
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Methodology Comparisons in Progressive Transfer of Vector-Based Geographic Data

Permalink
https://escholarship.org/uc/item/99c1p1r5

Author
Mirzabeigi, Ali

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99c1p1r5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Methodology Comparisons in Progressive Transfer of Vector-Based Geographic Data

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Ali Mirzabeigi

August 2011

Thesis Committee:

Vassilis J. Tsotras, Chairperson
Michalis Faloutsos
Eamonn Keogh

The Thesis of Ali Mirzabeigi is approved:

Committee Chairperson

University of California, Riverside

iii

ABSTRACT OF THE DISSERTATION

Methodology Comparisons in Progressive Transfer of
Vector-Based Geographic Data

by

Ali Mirzabeigi

Master of Science, Graduate Program in Computer Science
University of California, Riverside, August 2011

Dr. Vassilis J. Tsotras, Chairperson

This paper presents how a single dataset containing a non-redundant representation of a vector

map with highest level of details can be used to progressively refine current view of thin clients in

client/server architectures. We built an index using a slightly modified version of the topological

Generalized Area Partition (tGAP) to perform complete selection of edges required to build all

face geometries for any arbitrary map scale. Some additional attributes are used in respective data

models. Edge lengths are used in order to faster identify merging face objects during construction

of the Face Tree structure. In addition, a geometric attribute for unified face MBRs is maintained

to achieve the highest selectivity of edges in our spatial database queries.

Stateful clients with asynchronous communication approach have not been subject of prior works.

We propose multi-threaded client and server designs that result in high performance applications.

The client components track the result sets submitted from server and maintain a local structure

every time they receive a response from the server. Server uses a lightweight RESTful web

iv

service with JSON serialization of the results to minimize network overhead besides minimizing

the amount of data transferred over the media.

Multi-threading and asynchronous communications allow cancellation of an ongoing process in

the server for previous requests of the clients. This feature efficiently reduces the overheads in

both clients and server when users modify their area of interests by panning or zooming to a

different map scale.

In our first implementation clients use simplex communication by asynchronously polling the

data from server. Also, a duplex communication presented where server pushes the results to

clients.

Three different methods for data retrieval from the spatial database proposed and evaluations

performed. We show how spatial indexes as well as attribute indexes can hugely help better data

retrievals in a fraction of a second. In addition, two alternatives to retrieve the data from RDBMS

are described and we show how data retrieval with a forward-only stream of data rows can

increase the performance even more.

v

Table of Contents

1. Introduction -- 1

2. Topological Schemes --- 4

2.1. The Left-Right Topology -- 5

3. The tGAP Index --- 7

3.1. The tGAP Face Tree -- 9

3.2. The tGAP Edge Forest --- 12

4. The Lean tGAP Index --- 13

5. The Constrained tGAP Index --- 14

6. Implementation and Experiments -- 15

6.1. Data Models --- 15

6.1.1. The Left-Right Topology Data Model --- 16

6.1.2. The tGAP Index Data Model -- 17

6.2. Datasets -- 18

6.3. Development Platform/Technology --- 18

6.4. The tGAP Index Construction -- 18

6.4.1. Building the tGAP Face Tree -- 19

6.4.1.1. Notes about the Algorithm -- 20

6.4.2. Building the tGAP Edge Forest --- 20

vi

6.4.2.1. Notes about the Algorithm -- 21

6.4.3. Analysis on tGAP Face Tree and tGAP Edge Forest Algorithms ---------------------- 24

6.4.4. Shrinking the tGAP Edge Forest Structure -- 25

6.5. System Architecture --- 26

6.5.1. XML vs. JSON -- 29

6.5.2. Asynchronous Communications -- 31

6.5.3. Maintaining the State --- 31

6.5.4. Polling Mechanism (Simplex Communication) --- 32

6.5.5. Pushing Mechanism (Duplex Communication) --- 32

7. Progressive Transfer of Vector Data -- 34

7.1. Database Queries --- 35

7.2. Effect of Database Indexes -- 38

8. Conclusion -- 42

9. References --- 44

vii

List of Figures

Figure 1: Connectivity information in Arc-Node Vector Model. --------------------------------------- 6

Figure 2: Contiguity information in Arc-Node Vector Model. --- 6

Figure 3: Area Definition in Arc-Node Vector Model. -- 7

Figure 4: Area compatibilities and length of the shared boundary play an important role in the

Collapse function. --- 9

Figure 5: The largest scale source map used for generalization of Face objects. Each polygon is

associated with an importance value using the application-specific Importance function. -------- 10

Figure 6: Sequences involved in the Face merging process. --- 10

Figure 6, continued: Sequences involved in the Face merging process. ------------------------------ 11

Figure 7: The computed tGAP Face Tree for the map shown in Figure 5. --------------------------- 12

Figure 8: The tGAP Edge Forest as part of the tGAP Face Tree construction in Figure 6. -------- 13

Figure 9: The tGAP Edge Forest of Figure 5 after shrinking process. -------------------------------- 14

Figure 10: Entity relationship diagram in the Left-Right Topology scheme. ------------------------ 16

Figure 11: The tGAP index entity relationship diagram. --- 17

Figure 12: Examples of edge processing during the face merge process. Edge 7 collapses when

face 4 is merged by face 1 and its lifetime will be ended in the tGAP Edge Forest structure. 23

Figure 13: The worst case scenario in creation of the Edge Forest. ----------------------------------- 25

Figure 14: The client/server architecture. --- 28

Figure 15: Amount of serialized data submitted from server in XML and JSON formats. -------- 30

viii

Figure 16: Amount of serialized data submitted from server in XML and JSON formats. -------- 30

Figure 17: Progressive transfer of San Diego ZIP codes from server to client ---------------------- 34

Figure 18: Time needed to retrieve objects with each query option ----------------------------------- 38

Figure 19: Actual RDBMS execution plan for queries in option I. ----------------------------------- 38

Figure 20: Actual RDBMS execution plan for queries in option II. ---------------------------------- 39

Figure 21: Actual RDBMS execution plan for queries in option III. --------------------------------- 39

Figure 22: The Effect of spatial and attribute indexes in option I. ------------------------------------ 41

Figure 23: The Effect of spatial and attribute indexes in option II. ----------------------------------- 41

Figure 24: The Effect of spatial and attribute indexes in option III. ---------------------------------- 42

ix

List of Tables

Table 1: Information about the datasets used in experiments. --- 18

Table 2: Number of rows in Left-Right Topology and the tGAP Index. ----------------------------- 23

Table 3: tGAP index after applying the Edge Forest shrinking algorithm. --------------------------- 26

Table 4: A brief comparison between SOAP and REST protocols. ----------------------------------- 27

x

Listings

Listing 1: The algorithm to build the tGAP Face Tree structure. -------------------------------------- 19

Listing 2: The algorithm for building the tGAP Edge Forest structure. ------------------------------ 21

Listing 3: SQL query to retrieve all the edges of San Diego ZIP codes with option I. ------------- 36

Listing 4: SQL query to retrieve all the edges of San Diego ZIP codes with option II. ------------ 37

Listing 5: SQL query to retrieve all the edges of San Diego ZIP codes with option III. ----------- 37

1

Methodology Comparisons in Progressive Transfer of

Vector-Based Geographic Data

Ali Mirzabeigi

University of California, Riverside

August 2011

1. Introduction

Map generalization and progressive transfer of geographic data has been the subject of many

researches in GIS and computer science for a long time. Researchers proposed various methods to

avoid storage of redundant data and optimize communications between endpoints in client/server

environments. Panning the map to a different extent or requesting for a new level of detail after

zooming in or out are two major use cases in all mapping applications. Optimal visualization of

the spatial data (map rendering) on the client-side requires these systems to minimize the amount

of data being transferred over the network therefore; server-side generalization of data plays an

important role to reduce overall response time of the entire system. Progressive transfer of

geometries, on the other hand helps rendering process perform relatively faster on the client

resulting more interactive applications as each time small amount of data rendered on the client.

