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EPIGRAPH

“All men dream, but not equally.

Those who dream by night in the dusty recesses of their minds,

wake in the day to find that it was vanity:

but the dreamers of the day are dangerous men,

for they may act on their dreams with open eyes,

to make them possible.

This I did.”

“Seven Pillars of Wisdom”

by Thomas E. Lawrence.

“Caminante, son tus huellas

el camino, y nada más;

caminante, no hay camino,

se hace camino al andar.

Al andar se hace camino,

y al volver la vista atrás

se ve la senda que nunca

se ha de volver a pisar.

Caminante, no hay camino,

sino estelas en la mar.”

“Campos de Castilla”

by Antonio Machado.

“Érase de un marinero

que hizo un jard́ın junto al mar,

y se metió a jardinero.

Estaba el jard́ın en flor,

y el jardinero se fue

por esos mares de Dios.”

“Campos de Castilla”

by Antonio Machado.
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Universidad Carlos III de Madrid, Spain.

2005-2007 Graduate Research Assistant,
Department of Mechanical and Aerospace Engineering,
University of California San Diego, USA.

Dec. 9, 2006 Master of Science in Aerospace Engineering,
Department of Mechanical and Aerospace Engineering,
University of California San Diego, USA.

2007-2008 Teaching Assistant,
Department of Mechanical and Aerospace Engineering,
University of California San Diego, USA.

2008 Outstanding Teaching Assistant Award,
Department of Mechanical and Aerospace Engineering,
University of California San Diego, USA.

2008-2009 Senior Teaching Assistant,
Department of Mechanical and Aerospace Engineering,
University of California San Diego, USA.

2009 Lecturer,
Department of Mechanical and Aerospace Engineering,
University of California San Diego, USA.

2010 Doctoral Dissertation Fellowship,
Department of Mechanical and Aerospace Engineering,
University of California San Diego, USA.

June 11, 2010 Doctor of Philosophy in Aerospace Engineering,
Department of Mechanical and Aerospace Engineering and
Center for Energy Research,
University of California San Diego, USA.

xv



PUBLICATIONS

Urzay J., Llewellyn Smith S. G. and Glover B. J. (2007), “The elastohydrodynamic force
on a sphere near a soft wall,” Physics of Fluids 19, 103106, 1-7.

Urzay J., Nayagam V. and Williams F. A. (2008), “Diffusion-flame extinction on a rotating
porous-disk burner,” Proceedings of the Combustion Institute 32, 1119-1126.

Urzay J., Llewellyn Smith S. G., Thompson E. and Glover B. J. (2009), “Wind gusts
and plant aeroelasticity effects on the aerodynamics of pollen shedding: a hypothetical
turbulence-initiated wind-pollination mechanism,” Journal of Theoretical Biology 259, 785-
792.

Urzay J. (2010), “Asymptotic theory of the elastohydrodynamic adhesion and gliding
motion of a solid particle over soft substrates at low Reynolds numbers,” Journal of Fluid
Mechanics (In Press).

Urzay J., Nayagam V. and Williams F. A. (2010), “Theory of the propagation dynamics
of spiral edges of diffusion flames in von Kármán swirling flows,” Combustion and Flame
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ABSTRACT OF THE DISSERTATION

Theoretical Studies in Spiral Edge-Flame Propagation
and Particle Hydrodynamics

by

Javier Urzay

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2010

Professor Forman A. Williams, Chair
Professor Stefan G. Llewellyn Smith, Co-Chair

Applied mathematics techniques are used in this investigation to gain insight into

three different physical processes of current interest in combustion and fluid dynamics.

The first problem addresses the propagation of spiral edge flames found in von

Kármán swirling flows induced in rotating porous-disk burners. In this configuration, a

porous disk is spun at a constant angular velocity in an otherwise quiescent oxidizing at-

mosphere. Gaseous methane is injected through the disk pores and burns in a flat diffusion

flame adjacent to the disk. Among other flame patterns experimentally found, a stable,

rotating spiral flame is observed for sufficiently large rotation velocities and small fuel flow

rates as a result of partial extinction of the underlying diffusion flame. The tip of the spiral

can undergo a steady rotation for sufficiently large rotational velocities or small fuel flow

rates, whereas a meandering tip in an epicycloidal trajectory is observed for smaller rota-

tional velocities and larger fuel flow rates. A formulation of this problem is presented in

the equidiffusional and thermodiffusive limits within the framework of one-step chemistry

with large activation energies. Conditions for extinction of the underlying uniform diffusion

flame are obtained by using activation energy asymptotics. Edge-flame propagation regimes

are obtained by scaling analyses of the conservation equations and exemplified by numerical

simulations of nearly straight two-dimensional edge flames near a cold porous wall in a von

Kármán boundary layer, for which lateral heat losses to the disk induce extinction of the

xvii



trailing diffusion flame but are relatively unimportant in the front region, consistent with

the existence of the cooling tail found in the experiments. The propagation dynamics of a

steadily rotating spiral edge is studied in the large-core limit, for which the characteristic

Markstein length is much smaller than the distance from the center at which the spiral tip

is anchored. An asymptotic description of the edge tangential structure is obtained, spiral

edge shapes are calculated, and an expression is found that relates the spiral rotational ve-

locity with the rest of the parameters. A quasistatic stability analysis of the edge shows that

the edge curvature at extinction in the tip region is responsible for the stable tip anchoring

at the core radius. Finally, experimental results are analyzed, and theoretical predictions

are tested.

The second problem analyzes, in the limit of small Reynolds and ionic Péclet num-

bers and small clearances, the canonical problem of the forces exerted on a small solid

spherical particle undergoing slow translation and rotation in an incompressible fluid mov-

ing parallel to an elastic substrate, subject to electric double-layer and van der Waals

intermolecular forces, as a representative example of particle gliding and of the idealized

swimming dynamics of more complex bodies near soft and sticky surfaces in a physiologi-

cal solvent. The competition of the hydrodynamic, intermolecular and surface-deformation

effects, induces a lift force, and drag-force and drift-force perturbations, which do not scale

linearly with the velocities, and produces a non-additivity of the intermolecular effects by

reducing the intensity of the repulsive forces and by increasing the intensity of the attrac-

tive forces. Reversible and irreversible elastohydrodynamic adhesion regimes are found,

and elastohydrodynamic corrections are derived for the critical coagulation concentration

of electrolyte predicted by the the Derjaguin-Landau Verwey-Overbeek (DLVO) standard

theory of colloid stabilization.

The third problem addresses the dynamics of pollen shedding from wind-pollinated

plants, and establishes a fluid-dynamical framework for future refinements. A simple scaling

analysis, supported by experimental measurements on typical wind-pollinated plant species,

is used to estimate the suitability of previous resolutions of this process based on wind-gust

aerodynamic models of fungal-spore liberation. According to this scaling analysis, unsteady

boundary-layer forces produced by wind gusts are found to be mostly ineffective since the

Stokes-Reynolds number is a small parameter for typical anemophilous species and wind

streams. A hypothetical model of a stochastic aeroelastic mechanism, initiated by the

atmospheric turbulence typical of the micrometeorological conditions in the vicinity of the

plant, is proposed to contribute to wind pollination.

xviii



Part I

Combustion and Propagation of

Spiral Edges of Diffusion Flames in

Von Kármán Swirling Flows

1
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NOMENCLATURE

a Disk radius (m)

A Pseudo-collision frequency of the global step (1/s)

α Mass of fuel feed stream needed to burn a unit

mass of air in stoichiometric proportions (-)

B Mass-transfer number (-)

β Dimensionless heat loss coefficient (-)

βfl Dimensionless heat loss coefficient in the diffusion flame (-)

βfr Dimensionless heat loss coefficient in the frozen mixture (-)

χ Scalar dissipation rate (1/s)

χ̃ Normalized scalar dissipation rate (-)

χ̃fl Normalized scalar dissipation rate in the flame (-)

χ̃S Normalized scalar dissipation rate on the disk surface (-)

cp Average specific heat (J/kgK)

Da Pseudo-collision Damköhler number (-)

∆ Reduced Damköhler number (-)

∆E Reduced Damköhler number at extinction (-)

∆f Reduced Damköhler number of the front (-)

∆fl Reduced Damköhler number of the diffusion flame (-)

δf Front thickness (m)

δfl Diffusion-flame thickness (m)

δ0
L Planar premixed-flame thickness (m)

δM Mixing-layer thickness (m)

∆T Difference between the atmosphere and disk temperatures (K)

DT Average thermal diffusivity (m2/s)

η Inner coordinate in the diffusion-flame reaction region (-)

ε inverse of the Zel’dovich number (-)

F Auxiliar indicator function (-)

G Indicator function (-)

γ Leakage parameter (-)

Γ Edge-flame propagation parameter (-)

H Excess enthalpy (J)

Hf Excess enhalpy in the front (J)
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Hfl Excess enthalpy in the diffusion flame (J)

Hfr Excess enhalpy in the frozen mixture (J)

HS Excess enthalpy on the disk surface (J)

Ks Tangential curvature (1/m)

` Characteristic radial distance of tip anchoring (m)

λ Dimensionless Markstein diffusivity (-)

ṁ′′ Fuel mass flow rate p.u. surface (kg/m2s)

Ma Markstein number (-)

n Normal intrinsic coordinate (m)

nE Cooling-tail length (m)

ω Spiral rotational velocity (rad/s)

Ω Disk rotational velocity (rad/s)

P∞ Ambient pressure (Pa)

φ Dimensionless self-similar stream function (-)

φ∞ Dimensionless air entrainment (-)

|φ′fl| Dimensionless radial velocity gradient in the flame (-)

Pr Average Prandtl number

Q Chemical heat release p.u. mass of fuel (J/kg)

r Radial distance (m)

rF Core radius (m)

Rej Injection Reynolds number or injection parameter (-)

ρ Average density (kg/m3)

s Tangential intrinsic coordinate (m)

S Mass of oxidizer burnt p.u. mass of fuel in stoichiometric proportions (-)

S Swirl number (-)

S0
L,st Planar premixed-flame speed in stoichiometric proportions (m/s)

σ Intermediate coordinate in the tip region (-)

t Time coordinate (s)

tE Time for extinction of the diffusion flame (s)

T Temperature (K)

Ta Activation temperature of the global step (K)
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T∞ Atmosphere temperature (K)

Tf Dimensionless front temperature (K)

Tfl Dimensionless diffusion-flame temperature (K)

T∞fl Adiabatic flame temperature (K)

TS Disk surface temperature (K)

ULF Laboratory-frame velocity of the front (m/s)

Un Edge-flame propagation velocity (m/s)

U0
n Straight edge-flame propagation velocity (m/s)

Υ Quasi-static stability parameter (-)

v Hydrodynamic velocity (m/s)

v⊥ Two-dimensional hydrodynamic velocity field (m/s)

vn,rel Hydrodynamic velocity relative to the edge flame (m/s)

ϕ Tangent of the slope angle of the front (-)

Vfl Dimensionless azimuth velocity gradient in the flame (-)

WF Fuel molecular weight (kg/mol)

WO2 Oxidizer molecular weight (kg/mol)

ξ Inner coordinate in the tip region (-)

YiS Mass fraction on the disk surface (-)

YF,F Fuel mass fraction in the fuel feed stream (-)

YF,st Fuel mass fraction at stoichiometric proportions (-)

YO2,A Atmospheric oxidizer mass fraction (-)

YO2,st Oxidizer mass fraction at stoichiometric proportions (-)

Ŷi Mass fraction normalized with the corresponding stoichiometric mass fraction

Z Mixture fraction (-)

zfl Dimensionless flame stand-off distance (-)

Z̃ Mixture fraction normalized with that on the disk surface (-)

Z̃fl Normalized stoichiometric mixture fraction

ZS Mixture fraction on the disk surface (-)

Z̃? Stretched, normalized mixture fraction (-)

Zst Stoichiometric mixture fraction (-)



Chapter 1

Introduction

Premixed combustion, where the fuel and oxidizer are completely mixed before en-

tering into the combustion chamber, and non-premixed combustion, where the fuel and

oxidizer are injected separately, are the two fundamental modes of combustion upon which

the basis of the combustion theory was first formulated [1]. However, in aerospace and

automotive propulsion applications such as gas turbines, direct-injection gasoline engines

and diesel engines, combustion occurs in neither of these two pure modes. In such systems,

fuel and oxidizer enter separately in the combustion chamber, they become partially mixed

by turbulence, and flame propagation occurs in the stratified mixture once it has been

ignited. This combustion mode is often referred to as partially premixed [2]. Similar to

the premixed and diffusion flames in premixed and non-premixed combustion respectively,

the corresponding canonical problem in partially premixed combustion is the propagation

of triple flames in strained mixing layers [3-8]. A triple flame is a tri-brachial structure

composed of a fuel-lean premixed front, an oxidizer-lean premixed front, and a trailing

diffusion flame where the excess reactants burn in a diffusion-controlled regime. The two

premixed wings are curved since the premixed-flame speed decreases with departures from

stoichiometric proportions. The propagation dynamics of triple flames is mainly dominated

by the composition gradient of the mixture, or, equivalently, by the characteristic diffusion

time of the reactants through the flame thickness. Long diffusion times (small composi-

tion gradients) produce strong and advancing quasi-planar premixed fronts within which

reactant depletion occurs in a much shorter chemical time scale, followed by a strong dif-

fusion flame that burns at a much slower rate. Short diffusion times (large composition

gradients) produce highly curved wings and, sometimes, the absence of the tri-brachial

structure, resulting in a slender edge flame followed by a weak diffusion flame, where the

5
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OXIDIZER
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DIFFUSION
FLAME

PARTIALLY PREMIXED

c
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b

FUEL−LEAN PREMIXED FLAME

OXIDIZER−LEAN PREMIXED  FLAME

INCREASING FUEL CONCENTRATION GRADIENT

U

Figure 1.1: (a) Direct image of a CH4-air triple flame (adapted from [6]), (b) Direct images
and effects of fuel concentration gradient on CH4-air triple flames (adapted from [9]), (c)
Schematics of a triple flame propagating from right to left in a strained mixing layer.

chemical depletion process is slowed down by the short residence time of the reactants in

the flame. In both limits, the resulting imbalance between the streamwise heat diffusion

and chemical heat release produce advancing or retreating motions of the entire flame kernel

at velocities that correspond to eigenvalues of the problem. The resolution of triple flames
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in general flows constitutes a formidable challenge from the analytical and computational

standpoints because of the intrinsic eigenvalue character of the problem and the associated

flame stabilization difficulties. Figure 1.1 shows experimental visualizations of triple flames

and their schematics.

Swirling flows enhance fuel and oxidizer mixing at the molecular level, promote

combustion and flame propagation [1, 2], and reduce emissions [10]. Examples of combustion

enhancement by increased mixing occur naturally in fire whirls, or in specific engineering

designs such as swirl combustors in gas turbines, swirl-generating inlet ports and swirl piston

bowls in internal combustion engines. The interaction of flames with swirling air flows in

combustion chambers can enhance local extinction for sufficiently large strain rates or heat

losses. The boundaries produced by these local extinction phenomena are edge flames,

which propagate through the mixture with characteristics similar to those of deflagrations

[3]. In swirling boundary layers, local quenching can produce a number of flame patterns

and flame fronts, such as straight edge flames, single spiral edge flames, multiple spiral edge

flames, flame rings and flame holes, that propagate in the mixture in a nontrivial manner

[11-14].

From a broader physical standpoint, spiral patterns are ubiquitous in nature. The

Belousov-Zabothinsky reaction and the catalytic surface oxidation of CO are examples of

spiral pattern formation found in physical chemistry. Cell aggregation and calcium waves are

examples of spiral patterning in cell signaling. Similarly, cardiac fibrillation waves take the

form of meandering spirals, and whirlpool galaxies also display spiral-shaped arms. Some of

these patterns are shown in figure 1.2. Excitability is a common characteristic shared by all

these systems. The concept of excitability of a system regards its ability to trigger abrupt

and substantial responses -by means of the autocatalytic production of a propagator or

trigger variable- to disturbances from a rest state that cross certain characteristic thresholds

[15]. After such a response the system momentarily shows a refractory behavior moderated

by a controller or refractory variable, in that the system is immune to further stimulation

and eventually recovers full excitability. The first four rows in table 1.1 identify the different

propagator and controller variables found in four common physical systems [16, 17].

In the context of flame propagation in stratified mixtures, excitability is related

to the reactivity of the mixture and the high sensitivity to temperature because of the

effectively high overall activation energy involved in typical combustion chemical reactions.

Although the trajectory of a fluid particle occurs generally in a multidimensional space, its

initial and final states can be placed on a S-curve response of a diffusion flame [23] as shown
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(a)

(b) (c)

(e)(d)

Figure 1.2: Examples of spiral patterns found in nature, (a) spiral diffusion flames (adapted
from [18]), (b) Belousov-Zhabotinsky reaction (adapted from [19]), (c) catalytic CO-Pt
surface reaction (adapted from [20]), (d) multicellular aggregation (adapted from [21]), (e)
calcium waves (adapted from [22]).

Table 1.1: Representative propagator and controller variables corresponding to the systems
of figure 1.2.

System Propagator Controller

BZ reaction bromous acid ferroin

Surface catalysis temperature catalytic activity

Cell aggregation cyclic adenosine monophosphate membrane receptor

Calcium waves membrane potential ionic conductance

Spiral edge flames temperature lateral heat loss

in figure 1.3(a), which represents the maximum temperature as a function of the reduced

Damköhler number ∆, which is defined as

∆ =
td
tc

, (1.1)

where td is the diffusion time through the flame or flame-transit time, and tc is the local

chemical time in the flame. Spatial regions of sufficiently low temperature, in which the

mixture remains chemically frozen, may be thought of as a rest state, from which an ap-

preciable excursion may occur when ∆ is sufficiently large to trigger thermal runaway and

ignite the mixture. Flame propagation and diffusion of heat into neighboring regions occur
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Figure 1.3: (a) Schematic representation of the S-curve response of a diffusion flame. The
frozen and Burke-Schumann rest states are denoted by A and B, respectively. (b) Temper-
ature profile along the stoichiometric line of a vigorously burning edge flame. (c) Temper-
ature profile along the stoichiometric line of an edge whose diffusion flame has undergone
extinction.

once the mixture has been ignited, causing the excitation process to spread spatially into

zones initially frozen. For large activation energies and adiabatic systems, the region down-

stream from the front is close to a Burke-Schumann or equilibrium rest state, involving a

reaction zone into which each reactant diffuses and reacts producing a diffusion flame, as

in figure 1.3(b). This trailing flame extends infinitely far downstream from the front as in

an adiabatic, equidiffusive edge flame or triple flame [3-8].

For a spiral edge flame, the system achieves the rest state again by means of an

extinction tail, as in figure 1.3(c). As shown further below, lateral heat losses to the burner

surface extinguish the flame when the flame temperature is sufficiently small for the local

∆ to be small, such that the local chemical time becomes large and of the same order

as the diffusion time, which produces leakage of unburnt reactants, an associated flame-

temperature drop and flame extinction. After extinction, the gaseous mixture is at first

refractory to another disturbance, but it finally recovers full ignitability when the reactants

are replenished by advection, reproducing the same edge-flame pulse after one revolution
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Figure 1.4: Schematic illustration of the experimental apparatus.

provided that no mixing histeresis has taken place. While this discussion describes how

spiral-flame phenomena may be related in general to spiral waves in excitable media, it

will be seen later that figure 1.3(a) does not precisely describe the specific experiments of

figure 1.2(a), in that the indicated ignition event, in fact, is not involved in the physics of

the actual process.

However similar at first sight, pattern formation in diffusion flames is a qualita-

tively and quantitavely different problem than those shown in figure 1.2(b-e), which mainly

correspond to reactive-diffusive systems; contrary to the intrinsic two-dimensional diffu-

sive dynamics of the processes of figure 1.2(b-e), three-dimensional diffusion and advection

effects make the analytical and numerical tractability of the spiral flames quite more chal-

lenging. Additionally, the strong non-linearities associated with the reaction term in flames

are typically exponential in the temperature as in the Zeldovich-Frank-Kamenetskii theory

[24], which produces sharp interfaces and singular behaviors, whereas classical develop-

ments in reactive-diffusive systems have typically used smoother polynomial non-linearities

to account for the propagator source as in the Kolmogorov-Petrovskii-Piskunov theory [25].

Finally, unlike earlier analyses performed on the modelling of the processes shown in fig-

ure 1.2(b-e), the conservation equations and chemical reaction rates used in combustion

systems stem from fundamental principles of the kinetic theory of gases, which confers

more rigor on the present investigation.

A set of controlled experiments performed with the porous-disk burner demonstrated

the existence of a map of flame patterns [12]. The experiments used a sintered bronze,
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Figure 1.5: Summary of experimental flame patterns in the rotating porous-disk burner
[12].

water-cooled porous disk of radius a = 10 cm. Gaseous methane was fed to the disk with

uniform and constant fuel flow rate ṁ′′ = 0.2 − 2.0 g/m2s from a compressed-gas bottle

of fuel mass fraction YF,F ≈ 1.0, and injection temperature TS ≈ 300 K equal to the disk

cooling temperature. The exposed disk porous surface was oriented facing downwards to

avoid buoyant instabilities, in an otherwise quiescent oxidizing atmosphere of oxidizer mass

fraction YO2,A ≈ 0.24, and temperature T∞ ≈ 300 K, and it was spun at a constant angular

velocity Ω = 2− 50 rad/s. The experimental arrangement is depicted in figure 1.4. Further

details of the experimental results are given in Chapter 5. The experimental flame patterns

studied in this investigation are shown in figure 1.5. At moderate fuel injection rates, as Ω

was increased the axisymmetric diffusion flame developed a pulsating flame hole. This mode

has been studied in earlier works [26-28] for both the rotating disk and counterflow flames

by using simplified algebraic models of the underlying diffusion flame [29]. An increase

in the disk rotational velocity caused transition to a single-armed, counter-rotating spiral

flame, with characteristics similar to those of the spiral flames observed in burning solid

fuels as described elsewhere [18]. Further increase in Ω caused transition to flame modes

such as multi-armed spirals and flame rings, which probably were influenced by edge effects.

The flame was finally blown off the disk at higher Ω. Total flame extinction was achieved

for sufficiently small ṁ′′ or high Ω. Disk water-cooling ensured that the observed patterns

were not caused or stabilized by thermal inertial effects of the disk. The downward-facing

arrangement favored a flat flame, buoyant instabilities being suppressed by the closeness of

the flame to the disk.

This part of the thesis is organized into five additional chapters. Chapter 2 is dedi-

cated to a general formulation of the problem in the laboratory frame within the framework
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of a thermodiffusive, equidiffusional model using a single-step chemical reaction of large ac-

tivation energy. Chapter 3 addresses the dynamics of a diffusion flame enveloping the entire

disk. Chapter 4 is dedicated to the analysis of the propagating dynamics of spiral edge

flames. Finally, experimental results are analyzed and theoretical predictions are tested in

Chapter 5, and conclusions are drawn in Chapter 6.



Chapter 2

Laboratory-frame formulation

A schematic diagram of the problem is shown in figure 2.1, which follows the experi-

mental set-up introduced in the preceding Chapter and contains the most relevant variables.

A formulation based on the thermodiffusive and equidiffusional description of the underly-

ing one-dimensional diffusion flame, using a single-step chemical reaction of large activation

energy, is developed in what follows. Thus, the density ρ, viscosity ν, specific heat cp,

thermal diffusivity DT and Prandtl number Pr = ν/DT are taken to be those of the air at

normal conditions. These approximations are reasonable for not-too-large rotation rates,

small heat-release parameters and near-extinction flames [30], and for near-unity Lewis

numbers as in methane-air non-premixed combustion systems [31], for which the fuel and

oxidizer Lewis numbers LeF = DT /DF = 0.97 and LeO2 = DT /DO2 = 1.11 are sufficiently

close to unity.

2.1 Hydrodynamic field

In the conditions relevant to these experiments, that is at moderately high bulk

Reynolds numbers Rea = Ωa2/ν ∼ 104, as the burner rotates the viscous effects are confined

to a thin boundary layer of approximate thickness δM =
√

ν/Ω [32], which is obtained by a

balance of centrifugal pressure, of O(ρδ2
MΩ2) and shear stress, of O(νρΩ), with δM/a ¿ 1.

The rotation of the disk induces an entrainment of the ambient fluid with a characteristic

velocity ΩδM . This fluid is carried by the disk surface through friction and is ejected

centrifugally with a characteristic velocity ΩδMr, where r is the ratio of the radial coordinate

to δM . This velocity is much larger than the entrainment velocity at sufficiently large radial

distances from the center, r À 1.

13
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Figure 2.1: The model problem.

A derivation of the von Kármán flow is summarized below for illustrative purposes.

The conservation equations are written in nondimensional variables, with δM the unit of

length, δMΩ the unit of velocity and ρδ2
MΩ2 the unit of pressure. In these variables, a cylin-

drical coordinate system {r, θ, z} is introduced, and the mass and momentum conservation

equations for the velocity vector v = (vr, vθ, vz) and pressure P become

1
r

∂

∂r
(rvr) +

∂vz

∂z
= 0, (2.1)

vr
∂vr

∂r
− v2

r

r
+ vz

∂vr

∂z
= −∂P

∂r
+

∂

∂r

[
1
r

∂

∂r
(rvr)

]
+

∂2vr

∂z2
, (2.2)

vr
∂vθ

∂r
+

vrvθ

r
+ vz

∂vθ

∂z
=

∂

∂r

[
1
r

∂

∂r
(rvθ)

]
+

∂2vθ

∂z2
, (2.3)

vr
∂vz

∂r
+ vz

∂vz

∂z
= −∂P

∂z
+

1
r

∂

∂r

(
r
∂vz

∂r

)
+

∂2vz

∂z2
, (2.4)

where azimuth transport terms have been dropped because of the rotational symmetry of

the flow. Equations (4.15)-(2.4) are subject to non-slip and far-field boundary conditions,

z = 0, vr = 0, vθ = r, vz = Rej , (2.5)

z →∞, vr → 0, vθ → 0, vz → φ∞(Rej), P → P∞, (2.6)

In this formulation, φ∞ = O(1) is the dimensionless air entrainment far from the disk and

is calculated as part of the hydrodynamic solution, and

Rej =
ṁ′′

ρ
√

νΩ
(2.7)
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is the injection Reynolds number or dimensionless fuel injection rate Rej , defined as the

ratio of the injection velocity ṁ′′/ρ to the characteristic entrainment normal to the disk

δMΩ. The typical values of Rej encountered in the experiments are found to be much

smaller than unity for most of the studied data range as shown in Chapter 5, which involves

small injection velocities. Substituting the von Kármán transform

v = −φ′(z)r
2

er + V (z)reθ + φ(z)ez, (2.8)

into (2.2) and (2.3), the equations

φ′′′ = φ′′φ− φ′2/2 + 2V 2, (2.9)

V ′′ = φV ′ − φ′V, (2.10)

are obtained, which are subject to

z = 0, φ = Rej , φ′ = 0, V = 1, (2.11)

z →∞, φ → φ∞(Rej), φ′ → 0, V → 0. (2.12)

In this formulation, φ(z) is a self-similar stream function given by

φ = 2ψ/r2 (2.13)

in terms of the two-dimensional stream function ψ, which can be related to the velocity

components by

vr = −1
r

∂ψ

∂z
and vz =

1
r

∂ψ

∂r
. (2.14)

The strain rate, vorticity and static pressure depend solely on z as a consequence of the

radial uniformity of the entrainment. Equation (2.4) can be used to obtain an expression

for the normal distribution of static pressure, which is an irrelevant variable that can be

eliminated in this thermodiffusive framework. These considerations are not accurate near

the disk edge, where the self-similarity imposed by (2.8) is lost and the velocity normal to

the disk and the normal strain rate do not depend solely on the normal coordinate z, so

that the present calculation implicitly assumes a flow over an infinite disk with uniform air

entrainment.

Figure 2.2 shows the velocity components vr, vθ and vz given by (2.8) and the

numerical solutions to (2.9)-(2.12)

For Rej ¿ 1, the asymptotic expansions

φ = φ0 + Rejφ1 + O(Re2
j ),

V = V0 + RejV1 + O(Re2
j ). (2.15)
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Figure 2.2: Numerical (solid line) and asymptotic (dashed line) profiles for the (a) radial
velocity, (b) azimuth component, and (c) vertical component of the flow velocity, for Rej =
0.05. In this figure, φ0∞ = −0.884, c1 = 0.924 + 2.620Rej , c2 = 0.510 + 0.046Rej , c3 =
−0.500+0.510Rej , c4 = 1.202+2.425Rej , c5 = −0.616+0.412Rej , φ∞ = −0.884+0.202Rej ,
c6 = 2.091 + 5.926Rej , c7 = Rej and c8 = −c2 are constants calculated numerically.

are introduced into (2.9)-2.12). To leading order in Rej , the conservation equations (2.9)

and (2.10) correspond to a von Kármán swirling flow with zero fuel injection [32],

φ′′′0 = φ0φ
′′
0 + 2V 2

0 −
φ′20
2

, (2.16)

V ′′
0 = φ0V

′
0 − φ′0V0, (2.17)

subject to

z = 0, φ0 = 0, φ′0 = 0, V0 = 1, (2.18)

z →∞, φ0 → φ0∞, φ′0 → 0, V0 → 0. (2.19)

For small z, equations (2.16) and (2.17) can be reduced to φ′′′0 ∼ 2, and V ′
0 ∼ a2 in the

first approximation, so that φ0 ∼ z3/3 + a1z
2 and V0 ∼ 1 + a2z, For large z, φ′′′0 ∼ φ0∞φ′′0,

and V ′′
0 ∼ φ0∞V ′

0 , which gives the asymptotic behaviors φ0 ∼ φ0∞ + (b1/φ2
0∞)eφ0∞z and



17

V0 ∼ (b2/φ0∞)eφ0∞z. In this formulation

a1 = −0.510, a2 = −0.616, φ0∞ = −0.884,

b1 = 1.634, and b2 = −1.063, (2.20)

are constants obtained from solving (2.16)-(2.19) numerically using a nonlinear shooting

method with a generalized Newton-Raphson method for achieving convergence.

To second order in Rej , the conservation equations (2.9) and (2.10)

φ′′′1 = φ0φ
′′
1 + φ′′0φ1 + 4V0V1 − φ′0φ

′
1, (2.21)

V ′′
1 = V ′

1φ0 + V ′
0φ1 − φ′0V1 − φ′1V0, (2.22)

subject to

z = 0, φ1 = 1, φ′1 = 0, V1 = 0, (2.23)

z →∞, φ1 → φ1∞, φ′1 → 0, V1 → 0. (2.24)

For z ¿ 1 equations (2.21) and (2.22) reduce to φ′′′1 ∼ 2a1 and V ′′
1 ∼ a2, from where

φ1 ∼ a1z
3/3 + a′1z

2 + 1 and V1 ∼ a2z
2/2 + a′2z. For large z, φ′′′1 ∼ φ0∞φ1 and V ′′

1 ∼ φ0∞V ′
1 ,

which gives φ1 ∼ φ1∞ + (b′1/φ2
0∞)eφ0∞z and V1 ∼ (b′2/φ0∞)eφ0∞z, where the constants

a′1 = −0.046, a′2 = 0.412, b′1 = 4.361,

b′2 = −2.144, and φ1∞ = 0.202, (2.25)

are numerically evaluated following a similar numerical scheme as before. The entrainment

first perturbation φ1∞ is a positive number, which indicates that the total entrainment is

reduced because of the fuel injection.

To summarize, the asymptotic solutions in regions near and far from the disk

z ¿ 1, φ = a1z
2 + z3/3 + Rej(1 + a′1z

2 + a1z
3/3) + O(Re2

j ),

V = 1 + a2z + Rej(a′2z + a2z
2/2) + O(Re2

j ),

z À 1, φ = φ0∞ + (b1/φ2
0∞)eφ0∞z + Rej [φ1∞ + (b′1/φ2

0∞)eφ0∞z] + O(Re2
j ),

V = (b2/φ0∞)eφ0∞z + Rej(b′2/φ0∞)eφ0∞z + O(Re2
j ). (2.26)

are found, with the constants of integration given by (2.20) and (2.26). A comparison with

the numerical solution to (2.9)-(2.12) is shown in figure 2.2.
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2.2 Chemical kinetics model

The chemical reaction is considered to be a single-step, second-order irreversible

reaction between methane and the oxygen of the air,

CH4 + 2O2 → CO2 + 2H2O,

with a dimensionless global rate of reaction

ω̂ = DaŶF ŶO2e
−Ta/T . (2.27)

In this formulation, ŶF and ŶO2 are the fuel and oxidizer mass fractions nondimensionalized

with their stoichiometric values YF,st = αYF,F /(1 + α) and YO2,st = YO2,A/(1 + α), where

α = YO2,A/SYF,F is the mass of the fuel feed stream that is needed to mix with a unit mass of

air to generate a stochiometric mixture, and S is the mass of oxidizer burnt per unit mass

of fuel consumed in stoichiometric proportions. For methane-air systems and undiluted

fuel streams, typical values of α and S are 0.06 and 4 respectively. Similarly, T denotes

the temperature nondimensionalized with the adiabatic temperature increment QYF,st/cp,

where Q is the heat release per unit mass of fuel, and Ta represents the dimensionless

activation temperature of the chemical reaction. In this formulation, the parameter Da is

a pseudo-collision Damköhler number given by

Da =
YO2,stA

Ω
, (2.28)

which represents the ratio of a pseudo-collision time (YO2,stA)−1 to the flow time Ω−1,

with A = ρB/WO2 the frequency factor of the global step, and WO2 the oxidizer molecular

weight.

