized logic gates by the

circuit-level simulation for logic synthesis, placement, timing analysis and routing.

The electronic behavior of a pre-characterized gate will be stored as a look-up table

such that design tools can quickly obtain information of power, timing, parasitic

resistance and capacitance. With such abstraction provided by the circuit simula-

tion, design tools can reduce the complexity and improve the overall performance.

Moreover, with continuous scaling of the technology, the complicated inter-

action among nano-scale transistors and interconnects causes unpredictable elec-

tronic behavior, e.g., power noise and signal noise. A pre-characterized single

gate is unable to contain those interactions into a look-up table. Hence, a nano-

scale design requires the help from the circuit simulation to analyze and verify

the potential hazards before taping out for manufacturing. Nowadays, the circuit

simulation is an essential procedure from the front-end stage (e.g., logic synthesis)

to the back-end stage (e.g., post-layout verification or power distribution network

verification).

1
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Figure I.1 shows an overall flow of the circuit simulation, which includes

two major operations—device evaluation and numerical integration. The device

evaluation is first to calculate induced charges and currents of transistors given the

nodal voltages from the previous time instant. The evaluation is based on either

empirical equations fitted from measurement data, e.g., BSIM3 [16], or real phys-

ical formulation, e.g., surface potential model [32]. After the evaluation process,

the operation will linearize all those devices to compute equivalent resistance and

capacitance from currents and charges. With those resistance and capacitance, a

circuit can be formulated into a system of ordinary differential equations (ODEs).

Note that this stage is parallel ready because each device can be evaluated inde-

pendently.

Figure I.1: Circuit simulation flow.
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The numerical integration operation will solve the ODEs formed from pre-

vious stage with a chosen step size. Then, we can obtain the nodal voltages at the

present time instant. The solving technique in the numerical integration can be

classified into implicit and explicit methods. Implicit methods require solving a

linear system but have better stability and can march large step size. On the other

hand, explicit methods take only simple sparse matrix-vector multiplication but

the poor stability drags the overall performance with the demand of a tiny step

size. Even though implicit methods are more practical for the circuit simulation,

the size of unknowns in a circuit could up to billions that makes solving a linear

system impossible.

The convergence and error check component of the flow will verify 1) if

the solution from implicit numerical integration converges, and 2) if the numerical

error from previous two operations is under a certain threshold. Otherwise, the

simulation will reverse back to the numerical integration process to solve the ODE

again with a shrunk step size for less the numerical error.

Finally, the step control component will increase or reduce the step size for

the next time step according to the numerical error. The flow will step into the

next time instant with new nodal voltages until it reaches the end of simulation

time.

Although the necessity of the circuit simulation has emerged in the deep

sub-micron era, the device evaluation and the numerical integration processes have

become prohibitive tasks, which consume days or even weeks to complete, due to

the ever increasing size of circuitry in the nano-scale process technology. Even if

the device evaluation can be parallelized in a multi-core or GPGPU environments,

the serial nature of the numerical integration, which involves solving ODEs with

billion unknowns, still restrains the performance of the circuit simulation. Such

performance limitation makes the circuit simulation a bottleneck of the overall

design and verification flow. Therefore, efficient yet accurate circuit simulation

has always been one of the major demands in industry. In this dissertation, we
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will focus on how to accelerate the numerical integration operation of the circuit

simulation.

I.2 Current Research Efforts

There are two directions to accelerate the circuit simulation. One is to

speedup the performance of the device evaluation, which is often relied on parallel

techniques. The other aspect is to improve the numerical integration operation to

reduce the time of solving the solution or to increase allowed step size during the

simulation.

Many researchers [33] [41] [54] [58] [59] [69] [74] [76] [77] worked on acceler-

ation of device evaluation. The idea is to distribute the devices into different cores,

machines or threads. Since each device is independent, the evaluation process can

be performed simultaneously. Researchers [33] [76] [77] utilized the multi-cores

environment in GPGPU to massively evaluate devices at the same time. On the

other hand, researchers [58] [59] [54] [69] [74] took more general purpose cluster

machine to parallize the evaulation. The cluster machine usually has more cores

than GPGPU. However, the communication overhead on the ethernet will de-

crease the speedup while the on-chip communication within GPGPU is negligible.

Kapre et al. implemented the device evaluation onto FPGA and also compared the

performance of device evaluation over cluster, multi-core processor and GPGPU

environments.

In terms of numerical integration, those proposed numerical approaches

could be classified into explicit and implicit methods. Schutt-Ainé [60] proposed

an explicit method to avoid matrix inverse by alternatively updating voltages and

currents with Kirchhoff’s Circuit and Voltage Laws. The coupling capacitor is

regarded as a branch by the companion model [18]. To ensure both equations are

not divided by zero, every node and branch must have branch inductances and

grounded capacitances. That means a small latency has to be introduced among
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elements to enable alternative updating between voltage and current. Although

such latency insertion method avoids matrix inverse, those fictitious elements cause

either stability issue (with too small values) or inaccurate result (with too large

values).

In order to improve the stability of the explicit method, Dong and Li [22] [23]

utilized telescopic projective integration to enable large step size in the explicit

methods without instability. The method is first to march several smaller steps to

avoid the unstable result and then “project” one large step size using extrapolation.

Gear and Kevrekidis [31] proved the stability region is extended with such scheme.

The ratio of the small and the large step size, however, has to be less than 3,

and thus, the overall speedup is limited. To improve the speedup, a multi-level

projection is devised. Devgan and Rohrer [20] [21] utilized the concept of the

steady state and avoid calculating those steady stiff elements for improving the

stability. Therefore, the stiffness of circuit does not affect the computational cost

because once a stiff element enters the steady state; it no longer controls the step

size. However, both techniques in [20] [21] [22] [23] are still limited because 1)

projected step size is still relatively small compared to the allowed step size in the

implicit methods and 2) the steady state of stiff elements can only observed once

the latency among the is large enough. Overall, the stability as well as limited

step size are still challenges in explicit methods for the circuit simulation.

Researchers [30] [39] [44] [54] [65] proposed circuit partitioning technique

to reduce a large-scale matrix into several matrices with size of tens of thousands,

which can be solved within a reasonable time by the LU decomposition. By the

concept of divide and conquer, the overall simulation performance is accelerated

under affordable memory requirement. Furthermore, the partitioned sub-circuits

also enable the ability of parallelization. To reduce the size of interface between

sub-circuits and balance sizes of partitions, the circuit simulators TITAN [30] and

Xyce [39] adopted the concept of placement in the physical design to develop an

analytic partitioning method [55]. The circuit is transformed into a hyper-graph
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and partitioned by several “cuts”. The analytic partitioning method is to minimize

the hyper-edges through cuts and to balance the number of vertices of groups such

that the interconnect part (cuts) can be minimized, and sub-circuits (groups) are

balanced. The waveform relaxation technique proposed by [44] simulates the sub-

circuit individually for whole time period and then updates the interface values of a

sub-circuit by the approximated waveforms of its adjacent sub-circuits iteratively.

The initial interface waveforms of a sub-circuit are assumed to be the same as DC

values, i.e., no transient behavior. Under the waveform relaxation technique, the

circuit partitioning method has to exploit latency among sub-circuits so that the

iteration number can be reduced. However, the convergence of nonlinear circuit

cannot be guaranteed, and it is sensitive to the partitioning method and the or-

der of solving sub-circuits. Researchers [54] [65] adopted overlapping sub-circuits

partitioning in domain decomposition technique. The overlapping sub-circuits can

be solve by the iterative methods, e.g., GMRES, with preconditioner (additive

Schwarz preconditioner). The overlapping partitioning improves the convergence

rate of the iterative method for solving matrix and mitigates effect of solving order.

However, a circuit usually contains feed back loop, e.g., flip-flop in a sequential cir-

cuit. The feed back loop will increase the number of iterations and even unable

to converge. The partition-based circuit simulation performs well only to certain

type of circuit.

I.3 Dissertation Outline

Chapter II introduces the background of numerical integration in the circuit

simulation application. The basic concepts and properties of numerical integration

methods are briefly presented. Two basic yet widely adopted implicit and explicit

methods in the circuit simulation are also shown.

Chapter III tackles the scalability and stability issues in today’s numerical

integration approaches in the circuit simulation. The matrix exponential method
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is presented. The proposed method is free from the stability constraint, but does

still preserve the highly scalable sparse matrix-vector multiplication operation of

conventional explicit methods. The computation of the matrix exponential is via

Krylov subspace approximation, which can significantly reduce the computational

effort by projecting into a much smaller space. We also develop an adaptive step

size scheme to accelerate the performance.

Chapter IV investigates and mitigates the issue of stiffness of an electronic

circuit. We show that the Krylov subspace approximation has the scaling effect,

and the step size can be enlarged after few steps. We also demonstrate the paral-

lelism in the matrix exponential method in the GPGPU environment.

In Chapter V, we study the rational Krylov subspace method. The matrix

exponential method with the Krylov subspace method could significantly relax the

stiffness constraint and eliminate the regularization process. We demonstrate that

the matrix exponential method with the rational Krylov subspace especially fits

for the power grid simulation. The adaptivity of the matrix exponential method

can exploit the low-frequency response of the power grid design to speedup the

simulation.

Chapter VI summarizes the main contributions of the dissertation. Future

research directions are also discussed.



II

Background of Numerical

Integration in Circuit Simulation

In this chapter, we first present the mathematical formulation for the circuit

simulation as well as the related background of numerical integration. Then, we

show two widely-adopted implicit and explicit methods, i.e., backward Euler and

forward Euler, in the circuit simulation application.

II.1 Circuit Formulation

In general, we can formulate a circuit into a system of differential algebraic

equations as below

q̇(x(t)) + Clẋ(t) =
(−Glx(t) + i(x(t))

)
+ Bu(t), (II.1)

where sparse matrices Cl and Gl describe the linear capacitances, inductances

and conductances, B indicates the locations of independent input sources, and q

and i(t) denote the charges and currents induced by the nonlinear components,

e.g., MOSFET or diode. Vector x(t) is the nodal voltages and branch currents at

time t, and u(t) is the input voltage and current sources. In the device evaluation

operation, we will linearize nonlinear devices, i.e., q and i, into their companion

8
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models [18], and use modified nodal analysis (MNA) [37] to construct a circuit as

a system of ODEs:

Cẋ(t) = −Gx(t) + Bu(t), (II.2)

where C includes the linear capacitors, linear inductors, and effective capacitance

of q, and G represents the linear resistors, effective resistance from i and the inci-

dence between voltages and currents. Note that the simulator will apply Newton’s

method to the linearized nonlinear circuit to solve for the solution iteratively. The

linearization process during the device evaluation stage is actually the first order

derivative of nonlinear devices with respect to voltage, which is called Jacobian

matrix. The required Jacobian matrix can be constructed by device-wise inspec-

tion.

Given the initial value x(0), which can be obtained by DC analysis, Eqn.

(II.2) can be solved numerically. First, we discretize the continuous time span

[t0, tf ] into several discrete time instants:

t0 < t1 < t2 < · · · < tn−1 < tn < · · · < tf .

Then, instead of directly solving the ODE for x(t), we could solve the ODE im-

plicitly or explicitly in a step-by-step fashion. A method is call implicit when the

solution of current time instant depends on itself; otherwise, it is called the explicit

method. For example, provided xn is given, the following is a first-order explicit

method (forward Euler):

xn+1 = xn + hẋn + O(h2), (II.3)

where xn ≈ x(tn), h is the step size from tn to tn+1, and ẋn is the approximated

derivative at time tn.

The numerical error of the above approximation is O(h2), which is referred

as local truncation error (LTE). Any numerical method based on polynomial ex-

pansion, e.g., Taylor’s expansion, will generate such error. A higher order expan-

sion can result in a more accurate result. Since the LTE depends on the step size,
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simulators usually can control the LTE by changing step size h adaptively such

that

LTE ≤ h
E

T
,

where E is a user-defined error for entire simulation process, and T is the total

simulation time. By doing so, the simulation can be accelerated using a large step

size when nodal voltages are steady, and can still maintain the accuracy at rapid

fluctuation period with a small step size.

In addition to LTE, we need to consider the stability issue of numerical

methods. An unstable numerical method will amplify the error at time tn to

indefinitely large when n steps to infinity. Hence, even though we could calculate

xn+1 with high-order numerical methods to have a smaller LTE, the stability of a

method still limits the step size. We illustrate this issue with a test function as

follows:

ẋ(t) = λx(t) , x(0) = 1, (II.4)

where λ is a constant complex number. Using the forward Euler method, we have

the relation between xn+1 and x0.

xn+1 = xn + hλxn

= (1 + hλ)xn

= (1 + hλ)n+1x0. (II.5)

In order to maintain the stability, 1 + hλ has to be less than 1. As a result, the

implicit methods generally have better stability than the explicit methods. For

example, with the same test function, the stability constraint of backward Euler,

which can be derived by approximating ẋ(t) as ẋn+1, is ( 1
1−hλ

)n ≤ 1. The stability

regions of both forward and backward Euler methods are shown in Figures II.1

and II.2, respectively. Note that the backward Euler method is also an absolutely

stable (A-stable) method because it is stable as long as λ is negative. As we can
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see, the backward Euler method has much larger stability region than the forward

Euler.

Figure II.1: Stability region of forward Euler.

Most of modern circuit simulators use implicit methods because the ODE

system of circuit is usually stiff, i.e., the magnitude of elements in a circuit varies

in a wide range. For example, a capacitor usually ranges from 10−16 to 10−12.

The implicit methods, e.g., the backward Euler and the trapezoidal methods, have

a larger stability region that can handle the stiff ODE system. In addition, the

implicit methods used in simulators can only up to second-order because lower-

order implicit methods usually have larger stability range as the stability region

decreases with higher order.

II.2 Implicit and Explicit Methods

The implicit methods have better stability to handle the stiffness of the

circuit so that they could use larger step size, but the complicated computation

involved in these methods poses performance and scalability issues. The backward
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Figure II.2: Stability region of backward Euler.

Euler for the circuit simulation is expressed as follows.

xn+1 = xn + hẋn+1

= xn + hC−1(−Gxn+1 + Bun+1)

=

(
C

h
+ G

)−1 (
C

h
xn + Bun+1

)
. (II.6)

The trapezoidal method is also widely adopted in the circuit simulation. Its equa-

tion for the circuit simulation is expressed as below

xn+1 = xn +
h

2
(ẋn+1 + ẋn)

= xn +
h

2
C−1(−Gxn+1 + Bun+1 −Gxn + Gun)

=

(
2C

h
+ G

)−1 ((
2C

h
−G

)
xn + B(un+1 + un)

)
.

As we can see in the above backward Euler or trapezoidal methods for the

circuit simulation, calculating xn+1 involves solving (C/h+G) or (2C/h+G) that

usually requires a LU decomposition. For the circuit simulation, the time and space

complexities of LU decomposition [19] are O(n1.5) where n is number of unknowns.
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Such complexities lead to the scalability problem in terms of runtime and memory

for the implicit methods when the number of unknowns could up to billions in

today’s design. Furthermore, the LU decomposition operation is required for every

iterative of Newton’s method in the nonlinear circuit. Despite the impressive

achievements in iterative matrix solving methods [57], the ill-conditioned matrix

constructed from the implicit methods significantly degrades the performance of

the iterative technique. Another drawback in the implicit methods is the costly

adaptive step control. Once the step size h changes, the LU factorization for

(C/h + G) has to be re-evaluated and thus degrades the overall efficiency of the

simulation.

The explicit methods usually require only the sparse matrix-vector multi-

plication when performing numerical integration because xn+1 depends only on the

solution at previous time instant. However, in the circuit simulation application,

the following forward Euler equation derived from Eqn. (II.3) shows that xn+1 still

needs to solve C−1.

xn+1 = xn + hẋn

= xn + hC−1(−Gxn + Bun)

= (I− hC−1G)xn + hC−1Bun. (II.7)

Although C usually has better structure, which leads to a faster LU factorization or

a faster convergence rate in the iterative methods, such extra cost still undermines

the efficiency of the explicit methods. Note that although C is possible to be

singular, previous works [6] [14] have proposed several approaches to regularize C

with affordable cost while maintaining the sparsity.