Smart thin/thick clients can reuse the data that have been already submitted from the server

during the refinement steps in order to minimize both network traffic and the amount of data

being transferred over the media.

For raster data this could be achieved by presenting a coarse quality of the image that could be

drawn quickly first, then refining the view while the time is elapsing and user stays in the same

map resolution. Raster data pyramids [18], and wavelet-based [19, 20, 21] methodologies can be

2

used to achieve progressive transfer of raster images. JPEG2000 is an example of the data

compression with wavelet approach.

For vector-based geographic data one can create several datasets for each predefined scale of an

existing map and display the most appropriate/compatible scale when users request the map for a

certain scale. This is so called Multiple Representation Data Bases (MRDB). Since this approach

uses fixed number of predefined map resolutions there is no possible way of rendering data for

every possible scale as only the closest resolution will be chosen and drawn. There is also the

problem of maintaining redundant geographic data between the scales in which requires complex

update processes besides the need for more memory to store the data. Another drawback is that

MRDB cannot be used to progressively transfer the map objects as each resolution requires

corresponding graphical representation of that scale transferred between clients and the server. In

contrast variable scale approaches create and consume an index structure on the main dataset

which is the largest scale of the map containing the most level of detail (LoD) for geographic

objects and extract the requested scale on the fly. This server side generalization approach takes

place before submitting the information to each client and will eliminate the need to create and

store redundant datasets on the server. In addition, objects can be displayed at any arbitrary scale

with faster response time experienced at each client.

There are several data structures available for the latter approach, but related works have proven

that the topological Generalized Area Partition (tGAP) index is the most optimal generalization

solution. tGAP can be used to create and consume several hierarchical indexes to progressively

transfer vector-based geographic data in client/server environments. It uses offline generalization

algorithms using spatial relationships between features to build hierarchical structures of faces

and edges. A range of importance values are assigned to each object to identify which level of

detail a face or edge geometry is valid. The upper bound values indicate that the object should not

3

be transferred for map resolutions greater than or equal to that scale. Once the server receives a

request for a desired level of detail, tGAP uses these importance ranges to retrieve respective

features on the fly and clients would be able to receive and construct the complete set of

geometries for that scale.

There were many research activities for tGAP index structures and different variations of them

have been proposed. Nonetheless, the problem of how to efficiently communicate and transfer

spatial data between the two endpoints in practical client/server architectures especially in the

context of web and mobile applications that have limited network bandwidth has not been main

focus of previous works.

This paper performs an analysis on different implementations of these index structures and

presents how a slightly modified version of the tGAP with Left-Right Topology can be used to

achieve progressive transfer of spatial data while minimizing both usage of network bandwidth

and the amount of data stored on server which in turn increases overall system performance

by minimizing execution times of related spatial queries.

We propose two different architectures and perform methodology comparisons. First, we design a

client that progressively polls vector data from the server. The client application initiates the

requests based on its current map extent and keeps track of the features that are drawn on its map

view. Every time user interacts with the map to pan or zoom to a smaller/larger scale this multi-

threaded application asks for termination of the previous request asynchronously (if it is still in

progress) and polls the data for the new resolution. The advantage of multi-threaded architecture

in the client is that the UI thread never gets blocked while the background thread is submitting the

request and retrieving the spatial data from the server. In addition, by taking advantage of the

tGAP data structures system allows the server to transfer spatial data from higher importance

levels down to the lower levels based upon the hierarchical information that has been stored for

4

all faces and edges, i.e. generalized versions of the faces will be transferred first and the client

will progressively update the content of its map view by receiving lower important neighboring

objects to obtain more details.

In our second design the client submits a request for the geographical data in a given map extent

and server fetches the data from RDBMS. The difference with the previous approach is that this

time server pushes data to clients and keeps track of the objects submitted to each client (session).

A thread in each client retrieves objects from the server in the same fashion, i.e. objects with

higher importance levels come and drawn first etc… Multi-threaded clients make it possible for

users to interact with their map view while data are being pushed from the server and no blockage

occurs in their UI thread.

Finally, we analyze and compare both methodologies and investigate the effect of database spatial

indexes in their overall performance and show how both approaches can benefit from them.

2. Topological Schemes

Vector data can be stored either with their geometric or topological information. Geometric

information contains GPS coordinates for all features and because of this all shared nodes and

shared edges in face objects are stored multiple times (redundant data). In contrast topological

information uses references to unique identifier of each node and edge object to eliminate this

redundancy.

GIS applications use topology information to perform spatial analysis. Some examples are

determining boundaries, containment, intersection, overlapping, left/right adjacency, etc…

Topology refers to spatial relationships between geometry objects and it is necessary to perform

any spatial analysis with vector data (points, lines/polylines, and polygons). Spatial analysis is

computationally time consuming therefore; Topological schemes are designed to minimize the

5

running time of such operations. They include topological structures to convert computational

geometry algorithms into combinatorial algorithms. Non-Topological schemes on the other hand

do not contain these complex structures and become more lightweight datasets for presentation

purposes however; the lack of spatial relationships makes them computationally expensive to

perform any spatial analysis.

This paper uses a topological scheme with Left-Right Topology for generalization of vector data.

Respective objects can be stored in relational database management systems (RDBMS) with

Node-Arc-Area structures. The next section briefly describes the Left-Right Topology definition.

2.1. The Left-Right Topology

Left-Right Topology uses the Arc-Node vector model to store the spatial data. This model

consists of a collection of node, arc, and area objects. Nodes are basically point features with their

X and Y coordinates and are the basic units of the Arc-Node vector model.

For each arc, a list of references to its left and right areas is stored (Contiguity information). To

construct a face, respective edges can be queried and joined to each other for example in Figure 2

we can build the geometry of face A1 (referred as universe area) by using edges e1, e2, and e3.

Arc objects are sets of line segments that connect two or more nodes. Respective nodes are linked

in a particular order that is, all arcs have a direction. Arcs are defined by their start and end nodes

(Connectivity information). To determine whether a set of arcs is connected common from and to

nodes should be calculated. For example, in Figure 1 arcs e6, e7, and e8 intersect because they all

share node n6.

An area is a series of arcs that form a closed boundary. In Arc-Node vector model an ordered list

of arcs is used to represent an area object (Area Definition, Figure 3) therefore; arc coordinates

are stored without coordinate redundancies ensuring boundaries of all adjacent polygons to not

overlap with each other.