Since usual hydrocarbon overall activation temperatures Ta are large, the chemical

time shows an extraordinary dependence on the temperature. For large activation energies,

T ∼ T∞ in regions far from the flame, and the chemical time reaches its largest value tc∞
there. The chemical reaction is negligible in these regions and the mixture is chemically

frozen. In regions close to the flame, the temperature reaches a flame temperature, T ∼ Tfl,

and the chemical time attains its smallest value tcfl. The ratio of both chemical times is

tc∞/tcfl ∼ e1/ε, where

ε =
T 2

fl

Ta
(2.29)

is the inverse of a Zel’dovich number when Tfl and Ta are nondimensionalized with the

adiabatic temperature increment. If Tfl and Ta are dimensional, an equivalent definition of ε
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is ε = T 2
fl/[Ta(Tfl−Tst)], where Tst is the temperature of the frozen mixture in stoichiometric

proportions. The value of ε is usually much smaller than unity in combustion applications.

When (2.29) is used in (2.27), the Arrhenius exponential term becomes

e−Ta/T = e−Ta/Tfl · exp
[
−1

ε

(
Tfl − T

T/Tfl

)]
, (2.30)

which, in the large-activation energy limit vanishes except in regions of the combustion field

where the temperature is close to that of the flame, Tfl − T = O(ε), with ω̂ similar to a

Dirac-delta function centered at the flame location in the first approximation.

This simple chemical-kinetic model leaves three parameters in the formulation,

namely, the preeexponential factor B, the activation temperature Ta and the heat released

per unit mol of fuel Q. The values B = 6.9 × 1014cm3/(mol s), Q = 802.4KJ/mol and

Ta = 15, 900 K are used as a reference in stoichiometric proportions [33]. Adjustments of

the activation temperature are needed in Chapter 5 to reproduce the experimental data for

extinction of the uniform diffusion flame. A model based on variable activation energy and

heat release, which has been shown to compare favorably with experiments and detailed-

chemistry numerical simulations in earlier work [33], is used in the numerical simulations

of Chapter 5 to avoid unrealistic super-adiabatic flame speeds on fuel-rich regions that are

artifacts of hydrocarbon-air single-step reactions with constant activation energy. More in-

volved analyses would need to consider the full CH4-air chemical kinetics [31, 34] or reduced

mechanisms for flame extinction [35, 34].

2.3 Mixture fraction, mass-transfer number,

scalar dissipation rate and excess enthalpy

The mixture fraction Z is defined here as

Z =
SYF − YO2 + YO2,A

SYF,F + YO2,A
, (2.31)

with Z = 1 indicating fuel-only regions, YO2 = 0 and YF = YFF , and Z = 0 indicating

oxidizer-only regions, YF = 0 and YO2 = YO2,A. When (2.31) is normalized with the

mixture fraction ZS on the disk surface, the normalized mixture fraction

Z̃ = Z̃fl

(
ŶF − ŶO2

1 + α
+ 1

)
, 0 6 Z̃ 6 1, (2.32)

is obtained, with Z̃ = 0 far from the disk and Z̃ = 1 on the disk surface. Here

Z̃fl = Zst/ZS , (2.33)



20

represents the normalized stochiometric coordinate location with respect to ZS , with

Zst =
α

1 + α
∼ 0.056 (2.34)

the stoichiometric mixture fraction, which coincides with the diffusion flame location in

this equidiffusive analysis. The mixing and hydrodynamic fields can be easily related in

the present thermodiffusive approximation by making use of (2.32) in the species conserva-

tion equations to integrate a second-order homogeneous differential equation for Z̃(z) with

appropriate porous-disk boundary conditions, which gives [36]

Z̃(z) =
RejPr
B

∫ ∞

z

{
exp

[∫ ξ

0
Prφ(z)dz

]}
dξ, (2.35)

where B is an effective mass-transfer number defined by

B =
Zst

Z̃fl − Zst

=
α(1 + α + ŶF,S − ŶO2,S)
1 + α + α(ŶO2,S − ŶF,S)

, (2.36)

and the subindex S refers to the fuel and oxidizer mass fractions on the disk surface. The

effective mass-transfer number increases monotonically with Rej . If there is no fuel injected,

Rej = 0, Z̃fl →∞, ZS = 0, YF,S = 0, YO2,S = YO2,A and B = 0. Similarly, for large injection

rates, Rej → ∞, Z̃fl → Zst, ZS → 1, YF,S → YF,F , YO2,S → 0 and B → ∞. Using (2.32),

(2.35) and (2.36), an equivalent definition

B = RejPr
∫ ∞

0

{
exp

[∫ ξ

0
Prφ(z)dz

]}
dξ, (2.37)

is found. Substituting the expansion for φ (2.15) into (2.37), the asymptotic series

B = RejPr
∫ ∞

0
exp

[∫ ξ

0
Prφ0(z)dz

] [
1 + Rej

∫ ξ

0
φ1(z)dz

]
dξ

= B0Rej + B1Re2
j + O(Re3

j ), (2.38)

is obtained for Rej ¿ 1, with

B0 = Pr
∫ ∞

0
exp

[∫ ξ

0
Prφ0(z)dz

]
= 2.180, (2.39)

and

B1 = Pr
∫ ∞

0
exp

[∫ ξ

0
Prφ0(z)dz

] [∫ ξ

0
φ1(z)dz

]
dξ = 2.349, (2.40)

which are calculated by numerical integration of the leading-order (2.16)-(2.19) and second-

order (2.21)-(2.24) problems of the hydrodynamic flow field and evaluated for Pr = 0.71.

These results for Z̃ and B are shown in figure 2.3(a,b).
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Figure 2.3: (a) Mixture fraction distribution (2.35), (b) mass-transfer number (2.37), and
(c) dimensionless scalar dissipation rate (2.42). The inset shows the dimensionless scalar
dissipation rate on the disk surface.

The value of the mixture fraction on the disk surface increases with the fuel injection

rate, and can be expressed as

ZS =
B

1 + B , (2.41)

where use has been made of expressions (2.33) and (2.36), which gives ZS ∼ B0Rej + (B1−
B2

0)Re2
j + O(Re3

j ) using (2.39) and (2.40).

The squared gradient of the mixture fraction multiplied by the thermal diffusivity

is commonly referred to as the scalar dissipation rate χ in turbulent combustion [2], and it

represents the inverse of a characteristic diffusion time. When the diffusion time is evaluated

in the burning diffusion flame, Z̃ = Z̃fl, a characteristic flame-transit time or reactant

diffusion time through the flame td ∼ 1/χfl is obtained, which is usually large compared to

the local chemical time tc ∼ (AYO2,st)−1 exp(Ta/T ) to ensure complete reactant depletion.

Here the same nomenclature is used, and the expression for the nondimensional scalar

dissipation rate

χ̃(z) =

(
dZ̃

dz

)2

=
(

PrRej

B
)2

exp
[
2

∫ z

0
Prφ(ξ)dξ

]
, (2.42)
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is found, where use has been made of (2.35). The value of χ̃ on the disk surface is given by

χ̃S = (PrRej/B)2. For small mixture fractions Z̃ → 0 (z →∞), the approximation φ ∼ φ∞
in (2.35) yields χ̃(Z̃) ∼ (φ∞PrZ̃)2. Similarly, for Z̃ ∼ 1 (z → 0), the approximation φ ∼ Rej

gives χ̃(Z̃) ∼ χ̃S [1−3(Z̃−1)PrRej/χ̃
1/2
S ]2/3. The distribution of χ̃ is shown in figure 2.3(c).

In this notation, the dimensional flame-transit time is given by td ∼ δ2
M/(DT Z2

Sχ̃fl), which

decreases with increasing mass flow rate and angular velocity.

An excess enthalpy H, nondimensionalized with the chemical heat release QYF,st/WF ,

can be defined as

H =
αŶF + ŶO2

1 + α
− 1 + T − T∞, (2.43)

with H = 0 in the oxidizer feed stream, and H = HS on the disk surface, where HS ,

in the most general case, varies with time and position on the disk surface in a manner

that is calculated as part of the solution. The excess enthalpy is zero everywhere for an

equidiffusive counterflow diffusion flame with equal thermal enthalpies of oxidizer and fuel

feed streams [23]. The excess enthalpy in the present analysis is, however, non-zero even in

the case of equal feed-stream temperatures, TS = T∞, because of heat losses to the disk.

2.4 Conserved-scalar formulation

In these variables and in the laboratory reference frame, the species and energy

conservation equations become

∂H

∂t
+ v⊥ · ∇⊥H =

∇2
⊥H

Pr
+

χ̃(Z̃)
Pr

∂2H

∂Z̃2
, (2.44)

∂T

∂t
+ v⊥ · ∇⊥T =

∇2
⊥T

Pr
+

χ̃(Z̃)
Pr

∂2T

∂Z̃2
+ DaŶF ŶO2e

−Ta/T , (2.45)

ŶF = H + Z̃/Z̃fl + T∞ − T, (2.46)

ŶO2 = 1 + α
(
1− Z̃/Z̃fl

)
+ H + T∞ − T, (2.47)

subject to

H +
β

Zst
+

1
B

∂H

∂Z̃
= 0, T = TS , (2.48)

at Z̃ = 1,

H → 0, T → T∞ (2.49)

at Z̃ = 0,
∂H

∂r
→ 0,

∂T

∂r
→ 0, (2.50)
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for r →∞, and
∂H

∂θ

∣∣∣
θ=0

=
∂H

∂θ

∣∣∣
θ=2π

,
∂T

∂θ

∣∣∣
θ=0

=
∂T

∂θ

∣∣∣
θ=2π

, (2.51)

for 0 6 r < ∞ and 0 6 Z̃ 6 1. In this formulation, the time coordinate t is nondimensional-

ized with the flow time Ω−1, and ∇⊥ and v⊥ are the two-dimensional gradient operator and

two-dimensional hydrodynamic velocity field in r and θ. The first of the boundary conditions

appearing in (2.48) is obtained by combining the thermal-contact condition T = TS along

the disk surface with (2.43), and with fuel and oxidizer mass conservation equations on the

disk surface, which in dimensional variables correspond to ṁ′′YF − ρDF ∂YF /∂z = ṁ′′YF,F

and ṁ′′YO2 = ρDO2∂YO2/∂z. Additionally,

β = Zst

{
(T∞ − TS)− 1

B
∂T

∂Z̃

∣∣∣∣∣ eZ=1

}
(2.52)

is a heat-loss coefficient that accounts for feed-stream enthalpy differences and heat losses

to the disk surface, the behavior of which is analyzed in Chapter 3. The coefficient β

generally decreases with increasing Rej for subadiabatic disk temperatures as it will be

seen in Chpater 3, figure 3.2.

Equations (2.8), (2.35), (2.37), (2.42) and (2.44)-(2.52) give rise to the three-dimen-

sional solution of the temperature and excess enthalpy distributions in the physical space

and in the laboratory reference frame. The numerical integration of an equivalent set of

conservation equations in a non-conserved scalar form was performed in earlier work [14] to

capture spiral flames with reasonable success given the difficulty of such three-dimensional

and intensive calculation, although spiral meandering and solid-rigid rotation around a

central hole were not obtained, thus contradicting existing experiments (perhaps due to an

inaccurate resolution of the vicinity of the burner axis), and analyses of the front and trailing

diffusion-flame structures and their propagation dynamics were not performed. Nonetheless,

that study is valuable in that it confirms that all the essential physics is contained within

the set of equations outlined above.



Chapter 3

Diffusion-flame dynamics

The problem (2.44)-(2.52) can be solved analytically in the uniform diffusion-flame

regime, in which a diffusion flame envelops the entire disk, and the length scale of the

temperature and composition variations in the normal direction to the flame is much smaller

than the radial and azimuthal length scales. As observed in figure 1.5, this regime occurs for

sufficiently large fuel flow rates and small rotational velocities, or equivalently, for sufficiently

large Rej although still small compared with unity. Under these approximations, equations

(2.44)-(2.47) become

d2H

dZ̃2
= 0, (3.1)

χ̃

Pr
d2T

dZ̃2
= −DaŶF ŶO2e

−Ta/T , (3.2)

ŶF = H + Z̃/Z̃fl + T∞ − T, (3.3)

ŶO2 = 1 + α
(
1− Z̃/Z̃fl

)
+ H + T∞ − T, (3.4)

subject to the boundary conditions (2.48) and (2.49) respectively on the disk surface and

in the far field. In this limit, the heat flux to the disk is a uniform constant that generally

depends on the injection fuel rate Rej , so that the heat-loss coefficient β given by equation

(2.52) is uniform on the entire disk surface.

Integrating the enthalpy equation (3.1), the excess enthalpy

H = −βZ̃/Z̃fl, (3.5)

is obtained. The excess enthalpy is produced by enthalpy differences between the fuel and

oxidizer feed streams and the heat losses to the nearby disk surface. Substituting the excess

24
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enthalpy (3.5) into equations (3.3) and (3.4), the equations

χ̃

Pr
d2T

dZ̃2
= −DaŶF ŶO2e

−Ta/T , (3.6)

ŶF = (1− β)Z̃/Z̃fl + T∞ − T, (3.7)

ŶO2 = 1 + α− (α + β)Z̃/Z̃fl + T∞ − T, (3.8)

are obtained. Equation (3.6) is subject to the boundary conditions

T = TS (3.9)

at Z̃ = 1, and

T → T∞ (3.10)

at Z̃ = 0.

A similar problem to (3.6)-(3.10) was found by Liñán in his seminal paper [23] on

the asymptotic structure of counterflow diffusion flames for large activation energies. Liñán

identified four distinguished burning regimes: (i) an ignition regime, in which ignition is

produced by an increase in the Damköhler number sufficient to cause temperature variations

of O(ε), where ε is given by (2.29), in a initially frozen mixture of fuel and oxidizer; (ii) a

partial-burning (unstable) regime, in which O(1) leakage of fuel and oxidizer occurs through

the flame; (iii) a premixed-flame regime, in which extinction occurs with O(1) leakage of

one of the reactants through the flame resembling an inner premixed-flame structure; (iv)

a diffusion-flame regime in which no reactant leakage occurs in the first approximation (the

vigorous-burning, fast-burning or Burke-Schumann solution) and extinction occurs with

O(ε) leakage of both reactants through the flame. Figure 3.1 shows the asymptotic ordering

of the different extinction regimes and the characteristic S-curve from Liñán’s analysis [23]

in terms of the reduced Damköhler number ∆ given by (1.1).

Large reduced Damköhler numbers ∆ represent short chemical times and small

reaction-layer thicknesses compared with typical diffusion times through the flame and

typical diffusion lengths, which corresponds to a fast-burning regime. Ignition occurs at

large ∆ when the diffusion time is sufficiently large or the strain rate is sufficiently low to

allow thermal runaway after small temperature variations of order ε in the initially frozen

mixture. Sufficiently small ∆ can cause flame extinction when the chemical time becomes of

the same order as the typical flame-transit time and the chemical process is not fast enough

to deplete the reactants, which produces a temperature drop in the flame and reactant

leakage through the reaction region.
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Figure 3.1: Liñán [23] S-curve, asymptotic orderings and burning regimes schematics.

In the large activation energy limit, the extinction of a diffusion flame can occur

in either the premixed or diffusion-flame regimes. Activation-energy asymptotic analyses

(AEA) applied to extinction in hydrocarbon-air nonpremixed combustion systems typically

yield extinction in the premixed regime with a premixed structure on the oxidizer side.

This erroneous tendency of AEA, namely predicting dominant fuel leakage instead of the

inherent oxidizer leakage produced by chemical kinetics effects [34], has been solved by using

rate-ratio asymptotic analysis (RRA) [35], and more recently, by conveniently modifying

the activation temperature through the flame in a single-step methane-air chemical kinetic

mechanism [33], in which the activation temperature is increased in flame regions of large

mixture fraction to increase the chemical time and freeze the reaction on the fuel side of the

flame, which enhances oxidizer leakage. In the present analysis, the proximity of the flame

to the disk surface increases the leakage of oxidizer and overcomes the tendency of AEA of

giving unrealistic extinction conditions in comparison to pure counterflow configurations.

As a consequence, both fuel and oxidizer leak in similar amounts through the flame, and,

as detailed in Section 3.3, the extinction process can be described in the diffusion flame

regime for not too small or too large injection Reynolds numbers, since both extremes yield

premixed-flame structures on the fuel and oxidizer sides of the flame respectively.
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3.1 The frozen regime

In the frozen limit, the diffusion time is much smaller than the local chemical time,

∆ ¿ 1, the reaction term is negligible in the first approximation, and (3.6) reduces to

d2T/dZ̃2 = 0 subject to (3.9) and (3.10), which gives

T = T∞ − βfrZ̃/Z̃fl, (3.11)

H = −βfrZ̃/Z̃fl, (3.12)

ŶF = Z̃/Z̃fl, (3.13)

ŶO2 = 1 + α
(
1− Z̃/Z̃fl

)
, (3.14)

where βfr denotes the heat loss coefficient (2.52) in the frozen regime based on the frozen

temperature profile,

βfr = Z̃fl(T∞ − TS). (3.15)

The value Hfr = −βfr represents the excess enthalpy evaluated at the stoichiometric co-

ordinate. Because of the boundary condition at the disk surface, this excess enthalpy is

negative if the plate temperature is less than that of the air and positive if it is greater.

For zero fuel injection, Rej = 0, the excess enthalpy of the inert swirling air flow is zero

everywhere if the ambient temperature equals the disk surface temperature, TS = T∞, as

expected for the non-reacting isothermal flow regime. The local equivalence ratio Φ =

(YF /YO2)/(YF,st/YO2,st) = ŶF /ŶO2 can be expressed in terms of the mixture fraction as

Φ =
(

1
α

)
Z

1− Z
=

(
Z̃

Z̃fl

)
1− Zst

1− ZstZ̃/Z̃fl

. (3.16)

Further increase in ∆ to a critical ∆I by, for instance, decreasing the angular velocity or

increasing the disk temperature, gives rise to higher-order corrections to (3.11)-(3.14), which

are representative of flame autoignition as depicted in figure 3.1.

3.2 The Burke-Schumann regime

A diffusion-controlled combustion regime exists for large Damköhler numbers, in

which the temperature and composition fields do not depend on the chemical kinetics in

the first approximation. In this regime, the local chemical time is much shorter than the

diffusion time through the flame, ∆ À 1, so that the flow remains in chemical equilibrium

on both sides of a thin reaction sheet of infinitesimal thickness, which is much smaller than
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abrupt extinction obeying (3.39).

the hydrodynamic length scale, and no reactant leakage occurs in the first approximation.

For large activation energies, temperature variations in the flame are expected to be of

order ε = T 2
fl/Ta ¿ 1. In this formulation, Tfl is the equilibrium flame temperature in the

Burke-Schumann limit. Thus, (3.6) reduces to d2T/dZ̃2 = −Prω̂/χ̃, with ω̂ approximated

as a Dirac-delta function. The solution to these equations is

T = T∞ + 1 + α− (α + βfl) Z̃/Z̃fl, (3.17)

ŶF = (1 + α)(Z̃/Z̃fl − 1), ŶO2 = 0, (3.18)

in the fuel region Z̃fl 6 Z̃ 6 1,

T = T∞ + (1− βfl)Z̃/Z̃fl, (3.19)

ŶO2 = (1 + α)(1− Z̃/Z̃fl), ŶF = 0, (3.20)

in the oxidizer region 0 6 Z̃ 6 Z̃fl, and

H = −βflZ̃/Z̃fl, (3.21)

with

βfl = βfr + α/B (3.22)
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Figure 3.3: Numerical flame location zfl, nondimensionalized with the mixing-layer thick-
ness δM , and its asymptotic approximation (3.23) for Pr = 0.71, and numerical stagnation
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the heat-loss coefficient (2.52) based on equilibrium conditions. Figure 3.2 shows that

βfl decreases with increasing values of Rej for sub-adiabatic disk temperatures, with β →
Zst(T∞−TS) for Rej À 1. The value Hfl = −βfl corresponds to the excess enthalpy in the

diffusion flame.

To leading order, the flame location in the Z̃ coordinate corresponds to the stoi-

chiometric coordinate Z̃ = Z̃fl. The dimensionless spatial flame location zfl is obtained

numerically by using the inverse of the transformation (2.35). For Rej ¿ 1, zfl is expected

to be small, so that
∫∞
zfl

exp[
∫ ξ
0 Prφdz]dξ ∼ B/RejPr− zfl, and the asymptotic approxima-

tion

zfl ∼ [Pr(1 + α)]−1[−α/Rej + B0

+ B1Rej + O(Re2
j )] (3.23)

is obtained, where B0 and B1 successive approximations of the mass-transfer number given

by (2.39) and (2.40). Equation (3.23) is compared with the numerical integration of (2.35)

in figure 3.2. Note that the flame is beyond the stagnation plane for Rej > 0.029. The

Burke-Schumann solution (3.17)-(3.19) must satisfy the solvability condition 0 < Zst 6 ZS ,

or alternatively Z̃fl 6 1 for the flame to stand off the disk surface, which gives the minimum

mass-transfer number

Bmin = α for Z̃fl = 1. (3.24)

The asymptotic expansion (2.38) yields the minimum injection Reynolds number

Remin
j ∼ α

B1
∼ 0.027. (3.25)

Values Z̃fl > 1, or equivalently Rej < Remin
j , represent the flame located somewhere inside

the disk, a problem that is not addressed here. The minimum injection rate Remin
j is not

representative of flame extinction, but of the valid range of the space of solutions in the
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Burke-Schumann regime. As detailed in Section 3.3, flame extinction occurs well before

the minimum injection rate is reached, since nonequilibrium effects induced by finite-rate

chemistry and low wall temperatures become of paramount importance as Rej becomes

small.

In the flame-sheet region, the equilibrium temperature is the non-adiabatic Burke-

Schumann temperature

Tfl = T∞ + 1− βfl, (3.26)

which decreases with decreasing Reynolds numbers of injection as seen in figure 3.2. For

Rej = Remin
j , this model predicts the unrealistic result that the flame temperature is equal

to the disk temperature, Tfl = TS , although flame extinction due to finite-rate chemistry

effects occurs before this limit is actually achieved.

At sufficiently large Rej, the influences of the disk surface are negligible and the

adiabatic flame temperature

T∞fl = 1 + T∞ − Zst(T∞ − TS), (3.27)

is recovered in (3.26). In this limit, the excess enthalpy distribution is solely produced by

feed-stream enthalpy differences,

H = −Z(T∞ − TS), (3.28)

which holds for both frozen and Burke-Schumann regimes.

3.3 Diffusion-flame extinction

The nonequilibrium effects associated with finite-rate chemistry and finite Damkhöhler

numbers are expected to cause flame extinction well before the minimum-injection limit is
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reached. In particular, effects associated with the decrease in Da to cause flame-temperature

variations in fractional amounts of order ε are now carried out following Liñán [23].

To O(ε), both reactants diffuse into a flame region of thickness of O(ε∆−1/3), in

which temperature variations are of the same order with respect to the equilibrium flame

temperature Tfl,

T = Tfl −∆−1/3
0

[
εβ1 + εγη + O(ε2)

]
, (3.29)

where ∆0 is a reduced Damkhöler number given by the first term of the expansion

4PrZ̃2
fl(T

2/Ta)3

χ̃fl(1 + α)2
Dae−Ta/T = ∆0 + ε∆1 + O(ε2), (3.30)

so that

∆0 =
4PrZ̃2

fl(T
2
fl/Ta)3

χ̃fl(1 + α)2
Dae−Ta/Tfl , (3.31)

to leading order. In this formulation, η is an inner variable in the flame region,

η =
∆1/3

0 (1 + α)

2εZ̃fl

(Z̃ − Z̃fl). (3.32)

Thus, the diffusion-flame thickness becomes

δfl ∼ ε∆−1/3. (3.33)

Upon substituting expansion (3.29) into (3.6), the following equation

d2β1

dη2
= (β1 − η)(β1 + η) exp[−∆−1/3

0 (β1 + γη)], (3.34)
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is obtained, subject to dβ1/dη → ±1 at η → ±∞, which represents the inner (canonical)

structure of a diffusion flame in the diffusion-flame regime and was found in earlier work by

Liñán [23] for counterflow diffusion flames. In the present analysis, the excess enthalpy in

the flame −βfl differs from that of [23] since it is affected by the fuel injection rate and the

non-adiabatic disk surface. Nonetheless, for a given heat-loss coefficient βfl, the solutions

of the inner flame structure of [23] are valid for the extinction of the uniform diffusion flame

on the rotating porous-disk burner. The fuel and oxidizer concentrations in the flame region

are

YF = ε∆−1/3
0 (β1 + η), and YO2 = ε∆−1/3

0 (β1 − η) at Z̃ ∼ Z̃fl. (3.35)

In this formulation, γ is a leakage parameter given by

γ = −1 + 2(α + βfl)/(1 + α), (3.36)

with 1− γ twice the ratio between the heat lost from the flame toward the oxidizer region

to the total chemical heat released in the flame. Since βfl is a function of the boundary

temperature difference and the injection mass flow, γ also assumes different values depending

on those variables, as depicted in figures 3.2 and 3.5. Extinction occurs only in the region

|γ| < 1 and for boundary temperature differences −(1 + α) ≤ ∆T ≤ (1 + α)/α, in the sense

that no solution exists for ∆0 below the extinction Damkhöler number ∆0E . Outside this

range of temperatures, no abrupt extinction event exists. For 0 < γ < 1, the temperature

gradient is steeper on the fuel side, which in turn freezes the chemical reaction on that side

and enhances oxidizer leakage through the flame, with γ → 1 reaching a premixed structure

with O(1) oxidizer leakage and O(ε) fuel leakage. For −1 < γ < 0 the temperature gradient

is steeper on the oxidizer side and fuel leakage prevails, with γ → −1 reaching a premixed

structure with O(1) fuel leakage and O(ε) oxidizer leakage. Therefore as |γ| → 1 the flame

region shows a premixed structure, with O(1) leakage of one reactant, and the diffusion-

flame regime looses accuracy. These considerations are shown in figure 3.5.

Conventional AEA analysis of nonpremixed counterflow combustion [23] predicts

values of γ close to unity and strong fuel leakage when applied to hydrocarbon-air flames,

for which Zst is typically small. Since β and γ strongly depend on the fuel injection mass

flow Rej for the rotating-burner problem, fuel leakage is inhibited for sufficiently small mass

flows for which γ = 0, a condition identified by the superscript ?, and the experimental flame

is close enough to the disk surface to produce a steeper temperature gradient on the fuel
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side than the oxidizer side. The value of Rej for which γ = 0 is given by

B?(Re?
j ) =

2α[1 + ∆T/(1 + α)]
1− α− 2α∆T/(1 + α)

, (3.37)

where use has been made of (3.22) and (3.36). For Rej < Re?
j , then γ > 0 and oxidizer

leakage is favored. The occurrence of dominant oxidizer leakage when Rej < Re?
j is found

only for ∆T > −(1 + α)/2. These considerations are shown in figure 3.6 for the particular

case ∆T = 0.

The analysis [23] shows that equation (3.35) has a turning point at the reduced

Damköhler number at extinction, namely for

∆0E w e[(1− |γ|)− (1− |γ|)2 + 0.26(1− |γ|)3 + 0.055(1− |γ|)4], (3.38)

within 1% for |γ| < 1. Notice that the canonical equation (3.34) is symmetric in γ, since the

change of variables γ∗ = −γ and η = −η yields the same differential problem. Therefore

the solution for positive and negative values of γ are trivially related, so that the reduced

Damköhler number at extinction is a function solely of |γ|. The expansions (3.29) and
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(3.38) fails near premixed conditions, |γ| ∼ 1, where (3.38) erroneously predicts an infinite

flame strength at the minimum injection rate Remin
j . Nonetheless, extinction of the uniform

diffusion flame in the rotating porous-disk burner is associated to larger values of Rej in

the range 0.07 < Rej < 0.09 where ∆0E , as it will be seen in Chapter 5 in figure 5.1(b).

Substituting expression (3.38) into (3.31) and making use of (2.28), (2.35), (2.37),

(3.15), (3.22) and (3.26), the formula for the extinction Damköhler number

DaE(Rej) =
∆0ERe2

jPr(1 + α)2eTa/Tfl

4B2Z̃2
fl[T

2
fl/Ta]3

exp
[
2

∫ zfl

0
Prφ(z)dz

]
, (3.39)

is found, which defines the extinction conditions in terms of the fuel mass flow rate and the

angular velocity for the present experiments. In this formula, ∆0E , B, Z̃fl and Tfl, as well

as zfl and the function φ(z), depend on Rej , so that DaE varies with Rej . The comparison

of the values obtained from the extinction formula (3.39) with experimental data is delayed

until Chapter 5, figure 5.1(b), where the experiments are analyzed.



Chapter 4

Propagation dynamics of spiral

edge flames

4.1 Frenet-frame formulation

The advancing edge region of the flame is a zone of finite thickness δf . Nevertheless,

an edge location can be defined in a precise manner, for example, as the locus of the inflection

points of the temperature profile, or, for large activation energies, as a discontinuity in a

much larger scale, when the edge reaction zone is very thin compared with the hydrodynamic

length scale of the flow, δf/δM ¿ 1. An orthogonal, right-handed Frenet frame {n, s, b}
is defined attached to the moving curvilinear edge as depicted in figure 2.1. The Frenet

trihedron is defined by the unit tangent vector es to the edge resulting from the intersection

of the osculating and rectifying planes, the unit normal vector en to the edge resulting from

the intersection of the osculating and binormal planes, and the unit binormal vector eb to

the edge resulting from the intersection of the binormal and rectifying planes. The normal

vector en is defined as positive when pointing towards the burnt side of the edge, so that

the front curvature Ks is then positive for fronts concave towards the flame sheet to satisfy

by construction the first Frenet-Serret formula des/ds = Ksen [37]. Additionally, the edge

is assumed to have zero torsion, so that the third Frenet-Serret formula yields deb/ds = 0,

with eb = ez. Therefore, the equation of the osculating plane of the trailing flame is simply

given by z = z(Z̃fl) in (2.35), with the edge-flame propagating along lines of stoichiometric

mixture.

The edge may mathematically be described by the scalar G(x, y, t) = G0, with

35
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G < G0 and G > G0 for the burned and unburned states respectively. If the surface is

smooth and continuous, the previously defined unit vector normal to the edge is then given

by

en = −∇G/|∇G|. (4.1)

Every Lagrangian edge element may be considered to move with a velocity ULF with respect

to the laboratory frame, and since each such element remains on the edge, the relation

dG

dt
=

∂G

∂t
+ ULF · ∇G = 0 (4.2)

serves to maintain the value of G equal to G0 on the edge at future times. Although

the previously defined nondimensionalization for lengths, times and velocities are applied

here, the symbols also could be considered to represent dimensional quantities in (4.2),

and different, appropriately revised nondimensionalizations will be introduced later. The

relationship (4.2), which lies at the basis of the level-set methods, is to be used here for

edge-tracking purposes.

Daou and Liñán [8] have shown that the ratio of a characteristic flame thickness

δ0
L = DT /S0

L,st of a laminar planar premixed flame to the radius of curvature of the premixed

wings εδM , namely

Γ =
δ0
L

εδM
, (4.3)

is of paramount importance for characterizing the structure and propagation dynamics of

a triple flame. An edge flame represents the limit structure of a very slender triple flame

propagating in large mixture-fraction gradients, Γ → ∞. In this formulation, S0
L,st =

(4ε3ADT YO2,ste−Ta/Tf )1/2 is the burning rate of a planar laminar premixed flame in sto-

ichiometric proportions when the reaction rate is given by (2.27), Tf is a characteristic

nondimensional edge temperature, and ε is the inverse of a Zel’dovich number given by

ε = T 2
f /Ta ¿ 1, (4.4)

which is usually a small parameter in combustion applications because of the large overall

activation energies involved in typical combustion processes. The propagation parameter Γ

is related to a reduced Damköhler number ∆f of the edge based on the temperature of the

edge,

∆f =
(

δM

δ0
L

)2

= 4Prε3Dae−Ta/Tf =

(
S0

L,st

PrδMΩ

)2

=
1

Γ2ε2
, (4.5)
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which represents the ratio of the diffusion time through the mixing layer to the flame

transit time over the front thickness. The reduced Damköhler number is also related to the

Karlovitz number Ka or dimensionless strain rate, ∆f = 1/Ka.