Another issue of the explicit methods is the stability. Although the compu-

tation of the explicit method is simple and scalable, this method suffers from the

stability issue. As we can see in Eqn. (II.5), the step size h is limited to make sure

hλ is less than 1, where λ in the circuit simulation application relates to the small-

est time constant. For an electronic circuit, the time constant usually is around
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10−16 ∼ 10−18. Hence, the step size of the explicit methods must be small enough

to keep the methods stable. Thus, the explicit methods take more time steps to

perform the simulation and the benefit of simple computation is deteriorated.



III

Matrix Exponential Method with

Adaptive Step Control

In this chapter, we propose an explicit numerical integration method based

on matrix exponential operator for transient analysis of large-scale circuits. Solv-

ing the differential equation analytically, the limiting factor of maximum time step

changes largely from the stability and Taylor truncation error, to the error in com-

puting the matrix exponential operator. We utilize Krylov subspace projection to

reduce the computation complexity of matrix exponential operator. We also de-

vise a prediction-correction scheme tailored for the matrix exponential approach to

dynamically adjust the step size and the order of Krylov subspace approximation.

Numerical experiments show the advantages of the proposed method compared

with the implicit trapezoidal method.

III.1 Background

Most of SPICE-like simulators adopt implicit methods, e.g. backward Euler

and trapezoidal methods (TRAP), to overcome the stability problem of stiff ODE

system. However, implicit methods are required to solve a linear system at each

15
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time step and hence increase computation time of circuit simulation. The limita-

tion of performance and memory are the major problems of implicit methods for

circuit simulation. In contrast, for each time step, explicit methods in general need

only sparse matrix-vector multiplication whose computation and memory complex-

ity are O(n). Nevertheless, the stability issue of explicit methods for stiff ODE

enforces the use of smaller time steps when simulating a circuit, and the benefits

of sparse matrix-vector product are damaged.

Apart from the above numerical methods, we can solve an ODE system in

a semi-analytical way, where the time span is still discretized but within each time

step the equation is solved analytically by the matrix exponential operator eA,A ∈
CN×N . This leads to a distinct class of numerical approach for differential equations

called exponential time differencing (ETD), which dated back to 1960s [13] and has

been “re-invented” over the years in some areas, such as computational physics [10]

[7] and chemistry [3]. Solving differential equations analytically removes the local

truncation error (LTE) of polynomial expansion approximation in most numerical

methods, and the stability of ETD is as the same as TRAP, which is A-stable for

passive circuits. Therefore, the step size of ETD is free from restrictions of the

stability and the LTE of polynomial expansion.

The core computation of ETD lies in calculating the matrix exponential.

Moler and Van Loan summarized 19 ways of computing a matrix exponential in

their classic work [45], all of which are considered costly and thus limit the usage

of ETD in time-domain simulation for circuits with huge size. In recent years,

the Krylov subspace method has been introduced as the 20th way and enables an

efficient evaluation of the product of eAv for very large scale matrix A [45].

In this chapter, We adapt the idea of ETD into the context of time-domain

circuit simulation and develop an explicit time-marching scheme called matrix

exponential method (MEXP) [71] [70]. Our method directly computes the analyt-

ical solution of the differential equations resulting from modified nodal analysis

(MNA) [37]. We utilize the Krylov subspace method [38] [56] to approximate the
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matrix exponential operator, which significantly reduces the complexity of matrix

exponential computation. The largest step size of our method is generally limited

by the nonlinearity of nonlinear devices and also approximation error of the matrix

exponential operator.

Furthermore, the matrix exponential formulation together with the Krylov

subspace method has some special properties that can be exploited to develop

more efficient dynamic time step control than that currently used in SPICE-like

simulators based on implicit methods. The properties include the scaling invariance

of Krylov subspace projection and a convenient error estimate in computing the

matrix exponential. Utilizing these properties, a prediction-correction scheme is

designed in this chapter for adaptive control of the step size and the order of Krylov

subspace approximation during the numerical integration.

III.2 Matrix Exponential Formulation

In this section, we present the primary formulation of MEXP in linear and

nonlinear circuit simulation.

III.2.A Linear Circuit

In MNA, a linear circuit is represented by a system of linear differential

algebraic equations (DAEs) as Eqn (II.2). Provided C is invertible, (II.2) is re-

ducible to a system of ordinary differential equations (ODEs). Given an initial

condition x(0) of the circuit (e.g., from DC analysis), one can obtain the analyti-

cal solution [17] of (II.2) as

x(t) = eA(t)x(0) +

∫ t

0

eA(t−τ)b(τ)dτ,

where A = −C−1G (we do not need to explicitly compute C−1G in the Arnoldi

process), and b(t) = C−1Bu(t). Given the solution at time t and a time step h,
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the solution at t + h is

x(t + h) = eAhx(t) +

∫ h

0

eA(h−τ)b(t + τ)dτ. (III.1)

Following the convention of SPICE-like simulators, we assume that the

given input u(t) is piece-wise linear (PWL), i.e., u(t) is linear within every time

step. The integral term in (III.1) can be computed analytically, turning (III.1) to

(III.2) involving three functions with matrix exponential operators

x(t + h) = eAhx(t)

+ (eAh − I)A−1b(t)

+ (eAh − (Ah + I))A−2b(t + h)− b(t)

h
. (III.2)

We call the solution scheme based on this formulation as matrix exponential method.

MEXP is an A-stable explicit method because x approaches zero as h tends to in-

finity when eigenvalues of A are negative.

Note that MEXP is an exact method in the sense that one can solve (II.2)

analytically provided the matrix exponential is computed exactly and the PWL as-

sumption of input is satisfied. This is of theoretical difference from linear multi-step

methods, such as the forward, backward Euler and trapezoidal methods. These

methods approximate (II.2) by polynomial expansion and drop high-order terms,

which is the source of LTE. Therefore, for linear circuits, the step size of matrix

exponential method is not restricted by LTE or stability, but instead solely by the

computation error of matrix exponential, which will be detailed in Section III.4.

III.2.B Nonlinear Circuit

For nonlinear circuits, the differential equation is given as Eqn. (II.1). With

a mild approximation we assume the nonlinear charge varies linearly within the

time interval (tn, tn + h), which leads to a differential equation similar to (II.2)

Cnẋ(t) = − (
Glx(t) + i(x(t))

)
+ Bu(t) (III.3)
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with Cn = Cl +Cnl
n , where Cnl

n is the companion capacitance matrix for nonlinear

devices evaluated at tn. The exact solution of (III.3) is therefore in an analogous

form with (III.1)

x(tn + h) = eAnhx(tn) (III.4)

+

∫ h

0

eAn(h−τ) [F(x(tn + τ)) + b(tn + τ)] dτ,

where A = −C−1
n Gl and F(x(τ)) = −C−1

n i(x(τ)).

The second-order implicit approximation of F(τ) = (F(xn) + F(xn+1)) /2,

which is A-stable [10], leads to an algebraic nonlinear system

xn+1 =
(eAh − I)

2
A−1F (xn+1) + eAhxn

+(eAh − I)A−1

(
Fn

2
+ bn

)

+(eAh −Ah− I)A−2∆bn,

(III.5)

where ∆bn = bn+1−bn

h
, xn+1 is x(t + h), and xn is x(t). The nonlinear equation

arising from the (implicit) approximation of F involves the product of a function of

matrix exponential and the nonlinear function, which couples the responses from

the linear elements and nonlinear elements in the circuit. Such coupled system is

generally expensive to solve by standard iterative solvers, e.g., Newton’s method

or fixed point method, since the functions of matrix exponential need to be re-

evaluated by the Krylov subspace approximation in every iteration.

To decouple the linear and nonlinear terms in the above equation, we adapt

the scheme developed in [51], which approximates e−An(τ)F(x(tn + τ)) instead of

F(x(tn + τ)) by a Lagrange polynomial in the temporal integral of (III.4). The

second order implicit approximation is then of the form

xn+1 =
h

2
F (xn+1) + eAh

(
xn +

h

2
Fn

)

+(eAh − I)A−1bn

+(eAh −Ah− I)A−2∆bn,

(III.6)



20

in which an upper bound of the local truncation error is estimated as

−h3

12

(
(Ah)2Fn + (Ah)Ḟn + F̈n

)
(III.7)

In (III.6), the nonlinear function of xn+1 is only multiplied by a scalar coefficient,

other than the matrix exponential function in (III.5). The remaining three matrix

exponential functions involve only known quantities from previous time steps. This

decoupling of nonlinearity and matrix exponential (essentially linearity) facilitates

the numerical solution greatly, in that the time-consuming evaluation of matrix

exponential is needed only once in each time step, while the nonlinear solution can

iterate multiple times until convergence.

To provide higher capability for handling nonlinearity, we utilize Newton’s

method [53] to solve Eqn. (III.6), which can be rearranged as

xn+1 − h

2
F(xn+1)− Ln = 0, (III.8)

where

Ln = eAh

(
xn +

h

2
Fn

)

+
(
eAh − I

)
A−1bn

+
(
eAh −Ah− I

)
A−2∆bn.

Ln includes terms only related to current time t. By multiplying Cn at both sides

of the above equation, we have a nonlinear function f(x) as below

f(xn+1) = Cnxn+1 − h

2
i(xn+1)−CnL.

In Newton’s method, solution xn+1 in nonlinear function f is derived as

xk+1
n+1 = xk

n + ∆xk+1
n+1,

where k is the k-th iteration in Newton’s method, x0
n+1 is set as xn, and

∆xk+1
n+1 = − f

(
xk

n+1

)

f ′
(
xk

n+1

) . (III.9)
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Newton’s method will update xn+1 until Eqn. (III.9) is small than a given tolerance.

The derivative of f(xn+1) with respective of (x) is

f ′(xn+1) = Cn+1 − h

2

δi

δx

∣∣∣∣
xn+1

= Cn+1 − h

2
Gnl

n+1,

where Jacobian matrix ∂i
∂x

is actually equivalent to the effective conductance of

nonlinear components at tn, which is denoted as Gnl. The update delta of every

iteration for xn+1 by Newton’s method is expressed as

∆xk+1
n+1 = − f(xk

n+1)

f ′(xk
n+1)

= −
(
Cn+1 − h

2
Gnl

n+1

)−1 (
Cnxn+1 − h

2
i(xn+1)−CnL

)

It should be noticed that instead of deriving the Jacobian matrix directly, as most

SPICE-like simulators, we can construct Gnl via the inspection of linearized non-

linear components. In comparison with the implicit methods, e.g., backward Euler,

the Jacobian matrix (Cn/h + Gl + Gnl) will burden the linear system solver with

much more non-zeros from Gl.

The convergence rate of Newton’s method is shown in [53]. As long as the

following two criteria satisfy, Newton’s method can always converge in quadratic

rate.

• (
Cn+1 − h

2
Gnl

n+1

)−1
is non-singular. This criterion is for the existence of

∆xk+1
n+1.

• Initial guess of xn+1 is close to xn+1 enough.

The first criterion is always true since Cn is non-singular after the regularization

process, and for the second criterion, our simulation sets xn as the initial guess of

xn+1 that will be close enough under an appropriate step size.

The primary version of matrix exponential method (III.2) has two limita-

tions when applied in large-scale circuit simulation. First, the system of equations

(II.2) has to be convertible to an ODE for which an analytical solution is avail-

able, i.e., C must be nonsingular. This is usually not the case with generic MNA
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formulation. The matrix A, however, needs not to be nonsingular, since the three

matrix exponential functions in their Taylor expansion form are just power series

of A. Second, direct computation of matrix exponential is prohibitive [45] as the

dimension of matrices in modern circuit simulation easily exceeds 1 million. The

two problems are addressed in the following two sections.

III.3 Regularization

The most common cause of singular C matrix in (II.2) is the empty rows in

C corresponding to the nodes without capacitance and the currents of independent

and controlled sources, which have no time differential terms appear in the equa-

tion. On top of this “explicit” singularity, it is often the case that some ”hidden”

dependency among variables would make C non-invertible or ill-conditioned even

though it has no zero rows [17].

We have reported in a separate work [14] a two-phase regularization tech-

nique to construct from the original MNA system with singular C matrix an equiv-

alent system with invertible C, i.e., converting a descriptor system (DAE) to an

explicit state-space system (ODE). A succinct review is given here. The first phase

of regularization utilizes graph theory to analyze the network topology and reduce

the DAE index of the MNA equation by eliminating certain elements via Gaussian

elimination (GE). In the second phase a systematic elimination process is applied

to remove implicit dependency among variables, resulting to a nonsingular system.

For clarity, the systematic elimination is presented first followed by the topological

index reduction.
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III.3.A Systematic Elimination

We utilize the regularization flow developed by Natarajan [49], which re-

duces C to its the row echelon form

C11 C12

0 0





ẋ1

ẋ2


 = −


G11 G12

G21 G22





x1

x2


 +


B1

B2


u. (III.10)

Then another row echelon transform is applied to the submatrix of [G21 G22] from

the bottom row. The columns of G (and C) are rearranged to ensure G22 is

lower triangular. Finally, block Gaussian elimination (BGE) is applied to obtain

a reduced system of equations

Crẋ1 = −Grx1 + B0ru + B1ru̇, (III.11)

where

Cr = C11 −C12G−1
22 G21 Gr = G11 −G12G−1

22 G21, (III.12a)

B0r = B1 −G12G−1
22 B2 B1r = −C12G−1

22 B2, (III.12b)

x2 =−G−1
22 (G21x1 −B2u) . (III.12c)

Provided Cr is invertible, a variable transform of xr = x1−C−1
r B1ru is applied to

absorb the derivative of u, rendering a regular ODE as in (II.2)

Crẋr = −Grxr + Bru, (III.13)

with Br = B0r −GrC
−1
r B1r.

The regularization of (III.10) has two bottlenecks: 1) Reducing C to the

row echelon form is costly (LU decomposition with row pivoting), and will intro-

duce extra fill-ins into G during simultaneous operations (multiplications with the

inverse of L, U factors); 2) It cannot guarantee Cr is nonsingular after the first

round of regularization, and if so, the process has to be repeated to eliminate more

variables from x1 until a nonsingular Cr is achieved. This problem arises when the

system of DAEs have an index higher than one, i.e., the output equation contains
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derivatives of the source terms, which would present in the above procedure only

after the second cycle [49]. Such iterative check and elimination of singularity is

unfavorable to computation efficiency and sparsity preservation.

The second-order index of a circuit is mostly due to the presence of CV -loop

and LI-cutset in the circuit topology [61]. Hence, we propose to reduce the index-

2 circuit to its index-1 equivalent prior to the elimination process of (III.10) by

detecting and breaking all CV -loops and LI-cutsets in the topology. The index-1

system are then fed into (III.10) which is guaranteed to stop after one iteration

III.3.B Topological Index Reduction

Our index reduction method combines topology analysis and algebraic trans-

formation in such a way that the latter (essentially GE) is only applied on a small

portion of the original system selected by the former. Modifications are made on

the matrix equation level instead of the netlist level for better adaptability. One

key observation is that a loop with capacitors only does not lead to index-2 circuit

in MNA; only when voltage source(s) come into the loop will the second order

of index present [34]. This is different from LI-cutset in which inductors alone

can form a cutset leading to index-2 system (because inductor currents are state

variables in MNA).

