
UCSF
UC San Francisco Previously Published Works

Title
Understanding opioid reward

Permalink
https://escholarship.org/uc/item/99g2s2d3

Journal
Trends in Neurosciences, 38(4)

ISSN
0166-2236

Authors
Fields, Howard L
Margolis, Elyssa B

Publication Date
2015-04-01

DOI
10.1016/j.tins.2015.01.002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99g2s2d3
https://escholarship.org
http://www.cdlib.org/


Understanding opioid reward
Howard L. Fields and Elyssa B. Margolis

Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, Alcoholism and Addiction Research Group,

University of California, San Francisco, CA, USA

Feature Review
Glossary

Channelrhodopsin (ChR): a light-activated channel natively expressed in green

algae that is now commonly artificially expressed in neurons to enable acute,

time-locked experimenter control of neural activity. When open, the channels

nonselectively pass cations, including H+, Na+, K+, and Ca2+.

Conditioned place preference (CPP): in this paradigm, a three-chamber

apparatus is most commonly used, where each chamber has unique

contextual cues. During training, drugs are administered and the animal is

then confined for a period in one of the end chambers. In alternate training

periods, vehicle is administered before placing the rat in a different chamber.

Animals are later tested in a drug-free state by allowing them to roam freely

with access to all chambers of the apparatus. If animals spend more time in the

drug-associated chamber, we say that the drug produces a CPP.

Drug self-administration: in this paradigm, animals are required to perform an

operant action (typically a lever press or nose poke) to receive an infusion of

drug. If rats emit more operant actions for the drug than for vehicle, it is

evidence that the drug has a positively reinforcing action.

Mu opioid peptide (MOP) receptor: a member of the opioid family of seven

transmembrane domain G protein-coupled receptors (GPCRs) classified in part

by their high amino acid sequence homology. Other members of the family

include the delta, kappa, and orphanin receptors. MOP receptors are widely

distributed throughout the peripheral and central nervous systems. MOP

receptors can signal through a variety of downstream pathways but typically

their actions are inhibitory [e.g., to inhibit glutamate or GABA release from

terminals or to hyperpolarize neurons through a G-protein activated inwardly

rectifying potassium channel (GIRK)] [70].

Reinforcement: a process that leads to an increase in the probability of an action

that was previously followed by a beneficial outcome. Negative reinforcement

refers specifically to removing an unpleasant stimulus or state (e.g., pain relief).

Positive reinforcement occurs when the benefit does not require relief of an

unpleasant state. Punishment refers to the process whereby a harmful outcome

reduces the probability of the action preceding the outcome.

Ventral tegmental area (VTA): a region in the midbrain that includes

dopaminergic neurons of the A10 cell group [99]. It is immediately ventral to

the red nucleus, caudal to the hypothalamus, and medial to and contiguous with

the substantia nigra (SN) [100]. The VTA has been divided into five subdivisions

(see Figure 3 in [101]). There are three midline nuclei: the interfascicular, rostral

linear, and caudal linear. The two lateral divisions are the parabrachial pigmented

and paranigral nuclei, which extend laterally from these midline nuclei to the

medial lemniscus and the medial edge of the SN. The original description of the

VTA by Tsai did not include the midline nuclei (e.g., [101]); however, there is

general agreement that the catecholaminergic A10 group as originally defined by

Dahlstroem and Fuxe [99] includes dopamine neurons in all five of these

subnuclei. At the time of writing, there was no evidence that the cytoarchitecto-
Opioids are the most potent analgesics in clinical use;
however, their powerful rewarding properties can lead to
addiction. The scientific challenge is to retain analgesic
potency while limiting the development of tolerance,
dependence, and addiction. Both rewarding and analge-
sic actions of opioids depend upon actions at the mu
opioid (MOP) receptor. Systemic opioid reward requires
MOP receptor function in the midbrain ventral tegmental
area (VTA) which contains dopaminergic neurons. VTA
dopaminergic neurons are implicated in various aspects
of reward including reward prediction error, working
memory, and incentive salience. It is now clear that
subsets of VTA neurons have different pharmacological
properties and participate in separate circuits. The degree
to which MOP receptor agonists act on different VTA
circuits depends upon the behavioral state of the animal,
which can be altered by manipulations such as food
deprivation or prior exposure to MOP receptor agonists.