6

Figure 1: Connectivity information in Arc-Node Vector Model.

Figure 2: Contiguity information in Arc-Node Vector Model.

7

Figure 3: Area Definition in Arc-Node Vector Model.

3. The tGAP Index

The tGAP uses offline generalization algorithms to build hierarchical structures of Face and Edge

objects by consuming the Left-Right Topology scheme of the largest scale map in which contains

representations of the entire objects with the most details. These generalization processes

transform the map with highest level of detail to a set of smaller scales with objects referencing to

the original dataset.

There are two major problems related to partitioning of the Area objects. First, collapsing an Area

object will produce a hole which is not acceptable in map cartography and second, generalization

of an Arc object in common boundaries of Area objects may cause overlapping features or a gap

between the Area objects. The latter can be addressed by using the Left-Right Topology scheme.

For the former problem tGAP uses neighboring features to cover the hole introduced by leaving

out an Area. This could be done as part of the generalization process that runs in multiple steps.

At each step the least important Area is collapsed to its most compatible neighbor therefore; an

Importance function is needed to decide which area should be removed at each step plus, how the

8

gap introduced by this removal should be filled. A generic Importance function for Area can be

defined as the following:

,

The function depends on category of the Area object hence tights to purpose of

the map, and its definition varies from one application to another. For example, one application

may define a building block more important than a grass land area.

tGAP uses the Collapse function to perform a merge process. For two neighboring Areas and

 that are selected by the Importance function in the previous step the Collapse function is

defined as:

, , , ,

Besides the length of the shared boundary a function is used to provide a scoring

mechanism to determine how the two Areas and that might belong to different classes or

categories can be merged together. The Pond area in Figure 4 has two candidate neighbors Park

and Town for Collapse operation. Since Park and Pond have a higher compatibility score (defined

in the application) and length of the shared boundary between them is longer than the boundary

between Pond and Town, the generalization process collapses the Pond into the Park feature and

selects Park as the class/category of the newly generated Area.

These transformation steps of the geometries during the generalization process are stored in tGAP

structures and can be used for progressive transfer of vector data between the endpoints.

All tGAP indexes are physically stored in a RDBMS using Node, Edge, and Face tables. Nodes

include the start and end points of each Edge object. Edges form a forest of polylines that contain

references to their left and right Faces and finally the Face table includes a tree of Area objects in

the topological scheme. The hierarchical structures of Edge and Face tables use importance range

9

values to specify when an instance of corresponding objects is valid and should be drawn in a

given scale.

Figure 4: Area compatibilities and length of the shared boundary play an important role in the Collapse

function.

The next sections describe the algorithms that create these Edge and Face hierarchies in tGAP

structures.

3.1. The tGAP Face Tree

The algorithm applies the Importance function described above to a collection of Face objects in

the large scale dataset. At each step the Face with the lowest importance value is removed and the

merging process uses the application-specific Collapse function to create a new object with

regards to feature class/category of its most compatible neighbor and sets the parent of both

objects to the new Face. In addition, an importance value will be computed for the inserted Face

as the summation of merged objects importance values.

This process will continue until one huge object (the Universal Face) is left. Figure 6 shows the

sequence of steps to build the tGAP Face tree of the map in Figure 5. The Universal Face ()

forms the root of the tGAP Face tree index.

10

Figure 5: The largest scale source map used for generalization of Face objects. Each polygon is associated
with an importance value using the application-specific Importance function.

Figure 6: Sequences involved in the Face merging process.

The merge process also associates lower and upper bound values of the importance ranges to each

Face object. These values specify lifespan of each object and allow selection of appropriate Faces

11

for a requested LoD. The lower bound importance values of all the leaf nodes in the Face tree are

assigned to zero to identify objects with the highest level of details. An importance level will be

computed at each step of the merging process and assigned as the upper bound importance values

of the merged objects. The new parent Face uses this value as its lower bound importance range.

Figure 7 shows the computed tree for the large scale map shown in Figure 5.

Figure 6, continued: Sequences involved in the Face merging process.

12

Figure 7: The computed tGAP Face Tree for the map shown in Figure 5.

3.2. The tGAP Edge Forest

During construction of the tGAP Face tree the lifetime of edges might be changed with one of the

following three scenarios:

I. Removal of an Edge in the common boundary of two Faces.

In the sample shown in Figure 6 in step 1 is completely removed to build the Face .

II. Change in left or right Face references of an Edge.

During second step of the Face merging process in Figure 6 the left Face reference for and

right Face references for Edges and have changed from to .

III. Merging of two or more Edges to build a new Edge.

An example of this case is the merge of Faces and in step 2 in which Edges , and

 have joined to build .

The tGAP Edge Forest is constructed by a set of original Edges, collapsing Edges, versioned

Edges, and merged Edges. Original Edges are stored as leaf nodes and they contain respective

geometry coordinates. For collapsing Edges (scenario I) and versioned edges (scenario II) a

reference to respective original Edge will be maintained as they have the same geometry

13

definitions with the only difference that for the latter updated references to their left or right Face

objects will be kept. Merged edges (scenario III) are constructed by sticking related edges to each

other and stored by their corresponding geometries. Like Face objects in the tGAP Face tree

structure each Edge is assigned an importance range to perform selection of appropriate Edge

objects for a specific level of detail. As shown in Figure 8 different types of each Edge object

maintained in the structure. Since Edge removals create local root nodes (shown as underlined

bold nodes) there will not be a single root node in these hierarchies hence; a forest of Edges is

created in the structure.

Figure 8: The tGAP Edge Forest as part of the tGAP Face Tree construction in Figure 6.

4. The Lean tGAP Index

During construction of the Edge Forest multiple references to edges are stored as part of the Edge

versioning process (scenario II in section 3.2). Since there is no change in Edge geometries in

these cases one may consider merging such entries to preserve more storage space as they are

referencing to the same instance. The problems are how the lower and upper bound values of the

importance ranges should be assigned to the aggregated object and how should we deal with the

changes in the left and right Face references in each version.

14

Meijers et.al [6] proposed a shrinking algorithm that applies to the tGAP Edge Forest structure.

They resolved the above problems by unification of all importance values which are always

adjacent ranges and used the left Face reference on the lower bound and the right Face reference

on the upper bound of the unionized importance ranges. In Figure 8, Edge has four versions

due to the changes on its left or right Face references and the union of importance ranges for this

edge will be:

0, 0.1 0.1, 0.2 0.2, 0.5 0.5, 0.6 0, 0.6

Therefore; the new aggregated versioned Edge will have as its left and as its right Face

references.

Figure 9 shows the result of shrinking process on the Edge Forest structure shown in Figure 8.

Figure 9: The tGAP Edge Forest of Figure 5 after shrinking process.

5. The Constrained tGAP Index

Some mapping applications use a large scale and a smaller scale map representations where the

latter is produced from an independent process, i.e. the small scale map cannot be derived directly

15

from the large scale map. The Constrained tGAP structure uses the two datasets and transforms

the map with the highest level of detail into the one with smaller resolution.

Since the two datasets are available region constraints will be associated to each Face object. The

Constrained tGAP [3, 4] index uses these composite regions during its object merging processes.