Our method hence starts with eliminating one (non-datum) node voltage

and the branch current for each (dependent and independent) voltage source re-

gardless whether it is part of a CV -loop. This intends to break all (potential)

CV -loops in one shot taking advantage of the (usually) small number of voltage

sources in a circuit. The MNA stamp of independent voltage source is given in

(III.14a) and the corresponding elimination flow follows from (III.14b) to (III.14f)

(assume vi and iv are eliminated). Dependent voltage sources are eliminated anal-

ogously.
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


Cii Cij 0

Cji Cjj 0

0 0 0







v̇i

v̇j

i̇v


 = −




Gii Gij 1

Gji Gjj −1

−1 1 0







vi

vj

iv


 +




Isi

Isj

Vs


 (III.14a)




Cii Cij 0

Cji Cjj 0

0 0 0







v̇i

v̇j

i̇v


 = −




0 Gij+Gii 1

0 Gjj+Gji −1

−1 1 0







vi

vj

iv


 +




Isi
+GiiVs

Isj
+GjiVs

Vs


 (III.14b)




Cii Cij 0

Cji Cjj 0

−1 1 0







v̇i

v̇j

i̇v


 = −




0 Gij+Gii 1

0 Gjj+Gji −1

0 0 0







vi

vj

iv


 +




Isi
+GiiVs

Isj
+GjiVs

0


 +




0

0

−V̇s


 (III.14c)




0 Cij+Cii 0

0 Cjj+Cji 0

−1 1 0







v̇i

v̇j

i̇v


 = −




0 Gij+Gii 1

0 Gjj+Gji −1

0 0 0







vi

vj

iv


 +




Isi
+GiiVs

Isj
+GjiVs

0




+




−CiiV̇s

−CjiV̇s

−V̇s




(III.14d)




0 Cij+Cii 0

0 Cjj+Cji+Cij+Cii 0

−1 1 0







v̇i

v̇j

i̇v


 = −




0 Gij+Gii 1

0 Gjj+Gji+Gij+Gii 0

0 0 0







vi

vj

iv




+




Isi
+GiiVs

Isj
+GjiVs+Isi

+GiiVs

0


+




−CiiV̇s

−CjiV̇s−CiiV̇s

−V̇s




(III.14e)

[
Cjj+Cji+Cij+Cii

][
v̇j

]
= −

[
Gjj+Gji+Gij+Gii

][
vj

]

+
[
Isj

+GjiVs+Isi
+GiiVs

]
+

[
−CjiV̇s−CiiV̇s

] (III.14f)
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Treatment to LI-cutsets is similar, except now one inductor (not current

source) per LI-cutset must be selected for elimination. The inductors to be elimi-

nated are selected from a derived graph with only inductive branches and current

sources [5]. Once the inductor is chosen for a given LI-cutset (denoted as L1),

a similar process to (III.14b) is applied to eliminate one node voltage (the node

without capacitance). If the two end nodes of L1 both have capacitance, only

the inductor current needs to be eliminated. For the current variable, the alge-

braic constraint from KCL of the LI-cutset (III.15) and its differential version are

applied to eliminate iL1 and i̇L1 in G and C, respectively.

iL1 +

NL∑
j=2

iLj
+

NIs∑
j=1

Isj
= 0. (III.15)

III.3.C Treatment to Floating Capacitance

After eliminating all voltage sources and the selected inductors from the

topology, the matrix C could still be singular, due to hidden (algebraic) singu-

larity in C caused by the “floating capacitors”, a group of connected capacitors

isolated by noncapacitive elements, leaving one node voltage in the group alge-

braically dependent on the others. To avoid using LU decomposition to reveal this

hidden singularity, we represent each group of floating capacitors by a connected

component and locate them in a derived graph comprising only capacitive nodes

and branches. We can then eliminate one node voltage using the algebraic and dif-

ferential KCL of that node [14]. This way, the LU decomposition can be replaced

by simply permuting all nonzero rows to the upper part of C, which is much more

desirable for speed and sparsity.

The complete flow of the regularization method is illustrated in Fig. III.1.

The underlying rationale of our method is to avoid (to most extent) certain matrix

operations, such as (iterative) LU decomposition and matrix-matrix multiplica-

tions, that of high complexity and tend to damage the sparsity of MNA matrices.

This is crucial for any practical techniques in large-scale circuit simulation con-
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sidering the giant size of the problems. We achieve this goal by preprocessing

DAE index and floating capacitors before system elimination, and using topologi-

cal analysis to guide such preprocessing which affects only a small portion of the

entire matrices.

Figure III.1: Flow of regularization process.

III.3.D Complexity Analysis

The computational cost of regularization consists of the costs from topology

analysis and algebraic transformation. The graph algorithms for topology analysis,

such as finding minimal spanning tree and connected components, are in complex-

ity of O(Ng) or O(NglogNg) [40] where Ng is the size of a reduced graph [5]. Since

the size of the graph is much smaller than the number of MNA variables, the cost
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of topology analysis is insignificant.

The algebraic transformation includes mainly row-wise elimination and LU

decomposition of [G21G22] in the systematic elimination stage, whose cost is gen-

erally topology-dependent. The cost of row-wise elimination is determined by the

number of voltage sources, LI-cutsets and floating capacitors in a circuit. Based on

our experience, the number of these “trouble maker” is usually less than 0.1% for

million-scale designs. For the LU decomposition, the cost depends on the number

of nodes without capacitances in a circuit, and such a circuit is uncommon.

III.4 Computation of Matrix Exponential

III.4.A Merge of Three Functions into One Matrix Expo-

nential

The analytical solution (III.2) has three matrix exponential functions, which

are generally referred as ϕ-functions of the zero, first and second order [52]. Al-

Mohy and Higham [2, Theorem 2.1] has shown that instead of explicitly calculating

ϕ-functions, a series of ϕ-functions can be calculated by computing the exponential

of an (n+p)×(n+p) matrix where n is the dimension of A, and p is the order of the

ϕ-functions, which is second order in (III.2). Therefore, we only need to calculate

the exponential of a slightly larger matrix to obtain the analytical solution (III.2),

which can be rewritten into

x(t + h) =
[

In 0
]
eA′h


 x(t)

e2


 , (III.16)

with

A′ =


 A W

0 J


 , W =

[
b(t+h)−b(t)

h
b (t)

]

J =


 0 1

0 0


 , e2 =


 0

1




(III.17)
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Using (III.16) only one matrix exponential evaluation is needed in each time step,

and the problem boils down to how to compute (III.16) efficiently.

III.4.B Krylov Subspace Method

Intuitively, one could compute the matrix exponential eA first and then

multiply it by a vector. However, direct computation of the matrix exponential

is expensive (∼ O(n3)) and usually results in a full matrix which degrades the

performance of subsequent matrix-vector multiplications. Fortunately, MEXP only

needs the product of eAv, which could be approximated efficiently using Krylov

subspace projection [38] [56].

Algorithm 1: Arnoldi Process

Input: vector v, n× n matrix A and m

Output: (m + 1)×m matrix H and Vm = [v1, . . . ,vm]

v1 = v/‖v‖2;

for j = 1, 2, . . . , m do

w = Avj;

for i = 1, 2, . . . , j do

H(i, j) = wTvi;

w = w −H(i, j)vi;

end

H(j + 1, j) = ‖w‖2;

vj+1 = w/H(j + 1, j);

end

Krylov subspace approximation reduces the problem to the evaluation of

the exponential of a much smaller matrix. According to the definition of exponent

of matrix, we can write eAv as below:

eAv ≡ (I + A +
A2

2!
+ · · ·+ Ak

k!
+ . . . )v. (III.18)
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eA′h


x(t)

e2


 = exp





−C−1G C−1Wu

0 J


 h





x(t)

e2




= exp





C/α 0

0 I2



−1 

−G Wu

0 αJ


 h

α





x(t)

e2




= exp





C/α 0

0 I2



−1 

−G− (C/α) Wu

0 αJ− I2


 h

α
+


 In 0

0 I2


 h

α





x(t)

e2




= exp




1

α


C/α 0

0 I2




︸ ︷︷ ︸
C̃

−1 
−G− (C/α) Wu

0 αJ− I2




︸ ︷︷ ︸
G̃

h





x(t)

e2


 e

h
α

︸ ︷︷ ︸
v

= eÃhv

(III.19)

The approximation of the above equation can be readily obtained from a Krylov

subspace spanned by the basis of m vectors.

Km (A,v) = span{v,Av, . . . ,Am−1v}

The Arnoldi process in Algorithm 1 can be used to construct an orthonormal

basis Vm and a m×m upper Hessenberg matrix H(1 :m, 1:m) denoted as Hm for

the Krylov subspace Km. Note that in each Arnoldi iteration we compute Av as

−C−1 (Gv). Thus the major cost requires one sparse matrix-vector multiplication

and one sparse linear solve involving C only. The relation between Vm and Hm is

given by

AVm = VmHm + H(m + 1,m)vm+1e
T
m,

where em is the mth unit vector with dimension m×1. Because of the orthogonality

of columns in Vm, Hm can be expressed as

Hm = VT
mAVm. (III.20)
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Then we project A onto the Krylov subspace, and with (III.20) derive the approx-

imation of eAv as [56]

eAv ≈ VmVT
meAv = ‖v‖2VmVT

meAVme1

= ‖v‖2VmeHme1. (III.21)

To use the Krylov subspace method to compute (III.16), we first rewrite it into

(III.19) where

Ã =
1

α
C̃−1G̃, Wu = B

[
u(t+h)−u(t)

h
u (t)

]
. (III.22)

The scaling factor α is introduced to balance the quantities in C̃ and G̃. The

original exponent A′ is left shifted by (multiple of) an identity matrix to make it

nonsingular and as well turn the real parts of some small eigenvalues of Ã that

may be positive in nonlinear simulation into negative. We generate Vm and Hm

by Algorithm 1 with Ãh and v as inputs. Using (III.21), the overall solution of a

new time step is

x (t + h) =
[

In 0
]
‖v‖2 VmeHmhe1. (III.23)

The value of m in the Krylov subspace approximation depends mostly on

the spectrum of Ã. The large (magnitude) eigenvalues of Ã correspond to the

small eigenvalues of C̃, i.e., the fast mode of the circuit, and the small eigenvalues

relate to the slow mode of the circuit. It is commonly known that the Krylov

subspace method approximates large eigenvalues better than small eigenvalues. A

more precise statement is that the eigenvalues of Hm, or the Ritz values, tend to

match the well-separated (extreme) eigenvalues Ã with priority to minimize the

characteristic polynomial of Hm over the entire spectrum of Ã. Therefore, a larger

m is required only when Ã has many large and well-separated eigenvalues, meaning

that the circuit contains many distinct fast modes. In our experiments, m often

ranges from 10 to 100 while the actual dimension of Ã could be millions. With this

small size, the eHmh can be computed efficiently by many existing techniques [36,

45], and the overall complexity of MEXP is greatly reduced.
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We would like to mention that the Krylov subspace method has also been

applied in some iterative methods [57], e.g. CG or GMRES, to speed up the

solution of linear system arising from, e.g. implicit numerical integration methods.

It has been proved in [38] that convergence of Krylov subspace method for matrix

exponential operator is faster than that for the iterative solution of linear systems.

III.4.C Stability

The stability region of matrix exponential formulation (III.19) is the same

as TRAP. Both methods are A-stable for passive circuits whose eigenvalues of Ã

are negative. The approximative computation by the Krylov subspace method in

(III.23) is also A-stable when Ã is normal by the following theorem

THEOREM III.4.1 For passive circuits, MEXP computed by the Krylov sub-

space approximation is A-stable when Ã is normal.

Proof 1 We can express Ã in Jordan normal form as

Ã = PJP−1

where J is upper triangular matrix and its diagonal terms are eigenvalues. It is

trivial to represent the matrix exponential of Ãh as follows:

eÃh = PeJhP−1.

Since the eigenvalues of J are negative in passive circuits, the norm of eJh tends

to 0 as time step h increases to infinity. Therefore, equation (III.16) is A-stable

for passive circuits.

To ensure stability of MEXP after performing Krylov subspace approxima-

tion, we need to guarantee that the norm of VmeHm also shrinks as h increases.

Since Vm is orthonormal basis, we have

‖VmeHmh‖2 ≤ ‖eHmh‖2.
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Ref. [56] proves that the logarithmic norm of Hmh is no larger than that of Ãh.

We then have

‖VmeHmh‖2 ≤ ‖eHmh‖2 ≤ eµ(Hmh) ≤ eµ(Ãh)

where µ(·) is the logarithmic norm. Since µ(Ãh) of normal matrix is the largest

eigenvalue of Ã, which is negative, the norm of VmeHm also tends to 0 as h in-

creases to infinity. Hence, MEXP computed by the Krylov subspace approximation

is A-stable for normal matrix.

Note that Ã might not be normal for the applications to circuit analysis.

It is reported in [7] that larger m could avoid instability from the Krylov subspace

approximation because larger m approximates eÃh with less error (shown in Sec-

tion III.4.D). In our experiment, MEXP by Krylov subspace approximation with

m ranged from 10 to 100 is stable for all test cases.

III.4.D Error Analysis

A priori error bound of computing the matrix exponential (III.21) by the

Krylov subspace projection is given by

err ≤ 2‖v‖2
ρm+1eρ

(m + 1)!
, (III.24)

where ρ = ‖Ãh‖2 [38,56]. The equation indicates the approximation error depends

on m and the 2−norm of Ãh. For stiff problems where C contains capacitance of

very small values, the matrix Ã will have a large norm and therefore a small h is

required to reduce the error in Krylov subspace computation of matrix exponential.

This suggests that the proposed matrix exponential method is more suitable for

moderately stiff problems. One can also increase m to allow the usage of larger

step size while maintaining accuracy, but at the cost of an increasing computation.

This calls for a careful selection of h and m, which will be discussed in the next

section.
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In practice, the prior bound may not be sharp and is costly to evaluate. A

posteriori error estimation proposed by Saad [56] is commonly adopted to deter-

mine the error of (III.23), which reads

err = ‖v‖2H(m + 1,m)|eT
mϕ1(Hm)e1|, (III.25)

where ϕ1(x) = ex−1
x

.

III.5 Adaptivity

One pleasing feature of MEXP lies in the ease of adaptively adjusting h

during the numerical integration. According to (III.20), the Krylov subspace pro-

jection is scaling invariant, i.e., αA → αHm. Once we have to shrink/enlarge time

step h in order to satisfy the error bound, it is convenient to re-evaluate (III.23)

with a new h by simply scaling the matrix Hm provided the PWL assumption of

input waveforms (Ã remains constant). Thus, the re-evaluation process of adjust-

ing time step involves scaling of Hm and re-computing of the matrix exponential

of Hm. The time complexities for scaling and dense matrix exponential are O(n2)

and O(n3), respectively. Since the size of Hm is small, the computation cost of

whole re-evaluation process is insignificant. In contrast, the implicit methods have

to re-solve the whole linear system whenever h is changed.

Taking advantage of this ease, we devise a prediction-correction scheme to

dynamically adjust the step size h and the dimension of Krylov subspace approx-

imation m during time stepping. At each step, a new pair of h and m are first

predicted based on the knowledge of current step, with attempt to minimize the

computation needed to complete the remaining time integration under given error

constraint. When the posteriori error resulted from the predicted h and m does

not meet certain criteria, a correction scheme is applied by adjusting h until the

error is satisfactory.

Given a predefined global error budget Tol and the error at nth step εn
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estimated by (III.25), we require the error at n+1th step εn+1 to meet the following

inequality

εn+1

εn

6 γ
εmax
n+1

εn

= γ
hn+1Tol

tfεn

= γ
hnTol

tfεn

hn+1

hn

=
γ

w

hn+1

hn

(III.26)

where tf is the end time, εmax
n+1 is the maximum error allowed at tn+1 and γ is a

safety factor commonly taking 0.8. The quality of the solution at tn is measured

by the ratio

w =
εn

εmax
n

=
tfεn

hnTol
. (III.27)

III.5.A Prediction of h and m

Unlike the separate changes of h and m in [52], we allow h and m vary

at the same time, by a moderate extent, and estimate the error at the next step,

according to the prior error bound (III.24), as

εn+1

εn

=

(
hn+1

hn

)mn+1
β

+1

κ−(mn+1−mn), (III.28)

where β and κ are two parameters to be determined. The optimal combination

of h and m is selected to minimize the remaining computation after current time

point subjected to the error constraint in (III.26), i.e.,

min
tf − tn

h
Q(m), (III.29a)

s. t.