Mu opioid receptors: function and dysfunction
Opioids are currently the most effective pain-relieving
pharmaceuticals. However, they are also rewarding and
their repeated use can lead to dependence and addiction. In
fact, addiction to opioid analgesics is a growing socioeco-
nomic and health problem with potentially serious conse-
quences, documented by a rise in deaths due to overdose
[1,2]. A critical CNS locus for opioid reward is the VTA
(see Glossary). Recent work indicates that there is great
anatomical and pharmacological heterogeneity in VTA
neurons and that there are numerous opioid synaptic
actions within the VTA. Here, we review the role of VTA
neurons in opioid reward and reinforcement, and the
synaptic and neural circuit mechanisms by which opioids
control VTA neuronal activity.

How are we using the term ‘reward’?

Although there is broad consensus that addicting drugs
produce ‘reward’, inconsistency in the use of the term is an
impediment to progress in understanding how these drugs
influence behavior [3]. The word ‘reward’ can be used as a
noun (‘rats will work for a reward’), a verb (‘he intends to
reward the winner’), or an adjective (a rewarding flavor).
Furthermore, even when used as a noun, it has several
distinct meanings: it can refer to the rewarding agent
itself (e.g., a food or drug reward) or to the subjective
hedonic feeling (i.e., pleasure). In behavioral psychology,
0166-2236/
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it typically is used to denote a CNS process that increases
the future probability of a behavioral response that has
produced a beneficial outcome; a more precise term for
this process is ‘positive reinforcement’. In this review, we
focus on how the actions of mu opioid (MOP) receptor
agonists in the VTA can produce positive reinforcement,
a critical initial step leading to opioid addiction.

Positive reinforcement is not an elementary process; it
comprises several inter-related processes occurring at dif-
ferent times (Figure 1) and each process is likely to require
activation of a distinct and partially independent neural
nically described subdivisions of the VTA differ functionally. VTA neurons in each

of the subnuclei project widely to several limbic areas implicated in motivation

and positive reinforcement [21,26,102,103] (see Figure 3 in [100]) and the weight

of current evidence supports the idea that the critical organizational principal for

grouping VTA neurons is their projection target and neurotransmitter content

rather than location within the VTA.
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Figure 1. Deconstruction of reward. Reward can be conceptualized as a teaching

signal that promotes future actions that have been experienced as beneficial at

specific times and places. The teaching signal includes several processes occurring

at different times. Animals are subject to a variety of motivations for specific

outcomes that improve their survival and reproductive success. Along with

motivation, detection of contextual cues informs the animal about the current

value (and cost) of actions. This information leads to a predicted outcome and an

action is selected. The outcome of that action is then evaluated and compared with

the predicted utility. If the outcome is better than predicted (i.e., a positive reward

prediction error), subsequent utility predictions are greater and the likelihood of

the action taken is increased in future under similar circumstances. Working

memory is involved in two ways: first, to compare the predicted and actual

outcome and second, to reinforce the actions and contextual cues leading to the

outcome.

Feature Review Trends in Neurosciences April 2015, Vol. 38, No. 4
circuit. Disruption of any contributing circuit could impair
positive reinforcement. For example, consider a rat that
experiences a sensory cue immediately before approaching
and pressing a lever, then enters a reward receptacle and
consumes a sucrose pellet. If we then observe an increase in
the probability of that behavior following the cue, we can
say that consuming the pellet has positively reinforced the
ability of the cue to elicit the subsequent lever press,
approach, receptacle entry, and consumption of the pellet.
For positive reinforcement to occur, the rat must have
approached and consumed the pellet, determined that
consuming the pellet was beneficial [the ‘benefit’ will de-
pend in part on the motivational state of the animal
(hunger, etc.) at the time of consumption], and remem-
bered the sensory cue, the context, and the actions per-
formed. At a minimum, this process includes signaling in
circuits controlling motivation, attention and/or orienta-
tion, sensory discrimination, action selection, outcome as-
sessment, and working memory. Positive reinforcement
likely requires changes in synaptic strength between neu-
rons that result in a neural representation of the associa-
tion between the outcome and the context, cue, and action.
It is these associations that manifest as a change in
response probability when the cue next occurs in the
training context. There is compelling evidence that dopa-
mine and opioids directly influence circuits that contribute
to several different elements of positive reinforcement
[3–11]. Although some VTA neurons, including dopamine
neurons, encode reward prediction error, the downstream
connections of these neurons have not been established.
By contrast, there is evidence that different VTA projec-
tions contribute to other functions. For example, VTA
218
projections to the nucleus accumbens (NAc) contribute to
encoding incentive salience, while projections to the hip-
pocampus promote spatial memory formation [12]. Given
that the neuronal mechanisms underlying the actions of
opioids and dopamine may differ in each of these circuits, a
complete understanding of their contributions to ‘reward’
requires disentangling these functions and defining the
circuits relevant to each.