For large activation energies, ε ¿ 1, and low tangential curvatures, the length scale

of variations in the normal direction to the front is much smaller than along its tangential

direction. Thus, the edge-flame temperature and excess enthalpy have a weak dependence

-of O(ε) at most- on the s coordinate in the first approximation, and solutions of (2.44)

and (2.45) are sought for which contours n =constant are level curves of temperature and

excess enthalpy. Additionally, if the edge is not deforming too rapidly, the time derivative

in the Frenet frame can be neglected and translation-invariant solutions can be obtained;

this occurs for a slowly meandering and slowly varying edge flame in which the time scale

of variation in the moving frame is much larger that 1/Ω. When the radius of curvature of

the premixed wings εδM is used as the unit length of the normal coordinate n, the planar

premixed flame velocity S0
L,st is used as the unit velocity scale, and the mixture fraction

coordinate is stretched about the diffusion-flame height as Z̃? = (Z̃ − Z̃fl)/ε, equations

(2.44)-(2.49) become

[
Un + ΓεKs + vn,rel(Z̃?)

] ∂H

∂n
= Γ

∂2H

∂n2
+ Γχ̃(Z̃?)

∂2H

∂Z̃?2
,

(4.6)
[
Un + ΓεKs + vn,rel(Z̃?)

] ∂T

∂n
= Γ

∂2T

∂n2
+ Γχ̃(Z̃?)

∂2T

∂Z̃?2
,

+
ŶF ŶO2

4Γε3
exp

[
−1

ε

(Tf − T )
T/Tf

]
, (4.7)

and

ŶF = H + εZ̃?/Z̃fl + 1 + T∞ − T, (4.8)

ŶO2 = 1− αεZ̃?/Z̃fl + H + T∞ − T, (4.9)

subject to

ε(H + ∆T ) +
1
B

(
∂H

∂Z̃?
− ∂T

∂Z̃?

)
= 0, T = TS , (4.10)

at Z̃? = (1− Z̃fl)/ε, and

H → 0, T → T∞. (4.11)

at Z̃? = −Z̃fl/ε. In this formulation,

Un = (v⊥| eZ= eZfl
−ULF) · en (4.12)
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is the front propagation velocity or burning-rate eigenvalue (in general dependent on the

tangential curvature of the edge), and

Ks = −∇ · en =
∇2G + en · ∇(en · ∇G)

|∇G| (4.13)

is the edge tangential curvature measured in the hydrodynamic scale 1/δM . Equations

(4.6) and (4.7) implicitly assume small curvatures, Ks ¿ Un/Γε, such that the tangential

variations of the temperature and excess enthalpy are 6 O(ε). This limit corresponds

to a “nearly straight” edge flame, in which the tangential variations of the propagation

velocity Un with respect to its planar counterpart, U0
n, are much smaller than unity. For

Ks > O(Un/Γε), equations (4.6) and (4.7) loose accuracy since the tangential heat losses

become important.

Equations (4.6) and (4.7) also contain the quantity vn,rel = (v⊥ − v⊥| eZ= eZfl
) · en,

which represents the relative flow advection with respect to the edge.

Upstream from the edge, n → −∞, the temperature and excess-enthalpy profiles

correspond to the frozen profiles, (3.11) and (3.12). Downstream from the edge, n →
+∞, the temperature and excess-enthalpy profiles can correspond either to the equilibrium

profiles, (3.17), (3.19) and (3.21), or to the frozen profiles, (3.11) and (3.12), depending on

the value of the mass transfer number B as detailed further below.

4.2 Influences of heat losses to the burner surface

on the propagation of edge flames

4.2.1 Order-of-magnitude analysis of the conservation equations

Order-of-magnitude analyses can be performed in equations (4.6)-(4.11) as follows.

The propagation velocity U0
n, nondimensionalized with S0

L,st, is of O(1) as observed from

a convective-diffusive balance in the preheat region, which has a thickness1 of O(Γε). In

this region, both streamwise convection and diffusion terms are of O(1/Γ) in (4.6) and

(4.7), whereas the transverse diffusion and reaction terms are of O(Γε2) and O(e−1/ε),

respectively, the former follows from changes in Z̃ being of O(1) and the latter from Tf −T

being of O(1). The nondimensional reaction-layer thickness δf in the edge region, where

variations in temperature and composition are of O(ε), is obtained by a balance between the

streamwise diffusion and reaction terms in (4.6) and (4.7), δf ∼ Γε2. Thus, the streamwise

1Characteristic thicknesses in this discussion are normalized with the mixing-layer thickness δM .
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diffusion and reaction terms in the edge reaction-layer region are of O(1/Γε), whereas the

streamwise convection transport is of O(1/Γ) and the transversal diffusion term is of O(Γε),

since variations of temperature of O(ε) occur in transversal distances of O(ε), which are

of the same order as the radius of curvature ε of the triple-flame wings. The thickness

of the trailing diffusion flame δfl, where variations in temperature and composition are of

order ε∆−1/3
fl , is obtained by a balance between the transversal diffusion and reaction terms,

δfl ∼ ε∆−1/3
fl . Finally, if ∆fl ∼ ∆f , the diffusion-flame Damköhler number can be related to

the propagation parameter Γ by using (4.5). However, both Damköhler numbers can differ

by large amounts, as detailed below. These estimates are used in what follows to obtain

the characteristic dimensions of triple flames propagating in strained mixing layers in both

adiabatic and non-adiabatic modes.

Numerical computations were performed to analyze and isolate the effects of the

cold porous wall on the propagation of a nearly straight edge flames. For that purpose,

equations (4.6)-(4.11) were integrated numerically without streamwise hydrodynamic flow

effects, vn,rel = 0 (a better approximation for small values of Γ), subject to (4.10) on the

disk surface and to the frozen profiles (3.11)-(3.14) far upstream from the edge and in the

oxidizer stream far from the surface. The effect of the von Kármán flow that was retained is

its influences on the mixture-fraction field, through the scalar dissipation rate (2.42), which

appears in (4.6) and (4.7). The boundary conditions far downstream were calculated from

the conservation equations in each iteration. A schematic diagram of the computational

model is shown in figure 4.1. The numerical calculations for the adiabatic case (large-B limit)

used a Zel’dovich number 1/ε = 8 and a stoichiometric mixture fraction Zst = 1/2, with

a single-step chemical reaction of pure Arrhenius type and zero feed-stream temperature

difference T∞ = TS as in [8]. The numerical calculations for the non-adiabatic case (small-
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B limit) used the same Zel’dovich number and a CH4-air stoichiometric mixture fraction

Zst = 0.056, with zero feed-stream temperature difference T∞ = TS , and variable activation

energy and heat release as in [33] to avoid unrealistic super-adiabatic flame speeds on the

fuel side that are artifacts of hydrocarbon single-step reactions with constant activation

energy [33].

Both cases were calculated using a centered, second-order finite-difference method

with an explicit predictor-corrector time-relaxation numerical scheme, and with 42,000 mesh

points for the adiabatic case and 72,000 mesh points for the non-adiabatic case. Numerical

convergence was established by obtaining a constant propagation velocity and time-invariant

excess enthalpy and temperature distributions with a tolerance of 10−8. The method for

anchoring the flame within the computational domain and for obtaining the burning-rate

eigenvalue closely followed earlier work [38]. First, the computation was performed in the

laboratory frame with a localized ignition of the mixture far downstream from the anchoring

point, and the resulting propagation velocity was observed. Next, the front was fixed in

a moving frame by specifying the temperature at an arbitrary anchoring point (which in

the calculations was set to n = 0 and Z = Zst), and the previously observed velocity was

used as a first approximation in an iterative process. Finally, the convective velocity in the

moving frame until convergence of the steady-flow problem was achieved.

4.2.2 Adiabatic triple-flame propagation regimes

For Rej > O(1) the mass-transfer number is B > O(1) according to (2.37), the flame

is far from the wall and the heat-loss term involving B in (4.10) is negligible. The edge,

trailing diffusion flame, and adiabatic flame temperatures are expected to be nearly equal,

Tf ∼ Tfl ∼ T∞fl . In these regimes, the Damköhler numbers of the edge and trailing diffusion

flame are of the same order of magnitude, ∆f ∼ ∆fl, and the flame is isenthalpic if the

feed-stream temperatures are equal.

Figure 4.2(a-d) shows the asymptotic propagation regimes found by using the scaling

analyses outlined above for particular orderings of Γ, in the limit of large B and without

streamwise hydrodynamic flow effects. The ordering of the reaction-zone shape (the shaded

region) is different for the edge and for the trailing diffusion flame, and those orderings,

following from [8], depend on the ordering of Γ. The transverse extent of the edge reaction

zone is of O(ε) in all regimes, but the ordering of its longitudinal extent increases with

increasing ordering of Γ, as does the ordering of the transverse extent of the reaction zone of

the trailing diffusion flame. Advancing edges occur for small enough curvatures of the triple-
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flame wings. At larger ordering of Γ, just prior to the complete diffusion-flame extinction,

all edges retreat.

Figure (4.2)(e,f) shows an example of a triple flame structure obtained by the nu-

merical integration of a similar set of equations to (4.6)-(4.11) as in [8], which corresponds

to a two-dimensional steady triple flame in a counterflow mixing layer. This configuration

is expected to be qualitatively similar to the large-B limit in the present analysis, and the

similarity of the results helps to validate the numerical code utilized here. The premixed

front and the trailing diffusion flame burn more intensely as the stratification in the mixing

layer is reduced. Extinction of the trailing diffusion flame is not observed in any of the

advancing-edge regimes. The dynamics of triple flames in these regimes has been studied

extensively in the past [3-8,39].

4.2.3 Non-adiabatic triple-flame propagation regimes

For Rej ¿ 1 the mass-transfer number is B ¿ 1 according to (2.37), and the heat-

loss term in (4.10) is non-negligible. In this regime, the flame is non-insenthalpic even in the

case of equal feed-stream temperatures. The temperature of the edge Tf and the trailing

diffusion-flame temperature Tfl given by (3.26) are not necessarily the same because of the

heat losses to the disk surface. Similarly, Tfl < T∞fl in view of (3.15), (3.22), (3.26) and

(3.27). Small differences between Tf and Tfl lead to the expression

∆f

∆fl
∼ exp

[
−1

ε

(
Tfl − Tf

Tfl/Tf

)]

= exp
[
1
ε

(
Hf + βfl

1− (Hf + βfl)/Tf

)]
, (4.14)

where Hf = −βfl + Tf − Tfl is a characteristic excess enthalpy in the edge region. In

particular, if Tf − Tfl = O(εn) with 0 < n < 1, then the excess enthalpy of the edge

is larger than the excess enthalpy in the diffusion flame Hf > −βfl by amounts of order

εn, and ∆f/∆fl = O(eε−|1−n|
) À 1. Similarly, if Tf − Tfl = O(εn ln ε) with 0 6 n 6 1,

then Hf > −βfl as well and ∆f/∆fl ∼ eε−|1−n|/(1−n) À 1. These estimates show that,

in the limit of large activation energy, small differences between the edge reaction-zone

and trailing diffusion-flame temperatures can lead to triple flames with large or order-

unity front Damköhler numbers and small diffusion-flame Damköhler numbers, which are

representative of propagating edges of diffusion flames that are close to extinction or have

already undergone complete extinction. These edges propagate nearly adiabatically with an

excess enthalpy distribution that, in the first approximation, is uniform in the n− direction



42

−10 −30

−10 −30

0 0

0 0

10 50

10 50

20 100

20 100

30 150

30 150

40 200

40 200

50 250

50 250

3

0
300

300

0

2

0.2

5

0.2

1

0.4

4

0.4

0.6

0

3

0.6

−1

0.8

2

0.8

−2

1.0

1

1.0

−3

0
−1
−2

IGNITION IGNITION

EXTINCTION

IGNITION IGNITION

IGNITION / EXTINCTION EXTINCTION IGNITION / EXTINCTION

OXIDIZER

FUEL

OXIDIZER

WALL FUEL INJECTION

ǫ7/3

ǫ3

ǫ

ǫ5/2

ǫ2
ǫ

ǫ

ǫ3/2

ǫ4/3

ǫ

ǫ

ǫ

(a) (b)

(c) (d)

1/ǫ2

ǫ3

ǫ

ǫ5/2

1/ǫ3/2

ǫ

ǫ

1
1

ǫ3/2

ǫ

Γ ∼ ǫΓ ∼ ǫ Γ ∼ ǫ1/2Γ ∼ ǫ1/2

Γ ∼ 1/ǫ1/2 Γ ∼ 1/ǫ1/2
Γ ∼ 1/ǫ Γ ∼ 1/ǫ

U0

n
= O(1) U0

n
= O(1)U0

n
= O(1) U0

n
= O(1)

U0

n
= O(ǫ1/2) U0

n
= O(ǫ1/2)U0

n
= O(1) U0

n
= O(1)

∆f = O(1/ǫ4)∆f = O(1/ǫ4) ∆f = O(1/ǫ3) ∆f = O(1/ǫ3)

∆f = O(1/ǫ) ∆f = O(1/ǫ)∆f = O(1) ∆f = O(1)

Ks 6 O(1/ǫ2)Ks 6 O(1/ǫ2) Ks 6 O(1/ǫ3/2) Ks 6 O(1/ǫ3/2)

Ks 6 O(1) Ks 6 O(1)Ks 6 O(1) Ks 6 O(1)

(g) (h)

(i) (j)

(e)

(f) (l)

ŶF
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ŶF

|H|
ω̂

nn

n n

Z̃⋆Z̃⋆

U0

n
= 0.19

U0

n
= 0.75

Γ = 1.4

Γ = 1.4
Rej = 0.08

Figure 4.2: Asymptotic propagation regimes for small (a-b,g-h) and large (c-d,i-j) mixture-
fraction gradients for adiabatic (left column) and non-adiabatic (right column) triple flames.
Shaded areas represent reaction-zone thicknesses. Thicknesses are nondimensionalized with
the hydrodynamic scale δM . The propagation velocity is nondimensionalized with the pla-
nar laminar premixed-flame velocity. The curvature value shown is the maximum curvature
in hydrodynamic scales above which the curvature term in (4.6) and (4.7) has an order-unity
effect on the planar propagation velocity and tangential heat loss terms should be retained;
for smaller curvatures, the correction to the planar propagation velocity is expected to be
small and simply linear as in Un = U0

n − ΓεKs, which is consistent with the overall con-
vective velocity (or eigenvalue) that multiplies the streamwise convection terms (4.6) and
(4.7) for vn,rel = 0. (e) Reaction-rate contours of the numerical solution for a freely propa-
gating triple flame with Γ = 1.4 in a counterflow mixing layer as in [8], and (f) associated
temperature, reaction-rate and fuel-mass fraction profiles along the stoichiometric line. (k)
Excess-enthalpy color contours ranging from H = −0.85 (dark-red color, online version;
dark-grey color, printed version) to H = 0 (white color), and reaction-rate contours of the
numerical solution for a triple flame with Γ = 1.4 and Rej = 0.08 propagating near the
disk wall in a von Kármán boundary layer, and (l) associated temperature, reaction-rate,
excess-enthalpy and fuel-mass fraction profiles along the stoichiometric line.
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and is given by (3.28); however phenomenologically different, such highly diffusive behavior

of the excess enthalpy H is somewhat reminiscent of the “Fife limit” encountered in earlier

treatments of some of the chemical patterns of table 1.1, in which the controller variable is

found to diffuse much more rapidly than the propagator variable [40].

Figure 4.2(g-j) shows the asymptotic propagation regimes found by varying Γ in (4.6)

and (4.7) for negligible tangential curvature and without effects of the normal hydrodynamic

flow to the front. The nearly adiabatic propagation of the edge is justified by the fact that,

i) for Γ ¿ 1/ε, the transverse heat diffusion term Γχ̃∂2T/∂Z̃?2 in the preheat region,

which is of O(Γε2), is much smaller than the heat streamwisely convected to ignite the

frozen mixture ahead, U0
n∂T/∂n = O(1/Γ), which is balanced with the streamwise heat

diffusion Γ∂2T/∂n2 = O(1/Γ) there, and ii) for Γ ¿ 1/ε, the transverse heat diffusion

in the edge reaction-layer region, Γχ̃∂2T/∂Z̃?2, is of O(Γε) and much smaller than the

streamwise diffusion Γ∂2T/∂n2 = O(1/Γε), which is is balanced with the chemical reaction

O(1/Γε) there. Therefore the front propagates in a transversally adiabatic mode in the

first approximation for a range of Γ, either in advancing or in very weak retreating modes,

Γ ¿ 1/ε.

For propagation regimes in which ∆f/∆fl À 1, extinction of the trailing diffusion

flame exists when ∆fl . ∆E and a balance between the transverse diffusion and strain rate

has been established downstream of the edge. This qualitative difference from figure 4.2(a-

d) is illustrated in figure 4.2(g-j). The diffusion-flame extinction occurs at dimensional

distances from the edge of order U0
nδ

2
M/DT (with U0

n dimensional), which is obtained by a

balance between transverse diffusion and streamwise convection, and in the present nondi-

mensional notation corresponds to nE ∼ U0
n/Γε2 in scales εδM . Over distances of order nE ,

the frozen profiles (3.11)-(3.14) are recovered. The dimensional time for extinction of the

diffusion flame is therefore

tE ∼ δ2
M/DT , (4.15)

which increases with decreasing Ω.

These aspects of non-adiabatic triple-flame regimes can be observed in figure 4.2(k,l),

which shows the results of the numerical integration for small B mentioned previously.

The values employed for the computation in the model illustrated in figure 1.5, namely

Γ = 1.4 and Rej = 0.08, are beyond the static quenching point of the diffusion flame, as

verified by a separate calculation of the extinction of the diffusion flame after dropping the

streamwise transport terms in (4.6) and (4.7). The computation, which corresponds to a

condition between that of figure 4.2(h) and figure 4.2(i), clearly exhibits a triple-flame type
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of structure for the propagating reaction layer, although some broadening in the preheat

region is expected.

It is worth mentioning that diffusion-flame edges behind which diffusion flames can-

not exist have been characterized previously within the context of non-equidiffusive non-

premixed combustion [41], for which a non-zero excess enthalpy distribution is enhanced by

non-unity Lewis-number effects. It is well known that, since the adiabatic temperature is a

thermodynamic property that is independent of the diffusive properties of the mixture, the

Lewis number affects the diffusion-flame temperature but does not influence the premixed-

flame temperature [1]. Therefore, extinction of the trailing diffusion flame can be induced

by increasing the average Lewis number of the mixture and thereby reducing the diffusion

of reactants into the reaction zone, which decreases the diffusion-flame temperature while

maintaining the same front temperature, in this way producing what have been termed

“edges of flames that do not exist” [41]. The present situation is different in that the excess

enthalpy is responsible for the extinction of the diffusion flame, this negative excess coming

from the heat losses to the disk surface, which are larger in the presence of the diffusion

flame than in the preheat and edge reaction-layer regions of the propagating edge flame.

4.3 Edge dynamics

4.3.1 The G-equation

When the kinematic relation (4.12) is substituted into the edge equation (4.2), the

expression
∂G

∂t
+ v⊥| eZ= eZfl

· ∇G = Un|∇G|, (4.16)

for the scalar G is obtained, which has been termed the “G-equation” in turbulent-combustion

literature [1, 2]. In this section, spatial coordinates and velocities are nondimensionalzed

with δM and δMΩ, as in the original hydrodynamic formulation. A linear Markstein-type

correction model for the effects of curvature on the propagation velocity Un [43] is used in

this study to account for heat losses from the curved edge,

Un = U0
n −

Ma
Pr
Ks. (4.17)

Here Ma, a Markstein number that in general would depend on the edge-flame structure, is

set equal to unity to be consistent with the previous simplified formulation, which results

in an equivalent Markstein length L = DT /U0
n, of the same order as the preheat thickness

of the edge. The resulting approximation is expected to be reasonable for equidiffusional
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flames in analogy to wrinkled premixed flames [44], but to be limited to small differences

(U0
n −Un)/U0

n. Upon substituting (4.17) into (4.16), the G-equation reduces to

∂G

∂t
+ v⊥| eZ= eZfl

· ∇G +
Ks|∇G|

Pr
= U0

n|∇G|. (4.18)

Expression (4.18) represents a Hamilton-Jacobi equation with a parabolic second-order dif-

ferential operator in the curvature term. The first term on the left-hand side of (4.18)

represents the local time variation of the edge shape, the second term accounts for the ad-

vection of the edge by the underlying swirling flow, the third term is a diffusive contribution

that results from curvature effects on the propagation velocity, and the first term on the

right-hand side is a source that accounts for the front self-propagating motion normal to

itself because of the heat transfer from the planar edge to the frozen mixture upstream.

The scalar field G is a assumed to be of the form G(r, θ, t) = F (r, t) − θ, with

∂F/∂θ = 0, although it can be shown that the solution for G is independent of this ansatz

[2]. The normal vector to the front is then

en = −
[(

r
∂F

∂r

)
er − eθ

] /√(
r
∂F

∂r

)2

+ 1, (4.19)

where use has been made of (4.1). Thus, the tangential curvature (4.13) can be expressed

as

Ks =

[
r2

(
∂F

∂r

)3

+ 2
∂F

∂r
+ r

∂2F

∂r2

]/ [
r2

(
∂F

∂r

)2

+ 1

]3/2

. (4.20)

In view of (2.8), substituting (4.19) and (4.20) into (4.18), the equation

r
∂F

∂t√(
r
∂F

∂r

)2

+ 1

−
|φ′fl|r2

2
∂F

∂r
− rVfl

√(
r
∂F

∂r

)2

+ 1

= −
r2

(
∂F

∂r

)3

+ 2
∂F

∂r
+ r

∂2F

∂r2

Pr

[
r2

(
∂F

∂r

)2

+ 1

]3/2
+ U0

n

(4.21)

is obtained for the evolution of F (r, t). In this formulation, |φ′fl|/2 and Vfl represent the self-

similar radial and azimuth hydrodynamic velocity gradients in the radial direction evaluated

at the flame height Z̃ = Z̃fl. Similar equations have been encountered in earlier studies

[16, 17, 45] of spiral-wave propagation in pure reactive-diffusive systems; the results obtained

in this section thereby represent a generalization by including swirling flow advection.
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4.3.2 The tangential structure of a steadily rotating spiral

For the case of steadily rotating spirals, the front moves in a solid-rotation mode in

the laboratory frame, describable as

ULF = −ωreθ, (4.22)

and the functional form

F (r, t) = f(r) + ωt, (4.23)

can be substituted in (4.21), where ω is the rotating burning rate eigenvalue nondimension-

alized with the disk angular velocity Ω. An additional change of variables, ϕ = r(df/dr) =

tan γ, where γ is the slope angle between the edge and the radial unit vector, is performed

here to facilitate calculations.

The experimental findings to be outlined in Chapter 5 suggest that the spirals rotate

about a hole of finite radius, denoted dimensionally here by rF, which is observed to be

much larger than a representative radius of curvature L in the vicinity of the tip. This limit

is referred to as the “large core” limit in what follows in analogy to earlier works on spirals

in reactive-diffusive systems [16]. As will be seen later in figure 5.1, the spiral flames spin

in solid rotation motion for sufficiently small Rej and Da, and the radius rF decreases with

decreasing Rej and increasing Da. This is also true to some extent for slightly meandering

spirals, for which the tip meanders about the disk center in an epicycloidal trajectory of

an average radius that could be treated as rF (see Chapter 5, figure 5.2). However, the

quasi-steady decomposition (4.23) is not generally valid for meandering spirals, since the

unsteady effects would be important in that case. The inner region r−rF = O(L) represents

the region where effects of reactant and heat diffusion cause a non-negligible contribution

to the front propagation velocity through the flame tangential curvature.

Spatial dimensions are renormalized in equation (4.21) for convenience as r̃ = r/`,

with the outer scale ` defined as

` =
2U0

n

Ω|φ′fl|
, (4.24)

which corresponds to the radial length at which the radial velocity induced by the disk,

|φ′fl|Ω`/2, is equal to the dimensional planar front propagation velocity U0
n. In this revised

scale, the curvature (4.20) becomes

K̃s =
1
r̃

ϕ

(1 + ϕ2)1/2
+

dϕ/dr̃

(1 + ϕ2)3/2
, (4.25)
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which is related to the propagation velocity by the Markstein formula (4.17), which becomes

Un = U0
n(1−λK̃s) in these variables. Similarly, the transport equation (4.21) is transformed

into

λ
[
r̃
dϕ′

dr̃
+ (1 + ϕ2)ϕ

]

= (1 + ϕ2)
[
r̃(1 + ϕ2)1/2 − r̃2(S − ϕ)

]
, (4.26)

where λ is a dimensionless Markstein diffusivity that represents the ratio of the characteristic

radius of curvature to the outer spatial scale,

λ =
L
`

=
|φ′fl|
2Pr

(
δMΩ
U0

n

)2

¿ 1, (4.27)

which is experimentally observed to be a small parameter, and where

S = 2(Vfl + ω)/|φ′fl| (4.28)

is a swirl number that represents the ratio of the effective swirl in the Frenet frame to the

radial velocity component at any radial distance.

Figure 4.3 shows the variations of the swirl number S with the injection Reynolds

number, calculated from (4.28) by using solutions of the von Kármán swirling flow with

fuel injection, evaluated at the distance from the porous disk at which Z = Zst = 0.056, the

stoichiometric surface. The non-monotonicity of the dependence of S on Rej for ω > 0, is a

reflection of the non-monotonicity of the radial velocity illustrated in figure 2.2(a). For small

Rej , near Remin
j , as the injection velocity is decreased the stoichiometric surface approaches

the surface of the disk, and S becomes infinite because the radial velocity reaches zero when

it is at the disk; on the other hand, for large Rej the stoichiometric surface moves farther

into the air, where the radial velocity is smaller, as the injection rate is increased.

An expression for the dimensionless core radius, which represents the lift-off radius

at which the tip is anchored by the radial convection, can be obtained, in the approximation

(4.17) of a linear dependence of the propagation velocity on curvature, by rearranging (4.26),

which gives

r̃F =
(
1− λK̃Fs

) √
1 + ϕF2

S − ϕF
, (4.29)

where the superindex F represents quantities evaluated at the tip. The ratio `/δM =

O(∆1/2
f ) À 1 is a large number for having igniting fronts according to Figure 4.2 and

equation (4.5), which indicates that the typical core size is much larger than the mixing layer

thickness as observed in the experiments. The Markstein length is smaller than the mixing-

layer thickness for having preheat thicknesses smaller than δM , so that L ¿ δM ¿ rF 6 `,
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Figure 4.3: Swirl number as a function of the injection Reynolds number.

which is achieved when Γ ¿ 1/ε. In this limit, the spiral tip is anchored in a region of large

radial and azimuth hydrodynamic velocities, which are of order `Ω, whereas the normal

fluid velocity to the disk is much smaller there, of order δMΩ.

The outer region

For r̃ À 1 and λ ¿ 1, the outer solution of (4.26) is

ϕ =
r̃2S −

√
r̃2(1 + S2)− 1
r̃2 − 1

, (4.30)

to leading order in λ, which represents the equation of an edge flame propagating with a

velocity that is unaffected by curvature.

Substituting (4.30) into (4.29) for λ = 0, the core radius

r̃F0 = 1/
√

1 + S2 (4.31)

is obtained, which corresponds to the radius at which the modulus of the incoming fluid ve-

locity in the Frenet reference frame equals the planar propagation velocity, U0
n = ||v⊥| eZ= eZfl

−
ULF||, so that the edge arrives at the tip normal to the incoming relative flow. For

r̃ < r̃F0 , since ||v⊥| eZ= eZfl
− ULF|| < U0

n, the normal component of the relative swirling

flow (v⊥| eZ= eZfl
−ULF) · en is smaller than the propagation velocity U0

n, so that the spiral

must end at r̃F0 in the first approximation λ = 0.

For r̃ →∞, the outer solution asymptotes to

ϕ ∼ S −
√

1 + S2

r̃
+
S
r̃2

+ O

(
1
r̃3

)
. (4.32)
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It is worth mentioning that the reactive-diffusive systems of figure 1.2(b-e) display Archime-

dean spiral patterns far from the core, r ∼ θ, whereas in the present analysis Bernoulli spirals

are obtained in the far field in the first approximation, r̃ ∼ eθ/S , which coincide with the

streamlines of the two-dimensional flow field relative to the flame. The spiral growth in

geometric progression found in the experiments suggests that this is in fact the case for

the spiral flames, which explains the few spiral turns observed and the rapid growth due to

advection effects, which departs from the linear Archimedean growth of the reactive-diffusive

spirals shown in figure 1.2 (b-e).

For r̃ ∼ r̃F0 the outer solution (4.30) asymptotes to

ϕ ∼ − 1
S +

√
2

S2
(1 + S2)5/4

(
r̃ − r̃F0

)1/2
+ O

(
r̃ − r̃F0

)
. (4.33)

Figure 4.4 shows the edges obtained by making use of (4.30) for different values of the swirl

number. Large values of S are associated with highly curved spirals, whereas straight edges

occur for small S. According to figure 4.3, for the same value of S, with S > 0, there is

an infinite set of counter-rotating spirals, as well as an infinite set of co-rotating spirals at

much lower values of Rej (less than its value for ω = 0) that share the same edge geometry

(since S is the same) and correspond to advancing fronts, U0
n > 0. In addition, at fixed Rej ,

achievable, for instance, by fixing Ω and the fuel-injection rate, there are correspondingly

infinite sets of spirals with different shapes, each with a different U0
n > 0.

The second term in the expansion (4.33) is not differentiable at the spiral tip, and

the curvature (4.25) becomes infinite there for S > 0, which renders the solution (4.30) non-

uniform in the limit λ → 0+. For S = 0, a straight edge that is stationary in the incoming

fluid reference frame (U0
n = 0) is obtained, and it co-rotates with the local azimuth flow in

the laboratory frame for all Rej with an angular velocity ΩVfl and a core radius rF = `

to every order in λ. However, single steady co-rotating edges have been experimentally ob-

served only in multiple-spiral dynamics, a problem that is not addressed here. Additionally,

the tip calculated by the outer solution (4.30) is found to be quasi-statically unstable to

spatial perturbations, as detailed in Section 4.3.3.

The inner region

The non-uniformity of the outer solution at the tip leads to the existence of an inner

region, r̃ − r̃F = O(λ), where the curvature term is non-negligible. According to equation

(4.31), so long as S is not large, S ¿ 1/λ, the core radius rF is larger than the Markstein

length L, and λ/r̃F can be regarded as a small parameter as well, which represents the



50

−4 −2 0 2 4

−4

−2

0

2

4

b

b

b

u

u

u

u
b

r̃ cos θ

r̃
s
in

θ

S = 5

S = 1

S = 10

S = 0 Ω

Figure 4.4: Spiral edges obtained by using the outer solution (4.30). The letters u and b
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large-core limit. In this limit, the inner-region equation

dϕ

dξ
= (1 + ϕ2)3/2 − r̃F(1 + ϕ2)(S − ϕ), (4.34)

is obtained to leading order in λ/r̃F, where

ξ =
r̃ − r̃F

λ
, (4.35)

is the inner variable. For ξ → +∞, the solution of (4.34) is asymptotic to ϕ = −1/S + Ψ,

where Ψ is a O(λ) correction with respect to the outer leading-order value that satisfies the

nonlinear equation dΨ/dξ = S r̃FΨ2/2 subject to Ψ → 0 as ξ → +∞, which gives

ϕ ∼ − 1
S

(
1 +

2
r̃Fξ

)
, ξ → +∞. (4.36)

For ξ → 0, the inner equation (4.34) reduces to dϕ/dξ ∼ (r̃F − 1)ϕ3 subject to ϕ → −∞
as ξ → 0, which gives

ϕ ∼ − 1
S

(
1 +

2
r̃Fξ

)
, ξ → +∞. (4.37)
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Upon substituting (??) into (4.25), the curvature value at the tip is found to be

K̃Fs ∼ 1− r̃F

λ
, (4.38)

which represents the maximum curvature of the edge. Therefore, the propagation velocity

at the spiral tip is
Un
F

U0
n

∼ r̃F, (4.39)

consistent with formulation based on (4.17).

Equation (4.39) can be read in dimensional variables as Un
F = Ω|φ′fl|rF/2, which

represents a balance between the edge propagation velocity (with curvature correction in-

cluded) and the radial convection at rF. For λ > 0, with λ ¿ 1, the edge in the tip region

is normal to the radially advected mixture and advances towards it.

Figure 4.5 shows examples of spiral tips obtained by the numerical integration of

(4.26) subject to ϕ → S at r̃ → ∞. All the spirals with λ 6= 0 arrive perpendicularly to a

radial vector, so that the circular motion of the spiral is locally irrelevant at the core radius.