(
h

hn

)m
β

κ−(m−mn) 6 γ

w
. (III.29b)

Note that, by intuition, we expect the error constraint is a monotone decreasing

function of m, i.e., the higher is the dimension of Krylov subspace, the smaller is

the error. This imposes a limit on the factor by which a new step size can grow

from requiring the derivative w.r.t. m of (III.29b) is negative, which gives

h/hn 6 κβ. (III.30)
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Function Q(m) is the estimated cost of one stepping in terms of m, in which

the most time-consuming part is the Arnoldi process listed in Algorithm 1. We

neglect the cost of computing the matrix exponential of the reduced matrix. Each

Arnoldi process costs roughly 3
2
(m2 −m + 1) (N +2) flops (for orthogonalization),

m sparse matrix-vector multiplications and m sparse linear solves. Computation

required in the last two operations can be estimated by 2mNG̃ and 2mNp

C̃
, where

NG̃ and NC̃ denote the numbers of nonzeros of G̃ and C̃. The complexity factor

p for sparse linear solve depends on the structure of C̃ and the solution method,

whose value usually ranges from 1 (diagonal matrix) to 1.5. As a result, we for-

mulate Q(m) as

Q(m) = c1m
2 + c2m + c3, (III.31)

with c1 = 3
2
(N + 2), c2 = 2(NG̃ + Np

C̃
)− 3

2
(N + 2) and c3 = 3

2
(N + 2).

We argue that the objective function (III.29a) achieves minimum when the

constraint (III.29b) takes equality and postpone the proof later in this subsection.

With this assumption, we solve h from (III.29b) as

ln h = β
(
log

( γ

w

)
−mn log κ

) 1

m
+ (β log κ + log hn) (III.32)

= c4m
−1 + c5 = P (m).

Substituting (III.32) into (III.29a), the objective function becomes a function of m

only, namely, (tf − tn) Q(m)e−P (m), and the extreme value is obtained when the

function derivative is zero, yielding

2c1m
3 + (c2 + c1c4) m2 + c2c4m + c3c4 = 0, (III.33)

whose positive roots are the solution of m. The corresponding h is then obtained

by (III.32). The new h is restricted by the negative derivative constraint (III.30)

and the constraint of PWL input, and thus will be overwritten by the maximum

value jointly set by the two constraints when any of them is hit. The prediction of

m is updated accordingly.
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In the following, we prove that the m and h selected by the above process

is the optimal solution of the optimization problem (III.29)

Lemma III.5.1 Provided (III.30) holds, the polynomial in (III.33) has one and

only one positive root.

Proof 2 It is trivial to show c1 > 0, c2 > 0 and c3 > 0. If (III.30) holds, we

have c4 < 0 from (III.32). The number of sign changes between the coefficients

of the polynomial in (III.33) is one regardless of the sign of the second coefficient.

Determined by Descartes’ rule of signs, the polynomial has exactly one positive

root.

THEOREM III.5.1 Given (III.30), the mopt and hopt computed by (III.33) and

(III.32) are the optimal solution of (III.29).

Proof 3 We prove it by contradiction. Denote (III.29a) and (III.29b) by F (h,m)

and C(h,m) 6 γ
w
. We assume there exists another pair of (h′,m′) (h′ 6= hopt,m

′ 6=
mopt) being a solution no worse than hopt,mopt for (III.29), i.e.,

F (h′,m′) 6 F (hopt,mopt), C(h′,m′) 6 C(hopt,mopt). (III.34)

If C(h′,m′) < C(hopt,mopt), since C(h, m) is an increasing function of h and

F (h,m) is a decreasing function of h, one can increase h′ to h̃′ to make C(h̃′,m′) =

γ
w

and F (h̃′,m′) < F (h′,m′) 6 F (hopt,mopt), which is contradictory to the fact

that F (hopt,mopt) is at its minimum for the equality constraint. If C(h′,m′) =

C(hopt,mopt) (and F (h′,m′) = F (hopt, mopt)), it is equivalent that m′ is another

positive solution of (III.33), which is in contradiction to the Lemma 5.1.

We determine the two parameters β and κ in a heuristic manner taking

advantage of the fact that, given a calculated Krylov pair H and V, the effort

required to obtain a posteriori error estimate for a new h and m is trivial. Assume

hn, mn and εn are known at current step, for each prediction we compute the
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error at five sampling points surrounding (hn,mn), namely, (ehn,mn), (1
e
hn,mn),

(hn,
3
4
mn), (ehn, 3

4
mn) and (1

e
hn,

3
4
mn). Here we only scale down mn as the new H

is simply a submatrix of the original one, and upscaling mn requires extra Arnoldi

iterations. Then the two unknown parameters are determined by the least squares

(LS) fitting of (III.28) with the above five data points.

With only moderate accuracy requirement, we solve the LS fitting problem

by taking logarithm on both sides of (III.28)

(
m

β
+ 1

)
log

h

hn

− (m−mm) log κ = log
ε

εn

. (III.35)

With the notation of a1 = 1/β, a2 = log κ, y1 = log h
hn

, y2 = m, z = log ε
εn

, the

parameters β and κ are derived from the LS solution of the overdetermined system




y
(1)
1 y

(1)
2 mn − y

(1)
2

y
(2)
1 y

(2)
2 mn − y

(2)
2

...
...

y
(5)
1 y

(5)
2 mn − y

(5)
2





 a1

a2


 =




z(1) − y
(1)
1

z(2) − y
(2)
1

...

z(5) − y
(5)
1




, (III.36)

where (yi
1, y

i
2) and zi are computed from the five sampling points and the corre-

sponding posteriori errors.

III.5.B Correction of h Based on Posteriori Error

The prediction scheme provides a useful insight for selecting h and m for

the next time step. Nevertheless, it may occasionally lead to (h,m) pair that has

posteriori error violating the error constraint or too small to fully use the error

margin. Therefore, we employ a posterior correction scheme to refine h to ensure

the error stay within an appropriate region below the error threshold. Specifically,

the scheme will repeatedly enlarge or shrink h by a given ratio and forward the

time frame only when the posteriori error falls into an interval of [wmin, wmax].

When enlarging h, the two constraints defined in Section III.5.A also apply to

prevent overshooting.
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Note that a similar step size control have been applied in commercial

SPICE-like simulators, such as HSPICE, to constrain the LTE of each time step.

Yet the adaptivity of implicit methods and matrix exponential approach is quite

different in the following aspects,

1. When a step size is changed, the linear system in the implicit methods will

also change, such as C/h−G/2 in TRAP. Thus, the implicit methods must

solve the linear system again for every time step reversal. In practice, it

is often seen that HSPICE takes a long time to perform one time stepping

because the LTE control forces the simulator to solve a linear system many

times to find a feasible h. MEXP is free from this overhead when adjust-

ing time step owing to the scaling invariant property of Krylov subspace

projection.

2. Since in implicit methods there is no easy update of solution for a different

step size, an increase in step size, if possible, can only happen in the next

step. In contrast, with simple scaling and re-evaluation of a small matrix

exponential, once can apply the largest permissible step size right in the

same step.

3. Varying order of approximation, e.g., automatic switch between 1st, 2nd and

higher order of implicit methods is difficult. On the other hand, the matrix

exponential approach allows a simultaneous adjustment of h and m within a

wide range to optimize the computational efficiency.

The overall flow of prediction-correction scheme is shown in Algorithm 2.

III.6 Experimental Results

We prototype MEXP in MATLAB and integrate with a SPICE-like circuit

simulator SMORES developed in MIT [12]. The BSIM3 [16] compact model is also
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Algorithm 2: Overall Prediction-Correction Flow

Input: matrices C, G, B, input u(t), initial time step h, initial m,

total error budget Tol and total time tf

Output: result x(t)

t = 0; x(0) = DC analysis;

while t ≤ T do

[Cr, Gr, Br] = regularization(C, G, B);

evaluate Hm and Vm by Krylov subspace method;

while w < wmin do

scale up h and Hm;

compute posteriori error ε by (III.25) and new w;

end

while w > wmax do

scale down h and Hm;

compute posteriori error ε and new w;

end

calculate xnew by (III.23);

[β, κ] = findParameter(h,m,ε,H,V);

[hnew, mnew] = prediction(tf ,t,h,m,w,β,κ);

t = t + h;

x(t) = xnew;

h = hnew;

m = mnew;

end
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integrated into MATLAB environment via MEX interface for nonlinear devices.

Experiments are performed on a server with Intel Xeon 3.0GHz CPU and 16GB

memory, with testbench circuits of different sizes and characteristics.

Table III.1 provides detailed specifications. Type indicates linear (L) or

nonlinear (NL) circuits. Index gives the DAE index of the MNA systems. The

numbers of nonzeros in C + G before and after regularization are also shown. For

fairness, a MATLAB implementation of TRAP is used to provide benchmarks for

accuracy and performance comparisons. All linear systems are solved by the direct

solver (backslash) in MATLAB.
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III.6.A Results for Regularization

Fig. III.2 validates the accuracy of regularization method, in which the

transient response of D2 before and after regularization are compared. Since no

approximation is introduced, the regularization maintains the accuracy very well

(relative mismatch between the two curves is 4.3×10−11). The five largest (in mag-

nitude) generalized eigenvalues of (C,−G) and (Cr,−Gr) shown inset of Fig. III.2

also demonstrates an exact equivalence between the original and the regularized

systems.
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−1.591609e+15
Inf
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Inf
Inf
Inf

−8.525666e+14
−9.705414e+14
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−1.461366e+15
−1.591609e+15

Figure III.2: Accuracy of regularization process.

III.6.B Performance of Krylov Subspace Method in Com-

puting Matrix Exponential

In this subsection, we show the numerical advantage of Krylov subspace

method over traditional Taylor’s expansion (III.18). While Taylor’s expansion can
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Figure III.3: Errors of computing eAhv by Taylor’s expansion and Krylov

subspace method w.r.t. m. Reference solution is obtained by expm(Ah)v

(h = 0.1ps). Both real error and posterior error estimate of Krylov method are

shown.

approximate matrix exponential with the order of m, its accuracy is worse than

that of Krylov subspace method with m dimensions. To demonstrate the difference,

we perform both Taylor’s expansion and Krylov subspace method on a small RC

circuit with 500 nodes and capacitances whose values vary from 10−11 to 10−16.

Fig. III.3 shows the advantage of using the Krylov subspace method (III.21) to

calculate eAhv, compared with Taylor’s expansion (III.18). The reference result

is computed via the MATLAB built-in function expm [36], which is accurate for

small scale matrices.

The convergence rate of Taylor’s expansion depends on the norm of the

matrix in the series in (III.18), i.e., how fast the factorial in denominator can dom-

inate the nominator. In Fig. III.3, the error increases with m at first due to the
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faster increase of matrix power than that of factorial, and then drops later when

the factorial starts to outweigh the matrix power. The error only saturates after

m = 80 at about 10−8. The Krylov subspace method approximates the matrix

exponential by orthogonal basis of the Krylov space Km(A,v). Since the orthogo-

nalization process minimizes norm of vm+1 in (III.20), which is major source of the

approximation error, the Krylov subspace method is more accurate than Taylor’s

expansion under the same dimensions. Fig. III.3 shows that the error of Krylov

subspace method saturates to 10−15 at m = 11. The error estimated by the pos-

teriori formula (III.25) is also shown, which stays above the real error all the time

and is fairly sharp. Also, we would like to mention that the actual approxima-

tion error of Krylov subspace method could be smaller than the result shown in

Fig. III.3, which is limited by the double precision.

III.6.C Performance of Uniform Matrix Exponential

Method

Fig. III.4 shows the transient response of D3 simulated by MEXP, TRAP

(TR) and forward Euler method (FE). We apply fixed step sizes 1ps and 5ps for

both MEXP and TRAP method, and 1ps for FE. The m in MEXP is 20.

The figure demonstrates the capability of MEXP to use large step size for

numerical integration. With a larger h of 5ps, MEXP can till have its waveform

“jump” to the correct points (the yellow crosses) at the waveform of 1ps. The

point-wise mismatch between the two waveforms is only 9.4× 10−3. On the other

hand, TRAP cannot capture the high frequency behavior as MEXP when using a

large step size of 5ps. Therefore, MEXP is reliable even when the time steps skip

some high frequency details, provided that the matrix exponential is calculated ac-

curately. Such “coarse-grain” accuracy is owing to the analytical nature of MEXP,

which allows designers to take a fast yet accurate sweep of the global behavior of a

circuit by a very large step size. The explicit forward Euler is unstable even with
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the time step of 1ps.
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Figure III.4: Accuracy comparison among matrix exponential, trapezoidal and

forward Euler methods for different step size (linear cases).

Table III.2 gives a detailed comparisons between MEXP and TRAP using

fixed h and m for the five linear cases. A reference solution is first obtained

by TRAP using a small time step href for a time span tf . The runtime and

the L2-norm error w.r.t the reference solution are recorded for the TRAP and

MEXP when using h = 10href and h = 100href . Among the four examples, D1

is highly stiff with minimum capacitance ∼ 10−19, D2 and D4 are moderately stiff

with minimum capacitance ∼ 10−16, and D3 and D5 are less stiff with minimum

capacitance ∼ 10−13.

For systems with small to moderate stiffness (D2 and D3), MEXP has a

better accuracy than TRAP, owing to the analytical nature of the former’s solution.

MEXP causes more errors for D1 of large stiffness, due to the large norm of Ãh.

Either a smaller h or a larger m is required for better accuracy, which suggests
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MEXP is more suitable for slight and moderately stiff systems. Nevertheless, this

is solely due to the accuracy consideration (and efficiency tradeoff), instead of the

stability limitation confronting the traditional explicit methods.

In terms of runtime, MEXP is slower than TRAP for small cases, but pro-

vides a noticeable speedup for large cases (∼ 4X for D4). This is attributed to

the fact that in the Arnoldi process we only need to factor the matrix C̃, which

is generally sparser and well structured than C̃ + G̃ that needs to be factored

in common implicit methods. For the extremely large example D5 (the matrix

dimension exceeds 10M), TRAP simply breaks down due to the memory limit in

matrix factorization, while MEXP remains applicable, suggesting a better scala-

bility in terms of memory usage. Apart from the benefit from improved matrix

structure, the orthogonalization process in Arnoldi iteration is naturally paralleliz-

able, which implies more potential computational benefit compared to the direct

linear solution.
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III.6.D Performance of Adaptive Matrix Exponential

Method

This subsection demonstrates the advantage of using the adaptive scheme

in Section III.5 in MEXP. We first verify that the formula (III.28) provides a

usable error prediction for matrix exponential computation. Fig. III.5 compares the

predicted error and the real posteriori error by (III.25) at each step of a simulation

with D1. A ramp signal is used to avoid PWL input restriction on step size. The

total error budget is 10−4. Step sizes are tuned by a factor of 1.25 each time in

posterior correction to ensure w to fall into [0.6, 1.2]. It is seen that the prediction

generally captures the behavior of the real posteriori error.

To further demonstrate the quality of the predicted (h,m) pair, we vary the

h and m over a range at each step and evaluate the corresponding cost function

(III.31). The ranges of h and m variations are [0.1h, 10h] and [3
4
m, 4

3
m], respec-

tively. We choose a new (h, m) corresponding to the minimal Q(m) (and satisfying

error constraint), which is regarded the real “optimal” solution, and compare it to

the predicted (h,m). Fig. III.6 indicates a good match between the predicted and

real optimal (h, m) pairs, and thus the effectiveness of our prediction scheme.