The VTA is a critical site for MOP receptor-mediated
reward
The most consistent and robust rewarding effects of opioids
require a functional MOP receptor [13]. The significance of
the VTA for MOP reward has been established by several
lines of evidence. Specifically, conditioned place preference
(CPP) produced by systemically administered MOP recep-
tor agonists can be blocked by intra-VTA MOP receptor
selective antagonists or genetic knockdown of the MOP
receptor [14,15]. Microinjecting a MOP receptor antagonist
into the VTA also accelerates intravenous (IV) heroin self-
administration [16]. These observations do not prove that
the systemic drug itself acts directly on receptors in the
VTA; it could act at another CNS site that activates
neurons that project to the VTA and release an endogenous
MOP receptor agonist (e.g., enkephalin). However, the idea
that the VTA is a critical site for the direct action of exoge-
nous MOP receptor agonists is consistent with the observa-
tions that MOP receptor agonists are self-administered into
the VTA in rats and mice [17,18]. Other sites that are
sufficient targets for morphine self-administration in mice
include the NAc shell (but not NAc core or dorsal striatum),
lateral and medial hypothalamus, amygdala, and midbrain
periaqueductal gray [19]. In addition, morphine produces
CPP when injected directly into the VTA and rostral anteri-
or NAc shell of the rat, but is ineffective at other sites, such
as medial frontal cortex, hippocampus, lateral nucleus of
the amygdala, lateral hypothalamus, pedunculopontine
tegmental nucleus, substantia nigra (SN) pars compacta
(SNc), posterior hypothalamus, ventral pallidum, or NAc
core or posterior shell [20–25]. Therefore, a MOP receptor
action in the VTA is sufficient to produce a positively rein-
forcing effect and VTA MOP receptors are necessary for
the rewarding actions of systemically administered MOP
receptor agonists.

Heterogeneity of VTA neurons: different
neurotransmitters, distinct projection targets, and
afferent inputs
Early studies of VTA contributions to reward focused
on the dopaminergic projection to the ventral striatum.
However, different subsets of VTA dopamine neurons proj-
ect to other CNS targets implicated in reward-relevant
functions, including: the amygdala, hippocampus, ventral
pallidum, periaqueductal gray, bed nucleus of the stria
terminalis, olfactory tubercle, locus coeruleus, and lateral
habenula [26–31]. Furthermore, the properties of dopa-
mine neurons vary based on their CNS projection targets
[32–36]. In addition to dopamine neurons, the VTA has
significant numbers of GABA and glutamate neurons that
project to many of the same mesolimbic targets as the
dopamine neurons [37,38]. Importantly, the afferent
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Figure 2. Distinct circuits course through the ventral tegmental area (VTA). A

variety of studies demonstrate that the VTA receives inputs from, and projects to,

many brain regions (reviewed in [26,104]); researchers have determined only a

small number of exact circuit connections to date. These studies have revealed that

inputs to VTA neurons differ based on their neurotransmitter content and

projection target. At least four distinct circuits have so far been identified: (A) a

laterodorsal tegmental (LDT) glutamate (Glut) input to VTA dopamine neurons

projecting to nucleus accumbens (NAc) neurons, including medium spiny neurons

(MSNs) [105]. (B) A VTA GABA neuron projection specifically to NAc cholinergic

interneurons (CIN) [39]. These VTA neurons receive inputs from medial prefrontal

cortex (mPFC) and LDT [105,106]. There is also evidence that these CINs can evoke

release from NAc dopamine terminals via a presynaptic nicotinic cholinergic

receptor [90]. (C) A VTA dopamine neuron projection to mPFC receives glutamate

inputs from mPFC and LDT, and GABA inputs from the LDT [105]. It is unknown

whether these inputs converge onto all mPFC-projecting dopamine neurons. (D) A

VTA GABAergic projection to mPFC receives both glutamate and GABA inputs

from LDT [105]. Note that this figure underestimates the number of circuits running

through the VTA. Importantly, it does not illustrate the VTA glutamate neurons,

which have a distinct pattern of projection targets; neither does it illustrate several

other major targets of dopamine and GABA neurons (e.g., amygdala,

hippocampus, bed nucleus of the stria terminalis, olfactory tubercle, ventral

pallidum, and hypothalamus).