As the dimensionless Markstein diffusivity λ increases, the tip moves closer to the center

of rotation, and it asymptotically passes through the center for a particular critical value

λC(S) that needs to be calculated numerically, and for which the edge goes from burning

in an advancing mode, Un
F > 0, to being locally stationary, Un

F = 0. For λ > λC , there is

an inner portion of the edge that propagates in a retreating mode, Un
F < 0, locally similar

to a laboratory-stationary flame isola in a counterflow burner, while the outer portion still

propagates in an advancing mode, as represented in figure 4.5 by the λ = 1.0 spiral. These

last behaviors, however, are unlikely to occur within the range of validity of the linear

relationship (4.17), and they are not seen in any of the experiments. The consideration of

fixed λ and variable S produce similar dynamics to those outlined above.

The intermediate region

The asymptotic expansions (4.33) and (4.37) do not match to second order. An

intermediate region exists, of thickness O(λ3/2), that extends from the tip to the segment

of the edge that is parallel to the radial unit vector, and the edge is purely azimuthally

advected at that point. The intermediate asymptotic expansion

ϕ = − 1
S +

λ1/3(1 + S2)2

S3
ψ + . . . , (4.40)

may be defined, with the intermediate variable

σ =
r̃ − r̃F

λ2/3
. (4.41)
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Figure 4.5: Spiral edges obtained by the numerical integration of (4.26) for S = 1.

Substituting (4.40) and (4.41) into (4.26) and retaining terms of O(λ2/3), the equation

dψ

dσ
− qψ2 + σ + p = 0, (4.42)

is obtained in the distinguished limit r̃F − r̃F0 = O(λ2/3). In this formulation, p and q are

two order-unity constants given by

p =
r̃F − r̃F0

λ2/3
, (4.43)

and

q =
(1 + S2)3/2

2S2
. (4.44)

Equation (4.42) is a Ricatti equation, which can be cast into an Airy equation by changing

the independent variable to E = q1/3(σ+p) and defining M such that ψ = −(1/q2/3M)dM/dE

[46]. In these variables, (4.42) becomes

d2M

dE2
= ME, (4.45)

which solution is a linear combination of Airy functions Ai(E) and Bi(E). Matching of

(4.40) with (4.33) requires M to be bounded for E > 0, so that M = CAi(E), where C is

an integration constant. Therefore

ψ = −1
q

d lnAi(σ)
dσ

(4.46)
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represents the intermediate solution.

For E → +∞, M ∼ C exp(−2E3/2/3)/(2E1/4π1/2) and ψ ∼ (σ/q)1/2; the substitu-

tion of this upper limit for ψ in (4.40) exactly reproduces the second term of the expansion

(4.33) of ϕ in the upper overlapping region. For ξ large, the intermediate expansion of (4.37)

reads ϕ ∼ −1/S− (1+S2)2/S3qσ. Since Ai(E) ∼ E−c1 near the first zero c1 = −2.3381 of

Ai on the negative real axis, then ψ ∼ −q−2/3[q1/3(σ+p)−c1]−1 for E ∼ c1, or equivalently,

for σ → 0. Therefore, asymptotic matching between the intermediate solution (4.40) and

the inner solution (4.37) in the lower overlapping region requires that pq1/3 = c1. This

matching relation results in the second-order expansion

r̃F1 = r̃F0
(
1 + 21/3c1S2/3λ2/3

)
, (4.47)

which shows that the tip radius undergoes reductions of order λ2/3 with respect to its leading

order value when small curvature effects of O(λ) on the edge propagation are considered.

Substituting the relation (4.47) into the equations (4.38) and (4.39) obtained from

the inner region, the expansions

K̃Fs ∼ 1− r̃F0
λ

− 21/3c1S2/3r̃F0
λ1/3

, (4.48)

and
Un
F

U0
n

∼ r̃F0
(
1 + 21/3c1S2/3λ2/3

)
(4.49)

are obtained.

Equations (4.31) and (4.47) yield successive approximations of the spiral rotational

velocity ω as a function of the rest of the parameters and of the tip curvature when the

definitions (4.24), (4.27), (4.28) and (4.38) are used.

4.3.3 Spiral-flame anchoring and quasi-static stability

The rate of variation Υ of the relative normal velocity component in the normal

direction to the edge with respect to the propagation velocity variation may be defined as

Υ =
1

U0
n

[
en · ∇(v⊥| eZ= eZfl

−ULF) · en − ∂Un

∂n

]

= − ϕ√
1 + ϕ2

[
(S − ϕ)√

1 + ϕ2
+ λ

dK̃s

dr

]
. (4.50)

In particular, Υ represents a physical indicator of the stability of the front with respect to

quasi-static infinitesimal perturbations in the normal direction. If Υ < 0, when the edge
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Figure 4.6: Stability schematics of straight edge flames in the presence of normal convective
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position is perturbed toward the propagation direction, the edge encounters a larger normal

convective flow velocity component that returns it to its original position, as depicted in

figure 4.6(a,d). If Υ = 0 somewhere, that portion of the edge is in a neutrally stable state.

If Υ > 0, when the edge position is perturbed toward the propagation direction, the edge

encounters a smaller normal flow velocity component that cannot balance the propagation

velocity; under these conditions the edge is unstable and is blown off from its original

position towards or away from the disk center, as depicted in figure 4.6(b,c).

Edge-flame instabilities have been encountered in flame holes and flame disks in

counterflow burners [3, 26], which correspond respectively to cases (b) and (c) in figure 4.6.

Stationary flame holes and flame disks in the laboratory frame are found to heal or expand

when perturbed in uniformly strained mixing layers close to the burner axis, and curvature

variations of the edges with respect to their radial position produce propagation-velocity

variations that contribute to further increase the value of Υ and enhance the instability

process. Therefore, these structures can only be observed experimentally in stationary

mode when they propagate to distances larger than the injector radius, where the radial

velocity decays with the radial distance [47], as in figure 4.6(a,d). However, in this anal-

ysis the curvature term ∂Un/∂n = −λ∂K̃s/∂n in (4.50) is found to benefit the stability

of the spiral flames, since the curvature acts as a heat loss in the range of interest. In

this range, the tip region behaves as a flame hole with the opposite curvature sign; the

curvature perturbation of the displaced tip contributes to increase the propagation velocity

in figure 4.6(b) for perturbations towards the burnt side, and to decrease the propagation

velocity for perturbations towards the unburnt side.

Figure 4.7(a) shows the calculated dependence of Υ on r̃ for λ = 0. For r̃ > 1/S
with S > 0, the edge is stable as in figure 4.6(a), and for r̃F < r̃ < 1/S, the inner portion of

the edge and the spiral tip are unstable as in figure 4.6(b). The point r̃ = 1/S is neutrally
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stable since the normal variations are in the azimuth direction there, and the convective

velocity modulus remains invariant in that direction. Edges with S = 0, which correspond

to stationary fronts in the incoming fluid frame, are unstable for all r̃. Advancing edges

propagating at a constant velocity thus are stable at large radii, become neutrally stable

when the edge becomes tangent to the radial direction, and are unstable at smaller radii.

Figure 4.7(b) shows the calculation of Υ for S = 1 and 0 6 λ 6 1. The consideration

of fixed λ and variable S produces similar dynamics. Nondimensional Markstein diffusivities

in the range 0 < λ < λC stabilize the tip region by compensating the decrease in the

radial convection with decreasing radius by increasing the tip curvature, thus decreasing

the tip propagation velocity. However, sufficiently large values of λ or S produce a tip that

propagates in a retreating mode, as shown in figure 4.5 for the case λ = 1.0, which leads

to an unstable tip as in figure 4.6(c). As shown in the following section, spiral meandering

is associated with large values of S that may enhance such loss of tip stabilization. In this

linear quasi-static analysis, there is no combination of values of S and λ for which Υ < 0

for all r̃, and there is always a small part of the edge that is unstable, which is close to the

tip in hydrodynamic scales but far from it in scales of order L.

Since the spirals observed in the experiments are stable, the above reasoning indi-

cates that, according to this model, the cuvature found in experiments must be large enough

to produce departures from the linear Markstein formula (4.17) for the propagation velocity,

such that the stabilizing term ∂Un/∂n may actually be larger than −λ∂K̃s/∂n. It seems

likely that, in analogy with the effects of heat loss on laminar burning velocities [48, 1],

there is a critical finite value of the curvature at which the edge flame is extinguished, as

illustrated schematically in figure 4.8. The non-linear effects beyond the range of the Mark-
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stein expansion may then stabilize the spiral up until the maximum curvature is reached,

at which point the edge flame is extinguished. This condition would correspond to the tip

of the spiral, where its curvature is maximum, and its location is at the minimum radius

for spirals that rotate steadily.

More involved analyses could be performed by generalizing earlier works on the

time-dependent stability of reactive-diffusive spiral waves [49] to include the crucial effects

of the hydrodynamic field, but this is beyond the scope of the present study.



Chapter 5

Experimental data analysis

Experiments were conducted in the spinning, water-cooled, sintered, bronze porous-

disk burner, depicted in figure 1.4 and described at the end of Chapter 1. The experimental

arrangement is shown in figure 1.4. The burner assembly was mounted on a water-cooled

copper back-plate and a cup-shaped housing chamber which also serves as the plenum for

the injected fuel gas. The fuel gas and the cooling water are supplied through concentric

tubes located along the axis of this assembly. The concentric supply tubes are connected to

external feed tubes through o-ring seals so that the entire burner assembly can be rotated

around its axis with a stepper motor.

During an experiment, the burner is placed horizontally, with the exposed porous

surface facing downwards to suppress buoyant instabilities, and it is then spun at a desired

rotational speed with the cooling water supply turned on. Fuel gas is fed to the burner from

a compressed-gas bottle through a programmable mass-flow controller at a specified flow

rate and ignited by a propane torch. The entire experimental set up is enclosed in a large

plexiglass box to prevent draft. All the flames observed in this study were blue and clearly

visible to the naked eye. Flame images were captured using a 45◦ mirror with a high-speed

intensified-array video camera at 250 frames per second. Video images were digitalized using

a frame grabber and then analyzed frame by frame using image-analysis routines. Although

several dynamic flame patterns were observed in the experiments, as indicated in figure 5.1,

results are presented only for the spiral flames. Table 5.1 summarizes the findings obtained

from six different experimental data sets that best represent the steady-rotation regime and

that were selected for further detailed analysis to compare with the present theory.

Figure 5.1 shows the experimental map in the spiral-flame region [12, 13] obtained

by varying the disk rotational speed and the fuel flow rate, nondimensionalized in terms

57
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of the Reynolds number of injection (2.7) and the reduced Damköhler number (4.5). The

values for Rej and ∆ were calculated by using S0
L,st = 40 cm/s as a flame speed reference

for CH4-air mixtures and the following physical properties that correspond to air at normal

conditions: ρ = 1.19kg/m3 for the density, ν = 1.57 · 10−5m2/s for the kinematic viscosity,

DT = 2.21 ·10−5m2/s for the thermal diffusivity, and Pr = 0.71 for the Prandtl number; the

same physical properties are used throughout this Chapter. A line of maximum rotational

speed of the bulk of the spiral is seen in figure 5.1 to separate the meandering and solid-

rotation regimes. The rotational speed decays on of both sides of that line.

Flame extinction analysis

Figure 5.1b shows the calculated extinction Damköhler number (3.39) superimposed

on the dimensionless experimental data. Even though the order of magnitude of DaE does

not vary appreciably when the rest of parameters the are changed, the best fit with the

experimental curve of transition to the diffusion flame-hole regime occurs for an activation

temperature of Ta ∼ 18, 000K if the disk is kept at the ambient temperature T∞ = TS =

300K by water cooling, so that ∆T = 0; this activation temperature is somewhat higher than

the activation temperature at stoichiometry (15, 900K) in [33], but instead it corresponds,

in a variable-activation energy framework, to that at a mixture fraction of Z = 0.076, which

would lie in the inner region for the values of ε encountered here. In that analysis it is shown

that an increase of activation energy with the mixture fraction is needed in order to favor

oxidizer leakage, which is consistent with the present results.

The threshold value Re?
j given by (3.37) below which oxidizer leakage prevails is

found to be Re?
j ∼ 0.055, which as seen in figure 5.1(b) is smaller than typical fuel flow

rates found in the transition region, so that according to AEA analysis moderate fuel leakage

prevails there, rather than the physically correct oxygen leakage, with extinction occurring

in the diffusion-flame regime. These observations indicate that it would be of interest to

extend the Liñán [23] analysis to allow for variations of Ta in the inner region, to see whether

this yields better agreement with experiments.

For constant angular velocity extinction is expected to occur if a minimum threshold

of fuel injection is achieved. The system trajectories for Ω =const. would be represented

by vertical lines Da =const. in figure 5.1(b). As ṁ′′ decreases, the equilibrium temperature

decreases producing longer chemical times in the flame, with the combustion process having

to take place closer to the disk surface according to figure 3.3. Since the disk surface is kept

at a moderate temperature TS ∼ T∞ by water cooling, flame extinction occurs because of
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the decreasing amount of fuel and the proximity of the disk cold wall.

For constant fuel flow rates, extinction is expected to occur if a maximum threshold

of angular velocity is achieved. The system trajectories for ṁ′′ =const. would be repre-

sented by parabolas Rej ∝ Da1/2 in figure 5.1(b). As Ω increases, the mixing thickness δM

decreases, producing larger scalar dissipation rates χfl and shorter diffusion times across

the flame td or flame-transit times. Extinction occurs when the chemical time tc, which

increases as Ω increases, becomes of the same order as the diffusion time td.

Solid rotation and meandering motions of spiral flames

A line of maximum rotational speed of the bulk of the spiral separates the mean-

dering and solid-rotation regimes. The rotational speed decays on of both sides of that
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Figure 5.2: Tip trajectories (solid line) and average core radius (dashed line) corresponding
to the series of experiments (1-6) in table 5.1.

line.

In particular, in the meandering regime the tip undergoes an epicycloidal motion

that is composed at least of two orbital motions and therefore two rotational frequencies.

Such motion shares common characteristics with the meandering of reactive-diffusive spirals

found in earlier works [16, 17, 45]; it is not well understood but believed to be influenced

by system hysteresis. In the present experiments, tip meandering is associated with large

swirl numbers, small radial advection and large spiral rotational velocities, as well as with

increasing flame stand-off distances and decreasing strain rates and heat losses, which even-

tually produce transition from spiral flames to straight propagating edges and flame holes,

as indicated in figure 5.1. The analysis of the meandering motion is beyond the scope of

the present study.

In the solid-rotation regime, the entire spiral structure undergoes a nearly circular

motion of frequency ω and is anchored at a point of minimum radius rF where the radial

advection balances the normal edge propagation, as detailed in Section 4.3. In this regime,

the rotational velocity decreases and the core radius increases approximately linearly with

increasing disk velocities for a fixed fuel flow rate. As observed in figure 5.1, too large disk

velocities or small fuel flow rates produce transition from this regime to the multiple-spiral
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regime, in which a number of spirals co-rotate with the flow.

Figure 5.2 shows the tip trajectories obtained from the six data sets, details of which

are given in table 5.1. Slight meandering appears in cases 3 and 6, where the disk velocity is

minimum within the range, and the spiral velocity is near its maximum. While not exactly

circular, most tip trajectories are close to that.

The core radius

Figure 5.3 shows the resulting experimental nondimensional mean core radius r̃F

as a function of the swirl number. The theoretical results are also plotted in this figure

for purposes of comparison. Farthest from the data is the leading-order result (4.31). The

second-order result (4.47), which is almost identical to the exact value (4.29), is somewhat

closer to the data. The theoretical and experimental dependencies on S are noticeably

similar, and the fact that the theoretical values lie above the observation is consistent

with the nonlinearity of the curve in figure 4.8, which becomes important as the extinction

condition at the tip is approached, since the theoretical calculations do not include this

effect.
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Spiral-edge shapes

Planar propagation velocities, calculated using expression (4.12) far from the disk

center (at a distance about 3/4 of the disk radius, sufficiently large but away from disk-

edge effects), are found to increase with increasing Γ, which is inversely proportional to

the Damköhler number. These velocities are seen to be comparable with or somewhat less

than the laminar burning velocity of a methane-air planar stoichiometric flame, S0
L,st ≈ 40

cm/s, and as may be expected, they are smaller at smaller fuel injection rates. These

values are used in (4.24) to calculate `. The propagation parameter Γ is found to decrease

with increasing disk rotational velocities, since the mixing layer becomes thinner and the

diffusion time through its thickness smaller. The values for Γ obtained in table 5.1 represent

edge flames propagating somewhere between the regimes (h) and (i) in figure 4.2, with a

propagation velocity close to its adiabatic counterpart, supporting the results of Section 4.2.

Figure 5.3 shows the resulting experimental nondimensional mean core radius r̃F

as a function of the swirl number. The theoretical results are also plotted in this figure

for purposes of comparison. Farthest from the data is the leading-order result (4.31). The

second-order result (4.47), which is almost identical to the exact value (4.29), is somewhat

closer to the data. The theoretical and experimental dependencies on S are noticeably

similar, and the fact that the theoretical values lie above the observation is consistent

with the nonlinearity of the curve in figure 4.8, which becomes important as the extinction

condition at the tip is approached, since the theoretical calculations do not include this

effect.

Figure 5.4 shows a comparison between the analytical front shapes, obtained by in-

tegrating (4.26) and the experimental results from table 5.1. A good agreement is found for

the overall trend, although the profiles seem to be somewhat inaccurate in the tip region,

as expected. It is worth mentioning that, although the Markstein diffusivity and its ratio

to the dimensionless core radius are found experimentally to be small, which support the

theory proposed in Section 4.3, the typical propagation velocities in the neighborhood of

the anchoring point are of order rF|φ′fl|Ω/2, which, after numerical evaluation, represent

an order-unity reduction with respect to the planar propagation velocity U0
n. This further

indicates that λK̃s = O(1), and the Markstein linear correction (4.17) becomes innacurate

for these large curvatures. The tip curvature K̃Fs , the tangential curvature for extinction

of an edge flame, yet needs to be calculated numerically, although perhaps it could be ap-

proximated by the curvature for extinction of a positively curved two-dimensional premixed
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Figure 5.4: Comparison between the experimental images, corresponding to the data sets (1-
6) from table 5.1, and the analytical front shapes (green solid line) calculated by integrating
(4.26), together with the Frenet-frame (white dashed line) and laboratory-frame (white solid
line) streamlines passing through the tip. The mean core radius is represented by the dot-
dashed line.

front [1].

The cooling tail

The streamlines passing through the tip, both in the Frenet, r̃ = r̃F exp
[
(θ − θF)/S]

,

and in the laboratory reference frames, r̃ = r̃F exp
[
(θ − θF)/(S − 2ω/Ω|φ′fl|)

]
, are also

plotted in figure 5.4. The Frenet-frame streamline passing through the tip clearly fails to

describe the tail of the spiral, and since all the laboratory-frame streamlines have larger

slopes than the former, the fluid particles in the stoichiometric coordinate must undergo

extinction after being ignited. It may be considered that all fluid elements are required to

have the same time for extinction, which is determined by heat losses to the disk as out-

lined in Section 4.2. With this idea, cases 1 and 3 of table 5.1 were used to obtain the tail
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Figure 5.5: Comparison between the experimental images at t = tE and the analytical tail
shapes (white solid line) calculated by the theory of equal times of extinction, together with
the laboratory-frame streamlines (white dashed line) emerging from the spiral front at t = 0
along the stoichiometric plane. The points denote the fluid particles located on the front
at t = 0. Figure (a) corresponds to case 1 of table 5.1, which gives a tE ∼ 40ms, and figure
(b) corresponds to case 3 of table 5.1, which gives a tE ∼ 68ms.

shape, as shown in figure 5.5. An array of fluid particles at the front at t = 0 was tracked

along the laboratory-frame streamlines on the stoichiometric coordinate, and all particles

extinguished after a time t = tE , which increases with the Damköhler number, giving a

good approximation of the tail shape; this calculation is justified as long as the entrainment

remains small compared with the two planar velocity components, which appears to be a

reasonable approximation along the flame radial positions encountered in this study.
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Chapter 6

Conclusions

The propagation dynamics of spiral edge flames in von Kármán swirling flows was

analyzed in this study. A formulation of the conservation equations was presented in the

thermodiffusive and equidiffusive limits and within the framework of large overall activation

energies. The formulation was written in terms of two main nondimensional parameters: the

injection Reynolds number Rej and the Damköhler number ∆; these two numbers contained

nondimensional combinations of the two experimentally controlled variables, the disk rota-

tional velocity and the fuel flow rate, in addition to the chemical parameters. The resulting

equations represented a non-adiabatic system with an induced non-zero excess enthalpy

distribution, in which heat losses occurred because of the nearby cold disk surface. The

Burke-Schumann and frozen regimes were summarized, and the diffusion-flame tempera-

ture was found to depend on the injection rate. The uniform diffusion flame is extinguished

when ∆ < ∆E , with ∆E a function of Rej . Extinction occurs in the diffusion-flame regime

with a moderately small fuel leakage if activation energy asymptotics is used, because of

the nearby cold wall which enhances oxidizer leakage through the flame.

A formulation in the Frenet frame, written in terms of the curvilinear intrinsic

coordinates, was introduced to analyze propagating fronts that connect the burning and

frozen regions. Asymptotic propagation regimes were obtained by scaling analyses of the

conservation equations, and a two-dimensional numerical simulation of the conservation

equations of a nearly straight edge flame near a cold porous wall, embedded in a von Kármán

boundary layer, showed that there exist regimes, below the static quenching Damköhler

number ∆E of the diffusion flame, for which a propagating front burns vigorously near

the wall but the trailing diffusion flame is extinguished because of heat losses to the disk.

That these regimes are possible is justified by noticing that the transverse heat diffusion
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in the edge reaction-layer and preheat regions is negligible compared to the streamwise

balances of reaction-diffusion and convective-diffusion, respectively, in each region. As a

result, the temperature along the stoichiometric line increases at the edge and gradually

decays through the transition zone until the balance of strain and reaction is reached in the

diffusion-flame region, the point at which the reaction shuts off and the trailing flame is

extinguished. The characteristic distance for extinction of the diffusion flame was found to

be proportional to the propagation velocity and to increase with the Damköhler number of

the edge. This defines a characteristic time tE for extinction of the diffusion flame, which

increases with increasing flow times.

The steady dynamics of the spiral-edge propagation in the von Kármán hydrody-

namic swirling field was analyzed by integrating the G-equation of the edge transport and

using a Markstein-like expression for the tangential curvature correction of the propaga-

tion velocity. The dimensionless Markstein diffusivity λ becomes a singular perturbation

parameter in the G-equation. The asymptotic structure of the edge was obtained by using

asymptotic matching for λ ¿ 1 in the large core limit, in which the radial distance of the

tip from the center is small compared with the Markstein length, and solutions were found

for spiral fronts that depended on the Markstein diffusivity and on the magnitude of the

swirl number S, which measures the ratio of the net swirl in the Frenet frame to the radial

advection. Large values of S corresponded to highly curved spirals. Expressions were de-

rived for the core radius as a function of S and λ, which in turn determines a relationship

between the spiral rotational velocity and the core radius. In the absence of the decrease

in propagation velocity produced by the Markstein diffusivity, the spirals were shown to

become unstable at radii less than that at which the edge is tangent to the radial advection,

but the increasing curvature stabilizes the edge propagation. This stabilization persists

until the curvature reaches a critical maximum value at which edge-flame extinction occurs.

This critical curvature for extinction determines the core radius and thereby the spiral rota-

tional velocity. At the core radius, the edge is perpendicular to the radial direction, and its

propagation velocity equals the radial gas velocity at the stoichiometric surface for steadily

rotating spirals.

Experiments performed in the porous-disk burner were analyzed and theoretical

predictions were tested. The spiral tip can undergo either a solid rotation motion for

sufficiently large disk rotational velocities and small fuel flow rates, or epicycloidal motions

for smaller disk rotational velocities and larger fuel flow rates. In the studied data range,

the angular velocity of the spiral was found to decrease linearly with the disk rotational
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velocity for a given fuel flow rate. Meandering spirals are associated with rapidly rotating

flames, large swirl numbers, moderately large injection Reynolds numbers, large Damköhler

numbers, and decreasing heat losses and strain rates, which promote transition to the

regimes of straight propagating edges and flame holes. Solid rotation is associated with the

opposite behavior, which promotes transition to the multiple-spiral regime. Core radii were

measured and agreed reasonably with the theoretical model, which predicts a reduction

of the core radius with increasing values of S. Spiral shapes obtained by the analytical

model are in reasonable agreement with the experimental images. These results show that

non-unity Lewis numbers are not necessary for having spiral-shaped edges and cooling tails

in these experiments, contrary to suggestions made in earlier works [50-52].

The analyses performed in this study may be relevant for characterizing the dy-

namics of tangentially curved sheets of triple flames and their transport in fluid flows near

non-adiabatic walls. Although much research has been performed on triple flame dynamics,

there appears to be a large number of unknowns regarding the linear and non-linear effects

of the tangential curvature and strain on the velocity of propagation of triple flames and

their extinction. Finally, the meandering motion of the spiral flames reported in this study

seems to emerge from an instability at the anchoring point of the tip, which may be worth

investigating for having potential applications on the understanding of triple-flame anchor-

ing processes in turbulent flows and on flame flickering. Meandering is the next theoretical

problem to be addressed for spiral edges of diffusion flames in von Kármán swirling flows.

Chapters 1 to 5, in part, have been published in in the Proceedings of the Combustion

Institute, “Diffusion-flame extinction on a rotating porous-disk burner,” by J. Urzay, V.

Nayagam and F. A. Williams (2008) 32, 1119-1126, and have been submitted for publication

in Combustion and Flame, “Theory of the propagation dynamics of spiral edges of diffusion

flames in von Kármán swirling flows,” by J. Urzay, V. Nayagam and F. A. Williams (2010).

The thesis author is the primary investigator in these publications.

Experiments in Part I were performed by Dr. V. Nayagam at the National Center

for Space and Exploration Research, NASA Glenn Research Center, Cleveland (OH). This

investigation was partially funded by the NASA Microgravity Combustion Science Program.
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[7] Ruetsch, G. R., Vervisch, L., Liñán, A. (1995) Effects of heat release on triple flames.
Phys. Fluids 7 1147–1454.
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NOMENCLATURE

a Particle radius (m)

Asfw Hamaker coefficient (J)

β Azimuth angle of rotation (rad)

c Speed of sound waves in the substrate (m/s)

ci Ionic concentration (M)

cOi Critical coagulation concentration (M)

∆vdW Van der Waals compliance (-)

∆el Electric compliance (-)

Di Ionic diffusion coefficient (m2/s)

δ Gap clearance (m)

δO Minimum clearance for adhesion (m)

e Protonic charge (C)

E Young modulus (Pa)

ε Dimensionless gap clearance (-)

ε0 Permittivity of vacuum (F/m)

εf Fluid dielectric constant (-)

εs Particle dielectric constant (-)

εw Substrate dielectric constant (-)

η Hydrodynamic compliance, elastoviscous number (-)

ηC Critical compliance for irreversible adhesion (-)

ηL Lift-off compliance (-)

Fx Drag force (N)

Fy Drift force (N)

Fz Lift force (N)

γ Pressure-velocity phase angle (rad)

γL Lift-off shear rate (1/s)

h Dimensionless gap profile (-)

H Dimensionless surface deformation (-)

Hc Characteristic surface deflection (m)

k Boltzmann constant (J/K)

κ Debye-Hückel parameter (-)
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κO Debye-Hückel parameter for adhesion (-)

` Elastic layer thickness (m)

`D Debye length (m)

λ Exponential prefactor (-)

µ Fluid dynamic viscosity (Pa· s)

n Normal unit vector to the substrate surface (-)

NA Avogadro’s number (molec/mol)

ν Poisson coefficient (-)

ω kinematic parameter (-)

Ω Particle angular velocity (rad/s)

P Dimensionless hydrodynamic pressure (-)

PF Dimensionless hydromolecular pressure (-)

Pei Ionic Péclet number (-)

Πel Dimensionless electric disjoining pressure (-)

ΠvdW Dimensionless Van der Waals disjoining pressure (-)

Ψd
s Dimensionless Stern potential of the particle (-)

Ψd
w Dimensionless Stern potential of the substrate (-)

Re Reynolds number (-)

r Dimensionless radial coordinate (-)

ρ Fluid density (kg/m3)

σ Solid stress tensor (Pa)

τ Dimensionless shear stresses (-)

θ Polar angle (rad)

u Elastic displacements (m)

Υ Ratio of the Van der Waals to hydrodynamic stresses (-)

v Dimensionless hydrodynamic velocity (-)

V Dimensionless characteristic velocity (-)

ϕ Reduced azimuth angle (rad)

Ẇ Particle gliding power (W)

Ξ Ratio of the Van der Waals to hydrodynamic stresses (-)

ζ Dimensionless elastic-layer thickness (-)

zi Ionic valency (-)



Chapter 7

Introduction

Soft materials can be deformed by the action of external forces [1, 2]. Nearby sub-

strate deformations produced by hydrodynamic and intermolecular forces induce nonlinear-

ities on the otherwise linear equations of viscous fluid motion at low Reynolds numbers, and

produce forces on submerged moving particles and swimmers that may serve as represen-

tative sources of lateral motility at small scales and may also suppress adhesion. However,

such deformations may as well enhance adhesion if the internal restoring force of the sub-

strate is not sufficiently large to outweigh the resulting hydrodynamic and intermolecular

traction stresses on its surface.

The study of the intermolecular and viscous hydrodynamic interactions between

solids and soft substrates may be of some interest from a biological perspective [3]. Mo-

tivated by the practical importance of the control and suppression of biofilm growth on

surfaces, adhesion of motile bacteria to rigid substrates has been previously analyzed by

accounting for electric and van der Waals forces [4]. The study of the distinguished balance

between these two interactions is the subject of the celebrated Derjaguin-Landau Verwey-

Overbeek (DLVO) theory [5, 6], which is regarded as the fundamental theory of the stabi-

lization and adhesion of lyophobic particles, although this theory may need to be modified

to account for hydrodynamic effects and to describe accurately the phenomena of bacterial

adhesion [4, 7]. Earlier work [4] identified reversible (short residence times and lateral motil-

ity) and irreversible (long residence times and sessility) adhesion modes, which depended on

the ionic strength in the solvent. The reversible adhesion mode exemplifies a gliding motion

along the surface in which the bacteria is momentarily entrapped in an accessible potential

minimum, whereas the irreversible mode is experimentally observed as a “sudden death” of

the bacteria when it falls into the primary minimum, a region dominated by Born repul-
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Figure 7.1: Sketch of typical particle-surface interaction-energy curves in the DLVO theory,
adapted from [20], for (a) low and (b) high (critical coagulation) concentration of electrolyte
in the solvent.

sion and steric forces, once the energy barrier becomes small at sufficiently large electrolyte

concentrations, as shown in figure 7.1. Effects of surface chemical heterogeneities have been

previously proposed as precursors of lateral immobilization and irreversible adhesion [8].

The near-contact motion of microorganisms close to soft living tissues may be inevitably

influenced by a number of complex biochemical, intermolecular and hydrodynamic interac-

tions and surface deformations upon adhesion, but the study of simplified analytical models

may still be warranted for shedding some modest amount of light into these intricacies.

In a more general situation, the presence of a nearby soft interface has been proved

to produce kinematically-irreversible forces on swimming bodies and moving particles at low

Reynolds numbers [9-14], which may modify their adhesion behavior; the velocity scaling

of these forces departs from the linear, kinematically-reversible Stokesian velocity scaling

of the hydrodynamic forces in viscous flows bounded by rigid surfaces, in that it produces

direction-invariant forces under velocity-direction reversals. The effect of a nearby non-slip

rigid wall on the motion of micro-swimmers has been found to be important [15]. The

reversibility properties of the Stokes equations yield a zero lift force Fz on a sphere steadily

translating and rotating near a wall. This can be demonstrated by observing that the

imaginary problem of a sphere near a wall steadily translating with the reversed translational

velocity −U and at the reversed angular velocity −Ω turns out to be the same as the original

one if the change of variables in velocity v′ = −v and pressure P ′ = −P is performed in the

equations of fluid motion. This implies that F ′
z = −Fz, from which it follows that the lift

force must be zero by symmetry [11]. Some nonlinear mechanisms that break the symmetry

of the Stokes equations have been proposed and tested experimentally, such as fluid inertia

[16, 17], electrokinetics [18], elastohydrodynamics [9, 11] and non-Newtonian effects [19].

From a general engineering standpoint, electric and van der Waals intermolecular

forces are inherently present in the near-contact dynamics of liquid and solid interfaces, and
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are perhaps the most important contribution to the forces involved in the coagulation of

colloids, bubble and droplet coalescence, physical adsorption and adhesion of particles to

substrates [20, 21]. Although the van der Waals forces between two atoms or molecules de-

crease with the seventh power of the separation distance, the forces between large molecular

assemblies, such as spheres or plates, decrease with the second or third power of the sepa-

ration distance, so that the effects of these interactions between macroscopic bodies prove

to be still appreciable at a moderately long range (0.1 µm or more) [20, 21]. Dispersion and

coagulation of a suspension of particles may occur depending on the relative intensity of the

electric double-layer and van der Waals forces, the balance of which is mainly modulated

by the ionic strength in the solvent [5, 6]. Similarly, sheared concentrated suspensions of

dense polymer microgel pastes display a slip behavior beyond a critical sliding stress that

is thought of being produced by a combination of elastohydrodynamic and intermolecular

effects [22, 23].