The composite regions are provided with regards to application and cartographical needs and are

available in the dataset. The hierarchical structures are stored by applying the same generalization

steps on compatible Face and Edge objects using the same approach of the Importance function

however; the Collapse function only allows the objects that belong to the same region constraint

to be merged with each other.

The algorithm works as the following. Face objects with the lowest importance values are picked

at each step and the most compatible neighbor within a compatible region is used for the Face

merging process. The tGAP Edge Forest will be updated with collapsed, versioned, or merged

Edge objects at each step of the Face merging computations. The calculations stop when the

universal face is generated.

6. Implementation and Experiments

In this section first we describe the data models and algorithms used to store and populate each

component of the tGAP index structure. We perform an analysis on memory requirement for the

standard and lean tGAP indexes and show the implementation of our stateful client architectures.

We show how database queries should be develop to fetch edge geometries with their importance

and finally perform an analysis on each option.

6.1. Data Models

In order to maintain result of the offline generalization processes we need a set of tables to store

respective objects. All tGAP structures are stored in a RDBMS. In this section descriptions of

16

relationships between all entities that are used in construction of the tGAP index structure are

provided.

6.1.1. The Left-Right Topology Data Model

To build the Left-Right Topology schemes ArcObjetcs programming with ESRI ArcCatalog

extensions is used for corresponding Shape files of each input dataset (6.3). The result of this

process is stored in our RDBMS. All geometry objects are validated using the RDBMS validation

function. The function in Microsoft SQL Server 2008 R2 guarantees all geometry

instances on each table is in compliance with the rules specified in Open Geospatial Consortium

(OGC). To perform this operation effectively we used method on geometry

instances of all rows to get features that do not have valid geometries, then for each row in the

result set updated the coordinates with its valid definition. Figure 10 shows Left-Right Topology

data model of our system.

Figure 10: Entity relationship diagram in the Left-Right Topology scheme.

During this operation we also calculated the Minimum Bounding Rectangle (MBR) of each Face

object using the method for geometries of all Face objects. This column is stored

in related table of the topological model and is used during construction of the tGAP Face Tree

structure to calculate aggregated MBR of the merging faces. A geometry attribute will be used to

store these columns in corresponding tables. For our experiments the column that stored in the

tGAP Face Tree structure will be used in order to analyze the effect of spatial queries performed

on the envelopes containing the Face objects versus the edge objects in the Edge Forest structure.

17

In addition, each Edge geometry length is also calculated and stored as an attribute in the Edge

table. This helps us to find Faces that share the longest boundaries during construction of the

tGAP Edge Forest structure with minimal calculations.

6.1.2. The tGAP Index Data Model

Figure 11: The tGAP index entity relationship diagram.

During construction of the tGAP Edge Forest we showed that two types of Edge objects exist in

the structure. Collapsing and versioned Edges (cases I and II in section 3.2) do not contain their

geometries and they reference to respective Edge objects that are stored in the topological model.

For merged Edges (case III in section 3.2) instead of adding new instances with their geometries

in the database one may use Binary Line Generalization (BLG) Trees described in [11] to

consume hierarchical references to corresponding Edge geometries, but this structure requires

tracing a lot of references during construction of Face objects which in turn results an extra load

on the state-full clients since they would need to keep track of many hierarchical references on

their end as well as the need for joining too many Edges during the construction of Face objects

which is not desired while drawing the objects on their maps. Therefore; it is decided to

compromise the need to store these redundant merged Edge geometry representations on the

server to gain a higher performance on client sides as well as minimizing their complexities.

18

6.2. Datasets

We used three different datasets from the U.S. Census Bureau [14]. Datasets include Census 2000

5-Digit ZIP Code Tabulation Areas (ZCTA) for Wyoming, California, and the United States. All

datasets are available in shape files for each state and a merging process has taken place to create

a full dataset for the entire United States.

Since the source datasets do not contain any information about the spatial reference identification

(SRID) also a projection to WGS-1984 (4326) performed for coordinates of all geometric objects.

Table 1 shows the amount of information available in each dataset.

Dataset Size (MByte) # Faces # Edges # Nodes

Wyoming 1.19 285 764 518

California 4.97 2,080 7,545 5,564

United States 98.8 37,068 116,295 85,373

Table 1: Information about the datasets used in experiments.

6.3. Development Platform/Technology

Microsoft SQL Server 2008 R2 Express Edition is used as database management system.

Client and server components are developed by Microsoft .Net Framework 4.0 using C#

(CSharp) programming language. The server component is hosted by Microsoft Internet

Information Services (IIS) 6. We used ESRI ArcGIS Desktop for all spatial calculations

needed during the data preparation phase. ESRI ArcGIS Silverlight/WPF/WP7 API 4 is

used in clients for map drawing and rendering processes.

6.4. The tGAP Index Construction

Construction of the tGAP structures is quite expensive especially for large datasets and cannot be

applied on the fly therefore; all generalization algorithms should be performed offline and stored

19

in respective RDBMS tables. The following sections describe the algorithms used for building the

related structures in tGAP index.

6.4.1. Building the tGAP Face Tree

Listing 1 shows the algorithm used to generate the tGAP Face Tree hierarchy. To construct the

tGAP Face Tree a priority queue of Face objects with ascending order of their Importance values

is used. Since all Faces belong to the same class/category (ZIP codes) every Face in the

datasets is associated with the same weight factor.

Algorithm Build_tGAP_Face_Tree()
// Uses topological datasets for Face, Edge, and Node geometries to build the tGAP
// Face Tree structure.
// Output: the tGAP Face Tree structure.
1. Initialize tGAP_Face table by inserting all rows from the Face table. Set all

ImportanceLow values to zero (ImportanceHigh values remain NULL).
2. Build a priority queue of tGAP_Face objects with ascending order of their areas.
3. Set a global CurrentImportance value to one.
4. Dequeue the face with the lowest importance value ().
5. While is not empty do:
6. Find the neighboring face with the largest area that shares the longest

 boundary with .
7. Merge with , and insert the new face with new tGAP_FaceID
 in tGAP_Face table.
8. For the new face do the following:

 - Assign
 - Assign

- Set ImportanceLow value to the CurrentImportance value.
 - Leave ImportanceHigh value to be NULL and Enqueue it to .

9. Set the ParentID of and to .
10. Call Build_tGAP_Edge_Forest () to create new edge versions and/or

merged edges.
11. Remove faces and from and set their ImportanceHigh values to

the CurrentImportance value.
12. Increment the global CurrentImportance variable by one.
13. Dequeue the face with the lowest importance value.
14. End While

Listing 1: The algorithm to build the tGAP Face Tree structure.

20

For the same reason all Faces use the same CompatibilityRank in the Compatibility table (Figure

11). Therefore; is used as the Importance function during construction of the Face Tree

structure.

6.4.1.1. Notes about the Algorithm

• Since we have stored the Edge lengths in the Edge table line 6 could be easily done by

finding the Edge object with the biggest value of its Length attribute in which has as its

left or right face.

• The merge operation of the two faces in line 7 is done by adding a new node in the tree and

summation of areas of the two child face objects as the area of the parent face as well as using

the method of geometries in SQL to calculate the MBR geometry for the new

Face (line 8).