Feature Review Trends in Neurosciences April 2015, Vol. 38, No. 4
connectivity of individual VTA neurons sorts by both neu-
rotransmitter content and projection target (Figure 2).
Similarly, the specific postsynaptic targets of VTA neuron
terminals can differ within a single target. For example,
VTA GABA neurons projecting to the NAc synapse pre-
dominantly onto cholinergic interneurons rather than
onto medium spiny neurons [39]. In summary, the VTA
encompasses different subsets of both dopamine and non-
dopamine neurons that participate in distinct circuits that
likely serve different behavioral functions.

MOP receptor agonists activate a subset of VTA

neurons, including dopamine neurons

The VTA contains dense concentrations of both MOP
receptors and endogenous opioid peptides [40–43]. Given
that dopamine neurons are clustered in this region and
MOP receptor agonist injection in the VTA can produce
positive reinforcement, early studies tested the possibility
that MOP agonists activate dopamine neurons. Consistent
with this idea, both systemic and VTA administration of
MOP receptor agonists increase dopamine release in the
ventral striatum [44–48]. In anesthetized animals, system-
ic or VTA-injected morphine increased the firing rate of
putative dopamine neurons [49–53]. These findings are
consistent with ex vivo studies demonstrating activation
of putative VTA dopamine neurons by bath application of
the MOP receptor selective agonist DAMGO [54]. Taken
together, these data have been interpreted as firm support
for the hypothesis that VTA reward depends upon activa-
tion of dopamine neurons. Kiyatkin and Rebec [52] repli-
cated the observation that systemic heroin increases
putative dopamine neuron discharge rates in anesthetized
rats. However, in awake, drug-naı̈ve rats, passive injection
of heroin decreased putative dopamine neuron firing. The
effects of self-administered heroin were similar; the firing
rate of VTA neurons dropped immediately following each
self-administration event, slowly recovering and peaking
just before the next self-administration [52,55]. These
results conflict with the dopamine model of opioid reward
and highlight the importance of conducting recording
experiments in awake behaving animals. However, there
is a major interpretational problem with all of these in vivo
electrophysiological studies: the physiological and phar-
macological criteria (e.g., dopamine D2 receptor inhibition,
action potential duration, or firing pattern) used to identify
VTA neurons as dopaminergic are unreliable [35,56–58]; a
definitive picture of the effect of MOP agonists on dopa-
mine neurons will require a direct method of identification
of neurotransmitter content in VTA neurons in awake
behaving animals (e.g., [58]).

Both dopaminergic and nondopaminergic circuits can

contribute to VTA opioid reward

Although there is widespread acceptance of the idea that a
critical step in MOP reward is activation of midbrain
dopamine neurons, the involvement of dopamine is more
nuanced and variable. In fact, opioid reward can occur
without normal dopamine function. For example, dopa-
mine-depleted mice acquire morphine CPP [59]. One criti-
cal factor that determines the degree to which dopamine
contributes to MOP reward is the state of the animal. This
was studied by van der Kooy’s group, who compared MOP
CPP in rats that were either opioid naı̈ve or opioid depen-
dent (using either systemic [60] or intra-VTA microinjec-
tion of morphine [24]). In opioid-naı̈ve rats, morphine CPP
was not blocked by systemic a-flupenthixol, a nonselective
dopamine receptor antagonist. By contrast, this same dose
of a-flupenthixol completely blocked morphine CPP in
the opioid-dependent rats. The authors observed the same
pattern for systemic morphine CPP when injecting the
same dopamine antagonist directly into the ventral stria-
tum [61]. Food deprivation, social defeat stress, and intra-
VTA brain-derived neurotrophic factor (BDNF) also induce
the same kind of ‘state-dependent’ shift in VTA-dopamine
reward circuit function [62–64]. However, most studies of
MOP receptor function in the VTA and of its role in behavior
have been carried out in opioid-naı̈ve animals. Clearly, VTA
MOP receptors can produce reward through a mechanism
that does not require dopamine. Unfortunately, our knowl-
edge of the nondopaminergic VTA circuitry supporting
MOP positive reinforcement is currently limited.