Earlier pioneering works on the viscous motion of a cylinder near soft and non-sticky

surfaces by Skotheim and Mahadevan [11], and the near-contact dynamics of a sphere

near a rigid wall by Goldman et al. [24], O’Neill and Stewartson [25] and Cooley and

O’Neill [26], are generalized in this investigation by addressing the canonical problem of

the forces exerted on a small spherical particle undergoing slow translation and rotation in

a perfect liquid near a soft substrate, subject to electric and van der Waals intermolecular

forces. Forces produced by the triple interaction of hydrodynamic, intermolecular and

substrate-deformation effects are derived, and novel limiting conditions for adhesion, based

on critical substrate-mechanical properties, gliding velocities and electrolyte concentrations,

are obtained in this analysis by making use of asymptotic analyses and numerical methods.

This part is organized into three additional chapters. Chapter 8 is dedicated to a

general formulation of the problem within the framework of a hydrodynamic lubrication

model. Chapter 9 summarizes the main characteristics of the leading-order solution for

rigid substrates, and addresses the effects of substrate deformability on the dynamics of the

particle. Finally, conclusions are drawn in Chapter 10.



Chapter 8

Formulation

8.1 Hydrodynamic equations

A rigid spherical particle of radius a and dielectric constant εs, translates at con-

stant velocity U along the x axis, and rotates at constant angular velocity Ω about an axis

orientated at an arbitrary azimuth angle β with respect to the translation axis, with both

axes parallel to the unperturbed wall surface as depicted in figure 8.1, in this way represent-

ing a general drift motion on the horizontal plane. The sphere is immersed in a Newtonian

incompressible fluid, which corresponds to an aqueous symmetric electrolyte of density ρ,

equal to that of the sphere, viscosity µ, ionic valency zi, ionic diffusion coefficient Di and

dielectric constant εf . The clearance or minimum gap distance between the sphere and the

unperturbed wall surface is δ = εa, with ε ¿ 1 a small parameter. The ionic concentration

in the bulk electrolyte far from the sphere is denoted by ci. The soft substrate is comprised

of an elastic layer of thickness `, dielectric constant εw, Young modulus E and Poisson

coefficient ν, and is bonded to a rigid motionless substrate. The ratio of the characteris-

tic surface deflection Hc, produced by the hydrodynamic stress, to the minimum clearance

δ is defined as the softness parameter, elastoviscous number or hydrodynamic compliance

η = Hc/δ. The motion can be considered steady in the reference frame shown in figure 8.1 as

long as the time scale of the sphere motion, δ/U , is much longer than the viscous time scale,

δ2/ν, which is also much longer than the substrate response time scale, δ/c, where c is the

speed of sound in the substrate. Then the Reynolds numbers of translation and rotation are

small, ReU = ρUa/µ ¿ 1 and ReΩ = ωReU ¿ 1, so that the flow can be described by the

Stokes equations to leading order. In this formulation, ω = Ωa/U is a kinematic parameter

that measures the ratio of the rotational to the translational (peripheral) velocities.
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Figure 8.1: The model problem. The soft substrate is deformed by the hydrodynamic,
electric and van der Waals intermolecular forces between the sphere and wall surfaces.
Cases β = 0 and β = π/2 represent corkscrew and purely rolling motions respectively.

The conservation equations are nondimensionalized with a the unit of length, Hc

the unit of surface deflection, UV(ω, β) the unit of velocity, and µUV(ω, β)/a the unit of

pressure, where

V(ω, β) = |ex − ω × ez| =
√

1 + ω2 + 2ω sinβ, (8.1)

is a characteristic nondimensional velocity in the clearance, with ei unit vectors, and ω =

Ωa/U . Thus, the velocity UV(ω, β) is referred to as the “gliding velocity” in what follows.

In these variables, and in an inertial reference frame translating with the sphere, the mass

and momentum conservation equations for the velocity v and hydrodynamic pressure P

become

∇ · v = 0,

−∇P +∇2v = 0, (8.2)

subject to non-slip boundary conditions on the sphere and substrate surfaces, where the

velocities are

v =
ω(z − 1− ε) sinβ

V(ω, β)
ex − ω(z − 1− ε) cos β

V(ω, β)
ey +

ω(y cosβ − x sinβ)
V(ω, β)

ez, (8.3)

and

v = − ex
V(ω, β)

+
ηε(∇?H · ex)

V(ω, β)
ez (8.4)

respectively. In this formulation, ∇⊥ is the two-dimensional gradient operator in x and y.

The second term on the right-hand side of (8.4) represents the vertical fluid entrainment

induced by the surface-deformation field, which remains stationary in this reference frame.
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A lubrication approximation can be obtained for ε ¿ 1 by defining the inner veloc-

ities v′r = vr, v′ϕ = vϕ and v′z = vzε
−1/2, the inner hydrodynamic pressure P ′ = Pε3/2 and

the inner coordinates z′ = z/ε and r′ = r/ε1/2. The surface of the sphere in the gap region

is given by (dropping primes)

h0(r) = 1 + r2/2 + O(ε). (8.5)

In these variables, a regular expansion in powers of ε yields, to leading order, the conserva-

tion equations

1
r

∂

∂r
(rvr) +

1
r

∂vϕ

∂ϕ
+

∂vz

∂z
= 0,

∂P

∂r
=

∂2vr

∂z2
,

1
r

∂P

∂ϕ
=

∂2vϕ

∂z2
,

∂P

∂z
= 0, (8.6)

subject to

vr = − cosϕ +
cos(ϕ− γ)
V(ω, β)

, vϕ = sin ϕ− sin(ϕ− γ)
V(ω, β)

, vz = −r cosϕ +
r cos(ϕ− γ)
V(ω, β)

,

(8.7)

on the sphere surface z = h0(r), and

vr = −cos(ϕ− γ)
V(ω, β)

, vϕ =
sin(ϕ− γ)
V(ω, β)

, vz =
η∇⊥H · ex
V(ω, β)

, (8.8)

on the wall surface z = −ηH. In this formulation, θ is the physical azimuth angle (measured

from the x−axis as shown in figure 8.1), and

ϕ = θ + γ (8.9)

is a reduced angle, with γ(ω, β) is a phase angle of the gap pressure distribution given by

γ(ω, β) = arctan
(

ω cosβ

1 + ω sinβ

)
, (8.10)

with −π/2 ≤ γ ≤ π/2. For purely rolling motion, β = π/2 and γ = 0, so that ϕ = θ and

the pressure distribution is dominated by the entrainment of fluid taking place along the

θ = 0 axis. For corkscrew motion, β → 0 and γ ∼ arctanω, so that as ω increases the

peak pressures are expected to be increasingly dominated by the lateral fluid entrainment

enhanced by the rotational motion, shifting the pressure peaks towards the line θ = −γ.

The rotated system of coordinates (r, ϕ, z) is shown in figure 8.2, and constitutes a valuable

asset for the simplification of the analytical and numerical integration of the problem as

further detailed below.
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Figure 8.2: Top view of the gap region showing the spatial orientation of the polar azimuth
angle θ, phase angle γ and reduced angle ϕ.

The surface location and the vertical velocity there render the problem (8.6)-(8.8)

nonlinear. The continuity equation may still be used to eliminate the velocities after inte-

grating the momentum equations, which yields the Reynolds equation

∂

∂r

(
r
∂P

∂r
h3 + 6rh cosϕ

)
+

1
r

∂

∂ϕ

(∂P

∂ϕ
h3 − 6rh sinϕ

)
= 0, (8.11)

with h = h0(r) + ηH the gap profile. Equation (8.11) is subject to the boundedness and

periodicity conditions

|P | < ∞ at r = 0, P → 0 at r →∞, P |ϕ=0 = P |ϕ=2π,
∂P

∂ϕ

∣∣∣
ϕ=0

=
∂P

∂ϕ

∣∣∣
ϕ=2π

.

(8.12)

It is noteworthy to mention that the velocity scaling and azimuth angle redefinition

given by (8.1) and (8.9) renders the nonlinear partial differential problem (8.11)-(8.12)

independent of ω and β, so that pressure solutions P (r, ϕ) obtained by integration of (8.11)-

(8.12) are valid for any rotation rate ω and rotation azimuthal orientation β, thus reducing

the space of solutions by two dimensions.

The radial and azimuth velocity fields in the gap correspond to a combination of
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Couette and Poiseuille flows,

vr =
1
2

∂P

∂r

{
z2 − z [h0(r)− ηH]− ηHh0(r)

}

−
[
cosϕ− 2 cos(ϕ− γ)

V(ω, β)

] [
z + ηH

h0(r) + ηH

]
− cos(ϕ− γ)

V(ω, β)
,

vϕ =
1
2r

∂P

∂ϕ

{
z2 − z [h0(r)− ηH]− ηHh0(r)

}

+
[
sinϕ− 2 sin(ϕ− γ)

V(ω, β)

] [
z + ηH

h0(r) + ηH

]
+

sin(ϕ− γ)
V(ω, β)

, (8.13)

and the vertical velocity is obtained by integrating the mass conservation equation,

vz =
∫ h0(r)

z

[
1
r

∂

∂r
(rvr) +

1
r

∂vϕ

∂ϕ

]
dz + vz

∣∣∣
z=h0(r)

, (8.14)

with the three velocity components expressed in the (r, ϕ, z) system of coordinates.

8.2 The electric double-layer and van der Waals pressures.

Van der Waals forces arise from the interaction between permanent polar molecules

(Keesom orientation force), permanent polar and polarizable molecules (Debye induction

force) and non-polar but polarizable molecules (London dispersion force). In contrast to

other type of forces that may be present depending on the particular properties of the

molecules, the London dispersion interactions are always present because of quantum-

mechanical effects between fluctuating electron clouds, and they are not easily screened

by polar solvents. Using the Derjaguin approximation [27], the effect of this interaction is

assumed to result in a nonretarded disjoining pressure or intermolecular compression stress

ΠvdW , that represents the excess pressure in the gap compared to that of the bulk flow P .

The disjoining pressure acts as an additional compression stress on both the sphere and

wall surfaces, and its nondimensional magnitude is

ΠvdW = −Υ
h3

, (8.15)

with

Υ =
Asfw

6πµUV(ω, β)a1/2δ3/2
(8.16)

the ratio of the van der Waals to hydrodynamic characteristic stresses. In this formulation,

Asfw is the Hamaker coefficient, which depends on the particle, fluid and wall dielectric

constants and absorption spectra, and typically ranges from 1 to 100 times the thermal

energy kT , with k the Boltzmann constant and T the temperature [20, 21]. The sign of the
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the Hamaker coefficient is the same as the sign of the product of the excess polarizabilities

εs−εf and εw−εf [28]. If the dielectric constant of the liquid εf is intermediate between εw

and εs, the van der Waals force is repulsive, and attractive otherwise. The van der Waals

interactions are commonly attractive due to the high dielectric constant of usual solvents.

The van der Waals forces alone do not usually determine the total intermolecu-

lar interaction, except in vacuum or deionized solvents. In aqueous electrolyte solutions,

electroneutral solid surfaces may become spontaneously charged even under no externally

applied electric field. Specific ions are preferentially adsorpted by the surface due to non-

electrical affinity interactions with its molecules, while others form an atmosphere of ions

in rapid thermal motion in a thin cloud of thickness of O(`D) close to the surface, where

`D is the Debye length, in such a way that the charged cloud and surface charge form

an electroneutral system. Associated to this spontaneous formation of the double layer

is a decrease of the Gibbs free energy, that ultimately leads to a combination of an os-

motic overpressure and Maxwell stresses in the gap, with their total contribution classically

represented by a disjoining pressure or electric compression stress Πel given by [27]

Πel = Ξe−κ(h−1), (8.17)

with

Ξ =
64δ3/2ciNAkT

µUV(ω, β)a1/2
λ(Ψd

w, Ψd
s)e

−κ (8.18)

the ratio of the electric to hydrodynamic characteristic stresses, and

κ =
δ

`D
=

√
2(zieδ)2ciNA

ε0εfkT
(8.19)

is the Debye-Hückel parameter. The function λ(Ψd
w, Ψd

s) is given by [21]

λ(Ψd
w, Ψd

s) = tanh
(
ziΨd

w/4
)

tanh
(
ziΨd

s/4
)

. (8.20)

Equation (8.17) represents the nondimensional electric pressure for the interaction of two

double layers of a symmetric electrolyte solution of concentration ci. In this model, Ψd
s

and Ψd
w are the nondimensional Stern potentials (which are approximately similar to the

zeta potentials) of the sphere and substrate surfaces respectively, which are assumed to be

constant and are nondimensionalized with the thermal voltage kT/e ∼ 25 mV. Additionally,

in this formulation e is the protonic charge, ε0 is the permittivity of vacuum and NA is the

Avogadro’s number. At constant and symmetric zeta potentials, the double-layer interaction

results in a repulsive force, since, as the particle approaches the wall, ions must be driven off
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the substrate to decrease the surface charge, which in turn is proportional to the gradient

of the electric potential on the surface. This forced discharge results in an increase of

Gibbs free energy. More involved models of electric double-layer pressures could be used

here, which may include important effects such as charge regulation due to surface chemical

equilibrium constraints [20, 21], or surface permeability to ionic fluxes, which is believed to

influence bacterial adhesion by ion-channelling effects in bacterial walls [29]. Nonetheless,

equation (8.17) represents a logical starting point for the present investigation.

Earlier work by [18] found that the pressure gradient in the gap between a sliding

sphere and a planar wall may distort the electric double-layer equilibrium configuration de-

scribed above, producing an electroosmotic flow of ions near both surfaces and a streaming

potential in the gap, that in turn generate an electrokinetic lift on the particle. Elec-

trokinetic interactions are found to be comparable to intermolecular forces only for highly

viscous, low-conductivity solutions such as 95% glycerol-water mixtures [30], for which the

ionic Péclet number Pei = UVδ/Di is of order unity or larger, with Di the ionic diffusion

coefficient. In this investigation, electrokinetic forces produced by pressure gradients are

neglected since the characteristic diffusion time of the ions in the gap, δ2/Di, is assumed to

be much smaller than the characteristic time of translational or rotational motion, δ/UV, so

that Pei ¿ 1 and the perturbation of the equilibrium electric double-layer produced by the

convective transport of ions can be neglected in the first approximation. This simplification

leads to a Boltzmann distribution of ionic concentration in the gap, from which the electric

pressure (8.17) is derived by solving the corresponding Poisson-Boltzmann equation [21].

The condition Pei ¿ 1 is easily satisfied by typical highly conductive physiological solutions

(mostly containing Na+, K+, Cl−, Ca2+ and Mg2+), for which the ionic diffusion dominates

and the electrokinetic lift on the sphere is at least three to four orders of magnitude smaller

than the elastohydromolecular forces resulting from the present analysis.

For convenience, the hydromolecular pressure PF

PF = P + ΠvdW + Πel, (8.21)

is defined, which represents the net compression normal stress (hydrodynamic and inter-

molecular) acting on the sphere and substrate surfaces. The hydromolecular pressure PF

is in general a function of the intermolecular and kimematic parameters, the fluid and wall

mechanical properties and the spatial coordinates.

Equations (8.11)-(8.12), (8.15) and (8.17) need to be supplied with an appropriate

substrate mechanical model. The substrate mechanics is analyzed in Section 8.3.
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8.2.1 The DLVO critical ionic concentration for adhesion

In the framework of the classical DLVO theory, sufficiently large electrolyte con-

centrations ci may lead to a double-layer compression effect, by which the Debye thickness

`D decreases with increasing ci and the particle can approach to a shorter distance before

any repulsion is felt. Further approach produces a large attracting van der Waals force on

the particle able to outweigh any repulsion. This leads to rapid coagulation if the energy

barrier to the irreversible adhesion minimum becomes smaller than the energy associated

to Brownian perturbations of the gap distance. The critical concentration for the rapid

coagulation of a sphere on a flat rigid substrate is given by the system of equations

Fz(δO) = 0 and
∫ ∞

δO
Fz(δ)dδ ≈ bkT, (8.22)

where Fz is the net intermolecular force on the sphere and b is a constant, which is conven-

tionally set to b = 0 for a small energy barrier [6]. Equations (8.22) represent the coagulation

event or irreversible adhesion at the primary minimum as sketched in figure 7.1, and they

give the critical conditions for which the force on the particle is zero while the work pro-

duced by a random perturbation of the gap distance against the normal force is roughly a

multiple of the thermal energy of the surrounding molecules. When Fz is obtained by the

classic DLVO theory, these expressions yield the critical coagulation concentration [21]

cOi0 = 73728π2e−2 (ε0εf )3(kT )5λ2(Ψd
w,Ψd

s)
(zie)6A2

sfwNA
. (8.23)

The minimum clearance for coagulation, δO0 , measured with respect to the Debye layer

thickness based on ci0, is given by κO0 = δO0 /`OD0 = 1.

As shown further below, Fz is also influenced by hydrodynamic and substrate com-

pliance effects, so that equation (8.23) needs to be correspondingly modified. Additionally,

local substrate deformations produced by elastic instabilities of hydromolecular origin are

found in this analysis to induce irreversible adhesion, an effect that is obliterated by simply

using the criterion (8.22)-(8.23).

8.3 Substrate mechanics

In this analysis, the substrate is modelled by a compliant layer of thickness ` coating

a rigid foundation as depicted in figure 8.1. The material of the layer is assumed to be

isotropic and characterized by its Young modulus E and Poisson coefficient ν, with 0 < ν <

1/2 for compressible materials such as gels, and ν ∼ 1/2 for incompressible materials such
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as elastomers, for which the Poisson effect becomes primarily important. The solid stress

tensor σ satisfies the internal equilibrium equation

∇ · σ = 0 (8.24)

in the absence of volumetric forces in the thin layer, and is related to the displacement

vector u by the linear constitutive equation

σ =
E(∇u + ∇uT )

2(1 + ν)
+

νE(∇ · u)I
(1 + ν)(1− 2ν)

, (8.25)

subject to boundary conditions of solid-liquid interface equilibrium and compatibility of

deformations with the rigid foundation,

σ · nT = σF · nT at z = −H, and u = 0 at z = −`, (8.26)

where σF = −PFI +µ(∇v+∇vT ) is the hydromolecular stress tensor, which is composed

of the sum of the isotropic hydromolecular pressure tensor and the deviatoric viscous stress

tensor. In this formulation, n = (−∂uz/∂r|z=0,−r−1∂uz/∂ϕ|z=0, 1) + O(ε) is a unit vector

normal to the substrate surface. Equations (8.24), (8.25) and (8.26) are generally coupled

to the lubrication problem (8.11)-(8.12) in a rather cumbersome way for arbitrary layer

thickness `. Asymptotic analysis of this complicated problem can be performed by assuming

that the ratio of the layer thickness ` to the characteristic lubrication region dimension δ/ε1/2

is a small parameter,

ζ =
ε1/2`

δ
¿ 1, (8.27)

so that the layer thickness ` may well be much larger than the minimum gap distance δ since

`/δ ¿ 1/ε1/2 and ε ¿ 1, but is still small compared with the particle radius, `/a ¿ ε1/2.

The purpose of this section is to obtain the surface deformation, by solving asymptotically

(8.24)-(8.26), as a function of PF and the hydrodynamic compliance η, for η = O(1) and

ζ ¿ 1.

The qualitative asymptotic behavior of the solution can be readily extracted from

an order of magnitude analysis of (8.24)-(8.26). Surface loads of order unity applied on

the thin layer are expected to produce a compression normal stress σzz = O(1) and a

vertical deformation uz = O(ζ). The Poisson effect produces radial and azimuthal normal

stresses σrr = O(1) and σϕϕ = O(1), and displacements ur = O(ζ2) and uϕ = O(ζ2). For

nearly incompressible materials, ν ∼ 1/2, the stresses become independent of the material

properties in the first approximation, and the vertical displacement becomes uz = O(ζ3) to

satisfy the vanishing cubical dilatation constraint ∇ · u = 0 in the incompressible limit [1].
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Equations (8.24)-(8.26) are nondimensionalized with ` the unit of vertical coordi-

nate, δ/ε1/2 the unit of radial coordinate, δ the unit of vector displacement, and E(1 −
ν)δ/[`(1+ ν)(1− 2ν)] the unit of stress tensor. In these variables, (8.24) and (8.25) become

∂σrz

∂z
+ ζ

[
1
r

∂

∂r
(rσrr) +

1
r

∂σrϕ

∂ϕ
− σϕϕ

r

]
= 0,

∂σϕz

∂z
+ ζ

[
1
r

∂

∂r
(rσrϕ) +

1
r

∂σϕϕ

∂ϕ
+

σrϕ

r

]
= 0,

∂σzz

∂z
+ ζ

[
1
r

∂

∂r
(rσrz) +

1
r

∂σzϕ

∂ϕ

]
= 0, (8.28)

and

σrr =
ν

1− ν

∂ur

∂z
+

[
∂ur

∂r
+

ν

1− ν

(
ur

r
+

1
r

∂uϕ

∂ϕ

)]
ζ,

σrϕ =
1− 2ν

2(1− ν)

[
r

∂

∂r

(uϕ

r

)
+

1
r

∂ur

∂ϕ

]
ζ,

σrz =
1− 2ν

2(1− ν)

(
∂ur

∂z
+ ζ

∂uz

∂r

)
,

σϕϕ =
1− 2ν

1− ν

(
1
r

∂uϕ

∂ϕ
+

ur

r

)
ζ

+
ν

1− ν

[
∂uz

∂z
+ ζ

(
1
r

∂

∂r
(rur) +

1
r

∂uϕ

∂ϕ

)]
,

σϕz =
1− 2ν

2(1− ν)

(
∂uϕ

∂z
+

ζ

r

∂uz

∂ϕ

)
,

σzz =
∂uz

∂z
+

ν

1− ν

[
1
r

∂

∂r
(rur) +

1
r

∂uϕ

∂ϕ

]
ζ. (8.29)

The regular asymptotic expansions

σ = σ0 + ζσ1 + ζ2σ2 + O(ζ3)

u = u0 + ζu1 + ζ2u2 + O(ζ3), (8.30)

are substituted into (8.28) and (8.29). The hydrodynamic compliance η defined in Sec-

tion 8.1 is found in what follows to be described by an asymptotic expansion of the form

η = η̂0 + ζ2η̂2 + O(ζ4), (8.31)

where η̂i = ηi/ζi. To leading order in ζ, equations (8.28) and (8.29) reduce to

∂2ur0

∂z2
=

∂2uϕ0

∂z2
=

∂2uz0

∂z2
= 0, (8.32)

subject to ur0 = uϕ0 = uz0 = 0 on z = −1 and ∂uz0/∂z = −η0P
F at z = 0. In this

formulation, the hydrodynamic compliance η0 is given by

η0 =
µUV(ω, β)`a1/2(1 + ν)(1− 2ν)

E(1− ν)δ5/2
. (8.33)
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The leading-order stresses and deformations are given by

σrr0 = σϕϕ0 = −νη0P
F

1− ν
, σzz0 = −η0P

F, σrϕ0 = σrz0 = σϕz0 = 0,

and

ur0 = uϕ0 = 0, uz0 = −η0P
F(1 + z), (8.34)

which resemble the classic rigid foundation model [2], in which the wall deflection is pro-

portional to the net normal stress (intermolecular and hydrodynamic stress). If the Poisson

effect is negligible, the leading-order radial and azimuthal normal stresses vanish in the

first approximation due to the large material compressibility. If the Poisson effect is im-

portant, ν ∼ 1/2, the hydrodynamic compliance η0 and elastic displacements vanish in this

approximation, giving no useful information of the deformation field, for which higher-order

terms must be retained. It is worth mentioning that, for large hydrodynamic compliances,

η0 = O(ε−1/2) À 1, the boundary condition ∂uz0/∂z = −η0P
F at z = 0 becomes inaccurate

in this approximation, since the curvature of the surface may produce non-negligible viscous

shear forces, thereby producing non-negligible contributions by the non-diagonal terms of

the hydromolecular stress tensor to the surface deformation field.

To second order in ζ, (8.28) and (8.29) become

∂2ur1

∂z2
=

η0

1− 2ν

∂PF

∂r
,

∂2uϕ1

∂z2
=

(
η0

1− 2ν

)
1
r

∂PF

∂ϕ
,

∂2uz1

∂z2
= 0, (8.35)

subject to ur1 = uϕ1 = uz1 = 0 at z = −1 and ∂ur1/∂z = ∂uϕ1/∂z = ∂uz1/∂z = 0 at z = 0,

which solutions yield the second-order stresses and deformations

σrr1 = σϕϕ1 = σzz1 = σrϕ1 = 0, σrϕ1 =
(

νη0z

1− ν

)
∂PF

∂r
, σϕz1 =

(
νη0z

1− ν

)
1
r

∂PF

∂ϕ
,

and

ur1 =
η0(z2 − 1)
2(1− 2ν)

∂PF

∂r
, uϕ1 =

η0(z2 − 1)
2(1− 2ν)

1
r

∂PF

∂ϕ
, uz1 = 0, (8.36)

so that the second-order correction to the vertical displacement is zero.

Finally, to third order in ζ, (8.28) and (8.29) become

∂2ur2

∂z2
=

∂2uϕ2

∂z2
= 0,

∂2uz2

∂z2
= − 2νη0z

1− 2ν
∇2
⊥PF, (8.37)

subject to ur2 = uϕ2 = uz2 = 0 at z = −1, and

∂ur2

∂z
=

∂uϕ2

∂z
= 0,

∂uz2

∂z
=

νη0∇2
⊥PF

2(1− ν)(1− 2ν)
, (8.38)
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at z = 0, which solutions give the displacement field

ur2 = uϕ2 = 0,

uz2 =
νη0∇2

⊥PF

1− 2ν

[
−z3

3
+

z

2(1− ν)
+

1 + 2ν

6(1− ν)

]
. (8.39)

The asymptotic deformation field given by (8.34), (8.36) and (8.39) yields zero cubical

dilatation ∇ · u = 0 to O(ζ3) in the incompressible limit ν ∼ 1/2.

According to (8.34), (8.36) and (8.39), the substrate deflection

uz = −η0P
F + η2∇2

⊥PF + O(ζ3) at z = 0, (8.40)

is found, with the higher-order hydrodynamic compliance η2 given by

η2 =
µUV(ω, β)`3

Ea1/2δ7/2
. (8.41)

Note that neither η2 nor uz3 vanish in the incompressible limit ν ∼ 1/2.

For compressible materials, the rigid-foundation model

H = PF = P − Υ
[h0(r) + η0H]3

+ Ξe−κ[h0(r)+η0H−1] (8.42)

represents the first approximation of the substrate deformation, with the hydrodynamic

compliance appearing implicitly in the Reynolds equation (8.11) given by (8.33). For in-

compressible materials ν ∼ 1/2, the vertical displacement becomes O(ζ3) and (8.40) yields

H = −∇2
⊥PF = −∇2

⊥P +∇2
⊥

{
Υ

[h0(r) + η2H]3
− Ξe−κ[h0(r)+η2H−1]

}
(8.43)

as an approximation valid to O(ζ3), with η2 given by (8.41). Expression (8.43) represents a

much simpler approximation than usual solutions of the deformation field of incompressible

layers based on Hankel transforms [1, 2], and allows the calculation of asymptotic solutions

to the lubrication problem (8.11)-(8.12) for η2 ¿ 1.

In the asymptotic limit of very thick elastic substrates, ζ → ∞, the surface dis-

placement can be obtained by the method of Green’s functions as detailed in classic texts

of elasticity theory [1, 2]. In the present notation, the surface deformation becomes

H =
∫ 2π

0

∫ ∞

0

PF(r′, ϕ′)r′dr′dϕ′√
r′2 + r2 − 2rr′ cos(ϕ− ϕ′)

, (8.44)

with

η∞ =
µUV(ω, β)a(1− ν2)

πEδ2
, (8.45)
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the hydrodynamic compliance for semi-infinite (compressible or incompressible) elastic sub-

strates.

Quantities similar to those represented by the hydrodynamic compliances (8.33),

(8.41) and (8.45), can be obtained to describe the substrate compliance due to the action

of the intermolecular stresses. The van der Waals and electric compliances are defined as

∆vdW
0 = η0Υ =

Asfw`(1 + ν)(1− 2ν)
6πE(1− ν)δ4

(8.46)

and

∆el
0 = η0Ξ =

64(1 + ν)(1− 2ν)`ciNAkT

E(1− ν)δ
λ(Ψd

w,Ψd
s)e

−κ (8.47)

for thin compressible elastic layers,

∆vdW
2 = η2Υ =

Asfw`3

6πaEδ5
(8.48)

and

∆el
2 = η2Ξ =

64`3ciNAkT

Eaδ2
λ(Ψd

w, Ψd
s)e

−κ (8.49)

for thin incompressible elastic layers, and

∆vdW
∞ = η∞Υ =

Asfwa1/2(1− ν2)
6π2Eδ7/2

(8.50)

and

∆el
∞ = η∞Ξ =

64(1− ν2)a1/2ciNAkT

πEδ1/2
λ(Ψd

w, Ψd
s)e

−κ, (8.51)

for semi-infinite elastic substrates.

The lubrication problem (8.11)-(8.12) is closed by either (8.42), (8.43) or (8.44). The

semi-infinite elastic substrate equation (8.44) yields a three-dimensional non-linear partial

integro-differential equation when coupled with the lubrication problem (8.11)-(8.12) that

represents quite an analytical challenge, since the hydromolecular pressure is generally a

two-dimensional field. In this analysis, emphasis is mainly made on the more analytically

tractable thin-layer configurations (8.42) and (8.43), since a thorough physical understand-

ing of these cases, which could be extended to more involved situations, can be achieved

by deriving exact solutions and using asymptotic methods. Chapter 9 briefly addresses the

influences of material incompressibility and layer thickness.
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8.4 Nearly-rigid-wall asymptotics (NRWA)

and summary of main nondimensional parameters

In this model, the characteristic area of the lubrication region is δ2/ε, which, by the

chordal theorem, is also roughly the area of the circular zone centered at a distance−δ inside

the sphere. This area is of the same order of magnitude as the effective interaction area of the

van der Waals forces, and it is larger than the typical interaction area δ2/εκ of the electric

double-layer forces [20], since these decay exponentially in the radial direction with a slope

proportional to κ, with κ > O(1). It must be emphasized that, in this analysis, surface

deformations are restrained to occur in the lubrication region. This assumption proves

to be accurate if the characteristic deformation Hc is much smaller than the lubrication

region size δ/ε1/2, or equivalently, if the hydrodynamic compliance satisfies η ¿ 1/ε1/2.

Analyses for larger values of η may produce appreciable surface deformations outside the

inner lubrication region, so that η may have to be incorporated in the inner scaling of the

lubrication zone and an asymptotic matching may have to be performed with the outer

viscous region as similarly performed in earlier works [25, 26] for the rigid-wall case.

The regular asymptotic expansions

PF = PF0 + ηPF1 + O(η2),

h = h0(r) + η[H0 + ηH1 + O(η2)],

v = v0 + ηv1 + O(η2), (8.52)

are defined for slightly soft surfaces η ¿ 1. The corresponding expansions of the van der

Waals (8.15) and electric pressures (8.17) yield

ΠvdW = ΠvdW
0 + ηΠvdW

1 + O(η2) = −Υ/h3
0(r) + 3ΥH0η/h4

0(r) + O(η2), (8.53)

and

Πel = Πel
0 + ηΠel

1 + O(η2) = Ξe−κ[h0(r)−1] − κΞηH0e−κ[h0(r)−1] + O(η2). (8.54)

The van der Waals and electric compliances are defined as

∆vdW = ηΥ, and ∆el = ηΞ, (8.55)

and they represent the ratio of the intermolecular to the elastic characteristic stresses. The

method for the calculation of ∆el, ∆vdW and η as a function of the dimensional parameters

is detailed in Section 8.3, and they are given by the expressions (8.46)-(8.51).
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Table 8.1: Fundamental nondimensional parameters and their definition, their asymptotic
ordering (Ord.) in the NRWA limit and numerical estimates (Est.), which are based on a
particle of radius a = 50 µm gliding at UV = 50 µm/s. The parameters of the substrate
are E = 1 kPa, ` = 0.5 µm (when finite), ν = 0 (when compressible), ν = 0.5 (when
incompressible), δ = 0.1 µm. The solvent is a symmetric monovalent aqueous electrolyte
of ci = 1 mM NaCl, zi = 1, ρ = 1000 kg/m3, µ = 1 mPa·s, εf = 80, Ψd

s = Ψd
w = −2 and

Di = 10−9 m2/s. The Hamaker coefficient is Asfw = 1.5kT , with T = 300 K. Typical values
of the dimensional intermolecular parameters are obtained from [20] and [21].