Table III.3 compares the performance of TRAP and MEXP with adaptive

control for the four linear cases. The error is measured by w in (III.27) with an

overall budget Tol = 10−3. In the adaptive TRAP, LTE of each step is measured

by h3
n

...
x/12, and is used to provide a new h for the reversal of current step (if

w > 1.2) or for the next step (if w < 0.6), i.e., hnew =
√

whold. We also implement

two versions of adaptive MEXP: one adjusts h only using the correction scheme;

the other adjusts both h and m by the prediction-correction scheme described in

Section III.5. The correction is again conducted to ensure 0.6 ≤ w ≤ 1.2. Nt and

Nws denote the number of time steps and the number of linear solves that have

been wasted due to the time step adjustment in TRAP.
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Figure III.6: Predicted and real optimal (h,m) pair.
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Albeit indispensable in practice, the adaptive time step control largely af-

fects the performance of TRAP due to the repeating solution of a large linear

system whenever the LTE requirement is not met. In the worst case D2, nearly

one third of total linear solves are “wasted” in the LTE control. MEXP, on the

other hand, avoids this kind of overhead by projecting the original large-scale ma-

trix onto a much smaller subspace, on which the error estimate and management

are highly efficient. With the same error budget, the maximum speedup from

the adaptive MEXP is over 15X (D3). The performance of EXP (h,m) is supe-

rior over EXP (h), with improvement from 1.3X to 2.8X. This demonstrates the

benefit of allowing m to vary over steps at the same time using our prediction-

correction scheme. Fig. III.7 shows the difference in point selection of EXP (h)

and EXP (h,m) for D1 with a two-square wave input.
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Figure III.7: Selection of time points for the two adaptive matrix exponential

methods (D1,Tol = 10−3).

Situation in nonlinear circuit simulation is more complicated. The time
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step is not only limited by the error in computing the matrix exponential term,

but also by the error and convergence rate in solving the nonlinear system. Hence,

the step size of nonlinear circuits may not be as large as that of linear circuits

whose the error is only from the Krylov subspace method. In Table III.4 we

show the performance data of TRAP and MEXP for the four nonlinear examples.

Nonlinearity is handled by the Newton’s method in TRAP and in MEXP, both with

the same convergence criteria. In TRAP, we follow the HSPICE convention [66]

to control time step by counting the number of iterations (increases (reduce) h by

1.25X if the number of iterations is less than 3 (larger than 20)), and by LTE as in

the linear cases after the Newton’s iteration converges. If the LTE does not meet

the prescribed accuracy requirement, the time step is reversed and the Newton’s

iteration is restarted with a smaller h. Nit denotes the number of total number

of nonlinear iterations and Nws the number of iterations wasted due to time step

reversal. In MEXP, h is controlled by the error of computing matrix exponential,

and the error of nonlinear approximation (III.7) and the convergence of Newton’s

method. Posterior correction is used to reduce h when the accuracy of Krylov

subspace approximation is not sufficient. The Newton’s method is repeated until

the solution converges, which also results in certain extra iterations counted by

Nws. For a new step, we do not apply the prediction scheme as in the linear

cases to forecast h and m. The new h will be jointly determined by several values

estimated by the current matrix exponential error, nonlinear error and convergence

condition, whichever is smaller.
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Due to the approximation in Eqn. (III.6), MEXP generally requires more

nonlinear iterations than TRAP, which can be seen by counting the average per-

step effective iteration (Nit −Nws)/Nt. This number ranges from 1.99 to 2.89 for

TRAP while from 2.00 to 5.72 for MEXP. However, the separation of linear solu-

tion and nonlinear solution makes the error control in MEXP more straightforward

than TRAP and largely avoids time step reversal. In the calculation of LTE in

TRAP, the contributions from linear elements and nonlinear elements are mixed

together. Large error from either linear or nonlinear part will cause the violation

of LTE and thus the time step reversal. As seen in Table III.4, a considerable

portion of nonlinear iterations are wasted due to the time reversal, which in the

worse case is nearly one half (D8). In MEXP, the numerical errors from linear and

nonlinear solutions are separated. The nonlinear iteration is restarted only when

the nonlinear error is large, which involves only the contribution from nonlinear

elements. The error from solving linear elements is handled by the efficient error

management unique for Krylov subspace approximation. It can be seen that the

wasted nonlinear iterations in MEXP takes a much smaller fraction in total itera-

tions than that in TRAP. The large number of time steps used for D7 is due to its

stiffness (min capacitance ∼ 10−16), where the error of computing matrix exponen-

tial forces to adapt a small step size. With such small step the nonlinear iteration

converges fast, which is seen that there is no step reversal due to nonlinear error

and only 2 per-step effective iterations. In terms of per-iteration runtime, MEXP

also outperforms TRAP for large problem (D9) as seen in the linear case. The

maximum overall speedup from MEXP is about 3.7X. The simulated responses of

the two methods for the adder case (D8) are shown in Fig. III.8.
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Figure III.8: Accuracy and time point selection of matrix exponential method for

nonlinear circuit (D8).
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Fig. III.9 shows the runtime breakdown of EXP (h,m) in Table III.3 and

EXP in Table III.4. The breakdown includes the runtime percentage of four main

steps of Algorithm 2, which are regularization, computation of Hm and Vm by

Arnoldi process, posteriori error estimation and the calculation of xnew. Since

the runtime of “findParameter” and “prediction” are insignificant, the figure does

not include both the operations. As we can see, only cases D2, D4, D7 and D9

require regularization, and the corresponding runtimes in these cases only take

4.7%, 8%, 4.5% and 4.8%, which demonstrates practicability of the regularization

process. The computation of Krylov subspace method generally dominates the

performance for large cases, which takes more than 70% for the cases with size

larger than 1K. In contrast, the computation time of small cases is more relevant

to the number of error estimations and calculations of xnew, which is larger in the

nonlinear cases, such as D6, D7 and D8.

Figure III.9: Runtime breakdown for main steps in Algorithm 2.
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As a final remark, Table III.5 compares the major characteristics of (tradi-

tional) explicit methods, implicit methods and MEXP within the context of circuit

simulation. Each method is shown to have its own strength and weakness, and

thus its own appropriate range of application. Explicit methods has the best per-

step performance but the worst stability problem, rendering it is more suitable for

designs known to be nonstiff. Implicit methods are the most robust approach for

general situations, though with a relatively low scalability and adaptivity. MEXP

to some extent fills in the gap between explicit and implicit methods, by eliminat-

ing the stability difficulty of the former and providing better scalability than the

latter, for a wide range of application with small to intermediate stiffness.

III.7 Summary

An explicit numerical integration method have been presented for accurate

and efficient time-domain circuit simulation. Different from conventional linear

multi-step method, MEXP solves the linear differential equation analytically via

the matrix exponential operator. The computation of matrix exponential is sig-

nificantly accelerated by the Krylov subspace method. The proposed method al-

leviates the stability bottleneck of explicit methods and enables great adaptivity

for time step size control. Numerical experiments have confirmed the superiority

of the proposed method.

Chapter III includes the content of one published journal paper, “Time-

Domain Analysis of Large-Scale Circuits by Matrix Exponential Method with

Adaptive Control,” by Shih-Hung Weng, Quan Chen and Chung-Kuan Cheng,

in IEEE Transaction on Computer-Aided Design of Integrated Circuit and Sys-

tems, pp. 1180–1193, 2012. The dissertation author was the primary investigator

and author of the paper.



IV

Stiffness Handling and Parallel

Processing in Matrix Exponential

Method

In this chapter, we propose an advanced matrix exponential method to

handle the transient simulation of stiff circuits and enable parallel simulation. We

analyze the rapid decaying of fast transition elements in Krylov subspace approx-

imation of matrix exponential and leverage such scaling effect to leap larger steps

in the later stage of time marching. Moreover, matrix-vector multiplication and

restarting scheme in our method provide better scalability and parallelizability

than implicit methods. Specifically, the advantages of the proposed MEXP are

• MEXP reveals the scaling effect of the Krylov subspace method to enable

the use of a larger step size when stepping forward.

• MEXP utilizes the restarting scheme to mitigate the memory usage when a

large m is needed to strengthen the scaling effect.

• MEXP has the parallelizability and scalability on the GPU platform and for

large-scale cases.

60
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The experimental results show that the performance of MEXP for highly stiff cir-

cuits is improved up to 4.8 times by exploiting the scaling effect, and is accelerated

in the GPU environment up to another 11 times. Furthermore, we demonstrate

that MEXP is able to handle the circuit with up to 12 million nodes.

IV.1 Background

Beyond the traditional explicit and implicit methods, a new class of explicit

methods called exponential time differencing (ETD) has been drawing attention

in the numerical community. The ETD methods analytically solve an ODE sys-

tem within every discretized time step by directly computing the exponential of

a matrix. In theory, the ETD methods avoid the local truncation error (LTE)

of the polynomial expansion approximation, and the stability is the same as the

trapezoidal method for passive systems. In application, the exponential of a ma-

trix required in the ETD methods can be efficiently approximated by the Krylov

subspace method, which involves mainly matrix-vector multiplication and has the

advantages of scalability and parallelizability.

In Chapter III, we have embraced the idea of ETD for the circuit simulation

and proposed an adaptive step control scheme to enhance the performance. Al-

though the ETD methods demonstrate their advantages, there are still two major

limitations for ETD methods. Firstly, stiff circuits enforce the ETD methods to

use small step sizes for reducing the approximation error of the Krylov subspace

method. Recall the error bound of the matrix exponential approximated by the

Krylov subspace in Eqn. (III.24), which is written again as below.

err ≤ 2‖v‖2
ρm+1eρ

(m + 1)!
,

where ρ = ‖Ãh‖2. As we can see, the error dependes on 2−norm of Ãh. In a

stiff circuit, 2− norm of Ã could be large, i.e., ∼ 1016. Hence, we require much

smaller h (≤ 0.1ps) to restrain the error, and thus the performance is damaged.
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The Krylov subspace method needs a large m or a small h to provide sufficient

resolution to the spectrum of Ah. As the consequence, a large m will cause the

second limitation. That is larger Krylov subspace bases required by stiff circuits,

which usually need > 100 bases, pose a memory bottleneck for simulation involving

millions of unknowns.

In this chapter, we propose a matrix exponential method (MEXP) utilizing

the scaling effect and restarting scheme to address these two limitations in stiff

circuits in the following sections.

IV.2 Scaling Effect and Restarted Matrix Expo-

nential Method for Stiff Circuits

The scaling effect manifests the rapid decaying nature of fast transition

components. Ideally, MEXP with the scaling effect can eventually step an arbi-

trarily large size even for stiff circuits. However, the interpolation error from the

Krylov subspace method will prevent the optimal scaling effect and thus restrict

the maximal step size.

In general, large m increases the number of interpolation points and reduces

the interpolation error. We apply the restarting scheme to the Krylov subspace

construction process so that the number of interpolation points increases effectively

without adding the memory usage.

IV.2.A Scaling Effect in Matrix Exponential Method

With the one-exp formulation in Eqn. (III.16), time stepping in MEXP can

be regarded as a series of product of matrix exponential, i.e., the solution at the

n + 1th step is related to the initial condition x0 by

xn+1 = eAhn+1eAhn ...eAh1x0 (IV.1)
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With the eigenvalue decomposition A = QAΣAQ−1
A , (IV.1) becomes

xn+1 = QAeΣAhn+1eΣAhn ...eΣAh1y0 = QAeΣAhn+1yn, (IV.2)

where yi = Q−1
A xi, i = 0, 1, ... is the components of xi on the eigenvectors space of

A (which are referred as the eigencomponents of vector xi hereafter).

Since a circuit intrinsically contains fast and slow transition elements, e.g.

small and large capacitors, that correspond to different eigenvalues of A, one can

group the elements of yn, with a given threshold, and use yf
n and ys

n to represent

the corresponding eigencomponents for the fast mode (negative eigenvalues with

large magnitude) and the slow mode (negative eigenvalues with small magnitude),

respectively. The effect of exponential shows the rapid decaying nature of fast

transition elements (i.e., fast damping of negative eigenvalue with large magnitude

in the exponent), and is reflected in the eigencomponents yf
n, which attenuate

drastically as stepping forward.

In our MEXP, the Krylov subspace method still preserves such attenuation

of the fast mode. The kth basis of the Krylov subspace at time T and in nth step

can be represented as

(Ahn)kxn = QA(ΣAhn)kQ−1
A xn

= QA(ΣAhn)kyn

= QA(ΣAhn)keΣAT


yf

0

ys
0


 . (IV.3)

The fast mode eigencomponents yf
0 are attenuated rapidly by eΣAT . Although the

power of ΣAhn acts as a counter force that brings those eigencomponents back to

stage, the damping rate of exponential surpasses the increase by the power, so that

the Krylov subspace method still benefits from the attenuation of yf
0 (as shown in

Section IV.4.A). The rapid attenuation of eigencomponents implies that MEXP

can alleviate the effect of stiffness, caused by the fast mode, and enables the use

of larger h in the later stage of time marching where the step size should be more
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dominated by the slow mode of a circuit. We call this phenomenon as “scaling

effect”.

With the scaling effect, components of fast transition elements can be

rapidly attenuated after a few steps. Smaller m, or larger h, can then be used

in the Krylov subspace method at later steps. It should be noticed that for the

nonlinear case, even though A is different every time step due to the nonlinear

components, our formulation can still exploit the scaling effect. Since only linear

terms are associated with the matrix exponential operator, without affecting New-

ton’s iteration, we can calculate ln+1 separately in the form of (IV.1) using the

scaling effect.

Theoretically, according to (IV.3), MEXP can use extremely large h in the

later stage of simulation. Nevertheless, due to the approximation error of the

Krylov subspace method, the allowable scaling of step size is restricted in practice.

To provide an in-depth analysis of the error, we re-interpret the Krylov subspace

approximation (III.21) from an interpolation perspective [56].

Lemma IV.2.1 The approximation (III.16) is mathematically equivalent to ap-

proximating exp(A)v by pm−1(A)v, where pm−1 is the (unique) polynomial of de-

gree m−1, which interpolates the exponential function in the Hermite sense on the

set of Ritz values, the eigenvalues of Hm, repeated according to their multiplicities.

The exact local error vector of approximation (III.16) can be written as

r = eAv − pm−1(A)v = QA

[
eΣA − pm−1(ΣA)

]
y (IV.4)

Provided A is not highly nonnormal, i.e., the norm of QA remains reasonably

bounded, the error mainly depends on eΣA − pm−1(ΣA), the mismatch between the

exponential function and the interpolation function evaluated at the eigenvalues

of A, which we denote by the “interpolation error”. The vector y denotes the

eigencomponents of the starting vector v.
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IV.2.B Restarted Krylov Subspace Method

We adopt the restarted Krylov subspace method specific for matrix expo-

nential computation [1,26,27]. Such restarting scheme mitigates the memory usage

of the Krylov subspace method when a larger m is needed to strengthen the scaling

effect. The Arnoldi process in computing matrix exponential is restarted every m

iterations with the last basis vector from the previous cycle being the new starting

vector.

v
(k)
1 = v

(k−1)
m+1 (IV.5)

The approximation f of the matrix exponential (multiplied with a vector) is up-

dated with a correction term in each restarting.

f (k) = f (k−1) + βV(k)
m

[
eĤkme1

]
(k−1)m+1:km

, (IV.6)

where Ĥkm collects all the Hm from the k cycles of restarting

Ĥkm =




H
(1)
m

E
(2)
m H

(2)
m

. . . . . .

E
(k)
m H

(k)
m




, (IV.7)

where E
(k)
m = ηke

T
me1. The posterior error of (IV.6) can be estimated by

eAv − f (k) = ηk

2∑
j=1

[
eT

kmφj

(
Ĥkm

)
e1

]
ωj−1 (A)v

(k)
m+1, (IV.8)

where φj is the divided differences of the exponential function and ωj is the nodal

function w.r.t. the minimal and maximal eigenvalues of H
(k)
m .

It is shown in [27] that the k cycles of this restarting is equivalent to inter-

polating the exponential function (in the Hermite sense) at the union of the k set

of eigenvalues of Hm. This way, a much larger “effective” m is allowed without in-

creasing the memory demand. In principle, given a sufficient number of restarting,

the restarted method is able to work with arbitrary step size.
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One major shortcoming of the above restarting scheme lies in calculation of

the exponential of a matrix whose complexity increases with km. As a consequence,

we would like to limit the number of restarting k at each step and adjust the step

size adaptively to meet the accuracy requirement. This naturally calls for an

integration of the restarted Krylov subspace method and the adaptive step control

based on the scaling effect. Such integration utilizes the restarting scheme to reduce

the interpolation error so that the scaling effect can be manifested and exploited

by adaptively stepping.