Dopamine neuron firing can encode positive outcomes
and produce positive reinforcement
Although some pharmacological manipulations that in-
crease dopamine in the ventral striatum do not produce
reward (Box 1), there is a body of evidence implicating
219



Box 1. Some pharmacological agents that increase NAc

dopamine are not rewarding

In general, drugs of abuse increase dopamine release in the NAc

[107]. However, not all pharmacological manipulations that increase

dopamine release in the NAc are rewarding. For instance, micro-

injecting delta opioid receptor agonists into the VTA increases

dopamine release in the NAc but does not produce CPP

[45,108]. The same is true for glial cell-line derived neurotrophic

factor [109,110] and cholecystokinin (CCK) [111–113]. Most strik-

ingly, microinjecting a MOP receptor antagonist into the VTA

increases dopamine levels in the NAc [114], and behaviorally

produces a conditioned place aversion [115]. Furthermore, with-

drawal from opioid treatment is aversive and associated with an

increase in NAc dopamine release [3]. By contrast, dopamine

antagonists in the NAc rarely produce aversion and inconsistently

block psychostimulant reward (see [116,117] for study summaries).

Together, these observations indicate that an increase in dopamine

release in the NAc is not itself a reliable biomarker for reward.

Box 2. ‘Dopamine’ neurons co-release other

neurotransmitters and neuromodulators

Selective control of dopamine neurons, for example with optoge-

netics, provides an excellent opportunity to design experiments that

test for causal links between dopamine neuron activity and

behavioral outcomes. However, stimulation of dopaminergic neu-

rons likely releases more than dopamine. The most extensively

studied co-released signaling molecule is glutamate, which has

been confirmed in VTA projections to the NAc, medial prefrontal

cortex (mPFC), and lateral habenula [118–121]. GABA release from

neurons with dopamine markers that project to the dorsal striatum

and lateral habenula has also recently been reported [121–123].

Importantly, many peptides have been identified in dopaminergic

neurons, including CCK [124–126], neurotensin [127], neurotrophin

3 [128], and Brain Derived Neurotrophic Factor [128]. Corticotropin-

releasing factor (CRF) and CRF-binding protein, which appears to be

required for some actions of CRF in the VTA, are also expressed by a

subset of dopamine neurons [129,130]. Consistent with the idea that

these peptides can be released concurrently with dopamine,

systemic morphine administration also increases CCK release in

the NAc [131]. Any of these neurotransmitters or modulators may

contribute to the behavioral outcome of ‘selectively’ stimulating or

inhibiting ‘dopamine’ neurons.
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dopamine in positive reinforcement. In vivo single unit
recordings in both primate and rodents show that midbrain
dopamine neurons encode beneficial outcomes (e.g., [7,58]).
More specifically, many dopaminergic neurons encode a
signal consistent with the proposal that their firing reflects
a reward prediction error. An encoded positive reward
prediction error can act as a teaching signal and lead to
positive reinforcement. Causal evidence that selective ac-
tivation of dopamine neurons can produce positive rein-
forcement has recently been provided using rodents that
express Cre recombinase under the tyrosine hydroxylase
(TH) promoter (TH is currently the most reliable identifier
of dopamine neurons in the VTA). In these rodents,
expression of channel rhodopsin (ChR) can be selectively
induced in VTA TH-expressing neurons through local mi-
croinjection of viruses with a Cre-inducible viral construct
coding for ChR-2. These rodents learned to lever press to
receive light activation of their VTA dopamine neurons
[65,66]. Furthermore, application of a burst pattern of
light activation was capable of producing CPP, indicating
that activity in VTA dopamine neurons is sufficient for
positive reinforcement [67]. The sufficiency for positive
reinforcement of precisely timed stimulation of dopamine
neurons was recently demonstrated by Steinberg et al. [68],
who were able to substitute optogenetic activation of rat
VTA dopamine neurons for a ‘natural’ reward and signifi-
cantly reduce extinction of learned approach behavior.
Importantly, stimulation that occurred after a delay
(thus degrading the temporal association of dopamine
activation with the action that produced it) did not main-
tain responding. Clearly, there are conditions under which
selective activation of TH-expressing VTA neurons is suf-
ficient to mediate positive reinforcement and mimic the
effect of natural reward. This evidence is consistent with
the idea that the timing of the dopamine signal in the
relevant target site is instructive in the process of positive
reinforcement.

While these studies strongly support a role for dopamine
neurons in positive reinforcement, their interpretation
must be informed by the fact that VTA TH-expressing
neurons can also release glutamate, GABA, and a variety
of neuropeptides (Box 2). Another caveat to these experi-
ments is that TH mRNA expression has been observed in
220
neurons with varying levels of vesicular monoamine trans-
porter expression, raising the possibility that some TH
positive neurons do not release dopamine through a clas-
sical vesicular mechanism, if at all [69]. Understanding the
contribution of these co-transmitters and modulators to
opioid reward is an important area for future study.

How do MOP receptor agonists in the VTA excite

dopamine neurons?