Parameter Substrate Definition Ord. Est.

hydrodynamic compliances:

η0 thin layer
µUV(ω, β)`a1/2(1 + ν)(1− 2ν)

E(1− ν)δ5/2
¿ 1 0.05

compressible

η2 thin layer
µUV(ω, β)`3

Ea1/2δ7/2
¿ 1 0.002

incompressible

η∞ semi-infinite medium
µUV(ω, β)a(1− ν2)

πEδ2
¿ 1 0.08

van der Waals compliances:

∆vdW
0 thin layer

Asfw`(1 + ν)(1− 2ν)
6πE(1− ν)δ4

¿ 1 0.001
compressible

∆vdW
2 thin layer

Asfw`3

6πaEδ5
¿ 1 0.00008

incompressible

∆vdW∞ semi-infinite medium
Asfwa1/2(1− ν2)

6π2Eδ7/2
¿ 1 0.002

electric compliances:

∆el
0 thin layer

64(1 + ν)(1− 2ν)`ciNAkT

E(1− ν)δ
λe−κ ¿ 1 0.005

compressible

∆el
2 thin layer

64`3ciNAkT

Eaδ2
λe−κ ¿ 1 0.0002

incompressible

∆el∞ semi-infinite medium
64a1/2ciNAkT (1− ν2)

πEδ1/2
λe−κ ¿ 1 0.008

intermolecular-hydrodynamic stress ratios:

Υ —
Asfw

6πµUV(ω, β)a1/2δ3/2
¿ 1/η 0.03

Ξ —
64δ3/2ciNAkT

µUV(ω, β)a1/2
λe−κ ¿ 1/η 0.1

Debye-Hückel parameter:

κ —

√
2(zieδ)2ciNA

ε0εfkT
> O(1) 10.3
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In what follows, asymptotic solutions of (8.11)-(8.12) are sought in the nearly-rigid-

wall asymptotic (NRWA) limit: η ¿ 1, ∆vdW ¿ 1, ∆el ¿ 1 and κ > O(1). In this

asymptotic limit, the elastic stress dominates over the intermolecular and hydrodynamic

stresses on the substrate, which produce small surface deformations, with no clear limitation

in the ratios of hydrodynamic to intermolecular stresses as long as they are sufficiently small

so that the expansions (8.53) and (8.54) are asymptotic, Υ ¿ 1/η and Ξ ¿ 1/η.

It is worth emphasizing that the NRWA limit may represent realistic physical con-

ditions that may well be found in the hydrodynamics of small particles over soft materials.

Table 8.1 summarizes the nondimensional parameters introduced in the preceding sections

and compares the asymptotic ordering required in the NRWA limit with typical values ex-

tracted from earlier studies in particle adhesion assuming a moderately soft material as a

substrate. Nonetheless, the substrate compliances are highly non-linear in the gap distance

and inversely proportional to the substrate compliance, so that they are expected to rapidly

attain O(1) values upon adhesion and for softer materials.



Chapter 9

Particle Dynamics

9.1 Dynamics near rigid substrates:

hydrodynamic and intermolecular forces

To leading order in η, the substrate corresponds to a perfectly rigid surface, and the

intermolecular forces are decoupled from the hydrodynamic forces since there is no surface

deformation. In this Section, earlier results [24, 25, 26] are summarized and generalized to

account for general azimuth rotation angles, and remarks about the leading-order pressure

distribution are made in preparation for Sections 9.3 and 9.4, where the effects of substrate

deformability are analyzed.

Integrating the electric and van der Waals pressures (8.15) and (8.17) over the

vertical projection of the inner element of sphere surface dSz = −a2εrdrdϕez yields

F vdW
z0 = −µUV(ω, β)a

ε1/2

∫ 2π

0

∫ ∞

0
ΠvdW

0 rdrdϕ = −πµUV(ω, β)aΥ
ε1/2

= −Asfwa

6δ2
,

and

F el
z0 =

µUV(ω, β)a
ε1/2

∫ 2π

0

∫ ∞

0
Πel

0 rdrdϕ

=
2πµUV(ω, β)aΞ

ε1/2κ
= 128πa`Dc∞i NAkTλ(Ψd

w,Ψd
s)e

−δ/`D , (9.1)

that correspond to well-known formulas of intermolecular forces [31, 27], which are inde-

pendent of the hydrodynamic field or gliding kinematics.

To leading order in η, the Reynolds equation (8.11) becomes

r2 ∂2P0

∂r2
+

[
r +

3r3

h0(r)

]
∂P0

∂r
+

∂2P0

∂ϕ2
= − 6r3

h3
0(r)

cosϕ, (9.2)

95
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where P0 is the leading term of a regular asymptotic expansion of the hydrodynamic pressure

in powers of η. Equation (9.2) is subject to boundary conditions (8.12) particularized for

the leading-order hydrodynamic pressure. The exact solution

P0 =

[
µUa1/2(1 + ω2 + 2ω sinβ)1/2

δ3/2

]
6r cos[θ + γ(ω, β)]

5(1 + r2/2)2
, (9.3)

can be obtained in terms of the dimensional hydrodynamic pressure. The contours of (9.3),

nondimensionalized with µUa1/2/δ3/2, are shown in figure 9.1. It is worth mentioning that

once the cosine term in (9.3) is expanded, the pressure scaling with the velocity results to

be linear in both U and ω, with the total pressure the sum of the pressures induced by each

motion mode. The leading-order velocity components can be calculated by using (9.3) and

retaining the first term of the expansion in powers of η of (8.13) and (8.14), which yields

vr0 =
{

3z2(2− 3r2)
10h3

0(r)
− z

h0(r)

[
3(2− 3r2)
10h0(r)

+ 1
]}

cosϕ +
[

2z

h0(r)
− 1

]
cos(ϕ− γ)
V(ω, β)

,

vϕ0 = −
[

3z2

5h2
0(r)

− 8z

5h0(r)

]
sinϕ−

[
2z

h0(r)
− 1

]
sin(ϕ− γ)
V(ω, β)

,

vz0 =
[
2z3(4r − r3)

5h4
0(r)

− z2r(r2 + 26)
10h3

0(r)

]
cosϕ +

z2r cos(ϕ− γ)
h2

0(r)V(ω, β)
. (9.4)

Expressions (9.3) and (9.4) reduce to the corresponding pressure and velocity fields in the

gap region for the cases of purely translational and rotational motions near a rigid wall

[24, 25, 26].

The calculation of the hydrodynamic drag forces and torques is a singular pertur-

bation problem in the small parameter ε, in that it requires asymptotic matching with the

outer non-lubrication viscous region. As ε → 0+ the pressure and velocity gradient become

singular because of the vanishing thickness of the lubrication layer. Following earlier work

[24, 25, 26], the leading-order forces and torques become

F h
x0 = 6πµUa

[(
8
15
− 2

15
ω sinβ

)
ln ε− 0.95429− 0.25725ω sinβ + o(1)

]
, (9.5)

F h
y0 = 6πµΩa cosβ

[
2
15

ln ε + 0.25725 + o(1)
]

, (9.6)

F h
z0 = 0, (9.7)

T h
x0 = 8πµΩa2 cosβ

[
2
5

ln ε− 0.37085 + o(1)
]

, (9.8)

T h
y0 = 8πµUa2

[(
2
5
ω sinβ − 1

10

)
ln ε− 0.19296− 0.37085ω sinβ + o(1)

]
, (9.9)

T h
z0 = 0, (9.10)
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Figure 9.1: Leading-order (rigid-wall) pressure and stress contours. (a) Hydrodynamic
pressure contours for purely translational motion, (b) hydrodynamic pressure contours for
corkscrew motion, (c) van der Waals stress contours (independent of rotation), (d) electric
stress contours (independent of rotation), (e) hydromolecular pressure contours for purely
translational motion, and (f) hydromolecular pressure contours for corkscrew motion. Pos-
itive contour labels represent compression stresses on the substrate, whereas negative ones
represent traction stresses. In this figure, Υ = Ξ = 0.5, and the dotted line represents a
circle of spatial unit radius.

which have been conveniently modified in the present investigation to account for an arbi-

trary azimuth angle of rotation β.

It is worth mentioning that, since the problem (8.11)-(8.12) is linear to leading order

in η, the hydrodynamic forces (9.5)-(9.10) produced by the rotational and translational

motions are decoupled. Since, according to the classical Stokesian scaling, these forces scale

linearly with the velocities U and Ω, they are kinematically reversible, in that if the rotation

and translation velocity vectors are reversed at once, the forces and torques moduli remain

invariant but their directions become reversed. As a result of this kinematically-reversible
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effect, no hydrodynamic lift force is exerted on the sphere to leading order in η, and the

intermolecular forces (9.1) and (9.1) are the only forces acting along the normal axis to

the substrate. The classic DLVO theory therefore holds in the first approximation, and

the particle can only be made to adhere to the substrate if the electrolyte concentration is

larger than its critical coagulation value cOi0 given by (8.23).

Additionally, the decoupling between rotation and translation causes the leading-

order drag force (9.5) to remain invariant if rotation about an axis parallel to the translation

axis is enabled, β = 0. This effect is shown in figure 9.1(a,b) and can be explained in terms

of the antisymmetry of the leading-order hydrodynamic pressure with respect to the axis

θ = π/2 − γ or ϕ = π/2, for any value of γ, which cancels the effects of the rotational

motion on the pressure along the x−axis.

Similarly, a hydrodynamic drift force (9.6) is also exerted on the sphere perpendic-

ularly to its translation axis for β 6= π/2, which solely depends on the rotational velocity.

This force can be of paramount importance in the study of the near-contact trajectories

of particles and microorganisms. In particular, the hydrodynamic effect of the drift force

in the case of corkscrew motion, β = 0, was found in earlier work by [15], to be responsi-

ble, when coupled to the corresponding drift force exerted on its flagella, for the circular

swimming-path dynamics of E. Coli bacteria when they are close to a rigid boundary.

As shown further below, effects produced by the presence of a nearby deformable

sticky substrate modify the conclusions derived from the rigid-wall case in that i) a lift force

is induced as a result of a combined elastohydromolecular effect, ii) the forces no longer

scale linearly with the velocities, iii) the drift force becomes dependent on the translational

velocity as well, iv) the drag force does not remain invariant if corkscrew motion is enabled,

and v) the limiting conditions for the onset of adhesion are not generally determined solely

by the critical coagulation concentration.

9.2 Statics near deformable substrates:

elastomolecular forces

In this Section, the much simpler problem of a stationary sphere standing off at

some distance δ from the wall surface, which represents an effective zero-Reynolds number

regime, is analyzed and used to exemplify the interaction of substrate-deformation effects

with the intermolecular forces. Since there is no particle motion, U = 0 and Ω = 0, the

hydrodynamic pressure is zero in the gap region (i.e. the difference between the ambient
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pressure and the absolute hydrodynamic pressure in the gap is zero). The van der Waals and

electric forces, (9.1) and (9.1), need to be corrected to account for the substrate elasticity.

9.2.1 Elastomolecular force

The balance of electric and van der Waals forces upon the axisymmetric pseudo-

hertzian static indentation of a sphere to an elastic infinite half-space, in the absence of

fluid flow, is the subject of study of classical theories [35, 36]. For simplicity, fluid-drainage

viscous effects during particle capture are neglected in this section. Thorough studies on the

dynamics of two colliding soft spheres can be found elsewhere [37, 38], where use was also

made of infinite half-space formulation and numerical solutions were sought. In this section,

the analysis is restrained to a simple description of the quasi-static stability of the flat elastic

layer, which leads to estimates of the parametric ranges for which the problem (8.11)-(8.12),

subject to (8.42), may have a static solution under no fluid flow, and the reasoning serves to

interpret the physical meaning of the elastohydromolecular lift components of its asymptotic

series calculated in Subection 9.3.1 for the gliding sphere.

In the absence of fluid motion, the wall constitutive equation (8.42) becomes

H = ∆el
0 e−κ[h0(r)+H−1] − ∆vdW

0

[h0(r) + H]3
. (9.11)

In this section, H represents the wall surface deformation nondimensionalized with the

minimum gap clearance δ. Equation (9.11) represents the equilibrium balance between the

elastic, electric and van der Waals stresses on the substrate surface.

To unveil the influences of the substrate compliance effects, the asymptotic expan-

sion of the surface deformation H = H0 +∆vdW
0 H1 +∆vdW 2

0 H2 +O(∆vdW 3

0 ), for ∆vdW
0 ¿ 1,

is introduced in (9.11) by keeping the ratio of electric and van der Waals characteristic

stresses ∆el
0 /∆vdW

0 as an order-unity parameter, which yields the elastomolecular force

Fz = −∆vdW
0 +

2∆el
0

κ
−

(
∆vdW

0 −∆el
0

)2
− 3∆vdW 3

0 + ∆vdW 2

0 ∆el
0 (κ + 6)

− ∆vdW 2

0 ∆el2

0 (2κ + 3) + κ∆el3

0 + O
(
∆vdW 4

0 , ∆el4

0

)
. (9.12)

In this formulation, Fz is nondimensionalized with the characteristic elastic force πE(1 −
ν)δ2a/`(1+ν)(1−2ν). The first two terms in (9.12) represent the well-known van der Waals

and electric double-layer forces (9.1) and (9.2) on a sphere near a rigid wall. The remaining

are correction terms that correspond to perturbations introduced by the substrate elasticity,

which show that the electric and van der Waals components of the intermolecular force are
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Figure 9.2: (a) Nondimensional static normal force on the sphere as a function of the van der
Waals compliance for deionized solvents. (b) Map of static solutions, for a stationary sphere,
in terms of the electric compliance ∆el

0 and the van der Waals compliance ∆vdW
0 ; the hatched

area denotes the occurrence of elastostatic adhesion or non-existence of a static solution,
which represents an elastic instability produced by the unbounded attracting van der Waals
or electric stresses, and is bounded by the critical compliance ∆vdW

0C (solid line). The dot-
dashed line denotes the compliance ∆vdW

0L for Fz = 0. (c) Centerline elastic displacement
of the substrate as a function of the van der Waals compliance for deionized solvents (solid
line), repulsive (dot-dashed line) and attractive (dashed line) electric forces. Insets show
typical radial deformation profiles in each branch. Calculations were performed here for
κ = 10.

not generally additive when acting on a deformable wall. The asymptotic expression (9.12)

is compared in figure 9.2(a) with the numerical solution of (9.11), for deionized solvents. It

is noteworthy to mention that, according to (9.12), the first perturbation introduced by the

deformable wall is to enhance the attracting effect in the case of attractive intermolecular

forces (∆vdW
0 > 0 or ∆el

0 < 0) due to an effective reduction on the gap size, and to suppress

the effect of repulsion in the case of repulsive intermolecular forces (∆vdW
0 < 0 or ∆el

0 > 0)

due to an effective increase on the gap size. For ∆vdW
0L ∼ 2∆el

0 /κ, the force on the sphere

is zero in the first approximation. For ∆vdW
0 < ∆vdW

0L , the force on the sphere is repulsive,

and the opposite occurs for ∆vdW
0 > ∆vdW

0L .

9.2.2 Surface bifurcations in the substrate:

elastostatic adhesion

Further examination of (9.11) shows the existence of bifurcations in the solution of

the displacement field. Particularizing (9.11) for attracting van der Waals forces ∆vdW
0 > 0

and repulsive electric forces ∆el
0 > 0, which may correspond to the most usual physical
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configuration [20, 29, 21], shows that, as ∆vdW
0 increases, the elastic deformation towards

the sphere side increases, reaching a turning point, at which the wall surface develops an

unstable sharp cusp along the axis r = 0 that is representative of elastostatic adhesion or

capture of the stationary particle by the elastic substrate for a minimum compliance ∆vdW
0C =

∆vdW
0C (∆el

0 , κ), in the sense that no equilibrium solution of (9.11) exists for ∆vdW
0 > ∆vdW

0C ,

as shown in figure 9.2(c). In this regime, the critical compliance ∆vdW
0C increases with the

electric-elastic stress ratio ∆el
0 , as observed in figure 9.2(b), and decreases with increasing

κ, with ∆vdW
0C = 27/256 for deionized solvents ∆el

0 = 0. For ∆vdW
0 < ∆vdW

0C with ∆vdW
0 > 0,

two equilibrium solutions of (9.11) may exist for the same value of ∆vdW
0 , with the low-

strain solution being the stable solution. The high-strain solution is unstable, in that a

small perturbation on the surface deformation towards the sphere side produces a steeper

increment of the intermolecular traction stress compared with the corresponding increments

undergone by the electric and internal restoring elastic stresses in the layer, so that the wall

surface departs from static equilibrium and adhesion occurs with H = −h0(r). A similar

description holds for the case of attractive van der Waals and electric forces, ∆vdW
0 > 0 and

∆el
0 < 0.

In the absence of van der Waals forces, ∆vdW
0 = 0, elastostatic adhesion occurs

for sufficiently attractive electric forces ∆el
0 < ∆el

0C = −1/κe. For repulsive electric and

van der Waals forces, ∆vdW
0 < 0 and ∆el

0 > 0, the elastic layer is always stable and a

single equilibrium solution is obtained. For repulsive van der Waals forces and attractive

electric forces, ∆vdW
0 < 0 and ∆el

0 < 0, three solutions may be obtained for the same

value of ∆vdW
0 resembling a S-curve, with a stable low-strain branch in which repulsion

dominates, an unstable middle-branch, and a stable high-strain solution in which there

is a balance between attraction, repulsion and the elastic restoring force that places the

flat layer at a short equilibrium distance from the sphere surface. Notice that complete

elastostatic adhesion (i.e. mechanical disequilibrium of the substrate) is not possible in this

configuration due to the strong singularity of the van der Waals repulsive stresses.

The intermolecular force asymptotic expansion (9.12) corresponds to the low-strained

stable solutions of (9.11). It is noteworthy to mention that a particle free to move will not

experience elastostatic adhesion for ∆vdW
0 < ∆vdW

0L since the net intermolecular force would

be repulsive. For ∆vdW
0 > ∆vdW

0L , the net intermolecular force on the particle is attractive,

but it is not until the gap distance δ becomes sufficiently small, with ∆vdW
0 > ∆vdW

0C , that

the elastostatic adhesive mechanism sets in.

If the DLVO criterion (8.22) is used, adhesion by random perturbations of the
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gap distance can occur if the electrolyte concentration is sufficiently large such that the

energy barrier is small, as detailed in Section 8.2.1 and shown in figure 7.1. The critical

ionic concentration for rapid coagulation of the sphere on the deformable substrate can be

obtained by combining (8.22) and (9.12), which yields the system of equations

1 −
(

cOi0
cOi

)1/2

(κO)2e−(κO−1) + ∆vdW
0O

[
1

(κO)4

(
cOi
cOi0

)2

+
(

cOi
4cOi0

)
(κO)2e−2(κO−1)

−
(

cOi
cOi0

)3/2 e−(κO−1)

κO

]
= O(∆vdw2

0O ),

1 −
(

cOi0
cOi

)1/2

κOe−(κO−1) + ∆vdW
0O

[
1

5(κO)4

(
cOi
cOi0

)2

+
(

cOi
8cOi0

)
(κO)e−2(κO−1)

−
(

cOi
cOi0

)3/2 e−(κO−1)

κO
m(κ)

]
= O(∆vdw2

0O ), (9.13)

where cOi0 is given by (8.23), and

m(κ) = −κ2

2
eκEi(−κ) +

1− κ

2
, (9.14)

with Ei the Exponential Integral function. In this formulation, ∆vdW
0O is based on δ = δO0 .

It can be shown that the expansions

cOi
cOi0

= 1− 0.053∆vdW
0O + O(∆vdw2

0O ), (9.15)

κO = 1 + 0.223∆vdW
0O + O(∆vdw2

0O ), (9.16)

are asymptotic solutions of (9.13) for ∆vdw
0O ¿ 1. In particular, (9.15) represents the pertur-

bation of the critical coagulation concentration (8.23) due to the substrate elasticity, and

it shows that adhesion by electrolyte addition would occur at a lower concentration level

in the hypothetical case that elastic instabilities are negligible, which represents a good

approximation in the range of validity of (9.15), ∆vdW
0 ¿ ∆vdW

0O ¿ 1, and if ∆vdW
0O < ∆vdW

0CO .

The value ∆vdW
0CO represents the van der Waals compliance for elastostatic adhesion evalu-

ated at the DLVO critical coagulation conditions (8.22), and it can be obtained numerically

by use of (9.11) and noticing that, in the first approximation, ∆vdW
0O = ∆el

0O when cOi = cOi0
and κO = κO0 , from which ∆vdW

0CO = 0.452. However, if ∆vdW
0O > ∆vdW

0CO elastostatic adhesion

occurs before the particle has surpassed the small energy barrier, and the corrected DLVO

criterion (9.15) losses accuracy. Equation (9.15) is consistent with the fact that substrate-

deformation effects increase the effective value of the attractive forces and decrease that of

the repulsive forces.
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Figure 9.3: Functions f , g, υ and ξ obtained from the numerical integration of (9.21)-(9.24).

The onset of fluid flow by rotational or translational motion of the sphere produces

a nonzero hydrodynamic pressure in the clearance, which alters the adhesion dynamics

exposed in this section. These hydrodynamic effects are addressed in Section 9.4.

9.3 Dynamics near deformable substrates:

elastohydromolecular forces

The compliance of the substrate couples the hydrodynamic field described by the

Reynolds equation (8.11) with the substrate responses (8.42), (8.43) or (8.44), and with

the intermolecular stress distributions (8.15) and (8.17). Such a coupling effect breaks the

intrinsic symmetry of the Stokes equations (8.2)-(8.4), and renders the problems (8.2)-(8.4)

and (8.11)-(8.12) nonlinear.

To second order in η, equation (8.11) becomes

r2 ∂2P1

∂r2
+

[
r +

3r3

h0(r)

]
∂P1

∂r
+

∂2P1

∂ϕ2
=

18
5

r3(6 + r2)
h5

0(r)
H0 cosϕ

+
48
5

r

h3
0(r)

∂H0

∂ϕ
sinϕ +

12
5

r2(r2 − 4)
h4

0(r)
∂H0

∂r
cosϕ. (9.17)

Equation (9.17) is subject to boundary conditions (8.12). The case of a thin compressible

layer (8.42) is addressed in detail in this section.

To leading order in η, equation (8.42) yields the normal surface deformation

H0 = P0 + ΠvdW
0 + Πel

0 =
6r cosϕ

5h2
0(r)

− Υ
h3

0(r)
+ Ξe−κ[h0(r)−1]. (9.18)

Substituting this expression into the second-order balance Reynolds equation (9.17), the
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equation

r2 ∂2P1

∂r2
+

[
r +

3r3

h0(r)

]
∂P1

∂r
+

∂2P1

∂ϕ2
=

72
25

r4(20 + r2)
h7

0(r)
cos2 ϕ +

{
18
5

Υr3(r2 − 14)
h8

0(r)

+
12
5

Ξκr3(4− r2)e−κ[h0(r)−1]

h4
0(r)

+
18
5

Ξr3(6 + r2)e−κ[h0(r)−1]

h5
0(r)

}
cosϕ− 288

25
r2

h5
0(r)

,

(9.19)

is obtained. A particular integral of the form

P1 = f(r) cos2 ϕ + [Υυ(r) + Ξξ(r, κ)] cosϕ + g(r), (9.20)

is substituted into (9.19), which yields the linear system of ordinary differential equations

L2f =
72
25

r4(20 + r2)
h7

0(r)
, (9.21)

L1υ =
18
5

r3(r2 − 14)
h8

0(r)
, (9.22)

L1ξ =
12
5

κr3(4− r2)e−κ[h0(r)−1]

h4
0(r)

+
18
5

r3(6 + r2)e−κ[h0(r)−1]

h5
0(r)

, (9.23)

L0g + 2f = −288
25

r2

h5
0(r)

, (9.24)

with Ln a differential operator given by

Ln = r2 d2

dr2
+

[
r +

3r3

h0(r)

]
d

dr
− n2, with n = 0, 1, 2. (9.25)

For r ¿ 1, f = O(r2), g = O(1), υ = O(r) and ξ = O(r). Similarly, for r À 1, f = O(r−8),

g = O(r−8), υ = O(r−11) and ξ = O(e−κr2
/r3). Therefore, the boundary conditions of

(9.21)-(9.24) are f = υ = ξ = 0 and g′ = 0 for r = 0, and vanishing values of f , g, υ and

ξ for large r. Figure 9.3 shows the solutions to (9.21)-(9.24), which need to be obtained

numerically. Nonetheless, for later use, the auxiliary function σ = 2g + f is defined by

combining equations (9.21) and (9.24). It can be shown that the resulting differential

equation has the exact solution

σ = 2g + f =
18
125

(14− 5r2)
h5

0(r)
, with

∫ ∞

0
σrdr =

48
125

. (9.26)

The dimensionless hydromolecular pressure perturbation is given by

PF1 = P1 + ΠvdW
1 + Πel

1

= f(r) cos2 ϕ +

{
Υ

[
υ(r) +

18r

5h6
0(r)

]
+ Ξ

[
ξ(r, κ)− 6rκe−κ[h0(r)−1]

5h2
0(r)

]}
cosϕ

+ g(r)− 3Υ2

h7
0(r)

− κΞ2e−2κ[h0(r)−1] + ΞΥ

{
e−κ[h0(r)−1]

h3
0(r)

[
3

h0(r)
+ κ

]}
, (9.27)
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Figure 9.4: Second-order pressure and stress contours for purely translational motion. The
figure shows (a) the hydrodynamic pressure disturbance in the absence of intermolecular
effects, Ξ = Υ = 0, and the influences of intermolecular effects, with Ξ = Υ = 0.5, on (b) the
hydrodynamic pressure, (c) van der Waals stress, (d) electric stress and (e) hydromolecular
pressure perturbations. The dotted line represents a circle of spatial unit radius.

where use has been made of (8.53), (8.54), (9.18) and (9.20). Since PF1 decays sufficiently

rapidly for large r, the calculation of the force and torque perturbations thereby is not a sin-

gular perturbation problem, in that the required indefinite integrals of the hydromolecular

pressure perturbation are convergent for large r.

Figures 9.4 and 9.5 show the contours of the first perturbations of the hydrodynamic

pressure (9.20), the hydromolecular pressure (9.27), and of the intermolecular stresses (8.53)

and (8.54), nondimensionalized with µUa1/2/δ3/2 to illustrate the rotational effects. The

substrate compliance decreases and increases the hydrodynamic overpressure and underpres-

sure levels respectively, which breaks the antisymmetry of the leading-order hydrodynamic

pressure contours and induces a lift force, and drag-force and drift-force perturbations. It is

noteworthy to mention that the corkscrew rotation actively affects the pressure component

of the drag force, as observed by comparing the projection along the x-axis of the contours

in figures 9.4 and 9.5 and superposing them onto those shown in figure 9.1.

The shear-stress perturbations can be obtained by differentiating the second term
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of the expansion of (8.13) and (8.14) in powers of η0, which yields

τrz1 =
∂vr1

∂z

∣∣∣
z=h0(r)

=
[
12r(4− r2)

25h5
0(r)

+
h0(r)

2
df(r)
dr

]
cos2 ϕ

+

{
Υ

h5
0(r)

− Ξe−κ[h0(r)−1]

h2
0(r)

}
2 cos(ϕ− γ)
V(ω, β)

+
{

2Ξ(4− r2)e−κ[h0(r)−1]

5h3
0(r)

+
2Υ(r2 − 4)

5h6
0(r)

+
h0(r)

2

[
Υ

dυ(r)
dr

+ Ξ
∂ξ(r, κ)

∂r

]}
cosϕ− 12r cosϕ cos(ϕ− γ)

5h4
0(r)V(ω, β)

+
h0(r)

2
dg(r)
dr

,

(9.28)

and

τϕz1 =
∂vθ1

∂z

∣∣∣
z=h0(r)

= −
[

48r
25h4

0(r)
+

h0(r)f(r)
r

]
sinϕ cosϕ

+
{

8Υ
5h5

0(r)
− 8Ξe−κ[h0(r)−1]

5h2
0(r)

− [Υυ(r) + Ξξ(r, κ)]h0(r)
2r

}
sinϕ

+
[
Ξe−κ[h0(r)−1]

h2
0(r)

− Υ
h5

0(r)

]
2 sin(ϕ− γ)
V(ω, β)

+
12r cosϕ sin(ϕ− γ)

5h4
0(r)V(ω, β)

, (9.29)
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where use has been made of (9.18) and (9.20).

The values of the forces obtained from the analytical integration of (9.27)-(9.29)

are compared in what follows to the numerical solution of the problem (8.11)-(8.12) and

(8.42), which was integrated by using a second-order finite-differences numerical scheme. In

this investigation, torques are not calculated since they are found to be of O(εη0), which

correspond to higher-order effects that are not considered here.

9.3.1 Lift force

Integrating the asymptotic expansion of the hydromolecular pressure (9.27) over the

vertical projection of the inner element of the surface of the sphere in cylindrical coordinates,

dSz = −a2εrdrdϕez, and using expressions (9.26), the elastohydromolecular lift force

Fz =
µUV(ω, β)a

ε1/2

∫ ∞

0

∫ 2π

0
PF1 rdrdϕ

=
πµUV(ω, β)a

ε1/2

{
−Υ +

2Ξ
κ

+ η0

[
48
125

− (Υ− Ξ)2
]

+ O(η3
0, η

3
0Υ

2, η3
0Ξ

2, η3
0ΥΞ, η3

0Υ
2Ξ2, η3

0ΥΞ3, η3
0Υ

3Ξ)

}
(9.30)

is obtained. It can be shown that the contribution of the viscous shear stresses to the lift

force is of order εη0 ¿ η0 [13], which is neglected in this analysis. The lift force (9.30)

is composed of two leading-order terms that represent the values (9.1) and (9.1) of the

intermolecular forces on a small sphere near a rigid wall. These are the two fundamental

forces acting in the DLVO theory. The lift force also includes a term 48η0/125, that corre-

sponds to the positive elastohydrodynamic lift force [12, 13]. The squared bracketed term

−(Υ−Ξ)2 represents a negative elastomolecular lift force that is a nonlinear superposition

of intermolecular effects; this force corresponds to the disturbance of the intermolecular

force on a stationary sphere induced by the soft substrate, as shown in Section 9.2 by the

second-order term of (9.12). Higher-order terms result from a full elastohydromolecular

coupling and involve combinations of the hydrodynamic and intermolecular compliances,

such that the resulting dimensionless groups are proportional to even powers of the velocity;

the expansion of the lift force remains kinematically irreversible to every order, in that its

direction is independent of the direction of rotation and translation.

To leading order in η0, only the DLVO force, which origin is purely related to the

intermolecular stresses and not hydrodynamically enhanced, acts on the particle along the

z−axis; this force is kinematically irreversible, although the flow is still Stokesian in a linear
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Figure 9.6: Influences of rotation ω and azimuth angle of rotation β on the lift force (9.30)
in the absence of intermolecular forces, Ξ = Υ = 0. The numerical and asymptotic solutions
are shown in solid and dashed lines respectively.

sense. For non-zero η0, the existence of a kinematically-irreversible lift force of elastohy-

dromolecular origin is explained in terms of the nonlinearity induced by the substrate com-

pliance and intermolecular effects. Nonlinear effects in Stokes-type flows can be produced

by small convective disturbances in the flow [16, 17], non-Newtonian fluid behaviors [19] or

electrokinetic effects [18], all of which induce kinematically-irreversible forces on submerged

particles and are important in certain range of rheological applications. In this model, the

elastohydromolecular lift force is produced by the combined action of the intermolecular

and hydrodynamic stresses on the substrate, which ultimately modify the compliant gap

geometry and the hydrodynamic flow through that region as shown by the contours of the

pressure and stress disturbances in figures 9.4 and 9.5.

Influences of rotation and of rotation-axis orientation on the lift force

Rotational motions distort the magnitude and orientation of the pressure distribu-

tion in the gap and also modify the gap geometry, as observed in figure 9.5. To isolate the

rotational effects, the lift force (9.30) is nondimensionalized independently of the velocity

scale V(ω, β), and expressed as a function of the translational hydrodynamic compliance

η0/V(ω, β) as shown in figure 9.6, where intermolecular effects have been neglected for il-
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Figure 9.7: Dimensionless elastohydromolecular lift force on the sphere, for any rotation
rate and rotation axis orientation, as a function of the hydrodynamic compliance η0 for
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dotted envelope line represents the values for elastohydrodynamic adhesion, beyond which
no solution of (8.11)-(8.12) and (8.42) was found because of a loss of static mechanical
equilibrium on the substrate surface.

lustrative purposes. As advanced in a previous study [13], the inverse purely rolling motion

(ω = −1, β = π/2) completely suppresses the production of elastohydrodynamic lift force,

since a local Couette flow is induced in the gap, and the hydrodynamic pressure becomes

zero to every order of η0. That is not the case when the intermolecular forces are not

negligible, since both the leading-order intermolecular and second-order elastomolecular

contributions to the lift force are present in (9.30). Similarly, the present formulation re-

veals that, for the same translational velocity, particle dimensions and substrate mechanical

properties, the purely rolling motion (ω = 1, β = π/2) produces a larger lift force than the

corkscrew (ω = 1, β = 0) and translational (ω = 0) motions; during the rolling motion, the

fluid entrainment of the combined rotation and translation are aligned along the θ = 0 axis

and both effects more strongly synergize causing a larger positive overpressure peak in the

gap and therefore larger substrate deformations. In this model, no negative values of the

elastohydrodynamic lift force were found for any combination of rotation and translation.