IV.2.C Overall Restarted Algorithm

The context of restarted MEXP follows the MEXP described in Section III.2.

The step size is adaptively adjusted according to the posterior error estimate. The

two main distinctions lie in that: 1) the maximal number of restarting kmax is

fixed to a small value, e.g., 5, in each step. It is intended to enlarge the effective

m to roughly kmaxm, without inducing too much overhead from the evaluation of

eĤkm ; 2) unlike in the unrestarted case, there is no fast re-evaluation once h is

changed, since the basis vectors Vm from previous restarting cycles, which are not

stored to save memory, are all required to generate an updated approximation f .

Hence, we only employ re-evaluation(s) when the error exceeds the tolerance. If

the step size can be increased owing to a small error, we use the step size in the

next step, instead of applying it right in the current step with re-evaluation. In

this way, we could still benefit from the scaling effect while minimizing the number

of re-evaluations. The posterior error estimate with a changed h is calculated by

(IV.8), with the storage of some auxiliary quantities. The whole restarted MEXP

is summarized in Algorithm 3.
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Algorithm 3: Restarted MEXP

Input: C, G, B, u(t), initial h, initial m, total error budget TOL

and total time tf

Output: x(t)

t = 0; x(0) = DC analysis;

while t ≤ T do

[Cr, Gr, Br] = regularization(C, G, B);

Compute xnew by restarted Krylov subspace method (IV.6);

Estimate err by (IV.8);

tol = h
tf

TOL;

if err > tol then

Reduce h and re-compute xnew;

else if err < tol then

Estimate hnew by repeated tuning to fully use error margin;

else
hnew is unchanged

end

t = t + h;

x(t) = xnew;

h = hnew;

end
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IV.3 Parallel Matrix Exponential Method

In this section, we present the parallel version of MEXP. We focus on

the sparse matrix-vector multiplication—one of the key components in restarted

MEXP that shows strong potential for parallelism. The basic idea of parallel

sparse matrix-vector multiplication is to simultaneously calculate each row of the

product vector. Many researchers [8,9,50] have investigated and parallelized such

matrix arithmetic on different environments, such as FPGA, cluster and GPU.

In this chapter, we target the parallel restarted MEXP using the GPU platform

for two reasons. First, GPU has better cost-toperformance ratio. Designers can

adopt the parallel restarted MEXP with affordable cost. Second, the communi-

cation overhead of the sparse matrix-vector multiplication is mitigated since the

communication is now inter-thread instead of intermachine.

Our parallel restarted MEXP uses a hybrid CPU-GPU implementation. We

only parallelize Arnoldi process and matrix exponential operation of a smaller ma-

trix while keeping other operations serial on CPU. For Arnoldi process, the parallel

matrix-vector multiplication is implemented by [8]. Although the parallel sparse

matrix-vector multiplication has up to an order of magnitude speedup comparing

to CPU implementation, the limited memory on GPU (2GB ∼ 4GB) imposes a

restriction on the dimension of Krylov subspace method for large-scale circuits.

Fortunately, with the restarting scheme, MEXP method can make the effective m

sufficiently large under restricted memory resource.

In the computation of matrix exponential, even though the reduced matrix

by Krylov subspace method can be efficiently evaluated on CPU, the restarting

scheme would increase the dimension of matrix up to hundreds, and the perfor-

mance of evaluation on CPU will significantly drop. We implement the parallel

matrix exponential based on a scaling and squaring method [36], which involves

only basic dense matrix arithmetic that has already been optimized in the GPU

environment [50].
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Besides the parallelization on GPU, we minimize the data transfer cost

between GPU and CPU that is one potential performance hazard of the hybrid

implementation. To minimize the memory transfer, we keep the intermediate ma-

trices, e.g., Vm and Hm, on GPU, and consecutively execute Arnoldi process and

matrix exponential computation. Thus, we only transfer the solution vector of the

next time step back to CPU. For linear circuits, we transfer G and L and U decom-

posed from C at the beginning of MEXP since those linear elements remain the

same during simulation. For nonlinear circuits, even though C of every time step

changes, we do not have to transfer matrices for every Newton’s iteration. This is

because we decouple the linear and nonlinear terms, and thus, at each time step,

only one data transmission for C is required. The execution flow of Algorithm 3

between CPU and GPU are shown in Figure IV.1.

Figure IV.1: Execution flow between CPU and GPU.

We would like to mention that the backward and forward substitutions for

L and U are also parallelized on GPU [50]. For large-scale circuit that cannot be

decomposed, we adopt iterative approaches that are also based on matrix-vector

product, and then solve C on GPU in parallel.
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IV.4 Numerical Results

The experiments are performed on a Linux machine with an Intel i7 2.67GHz

processor and 4GB memory. The parallel operations are implemented on a NVIDIA

C1060 device with Tesla T10 architecture and maximum 77.6 GFLOPs for double

precision. The MEXP method is prototyped in MATLAB, and the parallel restart-

ing Krylov subspace method and matrix exponential computation are implemented

in CUDA. The LU decomposition is performed by KLU package [19].

IV.4.A A Case Study of Scaling Effect

We analyze the scaling effect with the following simple model problem

mainly for the ease of reproduction. One can also use a RC ladder and obtain

similar observations. Let A be a 100× 100 diagonal matrix with the diagonal

elements range logarithmically in − [10−2, 102], i.e. −logspace(−2, 2, 100), and

x0 = [1, 1, ..., 1]T /
√

100. We run 100 steps in the form of (IV.1), and record for

each step the eigencomponents of the solution vector (y) and r in (IV.4). Adaptive

step is applied based on the posterior error estimate (constant local tolerance is

used tol = 10−6). The number of interpolation points m = 10. Fig. IV.2 shows

the eigencomponents for 6 selected eigenvalues with different magnitudes.

In the upper subfigure of Fig. IV.2, the eigencomponents for fast mode

(negative eigenvalues with large magnitude) generally attenuate rapidly, while the

eigencomponents for slow mode (the two smallest eigenvalues) stay nearly constant.

The relatively slow and oscillating drop of the eigencomponent of −100 is due to

the oscillation of the maximal Ritz value [27], which induces large interpolation

error and weaker attenuation when the two values are out of phase. In the lower

subfigure of Fig. IV.2, the eigencomponents of large eigenvalues in the error vector

are heavily attenuated, while the contribution from small eigenvalues remains at

the same order, indicating that the error in later stage is largely determined by

the small eigenvalues. The attenuation of some components in the error vector



71

0 10 20 30 40 50 60 70 80 90 100
10

−40

10
−30

10
−20

10
−10

10
0

Eigencomponents of xold

 

 

−100
−43.2876
−6.7342
−0.16298
−0.025354
−0.01

0 10 20 30 40 50 60 70 80 90 100
10

−40

10
−30

10
−20

10
−10

10
0

Eigencomponents of real error vector

 

 

−100
−43.2876
−6.7342
−0.16298
−0.025354
−0.01

Figure IV.2: Eigencomponent vs. # of steps (m = 10, fixed tol = 10−6)

reduces the norm of error and thus allows the usage of gradually increasing h in

later steps under the same tolerance, which is shown in Fig. IV.3.

In Fig. IV.3, when m is set as 10, the sum of h over 100 steps is 68.42,

and the ratio of the initial h to the largest allowable h is 22.55. When we increase

m to 15, the increased m reduces the interpolation error and thus allows a larger

step size in each step. The sum of h for m = 15 achieves 196.52, which is nearly

triple of that for m = 10, with just a half increase of computational cost, while

the ratio of the initial and the largest allowable h is still 22.55. Therefore, it is

beneficial to use a larger m in large, stiff, problems, realized by the restarting of
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Figure IV.3: Max permissible h vs. steps for m = 10 and m = 15 (fixed

tol = 10−6)

Krylov subspace method.

IV.4.B Performance of Restarted MEXP

Table IV.1 details the functionality, size, type (L for linear and NL for

nonlinear), stiffness of circuits and also the number of nodes without grounded

capacitance for each benchmark circuit. We represent the stiffness of a circuit

with the largest generalized eigenvalue of the matrix pencils (G, C). Highly stiff

circuits have a value ranged from 1016 ∼ 1020. Table IV.2 records the result

of regularization process in Section III.3 for the cases (D2, D3, and D6). From

the table, we can see that the number of nonzeros of C + G before and after the

regularization process is not affected significantly and even decreased because some

elements are eliminated. Furthermore, the regularization process still maintains a
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reasonable condition number of Cr for inverse and spends acceptable runtime for

each cases.

Table IV.1: Specifications of benchmark circuits

Design Category Type Nodes Nodes w/o Cap. Stiffness

D1 power grid L 2.5K 0 3.9× 1017

D2 trans. line L 5.6K 431 1.6× 1019

D3 ALU NL 10K 373 8.7× 1018

D4 IO NL 630K 0 1.6× 1020

D5 power grid L 800K 0 2.6× 1014

D6 power grid L 1.6M 0.6M 1.6× 1017

D7 power grid L 12M 0 2.6× 1014

Table IV.2: Result of regularization

Design cond(Cr) nnz(C + G) nnz(Cr + Gr) runtime

D2 1.1× 107 0.9M 0.9M 5.9s

D3 4.4× 105 44K 43K 1.2s

D6 1.4× 106 5.4M 4.8M 191.2s

Table IV.3 shows the performance gained from the scaling effect. We com-

pare the performance of ordinary MEXP with adaptive step size (MEXP) and

restarted MEXP with both restarting and adaptive control (RMEXP) as outlined

in Algorithm 3, where the number of restarting is 5. In addition, we implement

the trapezoidal method (TRAP) with adaptive step control as the baseline per-

formance of the circuit simulation. All three methods adopt the same adaptive

scheme in Algorithm 3, and the total error budget TOL is 10−4 for all cases. The

total simulation time and the initial step size for each case are denoted in columns

tf and “init. h”, respectively.

For MEXP and TRAP, TRAP outperforms MEXP only in small case D1
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because a linear system can be solved efficiently in such scale. As the size of circuit

becomes large, TRAP is slowed down by solving a large linear system while MEXP

benefits from the scaling effect and the sparse matrix-vector multiplication. For

stiff cases D2, D3 and D4, MEXP achieves a 2.06× speedup over TRAP by the

scaling effect on average. For moderately stiff cases (D5 and D7), since MEXP can

use much larger step size than that in stiff cases, MEXP outperforms TRAP by

over 100 times. MEXP also demonstrates the scalability in the cases with millions

of nodes (D6 and D7), while TRAP encounters the scalability issues in runtime and

memory. Notice that although both MEXP and TRAP have to perform Newton’s

method for nonlinear circuits, the Jacobian in our formulation has much fewer non-

zeros than that in the traditional implicit methods. For example, in D4, solving the

Jacobian in MEXP takes only 0.73 seconds whereas TRAP requires 6.86 seconds

due to those extra non-zeros.
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Our restarting scheme can further improve the scaling effect in RMEXP.

For linear cases with high stiffness (D1, D2 and D6), RMEXP improves the per-

formance over MEXP by up to 4.1×. For the nonlinear cases (D3 and D4), our

nonlinear formulation in RMEXP still takes advantage of the scaling effect that im-

proves the performance up to 4.8 times, because the decoupling scheme minimizes

the calculation of the matrix exponential during Newton’s iterations. Overall, RM-

EXP achieves 3.6× speedup over MEXP on average, and achieves an average of

8.25× speedup over TRAP on stiff cases D2, D3 and D4.
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Figure IV.4: Results of D5 by RMEXP and HSPICE

Fig. IV.4 shows the waveforms by TRAP and RMEXP as well as the golden

reference waveform by HSPICE for testcase D5. The errors to the golden refer-

ence for both waveforms of TRAP and RMEXP are 5.78× 10−4 and 2.02× 10−4,

respectively.

Fig. IV.5 shows the speedup of the parallel Krylov subspace method (Krylov-

GPU) and computation of eHm (exp(Hm)) over the serial version. For small matri-

ces, Krylov-GPU and exp(Hm) accelerate little in the throughput-oriented GPU.
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Figure IV.5: Speedup of core operations by GPU

For example, Krylov-GPU and exp(Hm) gain 0.9× and 0.5× speedup for the ma-

trix size of 10K and 20. As the matrix size goes up, the massive parallelism of

GPU surpasses faster floating point operations of CPU. Then, both operations

can achieve 12× and 10× speedup for the size of 10M and 2000. Overall, with

integrating both parallel operations into Algorithm 3, the performance of parallel

restarted MEXP (RMEXP-GPU) (also shown in Table IV.3) presents an average

of 11× speedup for large-scale cases, compared with the serial RMEXP.

Take the largest case D7 as an example. TRAP fails the simulation due to

insufficient memory while MEXP and RMEXP require about 3.5 and 2.2 hours, re-

spectively. RMEXP-GPU shows the simulation takes only 10 minutes using GPU.

The speedup by GPU over MEXP and RMEXP are 19.9× and 12.4×, respectively.

Note that the communication overhead between CPU and GPU is negligible

since we minimize the data transmission in the hybrid CPU-GPU architecture.

Although, for nonlinear circuits, the change of C and G by nonlinear devices

at every time step increases the communication between CPU and GPU, such

overhead is still negligible. The column “comm.” in Table IV.3 shows the time
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of transferring L, U and G once from CPU to GPU. We can see that even the

largest case D7 requires only about 1.5 seconds. This is because the sparsity of

the matrices in the circuit simulation application greatly reduces the transferred

data, and also KLU [19] maintains acceptable sparsity in both L and U matrices.

IV.5 Summary

In this chapter, we propose a parallel and restarted matrix exponential to

utilize the scaling effect, which can overcome the stiffness of circuitry. The scaling

effect enables the use of gradually larger step size as time frame marches forward.

Moreover, our method has better scalability and parallelizability, which are the

major limitations of existing implicit methods. The experimental results show

that MEXP has a speedup over the trapezoidal method in orders of magnitude

for cases with millions of nodes. For stiff circuits, our restarted MEXP improves

the performance of MEXP by up to 4.8 times, and the performance can be further

accelerated by up to another 11 times by GPU parallelization. For cases with

millions of nodes, our method is able to simulate with acceptable runtime and

memory usage while the trapezoidal method breaks down. The superior scalability

and parallelizability of the proposed method enable a substantial expansion of

computational capability for modern extremely large circuit simulation problems.

Chapter IV includes the content of one published conference paper, “Circuit

Simulation using Matrix Exponential Method for Stiffness Handling and Parallel

Processing,” by Shih-Hung Weng, Quan Chen and Chung-Kuan Cheng, in Pro-

ceedings of 2012 IEEE International Conference on Computer-Aided Design. The

dissertation author was the primary investigator and author of the paper.



V

Matrix Exponential Method with

Rational Krylov Subspace

Approximation

In this chapter, we propose the matrix exponential method with the ra-

tional Krylov subspace approximation. The kernel operation in our method only

demands one factorization and backward/forward substitutions. Moreover, the ra-

tional Krylov subspace approximation can relax the stiffness constraint and avoid

regularization process shown in the previous chapters III and IV. The cheap com-

putation of adaptivity in the matrix exponential method fits well for the power grid

simulation. In such application, our method could exploit the long low-frequency

response in a power grid and significantly accelerate the simulation. The experi-

mental results show that our method achieves up to 18X speedup over the trape-

zoidal method with fixed step size. Our method also demonstrates a promising

parallelism in the perspective of input sources.

79



80

V.1 Background

Power grid simulation plays an important role in IC design methodology.

Given current stimulus and the power grid structure, designers could verify and

predict the worst-case voltage noise through the simulation before signing off their

design. However, with the huge size of modern design, power grid simulation is

a time-consuming process. Moreover, manifesting effects from the package and

the board would require longer simulation time, e.g., up to few µs, which worsens

the performance of the power grid simulation. Therefore, an efficient power grid

simulation is always a demand from industry.