The most commonly reported direct synaptic actions of
opioid agonists are inhibitory: either direct hyperpolariza-
tion of neurons through activation of somadendritic
G-protein coupled receptor activated inwardly rectifying
K+ channels (GIRKs) or inhibition of neurotransmitter
release [70]. Given this, the initial proposal for the mecha-
nism of MOP excitation of VTA dopamine neurons was
that it is indirect, through removal of tonic GABAergic
inhibition [71]. In fact, opioid excitation through disinhibi-
tion was previously demonstrated in the hippocampus and
other CNS sites [72]. Furthermore, work in the neighbor-
ing SN supported the possibility of disinhibitory circuitry
in the midbrain: SN pars compacta putative GABAergic
neurons, but not dopamine neurons, are inhibited by MOP
receptor agonists [73]. These studies set the stage for ex
vivo work in the VTA.

The idea that MOP receptor agonists activate VTA
dopamine neurons by inhibiting local GABAergic inter-
neurons was addressed by Johnson and North [74], who
showed that most VTA neurons are inhibited by dopamine
but not MOP receptor agonists (‘principal neurons’); out
of the eight principal neurons tested, five were cytochemi-
cally identified as dopaminergic. A smaller group (not
cytochemically identified) was hyperpolarized by MOP
agonists but not by dopamine. Based on their similarity
to putative GABA neurons in the SN, the authors proposed
that these ‘secondary cells’ were GABAergic interneurons
that inhibited neighboring dopamine neurons. Consistent
with this idea, most principal cells showed spontaneous
bicuculline-sensitive (i.e., GABAA receptor-mediated) syn-
aptic potentials that were prevented by the Na+ channel
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Figure 3. Identified sites where mu opioid (MOP) receptor action could disinhibit

ventral tegmental area (VTA) neurons. MOP receptor agonists have been shown to

directly hyperpolarize GABA neurons in the ventral pallidum (VP), rostromedial

tegmental nucleus (RMTg), and within the VTA. In addition, MOP receptor agonists

inhibit release from the terminals of VP and RMTg GABAergic neurons but only

minimally from the terminals of VTA GABA interneurons [81].
GABA

Glut
am

ate

- K+

Ca++

+

Net excitatory Net inhibitory

-

+

TRENDS in Neurosciences 

Figure 4. Major pre- and postsynaptic mechanisms underlying mu opioid (MOP)

receptor (blue icon) control of ventral tegmental area (VTA) neurons. MOP receptor

control of VTA neurons can have a net excitatory effect [directly by increasing Ca++

channel (yellow icon) conductance or indirectly by inhibiting GABA release] or a net

inhibitory effect [directly by activating K+ channels (gray icon) or indirectly by

inhibiting glutamate release].
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blocker tetrodotoxin and, therefore, assumed to result from
action potentials arising in local GABAergic interneurons
(i.e., secondary cells) [54]. The frequency of these synaptic
potentials, but not their amplitudes, was reduced by opioid
agonists selective for MOP receptors. Therefore, Johnson
and North proposed that MOP receptor agonists excite
VTA dopamine neurons by inhibiting local GABAergic
interneurons (Figure 3). Consistent with this model, we
showed that half of cytochemically identified VTA
GABAergic neurons in rat are hyperpolarized by the
MOP receptor selective agonist DAMGO [57]. Similar find-
ings were reported in all identified GAD67-GFP (i.e.,
GABAergic) VTA neurons in mouse [75]. At least some
VTA GABA neurons synapse onto neighboring dopamine
neurons [76] and a recent study in which ChR was selec-
tively expressed in midbrain GABAergic neurons using
GAD-67 Cre mice showed that activation of these neurons
can inhibit dopaminergic neurons and reduce NAc dopa-
mine release as measured by cyclic voltammetry [77]. Fur-
thermore, selective inactivation of midbrain GABAergic
neurons can excite VTA dopamine neurons [78]. Whether
the VTA GABAergic neurons locally connected to dopa-
mine neurons include those inhibited by MOP receptor
agonists remains to be determined.