110

Influences of intermolecular effects on the lift force

Figure 9.5 shows that the intermolecular stresses produced by the electric and van

der Waals forces disturb the compliant wall and modify the net normal stress acting on

the sphere. The influences of these intermolecular effects on the lift force are shown in

figure 9.7, which value is independent of ω and β. For negative and order-unity values

of Υ, or more precisely Υ . −(48/125)1/2, which correspond to order-unity and repulsive

van der Waals forces, the lift force decreases with increasing η0 due to the gap-distance-

augmentation effect outlined in Section 9.2, by which the repulsion decreases because of

the increase of the substrate compliance and the effective clearance, which dominates the

elastohydrodynamic force that typically increases with increasing η0. For smaller but still

repulsive van der Waals forces, −(48/125)1/2 . Υ < 0, the lift force is positive and increases

with η0. Slightly attractive van der Waals forces produce negative lift forces on the sphere

up to a resuspension or lift-off hydrodynamic compliance η0L, beyond which the elastohy-

drodynamic effect dominates and a positive lift force occurs. This increase proceeds up to

a critical hydrodynamic compliance η0C for the occurrence of irreversible elastohydrody-

namic adhesion, in that no solution of the problem (8.11)-(8.12) and (8.42) is found beyond

η0C at constant Υ because of a loss of static mechanical equilibrium on the substrate sur-

face. Positive and order-unity values of Υ, which correspond to large and attractive van

der Waals forces, enhance earlier irreversible elastohydrodynamic adhesion. The lift-off and

elastohydrodynamic adhesion processes are addressed in detail in Section 9.4, and a similar

but simpler adhesion phenomenon is exemplified in Section 9.2 for a stationary sphere. Sol-

vent ionization and electric repulsion augment the lift force, decrease the magnitude of the

lift-off hydrodynamic compliance, and extend the irreversible elastohydrodynamic adhesion

boundary to larger η0C by electrically stabilizing the substrate surface.

9.3.2 Drag-force and drift-force first-order perturbations

The perturbations of the drag and drift forces on the sphere are calculated as

Fx1 = −µUVaη0

∫ 2π

0

∫ ∞

0

[
PF1 r2 cos(ϕ− γ) + τrz1r cos(ϕ− γ)− τϕz1r sin(ϕ− γ)

]
drdϕ

= πµUaη0

{
Ξ [E(κ) + J (κ)ω sinβ]−Υ [F − Gω sinβ] + O(η2

0, η0Υ2, η0Ξ2, η0ΞΥ)
}

,

(9.31)
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and

Fy1 = −µUVaη0

∫ 2π

0

∫ ∞

0

[
PF1 r2 sin(ϕ− γ) + τrz1r sin(ϕ− γ) + τϕz1r cos(ϕ− γ)

]
drdϕ

= −πµUaη0

{
ω cosβ [ΥG + ΞJ (κ)] + O(η2

0, η0Υ2, η0Ξ2, η0ΞΥ)
}

, (9.32)

where the electric force coefficients E(κ) and J (κ) are given by

E(κ) = 2− 6κ

5
+ (6κ− 4)

κ

5
eκEi(−κ)− 1

2

∫ ∞

0
ξ(r, κ)r2dr,

J (κ) = −2− 6κ

5
− κ

5
(6κ + 16)eκEi(−κ) +

1
2

∫ ∞

0
ξ(r, κ)r2dr, (9.33)

which are shown in figure 9.8, and with the van der Waals force coefficients F and G given

by

F =
17
25

+
1
2

∫ ∞

0
υ(r)r2dr = 0.9905, and G =

8
25
− 1

2

∫ ∞

0
υ(r)r2dr = 0.0095.

(9.34)

The drag-force and drift-force perturbations are composed of two terms of O(η0Υ) and

O(η0Ξ): the the van der Waals and electric drag/drift forces. These are representative

of the forces induced by mixed elastohydromolecular effects. Higher-order terms involve

combinations of the hydrodynamic and intermolecular compliances, such that the resulting

dimensionless groups are proportional to odd powers of the velocity; the expansions of the

drag and drift force remain kinematically reversible to every order, in that their direction

changes under gliding direction reversal. It is noteworthy to mention that, if the intermolec-

ular effects are negligible, Υ = Ξ = 0, the substrate-deformation effects on the drag and

drift forces become of O(η2
0) for η0 ¿ 1, which cannot be analytically captured by solely

retaining the order O(η0) terms in the expansions (9.31) and (9.32).
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Influences of rotation and of rotation-axis orientation on the drag-force distur-

bance

Figure 9.9 shows the effects of the rotation ω and the azimuthal orientation β of

the rotation axis on the disturbance of the drag force, obtained by numerical integration

of (8.11)-(8.12) and (8.42), in the absence of intermolecular forces, Υ = Ξ = 0. The sub-

strate compliance reduces the leading-order drag force (9.5) because of a decrease in the

hydromolecular pressure and viscous shear stresses in the deformed gap region. The inverse

purely rolling motion (ω = −1, β = π/2) completely suppresses the elastohydrodynamic

drag force disturbance, since no deformation is produced in this case. For the same transla-

tional velocity, particle dimensions and substrate mechanical properties, the purely rolling

motion (ω = 1, β = π/2) produces a larger drag force reduction than the corkscrew (ω = 1,

β = 0) and translational (ω = 0) motions. For η0 = O(1), the elastohydrodynamic drag

force disturbance produced by surface-deformation effects is approximately 6 ln(1/ε) times

smaller than the leading-order force (9.5), which, as a maximum, represents a 5 to 10%

drag reduction for ε = 0.1. It must be emphasized that the rotational and translational mo-

tions are nonlinearly coupled as in the corkscrew motion, for which rotation about an axis

parallel to the translation axis induces an additional drag reduction; this nonlinear effect

departs from the decoupled behaviour of the rotational and translational motions observed

in the leading-order drag force (9.5), which is typical of linear viscous flows. In this model,

no negative values of the elastohydrodynamic drag-force disturbance were found for any

combination of rotation and translation.

Influences of the intermolecular effects on the drag-force disturbance

The influences of the intermolecular effects on the drag force disturbance on the

sphere are shown in figure 9.10. For negative values of Υ, which correspond to repulsive

van der Waals forces, the drag-force disturbance increases with η0, which results in an

additional drag reduction to that solely produced by substrate-deformation effects. Slightly

attractive van der Waals forces, Υ ¿ 1, produce a drag increase on the sphere up to a critical

compliance, beyond which the elastohydrodynamic effect dominates and a drag reduction

occurs. Positive and order-unity values of Υ, which correspond to large and attractive

van der Waals forces enhance irreversible elastohydrodynamic adhesion. Electric repulsion

augments the drag-reduction trend, and extend the elastohydrodynamic adhesion boundary

to larger η0.



113

0  0.5 1.0 1.5 2.0

0

0.1

0.2

0.3

0.4

0.5

0.6

DRAG REDUCTION

DRAG INCREASE

Ω

Ω

Ω

U

U

UU

F d
x

πµUa

η0/V

ω = 1, β = π/2 ω = 0

ω = 1, β = 0

ω = −1, β = π/2

Figure 9.9: Influences of rotation ω and azimuth angle of rotation β on the drag force
disturbance, obtained by numerical integration of (8.11)-(8.12) and (8.42), in the absence
of intermolecular forces, Υ = Ξ = 0.

Influences of the intermolecular effects on the drift-force disturbance

Substrate-deformation effects are found to play a very weak role on the drift force.

For a stationary rotating sphere near a soft substrate, ω →∞, U → 0, this can be explained

in terms of the mutual cancellation of the two following effects: a hydrodynamic overpressure

decrease in the gap region, which increases the drift, and the loss of traction due to the

viscous shear-stress decrease in the same region, which reduces the drift force; both effects

are found to be of the same magnitude in the range of hydrodynamic compliances η0 studied

in this analysis, which yields a negligibly small drift disturbances with respect to the leading-

order force (9.6). Nonetheless, the formula (9.32) predicts a drift reduction and increase due

to electric repulsion and van der Waals forces respectively, both of which actively modify

the shear stress distribution in the gap and the viscous-traction efficiency.
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Figure 9.10: Dimensionless elastohydromolecular drag force disturbance on a translating
sphere as a function of the hydrodynamic compliance η0 for −1 ≤ Υ ≤ 1, for (a) deionized
solvents, Ξ = 0, and (b) ionized solvents with Ξ = 0.035 (electric repulsion) and κ = 10.
The dotted envelope line represents the values for hydrodynamic adhesion, beyond which
no numerical solution of (8.11)-(8.12) and (8.42) was found because of a loss of static
mechanical equilibrium on the substrate surface.

9.4 Elastohydrodynamic adhesion and lift-off

A characteristic lift-off compliance, η0L, can be defined as the value for which the

lift force becomes zero,

η0L ≈
{

125
48

[
∆vdW

0 − 2∆el
0

κ
+

(
∆vdW

0 −∆el
0

)2
]}1/2

, (9.35)

which is representative of reversible adhesion on the substrate; for η0 = η0L the particle

can undergo lateral motions along the substrate surface. For a given set of intermolecular

parameters and particle dimensions, the lift-off hydrodynamic compliance can be achieved

by sufficiently large gliding velocities or substrate compliances.

For η0 < η0L, the lift force on the particle is negative, and irreversible elastohydro-

dynamic adhesion occurs for sufficiently large ∆vdW
0 . This adhesion mechanism is due to

surface instabilities on the substrate, and however qualitatively similar to the elastostatic

adhesion mechanism for a stationary sphere presented in Section 9.2, here the hydrodynamic

pressure plays an important role on the stabilization of the surface. The limiting values for
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Figure 9.11: Lift-off and critical hydrodynamic compliances for elastohydrodynamic adhe-
sion as a function of the van der Waals compliance, for (a) deionized solvents, Ξ = 0, and
(b) ionized solvents with Ξ = 0.035 (electric repulsion) and κ = 10. (c) Gliding-power
Ẇ isolines (dot-dashed lines) in deionized solvents, with Ẇ1 < Ẇ2 < Ẇ3. The figure also
shows two examples of migration mechanisms on a soft and sticky substrate: (d) Swimming-
induced migration: a slow swimmer gets entrapped in an accessible potential minimum as
it approaches the substrate surface, from where it escapes when the lift-off velocity ηL is
achieved. (e) Shear-induced migration: a particle close to the substrate migrates under the
action of sufficiently high shear rates γL.

irreversible elastohydrodynamic adhesion are given by the critical hydrodynamic compliance

η0C , which needs to be calculated numerically, and which depends on the intermolecular

compliances as shown in figure 9.11(a,b). For η0 > η0L, the lift force is positive, but ir-

reversible elastohydrodynamic adhesion is not fully prevented since the substrate becomes

softer and more unstable as η0 increases.

That adhesion can occur for positive lift forces may seem a counter-intuitive result,

especially if comparison to the stationary-sphere case in Section 9.2 is made, since elasto-

static adhesion always occurs there for net attractive intermolecular forces. This concept

can be explained by use of figure 9.7 where, by holding Υ and Ξ constant and varying

η0, effects induced solely by the substrate softness can be extracted: irreversible elastohy-

drodynamic adhesion events for Fz > 0 observed in figure 9.7 show that sufficiently large

compliances destabilize the substrate surface for a given gliding velocity, particle dimen-

sions, gap distance and intermolecular intensity, and promote adhesion by decreasing the
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strength of the restoring elastic stress. Similarly, effects induced solely by the gliding ve-

locity can be extracted by keeping ∆vdW
0 constant in figure 9.11(a,b) and varying η0 along

a vertical line: sufficiently small gliding velocities enhance elastohydrodynamic adhesion

by hydrodynamically destabilizing the substrate surface for a given substrate compliance,

gap distance, particle dimensions and intermolecular intensity. An increase in the repul-

sive electric force decreases the extent of the hydrodynamic adhesion region, as shown in

figure 9.11(b), by exerting a stabilizing compressive stress on the substrate surface. The

irreversible elastohydrodynamic adhesion mechanism can occur in ionized and deionized

solvents. In deionized solvents there is no spontaneous electrical interaction; therefore elas-

tohydrodynamic adhesion cannot be described by the classic DLVO theory.

It is worth emphasizing that the reversible elastohydrodynamic regime η0 = η0L

corresponds to a stable regime in a dynamic lift-off process at constant gliding power Ẇ

under small quasi-static perturbations of the gap distance. An iso-power gliding trajectory

Ẇ = Fx0U =const., on a {η0,∆vdW
0 } plane, is given by

η0 ∼ C1∆vdW 5/8

0 [ln(∆vdW 1/4

0 /C2)]−1/2 (9.36)

for deionized solvents, where C1 = f(Ẇ ) = O(1) and C2 = O(ε∆vdW 1/4

0 ) = O(∆vdW 1/4

0a ) ¿ 1

are two constants, with ∆vdW 1/4

0a the van der Waals compliance based on a gap distance of

O(a). A necessary requirement for (9.36) to be accurate is that ∆vdW 1/4

0 À C2, since

ε = O(1) when ∆vdW 1/4

0 = O(C2). As shown in figure 9.11(c), a small decrease of the

minimum gap clearance δ below its lift-off value induces a positive lift force, which returns

the particle to its initial vertical position above the substrate. However, a sufficiently

large perturbation of the particle position towards the substrate can induce irreversible

elastohydrodynamic adhesion. Similarly, an increase of the minimum gap clearance above

its lift-off value induces a positive lift force, which returns the particle to its initial vertical

position above the substrate. This stable equilibrium is similar to that found for ionized

solvents in the DLVO secondary minimum, from which particles and microorganisms are

believed to be able to escape from the potential well due to van der Waals retardation effects

at large gap distances [20, 21]. Similar dynamics are found for constant-force trajectories.

Based on these results, a reversible adhesion regime and resuspension may be envisioned

for a constant-power micro-swimmer as that depicted in figure 9.11(d). The lift-off and

lateral motility of the swimmer are entirely elastohydrodynamically enhanced, such that

these effects cease once the gliding motion stops.

Similar phenomena have been observed in the slip and flow of dense polymer mi-
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crogel pastes in earlier works [22, 23], where experiments, scaling and numerical analyses

of elastohydrodynamic models found a slip regime of sheared pastes over surfaces beyond

a critical sliding yield stress. Below the sliding yield stress, the paste seems to adhere to

the surface. The transition point is qualitatively reminiscent of the onset of the irreversible

elastohydrodynamic adhesion regime described in this section.

A ball park example of the applicability of these results may be the estimation of

the lift-off shear rate for a spherical particle near a deformable and sticky substrate, as

sketched in figure 9.11(e). Earlier works [32, 33] have shown that the viscous drag force

and torque on a neutrally buoyant sphere, in a slow linear shear flow near a rigid wall,

are Fx = 1.7005 · 6πµγa2 and Ty = 0.4719 · 8πµγa3, where γ is the undisturbed shear

rate. Equating these two results to the leading-order force and torque (9.5) and (9.9), and

neglecting O(η0Υ, η0Ξ) terms in the drag force, the nondimensional rotational velocity of

the sphere induced by the shear flow becomes ω = 0.567 to maintain dynamical equilibrium,

with β = π/2. The lift-off shear rate is found to be

γL ≈
[
2.403 + ln(a/δ)

2.451

] √
(Asfw − 768ciNAkTλ`Dδ2πe−δ/`D)E(1− ν)δ

πµ2`a3(1 + ν)(1− 2ν)
, (9.37)

which increases with the substrate stiffness and intermolecular attraction. The shear rate

can be increased up to the critical shear rate for irreversible elastohydrodynamic adhe-

sion, for which η0L = η0C , which value depends on the particular relative intensity of the

intermolecular parameters.

9.4.1 Elastohydrodynamic corrections to the DLVO theory

If the DLVO criterion (8.22) is used, the critical ionic concentration cOi for adhesion

can be obtained by solving the system of equations

1 −
(

cOi0
cOi

)1/2

(κO)2e−(κO−1) + η0O

{
ΥO

[
1

(κO)4

(
cOi
cOi0

)2

+
(

cOi
4cOi0

)
(κO)2e−2(κO−1)

−
(

cOi
cOi0

)3/2 e−(κO−1)

κO

]
− 48

125ΥOκO

(
cOi
cOi0

)1/2
}

= O(η2
0O),

1 −
(

cOi0
cOi

)1/2

κOe−(κO−1) + η0O

{
ΥO

[
1

5(κO)4

(
cOi
cOi0

)2

+
(

cOi
8cOi0

)
(κO)e−2(κO−1)

−
(

cOi
cOi0

)3/2 e−(κO−1)

κO
m(κ)

]
− 24

125ΥOκO

(
cOi
cOi0

)1/2
}

= O(η2
0O), (9.38)
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where use has been made of (9.30). In this formulation, η0O and ΥO are based on δ0O, and

m(κ) is given by (9.14). It can be shown that the expansions

cOi
cOi0

= 1− η0O

(
0.053ΥO − 48

125ΥO

)
+ . . . , (9.39)

κO = 1 + η0O

(
0.223ΥO − 24

125ΥO

)
+ . . . , (9.40)

are asymptotic solutions of (9.38) for η0O ¿ 1. In particular, equation (9.39) represents

the elastohydrodynamic correction to the critical coagulation concentration, and it shows

i) that the perturbation of the critical concentration is kinematically irreversible in that

it does not depend on the velocity direction, and ii) that the critical concentration de-

creases with increasing η0O if the van der Waals force is strong enough to outweigh the

elastohydrodynamic repulsion, ΥO > 2.691, and increases with increasing η0O if the van

der Waals force is small enough such that the repulsive elastohydrodynamic effect prevails,

ΥO < 2.691. The elastostatic result (9.15) recovered in the limit of small nondimensional

velocities ΥO À 2.691. Therefore, sufficiently large nondimensional velocities ΥO < 2.691

contribute to suppress adhesion by electrolyte addition. Note that Υ = (δO0 /δ)3/2ΥO < ΥO

and η0 = (δO0 /δ)5/2η0O < η0O, so that the expansion (9.39) is valid for quite small values of

η0 since η0 < η0O ¿ 1, for which the elastohydrodynamic barrier is small, thereby enhanc-

ing adhesion for sufficiently reduced electric repulsion. Equation (9.39) models adhesion in

the the hypothetical case that elastic instabilities are negligible in the range δO0 < δ ¿ a,

which represents a good approximation for η0 < η0O ¿ 1, and if η0OΥO < ∆vdW
0CO . In this

formulation, ∆vdW
0CO represents the critical van der Waals compliance for irreversible elas-

tohydrodynamic adhesion evaluated at η0O, ∆el
0O and κO, which, to leading order in η0O,

is given by ∆vdW
0CO = 0.451 as detailed in Section 9.2. If these conditions are not satisfied,

the particle undergoes irreversible elastohydrodynamic adhesion before surpassing the en-

ergy barrier, and the corrected DLVO criterion (9.39) losses accuracy to describe adhesion.

Similarly, if the solvent is deionized, (9.39) cannot describe adhesion.

9.5 General influences of the substrate thickness

and material incompressibility

If the substrate material is incompressible, ν = 1/2, all the results presented in

the previous sections, such as the lift force, drag and drift-force perturbations, lift-off and

hydrodynamic adhesion compliances, lift-off shear rate and corrections to the critical con-
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centration, become zero; the substrate behaves as a rigid wall to leading order in the nondi-

mensional layer thickness ζ, as noticed in Section 8.3. To obtain the influences of the

incompressibility effects, higher-order terms in the ζ asymptotic expansion of the surface

deformation must be retained. If use of (8.43) is made, it can be shown that a substrate

composed of a thin layer of incompressible material develops the same type of elastic insta-

bility for sufficiently large van der Waals compliances as the one presented in Section 9.2,

and that, in the absence of electric forces, the critical van der Waals compliance for elas-

tostatic adhesion is ∆vdW
2C = 0.013. Using (8.43) and following the same procedures as in

Section 9.3, the lift force on a gliding particle near an incompressible substrate

Fz =
πµUV(ω, β)a

ε1/2

{
−Υ +

2Ξ
κ

+ η2

[
1296
875

− κΞ2

−18Υ2

7
+ ΥΞκ

[
2κ3eκEi(−κ) + 2κ2 − 2κ + 4

]
]

+ . . .

}
(9.41)

is obtained, where η2 is given by (8.41). Similar to the lift force (9.30) for the case of a

compressible layer, the sum of the mixed terms of O(η2Υ2, η2Ξ2, η2ΥΞ) in (9.41) always has

a negative sign independent of the values of Υ and Ξ, which induces a non-additivity in

the intermolecular forces, and represents the perturbation of the intermolecular force on a

stationary sphere near an incompressible deformable substrate. The lift-off hydrodynamic

compliance is given by

η2L ≈
{

875
1296

[
∆vdW

2 − 2∆el
2

κ
+ κ∆el2

2 +
18
7

∆vdW 2

2

−∆vdW
2 ∆el

2 κ
[
2κ3eκEi(−κ) + 2κ2 − 2κ + 4

]
]}1/2

, (9.42)

where ∆vdW
2 and ∆el

2 are given by (8.48) and (8.49) respectively. Since ηvdW
2 /η0 = O(ζ2) ¿

1, ∆vdW
2 /∆vdW

0 = O(ζ2) ¿ 1 and ∆vdW
el /∆el

0 = O(ζ2) ¿ 1, the compliance of an incom-

pressible layer under a stress load of intermolecular or hydrodynamic origin, is much less

than that of a compressible layer under the same load, because of confinement effects pro-

duced by the rigid substrate, so that the material incompressibility tends to suppress the

elastohydrodynamic adhesion of the particle to the substrate and reduce the elastohydro-

molecular effects on the forces.

In this investigation, expressions have not been derived for the lift force and lift-off

compliances for the case of a semi-infinite elastic substrate. Nonetheless, the perturbation

of the lift force on a particle gliding over a semi-infinite elastic medium can be assumed



120

to scale with η∞, which is given by (8.45), such that the hydrodynamic lift-off compliance

becomes

η∞L ≈
{

C3

[
∆vdW
∞ − 2∆el∞

κ
+ O(∆vdW 2

∞ , ∆el2

∞ )

]}1/2

, (9.43)

where ∆vdW∞ and ∆el∞ are given by (8.50) and (8.51) respectively, and C3 is an order-

unity constant. The correction term of O(∆vdW 2

∞ , ∆el2∞ ) represents the perturbation of the

intermolecular force on a stationary sphere near a semi-infinite elastic substrate. Since

η∞/η0 = O(1/ζ) À 1, ∆vdW∞ /∆vdW
0 = O(1/ζ) À 1 and ∆el∞/∆el

0 = O(1/ζ) À 1, the compli-

ance of a semi-infinite elastic layer under a stress load, of intermolecular or hydrodynamic

origin, is much larger than that of a thin compressible layer under the same load, so that

the layer thickness tends to enhance the elastohydrodynamic adhesion of the particle to the

substrate and increase the elastohydromolecular effects on the forces.
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Conclusions

Substrate compliance and intermolecular effects on the slow translational and rota-

tional motions of a small solid spherical particle were analytically and numerically investi-

gated in this study by making use of a hydrodynamic lubrication approximation. Electric

double-layer and van der Waals stresses were formulated to model the intermolecular in-

fluences in the gap region by using the Derjaguin approximation. The hydrodynamic com-

pliance, η, and intermolecular compliances, ∆vdW and ∆el, were found to be the relevant

nondimensional parameters that characterize the relative intensity of the hydrodynamic and

intermolecular stresses with respect to the restoring elastic stresses on the surface. Influ-

ences of a general particle drift motion were analyzed by introducing in the formulation the

rotational to translational velocity ratio ω, and the azimuth angle of orientation of the ro-

tation axis β relative to the translation axis. A characteristic velocity U
√

1 + ω2 + 2ω sinβ

was defined as the gliding velocity for the general case of drift motion, where U is the trans-

lational velocity without drift. The formulation was applied to a substrate composed of a

thin compressible elastic layer coating a rigid foundation, and special emphasis was made

on the influences of attracting van der Waals forces and repulsive electric forces. Asymp-

totic formulas were derived in the nearly rigid-wall asymptotic limit (NRWA), η ¿ 1, and

they were compared to numerical computations for fully deformable substrates, for which

η 6 O(1).

The combination of elastohydromolecular effects was found to induce irreversible

and reversible elastohydrodynamic regimes, a lift force, and drag-force and drift-force dis-

turbances, all of which appear to be new. For η = ηL a reversible elastohydrodynamic

regime is found. For η < ηL, an irreversible elastohydrodynamic regime occurs with nega-

tive lift forces. For η > ηL, an irreversible elastohydrodynamic regime occurs with positive

121



122

lift forces. The limiting values of elastohydrodynamic adhesion and expressions of the forces

were derived in the NRWA limit and compared to numerical solutions.

The lift force, which scales with even powers of the gliding velocity, is negative

for large and attracting van der Waals forces, and is positive for repulsive van der Waals

forces or for intermediate attracting van der Waals forces and sufficiently soft substrates.

Electric intermolecular repulsion increases the magnitude of the lift force. For the same

translational velocity, particle dimensions and substrate mechanical properties, the purely

rolling motion (ω = 1, β = π/2) produces a larger lift force than the corkscrew (ω = 1,

β = 0) and translational (ω = 0) motions. In addition to the leading-order intermolecular

forces, to second order in the substrate compliance, the lift force is composed of elasto-

hydrodynamic and elastomolecular terms, the latter corresponding to the perturbation of

the intermolecular force on a stationary sphere, which is always attractive and represents a

non-additivity of intermolecular effects. The drag-force perturbation scales with odd powers

of the velocity. Substrate compliance favors a drag-force reduction. The coupling between

intermolecular and elasticity effects induces a van der Waals drag force and an electric drag

force. In general, intermolecular attractive forces increase the drag on the sphere, and the

contrary holds for repulsive forces. For the same translational velocity, particle dimensions

and substrate mechanical properties, the pure rolling motion (ω = 1, β = π/2) produces a

larger drag force reduction than the corkscrew (ω = 1, β = 0) and translational (ω = 0)

motions. Substrate-deformation effects are found to play a very weak role on the drift

force. Attractive intermolecular forces produce small increments on the drift force due to a

viscous-traction enhancement, and the contrary holds for repulsive forces.

A reversible elastohydrodynamic adhesion regime was found in both ionized and

deionized solvents for a lift-off hydrodynamic compliance η = ηL, which value increases

with ∆vdW and decreases with increasing ∆el. In this regime, particle lateral motion and

lift-off from the wall can occur. The lift-off hydrodynamic compliance can be achieved by

sufficiently large gliding velocities or substrate compliances. This regime ceases to exist

if the gliding motion stops, and it is found to be stable against small-gap disturbances at

constant gliding power.

In the region η < ηL, the particle is subject to a negative lift, and an irreversible

elastohydrodynamic adhesion regime occurs for sufficiently large ∆vdW . This irreversible

adhesion mechanism is found in both ionized and deionized solvents, and is induced by

elastic instabilities in the form of surface bifurcations in the substrate, which have been

studied in §9.2 in its elastostatic version for a stationary sphere near a deformable substrate.
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The limiting values for irreversible elastohydrodynamic adhesion are given by the critical

hydrodynamic compliance η = ηC , which was numerically calculated. The compliance ηC

was found to increase with ∆vdW and decrease with increasing ∆el.

In the region η > ηL, the particle is subject to a positive lift force, but an irreversible

elastohydrodynamic adhesion regime can take place since the substrate becomes softer and

more unstable as η0 increases. In this regime, adhesion is enhanced by sufficiently large

substrate compliances and gliding velocities.

An increase in the repulsive electric force tends to suppress elastohydrodynamic

adhesion. However, elastohydrodynamic adhesion can occur and be suppressed in deionized

solvents, where there is no electrical repulsion, and cannot be described by the classic

Derjaguin-Landau Verwey-Overbeek (DLVO) theory of colloid stabilization.

Elastohydrodynamic corrections to the DLVO critical coagulation concentration, for

which the energy barrier against Brownian perturbations of the gap distance is small, were

obtained in the NRWA limit for very small η, when the elastohydrodynamic barrier was also

small, which showed that the critical concentration decreases with increasing η because of

an enhancement of the attractive van der Waals force; this trend continues up to a critical

van der Waals to hydrodynamic stress ratio η/∆vdW , above which the elastohydrodynamic

repulsion dominates and the critical coagulation concentration increases with η. The cor-

rected DLVO critical concentration may be accurate to describe the adhesion process for

sufficiently small compliances for which the elastic substrate remains in static mechanical

equilibrium, but loses accuracy for low-midway compliances for which elastohydrodynamic

adhesion occurs before the particle has surpassed the energy barrier, and it is not applicable

when the solvent is deionized.

Material incompressibility in the substrate is found to suppress adhesion, and for-

mulas for the lift force and lift-off hydrodynamic compliance have been derived for a fully

incompressible substrate. A semi-infinite elastic substrate is shown to enhance adhesion

and elastohydromolecular effects by having larger hydrodynamic and intermolecular com-

pliances, which may represent an important feature to account for in future numerical work

and laboratory experiments.

The results obtained in this study show that the mechanical and surface properties

of the substrate and the gliding kinematic characteristics of the particle have important

influences on the adhesive and migrating behaviors, and therefore potential benefits in

practical applications, such as particle and cell manipulations in microfluidics systems, may

be obtained by modifying those magnitudes to enhance or suppress dynamical phenomena
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like lift-off from the surface and drag reduction.

Chapters 7 to 10, in part, have been published in Physics of Fluids, “The elasto-

hydrodynamic force on a sphere near a soft wall,” by J. Urzay, S. G. Llewellyn Smith and

B. J. Glover (2007) 19 103106 1-7, and in the Journal of Fluid Mechanics, “Asymptotic

theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft

substrates at low Reynolds numbers,” by J. Urzay (2010) (In Press). The thesis author is

the primary investigator in these publications.
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Aerodynamics and Aeroelasticity

of Wind Pollination
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NOMENCLATURE

Ae Effective frontal area (m2)

CDe Effective drag coefficient (-)

d Filament diameter (m)

D Pollen grain diameter (m)

E Filament Young modulus (Pa)

ε Stokes-Reynolds number (-)

Eu Power spectrum of the wind-velocity fluctuations (m2/s)

F Instantaneous total force (N)

F̃ Dimensionless total force (-)

Fad Adhesion force (N)

F ?
ad Maximum adhesion force (-)

F̃AM Dimensionless added-mass force (-)

F̃B Dimensionless Basset force (-)

F̃D Dimensionless Stokes drag force (-)

FD Instantaneous Stokes drag force (N)

F∞
D Steady Stokes drag force (N)

H Filament length (m)

` Integral length scale (m)

L Anther chord length (m)

ma Anther mass (kg)

mp Pollen grain mass (kg)

ms Filament + anther mass (kg)

µ Air dynamic viscosity (Pa· s)

n Natural frequency (Hz)

ν Air kinematic viscosity (m2/s)

ω Angular frequency (rad/s)

ωn Natural angular frequency (rad/s)

P Probability of pollen-shedding (-)

Ψ Pollen-shedding number (-)

ReL Reynolds number based on L (-)

ρ Air density (kg/m3)
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s Anther displacement (m)

s̈c Critical anther acceleration (m/s2)

τ Dimensionless time coordinate (-)

ta Aeroelastic time scale (s)

tν Viscous time scale (s)

to Wind-gust time scale (s)

Tu Turbulent intensity (-)

Ũ Dimensionless wind velocity (-)

UL Instantaneous local wind velocity (m/s)

U∞
L Steady local wind velocity (m/s)

u′ Instantaneous wind-velocity fluctuation (m/s)

Uw Instantaneous Wind velocity (m/s)

Ūw Average wind velocity (m/s)

ξ Damping ratio (-)



Chapter 11

Introduction

All land plants are descended from a single lineage that made the transition from

water to land approximately 470 million years ago. This transition represented an enor-

mous endeavor to the emergent land plants as their ancestors had no defense against the

dehydrating terrestrial atmosphere. The earliest land plants were presented with a number

of problems such as gaseous exchange -solved by the development of pores in their cuticles-

, structural support -which induced the evolution of structural materials such as lignin-,

nutrient accumulation -solved by the development of roots-, and transport -solved by the

evolution of a vascular system-. However, the biggest challenge of adaptation to life on

land was that of reproduction without the benefit of a surrounding aqueous environment

for gamete dispersal. The gametes must have a thin outer cover in order to fuse with other

gametes and form the zygotes, and they must disperse across long distances for cross fer-

tilization to occur. In an aqueous environment, transport of gametes was warranted by

water currents and presented no difficulties. Thus, early land plants were constrained to

reproduce in aqueous environments, although their adult forms were already successful at

surviving the dehydrating terrestrial environment. Examples of these early developments

are fern and mosses, which release swimming sperm only in wet conditions.