Conventionally, the power grid simulation is by the trapezoidal method

where the major computation is to solve a linear system by either iterative ap-

proaches [57] or direct methods [19]. Many previous works [15] [28] [42] [48] [64]

utilize iterative approaches to tackle the scalability issue and enable adaptive step-

ping in the power grid simulation. However, the iterative methods usually suffer

from the convergence problem because of the ill-conditioned matrix from the power

grid design. On the other hand, the direct methods, i.e., Cholesky or LU factor-

izations, are more general for solving a linear system. Despite the huge memory

demanding and computational effort, with a carefully chosen step size, the power

grid simulation could perform only one factorization at the beginning while the rest

of operations are just backward/forward substitutions. Since a power grid design

usually includes board and package models, a long simulation time is required to

manifest the low-frequency response. Hence, the cost of expensive factorization

can be amortized by many faster backward/forward substitutions. Such general

factorization and fixed step size strategy [73] [75] [78] [79] is widely adopted in

industry.

In this chapter, we tailor MEXP using rational Krylov subspace for the

power grid simulation with adaptive time stepping. The rational Krylov subspace

uses (I−γA)−1 as the basis instead of A used in the conventional Krylov subspace.
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The rational basis limits the spectrum of a circuit so that the exponential of a

matrix can be accurately approximated even under a large step size. Moreover,

the rational avoids C−1 and thus eliminates the regularization process. As a result,

MEXP with rational Krylov subspace is free from the stiffness constraint and the

regularization process. The simulation can purely enjoy benefits of the adaptivity

and the accuracy of MEXP. Even though the rational Krylov subspace still needs

to solve a linear system as the trapezoidal method does, MEXP can factorize the

matrix only once and then constructs the rest of rational Krylov subspaces by

backward/forward substitutions. Therefore, MEXP can utilize its capability of

adaptivity to accelerate the simulation with the same kernel operations as the

fixed step size strategy. Overall, our MEXP for the power grid simulation has the

following advantages:

• Enabling adaptive time stepping for the power grid simulation with only one

LU factorization.

• Eliminating the regularization process for the singular power grid design.

• Allowing scaling large step size without compromising the accuracy.

The experimental results demonstrate the effectiveness of MEXP with adaptive

step size. The power grid simulation for IBM benchmark suite [47] and industrial

power grid designs can be accelerated 6X and 15X on average compared to the

trapezoidal method.

V.2 Power Distribution Network Modeling

A power distribution network (PDN) is shown in Figure V.1. The purpose

of the network is to supply power to integrated circuits. A PDN includes inter-

connect with decoupling capacitance (decap) on a printed circuit board (PCB), an

integrated circuit packae and a circuit die. As illustrated in Figure V.1, the system
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also contains a voltage regulator module (VRM), the PDNs on PCB, on package

and on chip. A voltage regulator is to adjust the supply power to the required volt-

age level of the integrated circuits. There are power and ground planes connected

the VRM to the package on the PCB. The on-board PDN connects supply power

to package through solder balls, and the on-package PDN connects the on-board

PDN to chip. Finally, the on-package PDN connects chip through bonding wires

or C4 (Controlled Collapse Chip Connection) bumps. The on-chip PDN delivers

power to switching transistors across the die. Different decaps are placed at each

of the PCB, package, and chip levels, which serve as charge reservoirs to supply

power for local currents.
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Figure V.1: A power distribution system from VRM to die. Courtesy of Xiang

Hu, 2011.

A PDN can be formulated as a system of differential algebraic equations

(DAEs) via modified nodal analysis (MNA) as Eqn. (II.2) where vector u(t) repre-
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sents the corresponding supply voltage and current sources associated to different

blocks. In order to stimulate the worst-case voltage noise, those current sources,

which represent the behavior of underlying blocks of a power grid, are often pre-

characterized with pre-designed vectors. Many previous works [11] [25] [29] have

developed different methodologies to generate worst-case stimulus currents. In

this work, we assume those input sources are given and in the format of piece-wise

linear.

We would also like to mention that a PDN contains on-board, on-package

and on-die components, which are ranged in different scale, e.g., capacitance is

from pF to fF , inductance is from nH to pH, and resistance is ranged from kΩ

to mΩ. Hence, the electronic behavior of a PDN will have low-, mid- and high-

frequency response. In order to manefist the low-frequency effect, such as “rogue

wave” phenomenon [25], a long simulation time span (∼ µs) is necessary.

V.3 MEXP with Rational Krylov Subpsace

In chapters III and IV, Eqn. (III.16) is calculated via the Krylov subspace

method using Arnoldi process. The subspace is defined as

Km(Ã,v) = span{v, Ãv, · · · , Ãm−1v}, (V.1)

where v is an initial vector. The Arnoldi process approximates the eigenvalues

with large magnitude well. But when handling a stiff circuit system, the formed

matrix usually contains many eigenvalues with small magnitude. Besides, e
eAh is

mostly determined by the eigenvalues with smallest real magnitudes and their cor-

responding invariant subspaces. In this scenario, due to the existence of eigenvalues

with large magnitude in Ã, the Arnoldi process for Eqn. (V.1) requires large m

to capture the important eigenvalues (small magnitudes) and invariant spaces for

exponential operator. Therefore, the time steps in MEXP has to be small enough

to capture the important eigenvalues. This suggests us transforming the spectrum



84

to intensify those eigenvalues with small magnitudes and corresponding invariant

subspaces. We make such transformation based on the idea of rational Krylov

subspace method [46] [68]. The details are presented in the following subsections.

V.3.A Fast Rational Krylov Subspace Approximation of

Matrix Exponential

For the purpose of finding the eigenvalues with smallest magnitude first, we

uses a preconditioner (I − γÃ)−1, instead of using Ã directly. It is known as the

rational Krylov subspace [46] [68]. The formula for the rational Krylov subspace

is

Km((I− γÃ)−1,v) = span{v, (I− γÃ)−1v, · · · ,

(I− γÃ)−(m−1)v}, (V.2)

where γ is a predefined parameter. The Arnoldi process constructs Vm and Hm,

and the relationship is given by

(I− γÃ)−1Vm = VmHm + H(m + 1,m)vm+1e
T
m, (V.3)

where em is the m-th unit vector with dimension m × 1. Matrix Hm is an upper

Hessenberg matrix, and Vm consists of [v1,v2, · · · ,vm]. After re-arranging (V.3,

we can project Ã onto the rational Krylov subspace as

1

γ
(I−Hm

−1) ≈ Vm
T ÃVm. (V.4)

Now given a time step h, the matrix exponential e
eAhv can be calculated as

e
eAhv ≈ VmVm

T e
eAhv = ‖v‖2 VmVm

T e
eAhVme1

= ‖v‖2 Vmeα eHme1, (V.5)

where H̃m = I − Hm
−1, α = h

γ
is the tuning parameters for control of adaptive

time step size in Section V.4. Note that in practice, instead of computing A−1
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directly, we only need to solve (C + γG)−1Cv, which can be achieved by one LU

factorization at beginning. Then the construction of the following subspaces is by

backward/forward substitutions.

This strategy is also presented in the numerical analysis community [24] [46]

[68]. Intuitively, the “shift-and-invert” operation would intensify the eigenvalues

with small magnitudes and minify the eigenvalues with large magnitudes. By

doing so, the Arnoldi process could capture those eigenvalues important to the

exponential operator, which originally cannot be manifested with small m in the

conventional Krylov subspace.

We would like to point out that the error bound for Eqn. (V.5) does not

longer depend on ‖Ãh‖ as Chapters III and IV. It is only the first (smallest

magnitude) eigenvalue of Ã. The lemma is given as follow and the proof is given

in [68].

Lemma V.3.1 (Lemma 3.1 in [68]) Let µ be such that −Ã−µI is positive semi-

definite. Then

∥∥∥‖v‖2 Vmeα eHe1 − eαγ eAv
∥∥∥ ≤ 2e−αγµEm−1

m−1(γ̃) (V.6)

with Ei
j(γ̃) := infr∈Rj

i
supt≤0 |r(t)− e−t|, Rj

i = {p(t)(1 − γt)−i|p ∈ Πj}, the space

Πm−1 is the space of all polynomials of degree m− 1 or less.

Note that Em−1
m−1 can be approximated as a constant upper bound here, and

the eigenvalues of −Ã are all larger than a positive µ. With increasing h (equiva-

lently α) and predefined γ, it brings much tighter trend of error bound than smaller

α. That explains, in numerical experiment, we observe that large α provides less

error under the same dimension m. An intuitive explanation is also given by [68],

the larger α combined with exponential operators, the relatively smaller portion

of the eigenvalues with smallest magnitude determine the final vector. Actually,

it is quite a nice feature, especially for power grid simulation, where the voltage

noise usually contains low frequency behavior from board and package levels. Our
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method can step forward as much as possible to accelerate simulation, and still

maintain the high accuracy. The sacrifice resides in the small time step when

more eigenvalues determine the final vector. So we should choose a appropriate

parameter γ or increase the order m to balance the accuracy and efficiency. Even

though the increasing m results more backward/forward substitutions, the m is

still quite small (5 ∼ 20) in the power grid simulation. Therefore, it does not

degrade our method too much. our experimental results present that our method

achieves impressive speedups over the trapezoidal method while preserving low- to

high-frequency responses in industrial power grid designs.

The formula of posterior error estimation is required for controlling adaptive

step size. We use the formula derived from [68],

err(m,α) =
‖v‖2

γ
H̃(m + 1, m)

∥∥∥eT
mφ(αH̃m)e1

∥∥∥ (V.7)

×
∥∥∥(I− γÃ)vm+1

∥∥∥ ,

where φ(x) = ex−1
x

. The formula provides a good approximation for the error trend

with respect to m and α in our numerical experiment.

V.3.B Block LU factorization

In practical numerical implementation, in order to avoid direct inversion of

C to form A in Eqn. (V.2), the Eqn. (V.8)

(C + γG)−1C (V.8)

is used. Correspondingly, we uses the following equations for Eqn. (III.16),

(C̃− γG̃)−1C̃ (V.9)

where

C̃ =


 C 0

0 I


 , G̃ =


 −G W

0 J


 (V.10)
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The Arnoldi process based on Eqn. (V.9) actually only requires to solve

vk+1 with vk. The linear system is expressed as

(C̃− γG̃)vk+1 = C̃vk, (V.11)

where vk and vk+1 are k-th and k + 1-th basis in the rational Krylov subspace. If

W changes with inputs during the simulation, the Arnoldi process has to factor-

ize a matrix every time step. However, it is obvious that the majority of matrix

components in Eqn. (V.10) stay the same for this linear system. To take advan-

tage of this property, a block LU factorization is devised here to avoid redundant

calculation.

The goal is to obtain two matrices: the lower triangular matrix L and the

upper triangular matrix U, such that

C̃− γG̃ = LU. (V.12)

At the beginning of simulation, after LU factorization of C + γG = LsubUsub

we obtains the lower triangular sub-matrix Lsub, and upper triangular sub-matrix

Usub. Then Eqn. (V.12) only needs updating via

L =


 Lsub 0

0 I


 , U =


 Usub L−1

subW

0 IJ


 , (V.13)

where I is an identity matrix, IJ = I + J is an upper triangular matrix. The

following equations further reduce operation L−1
sub and construct vector vk+1.

LsubUsub y1 = b1 −W y2, y2 = I−1
J b2, (V.14)

where vk+1 = [y1, y2]
T ,b1 = [C, 0]vk,b2 = [0, I]vk. By doing this, it only needs

one LU factorization at the beginning of simulation, and with cheap updates for

the L and U at each time step during transient simulation.
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V.3.C Compatibility with Singular C without Regulariza-

tion

Another contribution is that our method can handle singular C without

regularization in the rational Krylov subspace. Even we cannot formulate Eqn.

(III.1) explicitly, but the solution can be still represented as the combination of

eigenvalues and eigenvectors [72]. To calculate such eigenvalues, the problem turns

into the generalized eigenvalue problem for matrix pencil (−G,C). There are n

eigenvalues λ1, λ2, · · · , λn, whose real parts are negative in the power grid simula-

tion. The solution can be expressed as x(t+h) = QnehΣnPnx(t),, where QnPn = I,

and I is an identity n × n matrix. The only hindrance is the existence of “−∞”

eigenvalues without regularization in Chapter III. However, we can prove these

eigenvalues can be eliminated in the solution, which is given in the following lemma.

Lemma V.3.2 When all generalized eigenvalues of matrix pencil (−G,C) are

negative, there exist r bounded eigenvalues and ∀i > r, λi = −∞. The formula,

x(t + h) = Qne
hΣnPnx(t),

can be written as

x(t + h) = Qre
hΣrPrx(t),

where

Σj =




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λj




Qj = [q1,q2, · · · ,qj], Pj = [p1;p2; · · · ;pj], and qi is n × 1 vector, pi is 1 × n

vector.

Proof 4

x(t + h) = Qne
hΣnPnx(t),
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x(t + h) = [QrQn−r]e

h

2
6664

Σr 0

0 Σn−r

3
7775


 Pr

Pn−r


x(t)

= (Qre
hΣrPr + Qn−re

hΣn−rPn−r)x(t)

= Qre
hΣrPrx(t)

where

ehΣn−r =




e−∞ 0 · · · 0

0 e−∞ · · · 0
...

...
. . .

...

0 0 · · · e−∞




= 0

By this lemma, we can take out the “−∞” eigenvalues.

In addition, it is known that eigenvalues of Hessenberg matrix of Arnoldi

process are often used as the estimation for the original matrix [63]. The rational

Krylov subspace is also utilized to preserve the bounded eigenvalues of matrix

pencil and corresponding eigenvectors as long as m is enough [43]. Therefore, by

using Arnoldi process via the rational Krylov subspace for (−G,C) It holds

x(t + h) = QehΣnPx(t) = Qre
hΣrPrx(t)

≈ Vmeα eHmVm
Tx(t).

The above equation illustrates that, without modification of our method using the

rational Krylov subspace, our method is compatible with the cases that contain

singular C.

Intuitively speaking, “−∞” eigenvalues and corresponding eigenvectors do

not effect the whole dynamical system via time derivatives here due to the expo-

nential operator; it just forms the algebraic relations in the DAEs [35]. Previously,

MEXP in Chapters III and IV cannot handle C without regularization is only

because the Arnoldi process requires to inverse C. Our algorithm never uses the

inverse of C directly.
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V.4 Adaptive Time Step Control

The proposed MEXP can significantly benefit from the adaptive time step-

ping because the rational Krylov subspace approximation relaxes the stiffness con-

straint as well as preserves the scaling invariant property. As a result, MEXP can

effortlessly adjust the step size to different scale, e.g., from 1ps to 1ns, during the

simulation. Such adaptivity is particularly helpful in the power grid where the

voltage noise includes the high- to low-frequency responses from die, package and

board.

Our adaptive step scheme is to step forward as much as possible so that

MEXP can quickly finish the simulation. With the insight from Eqn. (V.5),

MEXP can adjust α to calculate results of required step sizes with only one Arnoldi

process. However, even though the rational Krylov subspace could scale arbitrarily,

the step size in MEXP is restrained from input sources. As shown in Eqn. (III.2),

MEXP has to guarantee constant slope during a stepping, and hence the maximum

allowed step size hmax at every time instant is limited. Our scheme will first

determine hmax from inputs at time t and construct the rational Krylov subspace

from x(t). Then, x within interval [t, t+hmax] are calculated through the step

size scaling.

Algorithm 4 shows MEXP with adaptive step control. In order to comply

with the required accuracy during the simulation, the allowed error errk at certain

time instant tk is defined as

errk ≤ ETol

T
× hk,

where ETol is the error tolerance in the whole simulation process, T is the simu-

lation time span, hk is the step size at time tk, and errk is the posterior error of

MEXP from Eqn. (V.7). Hence, when we construct the rational Krylov subspace,

we will increase m until the errk satisfies the error tolerance.