• By leaving out the ImportanceHigh value of to NULL in line 8, the new Face will be

considered during the next generalization steps till one huge Face (the Universal Face) is

generated.

6.4.2. Building the tGAP Edge Forest

The algorithm to build the tGAP Edge Forest is shown in Listing 2. As described in section 3.2

during construction of the tGAP Face Tree, three conceptual cases may happen to the Edges

involved in the process. A collapsing Edge should be added when its corresponding Edge is in the

common boundary between the two Faces that are merging with each other. A versioned Edge

should be added whenever there is a change in the left or the right Face references of the original

Edge during the Face merging process. For the remaining Edges a composite Edge may also be

created as a result of joining two or more Edges when Faces contain Edges with common start or

end Nodes.

21

Algorithm Build_tGAP_Edge_Forest()
// Uses topological datasets for Face, Edge, and Node geometries to build the tGAP
// Edge Forest structure.
// Inputs: , , and the Current importance value in Face merging process.
// Output: the tGAP Edge Forest structure.
1. Initialize tGAP_Edge table by inserting all rows from the Edge table. Set all

ImportanceLow values to zero (ImportanceHigh values remain NULL).
2. Build a global list of edges from the Edge table.
3. Create a local set of edges by removing the Edges from that belong

to any of the input faces and .
4. For each Edge in do:
5. If is the longest common boundary edge of and then:

- Make a local root node by removing it from and setting
 its ImportanceHigh value to the CurrentImportance value.

6. If the edge can still be used after the face merging process then:
- Create a new edge by removing edge from and setting
 ImportanceLow value of to the CurrentImportance value.
- Set left and right face references of accordingly. Face
 will be one of the two references.
- Insert into tGAP_Edge table with the same ID as .
- Add to the global list of edges to be used in the next steps.
- Make a local root node by setting its ImportanceHigh value
 to the CurrentImportance value.

7. If edge should be joined by its neighboring edges then:
- Create a new edge by merging edge to all of its neighboring
 edges that are remaining in the local set of edges .
- Remove all remaining edges from and set their ImportanceHigh
 values to the CurrentImportance value.
- Set left and right face references of accordingly. Face
 will be one of the two references.
- Insert into tGAP_Edge table with a new EdgeID.
- Insert into Edge table with a new EdgeID and store its geometry
 coordinates. Also, calculate the length of this edge and store it in the
 Length column of the table.

8. End For

Listing 2: The algorithm for building the tGAP Edge Forest structure.

6.4.2.1. Notes about the Algorithm

• During construction of the tGAP Edge Forest structure the global list of edges from the

Edge table always contains instances of edges from tGAP_Edge table with ImportanceHigh

value of NULL. The edges are removed from this list when their ImportanceHigh value is set

to the value of CurrentImportance variable.

22

• The common boundary edge with the longest length collapses during the face merging

process of the given input polygons (edge in Figure 12). By setting the ImportanceHigh

value of that instance (line 5) a local root node will be created in the structure. There is no

need to copy a new version of this edge as the lifetime of the edge has been ended by

removing it from the local edge set.

• Versioned edges (line 6) are inserted into the tGAP_Edge table with the same ID as their

respective edges in the Edge table as they can still be used after creation of the new face

object . These edges are the ones that belong to either one of the input face objects in

such a way that for each edge , all its intersecting edges in have references to the face

objects on their other side that are different than what edge has.

Figure 12 shows an example of such edges. Edges and follow the second category since

they belong to the merging (least important) face but have different faces (and) as

their left faces therefore; a new version of these edges should be generated.

The other case is when only one of the references to neighboring faces of an edge changes

during the face merging process. An example is shown in Figure 12. Edges , , and

belong to the most important face , and because they are needed to create the parent face

 (not shown in the picture) a copy of each (new versions) with left or right

references to the new face should be inserted into the structure.

• If edge in line 7 belongs to either one of the input face objects and all its neighbor edges in

 have the same neighboring face as does then all the edges that satisfy this criterion

will be joined to each other to form a new instance of the merged edge. This edge will be

added to the tGAP_Edge table with a new ID and will also be stored in the Edge table to

maintain its geometry coordinates. An example of such edges is , , and during second

23

step of the face merging process in Figure 6. All these edges have as their left face and are

merged to form the composite edge .

Figure 12: Examples of edge processing during the face merge process. Edge collapses when face is
merged by face and its lifetime will be ended in the tGAP Edge Forest structure.

Edges , , and will get new versions as their left or right face references are changed.
Edges and also get new versions as they have different neighbors on their left side.

Table 2 shows size of the tGAP index after applying the above algorithms to our different input

datasets.

Dataset
Left-Right Topology tGAP Index

Faces # Edges # Nodes # Faces
(Inc. Factor)

Edges
(Inc. Factor) # Nodes

Wyoming 285 764 518
569

(~ 2x)
6,886

(~ 9.0x) 518

California 2,080 7,545 5,564 4,159
(~ 2x)

91,330
(~ 12.1x) 5,564

United States 37,068 116,295 85,373 74,135
(~ 2x)

1,663,018
(~ 14.3x) 85,373

Table 2: Number of rows in Left-Right Topology and the tGAP Index.

24

6.4.3. Analysis on tGAP Face Tree and tGAP Edge Forest Algorithms

Observation 1: Looking at Table 2 it can be observed that number of faces stored in the tGAP

index is linear to number of faces in the source topology dataset, i.e. if the total number of faces

in the topological dataset is equal to | |, the tGAP index will require | | number of faces in

its structures.

Proof: The face merge process continues until one universe face is generated. For | | number of

faces this generalization process requires | | 1 steps. Since each time a new face is added to

the hierarchy the total number of faces in the structure is equal to 2| | 1 which is | | .

Observation 2: Experiment shows that number of edges stored in the tGAP index could be

quadratic to number of edges in the Left-Right topology dataset.

Proof: This is due to the fact that all adjacent faces share at least one edge, i.e. at least one edge

should be removed during the face merging process. In the worst case scenario all edges may

require new left and right references in their contiguity list therefore; the upper bound value for

the number of edges stored in tGAP indexes is equal to ∑ | || | where | | is total number

of edges.

Considering the extreme case shown in Figure 13 where all faces including the universe face

contain only one edge the number faces would be equal to the number of edges in above relation,

i.e. | | | |.

Therefore; number of edges stored in the tGAP Edge Forest structure will be at most [6]:

| |
| |

| |
| |

| |
| | 1

2
| |

In practice no such extreme cases happen at all time and as shown in Table 2 the average number

of edges stored in our tGAP index seems to be a factor less than 15 (average of ~12) of the edges

in the topological dataset (between 9 and 15 in our test datasets).

25

Figure 13: The worst case scenario in creation of the Edge Forest.

6.4.4. Shrinking the tGAP Edge Forest Structure

We also used the tGAP Edge Forest shrinking algorithm described in section 5. We unionized all

entries that belong to different versions of the same edge. Different versions edges could be

shrunk into one new edge entry by using the lower bound importance value of the first edge as

well as its left face reference and the upper bound importance value of the last version with its

right face reference. Corresponding rows as well as the intermediate versions have been removed

from the tGAP_Edge table in the database. Table 3 shows the outcome of this process.