It was not until the origins of the seed plants, around 300 million years ago, that

plants freed themselves from the need for external water for reproduction. Seed-bearing

plants consist of gymnosperms (like conifers) and angiosperms (like flowering plants). The

seed plants solved the reproduction problem by means of desiccation-resistant pollen [1].

The male spore was retained within the tissues of the parent plant, and produced a male ga-

metophyte -the pollen grain- that was adapted for dispersal and was encased in a dehydration-

resistant coating. The pollen grain can therefore be thought of as a waterproof dispersal
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Figure 11.1: (a) Plantago inflorescence. (b) Plantago stamen. (c) Plantago anther showing
the thecae and the exposed pollen grains during dehiscence (scale bar 200 µm). (d) Plantago
pollen.

vehicle that contains the male gametes and associated cells. Finally, the pollen grain arrives

to another diploid plant of the same specie where it germinates aided by rehydration [2].

The success of the land plants was dependent upon the effectiveness of these dispersal

vehicles. The first seed plants were wind pollinated, and wind pollination has remained

the norm for the majority of gymnosperm lineages, which dominate ecosystems such as

the Arctic and Siberian tundra. The first angiosperms are believed to have been insect-

pollinated [3], but a large proportion of angiosperm species (around 25,000, or 10% of

the total) evolved wind pollination secondarily [1]. These species include the ecologically

dominant grasses, whose pollen is responsible for many human allergic reactions, and whose

successful pollination is essential to the production of cereal crops.



133

a b

Figure 11.2: (a) Common Mallow pollen adhered to a bumble-bee leg. (b) Hazel pollen.
Adapted from [4].

The importance of pollination was first recognized a long time ago in ancient civi-

lizations. The pioneering work of Linnaeus [5] established the pollen grain as a scientifically

well-defined identity participating in the plant sexuality. Although there are a great va-

riety of pollen types, their main functionalities are similar in that they are designed to

succeed in the same mission. Wind-pollinated species have smoother pollen coats than

insect-pollinated species, but the exact influences of these shapes and coating properties

on their adhesive behavior and aerodynamics remain still unknown. The outer layer of the

pollen wall (exine) is composed of a highly stable biopolymer called sporopollenin, which

consists of carbon, hydrogen and oxygen. The sporopollenin is a relatively stiff structure

extraordinarily resistant to enzymic attacks. The pollen surface is usually dry in most wind

pollinated species like oak, hazel and alder pollen, with a thin deposit of pollenkitt and a

coat of lipids that collaborates in adhesion to the stigma [6]. Depending on the pollen type

and its transport vector, the surface of the grain shows different patterns or sculptural el-

ements. Some species, like Common Mallow (Malva Sylvestris) and Rhododendron exhibit

a spinulate pattern that adheres to bumblebee legs as shown in figure 11.2. But most wind-

pollinated pollens have a relatively smooth surface like plantago or hazel (Corylus Avellana

L.). The normal density of a pollen grain is of the order of the density of the protoplasm

that it contains, which is of the same order of magnitude as the density of water. Little is

known about the electrostatic charge of pollen grains, although earlier studies [7, 8] showed

a negative charge of the order of 10−15 C for airborne pollen grains. The electrostatic effect

has been found to be important in deposition processes on stigmas [9-12]. The anther sur-

face is composed of a layer of tapetal cells that before the dehiscence are the precursors of

the production of sporopollenin and pollenkitt deposition. Typical wind pollinated anthers
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a b

Figure 11.3: Genetic modifications performed at the University of Cambridge (UK), De-
partment of Plant Sciences. (a) Arabidopsis pollen (scale bar 10 µm). (b) Arabidopsis-KOM
mutant (scale bar 10 µm). The KOM mutant is unable to produce sufficient callose to build
a normal exine, and sporopollenin surface deposition is also randomised.

are aerodynamically shaped in order to maintain mechanical integrity under wind loads.

The anther and filament together form the stamen as shown in figure 11.1(b).

At pollen maturity, the thecae of the anthers dehydrate and split open as seen in

figure 11.1(c), leaving the pollen grains exposed to the ambient air flow and subject to a set

of environmental forces. This ultimately leads to the pollen’s removal if the external forces

overcome the threshold imposed by molecular adhesion. Accomplishing this loss without

the aid of animals is no easy task for anemophilous pollen, which leads, by extension of

the functionally similar process of fungal spore liberation [13-15], to the ‘paradox of pollen

liberation’ [16], according to which the wind speed necessary to detach pollen and small

fungal spores, as predicted by steady aerodynamic theory, is much larger than the threshold

wind speed measured in the field.

Understanding of pollen shedding, dispersal and germination mechanisms is essential

for tracking the evolution and adaptation of plant species [16, 17], for improvement of the

cultivation of genetically engineered plants [18], and for the control of allergenic species and

epidemics. In particular, the genetic modification of pollen properties is currently a cause

of concern, not only because of the possible beneficial consequences of insect-resistant and

herbicide-tolerant transgenic crops, which may decrease the use of environmentally harmful

chemicals to control pests, but for the negative effects that biological invasion of genetically-

engineered species have by gene introgression into food crops, including maize, wheat, rice,

soybean, barley and cotton seed [18]. Figure 11.3 shows genetically modified pollen grains

of Arabidopsis thaliana; such modifications can be readily performed to change morpho-

logical characteristics such as sizes, shapes, surface patternings and sporopollenin spatial
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depositions [19], which in the near future may enable a thorough control over processes like

shedding, dispersal and deposition of pollen, once the influences of those properties on these

processes are fully understood from a mechanical standpoint.

The release, dispersal and deposition of pollen grains has been extensively reviewed

[20, 21] but, contrary to the case of fungal-spore liberation [13-15], the fundamental prob-

lem of pollen liberation has not been resolved. In this investigation, scaling analyses are

used to clarify the conditions under which classical spore-removal descriptions [13-15] are

appropriate to describe pollen shedding, and then a simplified model is proposed, which

explicitly takes into account both the turbulent nature of the micrometeorological condi-

tions in the vicinity of the plant and the elastic and aerodynamic properties of the plant.

The parametric models proposed in this study represent the first attempt to establish a

quantitative relationship between morphological characteristics of pollen grains and their

influences on the overall shedding process and its efficiency.



Chapter 12

Pollen shedding forces

12.1 Aerodynamic shedding forces

12.1.1 Steady aerodynamic forces

Earlier analyses of the physical processes involved in pollen and small fungal spore

liberation are based on boundary-layer air flow models around a pollen grain on an anther

[13-16,20,21], as depicted in figure 12.1. The pollen grain is assumed to be a spherical

particle of equivalent diameter D and mass mp. Wind-pollinated pollen grains are mostly of

similar sizes, and tend to be round and smooth. Their exact shape can be shown to have only

a small influence in the low-speed flow regimes encountered in the classic steady aerodynamic

explanations of release since the drag force is mainly dominated by the skin (shear-stress)

drag, and is of no importance in the stochastic aeroelastic mechanism proposed in section

12.2. A scaling analysis is developed here, supported by experimental measurements on

typical wind-pollinated species (see table 12.1), to analyze the effect of aerodynamic forces

experienced by the pollen grain on an anther. The relative importance of inertial and

viscous forces in a fluid is expressed as a dimensionless number, the Reynolds number

ReL = UL/ν, where U is the fluid velocity, L is a characteristic length and ν = µ/ρ is the

kinematic viscosity, with µ and ρ respectively the dynamic viscosity and density of the fluid,

which in the present analysis correspond to the viscosity and density of the air at standard

conditions: µ = 1.85 · 10−5 Pa·s, ρ = 1.18 kg/m3 and ν = 1.57 · 10−5 m2/s.

The steady air flow around a typical anther of length L ∼ 0.6 − 4.3 mm (see ta-

ble 12.1) is a laminar boundary-layer flow, resulting in ReL = UwL/ν ∼ 36−271 at ordinary

wind speeds Uw ∼ 1 m/s. Using boundary-layer scaling [22], a typical pollen grain of diam-
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pollen grain 

anther surface

boundary
layerUw
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Figure 12.1: The boundary-layer model. The inset shows a Betula albosinensis pollen grain
(scanning electron microscopy, scale bar 10 µm.)

eter D ∼ 16.7− 95.3 µm (see table 12.1) is affected by local wind speeds U∞
L of order

U∞
L ∼ 0.166UwRe1/2

L D/L, (12.1)

where the superindex ∞ denotes its steady value. In this formulation, since the pollen

grain is well embedded in the boundary layer, D/2L ¿ 1/Re1/2
L , use has been made of the

well-known boundary-layer theory result that the friction coefficient on the anther surface

is given by 0.664/Re1/2
L [22], from which the local shear flow can be linearized and the local

velocity is obtained as (12.1). The local velocity ranges in the interval U∞
L ∼ 18.0 − 40.7

mm/s, resulting in local Reynolds numbers ReD = U∞
L D/ν ∼ 0.03 − 0.13: the flow is

essentially fully viscous at scales of order D. The disparity between the free-stream wind

speed, Uw, and that close to the anther, UL, is inherent in boundary-layer flows because of

viscosity, and is the reason why steady aerodynamic forces are not sufficient to remove small

fungal spores under steady aerodynamic conditions for typical wind speeds [13, 14, 16, 15].

The steady Stokes drag force on a spherical particle of the same size as a pollen grain in

contact with a planar wall [23] is

F∞
D = 1.7009 · (3πµDU∞

L ), (12.2)

giving F∞
D ∼ 0.1 − 0.6 nN for the species analyzed in Table 1 and Uw = 1 m/s, and

F∞
D = 3.9− 19.7 nN for Uw = 10 m/s. The exact value of the adhesion force Fad is poorly

known, but reported measurements range from 0.1 − 1 nN for insect-pollinated species

[24, 25] to 100 nN for fungal spores [13]. According to these estimates, the steady Stokes

aerodynamic drag F∞
D may in fact be large enough to shed typical pollen grains during

steady wind conditions, since anemophilous pollen-anther adhesion forces Fad are expected
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to be reasonably smaller than the upper-limit values of 0.1 − 1 nN for insect-pollinated

species [24, 25], which have a sticky layer of pollenkitt that is absent from the surface of

anemophilous pollen grains.

12.1.2 Unsteady aerodynamic forces.

To solve a functionally similar paradox, that of fungal spores liberation from infected

plant leaves, earlier work [13, 14] on conidia of Helminthosporium maydis (Cochliobolus

heterostrophus; Southern corn leaf blight), 96 µm in length and 17 µm in diameter, 75 nN

adhesion force, proposed the existence of gusts of wind with velocity fluctuations u′ that

take place over a small distance, which corresponds to the gust front thickness δo, so that

at a fixed point on the leaf the velocity fluctuation u′ is swept over that point in a time of

order

to = δo/u′, (12.3)

causing the removal of spores by unsteady aerodynamic forces. Typical magnitudes mea-

sured in earlier experimental works [13, 14] are u′ = 2.5m/s, δo=1mm, to = 0.4 ms. The ex-

istence of wind gusts is consistent with subsequent analyses of canopy turbulence [15, 26, 27]:

the turbulence in the canopy of trees or smaller plants displays striking differences to clas-

sical turbulent boundary layers in that a mixing-layer instability and the canopy-induced

internal wakes may trigger severe intermittency and wind gusts in the canopy region.

Atmospheric conditions typical of instability are also found during pollen release

[16]. However, when the same wind-gust explanation is applied to describe pollen shedding,

the resulting unsteady forces exerted by the surrounding air on the pollen grain may not

lead to pollen release, since the viscous time scale

tν = D2/ν ∼ 0.02− 0.58 ms, (12.4)

is typically the smallest time scale of the problem as observed in table 12.1, where values

of the viscous to wind-gust time scale ratio (i.e. the Stokes-Reynolds number)

ε = tν/to, (12.5)

are listed for typical wind-pollinated species. Assuming (12.3) as a typical value of wind-gust

time scale, ε is found to be a small parameter, ε ¿ 1, for most of the species listed in ta-

ble 12.1. There may be exceptions to this rule, such as maize pollen, for which gravitational

force may also play a role in pollen removal because of its heavy weight.
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Figure 12.2: Sketches of the flow field around a pollen grain on an anther subject to a wind
gust for (a) ε À 1, and (b) ε ¿ 1.

It must be emphasized that, contrary to some fungal spores, which are liberated

from conidiophores that extend higher into the boundary layer [13-15], pollen grains are

mostly liberated directly from the anther surface, so that removal by wind gusts may not

be so effective for them as detailed below.

Figure 12.2(a) shows a frozen sketch of the flow field around a pollen grain, after

times of order to, for the hypothetical case of strongly accelerated wind gusts ε À 1. In

this regime, the inertial time-variation of the outer flow dominates over the viscous effects,

which occur on a much longer time scale. Since the Reynolds number of the pollen grain

ReD = UwD/ν is not too large (ReD ∼ 1.1− 6.1 for Uw = 1 m/s), the drag force acting on

the pollen grain may be calculated using the Stokes drag1 FD = 3πµDUw based on the free

stream velocity, which yields a force range FD = 2.9Uw − 16.6Uw nN, where Uw is the wind

velocity in m/s. The wind-gust explanation may then be appropriate to describe the release

of relatively large pollen grains of diameters D À (νto)1/2, for which ε À 1, and adhesion

forces in the range 2.9Uw − 16.6Uw nN, which corresponds to larger adhesion forces than

those able to be overcame by steady wind conditions. Notice that, for the wind-gust time
1Anther surface effects, which are important in a thin layer of thickness δν ∼

√
νto, are neglected in the

ε À 1 regime since the velocity profile is nearly uniform on scales of order D À δν .
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Figure 12.3: Total drag force and Basset forces for ε = 0 and ε = 0.5 calculated from
(12.6). The added mass force is too small to distinguish at this scale. The inset shows
the percentage variation of the maximum total drag force with respect to its steady value
(12.2).

scale to = 0.4 ms [14], the critical diameter becomes (νto)1/2 = 79.2 µm, which is larger

than the diameters listed in table 12.1 (with the exception of the maize pollen, which may

be influenced by gravitational forces, as mentioned above).

Figure 12.2(b) shows a frozen sketch of the flow field around a pollen grain, after

times of order tν , for the more realistic ε ¿ 1 case for pollen shedding. After times of

order tν , the accelerating wind stream is not yet fully developed, and the boundary layer

thickness has grown to be of the same size as the pollen grain diameter. The local velocity

UL is still smaller than its corresponding steady-state value (12.1), which is fully attained

after times of order to. Time-dependent effects such as the added-mass and Basset forces [9]

may still be considered important effects at this point of the analysis, since these forces may

be larger than the steady Stokes drag (12.2) during the transient regime 0 < t < tν
2. To

address this question more rigorously, a local velocity variation of the form Ũ = 1−exp(−τ)

is considered, where Ũ is the local velocity nondimensionalized with its steady-state value

U∞
L given by (12.1) and τ is the time coordinate nondimensionalized with the gust time

scale to. In this model, the boundary layer thickness grows progressively in time from an

initial zero value.

Since the local Reynolds number based on the grain diameter ReD = U∞
L D/ν is

2It is worth noting that explanations of the effects produced by unsteady wind streams based on Rayleigh’s
problem (flat plate suddenly started from rest in a viscous fluid) used in earlier works on spore removal
[13, 14], implicitly assume to = 0 (or ε → ∞) and are not appropriate in the ε ¿ 1 regime, since the time
scale of acceleration is large compared with the viscous time scale.
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small, the unsteady hydrodynamic force can be estimated as [9]

F̃ = c1ε
dŨ

dτ
+ c2ε

1/2

∫ τ

0

dŨ

dξ

dξ√
τ − ξ

+ Ũ

= F̃AM + F̃B + F̃D, (12.6)

with F̃ the hydrodynamic force nondimensionalized with the steady Stokes drag force (12.2),

and c1 = 1/(36 · 1.7009) and c2 = 1/(2 · 1.7009
√

π) are two geometric constants that result

directly from such nondimensionalization. In this formulation, the three terms F̃AM , F̃B,

and F̃D denote the dimensionless added-mass, Basset, and Stokes drag forces respectively.

It must be emphasized that equation (12.6) is an estimate of the unsteady force exerted on

a sphere in a free stream: the effects of a nearby wall on the first two terms remain largely

unknown. The relative values of each of the terms in (12.6) generally depend on time. In

the asymptotic limit ε ¿ 1, three aerodynamic regimes of interest are found: t ¿ tν ¿ to,

t ∼ tν ¿ to, and tν ¿ t ∼ to, or equivalently, τ ¿ ε, τ ∼ ε and τ ∼ 1.

For τ ¿ ε the flow around the pollen grain results in a nearly potential or irrotational

flow [28], except in very thin Stokes layers which grow on the solid surfaces. The dominant

force at this stage is the added mass force F̃AM ∼ ε, which is entirely produced by the inertia

of the displaced fluid. The Basset force F̃B ∼ (ετ)1/2 and the Stokes force F̃D ∼ τ are in fact

negligible at these short times, since F̃B/F̃AM ∼ (τ/ε)1/2 ¿ 1 and F̃D/F̃AM ∼ τ/ε ¿ 1. For

τ ∼ ε the boundary layer thickness, which grows as (τ/ε)1/2, has reached a size sufficiently

large to engulf the pollen grain. Once the boundary layer has grown sufficiently around

the grain, it will detach, generating a recirculating flow that will start around the rear

stagnation point. For τ ∼ ε, the three terms in (12.6) are of order ε. For τ ∼ 4ε, the

Basset and Stokes drag are equal in the first approximation. Finally, for τ ∼ 1 and larger

the flow is steady and fully viscous at scales of order D. The dominant force is then the

steady Stokes drag force F̃D that asymptotically reaches its steady value (12.2), with the

added-mass and Basset forces exponentially small.

Figure 12.3 shows an example of the numerical integration of (12.6) for ε = 0

and ε = 0.5, which shows that, in the more physically realistic ε ¿ 1 regime for pollen

shedding, the transient dynamics do not cause any significant force overshoot. The inset

of figure 12.3 shows the percentage variation of the maximum drag force with respect to

(12.2) as a function of ε for 0 6 ε 6 1. As ε increases, the effects of the transient terms

in (12.6) become more important, and transient forces slightly larger (within only a 10 %

variation) than the Stokes drag F∞
D may occur. As ε increases, the wind-gust model used

to calculate figure 12.3 misrepresents the magnitude of the velocity near the pollen grain,
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s(t)

d

anther

filament
wind stream

U(t)

cba

Figure 12.4: (a) Plantago inflorescence (scale bar 1 cm) and (b) anthers in scanning electron
microscopy (scale bar 2 mm). Panel (c) shows the mathematical model and aeroelastic
motion schematics of a wind-pollinated stamen immersed in a turbulent wind stream of
instantaneous velocity U(t).

which becomes closer to Uw for large ε as observed in figure 12.2(b). These calculations

show that the unsteady forces produce only a small overshoot in the total drag force on the

pollen grain of at most an order of magnitude smaller than the steady Stokes drag force,

reducing the significance of time-dependent effects in the boundary layer around the anther

upon pollen release.

12.2 Aeroelastic shedding forces

Atmospheric turbulence and its inherent unsteadiness may in fact play a notable

role in pollen shedding, not in the sense of perturbing the viscous boundary layer near the

anther surface as analyzed in Section 12.1.2 or previously conceptually proposed in earlier

works [13-16,20,21], but by promoting a shaking motion of the stamen. In this study, the

energy flow from the oncoming fluid kinetic energy to the viscous drag forces on the pollen

grain examined earlier [13-16,20,21] is subtly modified, and thought of as an energy flow

from the turbulent kinetic energy of the oncoming flow to the elastic energy of the stamen

in the form of oscillating motion of the stamen, as depicted in figure 12.4. Finally, part

of the kinetic energy is transferred to the pollen, which is ejected from the anther above a

threshold mean wind speed. Aeroelasticity, the interaction between elastic structures and

fluid flows [29, 30], is a broad subject and has been used to examine the drag on trees [27].

Since turbulence is inherently stochastic, it is appropriate to use a framework of

mean displacements, velocities and accelerations, and fluctuations around these values. In

particular, the longitudinal wind velocity is expressed as a sum of a mean velocity Ūw and
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the velocity fluctuations around the mean u′(t). The wind longitudinal velocity fluctuations

are described by the power spectrum Eu(ω) that satisfies

u′2(t) =
∫ ∞

0
Eu(ω)dω, (12.7)

with ω the angular frequency. The power spectrum of the force and stamen acceleration

fluctuations can be defined in a similar way to (12.7) by simply substituting the mean square

of the corresponding fluctuation in the left hand side.

In what follows, the shedding process is thus no longer a deterministic process but

a stochastic one. Pollen shedding conditions are expected to be determined by statistically

extreme events, in the sense that the unsteady fluctuations of the force around a mean,

steady value, are the interactions that may promote grains to dislodge; this happens when

the induced aeroelastic forces on the stamen are larger than the threshold imposed by the

pollen-anther molecular adhesion forces.

12.2.1 The simplified stamen model

For simplicity we model the stamen as a linear isotropic elastic filament attached

to a motionless substrate, with the center of pressure located in the anther as depicted in

Fig. 12.4c. Elastic properties of the stamen can be obtained experimentally to yield the

resonance frequency ωn = (3EI/mSH3)1/2, where EI is the flexural rigidity, mS = ma+mf

is the effective mass of the stamen and H is the filament length. The masses ma and mf

denote the anther and filament mass respectively. For an elastic modulus E ∼ 100 MPa,

which corresponds to a typical stiffness of soft living vegetal tissues [27], values of table 12.1

yield a range n = ωn/2π ∼ 10.9 − 35.5 Hz for the resonance frequency. Notice that these

frequencies are much larger than characteristic natural frequencies of typical plant low-

energy bulk motions, which are of the order of 1 Hz [31, 32].

The system depicted in figure 12.4c corresponds to a linear damped oscillator, with

the anther displacement s(t) described by the stochastic ordinary differential equation

s̈(t) + 2ξωnṡ(t) + ω2
ns(t) = F (t)/mS , (12.8)

where F (t) is the stochastic force exerted on the filament windward surface, which can be

expressed as the sum of a mean force F̄ and force fluctuations around the mean F ′(t). In

this formulation, ξ is the damping ratio caused by the viscous drag on the stamen during

its motion relative to the mean flow and by structural dissipation in the plant material,

and ωn is the resonance frequency defined above. Typical values of ξ in plants and trees
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are of order ξ ∼ 0.1 [32, 27], which can be obtained by free oscillation tests [31, 32].

This coefficient may be much smaller for plant stamens because of the small dimensions

and large resonance frequencies involved. An estimate of ξ can be obtained by assum-

ing negligible structural dissipation in the plant material, so that only the hydrodynamic

damping is present, with ξ = ρŪwCDeAe/(2ωnmS) [30], where CDe and Ae are respec-

tively the effective drag coefficient and frontal area of the stamen structure. Additionally,

the Reynolds numbers ReL = ŪwL/ν and Red = Ūwd/ν are sufficiently small so that the

damping ratio can be computed from the viscous drag on the anther. This is taken to

be the sum of the drag on the anther head, modelled as a sphere of diameter L, and the

drag on the filament, which is modelled as a slender tapering cylinder [33]. The result

is ξ = {4πµH/[ln(2H/d) + 1/2] + 3πµL}/ωnms, which gives ξ = 0.006 − 0.086 for the

species listed in table 12.1. These values correspond to an underdamped system with free

exponentially-decaying oscillatory behavior.

If the turbulent intensity squared is a small number, T 2
u = u′2/Ū2

w ¿ 1, the force

fluctuations may be linearized in the velocity fluctuations to give

F ′(t) = ρCDeAeŪwu′(t), (12.9)

and the power spectrum of the force can be easily obtained from the power spectrum of the

velocity fluctuations Eu(ω) by using (12.9) as thoroughly detailed in classical fluid-structure

interaction texts [29, 30]. Turbulence intensity measurements in maize crops [34], which give

an average of Tu ∼ 0.2− 0.6 depending on the height above the canopy, show that (12.9) is

a reasonable approximation.

By decomposing the anther acceleration s̈(t) into the sum of a mean acceleration,

which is of no interest because of its nonstochastic nature, and a fluctuation s̈′(t), respon-

sible for the stochastic inertial forces exerted on the pollen grain, a stochastic differential

equation, similar to (12.8), can be obtained, which describes the time evolution of the fluc-

tuation. The power spectrum of the acceleration fluctuations may be obtained from that of

the longitudinal wind velocity fluctuations [29, 30]. The root-mean-square of the accelera-

tions induced by the aeroelastic stamen motion on the pollen grain becomes
√

s̈′2 = Ūw/ta,

where ta is a characteristic aeroelastic time given by

ta =
(

Ūw

2ξωn

) /[∫ ∞

0

ω4Eu(ω)dω

|Z(ω)|2
]1/2

, (12.10)

where |Z(ω)|2 = (ω2
n − ω2)2 + 4ξ2ω2ω2

n is the squared modulus of the impedance of the os-

cillatory system represented by equation (12.8). Non-unity aerodynamic admittance effects
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have been neglected in (12.10). An estimate of the aeroelastic time ta can be calculated

by integrating (12.10) using a von Kármán turbulent spectrum for the longitudinal velocity

fluctuations,

Eu(ω) =
4u′2`/Ūw[

1 + 1.79
(

ω`

Ūw

)2
]5/6

, (12.11)

where ` is an integral length scale of the turbulent coarse vortices. The von Kármán

spectrum has been widely used to analyze the turbulence-induced vibrations in man-made

structures [29, 30] and plants [35]. Typical values Tu = 0.5 and ` = 1 m for cereal crops [35]

and estimates of ξ and ωn mentioned above, based on table 12.1, are used to numerically

integrate (12.10), which gives ta = 0.14−0.26 s at Ūw = 1 m/s, ta = 0.08−0.15 s at Ūw = 5

m/s, and ta = 0.07− 0.12 s at Ūw = 10 m/s.

The critical fluctuating acceleration for pollen dislodgement s̈c of a single pollen

grain is given by the value for which the inertial aeroelastic forces are of the same order of

magnitude as the adhesion force Fad, so that s̈c = Fad/mp.

12.2.2 Pollen-shedding number and probability

In this stochastic framework, the anther displacement fluctuation s′(t) and its time-

derivatives are described by an associated probability density function (PDF), obtained by

solving the associated Fokker-Planck equation to equation (12.9). Since the dissipation ξ is

relatively small in this system, the majority of the response of the stamen to the turbulent

flow may occur in a narrow band of frequencies centered about the natural frequency ωn.

For simplicity, the probability density function is assumed to be a Rayleigh distribution

in the first approximation, which represents a narrow-band Gaussian random process [30].

Such distribution yields the probability of pollen shedding,

P (s̈′ > s̈′c) = e−Ψ2/2, (12.12)

where

Ψ =
s̈′c√
s̈′2

=
Fadta
Ūwmp

, (12.13)

is a pollen-shedding number.

Equation (12.12) represents the probability of pollen shedding by aeroelastic forces

P (Ψ), as shown in Fig. 12.5, in terms of a single nondimensional parameter or shedding

number Ψ given by equation (12.13), that may be thought of as a quantity proportional to

the ratio of the adhesion force Fad to the root-mean-square of the characteristic aeroelastic
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Figure 12.5: Pollen-shedding probability model (12.12) as a function of the shedding number
Ψ.

force fluctuations exerted on the pollen grain mpŪw/ta. Typical wind-pollinated species are

then expected to release pollen grains over small aeroelastic time scales and to have small

adhesion forces, with Ψ ¿ 1 a small number. The opposite trend would hold for species

pollinated by other vectors. Values of acceleration greater than six times the root-mean-

square acceleration Ūw/ta are very unlikely to be observed in turbulence-induced vibrations

that follow the cumulative probability distribution (12.12) [30]. Therefore, Ψ 6 6, or

equivalently, the force of adhesion Fad may have to yield a value Fad 6 F ?
ad = 6Ūwmp/ta for

the aeroelastic mechanism to represent a suitable description of wind-pollination. Based on

pollen mass values given in table 12.1 and estimates of ta mentioned above, the range of

values of the maximum allowed adhesion force are F ?
ad ∼ 0.6 nN at a wind velocity Ūw = 1

m/s, F ?
ad ∼ 5 nN at Ūw = 5 m/s, and F ?

ad ∼ 13 nN at Ūw = 10 m/s. According to the

simplified stamen model analyzed in this investigation, the stamen acceleration produced

by the aeroelastic forces is sufficiently large to dislodge the pollen grains if the pollen-anther

adhesion force is smaller than F ?
ad at the corresponding wind velocity. It is worth noting

that the values of F ?
ad are physically feasible in anemophilous species and comparable to the

range of adhesion forces that are able to be overcame by purely steady aerodynamic forces.

Nonetheless, more accurate evaluation of Ψ requires the experimental determination of Fad

and calculation of ta, which requires accurate experimental determination of CDeAe or ξ,

and E or ωn for each species.
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Chapter 13

Conclusions

Earlier attempts to solve the paradox of pollen liberation, based on wind-gust aero-

dynamic models of unsteady viscous forces exerted on a fungal spore attached to a motion-

less substrate in a boundary layer, are shown in this study to be inappropriate to describe

pollen shedding. Steady Stokes drag forces are found to be capable of removing pollen

from anemophilous anthers. Since viscous effects are found to be more important in typical

anemophilous pollen than inertial accelerations of the outer wind stream, with the ratio ε

of the viscous time scale tν to the wind-gust time scale to typically a small number, un-

steady boundary-layer forces produced by wind gusts are found to be mostly ineffective.

Nonetheless, removal of pollen by wind gusts may occur for sufficiently large pollen grains.

We have proposed a new turbulence-initiated, wind-pollination mechanism to ex-

plain the phenomenon in a complementary way. A straightforward scaling analysis, ac-

counting for the level of turbulence near the ground and the elastic properties of the plant,

gives a first approximation of the quantitative probabilistic measure of pollen shedding

when the anthers are shaken by the stochastic action of the wind. The effectiveness of this

mechanism depends on the shedding number Ψ = Fadta/mpŪw, which is found to be an

order-unity parameter when estimated from typical turbulent power spectra. Nonetheless,

a more accurate evaluation of the shedding number needs an accurate determination of

the pollen-anther adhesion force and aeroelastic times, two magnitudes that are difficult to

define experimentally and therefore unexplored in the existing literature. Further analyses

on more elaborated aeroelastic models, and their experimental validation, accounting for a

wider range of biomechanical effects, such as a plant physical representation by a structure

with multiple degrees of freedom and non-uniform mechanical properties, will allow a fuller

understanding of the processes involved in the shedding of pollen.
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a b

c d e

Figure 13.1: (a) Zea mays anthers (scale bar, 5 mm) and (b) inflorescence; (c) Betula
albosinensis catkin (scale bar, 1 cm), (d) Salix sepulchralis anthers (scanning electron mi-
croscropy; scale bar, 1 mm); (e) In contrast, self-fertile Arabidopsis thaliana anthers have
shorter, less mobile filaments (scanning electron microscropy; scale bar, 500 µm).

We note that not all wind-pollinated plants have such long anthers. However, where

anther filaments are short or solid, it is invariably the case that wind-pollinated flowers

are borne on mobile, flexible inflorescence stems (catkins; figure 13.1), or, in the case of

gymnosperm anthers, the male cones are borne on long, flexible branches. These different

mechanical solutions to the same problem represent independent evolutionary innovations,

but all may operate within the simple model we describe here.

One of the most important features of a suitable long-range dispersal model of pollen

grains or fungal spores is the characterization of the physical and biological processes that

occur in the source and release of these small particles into the air. The extraordinary

model sensitivity to these small-scale processes sets pollen-transport models apart from pure

pollutant dispersal models, where the source is reasonably independent of the surrounding

micrometeorology.

From the standpoint of the fluid dynamics science, the models used in this study are

very basic, but they represent a novel treatment of the problem of pollen shedding and they

establish a framework for plant biologists and future refinements. The fundamental question
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of whether the wind-pollinated species are aerodynamically and aeroelastically optimized or

not by having lower pollen adhesion forces and small aeroelastic times scales, has not been

answered in this investigation; further experiments, to measure plant-structural properties

and pollen adhesion forces of a wide range of wind-pollinated species, would be needed to

answer that question, which is of practical interest for analyses of pollen dispersal, crop

production, maintenance of biodiversity and management of genetically modified plants.

Chapters 11 to 13, in part, have been published in the Journal of Theoretical Biology,

“Wind gusts and plant aeroelasticity effects on the aerodynamics of pollen shedding: a

hypothetical turbulence-initiated wind-pollination mechanism,” by J. Urzay, S. G. Llewellyn

Smith, E. Thompson and B. J. Glover (2009) 259 785-792. The thesis author is the primary

investigator in this publication.

Experiments in Part III were performed by Dr. E. Thompson and Dr. B. J Glover at

the Department of Plant Sciences in the University of Cambridge (UK). This investigation

was funded by the Human Frontier Science Program, grant #RGY 0073/2005.
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