The complexity of MEXP with adaptive time stepping is mainly determined

by the total number of required backward/forward substitutions during the simu-
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Algorithm 4: MEXP with Adaptive Step Control

Input: C, G, B, u(t), τ , error tolerance ETol and simulation time

T

Output: x(t)

t = 0; x(0) = DC analysis;

[Lsub,Usub] =LU(C + γG);

while t ≤ T do

Compute maximum allowed step size h from u(t);

Construct Hm, Vm, errk by Arnoldi process and (V.7) until

errk ≤ ETol

T
h;

α = h
γ

;

Compute x(t + h) by (V.5);

t = t + h;

end

lation process. This is because the dimension of Hm is small, e.g., around 5 ∼ 20,

and the computation overhead of the step size scaling is negligible. The number

of total substitution operations is

N∑
i=0

mi,

where N is total time steps, and mi is required dimension of the rational Krylov

subspace at time step i. Compared to the trapezoidal method where the number

of substitution operations depends only on the fixed step size, MEXP could use

less substitution operations as long as the maximum allowed step size hmax is

much larger than the fixed step size. Our experiments in the following section

demonstrates it is usually the case for the power grid simulation.
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V.5 Experimental Results

In this section, we compare performance of the power grid simulation by

MEXP and the trapezoidal method (TRAP). MEXP with adaptive step size con-

trol follows Algorithm 4. We set γ as 10−10 and restrict the maximum allowed

step size within 1ns to have enough time instants to plot the figure. It is possible

to have more fine-grain time instants, e.g., 10ps, with only negligible cost by ad-

justing α in Eqn. (V.5). TRAP is in fixed step size in order to minimize the cost

of LU factorization. Both methods only perform factorization once, and rest of

operations is mainly backward/forward substitution. We implement both methods

in MATLAB and use UMFPACK package for LU factorization. Note that even

though previous works [15] [64] show that using iterative approach in TRAP could

also achieve adaptive step control, long simulation time span in power grid designs

make direct method with fixed step size more desirable [73] [75] [79].

Our benchmark includes different industrial power distribution networks

(PDNs), which contain the model of board and package, and also includes IBM

power grid suite [47]. Designs in both benchmarks all have singular C. The exper-

iments are performed on a Linux workstation with an Intel i7 2.67GHz processor

and 12GB memory. The details and simulation results of both industrial designs

and IBM power grid suite are presented in the following subsections.

V.5.A Industrial PDN Designs

The industrial PDN design includes on-chip power grid, package and board.

The power grid consists of four metal layers: M1, M3, M6 and RDL. The physical

parameters of each metal layer is listed in Table V.1. The package is modeled as an

RL series at each C4 bump, and the board is modeled as a lumped RLC network.

The specification of each PDN design is listed in Table V.2 where the size of each

design ranges from 45.7K to 7.40M.

In order to characterize a PDN design, designers can rely on the simulation
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Table V.1: Widths and pitches of metal layers in the PDN design(µm).

M1 M3 M6 RDL

pitch width pitch width pitch width pitch width

2.5 0.2 8.5 0.25 30 4 400 30

Table V.2: Specifications of PDN Designs

Design Area (mm2) #R #C #L #Nodes

D1 0.352 23221 15193 15193 45.7K

D2 1.402 348582 228952 228952 688K

D3 2.802 1468863 965540 965540 2.90M

D4 5.002 3748974 2467400 2464819 7.40M

result of impulse response of the PDN design. Many previous works [25] [67] have

proposed different PDN analysis based on the impulse response. The nature of

impulse response of the PDN design, which contains low-, mid- and high-frequency

components, can significantly enjoy the adaptive step size in MEXP. We would also

like to mention that the impulse response based analysis is not only for the PDN

design, but also for worst-case eye opening analysis in the high speed interconnect

[4] [62].

The impulse response can be derived from the simulation result of a step

input from 0V to 1V with a small transition time. Hence, we inject a step input

to each PDN design and compare the performance of MEXP and TRAP. The

transition time of the step input and the simulation time span is 10ps and 1µs for

observing both high- and low-frequency responses. Table V.3 shows the simulation

runtime of MEXP and TRAP where the fixed step size is set as 10ps to comply with

the transition time. In the table, “DC”, “LU” and “Time” indicate the runtime for

DC analysis, LU factorization and the overall simulation, respectively. DC analysis

is also via the LU factorization. We can also adopt other techniques [73] [75] [78]

to improve the performance of DC analysis for both methods. “Spdp” shows the
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speedup of MEXP over TRAP.

Table V.3: Simulation runtime of PDN designs

Design DC(s)
TRAP (h = 10ps) MEXP (γ = 10−10)

LU(s) Total LU(s) Total Spdp

D1 0.71 0.67 44.85m 0.68 2.86m 15.73

D2 12.21 15.60 15.43h 15.48 54.57m 16.96

D3 69.59 91.60 76.92h 93.28 4.30h 17.91

D4 218.89 293.81 203.64h 298.83 11.26h 18.08

MEXP has significant speedup over TRAP because MEXP can exploit much

large step size to simulate the design whereas TRAP can only step in 10ps for whole

1µs time span. The average speedup is 17X. Figure V.2 shows the simulation result

of design D1 at a node on M1. As we can see, the result by MEXP and TRAP

are very close to the result of HSPICE, which is as our reference result here. The

errors of MEXP and TRAP to HSPICE are 7.33×10−4 and 7.47×10−4. This figure

also demonstrates that a PDN design has low-, mid- and high-frequncy response

so that long simulation time span is necessary.

V.5.B IBM Power Grid Suite

In this subsection, we compare MEXP and TRAP using the IBM power

grid suite [47]. The simulation time is 10ns, and TRAP uses fixed step size in

10ps. Table V.4 shows the details of each benchmark circuit of which size ranges

from 54K up to 3M.

Table V.5 presents the performance gains from MEXP compared to TRAP.

MEXP shows a little speedup over TRAP that is not significant as that of the

industrial PDN designs. The average of the speedup is 1.42 times. The reason

behind the little speedup in IBM benchmark suite is the fact that hundreds of

thousands of input sources limits the maximum allowed step size. The simulation
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Figure V.2: Result of D1

results of ibmpg6t via MEXP and TRAP are shown in Figure V.3 where MEXP

has many small step sizes so that the benefit of large step size does not improve the

performance drastically. As we mentioned in Section V.4, the maximum allowed

step size is actually determined by the slope of input sources over a time interval.

Figure V.4 illustrates the concept where I1 and I2 are input sources and “max.

step” shows the maximum allowed step size during the simulation. As we can see,

ill alignment causes tiny step size because MEXP has to guarantee constant slopes

within a step size so that Eqn. (III.2) can be held. The ibmpg4t has better align-

ment than the other benchmark circuits, and thus, MEXP achieves 2.95 speedup

in ibmpg4t over TRAP.

We can avoid the ill alignment issue by simply grouping “similiar” input

sources and then simulate them in separately. Due to the linearity of the power

grid, the final result is just the superposition of the simulation result with each
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Table V.4: Specifications of IBM power grid suite

Design #R #C #L #I #V #Nodes

ibmpg1t 40801 10774 277 10774 14308 54265

ibmpg2t 245163 36838 330 36838 330 164897

ibmpg3t 1602626 201054 955 201054 955 1043444

ibmpg4t 1826589 265944 962 265944 962 1214288

ibmpg5t 1550048 473200 277 473200 539087 2092148

ibmpg6t 2410486 761484 381 761484 836249 3203802

Table V.5: Performance comparison TRAP v.s. MEXP

Design DC(s)
TRAP (h = 10ps) MEXP (γ = 10−10)

LU(s) Total(s) LU(s) Total(s) Spdp

ibmpg1t 0.28 0.24 11.02 0.24 9.53 1.16

ibmpg2t 1.12 1.31 48.19 1.29 41.81 1.15

ibmpg3t 17.72 18.05 493.97 18.41 413.90 1.19

ibmpg4t 22.04 30.32 675.78 31.01 229.13 2.95

ibmpg5t 12.40 16.16 657.13 16.48 649.97 1.01

ibmpg6t 17.66 23.99 965.53 34.60 915.62 1.05

group of inputs. By doing so, MEXP can simulate in much larger step size in

each group, e.g. rising/falling slew and pulse width of I1 in Figure V.4, than the

step size originally in ill aligned input sources. Moreover, MEXP with grouping is

parallelizable by simulating each group in multicore or cluster system.

In order to demonstrate the idea, we simply device a naive grouping scheme,

which will take identical input sources together as a group. Table V.6 shows the

performance of MEXP with grouping. In this table, “Groups” is the number of

groups for each designs, “Max. Total” is the maximum runtime among the groups,

and “Ideal Spdp” records the ideal speedup with parallelization. Design ibmpg4t

has only 4 groups because the alignment is better. The performance of MEXP has
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Figure V.3: Result of ibmpg6t

a significant improvement after grouping. The average ideal speedup over TRAP

is 6 times. MEXP shows another parallelism in the power grid simulation from

the perspective of input sources.

V.5.C Complexity

The performance of MEXP and TRAP are dominated by the number of

backward/forward substitutions. This is because the time span is relatively long

in a power grid, and therefore, the expensive LU fatorization is amortized during

the simulation. In MEXP, the number of backward/forward substitutions at each

time step is actually m, which is the number of vectors forming rational Krylov

subspace. Since m is small, e.g., 5 ∼ 6 in IBM benchmark suite, and MEXP uses

large step size than TRAP, MEXP has less numbers of substitution operations



98

Figure V.4: Input sources alignment

Table V.6: Performance of MEXP w/ grouping

Design DC(s)
MEXP w/ grouping (γ = 10−10)

Groups LU(s) Max. Total(s) Ideal Spdp

ibmpg1t 0.28 25 0.22 1.63 6.77

ibmpg2t 1.12 25 1.32 7.93 6.08

ibmpg3t 17.72 25 18.75 86.24 5.73

ibmpg4t 22.04 4 31.55 124.16 5.44

ibmpg5t 12.40 25 16.35 111.97 5.87

ibmpg6t 17.66 25 29.85 166.34 5.80

in general. Table V.7 presents number of backward/forward substitions for each

method. “Sub.” is the total number of substituion operations along the simulation.

MEXP has less operations but close to TRAP because the ill alignment of input

sources leads to many tiny step sizes whereas MEXP with grouping has much

less operations due to well aligned inputs. These results also validate Tables V.5

and V.6 where MEXP would has less speedup due to ill alignment issue, and the

grouping scheme could improve the performance.
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Table V.7: Number of backward/forward substitutions

Design
TRAP MEXP MEXP w/ grouping

# Sub. # Sub. # Max Sub.

ibmpg1t 1000 830 120

ibmpg2t 1000 830 120

ibmpg3t 1000 874 120

ibmpg4t 1000 349 143

ibmpg5t 1000 982 139

ibmpg6t 1000 932 134

V.6 Summary

We propose an adaptive time stepping method for large scale power grid

simulation based on MEXP. This method utilizes rational Krylov subspace ap-

proximation, which solves stiffness constraint and eliminates the regularization

requirement for singular C. For the time-consuming impulse response simulation

for industrial PDN designs, the proposed method has more than 15 times speedup

on average over the widely-adopted fixed-step trapezoidal method. Also, the pro-

posed method shows a promising parallelism. The naive grouping scheme could

further accelerate the power grid simulation about 6X on average for the IBM

power grid benchmark.

Chapter V includes the content of one submitted conference paper, “Adap-

tive Time Stepping for Power Grid Simulation using Matrix Exponential Method,”

by Shih-Hung Weng, Hao Zhuang and Chung-Kuan Cheng. The paper is submit-

ted to IEEE International Conference on Computer-Aided Design, 2013. The

dissertation author was the primary investigator and author of the paper.
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Conclusion

VI.1 Summary of Contributions

In this dissertation, we study the circuit simulation and propose a new nu-

merical integration method, the matrix exponential method. The proposed method

is a general approach, which can be applied to either linear or nonlinear circuits.

We utilize the Krylov subspace approximation to compute the kernel operation,

the exponential of a matrix, in our approach. We discuss the adaptive step size

control in both step size and dimension of the Krylov subspace to improve the per-

formance. The stiffness constraint and the parallelism in the matrix exponential

method is also investigated. Finally, we explore the rational basis in the Krylov

subspace method to relax the stiffness constraint and eliminate the demanded reg-

ularization process. We demonstrate that the rational Krylov subspace approach

fits well for the power grid simulation.

Chapter III presents the formulation of the matrix exponential method

and the process of the Krylov subspace approximation. The detailed linear and

nonlinear formulations are also presented. The proposed method solves the linear

differential equation analytically via the matrix exponential operator and alleviates

the stability bottleneck of explicit methods and enables great adaptivity for time

100
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step size control.

Chapter IV investigates the stiffness constraint and parallelism in the matrix

exponential method. The scaling effect is observed and analyzed. With the scaling

effect, the matrix exponential method is able to utilize larger step size as stepping

forward. We also implemented parallel matrix exponential method on the GPGPU.

The results show that the performance for highly stiff circuits is improved up to 4.8

times by exploiting the scaling effect, and is accelerated in the GPU environment

up to another 11 times. Furthermore, we demonstrate that MEXP is able to handle

the circuit with up to 12 million nodes.

Chapter V proposes an adaptive time stepping method for large scale power

grid simulation based on the matrix exponential method. This method utilizes ra-

tional Krylov subspace approximation, which solves stiffness constraint and elim-

inates the regularization requirement for singular C. For the time-consuming im-

pulse response simulation for industrial PDN designs, the proposed method has

more than 15 times speedup on average over the widely-adopted fixed-step trape-

zoidal method. Also, the proposed method shows a promising parallelism. The

naive grouping scheme could further accelerate the power grid simulation about

6X on average for the IBM power grid benchmark.

VI.2 Future Works

One possible direction to speedup circuit simulation is via partition. With a

deliberately partition, we can simulation each sub-circuit simultaneously within few

iterations to converge. Since the stiffness of a circuit comes from wide scale range

in the electronic components, a well-devised partition strategy is able to separate

components in different scales. Therefore, the matrix exponential method can

utilize adaptive step size scheme to apply different step size to each sub-circuit.

By doing so, sub-circuits with components of small magnitude are simulated in

smaller step size yet short time span, and sub-circuits with components of large
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magnitude uses large step size but in long time span.

Another direction is to expand the matrix exponential method to different

physics. In today’s IC design, designers often need to consider not only the elec-

tronic behavior but also thermal effect and mechanical effect, especially for 3D IC

technology. Although the thermal and mechanical effects are modeled in different

equations, they can be integrated via finite element method. The matrix exponen-

tial method is possible to combine with the finite element method to simulate a

circuit including its thermal and mechanical effects.
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[34] M. Güther and U. Feldmann. The DAE-index in electric circuit simulation.
Mathematics and Computers in Simulation, 39(5-6):573–582, Nov 1995.

[35] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations
II: Stiff and Differential-Algebraic Problems. Springer, 1996.



106

[36] N.J. Higham. The scaling and squaring method for the matrix exponential
revisited. SIAM Journal on Matrix Analysis and Applications, 26(4):1179–
1196, 2005.

[37] C.W. Ho, A. Ruehli, and P. Brennan. The modified nodal approach to network
analysis. IEEE Trans. on CAS, 22(6):504–509, 1975.

[38] M. Hochbruck and C. Lubich. On Krylov subspace approximations to the ma-
trix exponential operator. SIAM Journal on Numerical Analysis, 34(5):1911–
1925, 1997.

[39] S. Hutchinson, E. Keiter, R.J. Hoekstra, H.A. Watts, A.J. Waters, R.L.
Schells, and S.D. Wix. The xyce parallel electronic simulator-an overview.
In IEEE International Symposium on Circuits and Systems, Sydney (AU),
2000.

[40] D. Joyner, M. V. Nguyen, and N. Cohen. graph-theory-algorithms-book. Online
resource. http://code.google.com/p/graph-theory-algorithms-book/.
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