Observation: Number of edges stored in the tGAP Edge Forest structure after applying shrinking

algorithm is | | .

Proof: All original edges are stored in the structure. This set grows with each merging process at

the level of edge objects. The worst scenario is the case where all edges need to be merged. Using

the same approach of face merging process two edges can be merged at each time until one huge

polyline remains therefore; according to Observation 2 in section 6.4.3 the total number of edges

will be 2| | 1. On the other hand face merging requires removing at least one edge resulting

26

| | 1 edges being merged. Taking the two steps into account the total number of edges will be

at most: 2| | 1 | | 1 2| | | | | |

Dataset
tGAP Index Lean tGAP Index

Faces # Edges # Nodes # Faces
Edges

(Comp. Ratio) # Nodes

Wyoming 569 6,886 518 569
1,092

(~ 15.9) 518

California 4,159 91,330 5,564 4,159 11,642
(~ 12.7) 5,564

United States 74,135 1,663,018 85,373 74,135 198,926
(~ 12.0) 85,373

Table 3: tGAP index after applying the Edge Forest shrinking algorithm.

6.5. System Architecture

Figure 14 depicts both the client and the server architectures in the experiments. All HTTP

requests submitted to a tGAP Web Service hosted in an IIS server. Two protocols can be used for

exchanging our structured data through the network: Simple Object Access Protocol (SOAP) and

Representational State Transfer (REST) protocol. The former uses Extensible Markup Language

(XML) as its output format. In contrast REST supports different types of formats. A lightweight

fat-free alternative to XML, JavaScript Object Notation (JSON) is used for interchanging data in

our RESTful Web service. More information about protocols and formats can be found in World

Wide Web Consortium (W3C) and JSON websites [12, 13]. However; suitability of each format

and protocol depends on the application requirements. Table 4 lists some of the pros and cons in

each protocol. Since REST services can easily support different content/MIME types we chose

this protocol for our communications between clients and the server.

27

SOAP REST
Pros Cons Pros Cons

Support for
distributed

computations
Heavyweight Lightweight No support for

distributed computing

Support for HTTP,
SMTP, and TCP

protocols
Verbose

No need for
additional

messaging layer

Tied to HTTP
protocol

Extensibility Hard for
development Simpler to develop Lack of support for

security, policy, etc

Table 4: A brief comparison between SOAP and REST protocols.

There are two approaches for the application development in such infrastructures: stateless clients

and stateful clients. Stateless clients submit requests to the server for user interactions such as

panning the map to a neighboring extent or zooming in/out to a different scale. This method does

not maintain state of the data that have been already retrieved on the client, i.e. once they receive

a response from the server all objects will be drawn on the map without performing any logic to

track these objects. The problem with this approach is that the same objects may be queried again

as a result of next requests and considerable amount of network bandwidth will be consumed by

each session/instance of the application at the time of these communications. This is not a desired

behavior especially in the networks with limited bandwidths such as mobile applications.

Stateful clients have not been the subject of prior tGAP researches hence; we decided to mainly

focus on these types of clients and use server-side processes to progressively transfer geometries

that are being retrieved from the RDBMS with respect to the generalized data stored in the tGAP

index structures.

In the next sections we describe our methodology and propose two different architectures for our

stateful client/server applications. Both approaches use local data structures to keep track of the

geometries that have been already retrieved on the client and use this knowledge to query the

server against the data that have not been requested as a result of previous user interactions. All

28

requests are submitted by a bounding box representing current scale/resolution of the map view

on client and a list of edge objects that have been drawn on the map. For the initial phase this list

is empty.

Figure 14: The client/server architecture.

First we choose an efficient method of communication between the two endpoints in order to

minimize the amount of data submitted from the server to clients. Then we describe the design for

a multithreaded stateful client that polls the geometry information from server that need to be

drawn on its current viewport while keeping track of the objects that have been already received.

Next, we propose a design for clients that have their server pushing these data to them and

perform a methodology comparison between client poll and server push mechanisms. In the end

we investigate the effect of database indexes in corresponding spatial queries.

29

6.5.1. XML vs. JSON

At each request a collection of edge objects will be transferred from server to client. In the

context of web services all data submitted between the two endpoints should be serialized first.

Data serialization of RESTful services could be done in both XML and JSON formats. In order to

minimize usage of the network bandwidth we used the lean tGAP index therefore; tGAP_EdgeID

by itself can uniquely identify each edge object. Minimal set of attributes are chosen to serialize

data and it contains edge ID with corresponding geometry of the object. We minimized the length

of column names to lower the length of serialized data, i.e. ID for tGAP_EdgeID, Geo for

Geometry, Left for left face reference ID, and Right for right reference ID attributes and used

these attributes to transfer an edge from server to client. Spatial reference information (SRID) is

not sent with each geometry since the entire dataset is stored with the same WGS-1984 (4326)

projection. This also saves considerable amount of serialized data transferred over the network

media.

Geometry instances are stored in compliance with Well-Known Text (WKT) representation of

each object as described in Open Geospatial Consortium (OGC). Following examples show how

SQL Server 2008 R2 uses OGC definitions of an edge with a line and an edge with a polyline.

- Representation of an edge with two nodes:
LINESTRING (-117.119 32.534, -117.062 32.539)
Start node coordinates: (-117.119, 32.534)
End node coordinates: (-117.062 32.539)

- Representation of an edge with polylines (includes two intermediate nodes in addition to the
start and end nodes):
LINESTRING (-117.062 32.539, -117.039 32.541, -117.027 32.542, -117.026 32.542)

A sample XML and JSON outputs for collection of edges is shown in Figure 15. We compared

output of the XML and JSON serializations for the same responses with different number of

requested edges. The output sizes are very close with the only difference that for large outputs

30

JSON performs slightly better (Figure 16). For this reason and the fact that JSON formats are

simpler to develop we chose this type of data serialization in our experiments.

Figure 15: Amount of serialized data submitted from server in XML and JSON formats.

Figure 16: Amount of serialized data submitted from server in XML and JSON formats.

31

6.5.2. Asynchronous Communications

All requests are submitted asynchronously between clients and the server hence; there are cases

where there is a need to cancel an older request which is still in progress on server. Cancellation

could be done on client by explicitly invoking a method in the client application or by any action

(pan/zoom) that changes current extent of the map (implicitly).

The implementation performs as follows. For each session of the clients that submits a request to

the server a worker thread will be instantiated. Then the thread starts fetching edges from the

database for the ones that are contained in the input extent. Whenever there is no cancellation

request received from the same session of the client, the serialization process of edges retrieved

from the database continues.

For implicit cancellation clients listen to two key events of their map views. Whenever the map

extent is changing the cancellation request will be submitted to the server right away. This will

give server a heads up that a new request is coming and it terminates any ongoing serialization

process immediately. Full draw of the map raises the extent changed event and in corresponding

handler a new request for the new extent will be submitted to the server.