Although the canonical two-neuron model has the vir-
tues of simplicity and completeness (i.e., a single VTA
synaptic site of action for MOP receptor agonist reward),
there are significant numbers of MOP-sensitive GABAer-
gic terminals that arise from neurons extrinsic to the VTA.
One particularly interesting group of GABAergic neurons
lies within the caudal VTA and continues caudally and
dorsally well beyond the most caudal dopamine neurons in
the VTA. These neurons, variously named the rostral
medial tegmental nucleus (RMTg) or the tail of the VTA,
densely project to the VTA and directly contact dopamine
neurons [79]. Many RMTg neurons are hyperpolarized by
the MOP receptor selective agonist DAMGO [80]. Selective
optogenetic activation of RMTg afferents to VTA dopamine
neurons produced large GABAergic inhibitory postsynap-
tic currents (IPSCs) that are inhibited by DAMGO
[80,81]. MOP receptor agonists also inhibit GABA release
on to VTA dopamine neurons from the terminals of ventral
pallidum neurons [82] and from the terminals of intrinsic
VTA GABAergic neurons [81] (Figure 3). The degree to
which MOP receptor agonists inhibit GABA release is
greater for RMTg inputs than for those from intrinsic
VTA or NAc neurons. In vivo, the degree of disinhibition
of VTA neurons depends upon the level of GABA terminal
activity when MOP receptor agonists are introduced.

The generality of the disinhibition model is attractive;
however, MOP receptor agonists have a variety of both
inhibitory and excitatory synaptic actions in the VTA
(Figure 4). In addition to the inhibition of GABAergic
terminals synapsing on dopamine neurons, MOP receptor
activation also inhibits GABA release onto nondopamine
neurons [83,84], and MOP receptor agonists can inhibit
glutamate release from terminals synapsing onto VTA
neurons [85,86]. Despite the inhibitory effect of MOP on
VTA glutamate transmission, Jalabert and colleagues [51]
reported that an increase in putative VTA dopamine neu-
ron firing following morphine required glutamate neuro-
transmission in the VTA. Furthermore, morphine CPP
requires glutamate signaling in the VTA [87].

Finally, we have recently discovered that MOP receptor
activation by DAMGO can directly excite a significant
subset of VTA neurons, including dopamine neurons
[88]. With an EC-50 in the single nanomolar range, two
orders of magnitude more sensitive than the inhibition of
release from GABA terminals, this effect appears to re-
quire opening of a somatodendritic Cav2.1 channel. Unlike
disinhibition, this mechanism does not require active
GABA or glutamate inputs to excite VTA neurons. This
direct excitatory effect predominates in approximately
20% of VTA neurons, raising the possibility that only
certain circuits through the VTA can harness this direct
excitatory mechanism.

Alternative circuits for MOP reward: dopamine and
nondopamine
The canonical model of opioid reward asserts that the criti-
cal dopaminergic terminal region is the ventral striatum.
Indeed, dopamine D1 receptor antagonists microinjected
221
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into the NAc can reduce MOP receptor agonist reinforce-
ment [89]. However, recent evidence suggests that dopa-
mine can be released in the striatum independent of
increases in VTA dopamine neuron activity: first, VTA
GABA neurons that project to the NAc synapse onto cholin-
ergic interneurons [39]; second, cholinergic interneuron
activation in the NAc can stimulate dopamine release
through nicotinic acetylcholine receptors on the striatal
terminals of dopamine neurons [90,91]. Therefore, MOP
inhibition of VTA GABA neurons projecting to the NAc
could increase NAc dopamine release, independent of so-
matic action potential activity in the VTA (Figure 2). There
is also evidence implicating VTA projections to targets other
than the NAc. For example, lesions of dopaminergic term-
inals in the anterior cingulate cortex prevent the acquisition
of systemic or intraVTA morphine CPP [92]. Dopamine D1
or D2 receptor antagonists microinjected into the amygdala
can also block morphine CPP, depending on the state of
the animal [93]. Future studies may reveal additional VTA
projections that contribute to MOP reward.

While it is clear that there are distinct circuits involved
in dopamine independent MOP reward in the VTA, our
knowledge of them is limited. The pedunculopontine teg-
mentum (PPTg) is required for VTA MOP CPP in opiate-
naı̈ve animals [24]. However, the circuit connections and
neurotransmitter(s) required for this effect are not known.
It is possible that nondopamine projections to well-studied
limbic targets, such as the NAc, prefrontal cortex, and
amygdala, are involved, but the role in VTA MOP reward
of nondopamine projections to other brain regions, such as
the ventral pallidum, hippocampus, or periaqueductal
gray, needs to be investigated.