6.5.3. Maintaining the State

All the clients are stateful meaning that they keep track of the objects received from the server at

each interaction of the user. Since each edge can be uniquely identified by its tGAP_EdgeID

attribute a list of edge IDs is maintained on the client side. This list is initially empty and will be

updated with new edge IDs every time a collection of serialized data received on the client.

For all requests the current map extent on the client application as well as a list of edges that have

been retrieved on the client will be passed to the server. Server queries the database against all

edge objects in the tGAP index that are contained in the given map extent and removes the edges

that are included in the list of edges submitted by the client.

32

6.5.4. Polling Mechanism (Simplex Communication)

The request/response (polling) is the most common approach used in the client/server

environments. In this pattern all requests are initiated by clients over the network media and the

server responds to each session with the requested information therefore; clients wait to receive a

response from the server.

Each time a user interacts with the map view on the client application a request with respect to the

logic described in section 6.5.3 will be submitted to the server. If there is an ongoing request for

the same session of the client on the server it will be implicitly cancelled using the method

described in section 6.5.2. Server queries the database and builds a collection of <ID, Geo, Left,

Right> pairs containing the unique ID, WKT geometry representation of each edge, left and right

face reference IDs retrieved from the database. Server serializes these data and responds to the

client by a JSON string of requested edges.

After the client receives the response from the server it de-serializes the string received from the

server and builds a collection edge objects that correspond to their definition in the Geo attribute.

A list of retrieved edges is updated locally on the client every time a response comes from server.

Edges will be drawn on the same order they received from the server meaning that the edges with

highest importance values will be drawn first.

6.5.5. Pushing Mechanism (Duplex Communication)

In contrast to the polling mechanism duplex communication can be used to push data from server

to the client. In this pattern either of the client or the server can initiate the requests and a channel

of communication will be associated between the two endpoints through the HTTP protocol or

TCP sockets to send and receive the data.

Our duplex communication is implemented as follows. Each time a user interacts with the map

view on the client application a request with respect to the logic described in section 6.5.3 will be

33

submitted to the server. If there is an ongoing request for the same session of the client on the

server it will be implicitly cancelled using the method described in section 6.5.2. This means that

the server stops pushing current (serialized) data to the client and starts fetching edges for the new

requested extent and the edges that are not included in the input list. After querying the database

server builds a pair of <ID, Geo, Left, Right> containing edge unique ID, WKT geometry

representation of each edge, left and right face references of the edge retrieved from the database

and creates a queue of grouped edges that belong to each high importance values and serializes

the data, i.e. server computes the JSON strings of all edges that belong to the same high

importance value (ImportanceHigh attribute) and pushes that small chunk of edges to the client in

multiple steps. All serialized grouped edges are submitted with reverse order of their importance

values in order to have the client draw more important objects (more generalized edges) first.

Each time the client receives a small amount of data from the server and a background thread de-

serializes the edges received from the server at the time of each server push. A local collection of

edges gets updated every time a set of edges is constructed from their corresponding WKT

geometry definitions. Another thread on the client checks for any change in this collection and

updates the map view correspondingly hence; users experience smoother map navigation and an

overall more responsive application on their end.

Clients developed with this approach work smoother as each time small amount of data (edges

with the same high importance value at each sequence of server pushes) will be transferred from

the server and drawing operation takes place for small number of instances of the object at each

time comparing to a large collection of edge objects in the previous method.

On the other hand since the draw process of maps is expensive it usually takes a little time to

finish. During this time a cancellation (explicit/implicit) may be initiated by the request in which

requires immediate cancellation of an ongoing draw process in the UI thread.

34

Nevertheless; these duplex clients are chattier than the clients in the request/response pattern and

they require reachable client endpoints in all network communications.

7. Progressive Transfer of Vector Data

In our implementations all the edges of the faces that are partially included in the requested extent

are also drawn. This is mainly because there is always high possibility of requiring those edges

being retrieved whenever user pans the map to a neighboring extent and/or zooms out the map to

a larger scale. The visual results of progressively transferring vector data using our tGAP index

structures is presented in Figure 17.

Figure 17: Progressive transfer of San Diego ZIP codes from server to client
Maps show the ZIP codes requested for downtown San Diego, California with the following

extent definition:

XMin: -117.284955565711 XMax: -116.920146032504

YMin: 32.6611681268998 YMax: 32.8776527649706

35

Drawing the edges on the map by themselves builds the visual of corresponding faces. Faces can

be easily identified with the left and right references of the data retrieved from the server. We also

tried building the faces from these edges. This polygonize procedure causes an extra load on

clients as the computations are extensive when there are more edges related to a single face. The

steps are as the following:

In the simplest case faces are only related to one edge therefore; one ring will be created based on

the edge. For other cases First, a node to edge lookup is created that contains edge start and end

nodes as keys. Second, an edge list is used in which all edges that are belonging to the face are

stored. An edge is taken from the list, and based on the face that is reconstructed and the side of

the edge on which this face lies (left or right), a next edge is taken from the list via the lookup

table using the start or end node identifier of the edge. This process continues until the edge list is

empty. In case more than one ring can be formed out of the edges, islands are present in a face.

After finding all rings, islands rings always have a smaller area than the (largest) outer boundary

ring. Thus when looking at the areas of the rings a decision can be made, which of the formed

rings must be the outer one. A special case when reconstructing islands is the case of an island

touching at the outer boundary ring of a face. Based on the information from the node to edge

lookup table, more edge continuations are possible, i.e. the same node in the lookup table points

to more edges. This ambiguity can be solved, by using the geometry of the edges and sorting the

edges by angle in which they arrive at the node.

7.1. Database Queries

To retrieve the edges that could be drawn on a given map extent we can do the following:

I. Query against the MBR geometry attribute of the faces that overlap the input map extent and

join the results with all edges that have these face objects as their left or right face references.

Select those edges.

36

Listing 3: SQL query to retrieve all the edges of San Diego ZIP codes with option I.

Pro: Retrieving complete information for visualization.

Cons: Too many rows with duplicates as a result of the join query between edges and faces,

plus an extra join penalty.

II. Query MBR geometry of overlapping face objects with the input map extent then use a

separate query to retrieve distinct edges that are contained in aggregated geometry of the

above MBR set.

Pro: No double edges retrieved as the second query selects distinct edges.

Con: Like the first approach too many rows are retrieved.

III. Select the edges directly by querying the edges that are contained in the input map extent.

Pro: Performs relatively faster than option II.

Con: Not all the edges of the faces those are partially visible in the current map extent will be

retrieved. This issue could be resolved by invoking another query to retrieve all the edges that

intersect the input map extent and add them to the above set before the serialization process.

37

Listing 4: SQL query to retrieve all the edges of San Diego ZIP codes with option II.

Listing 5: SQL query to retrieve all the edges of San Diego ZIP codes with option III.

Overall, considering these two execution times will result this option perform slower than the

second option.

Figure 18 shows performance evaluation of each option for both methods of reading the entire

rows and reading a forward-only stream of rows. The latter allows retrieving the results as soon

as they become available in the RDBMS. Both approaches proved that second and third options

make a huge difference as using spatial queries to find overlapping faces perform very poor.

Either of the second or third options are good candidates to retrieve edge objects on a given map

extent. In practice we used the second option as it returns all the required edges.

38

Figure 18: Time needed to retrieve objects with each query option

7.2. Effect of Database Indexes

After analyzing the execution plans reported by the RDBMS we observed that spatial filtering is

the most expensive computation step in all the queries.

Figure 19: Actual RDBMS execution plan for queries in option I.

39

Figure 19 shows the spatial filter on tGAP_Face table in option I with 75% of the total query

execution time is the most time consuming computation in the query.

The second option is a combination of two separate queries. For both queries the cost of spatial

filtering is 80% of the entire process even though the former runs relatively fast. The actual

RDBMS execution plan of the second option is depicted in Figure 20.

Figure 20: Actual RDBMS execution plan for queries in option II.

Likewise 80% of the processing time for the query in our third option is related to the spatial

query of edges (Figure 21).

Figure 21: Actual RDBMS execution plan for queries in option III.

40

All ID attributes are primary keys of our data models, i.e. clustered indexes therefore; any select

operation that involves these columns will be fast (10 to 13 percent of the entire process for each

table).

Two spatial attributes are included in our queries: Geometry column from Edge and MBR column

from tGAP_Face tables. For our test case we created a spatial reference for the bounding box of

the state of California for each of the above columns:

XMin: -124.392637865847 XMax: -114.125230486328

YMin: 32.535781346641 YMax: 42.0021917673185

In addition to attributes that hold geometries some considerations in regards to non-spatial

attributes is also necessary. These value based attributes include ImportanceHigh column of the

tGAP_Edge table where always a descending order of the query results is required in which

retrieves the edges from corresponding table in the database. The LeftFaceID and RightFaceID

foreign key attributes in that table are the other two columns that require database indexes.

Figure 22 shows the performance optimization of the query with and without attribute and spatial

indexes for option I. We gained about 2.3 time of performance increase when retrieving all rows

and the same query executed 6.4 times faster when using forward-only stream of rows.

The results of adding database indexes for options II and III are shown in Figures 23 and 24. For

second approach the gain in performance is about 12.4 and 4.4 for fetch all and using the data

readers respectively. The query of in the third option gained a factor about 17 and 2 for respective

data retrieval methods from the database.

41

Figure 22: The Effect of spatial and attribute indexes in option I.

Figure 23: The Effect of spatial and attribute indexes in option II.

42

Figure 24: The Effect of spatial and attribute indexes in option III.

8. Conclusion

This paper presented how the tGAP index structures can be used to progressively transfer vector-

based geographic data in client/server architectures. We described variations of this structure and

performed methodology comparisons between the original and the lean versions of these indexes.

Our experiments show that the lean version of tGAP structures can save the memory storage

required to maintain the Edge Forest hierarchical structure by an average compression ratio of 12.

Importance values associated with each instance of face and edge objects help retrieval of these

objects for incremental updates on each client letting them to show objects progressively on their

map views. We proposed two stateful client architectures that both keep track of the objects

received at previous requests to minimize the amount of network bandwidth on server responses.

In our simplex communication approach a conventional request/response pattern is implemented

and clients wait for a collection of serialized objects which are the result of user interactions with

the map on the client application. A more complex duplex communication approach is also

43

presented and we showed how a small amount of network bandwidth will be used at each time of

the server pushes as only limited number of edges is transferred from the server to the client at

lifetime of a request. We showed three different methods to query the edge objects for the

requested extent/scale and described advantages and disadvantages of each.

We proposed two recommendations for querying vector data from the RDBMS. Spatial indexed

has huge effect in data retrieval of tGAP structures. When fetching the entire result set these

indexes improve the performance by an average factor of 15 in our recommended options for

retrieval of edge objects.

In summary although tGAP index structures may cause some data redundancies and requirement

for more data storage comparing to original datasets they can be effectively used to transfer

vector-based geographic objects in the context of client/server architectures especially for the

environments with limited network bandwidths.

44

9. References

[1] The GAP-tree, an approach to “On-the-Fly” Map Generalization of an Area Partitioning, by

Peter Van Oosterom. Paper for GISDATA Specialist Meeting on generalization, Compiegne,

France (1993)

[2] Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP-

face Tree and GAP-edge Forest, by Peter Van Oosterom (2005)

[3] Constrained tGAP for generalization between scales: The case of Dutch topographic data, by

Dilo, A. and van Oosterom, P. and Hofman, A. (2009)

[4] Constrained set-up of the tGAP structure for progressive vector data transfer, Jan-Henrik

Haunerta, Arta Dilob, by Peter van Oosterom (2009)

[5] Model Generalization and Methods for Effective Query Processing and Visualization in a

Web Service/Client Architecture, by Marian de Vries and Peter van Oosterom (2006)

[6] A storage and transfer efficient data structure for variable scale vector data, by Martijn

Meijers, Peter van Oosterom and Wilko Quak (2009)

[7] OpenGIS Implementation Specification for Geographic information - Simple feature access -

Part 1: Common architecture, http://www.opengeospatial.org/

[8] OpenGIS Implementation Specification for Geographic information - Simple feature access -

Part 2: SQL option, http://www.opengeospatial.org/

[9] Detecting and Resolving Size and Proximity Conflicts in the Generalization of Polygonal

Maps, by Bader, M. andWeibel, R. (1997)

[10] The tGAP structure: minimizing redundancy and maximizing consistency and offering

access at any LoD, by Peter Van Oosterom (2006)

[11] Implementation and testing of variable scale topological data structures Experiences with the

GAP-face tree and GAP-edge forest, B.M. Meijers (2006)

45

[12] World Wide Web Consortium (W3C): http://www.w3.org/

[13] JSON: http://www.json.org/

[14] United States Census Bureau: http://www.census.gov/geo/www/cob/z52000.html

[15] ESRI resource center: http://resources.esri.com/.

[16] The principles of selection, a means of cartographic generalization, by Topfer, F. and

Pillewizer,W. (1966)

[17] Database Management Systems – Third Edition, by Ramakrishnan and Gehre. McGraw-Hill

(2003)

[18] The Quadtree and Related Hierarchical Data Structures, by Samet H (1984).

[19] CLUSTER RAPTOR: Dynamic Geospatial Imagery Visualisation using Backend

Repositories, by Hildebrandt J, Owen M, Hollamby R (2000).

[20] Progressive approximate aggregate queries with a multiresolution tree structure, by Lazaridis

I, Mehrotra S (2001)

[21] Remote raster image browsing based on fast content reduction for mobile environments, by

Rosenbaum R, Schumann H (2004)

[22] Multi-Representation Databases with Explicitly Modelled Intra-Resolution, Inter-Resolution

and Update Relations, by Bobzien, M., Burghardt, D., Petzold, I., Neun, M., and Weibel, R.

(2006)

[23] Continuous generalization for fast and smooth visualization on small displays, by Sester, M.

and Brenner, C. (2004).

[24] Reactive Data Structures for Geographic Information Systems, by Peter Van Oosterom

(1990)

[25] Microsoft SQL Server 2008 R2 Product Documentation: http://technet.microsoft.com/en-

us/library/bb418440%28SQL.10%29.aspx

	1, Title Page.pdf
	2, Signature Approval
	3, Abstract
	4, ToC
	5, Paper