Can inhibition of dopamine neurons produce
reinforcement?
Another robust MOP receptor effect on a subset of VTA
dopamine neurons is direct postsynaptic inhibition
[32,88,94,95]. In fact, nearly half of all confirmed VTA
dopamine neurons are inhibited by MOP activation ex vivo
in the rat [88]. The heterogeneity of MOP receptor-
mediated actions on VTA dopamine neurons, in particular
the ubiquity of the direct inhibitory effect, undermines a
critical simplifying assumption underpinning the two neu-
ron model, that is, that dopamine neurons in the VTA form
a single functional group with uniform pharmacology. It is
now clear that different groups of VTA dopamine neurons
have distinct functional and pharmacological profiles that
depend in part on their distinct projection targets.

One intriguing possibility is raised by the observation
that a subset of VTA dopamine neurons is activated by
noxious stimuli [3,5,96]. Consistent with this idea is a recent
report that activation of lateral habenula inputs to the VTA
produces an aversive effect through activation of a subset
of dopamine neurons projecting to prefrontal cortex [97]. If
these neurons are active and generating an aversive signal,
their direct inhibition by MOP receptor activation should
produce negative reinforcement (i.e., a rewarding effect due
to a reduction of an ongoing aversive input).

In addition to the idea that MOP receptor agonists could
have different synaptic actions on different subpopulations
of VTA neurons depending upon their circuit connections,
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the variety of MOP receptor synaptic actions raises several
alternative mechanisms by which MOP receptor agonists
might increase dopamine release in downstream target
regions. Local somadendritic release of dopamine provides
a robust mechanism for inhibition of dopamine neurons by
other nearby dopamine neurons via D2 dopamine receptor
activation (e.g., [98]). Consequently, MOP receptor inhibi-
tion of some VTA dopamine neurons could lead to a de-
crease in local dopamine concentration and contribute to
disinhibition of other dopamine neurons. Clearly, addition-
al experiments are required to determine whether any of
these VTA synaptic mechanisms of MOP receptor agonists
contribute to reinforcement.

Concluding remarks
While it is clear that direct synaptic actions in the VTA are
required for MOP receptor-mediated reward, the goal of
identifying the relevant mechanisms and sites of action is
elusive for several reasons. For example, the process of
reward itself comprises multiple elements dissociable in
time and likely involving different circuits. This functional
diversity may be reflected in the distinct connectivity and
function of different subsets of VTA neurons. Despite this
heterogeneity, a large proportion of both axon terminals
and somadendritic elements express functional MOP
receptors. This ubiquitous distribution of MOP receptors
in neurons with different neurotransmitter content and
different projection targets makes a unitary mechanism of
MOP receptor-mediated reward unlikely. That more than
one circuit running through the VTA can promote MOP
reward is demonstrated by the observation that the rein-
forcing effect of MOP receptor actions in the VTA involves
different circuits in opioid-naı̈ve and dependent rodents. In
opioid-naı̈ve but not opioid-exposed rats, VTA MOP reward
is dopamine independent. In-depth studies of MOP recep-
tor-mediated control of VTA synaptic physiology have
revealed a variety of possible mechanisms for activating
both dopamine and nondopamine projection neurons.
Finally, the fact that MOP receptors directly inhibit a
significant number of VTA dopamine neurons raises a
variety of questions; does this happen in vivo? If it does,
what is the normal contribution of these neurons to behav-
ior? Are they the neurons that produce aversive effects
when activated? Can inhibition of a subset of dopamine
neurons produce reinforcement?

In addition to these questions about the functions of the
different MOP sensitive circuits and their contribution to
reinforcement, there are still significant uncertainties
about the synaptic mechanisms by which MOP receptors
control these circuits. For example, despite broad accep-
tance of the canonical disinhibition model, it is unclear
to what degree (if at all) postsynaptic inhibition of VTA
GABAergic interneurons by MOP receptors contributes to
DA neuron activation. Ex vivo experiments clearly demon-
strate not only that MOP receptor activation robustly
inhibits GABA terminals that synapse on to dopamine
neurons, but that MOP receptors also signal through a
direct excitatory effect on these neurons. As predicted by
the canonical model, some VTA GABA neurons are hyper-
polarized by MOP receptor agonists; however, we do not
know whether these are local interneurons connected to
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dopamine neurons or are projection neurons contributing
to dopamine independent reinforcement processes. At the
time of writing, there were no reported studies of MOP
receptor control of VTA glutamate neurons, despite the fact
that they project to limbic forebrain areas implicated in
reinforcement. Clearly, we are at an early stage in our
attempts to parse the contribution of each of these ele-
ments to reward and to define the conditions under which
each is operative. Fortunately, the recent development of
experimental tools (e.g., optogenetics) may provide the
requisite level of temporal and anatomical precision nec-
essary to address these questions in a rigorous way.
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